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I was flabbergasted when I first read Augustus De Morgan’s writings about negative
numbers1. For example, in thePenny Cyclopediaof 1843, to which he contributed
many articles, he wrote in the articleNegative and Impossible Quantities:

It is not our intention to follow the earlier algebraists through their different uses
of negative numbers. These creations of algebra retained their existence, in the
face of the obvious deficiency of rational explanation whichcharacterized every
attempt at their theory.

In fact, he spent much of his life, first showing how equationswith these meaningless
negative numbers could be reworked so as to assert honest facts involving only
positive numbers and, later, working slowly towards a definition of abstract rings
and fields, the ideas which he felt were the only way to build a fully satisfactory
theory of negative numbers.

On the other hand, every school child today is taught in fourth and fifth grade
about negative numbers and how to do arithmetic with them. Somehow, the aversion
to these ‘irrational creations’ has evaporated. Today theyare an indispensable part
of our education and technology. Is this an example of our civilization advancing
since 1843, our standing today on the shoulders of giants andincorporating their
insights? Is it reasonable, for example, that calculus was being developed and the
foundations of physics being laid — before negative numbersbecame part of our
numerical language!?

The purpose of this article is not to criticize specific mathematicians but first
to examine from a cross cultural perspective whether this same order of discovery,
the late incorporation of negatives into the number system,was followed in non-
Western cultures. Then secondly, I want to look at some of themain figures in

1De Morgan’s attitudes are, of course, well known to historians of Mathematics. But my naı̈ve idea
as a research mathematician had been thatat leastfrom the time of Newton and the Enlightenment an
essentially modern idea of real numbers was accepted by all research mathematicians.
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Figure 1. Augustus De Morgan

Western mathematics from the late Middle Ages to the Enlightenment and examine
to what extent they engaged with negative numbers. De Morganwas not an isolated
figure but represents only the last in a long line a great mathematicians in the West
who, from a modern perspective, shunned negatives. Thirdly, I want to offer some
explanation of why such an air of mystery continued, at leastin some quarters, to
shroud negative numbers until the mid 19th century. There are several surveys of
similar material2 but, other than describing well this evolution, these authors seem
to accept it as inevitable. On the contrary, I would like to propose that the late
acceptance of negative numbers in the West was a strange corollary of two facts
which were special to the Western context which I will describe in the last section. I
am basicallyaPlatonist inbelieving that there is asinglebookof mathematical truths
that various cultures discover as time goes on. But rather than viewing the History
of Mathematics as the unrolling of one God-given linear scroll of mathematical
results, it seems to me this book of mathematics can be read inmany orders. In the
long process of reading, accidents particular to differentcultures can result in gaps,
areas of math that remain unexplored until well past the timewhen they would have

2Three references are (i) Jacques Sesiano,The Appearance of Negative Solutions in Medieval
Mathematics, Archive for History of the Exact Sciences, vol. 32, pp. 105-150; (ii) Helena Pycior,
Symbols, Impossible Numbers and Geometric Entanglements,Cambridge Univ. Press, 1997; (iii) Gert
Schubring,Conflicts between Generalization, Rigor and Intuition,Springer 2005.
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been first relevant. I would suggest that the story of negative numbers is a prime
example of this effect.3

This paper started from work at a seminar at Brown Universitybut was developed
extensively at the seminar on the History of Mathematics at the Chennai Mathemat-
ical Institute whose papers appear in this volume. I want to thank Professors P. P.
Divakaran, K. Ramasubramanian, C. S. Seshadri, R. Sridharan and M. D. Srinivas
for valuable conversations and tireless efforts in puttingthis seminar together. On
the US side, I especially want to thank Professor Kim Plofkerfor a great deal of
help in penetrating the Indian material, Professor Jayant Shah for his help with both
translations and understanding of the Indian astronomy andProfessor Barry Mazur
for discussions of Cardano and the discovery of complex numbers. I will begin
with a discussion of the different perspectives from which negative numbers and
their arithmetic can be understood. Such an analysis is essential if we are to look
critically at what early authors said about them and did withthem.

1. The Basis of Negative Numbers and Their Arithmetic

It is hard, after a contemporary education, to go back in timeto your childhood
and realize why negative numbers were a difficult concept to learn. This makes it
doubly hard to read historical documents and see why very intelligent people in the
past had such trouble dealing with negative numbers. Here isa short preview to try
to clarify some of the foundational issues.

Quantities in nature, things we can measure, come in two varieties: those which,
by their nature, are always positive and those which can be zero or negative as well
as positive, which therefore come in two forms, one canceling the other. When one
reads in mathematical works of the past that the writer discards a negative solution,
one should bear in mind that this may simply reflect that for the type of variable in
that specific problem, negatives make no sense and not conclude that that author
believed all negative numbers were meaningless4. Below is a table. The first five are
ingredients of Euclidean mathematics and the sixth occurs in Euclid (the unsigned
case) and Ptolemy (the signed case, labeled as north and south) respectively.

