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Assessing the accuracy of ancient eclipse predictions
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Abstract.
Multiple studies have addressed the question of whether ancient eclipse

predictions correctly predicted known past eclipses. My approach instead is
to generate thousands of synthetic eclipses, starting from random choices for
the longitude of the conjunction, node and perigee, then comparing the mag-
nitude of resulting eclipses with ancient and modern predictions. Writing
code for ancient algorithms requires a detailed analysis of the text, not found
in most commentaries. Working with Qu Anjing, Jayant Shah and Mark
Schiefsky, we hope to do this with the Almagest, multiple Indian siddhan-
tas and Chinese calendars. This paper will describe the results for the Yuan
dynasty Shoushili. These raise the question of how the writers of this calendar
understood its remarkably accurate algorithms for lunar parallax and whether
and when secret geometric models were known to Chinese astronomers.

§1. Introduction

All ancient cultures struggled to master the cycles of the heavens, creat-
ing calendars predicting the behavior of the sun and the moon. Among the
observed phenomena, one of the hardest to predict were the eclipses. Total or
near total solar eclipses were rare but certainly the most terrifying and porten-
tious experiences, hence their prediction was a matter of great importance. We
have records of many eclipse observations and many attempts at predictions
from Babylon, Greece, India, China and Mayan cultures.

We can chart humanities’ progress in understanding the paths of the sun
and moon in stages:

(1) Keeping records of days, synodic months, tropical years leading to
knowledge of their length and longer cycles (e.g. Metonic cycle).

(2) Discovery of the bi-yearly times where especially lunar eclipses oc-
cur at full moons, leading to an appreciation of the lunar nodes. This
is, for example, the high point of Mayan discoveries.
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(3) More precise measurements of new/full moons, solstices/equinoxes
leading to the recognition of the anomalies, periodic acceleration and
deceleration of the moon and sun in their tracks, the perihelion and
perigee. This is found in Seleucid Babylon, Hipparchus in Greece
(c.150 BCE), the Paitamaha Siddhanta in India (c. 400 CE) and
the Chinese calendar Huangjili [皇極暦] written by Liu Zhou [劉焯],
(604 CE).

(4) The discovery of lunar parallax. Without knowing of this, solar
eclipse prediction was doomed to be very inaccurate. This crucial
discovery is found in Hipparchus again, in Aryabhata’s siddhanta in
India (499 CE) and in Yi Xing’s [一行] calendar in China (728 CE).

(5) Of lesser importance for eclipse prediction, closer studies of lunar
motion reveal layer upon layer of sublety. Evection is described in
Ptolemy, (140 CE) and Manjula and Vatesvara in India (932 CE).
After Newton’s work, more 3-body effects of the Earth-Moon-Sun
emerged as did the 2-body effects of Venus and Jupiter on the moon
and the influence of the Earth’s oblateness.

Going back at least to Hipparchus, Aryabhata and the Chinese calendars
of the Han dynasty, quite complex algorithms were created to make eclipse
predictions. Many of these have been edited and some translated into mod-
ern Western languages and attempts have been made to assess their accuracy
by comparing them with the actual eclipses of that culture and time as recon-
structed from modern algorithms. However a full analysis using the tools of
modern mathematics does not seem to me to have been made.

I want to propose that this requires two steps. The first is to convert the
written description of the algorithms to unambiguous computer code. All too
often, when you seek to implement a sequence of operations described in a
long ancient text, ambiguities arise. Moreover, when put in computer code,
the differences between algorithms becomes much clearer. For example, In-
dian algorithms introduced iterative loops that were unknown to earlier algo-
rithms. Secondly, to assess accuracy, we need a large supply of hypothetical
eclipses: this can be provided by randomly synthesizing celestial configura-
tions for all the variable points that affect the sun’s and moon’s orbits and then
seeing what sort of eclipse, if any, is predicted by both the ancient and the
modern algorithms. This is the project on which this paper is a first report.
Not being a real scholar nor someone who can read Sanskrit, classical Chinese
or Greek, I am very fortunate to be working with Jayant Shah on the Indian
material, with Qu Anjing on the Chinese material and with Mark Schiefsky on
the Greek material. I thank them all for many suggestions and explanations.
Often reading the primary source is the only way to resolve ambiguities and
this has been essential for this project.
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§2. Models, old and new

Celestial models are all about periodic effects. Originally, these were
modeled by epicycles. But it’s really the same ideas that re-appear in mod-
ern form as Fourier series or, more precisely, in the theory of almost periodic
functions. Thus if we consider motion in a plane and put a complex coordinate
on the plane, epicycle motion is described by the formula:

p(t) =
∑

k

akeiωkt.

