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I
n the preceding article we have seen that En-
riques and, indeed, the whole Italian school
of algebraic geometry in the first half of the
twentieth century were frustrated by one glar-
ing gap in their theory of algebraic surfaces.

This magnificent theory answered essentially all
the basic questions about algebraic surfaces and
had been constructed using purely geometric tools.
But one of its central theorems seemed to defy all
their attempts to give it a geometric proof. It had
been proven by analytic means by Poincaré with
his theory of “normal functions”,1 so the theory
was sound—but this approach was alien to their
intuitions. It was much like the need for analysis in
proving the prime number theorem before Selberg
found his elementary proof. In my own education,
I had assumed they were irrevocably stuck, and it
was not until I learned of Grothendieck’s theory
of schemes and his strong existence theorems for
the Picard scheme that I saw that a purely algebro-
geometric proof was indeed possible. I say here
“algebro-geometric”, not “geometric”, because the
first requirement in moving ahead had been the
introduction of new algebraic tools into the sub-
ject first by Zariski and Weil and subsequently by
Serre and Grothendieck.

When Professors Babbitt and Goodstein wrote
me about Enriques’s work in the 1930s, I real-
ized that the full story was more complex. As
I see it now, Enriques must be credited with
a nearly complete geometric proof using, as did
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Grothendieck, higher order infinitesimal deforma-
tions. In other words, he anticipated Grothendieck
in understanding that the key to unlocking the
Fundamental Theorem was understanding and
manipulating geometrically higher order deforma-
tions. Let’s be careful: he certainly had the correct
ideas about infinitesimal geometry, though he had
no idea at all how to make precise definitions.
If you compare his ideas here with, for example,
the way Leibniz described his calculus, the level
of rigor is about the same. To use a fashionable
word, his “yoga” of infinitesimal neighborhoods
was correct, but basic parts of it needed some
nontrivial algebra before they could ever be made
into a proper mathematical theory.

Enriques himself realized that he did not have
a clear definition of higher order infinitesimal
deformations, and so he was uncertain what sort
of arguments were permissible for “curves in a
higher order neighborhood” of an actual curve
on a surface. As we will see below, he had two
lines of reasoning. One depended on being able to
add infinitesimal points on a group, forming as it
were (n+m)ǫ by adding nǫ and mǫ. Another was
based on an infinitesimal analog of Poincaré’s
normal function construction, which uses the
Jacobian varieties of the level curves of a suitably
general rational function f on the surface F (a
so-called Lefschetz pencil on F). In this paper, I will
use Enriques’s 1936 paper in the Mathematical
Seminar of Rome2 to explain these two ideas. I will
translate the key parts of this paper and add my
commentary so the reader can see exactly what
Enriques did and how it can be made into a fully
rigorous argument with modern technique.

There is no exact way of assigning a percentage
to the degree of completeness of an argument.
Certainly Grothendieck’s tools were needed, and

2Rendiconti del seminario matematico della universita di
Roma, series 4, vol. 1, 1936, pp. 1-9.
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First definitions: It may be useful for nonalgebraic geometers to set the stage with the basic
definitions. A projective algebraic variety V is the locus of zeros of a finite set of homogeneous
polynomials in some projective space, which, moreover, is irreducible, i.e., not the union of two or
more proper subsets of the same type. A Zariski open set in V is just the complement V −

⋃
iWi of

a set of subvarieties Wi ⊂ V . Such varieties are linked by rational maps, maps f : V ′1 → V2, V
′
1 ⊂ V1

a Zariski open set, given by rational functions f of the coordinates of V1. (Think of x/y , which
defines a rational map (P2)′ → P

1 which cannot be defined at x = y = 0.) The main players are the
nonsingular or smooth varieties, those which are locally transverse intersections of hypersurfaces
with locally independent differentials.

Linear systems: The key structures that were studied on smooth varieties were their linear systems.
If H ⊂ V is the intersection of V with the hyperplane at infinity, think of the vector space L of affine
coordinate functions, the span of {1, x1, . . . , xn}. Note that almost all the functions in L have a simple
pole along H. In general, we start with a divisor D on V which is just a linear combination

∑
i niDi of

codimension 1 subvarieties Di ⊂ V . Then we have the vector space L(D) of rational functions f on
V such that f has at most an ni-fold pole at Di if ni > 0 and at least a −ni-fold zero on Di if ni < 0.
Alternately, one defines (f ) to be the divisor of zeros and poles of a rational function f , assigning
positive coefficients equal to the order of vanishing at all its zeros and similarly negative coefficients
at poles. Using this language, we see that L(D) = {f |(f )+D ≥ 0}. These L(D) are the complete linear
systems, and any of their linear subspaces are called linear systems. Computing the dimension of
L(D) is the concern of the class of theorems called “Riemann-Roch”. The Italian geometers preferred
to deal with the nonnegative divisors (f )+D themselves. The set of these is written as |D| (or |D|V if
we need to make the ambient space explicit) and is just the projectivization of the vector space L(D)
(because (f )+D = (g) +D only if f /g is a constant). To complete this list of standard definitions,
we say two divisors D1,D2 are linearly equivalent (written D1 ≡ D2) if D1 −D2 = (f ) for some f and
the Picard group Pic(F) is the group of divisors mod linear equivalence, called divisor classes.

they make the argument cleaner and more el-
egant. But Enriques’s approach needs relatively
few additional arguments to make it into a com-
plete proof. He himself, with customary optimism,
called it pienamente rigorosa (“fully rigorous”)!
Castelnuovo, on the other hand, when he comes to
this argument in his edition of Enriques’s posthu-
mous book summarizing much of his lifetime’s
work, says more conservatively: “The section which
follows has been left incomplete by the author and
thus the argument which is developed has many
gaps; however, it was thought appropriate to re-
produce it because it contains ideas that perhaps,
appropriately completed, will furnish the starting
point for a systematization of the theory.” We
leave it to the reader to form his or her own
judgment.

What Is This Fundamental Theorem?
The easiest way to explain the Fundamental The-
orem from First Principles is to recall some basic
facts from the theory of algebraic curves. If C is
a curve of genus g, you consider the set Sn of all
unordered n-tuples of points on C (also called the
symmetric nth power of C, or Cn/(symm.gp.)). It
is the set of positive divisors of degree n on C.
Then if n > 2g − 2, Sn is very elegant space: it has
a fibered structure with fibers that are the com-
plete linear systems of divisors of degree n and
hence projective spaces and base space an abelian
variety, that is, a complex torus of dimension g,

independent of n and called the Jacobian of C.
Two n-tuples are in the same fiber if and only if
they are linearly equivalent. This generalizes to a
surface F (and to any higher dimensional variety)
if we replace n-tuples of points by divisors D on F
drawn from any “sufficiently ample” cohomology
class.3 Consider the set D of all such D, which is
called a complete continuous system of divisors on
F . It has a similar fibered structure. The fibers are
again linear systems of divisors (as before, two
divisors being in the same linear system if they are
the zeros and poles of a rational function), and the
base space is an abelian variety, the Picard variety
of F , which is again independent of the choice of
the divisors.