What arithmetic operations can you perform on these quantities? If they are
unsigned, then, as in Euclid, we get the usual four operations:

1. a + b OK

2. a − b but only if a > b (as De Morgan insisted so strenuously)

3I believe the discovery of Calculus and, especially, simple harmonic motion, the differential equa-
tions of sine and cosine, in India and the West provide a second example.

4For example, Bhaskara II has a problem in which you must solve for the number of monkeys in
some situation, and obviously this cannot be negative.
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TABLE I

Naturally Positive
Modern units Quantities Signed Quantities

positive integer # of people/monkeys/
apples

positive real proportion of 2 lengths
(Euclid, Bk V)

meters length of movable rigid
bar/stick

meters2 area of movable rigid flat
object

meters3 volume of movable rigid
object or incompressible
fluid

degrees (of angle) Measure of a plane angledistance N/S of equator
dollars fortune/debt; profit/loss;

asset/liability
meters (a) distance on line/road, rel.

to fixed pt, the ‘number line’
(b) also, height above/below
the surface of earth.

seconds time before or after the
present or relative to a fixed
event

meters per second velocity on a line, forwards or
backwards

degrees (of
temperature)

Kelvin temperature Fahrenheit or Celsius
temperature

grams Mass or weight of an
object

gram-meters/sec.2 your weight on a scale
= force of gravity on your
body (a vector)

3. a ∗ b OK but units of the result are different from those of the arguments,
e.g. length× length= area, length× length× length= volume

4. a/b OK but again units are different,
e.g. length / length= pure number, area / length= length

If they are signed quantities, addition and subtraction arerelatively easy – but
modern notation obscures how tricky it is to define the actualoperation in all cases!
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TABLE II

First Second
summand summand Sum Difference

a b usuala + b a − b if a > b
(neg)(b − a) if b > a

(neg)a (neg)b (neg)(a + b) b − a if b > a
(neg)(a − b) if a > b

a (neg)b a − b if a > b a + b
(neg)(b − a) if b > a

(neg)a b b − a if b > a (neg)(a + b)
(neg)(a − b) if a > b

We write the simple expressiona − b, and consider it obviously the same as any of
these:

a + (−b) = a − (+b) = a + (−1) · b

buteach is, in fact, adifferentexpressionwithadifferentmeaning.Givenanordinary
positive numbera, −a is naturally defined as the result of subtractinga from 0. For
a minute, to fix ideas,don’t write −a, but use the notation (neg)a for 0 − a. Then
note how complicated it is to definea + b for all signs ofa andb. Starting witha
andb positive, Table II gives the sums and differences ofa and (neg)a with b and
(neg)b,

Understanding this table for the case of addition seems to bethe first step in
understanding and formalizing negatives. The second step is to extend subtraction
to negatives so as to get the last column. This is contained inthe rule:

a − (−b) = a + b, for all positive numbersa, b.

The basic reason for this is that we want the identitya− x + x = a to hold for allx,
positiveornegativeor, inotherwords,subtractionshouldalwayscanceloutaddition.
If we takex equal to−b, then replacinga − (−b) by a + b makes this identity
hold. The argument one finds in some historical writings may be paraphrased as
“taking away a debt of sizex is the same as acquiring a new asset of sizex”, a fact
obvious to any merchant. In any case, understanding of negatives up to this point
seems to be a natural stage that one encounters in various historical documents. In
modern terminology, while acknowledging that our modern words distort historical
truth, one would paraphrase this stage by saying that it incorporates the idea that
the integers, positive and negative are an abelian group under addition.

But multiplication of negatives is a subtler operation, thethird and final step in
the arithmetic of negatives. Modern notation again obscures the subtlety. When you
write the simple identity−a = (−1) ·a, you are making a big step. Perhaps this is a
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contemporary mathematician splitting hairs because historically this seems to have
been assumed as completely natural by nearly every mathematician once they knew
the rules for subtracting negative numbers (with the exception perhaps of Cardano
and Harriot, see below). One difficulty in arguing for this rule is that there are not
many simple cases of quantities in the world where the units of the two multiplicands
allow us to infer the multiplication rule using our physicalintuition about the world.
Here are a number of ways of arguing that the identity (−1) · (−1) = +1 must hold.

Method I:Use the basic, intuitively obvious, identity:

distance= velocity× time

and argue that if you substitute:

(a) velocity=movementofonemeterbackwardspersecond,anegativenumber,

(b) time= second in thepast, also negative,

(c) then one second ago, you were 1 meter ahead, i.e.distance= +1 meter.

This ‘proves’ (−1) · (−1) = +1.