If one term is dominant, i.e. |a1| ≫ |ak|, if k > 1, then, taking logs and
expanding, you get a formula of the form:

longitude = ω1t +
∑

A⃗

cA⃗ sin

(
∑

k

Ak(ωk −ω1)t + φA⃗

)
.

This is, in fact, exactly the way one school of modern modelers writes its
predictions. For the moon, the prediction takes the form:

longitude = ω1t +
∑

i,j,k,ℓ

ci,j,k,ℓ sin(i.D + j.L + k.L′ + ℓ.F )

where ω1t is the mean moon and D,L,L′, F are also angles, linearly increas-
ing as a function of time, namely the angles between the mean moon and mean
sun (the mean elongation), the mean moon and perigee, the mean sun and per-
ihelion and finally the mean moon and ascending node. We need to be careful
about what longitude means as the moon’s orbit has a small inclination to the
ecliptic. The modern approach is to use the words longitude and latitude as
spherical coordinates relative to the ecliptic and its pole. Thus the longitude of
the moon is the angle of its projection to the ecliptic to the chosen ecliptic base
point and the elongation is the angle from this projection to the sun.

Even in 1925, however, the best modern formulas made errors of several
arc-seconds: see figure 1. A recent version, the Éphéméride Lunaire Parisenne
due to Michelle Chaprint-Touzé and Jean Chapront ([2]) has 20,560 terms for
the longitude of the moon of which 19,136 relate to the effects of the other
planets on the moon and so use also the angle between the mean moon and
the mean longitude of that planet. For example, Venus can shift the moon’s
longitude by as much as 14 arc-seconds. But the 1023 terms involving only
D,L,L′, F give arc-minute accuracy. To illustrate how far we have come, here
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are ELP’s main terms for the longitude, latitude and distance of the moon:

lunar long. = +13.176◦t mean motion
+6.289◦ sin(L) eqn of center
+1.274◦ sin(2D −L) evection
+0.658◦ sin(2D) variation
+0.214◦ sin(2L) 2nd order Keplerian effect
−0.185◦ sin(L′) annual effect
−0.114◦ sin(2F ) correct for projection to ecliptic
+ terms with coeff. ≤0.06◦

lunar lat. = +5.128◦ sin(F ) inclination of lunar orbit
+0.559◦ sin(L). cos(F ) equation of center
+0.173◦ sin(2D −F ) wobble of lunar orbit
+ terms with coeff. ≤0.06◦

dist to moon = +385001 km. mean distance
−20905 cos(L) equation of center
−3699 cos(2D −L) wobble
−2956 cos(D) wobble 2nd part
−570 cos(2L) 2nd order Keplerian effect
+ terms less than 570 km.

Here ‘Keplerian’ effects refer to describing his elliptical motion in spher-
ical coordinates but the word ‘wobble’ above just means the sun causes the
plane of moon’s orbit to vary, a tricky effect depending on elongation that has
no technical name. Fortunately, in assessing ancient predictions, I only need
arc-minute accuracy and so I chose to use ELP for the modern predictions,
taking only the terms in D,L,L′, F . Then in generating random eclipses, we
need not choose the longitude for instance of Venus but need only the longi-
tude of the conjunction itself, of the perigee, the perihelion and the ascending
node. Note also that at eclipses, D is very nearly zero and F cannot be too big
either. The implementation of ELP that I use is in Matlab and is part of Eran
Ofek’s astronomy & astrophysics package for Matlab ([5]).