The hard question was: what is the dimension
of the Picard variety? and, specifically, was it
equal to the irregularity q? One way to approach
this is to fix one member C ∈ D (which we can
take to be an irreducible curve) and look at the
intersections A = D.C,D ∈ D. There is a number
n such that all these are n-tuples of points on
C, n being the self-intersection number (C.C).
Linearly equivalent divisors D will give linearly
equivalent n-tuples on C, but inequivalent divisors
will usually remain inequivalent. However, if we
let an inequivalent divisor D approach C along
a one-dimensional family of divisors Dt , then

3E.g., a high enough multiple of a hyperplane section for

some projective embedding of F is sufficiently ample.
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Invariants of surfaces: The main numerical invariant of an algebraic curve is its genus g, introduced
by Riemann. This can be defined as the dimension of the vector space of rational 1-forms with
no poles on a curve C, that is, a differential that can be written locally as fdx, where x is a local
coordinate in U ⊂ C and f is a rational function with no poles in U . One always defines the canonical
divisor class K (up to linear equivalence) to be the divisor of zeros and poles of any rational 1-form,
so we get g = dimL(K). In modern sheaf-theoretic terminology, L(K) = Γ(Ω1

C). Topologically, g is
also the number of handles in the surface defined by the set of complex points on the curve. A central
question in the theory of algebraic surfaces was how to generalize the genus to higher dimension.
Clebsch4 defined the geometric genus pg of a surface F as the dimension of the vector space of
rational 2-forms with no poles, i.e., locally given as fdx ∧ dy with f having no poles locally. Again
this equals dimL(K) or Γ(Ω2

F). This can be hard to compute, and soon after Cayley5 found that the
dimension of the space of rational 2-forms with mild poles was much easier to compute. Somewhat
simplifying the history, it was found that there was a number pa, the arithmetic genus, such that for
sufficiently ample curves C ⊂ F with genus g(C), the dimension of the space of 2-forms with simple
poles at C was pa + g(C). Now looking at the leading term in the pole of such a 2-form, one finds
that it is naturally a 1-form on C called its residue. Since there are pg independent 2-forms with no
poles, Cayley’s dimension pa + g(C) less pg is the dimension of the space of residues and that is at
most g(C). So pa ≤ pg . The first surfaces investigated had pa = pg, and these were called regular.
Then q = pg − pa was defined as the irregularity of F . In cohomological terms, we now define pa by
pa + 1 = χ(OF) and, knowing pg = h2(OF), we have q = h1(OF).

the limit of the intersections C.Dt will be an
n-tuple, which always belongs to one and the
same linear equivalence class, also denoted by
(C.C). Put formally, this means that if we let
P = projectivization of the tangent space TCD to
D at its point defined by C, then Pmaps to a linear
system of n-tuples on C, called the characteristic
linear system of D. The hypothesis was that this
linear system was the complete linear system
|(C.C)| on C, and it was always referred to as the
completeness of the characteristic linear system of
a complete continuous system.

Once this was established, a small argument
shows that the dimension of the Picard variety
is indeed equal to the irregularity q of F . Let KF
be the canonical divisor on the surface F . Using
residues, one finds that the divisor class (C.C+KF)
is the canonical class KC on C. Writing |(C.C)|C
for the linear system of n-tuples on C given by
the self-intersection, we use the Riemann-Roch
theorem on C, which shows that

dim |(C.C)|C = (C.C)− g(C)+ 1+ dim |(KF .C)|C .

But 2g(C) − 2 = deg(KC) = (C.C + KF), and a
theorem of Severi shows that dim |(KF .C)|C =
dim|KF |F = pg if C is sufficiently ample. Putting

this together, we find dim|(C.C)|C =
(C.C−KF )

2 +pg .
On the other hand, a slight generalization of Cay-
ley’s definition of pa shows that for all sufficiently
ample curves C ⊂ F , dim|C|F =

(C.C−KF )
2 + pa, so q

is exactly the codimension of the trace of the linear
system |C|F on F inside the linear system |(C.C)|C
on C. But if the characteristic linear system ofD is
complete, this codimension equals the codimen-
sion of |C|F in D, and this is the dimension of

4Comptes Rendus de l’Acad. Fr., vol. 67, 1868, p. 1238.
5Footnote on page 333 in Le Superficie Algebriche.

the Picard variety. We can, of course, rewrite this
using cohomology exact sequences.6

Enriques’s 1936 Paper
To the best of my knowledge, Enriques’s first
paper on his most successful approach to the Fun-
damental Theorem is the one with the title “Curve
infinitamente vicine sopra una superficie alge-
brica”, published in the Rendiconti del Seminario

Matematico della R. Universita di Roma, 1936.7 The
basic idea in this paper is repeated in his note
Sulla proprietà caratteristica delle superficie alge-
briche irregolari in the Rendiconti della Accademia
Nazionale dei Lincei, 1938, and in Chapter 9 of
his posthumous book Le Superficie Algebriche,
published in 1949 with the editorial help of
Castelnuovo (whose conservative evaluation we
have quoted above).

As the title says, the paper is all about curves
on an algebraic surface, but not actual curves. If
C ⊂ F is a curve in the usual sense, i.e., it is a
subset defined by zeros of polynomials, then the
paper concerns other “curves” C1, C2, C3, . . . which
he calls infinitely close to C in the neighborhood
of order 1,2,3, . . . (“ infinitamente vicine ad una C

6Incidentally, I’d like to dispel the misconception that

Italian algebraic geometry had nothing to do with co-

homology of sheaves. Higher cohomology groups were

implicit in most of their work but were always treated

indirectly with geometric tools. For instance, the result

that H2 of the sheaf of 2-forms on the projective plane

was one-dimensional is equivalent to the classical Cayley-

Bacharach theorem.
7I am very grateful to Dr. Pier Vittorio Ceccherini for his

help in obtaining a copy of this article, which is hard to

find in the United States, and to Francine Laporte for a

great deal of help with the translation.
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nell’intorno del 1o ordine, del 2o ordine e così via”).
He also calls these curves C1, C2, . . . “successive”
to C, and we follow this for lack of a better English
word.

