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1 Some recollections

I want to talk about how Grothendieck’s revolution profoundly affected my own
understanding of algebraic geometry. But to do that, I need to reconstruct for
the reader the mathematical environment in which I grew up. When I started
studying algebraic geometry around 1956, the Italian school was no longer ac-
tive. André Weil and Oscar Zariski were carrying the ball and had together
pioneered the extension of algebraic geometry to characteristic p. Weil was
motivated by the idea of creating a merger of algebraic geometry with number
theory to solve, e.g. Mordell’s conjecture. Zariski was motivated by the need to
make the work of the Italian school rigorous by using the new methods of com-
mutative algebra. Everyone realized that the field needed better foundations to
handle these new ideas, in which the explicit geometry of complex varieties was
replaced by an abstract geometry based on algebra and number theory. Both
Weil and Zariski cobbled together some tentative definitions to make discus-
sions and papers possible, both written as books for the AMS colloquium series,
though only Weil’s was published. But their “Foundations” did not have the
feeling of inevitability that one associated, for example, to Bourbaki and his
treatise and were never widely used.

Zariski was highly conscious of the fact that the Italian literature was filled
with deep ideas and that it was essential to mine them, to update them using
the new perspectives. He was much more open to new techniques than Weil,
who radiated cynicism about anyone else’s abstractions. A key breakthrough
occurred when Serre and Zariski’s interests met in the attempt to understand
the Italian work on calculating the dimensions of complete linear systems. In
modern terms, this means calculating the dimension of I'(X, L), the global sec-
tions of a line bundle on a variety X. The Italians had worked from curves to
surfaces to three-folds and so on, at each stage comparing the linear system on
a variety X with its trace on a hypersurface section H. Again, putting this in
modern terms means considering the map:

I'(X,L) - T(H,L® og).



They wanted criteria for this map to be surjective and, if not, to know the
dimension of the cokernel. Zariski published a paper Complete Linear Systems
on Normal Varieties and a Generalization of a Lemma of Enriques-Severi in
the 1952 Annals in which he began to reexamine their analysis. He proved that,
when X is a normal variety, the above map was surjective if the degree of H is
sufficiently big.

In many ways, the cohomology of sheaves was implicit in all the calculations
of this sort made by the Italian school. Cokernels, like the one above, were
theclassical way of dealing H'’s. H?’s came up also, for example in the Cayley-
Bacharach theorem that a plane curve C of degree n 4+ m — 3 which passes
through all but one of the nm points A = D N E of intersection of curves D,
of degrees n and m must pass through the last point. This is a geometric way
of saying that H?(op2(—3)) is one-dimensional: tensor the exact sequence:

0— op2(—D — E) — op2(—D) @ op2(—F) — opz — 04 — 0

with op2 (n+m —3) and work out the usual cohomology. A careful examination
of the Italian work noting, line by line, the equivalent cohomological calculations
would be an interesting study, but this has never been done.

It was J.-P. Serre who made the cohomological approach to algebro-geometric
questions explicit. Sheaves and cohomology were the latest hot technique in the
Cartan Seminar and Serre saw that this was exactly the formalism which made
sense of the Italian work. His work appeared in his famous paper Faisceauz
Algébrique Cohérents (FAC) in the 1955 Annals and had previously been the
subject of his 1954 talk at the Amsterdam International Congress. Zariski em-
braced these ideas instantly and talked on Algebraic Sheaf Theory in the 1954
AMS Summer Institute. The main theorem of Zariski’s 1952 paper now became
HY(X,L(—H)) = (0) if the degree of H is large enough, which Serre reproved
near the end of his paper FAC.

2 Continuous systems of curves on surfaces

Much of the Italian work on linear systems fell into place and could be extended
amazingly once it was recast in terms of sheaves and cohomology. As students
of Zariski, many of us exploited this golden opportunity over the next decade.
Zariski asked us, in particular, if we could reprove and extend to characteristic
p the wonderful synthesis of the Italian work on algebraic surfaces contained in
Enriques’s posthumous 1949 book Le Superficie Algebriche. But one fundamen-
tal issue remained mysterious.