Because we are looking ancient predictions, it is important to see if the
elements of the lunar and solar orbits have changed substantially going back
a thousand years. Using ELP, the changes are estimated in [8]. The elements
of the lunar orbit are found on p.669 of this paper and have not changed very
much: going back to year 0, the semi-major axis of the lunar orbit changes only
by about 0.08 kilometers, its eccentricity by about 3×10− 7 and its inclination
to the ecliptic of date by about 1.6 ×10− 3 seconds. The largest change is that
the speed of the lunar perigee’s motion changes by about −1.5 seconds/year.

One effect of the modern predictions is that what we called the ‘wobble’
of the lunar orbit has an important influence on its inclination to the ecliptic.
This figure has a major effect on the eclipse limits – how close a conjunction
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Fig. 1. The first page of the New York Times, Jan.25, 1925 – the
current best predictions still had substantial errors!

must be to a node for an eclipse to occur. By computing the angle between
the ecliptic and the tangent plane to the moon’s orbit at any point in time, this
inclination becomes a well defined function of time. This is also worked out
from ELP in the above cited paper, p.671:

inclination i = 5.1567◦ mean motion
+0.1351◦ cos(2D −2F ) biannual wobble, sun to node
−0.0111◦ cos(2D) monthly variation
+0.0104◦ cos(2F ) monthly variation
+ · · · small terms, coeff < 0.01◦

The bottom line is that at eclipses, D and F are small and the inclination is
close to 5.1567 + 0.1351 −0.0111 + 0.0104 = 5.291 degrees. A nice plot is
found in [4], figure 4–10, p.46.

§3. The Shoushili

In China, going back to the Han dynasty, the emperor issued an almanac
every year, something like our ephemerides, including dates of new moons,
eclipses and information for determining propitious and unpropitious times for
rituals, planting etc. To compute these, the Bureau of Astronomy wrote com-
putational treatises called li [暦] in Chinese, usually translated as “calendars”,
every 50 years or so. Such a calendar would be issued if the predictions of
the old one were getting worse so that a new epoch with new constants was
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needed or to reinforce the legitimacy of a new dynasty, They also sometimes
embodied increased knowledge of the basic math behind the observed bodies,
the sun, moon and planets and might then be completely rewritten.

The Shoushili [授時暦], or “The Granting the Seasons Calendar” has been
translated by Nathan Sivin in [9]. It was issued in 1280 CE by Kubulai Khan.
Kubulai had actually commanded two groups to write calendars, one group
made up of Muslim astronomers and one of Chinese. So as not to rock the
boat too much, he shrewdly adopted the Shoushili, written by Chinese, one
that followed the Chinese tradition to a great extent. It is arguably the best
calendar before Matteo Ricci succeeded in making his way into the Emperor
Wanli’s [萬暦] circle in 1601 and Western science began to make inroads.

The Shoushili is notable in having extraordinarily accurate values of syn-
odic and nodal months (the time between new moons and the time between two
lunar crossings of the ascending node): they were accurate to about 1/3 and 1/4
second respectively. The first requires long observations of the dates of new
moons and the second presumably records of ancient eclipses which had been
recorded in the dynastic annals as early as the 8th century BCE. The nodical
month, translated by Sivin as the “Crossing Terminal Constant” is given as 27
days, 2122.24 ‘parts’, where each part is 1/10,000th of a day1. The modern
value, in these terms, is 27 days, 2122.2082 parts. From the 8th century BCE
to the time of writing the Shoushili, there had been about 25,000 lunar cross-
ings of the ascending node, so an early eclipse observation accurate to within
2 hours would suffice for achieving this accuracy. In any case, starting from
positions of the sun, moon and nodes at a given recent epoch, these two periods
allow you to extrapolate and compute the distance of every mean conjunction
from the nearest node. This was the first step of their prediction.