To make sense of this paper we have to have
some idea of what he meant by “infinitely close”.
The problem is that Enriques was so thoroughly a
geometer that he avoided ever using an equation of
any sort, and it is hard to make sense of infinitely
close things without some equations. Most easily,
one can put a parameter t into the defining
equations of the curve, replacing f (x1, . . . , xm) = 0
or simply as f (x) = 0, by f (x)+tf1(x)+t2f2(x)+·· ·
and calculate mod tn for some n. But you can read
his papers and never know that algebraic varieties
had to be defined by polynomials! However, in two
places in small asides he gives some clues about
what he meant. These are places where he refers to
auxiliary varieties parameterizing divisors. Here is
the first from §2 of his paper dealing with infinitely
close “groups” of points on curves, that is, positive
0-cycles of some degree m, Gm =

∑m
i=1 Pi ∈ Sm (Pi

not necessarily distinct):

And first of all, let us note that
the groups of points Gm (made
up of m points), infinitely close to
a given group on a curve, can be
properly defined using differential
expressions and conditions, as
elements or “points” of the variety
representing the groups of m
points of the curve.
E anzitutto osserviamo che i gruppi
di punti Gm (costituti di m punti)
infinitamente vicini ad un gruppo
dato, sopra una curva, riusciranno
bene definiti mediante espressioni
e condizioni differenziali, siccome
elementi o 〈〈punti〉〉 della vari-
età rappresentiva dei gruppi di m
punti della curva.

This variety “representing groups” is nothing
but the mth symmetric power of the curve C. He
is reducing the study of infinitely close complex
objects on the curve C to the study of infinitely
close points on the auxiliary parameterizing space.
And again from §3 he says:

For our aims it suffices to consider
curves successive to C on linear
branches (within the space that
has C,C1, C2, etc., for “points”).
E pel nostro scopo basta limitarsi a
considerare curve successive alle C
su rami lineari (entro l’ente che ha
per 〈〈punti〉〉 le C,C1, C2 ecc.)

Here he restricts himself to successive infinitely
close points along a one-dimensional arc in an
auxiliary space, one that parametrizes effective
divisors on a surface—which he assumes is readily

constructed. We are left with the issue: what does
he mean by the “point” infinitely close of order n
to a real point on a curve or on an analytic branch?

Algebraic geometry had introduced “infinitely
near” points on all varieties as points on any
variety obtained by blowing up the original variety
a certain number of times. Given an analytic branch
on the varietyX, one can indeed blow up one point
P ∈ X. At a point P on a surface where x, y are local
coordinates, the blowup will be the closure of the
graph of x/y . This will replace P by a projective line
whose points correspond to tangent directions, the
projectivization of TPF . Then we can blow up the
new limit point of the branch after “lifting” it to the
first blowup, and continue to do this n times. The
resulting infinitely near points on some auxiliary
parameterizing variety is one approach to making
sense of Enriques’s concept of infinitely close
curves on a surface. There was also a tradition of
studying Puiseux series, power series in fractional
exponents to describe curves, and then the terms
of order n give another approach to higher order
neighborhoods. But after Grothendieck’s work, I
think the best approach is clearly to define an
infinitely close point of order n on a branch to be
its unique subscheme whose ring of functions is
isomorphic to (k[t]/(tn+1)). On the whole variety,
the infinitely close points of order n are then the
set of all such subschemes on different branches.
In my notes below, I will use this approach. Such
an infinitely close point is essentially the same as
what in differential geometry are called n-jets on
a manifold.

Enriques, I believe, thought of a sequence of true
points P0, P1, . . . , Pn, equally spaced on an analytic
arc, and then imagined (as Leibniz might) that P1

and hence all the rest approached P0. Then the
“limit” of Pn is the point of order n successive
to P0. I think we all recognize that there is a
common intuitive meaning to the idea that on a
linear branch, there is something like a unique
infinitely close point of order n at each usual
point. However, as we’ll see, it gets sticky when
you begin to play games with this concept and
don’t actually have a precise definition.

The Translation, Part I, and Enriques’s
First Argument
Now I will translate the key sections of this paper
interspersed with commentary to make the article
more accessible. I show Enriques’s words in italics
and my commentary in sans-serif typeface to
distinguish the two voices.

In the demonstration of the characteristic prop-
erty of irregular surfaces with geometric and nu-
merical (=arithmetic) genera pg and pa, that is that
they contain continuous systems of curves formed
of ∞pg−pa inequivalent (that is, not linearly equiva-
lent) linear systems, one needs to count the num-
ber of curves of the continuous system that are
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infinitely close to a given curve K and to show that

they cut on K the complete characteristic system.

But to the demonstration that I gave in my note

in the Academy of Bologna in 1904 and that at

first was accepted by all, or rather restated with

slight modifications, the objection was raised that

curves infinitely close to K (whose existence result

from compatibility of superabundance conditions)

do not necessarily lead to the existence of continu-

ous series of curves containing them.

The “complete characteristic system” is the

linear system that I denoted by LK((K.K)) or, in

sheaf-theoretic terms, by Γ(OK(K2)) or written

projectively by |(K.K)|K. In this translation, I have

retained his symbol K, although now K is usually

reserved for the canonical divisor class. This is

the best place to describe what he had done in

1904, namely, he showed that for every positive

divisor G ∈ |(K.K)|K, he could construct a curve

K1 infinitely close to K of first order which inter-

sects K in G. His method was to take a second

sufficiently ample divisor K̃ and look at the curves

E in |K + K̃|F that pass through the intersection

points K ∩ K̃. He first showed that these curves

E intersect K, after discarding the points K ∩ K̃,

in the complete characteristic system. He then

argued that if such an E is infinitely close to K+ K̃
in the first order, E effectively has a double point

infinitely close to each point of K ∩ K̃ and then,

by a Riemann surface argument, this E must con-

tinue to split into two pieces K1 + K̃1. This K1 is

the infinitely close curve to K that we want. This

argument is correct. For instance, one can use the

exact sequence:

0 -→ OF(K̃) -→mK∩K̃O(K+K̃) -→ OK((K.K)) -→ 0

to verify the first point. The second point follows

because if you deform a double point u.v = 0 by a

curve through u = v = 0, the result is u.v+t.(au+
bv) = 0 and modulo t2, this equals (u + tb).(v +
ta) = 0. And finally, if resolving a set of double

points disconnects a curve, the same holds for any

deformation in which the double points persist.

Now, however, we would argue directly that

OK((K.K)) was the normal sheaf to K and thus

its sections define first-order deformations. But

Enriques’s approach is perfectly correct.