I have to digress to introduce the Italian way of describing the key invari-
ants of surfaces. In the early days of surface theory, everyone sought the natural
generalization of genus from curves C' to surfaces F'. There were two natural
definitions. Since the genus of a curve was the dimension of I'(Q{,) the space



of 1-forms with no poles, one could take on a surface the dimension of I'(Q%),
the space of 2-forms with no poles. This they called py, the geometric genus.
But one can also take the polynomial giving dim I'(F, op(nH)) for large n and
evaluate it at » = 0. In modern terms this is the Euler characteristic x(or)
and, subtracting 1, the dimension of I'(or), they got the arithmetic genus p,.
In cohomology terms, it equals h?(or) — h'(or). For the simplest examples,
e.g. non-singular complete intersections and rational surfaces, they found that

Pg = Pa-

But not always! Going back again to curves of genus g, the set of 0-cycles
of degree n on C breaks up into a g-dimensional family of linear systems, the
family being the Jacobian. In a similar way, Picard and the Italian school
considered ‘complete continuous systems of curves on the surface F’, e.g. the
biggest family of curves on F' containing the hypersurface sections H of some
high degree. Then they broke this family up into its component linear systems
and defined what we call the Picard variety as the set of these. Although
they avoided using divisors with negative coefficients, in effect, they defined
the Picard variety Pic(X) as the group of divisors mod linear equivalence and
called its dimension ¢, the irreqularity. And then, experimentally, they found
that ¢ = py — p, always seemed to hold! They conjectured this must always be
truet

Speaking loosely, they ‘knew’ a version of the fact that I'(Q%) and H?(oF)
had the same dimension. Their argument can be caricatured by saying that for
a high degree hypersurface H:

H?(op) 2H' (og (H.H))
~HY(Q}(—H.H))* via Riemann-Roch on curves

~H(Q%)* via residues

Thus p, = h*(or) and p; — po, = h'(or). Therefore their conjecture was that
hl(or) = dim Pic(F).

Not only did these numbers always seem equal, there was a direct way
of showing that ought to show they were equal. Take a complete continuous
system of curves {H;} of high degree on F' and intersect them with one member
Hy of the family, getting divisors Hy.Hy on Hy. Let ¢t tend to 0. Then these
intersections tend to a linear system of divisors on Hy, which they called the
characteristic linear system of the family {H;}. If this was complete, i.e. equal
to the full space of sections I'(og,(H.H)), then the desired equality could be
proven. In modern terms, this is a consequence of the exact sequence:

0 — T'(or) — T(op(Hy)) — T(om,(H.H)) — H*(op) — 0

LA good deal of the history can be found in some half dozen papers all in the Comptes
Rendus de I’Academie des Sciences, volume 140, 1905. The key paper of Enriques is in the
Rendiconti dell’Accademia delle Scienze di Bologna, volume 9, 1904.



because, if the characteristic linear system is complete, the dimension of the con-
tinuous system divided by linear equivalence will be dim (I'(op, (H.H)) /T (or(Ho)))
or h(or).

Enriques and Severi argued back and forth about whether they had a proof
for this, but somehow each paper purporting to have a complete proof was an-
swered with a dubbio critico. In fact, the equality was established first by Hodge
using the analytic tool of harmonic differential forms. But this intervention was
seen as a blemish on the Italian theory and, moreover, once Weil and Zariski
constructed the theory in characteristic p, the question in the characteristic p
case remained open.

3 Enter Grothendieck

Just as Zariski had welcomed Serre’s introduction of sheaf cohomology, he wel-
comed Grothendieck’s new schemes. He invited Grothendieck to Harvard in
1958 and tried to set up a regular visiting appointment. He didn’t exactly
tear up his foundational colloquium manuscript but he was deeply impressed
by Grothendieck’s new way of setting up algebraic geometry via schemes. One
of Zariski’s deepest theorems was that the inverse image of every normal point
under a proper birational morphism from one variety onto another is connected.
Then Grothendieck came along and he reproved this result now by a descend-
ing induction on an assertion on the higher cohomology groups with Zariski’s
theorem resulting from the HY case: this seemed like black magic.

Grothendieck was a hypnotizing presence at Harvard. He seemed to have
infinite energy and was always willing to schedule another lecture, to explain
yet another facet of his theory. It seemed to be advancing like a tidal wave.
In staid God fearing Yankee country, when no other time could be found, he
created consternation by proposing to hold a seminar at 11 o’clock on Sunday.
He wrote so fast and fluidly on the blackboard, I thought it resembled the ‘grass
writing’ that I had heard about in a lecture on Chinese calligraphy: writing like
the waves in the grass as a gust of wind sweeps over it. The web with which
Zariski had ensnared his students was now itself ensnared in a larger, stranger
one.