Method I′: I know of only one other real world situation where the rule isintuitively
obvious. This variant of the previous argument concerns money and time. We use
the simple equation obvious to any merchant describing the linear growth of a
business’s assets:

assets at time t= (rate of change of assets)× (elapsed time t)+ (assets at present)

Now suppose a business islosing$10,000 a year and is going bankrupt right now.
How much money did it have a year ago? Substitutet = −1,rate=−10000,present
assets= 0 and the obvious fact thatassets a year ago= +10000 to conclude that
(−1) · (−10000)= +10000.

Method II: (as in Euclid’s geometric algebra)
In Euclid, multiplication occurs typically when the area ofa rectangle is the

product of the lengths of its two sides. Consider the diagrambelow:
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The big rectangle has areaa ·b but the shaded rectangle has area (a−c) · (b−d).
Since the area of the shaded rectangle equals the area of the big rectangle minus the
areas of the top rectangle and the left rectangleplus the area of the small top-left
rectangle (which has been subtracted twice), we get the identity

(a − c) × (b − d = ab− bc− ad + cd, if a, b, c, d > 0, a > c, b > d

Now we use the idea that identities should always be extendedto more general
situations so long as no contradiction arises. If we extend this principle to arbitrary
a, b, c, d, (which will bring in negative lengths and areas), we get fora = b = 0:

(−c)(−d) = +cd

This approach is probably the most common way to derive the multiplication rule. It
can be phrased purely algebraically if you extend the distributive law to all numbers
and argue like this (using also 0· x = 0 and 1· x = x):

1 = 1+(−1)·0 = 1+(−1)· (1+(−1)) = 1+(−1)·1+(−1)· (−1) = (−1)· (−1).

Method III: Start with the multiplication

(positive integern) × (any quantitya) = (more of this quantityna)

(e.g. 4× (quart of milk)= a gallon of milk), then bysubdividingquantities as well
as replicating them, you can define multiplication

(positive rational)× (quantitya)

and by continuity (as in Eudoxus), define

(positive real)× (quantitya)

What we are doing is interpreting multiplication of any quantity by a positive
dimensionless real number asscalingit, making bigger or smaller as the case may
be. Now if the quantity involved is signed you find it very natural to interpret
reversing its sign as scaling by−1, i.e. to make the further definition:

(−1) × (quantitya) = (quantity− a)

Now you have multiplication by any real number, positive or negative. In other
words, the negative version of scaling is taking quantitiesto their opposites.

The core of this argument is the algebraic fact that theendomorphisms of an
abelian group form a ringand we are constructing multiplication out of addition as
composition of endomorphisms. This makes the third approach arguably the most
natural to a contemporary mathematician trained in the Bourbaki style.



120 David Mumford

2. Negatives in Chinese and Indian Mathematics

We will discuss China first. The classic of Chinese mathematics is theJiuzhang
Suanshu(Nine Chapters on the Mathematical Art). Like Euclid, this is a com-
pendium of the mathematical concepts and techniques which had been developed
slowly from perhaps the Zhou (or Chou) dynasty (begins c.1000 BCE) through the
Western Han dynasty (ending 9 CE). Unlike Euclid, it is a listof practical real world
problems and algorithms for their solution, without any indication of proofs. Since
then, theNine Chaptershad a long history of ups and downs, sometimes being
required in civil service exams and sometimes being burned and nearly lost. Each
time it was republished though, new commentaries were added, starting with those
of the great mathematician Liu Hui in 263 CE and continuing through those in the
English translation by Shen, Crossley and Lun5. Page numbers in our quotes are
from this last edition.

Starting some time in the first millennium BCE, arithmetic inChina began to
be carried out using counting rods, which were arranged in rows using a decimal
place notation. When doing calculations, different numberswere laid out by rods
in a series of rows, forming a grid: a Japanese illustration of how they were used is
shown in the figure below.

Figure 2. A Japanese illustration of calculation with counting rods

The section of theNine Chaptersin which negative numbers are introduced
and used extensively is Chapter 8,Rectangular Arrays. This Chapter deals with
the solutions of systems of linear equations and expounds what is, to all intents
and purposes, the method of Gaussian Elimination. In fact, it is indistinguishable
from the modern form. The coefficients are written out in a rectangular array of
rod numerals and one adds and subtracts multiples of one equation from another
equation until the system has triangular form. Examples as large as five equations in

5The Nine Chapters on the Mathematical Art: Companion and Commentary, Shen Kangshen, John
N. Crossley, and Anthony W. -C. Lun, Oxford University Press, 1999.
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five unknowns are worked. Naturally negative numbers appearall the time in such
an algorithm.