Next he addresses the reasons that his old argu-

ment was incomplete by making some very general

observations about the pitfalls of drawing global

conclusions from infinitesimal facts.

To explain this doubt: if one defines, for example,

a curve as the intersection of two or more surfaces,

one cannot say that on the curve so defined one

always has (one) single point infinitely close to a

given point; one will have instead ∞1 if the given

curve is a line of contact of the defining surfaces:

in this case there are no further successive points

infinitely close a point taken in this neighborhood of
a proper point of the curve but outside its tangent.

What he is saying is that if the surfaces meet
transversely along the curve, at each point of
the curve there would be only one infinitesimal
direction in which you can move, namely along
the curve; on the other hand, if the surfaces are
tangent, you can start to move infinitesimally
away from the curve in many directions, but un-
less they are tangent to an even higher order,
one cannot extend this path to second order and
stay inside the intersection unless you moved
along the curve. In the language of schemes, the
intersection of surfaces tangent along a curve is
an everywhere nonreduced scheme, generically
with the square of its nilpotent ideal equal to (0).
The “Zariski tangent space” has dimension two,
but there are higher order infinitely close points
only for the one direction tangent to the reduced
curve.

Re-examining the same question in my “Lessons
on the classification of surface”, edited by
L. Campedelli, I observed, however, that the
conclusions of my treatment would keep their
validity if one admitted that curves infinitely close
to a given curve on a surface had an effective
existence and that one could operate on them as
on finite curves, by adding and subtracting. Thus,
letting C1 be a curve infinitely close to C and in-
equivalent to it, the operation +C1−C, successively
repeated, serves to define, in the neighborhood
of any curve K whatsoever, a series of infinitely
close curves K1, K2, K3, . . . belonging to a suitably
high order neighborhood and this leads to the con-
clusion that this K should belong to a continuous
nonlinear series in which that K1 would be close to
K.

It remained however to justify the intuitive truth:
that one can effectively operate on infinitely close
curves on a surface by addition and subtraction.
And this is precisely the aim of the present note.

A Modern Version of This Intuitive
Argument
The argument immediately above is the core of
Enriques’s first argument for the theorem using
infinitely close curves (but, as he says, not of the
more refined “proof” that follows). When I read
this, it sounded a bit far-out. But then, putting it
carefully into the language of schemes, I found
it could be given quite a complete and elegant
modern formulation.

Let me paraphrase his idea like this: suppose
t ֏ φ(t) ∈ A is a 1-parameter subgroup of a Lie
group A (such as the Picard variety of the surface
F). Then start with a pointφ(ǫ) ∈ Awhere ǫ is first
taken to be positive, not infinitesimal. Then simply
adding, using the group law in A, gets you back
φ(nǫ) for all n. Now suppose ǫ is infinitesimal,
passing from finite numbers to infinitesimals as
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in Leibniz’s treatment of calculus. Then φ(ǫ)
lies in what Enriques is calling the first-order
neighborhood of the identity e ∈ A. Operating
with the group law onA, he wants to automatically
generate something like φ(nǫ) which is to live in
the nth-order neighborhood of e. In particular, his
difference C1 − C is like an infinitely close point
of first order φ(ǫ) in the Picard variety of F and
“adding”, he wants to generate the higher order
“points” of the Picard variety, hence the higher
order infinitesimal deformations Kn of K.

Nowadays we can use the language of schemes
to make this precise. A point on A in the nth-
order neighborhood of e is just a morphism of
Spec(k[t]/(tn+1)) to A whose set-theoretic image
is the point e. So does it make sense that from a
k[t]/(t2)-valued point, we can use the group law
alone to get a k[t]/(tn+1)-valued point?

In fact, this is true in characteristic 0, and
a simple algebraic argument provides rigorous
support for Enriques’s Leibnizian treatment of
infinitesimals. The key is this purely algebraic
fact:

Proposition. If the characteristic of k is 0, then the

subring of

k[t1, . . . , tn]/(t
2
1 , . . . , t

2
n)

of elements invariant under permutations of the ti
is isomorphic to k[s]/(sn+1)where s = t1+·· ·+tn.

The reason is that on the one hand the invariant
subring is generated, as usual, by the elementary
symmetric polynomials in the ti and on the other
hand:

(t1+·· ·+tn)
k ≡ k!·kth elem.symm.polyn.(t1, . . . , tn)

mod (t21 , . . . , t
2
n).

In characteristic zero, we can divide by k!; hence
the proposition follows.

Now given an infinitely close point of first order
φ : Spec(k[t]/(t2)) -→ A, we get the following
n-fold summation by adding via the group law on
A:

φ ◦ p1 + ·· · +φ ◦ pn :

Spec(k[t1, . . . , tn]/(t21 , . . . , t
2
n)) -→ A

and, by commutativity, the pullback of all func-
tions on A are permutation invariant; hence this
map factors through Spec(k[s]/(sn+1)). This is the
infinitely close point of order n.

In his example, we would say that he wants
to add a divisor class on F × Spec(k[t]/(t2)),
trivial on F , to itself to get a divisor class on
F × Spec(k[s]/(sn+1)). Suppose the divisor class
is defined by a 1-cocycle {1+ tfα,β}. Then adding

this to itself n-times gives the divisor class on
F × Spec(k[t1, . . . , tn]/(t

2
1 , . . . , t

2
n)) given by

n∏

i=1

(1+ tifα,β)

=

n∑

k=0

(
kth elem.symm.polyn.in ti

)
· f kα,β

=

n∑

k=0

sk

k!
f kα,β.

Thus this n-fold added divisor class is defined
over the subring k[s]/(sn+1) and the divisor
class is defined by the 1-cocycle given by the
truncated exponential. This, I think, is the pre-
cise meaning behind Enriques’s assertion that
adding first-order deformations defines higher
deformations—of course only in characteristic
zero. Enriques certainly did not know such an
argument, but this at least confirms that his intu-
ition was completely sound—and, as Hartshorne
remarked to me, was based on a characteristic
zero world without his knowing it.

The Translation, Part II, Analysis of
Divisors on Curves
Let us take the steps of the argument in the case of
groups of points and linear series (linear series on
a curve are the same as linear systems) on a curve.

One will observe firstly that the ordinary man-
ner of adding and subtracting series on a curve falls
apart when one treats infinitely close groups or se-
ries. Thus if, among the curves of a certain order
that pass through a certain group G (of points on
some curve), one considers those that are tangent
to the basic curve at the points of G, one then sub-
tracts from the series cut out not a group infinitely
close to G but the group G itself.

