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Foreword: The Synergy of Pure and Applied
Mathematics, of the Abstract and the Concrete

DaviD MUMFORD

All of us mathematicians have discovered a sad truth about our pas-
sion: It is pretty hard to tell anyone outside your field what you are
so excited about! We all know the sinking feeling you get at a party
when an attractive person of the opposite sex looks you in the eyes and
asks—“What is it you do?” Oh, for a simple answer that moves the
conversation along.

Now Mircea Pitici has stepped up to the plate and for the third year -

running has assembled a terrific collection of answers to this query.
He ranges over many aspects of mathematics, including interesting
pieces on the history of mathematics, the philosophy of mathematics,
mathematics education, recreational mathematics, and even actual pre-
sentations of mathematical ideas! This volume, for example, has accessible
discussions of n-dimensional balls, the intricacies of the distribution
of prime numbers, and even of octonions (a strange type of algebra in
which the “numbers” are 8- -tuples of the ordinary sort of number)—
none of which are easy to convey to the layperson. In addition—and
I am equally pleased with this—several pieces explain in depth how
mathematics can be used in science and in our lives—in dancing, for
the traveling salesman, in search of marriage, and for full-surround
photograplily, for instance.

To the average layperson, mathematics is a mass of abstruse for-
mulae andj bizarre technical terms (e.g., perverse sheaves, the mon-
ster group, barreled spaces, inaccessible cardinals), usually discussed
by academics in white coats in front of a blackboard covered with pe-
culiar symbols. The distinction between mathematics and physics is
blurred and that between pure and applied mathematics is unknown.
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But to the professional, these are three different worlds, different sets
of colleagues, with different goals, different standards, and different
customs.

The layperson has a point, though. Throughout history many practi-
tioners have crossed seamlessly between one or another of these fields.
Archimedes not only calculated the volume of a ball of radius r (a pure
mathematics problem with the answer 4nr*/3) but also studied the lever
(a physics problem) and used it both in warfare (applied mathematics:
hurling fiery balls at Roman ships) and in mind experiments (“Give me
a place to stand and I will move the earth”). Newton was both a bril-
liant mathematician (inventing calculus) and physicist (discovering the
law of gravity).

Today it is different: The three fields no longer form a single space
in which scientists can move easily back and forth. Starting in the mid-
twentieth century, mathematicians were blindsided by the creation of
quantum field theory and even more by string theory. Here physicists,
combining their physical intuition with all the latest and fanciest math-
ematical theories, began to use mathematics in ways mathematicians
could not understand. They abandoned rigorous reasoning in favor of
physical intuition and played wildly with heuristics and extrapolations
from well-known mathematics to “explain” the world of high energy.
At about the same time (during the ’50s and ’60s), mathematics split
into pure and applied camps. One group fell in love with the dream of
a mathematics that lived in and for itself, in a Platonic world of blind-
ing beauty. The English mathematician G. H. Hardy even boasted that
his work could never be used for practical purposes. On the other side,
another group wanted a mathematics that could solve real-world prob-
lems, such as defeating the Nazis. John von Neumann went to Los Ala-
mos and devised a radical new type of mathematics based on gambling,
the Monte Carlo technique, for designing the atom bomb. A few years
later, this applied group developed a marvelous new tool, the com-
puter—and with it applied mathematics was off and running in its own
directions.

I have been deeply involved with both pure mathematics and applied
mathematics. My first contact with real mathematical problems was
during a summer job in 1953, when I used an analog computer to simu-
late the neutron flux in the core of an atomic reactor. I was learning the
basics of calculus at the time, just getting used to writing Greek letters
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for numbers and operations—and the idea of connecting resistors in a
grid to simulate A (technically, the Laplace differential operator) struck
me as profoundly beautiful. I was struggling to get my mind around
the abstract notions, but luckily I was well acquainted with the use of a
soldering iron. I was delighted that I could construct simple electrical
circuits that made calculus so tangible.

Later, in college, I found that I could not understand what quantum
field theory was all about; ergo, I was not a physicist but a mathemati-
cian! I went all the way and immersed myself in one of the purest areas
of pure mathematics. (One can get carried away: At one time the math
department at Cambridge University advertised an opening and a mis-
print stated that the position was in the Department of “Purer” Math-
ematics!) I “constructed” something called “moduli schemes.” I do not
expect the reader to have ever heard of moduli schemes or have a clue
what they are. But here is the remarkable thing: To mathematicians
who study them, moduli schemes are just as real as the regular objects
in the world.