The second step is to correct for the equation of center, the observed fact
that neither the sun nor the moon moves at constant speed around its orbit
(‘pacing the tread of the sun/moon’ in Sivin’s translation). The resulting ap-
parent position is given by adding to their mean position a periodic piecewise
cubic function of time that closely approximates the sine function. The major
error made here was that the solar correction was taken to be about 25% larger
than it actually is. The maximum correction in the Shoushili is 2.367◦ while
modern observations give it as 1.914◦. Interestingly, a similar error was made
by Ptolemy and by the Indian astronomers. I suspect the reason was quite sim-
ple: the equation of center was estimated by finding the date and time of the
solstices and the equinoxes and fitting the equation of center to the lengths of
the four seasons between these events. To estimate the date and time of the

1As Sivin explains on p.68, pp.87–89, [9], these were written as something like
“2 thousands, 1 hundred, 2 tens, 2 units, 24 hundredths”.
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solstices is not so hard: one observes either the length of the day or the maxi-
mum height of the sun the sun for several weeks before and after the solstice. It
forms a roughly parabolic curve and one seeks the extreme point (max or min).
The best way to do this is to average two dates, before and after the solstice
when the length or heights are the same. For the equinox, however, you need
to discover when sunrise and sunset divide the day in two equal parts or when
their positions on the horizon are exactly opposite. Here the difficulty is that
refraction prolongs the day: the sun is still visible even when it is geometri-
cally slightly below the horizon. The early astronomers were unaware of this
effect and I believe this accounts reasonably well for the error.

Fig. 2. The parallax of the moon: seen from point A, the position
L of the moon against the sky shifts towards the horizon
from where it appears at point B.

The third and really difficult step is to account for lunar parallax (and a
possible solar parallax if the sun is assumed not too distant). The essential
fact to bear in mind is that Chinese calendars never describe geometric mod-
els of the positions of the celestial bodies in space. In fact, to my knowledge,
discussions of whether the earth is round or flat are confined to occasional
philosophical speculations and thus no serious estimate of the earth’s size ap-
pears in any surviving manuscripts before the coming of the Jesuits. Without
the model shown in figure 2, how would parallax be understood? Yet without
such a correction, eclipse predictions must necessarily be wildly inaccurate.
Somehow, the Shoushili came up with a reasonably accurate first approxima-
tion of the parallax correction! At the end of this paper, we will present one
theory of what might have been going on among the Chinese astronomers.

From a modern perspective, the paralactic correction needs to steps: first,
estimate the angle θ between the observer’s zenith and the moon seen from
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the center of the earth. The moon should then be displaced by an angle ap-
proximately equal to C. sin(θ) towards the horizon. The constant C depends
on the ratio of the distance of the moon to the earth’s radius and is about one
degree. Secondly, this displacement is written as a vector sum of a displace-
ment in longitude to a displacement in latitude. The latitude correction brings
the moon closer to or further from the sun which sits on the ecliptic and the
longitude correction changes the time when the sun and moon are closest, the
time of the eclipse if it occurs. Qu Anjing (lecture at Harvard, Jan. 2014) has
shown that the latitude correction in degrees is very close to the following:

∆(lunar lati.) ≈ 180H

π tan(ι)
· (cos(ϵ). sin(φ) −sin(ϵ). cos(φ). sin(λ + h))

= k0(ϵ,φ, ι,H)

−k(ϵ,φ, ι,H) (sin(λ). cos(h) + cos(λ). sin(h))

where H = (radius earth)/(distance earth to moon)
ι = inclination moon’s orbit to ecliptic
ϵ = inclination of the ecliptic
φ = latitude of the observer
λ = Right ascension of sun, i.e. date
h = hour angle of sun, or time of day relative to noon

And then the Shoushili’s formula is:

∆(lunar latitude) = 6.065◦ −4.395◦
(

si(λ).
(
1 − |h|

d/2

)
+ si(λ + 90◦).

h

6
)

)

where si(x) = 4 x
π (1 − x

π ) for 0 ≤x ≤π, and its negative for π ≤x ≤2π,
a piecewise quadratic approximation to sine and d is the day length at the date
of the possible eclipse. Working out Qu’s k0 and k for Beijing, we get 6.2◦

and 3.23◦. Thus the Shoushili formula is an approximation of Qu’s formula
obtained by replacing the trig functions of h by piecewise linear functions and
the trig functions of λ by quadratic approximations.