From that one should not conclude that as a re-
sult infinitely close groups of points or linear sys-
tems on a given curve do not have a real existence
and that—in every respect—one cannot operate on
them by addition and subtraction: the law of con-
tinuity operates in the field of algebra and so one
must rather admit a priori that, with appropriate
considerations, these entities and the operations we
are dealing with will succeed in being properly jus-
tified. And first of all, we note that groups of points
Gm (made up ofm points), infinitely close to a given
group on a curve, will be properly defined using
differential expressions and conditions, as elements
or “points” of the variety representing the groups
of m points of the curve. (The variety represent-
ing m-tuples is just the mth symmetric power of
the curve which we called Sm above. I think that
when he talks here of differential conditions, En-
riques foreshadows the basic idea behind nonre-
duced schemes.)

Let us suppose that the curve has genus p and
let us consider, in particular, the Jacobian variety
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V that represents the groups of p points, G, of that

curve. (As Enriques knew well, the pth symmetric

power of the curve is not exactly the Jacobian but

it is birational to it, that is, they are the same on

Zariski open sets. In fact, on the Zariski open set of

“nonspecial” p-tuples, those which do not move in

positive dimensional linear systems |Gp|, the two

are the same and for special p-tuples, there is still

a map from Sp to the Jacobian V but it is many-to-

one, blowing down linear systems to points. Using

such p-tuples on C to describe almost all of the

Jacobian was used by Poincaré and will be used by

Enriques in a very crucial way below.)

It is known that this V has a continuous group

∞p of commuting birational transformations that

one defines on the curve using the sum of a dif-

ference G1 − G of two groups. (He is just saying

that the group of divisor classes, that is, divisors

mod linear equivalence, is a group, hence the Ja-

cobian is a group as well as a projective variety,

that is, an abelian variety. But he prefers to use

the birationally equivalent model given by the pth

symmetric power, and here the group law is only

defined on a Zariski open set and, more precisely,

if G′, G, and G1 are three groups of p points, then

for almost all G′, G′+G1−G will be linearly equiva-

lent to a unique p-tupleG′′, henceG′ → G′′ defines

a birational map on p-tuples but not an everywhere

defined morphism.)

Now, if the second group G1 comes infinitely

close to the first, the operation +G1 − G does not

cease describing a transformation of V , more pre-

cisely (it is) an infinitesimal transformation that is

a generator of the group in the sense of Sophus Lie.

By means of this infinitesimal transformation, the

group of points G gives rise to an analytic series of

transformations by which will be properly defined

the groups G2, G3, . . ., successive to G1 which fall

in the second, then in the third neighborhood of

G and so forth. (Enriques’s “analytic series” are

what we call 1-parameter subgroups φ(t) in the

Jacobian. In the complex torus representation of

the Jacobian, they are just straight lines through

the origin. C1 − C defines a tangent vector at the

origin, hence a specific φ, which, considered to

order n, are his higher order infinitesimals on the

Jacobian and define what he calls G2, G3, . . ..).
After that it is clear how one treats infinitely

close complete linear systems grm on a curve (The

notation grm simply means a complete linear sys-

tem of m-tuples of dimension r . It is “nonspecial”

if r = n − p, the generic case whenever n ≥ p.):

at least in the simplest case of a nonspecial series,

their sum and difference can be reduced to the sum

and difference of the groups of p points that one

gets from them as residuals ofm−p fixed points. If

one wants to operate on special series, it is conve-

nient to extend them by adding fixed points so they

become nonspecial.

But it’s enough to restrict ourselves to this: given
on a curve K a nonspecial series grn = g and a
series g1 = (grm) infinitely close to it (defined, as
we’ve said, on the representing variety (the repre-
senting variety being the symmetric power. In fact,
all he’s going to use is the basic case of nonspecial
p-tuples, or g0

p which, as we said, gives a Zariski

open subset of the Jacobian.), there is determined
a continuous (analytic) series of series and in it the
series successive to g1, namely g2, g3, . . . neighbor-
ing g in the neighborhoods of second, third, etc.,
order.

In place of the operation +G1 − G, one can
equally carry out on groups of p points of the
curve (or on its nonspecial series of a given order)
the inverse operation: +G −G1. This defines, start-
ing from G, a continuous (analytic) series of groups
of p points complementary to G1, G2, G3, . . . that

we can denote G1, G2, G3, . . . where in general one
has

Gi ≡ 2G −Gi .

To make this as concrete as possible, I think
what Enriques has in mind is that you start at some

nonspecial p-tuple of points G =
∑p
i=1 Pi on C (so

that the pth symmetric power and the Jacobian
are locally isomorphic near G). You can take any
p-tuple G1 in its first-order neighborhood, and
this defines a tangent vector to the Jacobian at
the point defined by G. Then, knowing that the
Jacobian is a complex torus, you get a 1-parameter
subgroup of the Jacobian. In the pth symmetric
power this gives power series Pi(t) with Pi = Pi(0)
so that

t ֏ G(t) = P1(t)+ ·· · + Pp(t)

represents a 1-parameter subgroup of the Jaco-
bian. This was classical stuff, the then century-old
theory of abelian functions if you take as its be-
ginning Abel’s 1829 paper in Crelle’s Journal. One
could write down these power series using abelian

functions. Then his Gℓ and Gℓ are “points” on this
analytic branch of order ℓ for t > 0 and t < 0,
respectively.

The “Pencil” Construction of Poincaré and
Enriques
Instead of beginning with a translation of En-
riques’s second argument for the Fundamental
Theorem, which follows and certainly has some
gaps, it seems better to first present a modern
variant that will show that his argument is funda-
mentally sound and that will make explicit its links
to the normal function technique of Poincaré. Then
the reader can see why Enriques chose a some-
what different, more classical route but one that
unfortunately ran into some difficulties. The core
of Enriques’s second argument introduces an idea
that originated in Poincaré’s analytic approach:
the use of a suitably general pencil on the surface
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F so as to construct curves on F by sweeping out
finite groups on the curves of the pencil.