I can explain at least the first steps of the mental gymnastics that
led to moduli schemes. The key idea is that an ordinary object can be
studied using the set of functions on the object. For example, if you have
a pot of W%lter, the water at each precise location, at each spatial point
inside the pot, has a temperature. So temperature defines a function, a
rule that associates to each point in the pot the real number that is the
temperatujre at that exact point. Or you can measure the coordinates of
each point, for instance, how many centimeters the point is above the
stove. Secondly, you can do algebra with these functions—that is, you
can add or multiply two such functions and get a third function. This
step makes the set of these functions into a ring. I have no idea why, but
when you have any set of things that can be added and multiplied, con-
sistent with the usual rules (for instance, the distributive law a [times]
(b+ ¢) = a [times] b + a [times] c), mathematicians call this set a ring.
You see, ordinary words are used in specialized ways. In our case, the
ring contains all the information needed to describe the geometry of
the pot because the points in the pot can be described by the map car-
rying each function to its value at that point.

Then the big leap comes: If you start with any ring—that is, any set
of entities that can be added and multiplied subject to the usual rules,
you simply and brashly declare that this creates a new kind of geometric
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object. The points of the object can be given by maps from the ring to
the real numbers, as in the example of the pot. But they may also be.
given by maps to other fields. A field is a special sort of ring in which
division is possible. To see how strange the situation becomes, the set
consisting of just the numbers 0 and 1 with the rule 1+1=01is a
field. As you see, pure mathematics revels in creating variations on the
algebra and geometry you learned in high school. I have sometimes de-
scribed the world that opens up to devotees as a secret garden for which
you have to work hard before you get a key.

Applied mathematics is different. It is driven by real-world prob-
lems. You may want a mathematical model that accurately describes
and predicts the fission of uranium in a nuclear reactor—my summer
job in 1953—but there is no limit to the important practical problems
to which mathematics can be applied, such as global warming, torna-
does, or tsunamis. Modeling these physical effects requires state-of-
the-art mathematical tools known as partial differential equations (or
PDEs)—an eighteenth century calculus invention. Or take biology and
evolution; the folding of proteins, the process by which a neuron trans-
mits information, and the evolution of new species have all led to major
mathematical advances.

The reader now sees how easy it has been for pure and applied mathe-
matics to drift apart. One group of practitioners are immersed in abstract
worlds where all the rules have to be painstakingly guessed and proven,
with no help from real life experience. The other is in constant touch
with scientists and engineers and has to keep up with new data and new
experiments. Their goal is always to make the right mathematical model,
which captures the essential features of some practical situation, usually
by simplifying the messiness of reality and often replacing rigorous deri-
vations by numerical simulations. The example I mentioned above, of
von Neumann’s work on the atomic and hydrogen bombs, illustrates this
approach. Von Neumann and his colleagues started by trying to model
the explosion of the bomb using conventional PDEs. At a certain point,
working with Nicholas Metropolis and Stan Ulam, his colleagues at Los
Alamos, they had an inspiration: Let’s imagine that a hundred neutrons
in the bomb are gambling, Here gambling means that each of them col-
lides with a uranium atom when the roll of the dice comes out right.
You set up your dice so that its odds mimic those of the real neutron
moving at the same speed. This game is a lot easier than following the
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approximately 1,000,000,000,000,000,000,000,000 neutrons that are
really whizzing about—and it turned out to work well, unless you regret
the legacy von Neumann’s inspiration left the world.

But the drifting apart of pure and applied mathematics is not the
whole story. The two worlds are tied more closely than you might imag-
ine. Each contributes many ideas to the other, often in unexpected ways.
Perhaps the most famous example is Einstein’s need of new mathemati-
cal tools to push to deeper levels the ideas of special relativity. He found
that Italian mathematicians, dealing with abstract n-dimensional space,
had discovered tools for describing higher dimensional versions of cur-
vature and the equations for shortest paths, called geodesics. Adapting
these ideaé, Einstein turned them into the foundations of general rela-
tivity (without which your global positioning system [GPS] wouldn’t
work). In the other direction, almost a century after Einstein discovered
general relativity, working out the implications of Einstein’s model is a
hot area in pure mathematics, driving the invention of new techniques
to deal With the highly nonlinear PDEs underlying his theory. In other
words, pure mathematics made Einstein’s physics possible, which in
turn opened up new fields for pure mathematics.

A spectacular recent example of the interconnections between pure
and applied mathematics involves prime numbers. No one (especially
G. H. Hardy, as I mentioned) suspected that prime numbers could ever
be useful in the real world, yet they are now the foundation of the
encryption techniques that allow online financial transactions. This
application is a small part of an industry of theoretical work on new
algorithms for discrete problems—in particular, their classification by
the order of magnitude of their speed—which is the bread and butter
of computer science.