My involvement came about because I had been studying the construction
of varieties classifying families of algebraic structures, especially moduli spaces of
vector bundles and of curves. Whereas I had thought loosely of such a classifying
space as having a ‘natural’ one-one correspondence with the set of objects in
question (just as Riemann and Picard had), Grothendieck expressed it with
functors. This was clearly the right perspective. There were ‘fine’ moduli spaces
which carried a universal family of objects, e.g. a universal family of curves from
which all other families were unique pull-backs. Therefore they represented the
functor of all such families. And there were also ‘coarse’ moduli spaces, the best



possible representable approximation to the desired functor (the approximation
being caused e.g. by the fact that some curves had automorphisms).

The most beautiful part of his formulation, however, seemed to me to be
his ‘reification’ of infinitesimal deformations. In Kodaira and Spencer’s work
on analytic moduli spaces, they had introduced H!(O©x), ©x the tangent bun-
dle to X, to describe first order deformations of a compact complex analytic
manifold. But now Grothendieck was saying these first order deformations were
actual families, families whose parameter space was the embodied tangent vector
Spec(k[e]/(€?)). And spanning the gap between families whose parameter space
was a true variety and these first order families over the dual numbers were a
whole stable of families over one point bases, spectra of all possible Artin rings.
Not being a number theorist, this was the real punch of schemes, the really new
thing for me.

Grothendieck came back to Harvard in 1961 and he, John Tate and I ran
a seminar on existence theorems and the representability of various functors,
especially Picard schemes. At about this time, I believe, the more compre-
hensive category of stacks emerged. Because, for instance, the quotient of a
non-projective variety by a finite group need not exist as a scheme, it became
clear that general existence theorems could only be true in a bigger category
and stacks were the natural candidate. The definitive existence theorem for
them came only later when M.Artin proved his Approximation theorem. It can
be found in his 1971 book Algebraic Spaces.

Having an existence theorem for a Picard scheme of a variety X,which
represented the functor of all families of line bundles, instantly solved the above
completeness problem, the main conjecture of Italian algebraic geometry. It
is immediate that the tangent space to the Picard scheme at the identity is
H'(ox) because, by the functorial definition of Pic, its tangent space gives the
space of all line bundles over Spec(k[e]/(€?)) (or of infinitesimal deformations of
any sufficiently ample divisor mod linearly equivalent deformations). So the key
equality ¢ = h'(ox) is simply the statement that the Picard scheme is reduced.
In characteristic zero, the exponential map shows immediately that all group
schemes are reduced — consider the restriction maps:

Pic(X x Spec(k[t]/(t"T1))) — Pic(X x Spec(k[t]/(t*))) — Pic(X).
Then, in characteristic zero, the exponential map defines the lifting

{1 +tai;} — {1+ +t"aj;/n!}

of the kernel of the right hand arrow to the big Pic on the left?. Thus Grothendieck’s
idea of representing the functor of families of line bundles over all schemes im-
mediately gives a purely algebraic proof that h'(ox) = q.

2Recently Professor Donald Babbitt called my attention to Enriques’s 1938 paper Sulla
proprieta caratteristica delle superficie algebriche irregolart in the Rendiconti della Accademia
dei Lincei, volume 27, pp.493-498. Although Enriques’s 1905 paper on the completeness
theorem missed the key issue, this paper does have the right idea. He speaks of the exponential
map in the Picard variety and asserts that analogously higher order infinitely near curves



This seems to me the example par excellence of Grothendieck’s basic phi-
losophy — that if you analyze a question down to its simplest and most abstract
components, answers to the most puzzling questions should fall out. Even nicer,
the theorem turned out to be false in characteristic p and necessary and sufficient
conditions for its truth can be given by asking that certain ‘Bockstein operators’
from H'(ox) to H%(ox) must be zero (see my 1966 book Lectures on Curves on
an Algebraic Surface where I discuss many of Grothendieck’s existence theorems
in most constructive possible fashion). It shows the power of nilpotent schemes
and the functorial point of view in the clearest possible light. Grothendieck, of
course, went on to construct and prove many much sexier things for which he is
better know. But to demonstrate the power of modern abstract ideas to solve
older very concrete problems, I think that this example is unmatched.

can be generated from first order infinitely near ones. Unfortunately, he possesses no tools
whatsoever for going beyond an intuitive description of why the method of higher order
infinitesimals should work: the theory of schemes was clearly what he lacked.