As for the longitude correction, this is handled by a simple additive factor
in the hour angle h of the conjunction, zero at noon and otherwise pushing the
conjunction towards sunrise/sunset:

adjusted hour angle = h + ( 5
24 )2 · h · (12 −|h|).
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Here is the whole Shoushili eclipse prediction algorithm in pseudo-code:

1. Generate random longitudes in [0,360] for origin at
vernal equinox. MM=MS mean moon/sun, PG for the
moon’s perigee, Nd for the node within 15 - of MM and
a sign bit AD (asc or desc), perihelion PH assumed at
winter solstice 270 degrees.

2. Use cubic polynomials for dS and dM, the equations of
center of sun and moon.

3. Define DistNd := (MM-Nd)*(vM/(vM-Vn) + dS;
DT := (TropYr/360)*MS + (dS-dM)/vM~;

where vM~ is the velocity of the moon corrected for its
position relative to perigee using the moon’s eqn table.

4. Compute the hour angle of the eclipse by:
HrAng := 24*(DT - round(DT));

and its correction due to parallax by:
HrAng := HrAng*(1+(5/24)^2*(12-abs(HrAng));

5. Compute:
DayLen := 12 + 2.766*sin(MS - 2.367);
if abs(HrAng) > DayLen/2, NIGHT&NO_VIS_ECL

6. With a parabolic approx psin to sin, define the
parallax correction:

DistNd := DistNd + AD*(-6.065 + 4.395*(
{psin(MS)*(1-abs(HrAng)/(DayLen/2)) +
psin(MS+90 -)*(HrAng/6)});

7. Define YY := +1 if (AD=+1 & MM>Nd) OR (AD=-1 & MM<Nd),
else -1;

8. EclipseMag := max(0,1-abs(DistNd)/(7+YY));

§4. Simulation results

The analysis proceeded as follows: we ran 20,000 trials, choosing ran-
dom longitude of mean conjunction, random perigee and a node, randomly
ascending or descending and within 15 degrees of the conjunction. We fix the
perihelion at the winter solstice as in the Shoushili (which is in fact very accu-
rate, NASA [3] gives the value 270.585 for the year 1280 CE). In each trial, we
ran both ELP and the Shoushili algorithms. To see if an eclipse was predicted,
a simple summary statistic is a sort of signed magnitude. Take the time when
the sun and moon are closest and compute the ratio of (i) the latitude of the
moon minus the latitude of the sun by (ii) the sim opt the observed radius of
the moon and the radius of the sun. If this figure has absolute value less than
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one if and only if there is a partial eclipse and the eclipse gets more total as it
approaches zero. We call this figure the normalized approach.

For an eclipse to be predicted, we need to examine both the normalized
approach and whether this approach occurs during daylight. So as not to penal-
ize borderline eclipses, we define a strong prediction as one where the absolute
value of normalized approach is less than 0.9 and the time of the nearest ap-
proach is at least one hour after sunrise and one hour before sunset. A weak
prediction is one where the absolute value of the normalized approach is less
than one and this occurs during daylight. Then we count all strong Shoushili
predictions as correct if they are at least weakly predicted buy modern algo-
rithms. We have false positive errors if not. And a strong modern prediction
which is not even a weak Shoushili prediction is called a false negative error.

Of there 20,00 trials, 2257 were Chinese strong eclipse predictions, out of
which 185 were false positives and a further 14 were strong modern predictions
but not even weak Shoushili predictions. This means the rate of false positives
is 185/2257 or about 8% while the rate of false negatives (unpredicted eclipses)
was only 14/2257 or less than 1%. Clearly for the writers of the calendar, it was
much safer to predict an eclipse that did not occur than to not predict one that
did occur. Figure 3 shows a plot of the Chinese normalized approach (y-axis)
against the modern normalized approach (x-axis) for 5000 trials. Every trial
that resulted in a strong modern or strong Chinese prediction is plotted, using
a black circle if the other gave at least a weak prediction, red crosses for false
negatives (in this run, slightly more than average) and the green stars for false
positives. The diagonals represent predictions differing by ± 0.25. The stan-
dard deviation of the difference, Chinese minus modern normalized approach,
for all trials with either a Chinese or modern strong prediction was 0.18. Note
the tilt of the plotted points is slightly less than 45◦, i.e. the Chinese predic-
tions are on average somewhat smaller than their true values. This reflects the
fact that their eclipse limits were set a bit too high (to lessen the frequency of
false negatives). How about the accuracy of the time of occurrence? A plot
of the Chinese and modern predictions for the hour of the maximum eclipse
is shown in figure 4. The standard deviation of their difference over all trials
with either a Chinese or modern strong prediction was just over 30 minutes.