I want to describe another example of the intertwining of pure and
applied mathematics in which I was personally involved. Computer vi-
sion reseatch concerns writing computer code that will interpret cam-
era and video input as effectively as humans can with their brains, by
identifying all the objects and actions present. When this problem was
first raised in the 1960s, many people believed that it was a straight-
forward engineering problem and would be solved in a few years. But
fifty years later, computers still cannot recognize specific individuals

~ from their faces very well or name the objects and read all the signs

in a street scene. We are getting closer: Computers are pretty good at
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least at finding all the faces in a scene, if not identifying who they are.
A computer can even drive a car (at least when the traffic isn’t too bad).

Several things have been crucial for this progress. The first thing was
the recognition that visual analysis is not a problem of deduction—i.e.,
combining the rules of logic with a set of learned rules about the nature
of the objects that fill our world. It turns out that our knowledge is
always too incomplete and our visual data is too noisy and cluttered to
be interpreted by deduction. In this situation, the method of reasoning
needed to parse a real-world scene must be statistical, not deductive.
To implement this form of reasoning, our knowledge of the world must
be encoded in a probabilistic form, known as an a priori probability
distribution. This distribution tells you things like this: The likelihood
of seeing a tiger walk around the corner is smaller than that of seeing
a dog walk around the corner. It is called a priori because we know this
data before we start to analyze the scene present now to our eyes. Ana-
lyzing noisy, incomplete data using a priori knowledge is called Bayesian
inference, after the Reverend Thomas Bayes, who proposed this form
of statistical analysis in the eighteenth century.

But what kinds of probability distributions are going to be used?
Here, computer vision drew on a wide variety of mathematical tools
and, in turn, stimulated the development of new variants and new algo-
rithms in many fields of mathematics and physics. In particular, statisti-
cal mechanics contributed a tool known as Gibbs probability models
and a variety of techniques for analyzing them. The conversion of an
image into a cartoon, in which the main objects are outlined, turns out
to have much in common with a set of pure math problems called “free
boundary value problems.” These are problems that call for solving for
an unknown and changing boundary between two distinct areas or vol-
umes, such as a melting ice cube in water. For instance, analyzing an
MRI to see if an organ of the body is diseased or normal has stimulated
work in the mathematics of infinite dimensional spaces. This is because
from a mathematical viewpoint, the set of possible shapes of the organ
is best studied as the set of points in a space; there are infinitely many
ways in which shape can vary, so this space must have infinitely many

dimensions.

I hope I have convinced you that one of the striking features of the
spectrum of related fields—pure mathematics, applied mathematics, and
physics—is how unexpected connections are always being discovered. I
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talked about a variety of such connections among these fields. But even
within pure mathematics, amazing connections between remote areas
are uncovered all the time. In the last decade, for example, ideas from
number theory have led to progress in the understanding of the topology
of high-dimensional spheres.

It will be difficult to fully repair the professional split between pure
and applied mathematics and between mathematics and physics. One
reason for this difficulty is that each academic field has grown so much,
so that professionals have limited time to read work outside their spe-
cialties. It is not easy to master more than a fraction of the work in any
single field, let alone in more than one. What we need, therefore, is to
work harder at explaining our work to each other. This book, though it
is addressed mostly to lay people, is a step in the right direction.

As I see it, the major obstacle is that there are two strongly con-
flicting traditions of writing and lecturing about mathematics. In pure
mathematics (but not exclusively), the twentieth century saw the devel-
opment of an ideal exposition as one that started at the most abstract
level and then gradually narrowed the focus. This style was especially
promoted by the French writing collaborative “Bourbaki.” In the long
tradition of French encyclopedists, the mathematicians forming the
Bourbaki group sought to present the entire abstract structure of all
mathematical concepts in one set of volumes, the Eléments de Mathéma-
tique. In that treatise the real numbers, which most of us regard as a
starting polnt only appeared midway into the series as a special ¢ locally
compact topological field.” In somewhat less relentless forms, their ori-
entation has affected a large proportion of all writing and lecturing in
mathematics.

An opposing idea, promoted especially in the Russian school, is that
a few well-chosen examples can illuminate an entire field. For example,
one can learn stochastic processes by starting with a simple random
walk, moving on to Brownian motion, its continuous version, and then
to more abstract and general processes. I remember a wonderful talk
on hyperbohc geometry by the mathematician Bill Thurston, where
he began by scrawling with yellow chalk on the board: He explained
that it was a simple drawing of a fire. His point was that in hyperbolic
space, you have to get much, much closer to the fire to warm up than
you do in Euclidean space. Along with such homey illustrations, there

is also the precept “lie a little.” If we insist on detailing all the technical
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qualifications of a theorem, we lose our readers or our audience very
fast. If we learn to say things simply and build up slowly from the con-
crete to the abstract, we may be able to build many bridges among our

various specialties. For me, this style will always be The Best Writing on
Mathematics, and this book is full of excellent examples of it.