What is a pencil? Simply put, one takes any
nonconstant rational function f on F (e.g., one of
its coordinate functions xi) and considers the one-
dimensional family of level curves f = t (including
f = ∞, the poles of f ): call this Ct . All the curves
Ct are linearly equivalent and form a projective
line in the linear system |C0| (which, as we said,
is a projective space). The function f will not be
defined at finite set points {P1, . . . , Pd} where all
the curves Ct intersect: these are called the base
points of the pencil. One can also consider the
closure of the graph of f in F × P1: this will be a
surface F∗ mapping to F by a birational map in
which the base points Pi have each been replaced
by projective lines called the exceptional curves Ei .
In the generic case, the curvesCt meet transversely
at each Pi and F∗ is smooth and is the standard
surface obtained by blowing up each Pi . Now f
becomes an everywhere defined map f∗ : F∗ → P

1

with disjoint fibers Ct .
Poincaré and after him Enriques used the Ja-

cobian varieties Jt of each curve Ct . (When Ct is
singular, one uses the so-called “generalized Jaco-
bian” of Ct .) The dimension of Jt is the genus of Ct ,
which we denote by p. We may set up a one-to-one
correspondence between the points of the Jaco-
bian Jt and the divisor classes of degree 0 on the
curve Ct , and this correspondence will be set up by
a “universal” divisorDt on Ct×Jt , i.e.,Dt .(Ct×{a})
represents the divisor class corresponding to a. In
the classical approach, Dt is readily defined using
abelian functions. It is then convenient to glue
the Jt together, forming a variety J of dimension
p + 1, which maps to P1 with fibers the individual
Jacobians Jt . Then the union of all the products
Ct ×Jt forms a variety F∗×P1 J of dimension p+2
and the Dt ’s glue together to one big divisorD on
this product.8

Taking some sufficiently ample curve D on F ,
Enriques’s old 1904 argument constructed for him
q = pg −pa independent infinitely close curvesD1

in the first-order neighborhood of D. More pre-
cisely, he took the complete characteristic series
|(D.D)|D and for any a ∈ LD(D.D), he defines
an infinitely close curve D

(a)
1 in the first-order

neighborhood of D. He wants to prolong these to
infinitely close curves of higher order as the key
step in showing that dim(Pic)= q. It is more natural
today to consider the difference D(a)1 −D as defin-
ing a divisor on the scheme F × Spec(k[t]/(t2)),
which is trivial on F itself. (I think it is correct
to say that although the Italian school was well
aware that one could form divisors with negative

8Technical aside: any of the exceptional curves gives a

section of F over P1 that serves to “rigidify” the rela-

tive Picard functor. Anyway, standard abelian functions

define it, too.

coefficients, they strongly preferred to deal with
positive divisors, and hence were averse to this
step.)

We can intersect both D and D(a)1 with all the
members of the pencil Ct . If m is the intersection
number (D.Ct), we get groups of m points G(m)t =

D.Ct and infinitely close groups G(a,m)t = D
(a)
1 .Ct

on eachCt . As Enriques pointed out above, quoting
Lie, the difference G(a,m)t −G

(m)
t defines a tangent

vector v(a)t at 0 to the Jacobian variety Jt . All the
tangent vectors v(a)t together form a vector field
to J along the zero-section of J over P1. In the
language of schemes, such a vector field is the
same as a morphism f (a)1 : Spec(k[t]/(t2))×P1 → J

with f
(a)
1 (Spec(k[t]/(t2)) × {t}) ⊂ Jt . Note that

D(a)1 − D can be recovered from the universal

divisorD using the morphism f (a)1 , that is,D(a)1 −D
(lifted to F∗) is just the “pullback” of D via
the morphism 1F∗ × f

(a)
1 : F∗ × Spec(k[t]/(t2)) →

F∗ ×P1 J (possibly up to adding some multiple of
Ct ).

Now Jt is known to be a complex torus. So
through any tangent vector at the origin such as
v(a)t , there is a straight line, that is, a one-parameter
subgroup of Jt . Truncating this at nth order,
we get canonical morphisms Spec(k[t]/(tn+1)) →

Jt for each t extending the vector v
(a)
t . It is

clear that these vary at least analytically as t
varies. But in fact, they fit together into an alge-

braic map f (a)n : Spec(k[t]/(tn+1)) × P1 → J with
fn(Spec(k[t]/(tn+1)) × {t}) ⊂ Jt . This is an easy
consequence of the elementary fact that mero-
morphic functions on P

1 are all rational,9 using
crucially the fact that the construction works for
all t with no exceptions. Finally we can define the
sought-for infinitely close D(a)n of higher order (as
a divisor class) as D plus the pullback of D via
1F∗ × f

(a)
n . Using the Riemann-Roch theorem, we

can show it is represented by a positive divisor.
How does this connect to Poincaré’s argument?

Although he came to it from a completely differ-
ent route, he used the noninfinitesimal points on
the one-parameter subgroups exp(s.v(a)t ), s ∈ R,
to construct global divisor classes on F . With-
out tracing all the links, let us just say that he
constructed an explicit basis of 1-forms {ω(k)

t }

simultaneously on all but one of the curves Ct
such that the vector fields v(a)t have constant inner
product zero with all of them, zero with p−q, and
arbitrary constants with the remaining q. More-
over, fixing one of the base points x0 of the pencil,
Dt is given in the classical way by the divisor

9The most general results of this type were given by Serre

in his famous “GAGA” paper “Géométrie algébrique et

géométrie analytique”, Annales de l’Institut Fourier,
1956.
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(
∑p
i=1 xi)− p.x0 on Ct defined over {ck} ∈ Jt by:


i=p∑

i=1

∫ xi∈Ct
x0∈Ct

ω
(k)
t


 = ck.

My guess is that Enriques knew he was dealing
with the same approach as Poincaré to a certain
extent, though he may not have realized how close
his infinitely close curves D(a)1 were to Poincaré’s
basis of 1-forms.

The Translation, Part III, the Use of a Pencil
Section 3 of his paper deals with representing the
surface F as a branched cover of the projective
plane P2 and considering infinitely close curves on
F via their images inP2. We have quoted above one
sentence in which he alludes to parameterizing
curves (and divisors) on a surface F by some
auxiliary variety. Otherwise the section does not
seem to add very much, and we omit it.

Section 4 deals with the injectivity of the map
from the group of divisors on F mod linear equiv-
alence (the Picard group of F) to the group of
divisors mod linear equivalence on a curve K in
F , given by intersection with K. In particular, he
asserts that for suitable K, a nonzero infinites-
imal divisor class C1 − C should have nonzero
intersection with K. This is closely related to the
lemma of Enriques-Severi that, in cohomological
terms, asserts that H1(O(−K)) = (0) if K is a
sufficiently ample divisor. It was proven to mod-
ern standards by Zariski in 1951 in the Annals of
Math., volume 55, and treated cohomologically in
Serre’s fundamental paper “Faisceaux Algébriques
Cohérents”, Annals of Math., volume 61, 1955. I
omit this section, too.

Below I will translate section 5, in which a
pencil of curves on the surface F is introduced so
that he can extend a curve C ⊂ F to infinitesimal
neighborhoods by extending the divisors C.Kt on
each Kt .