How about the equations of center? Plots of the Chinese solar and lunar
equations of center versus the modern values are shown in figure 5. By modern
values here we take the true longitude seen from the earth’s center minus the
mean longitude. Regressing against a linear function, we find the slope of the
solar data is 1.28 showing again the overestimation of the solar equation of cen-
ter. The standard deviation for the lunar equation of center is 0.33◦ reflecting
the absence of higher order Keplerian terms and the annual effect in the ELP
equations given above. If we assume that errors in predicted eclipses due to
errors in the equations of center and due to errors in parallax are independent,
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Fig. 3. Shoushili predicted normalized approach vs. true normal-
ized approach for 572 simulated eclipses. See text for ex-
planations.

Fig. 4. Shoushili predicted hour angle vs. true hour angle for 572
simulated eclipses. The scale is in hours before or after
noon.
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their variances will add and we can estimate the relative weight of these two
sources of error by running both the Shoushili and ELP with and without any
parallax. We find that about 12% of the variance between Chinese and mod-
ern values is due to the equation of center and 88% due to parallax. Another
indication of this is that the errors increase for eclipses near sunrise and sun-
set hence near the horizon, decreasing for eclipses near noon hence nearer the
zenith.

Fig. 5. Left: Shoushili predicted solar equation of center vs. true
solar equation of center for 572 simulated eclipses. Right:
same for lunar equations of center.

§5. Shah’s results on the Tantrasangraha

I hope to extend this analysis to many other algorithms: Ptolemy’s Al-
magest, earlier Chinese calendars, esp. the Dayanli [大衍暦], or the Great
Expansion calendar of Yi Xing (728 CE) and several Indian siddhantas. In-
dian siddhantas date from the fifth century CE but reached their most accurate
level in the work of Kerala astronomer-mathematician Nilakantha who wrote
the Tantrasangraha in 1501 CE, available in a recent edited English translation
[6]. Jayant Shah has carried out a similar analysis on this siddhanta, putting its
algorithms into matlab code [7]. This section reports on the results of his code.

In stark contrast to the Chinese approach, all Indian siddhantas are based
on explicit geometric models. Some aspects of their models were refined over
time but others were rigidly fixed by tradition. Thus a fundamental feature of
their models is that all celestial bodies, sun, moon and planets, are assumed
to be moving at the same mean speed. Thus their relative distances can be
inferred from their periods. One consequence is that sun as well as the moon
has a non-negligible parallax that affects eclipses. Unfortunately this magnifies
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the solar parallax by a factor of 30 introducing a substantial error. On the
other hand, a strength of algorithms, unique to India, is their use of iteration
to find solutions of geometric models with quite complex constraints. Their
use of iterative algorithms can be traced all the way back to Panini’s Sanskrit
grammar (variously dated to the 4th or 5th century BCE). An example is that
their standard epicycle models have an epicycle with variable radius in which
the radius is required to have a fixed ratio to the distance of the planet to the
earth, a constraint that is readily solved by iteration.