10

On the surface F we can choose two linear sys-
tems of regular (irreducible) curves |C| and |K| in
such a way that the curves C cut nonspecial series
on the curves K; it suffices to suppose |C| suffi-
ciently ample with respect to |K|, as, for example,
by assuming it contains a multiple of |K|.

This assumed, let C and C1 be two nonequiva-
lent infinitely close curves, which certainly exist if
the surface is irregular (pa < pg). By the theorem
demonstrated in the preceding section, C and C1

will cut inequivalent groups of m points G = G(m)

and G1 = G
(m)
1 on K, which will define two different

complete nonspecial series g and g1; consequently,
thanks to the operation +g1 − g, one will construct
a continuous (analytic) series of inequivalent linear

10I’d like to thank Michael Artin for his help in under-

standing this argument of Enriques and especially for

pointing out the problem of special groups on some

members of the pencil.

series in which one finds the series (always nonspe-
cial) g2, g3, . . . infinitely close to g in neighborhoods
of second, third, etc., order.

One chooses on a K a groupGn of the character-
istic series and in this a point A. (From the context
in the previous omitted section, it is clear that he
is choosing here a pencil 〈K1, K2〉 from the linear
system |K| with base points Gn = K1 ∩ K2 plus a
specific base point A ∈ Gn. Also the number π in-
troduced below is the genus of K. In what follows,
he will make constructions on arbitrary curves K
in this pencil and then take their loci as the curve
varies in the pencil. To do this he wants canonical
groups on each Kt , not just groups given up to lin-
ear equivalence. So he constructs next groups of
degree π which—if nonspecial—are unique up to
linear equivalence. )

The point A counted m−π times will determine
a groupGm of the series g (This is the unique group
in the linear system g of the form:

Gm = (m−π)A+Gπ , Gπ = π further points.

This constructs a canonical group of points Gπ

representing the divisor class. Some argument is
needed to check that Gπ is indeed nonspecial.)
and similarly a group G1 of m points of the series
g1 and then a group of g2 and so on. The loci (as
K varies in the pencil) of the groups Gmk defined in
this way will be curves L, L1, L2, . . . of the same or-
der, passing a certain number i times through the
points of Gn andm−π+ i times through A. In fact,
it’s easy to check that if L touches a particular K of
the pencil with base Gn, so that the corresponding
generator Gm has on this K a point coinciding with
a point of Gn, the same thing happens for L1 and
for L2, etc.

There is a major gap in his argument here as he
doesn’t make precise in any way what “the loci of
the groups Gmk ” means when the groups are infin-
itely close. The locus L of the groups of ordinary
points Gm on the members of the pencil, that is,
the case k = 0, is clearly a good algebraic curve,
but what are the loci when k ≥ 1?

As an aside, I want to explain the technical point
of where the integer i comes from. It is easier to
follow if as above we blow up on F the base points
Gn, giving a surface F∗, which is now fibered over
P

1 by the pencil of curves Ks . We can certainly
consider L∗, defined as the locus of Gπ on all the
fibers K in the blown-up surface. Moreover, if A∗

is the exceptional curve that is the blowup of the
point A, from the definition of L∗, we will have a
linear equivalence

L∗ + (m −π)A∗ ≡ C + iK for some i.

Since (C.A∗) = 0, (L∗.A∗) = i +m − π , which is
why he says that L has an m − π + i-fold point at
A.

This is a reasonable construction showing that
the locus of the ordinary groups Gm is an ordinary
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curve L. BUT Enriques claims without any discus-
sion that this works for the infinitely close groups
G1, G2, . . ., sweeping them out to infinitely close
curves L1, L2, . . .. Here he is assuming that an op-
eration that works for ordinary curves also works
for the infinitely close ones. But, worse than that,
he has defined the infinitely close groups Gπk on
each Ks in the pencil, successive to Gπ , by ana-
lytic means, and he needs infinitely close algebraic
curves Lk successive to L. To be as concrete as
possible, if Gm =

∑m
i=1 Pi(s) on the curve Ks , then

we can imagine that the infinitely close group Gmk
is defined by the kth-order terms in t of points
given by power series Pi(s, t), 1 ≤ i ≤ m, for s ∈
P

1 − S, |t| < c(s) but allowing for some finite set
S of possibly “bad” points where either (a) L has
a branch point so the Pi’s interchange, (b) Gm is
special, or (c) the curve Ks is singular. Enriques
needs to define Gmk for all s in order to prove he
has an infinitely close algebraic locus. This prob-
lem was apparently raised by B. Segre. Enriques
discusses this criticism in his later 1938 memoir
“Sulla proprietà caratteristica delle superficie alge-
briche irregolari” (Rendiconti della Accademia dei
Lincei, volume 27, pp. 493-498). He asserts here
(p. 497) that this extension is truly algebraic. Ac-
tually I don’t think (a) or (c) is a real problem, but
(b) certainly is. It is not clear (to me) whether for
generic pencils there will be curves Ks where Gπ is
special. Enriques addressed this briefly in his final
book Le Superficie Algebriche, p. 336, pointing out
that the set of special divisor classes of degree π
has codimension two but not saying why this locus
can be avoided by the curves in a generic pencil.
Such points s may mean that the infinitely close
curves Lk must be viewed as deformations of L
plus a sum of special fibers Ksi and showing that
the whole mess is algebraic is not simple. What En-
riques missed here is that everything is simpler if
you use divisor classes of degree zero instead of
positive divisors of degreeπ and use the existence
of a universal divisor on the Jacobian as sketched
in the previous section.

With the preceding construction we have defined
a curve L (belonging to the linear system |C + iK|
and curves L1, L2, L3, . . . infinitely close to it in the
neighborhoods of order 1,2,3, . . . as far as one
wants, whose real existence is thus demonstrated.

That shows that the curve L1 infinitely close to
L is close to L in a continuous ∞1 series of inequiv-
alent curves; and since L1 is substantially an ar-
bitrary curve infinitely close to L, inequivalent to
it, this proves that the linear system |L| belongs to
a continuous system {L} that has as characteris-
tic series the complete characteristic series on the
curve L.

The Translation, Part IV, “Algebraization”
Now Enriques comes to the final key idea in his
argument, the use of reducible curves in order to

extract continuous nonlinear systems of curves
from within linear systems:

But whoever looks at the demonstration with
critical eyes, as is advisable with reasoning of
this nature, will ask not only for the explicit proof
that truly the L1 that we constructed is an arbi-
trary member of the system of inequivalent curves
infinitely close to L, but also that L1 and then
L2, L3, . . . are effectively curves infinitely close to
L in the sense that we defined in the section “The
Translation, Part I”, and Enriques’s First Argu-
ment, since indeed the construction of these curves
L1, L2, L3, . . . appears to be something different
from that definition.