On the whole, their results are more definitely better than those in the
Shoushili. Comparisons between the Tantrasangraha and modern predictions
of (a) distance to node at maximum eclipse, (b) normalized latitude, (c) hour
angle of maximum eclipse and (d) the solar equation of center are shown in fig-
ure 6. As in the Chinese algorithm, more eclipses were predicted than actually
occurred: in fact there were no missed strong eclipses in our simulations but
the error rate for false positives was 5%.(as compared to 8% for the Shoushili).
The standard deviation for the error of the predicted nodal distances is 0.48◦

compared to 1.12◦ for the Shoushili. The plot for the error in predicted mag-
nitude shows an interesting error: it is tilted with slope about 0.9 instead of
1. The cause of this is another instance of how traditional models in India
are sometimes accepted without further study. In this case, the inclination of
the moon’s orbit to the ecliptic was always taken as 4.5◦ whereas its correct
value should have been about 5.3◦. Making this inclination so small means that
eclipses are predicted for conjunctions further from the node and all eclipses
are predicted to have magnitudes correspondingly larger (or normalized lati-
tude too small). Giving the sun observable parallax as well as the moon creates
a further but much smaller error. The standard deviation of the error in hour
angle is astonishingly a bit less than 15 minutes. The solar equation of center
is again a bit too large as in the Shoushili. The division of the rror between
equation of center and parallax works out about the same as in the Shoushili:
about 12% for equation of center and 88% for parallax.

§6. Speculation

Accurate predictions of eclipses require first of all understanding the lunar
nodes, the points in the sky where the sun’s and moon’s orbits intersect. For
example, without any surviving indication of a geometric understanding, it is
still clear that the Maya knew there were two times of year near which a solar
eclipse might occur at a new moon and a lunar eclipse at a full moon. We now
call these the times when the sun crosses one of the nodes. The next step is to
understand that neither the sun nor the moon move at constant speed in their
orbits. In the Shoushili this is described as ‘pacing the tread of the sun/moon’.
This is also a phenomenon that doesn’t immediately call out for a geometric
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Fig. 6. Top left: Tantrasangraha predictions for distance of ob-
server’s conjunction to the node vs. the modern; top right:
same for normalized latitude; bottom left: same for hour
angle; bottom right: same for sun’s equation of center.

model, although if one has a prior conviction that celestial motion should be
uniform and circular, then an epicycle model is a very natural explanation.
Every culture has some such prior beliefs that constrain their understanding of
the world.

The final and crucial step is taking account of lunar parallax: that the
moon appears not where it is expected to be but displaced by up to a degree
towards the horizon. How can such a strange phenomenon be understood with-
out a geometric model? We have seen that this is the most important factor in
eclipse prediction. We have also seen that the Shoushili does quite a good job
in allowing for this. This was first noticed in China by Zhang Zixin around
550 CE after 30 years of observations2. Accurate predictions first appear in
Chinese calendars in the Tang dynasty in the calendar of Yi Xing, the Dayanli
of 728 CE. Where did Yi Xing’s understanding come from?

2Personal communication from Qu Anjing.
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It is essential to realize that predicting eclipses was particularly impor-
tant in China: if the calendar failed to predict a noticeable eclipse, it could be
taken as an indication that the Emperor did not have the ‘Mandate of Heaven’.
In the Tang dynasty, the silk road was open and very active with many mer-
chants connecting China with far flung kingdoms. In particular, Buddhism,
that first spread from India to China in the Han dynasty, was attracting adher-
ents in China and there was a strong desire to import and translate Buddhist
manuscripts from India. It seems likely that word got to the Emperor that
the Indians could predict eclipses very successfully because several Indian as-
tronomers were invited to the court in Chang’an [長安] (now Xi’an [西安])
in the 7th century CE. Gautama Siddha was born in Chang’an in the late 7th
century CE to one of these Indian families and he translated various Indian sid-
dhantas into Chinese and composed a calendar, the Jiuzhili [九執暦] in 718 CE.
Although his calendar was not adopted by the Emperor Xuanzong [玄宗], one
can guess that it strongly influenced Yi Xing’s calendar which was officially
adopted ten years later.

All this makes a nice story and would seem to explain who knew what
when. But it conceals a major question: why is there no reference in any Chi-
nese manuscripts of the time to the underlying geometric models of the Indo-
Greek astronomical tradition? The Indian formulas for parallax were based on
the model of a round earth of a definite size (circumference = 3300 yojanas)
and a moon circling it at a definite distance (mean = 34,380 yojanas), resulting
in parallax that had a maximum value of about one degree for the moon near
the horizon. But no estimate of the earth’s circumference is given in any sur-
viving Chinese manuscript before the arrival of the Jesuits in the 17th century.
The traditional model of the Middle Kingdom was a flat square sitting under
the round dome of the sky. From Han times, the Chinese had built armillary
spheres showing the heavens rotating above the earth which is placed in the
center. This was developed in several somewhat different cosmologies and in
some places the earth was referred to as a ‘yoke’ inside the egg shell of the
heavens. But if, indeed, the earth was round, no estimate was given anywhere
for its size.

In fact, a surviving 1136 CE stone map of greater China, the Yujitu [禹迹
図], shows the land from Inner Mongolia in the north to Hanoi in the south with
inscribed perpendicular NS and EW grid lines stated to be everywhere 100 li
apart. But two NS lines that are 100 li [里] apart at its southern limit should
be only 77 li apart at its northern edge. In fact, the map is distorted to conform
to the rules of Pei Xiu [裴秀] who prescribed in the 3rd century CE what are,
to all intents and purposes, Cartesian coordinates for maps. Figure 7, from my
paper with Alexander Akin [1], shows how this map must be warped so that
the true NS lines are vertical and the true EW lines are horizontal. North-south
lines are easy to lay off using either the north star or a compass, yet in this map
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they are off in places by dozens of degrees. In other words, this monumental
map was distorted to conform to the assumption of a flat earth.

Fig. 7. The white lines and white grid are a rubbing from the orig-
inal carved stone Yujitu. It has been warped so that 45 land-
marks are at their correct positions with respect to the lon-
gitude/latitude axes. The yellow lines are the true coastline,
Yellow, Yangtse and Mekong rivers. Note how far from
vertical the original NS lines become.

The story gets more curious when you consider one of the main tasks
that the Emperor gave to Yi Xing. The use of 8 foot gnomons to measure the
height of the sun goes back to pre-Han times and is described in the Zhoubi
Suanjing [周碑算経]. Moreover it was understood that the height of the sun, e.g.
at midday of the summer solstice, varied systematically as you moved north
or south. Yi Xing was asked to measure the Middle Kingdom in the north-
south direction by making accurate measurements of the gnomon shadow in
20 places. A major innovation that he made was to realize that north-south
distances were proportional to the change in the angle of elevation, not the
change in the cotangent of the angle of elevation (that is, the shadow length
of the gnomon). And to do this, he made a table of the tangent function. It is
hard to believe that if he did this and if knew and read the works of the Indian



79-12.tex : 2018/8/31 (9:19) page: 227

Assessing the accuracy of ancient eclipse predictions 227

astronomers in Chang’an, he did not understand that the earth is round and did
not use his measurements to confirm the Indian estimate its size. But he never
wrote this down!

After discussions with Qu Anjing and other Chinese friends, I’d like to
suggest a conjecture. The tradition of a flat earth, going back to Confucian
times, was something no one could easily contradict. But Yi Xing understood
this was false and that the earth’s true size and shape were essential for drafting
future calendars and indeed for cartographers also. Now many personnel in the
Bureau of Astronomy came from a small number of families and it quite pos-
sible that this model was passed down as esoteric knowledge within these fam-
ilies. Later we encounter the extraordinary polymath Shen Kua [沈括] (1031–
1095 CE) who headed the Bureau of Astronomy for some years sand who later
negotiated treaties based on accurate maps and eventually made a single huge,
now lost, map for the emperor some 50 years before the Yujitu was carved.
Surely the knowledge of the true size of the earth came down to him. But,
like Galileo, to keep his head even when exiled in disfavor, he held his tongue.
The final act was how in the time of Kublai Khan, the Chinese drafters of
the Shoushili worked quite independently of the Muslim astronomers and still,
without a hint of how such strange formulae might arise, produced an accurate
estimate of parallax. Just as the tenacious Chinese tradition had blocked Indian
ideas from general adoption in the Tang, the pattern repeated itself by blocking
Islamic ideas from adoption in the Yuan. Transmission of ideas, even scientific
ones, depends on both sides being open to it.
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