(The question is why the series of higher order
infinitely close deformations of L is contained in
an algebraic family of curves. Today we would only
need to cite the existence of the Hilbert scheme.
If we have deformations of a curve L to arbitrar-
ily high order, there has to be a component of
the Hilbert scheme giving not merely infinitesimal
deformations but global ones, thus defining a con-
tinuous system of curves containing L and L1. En-
riques, however, found an elementary way to do
this:)

To respond to the doubt so raised, one considers
the linear system of the sum |L+C| and inside it one
considers the curves infinitely close to a reducible
curve: they cut the L1 that we have constructed in
as many points as they cut L and so containing L1

as a component imposes the same number of condi-
tions (the dimension of a special series of the same
order plus one): one must conclude that among the
curves infinitely close to L+ C in the given system,
there are curves made up of L1 (defined as always
as a curve infinitely close to L in the sense of the sec-
tion “The Translation, Part I”, and Enriques’s First

Argument) and a C1 infinitely close to C. Concern-

ing this C1, one can say that it cuts a group G1

on K of a series complementary to that defining
the group G1, the section of C1 (which was an ar-
bitrary inequivalent curve in the neighborhood of
C): indeed, designating withG the group (C.K), one
has:

G1 +G1 = 2G.

As a consequence, C1 is, like C1, an arbitrary
curve among those inequivalent neighboring C:
since if one takes C1 in the place of C1, one finds

C1 in the place of C1.
Now the reasoning which precedes extends to

all the curves infinitely close in neighborhoods
of higher order. Among the curves of the linear

system |L + C|, infinitely close L1 + C1 (i.e., in the
second-order neighborhood of L+ C), one will find
reducible curves that contain as a component the
L2, constructed above, and another component

C2 neighboring C1 and successive to C. And con-
tinuing, one will find curves infinitely close to C
belonging to neighborhoods of appropriate heights

that extend C1, that is—as has been said—to an
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arbitrary inequivalent curve infinitely close C. This
shows that these infinitely close curves which cut

the complete characteristic series on C are curves
belonging to an effective continuous series, and
thus that the linear system |C| is contained in a
continuous system {C} that has on C a complete
characteristic system and so is made up of ∞pg−pa

inequivalent systems. q.e.d.
The key observation is that the family Lk of de-

formations of L constructed earlier to all infini-
tesimal orders can be algebraicized to a family of
ordinary curves on F by considering the family of
reducible curves in the linear system |L + C|. He
argues that this linear system contains curves of
the form Lk+Ck and these must lie in an algebraic
family of linearly equivalent curve Lt + Ct . Taking
either the system {Lt} or the system {Ct}, one sees
that the dimension of the Picard variety is indeed
pg − pa.

Summary
Where should we place Enriques if we seek to sum-
marize how algebraic geometry developed in the
twentieth century? That he built a comprehensive
theory of algebraic surfaces and their classification
by what we now call Kodaira dimension is clear.
But he is also a transition figure between the age
of the classical geometry of varieties and linear
systems and the modern period of schemes and
cohomology. This transition was not marked at
first by the discovery of new theorems but rather
by the creation of whole new vocabulary and the
toolkit that went along with this. Transitions of
this kind may often look as if they appear out of
nowhere, but this is rarely the case. Many of the
ideas that came to full flower in the 1960s were “in
the air” before then. The obstacle to their creation
was one of naming, of admitting that it’s going to
be easier to understand some circle of ideas if you
make some vague thing you’re working with into
a tangible object—reifying something dimly seen.

An example from the topic of this paper is that
the characteristic linear system of a linear system
on a surface F , if it is not enlarged to a complete
continuous system, is incomplete. That is, given
a curve C on a surface F and a divisor D on F ,
it was clear to all classical geometers that there
were rational functions on C with poles bounded
by (D.C) that did not lift to rational functions on
F with poles bounded by D. But the idea that you
should give a name (i.e., H1) to the cokernel:

{fcns. on C, poles at (D.C)} mod

{restrictions of fcns. on F, poles at D}

was simply not the sort of thing they ever consid-
ered. Naming such cokernels came out of algebraic
topology and was transplanted into algebraic ge-
ometry by Serre. This immediately systematized
large areas of classical geometry.

Enriques’s particular insight, however, was that
he saw that there was a calculus of infinitesimal
deformations of subvarieties. Although he gave
these names, they remained in a limbo, with-
out substance, because he did not think of what it
meant to have a function on them. Grothendieck
realized that functions on such objects should be
rings with nilpotent elements, and this gave life to
these infinitesimal deformations. He reified them
as ringed spaces, and with the word Spec.

But reification never happens in a vacuum:
there has to be a clear need for it, an intuition
that has leaped ahead of the available tools. This
Enriques had. The proof discussed above is a
wonderful example of how, before the new system
is invented, an ingenious mind can limn out what
the new structure should look like.

So far,we have beenemphasizing Grothendieck’s
theory of schemes and his existence theorems
for the Hilbert and Picard schemes that make the
Fundamental Theorem seem extremely easy. But
we also know more today because Zariski and
Weil introduced the parallel world of varieties
over fields of finite characteristic. In this world,
the Fundamental Theorem that q = pg − pa is
false: many varieties in characteristic p have a
nonreduced Picard scheme. This allows us to trace
the ideas behind the various attempts to prove
the Fundamental Theorem to see where they use
the essential hypothesis that the characteristic of
the field is zero.

If we study Enriques’s intuitive proof and try
to make sense of it, as we did in the section
“The Translation, Part I”, and Enriques’s First Ar-
gument, the characteristic zero hypothesis comes
in through the use of the power series for the
exponential function, since that requires dividing
by n!. More generally the exponential function is
the key ingredient in the theorem that all group
schemes in characteristic zero are reduced. But
Enriques’s proof above, in the section “The Trans-
lation, Part III, the Use of a Pencil”, was different.
He used instead the well-established theory of
the Jacobian variety. Being a complex torus, it
had straight lines through the origin that define
1-parameter subgroups in every direction. This
also does not hold in characteristic p: for in-
stance, there are no 1-parameter subgroups of
the formal two-dimensional multiplicative group
with transcendental slope. The idea of using such
subgroups is very ingenious.

In short, Enriques was a visionary. And, remark-
ably, his intuitions never seemed to fail him (unlike
those of Severi, whose extrapolations of known
theories were sometimes quite wrong). Mathemat-
ics needs such people—and perhaps, with string
theory, we are again entering another age in which
intuitions run ahead of precise theories.
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