As described in Liu’s commentary, red rods or upright rods were used for positive
numbers which he calls gains (zheng) and black rods or slanting rods for negative
numbers which he calls losses (fu). He says “red and black counting rods are used
to cancel each other”. Curiously, his colors are the exact opposite of our Western
accounting convention! Here is Problem 8 from this Chapter,p.409 in the Shen,
Crossley and Lun edition:

Now sell 2 cows and 5 sheep, to buy 13 pigs. Surplus: 1000 cash.Sell 3 cows and 3 pigs to
buy 9 sheep. There is exactly enough cash. Sell 6 sheep and 8 pigs. Then buy 5 cows. There is
600 coins deficit. Tell: what is the price of a cow, a sheep and apig respectively?

This means the three equations (all of which have negative coefficients as well as
positive):

2C + 5S− 13P = 1000

3C − 9S+ 3P = 0

−5C + 6S+ 8P = −600

The solution is found to beC = 1200, S = 500, P = 300. TheNine Chaptersgoes
on rather mysteriously (p.404):

Method: Using rectangular arrays lay down counting rods foreach entry to be added.

The Sign Rule

Like signs subtract; opposite signs add; positive without extra, make negative; negative
without extra, make positive.
Opposite signs subtract; same signs add; positive without extra, make positive; negative
without extra, make negative.

Liu’s commentary explains: the first set of sign rules refersto subtraction of array
entries, the second to addition. He goes on to clarify the meaning of the cryptic
Sign Rule. In fact, the rule is precisely what we wrote out in Table II above for both
addition and subtraction. What is clear is that negative numbers were analyzed and
treated correctly as soon as the need arose, presumably for the first time anywhere
in the world.

I cannot find in the Shen et al edition of theNine Chaptersany treatment of
multiplication of negative numbers, although Martzloff6 quotes the Chinese edition
of Qian Baocong as saying:“Rods of the same name multiplied by each other make
positive. Rods of different names multiplied by each other make negative”. In any

6Jean-Claude Martzloff,A History of Chinese Mathematics, 2nd edition, Springer, 1997, page 203.
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case, Liu’s commentary, written in the 3rd century CE, makes the remark (p.405):
“ Interchanging the red and black rods in any column is immaterial. So one can
make the first entries of opposite sign.”This is the correct rule for multiplication
by −1.

Chinese algebra had a renaissance in the Song and Yuan (Mongol) dynasties. In
particular, Zhu Shijie (c.1260–c.1320) extended the ideasof Gaussian elimination
to the simultaneous solution ofpolynomialequations, inventing the equivalent of
the resultant and using ever larger and more complex arrays of coefficients. At
this stage, as one would expect, the full rules for negative arithmetic emerge quite
explicitly as well those for the algebra of polynomials. Having a theory of negatives
is the clear prerequisite for going further in the study of algebra. Zhu’s algebra
reached a stage not attained in Europe until the late 19th century.

I want to turn to India next. In every culture, one of the main reasons for the
development of arithmetic – arguably the principle drivingforce – is the need
of merchants to keep accounts. In fact, it is even hypothesized that arithmetic and
writing itself emerged in the 3rd millennium BCE in Mesopotamia as a development
of a crude system of tracking transactions of agricultural goods by means of small
specially shaped and inscribed tokens7. By around the year 2000 BCE, one finds
tablets from Ur8 with a yearly summary accounting, showing budgeted and actual
inputs (with value converted into a common unit of barley), budgeted and actual
outputs,budgetedandactual laboranddifferences,shortfallsorprofits! In India,very
sophisticated principles of accounting were codified in Kautilya’s comprehensive
manual of statecraft, the Arthaśatra written in the 4th century BCE. The Arthásatra
covers in amazing detail every aspect of setting up and managing of a kingdom
(including managing a special forest for elephants). In Book II, Chapter 6 and also
in many later Chapters of Book II, Kautilya details how accounts are to be kept9.
He describes a complete system of book keeping: he has a ledger for incomewith
dates, times, payers, categories, etc. and a ledger forexpendituresand finally a
third ledger forbalances. There are sections on auditing, insurance against theft,
debtors, borrowings, mortgages, auditing, etc. and subtler accounting issues such as
current vs. deferred receipts, how to account for price changes of items in inventory,
fixed vs. variable costs. Although he does not use negative numbers explicitly, he is

7The pioneer here has been Denise Schmandt-Besserat, who has brought her life’s work together in
the multi-volume bookBefore Writing,volume I beingFrom Counting to Cuneiform, University of Texas
Press, 1992. In particular, she has “deciphered” the mysterious tokens found throughout the Middle East
from roughly 8000 BCE to 3000 BCE, finding a simple method of accounting which merges seamlessly
with highly developed cuneiform accounts in the 3rd millennium.

8See Chapter 5 in Richard Mattessich,The Beginnings of Accounting and Accounting Thought:
Accounting Practice in the Middle East (8000 B.C to 2000 B.C.) and Accounting Thought in India (300
BCE to the Middle Ages), Garland Publishing, 2000.

9See Chapter 6 in Mattessich,Op. Cit.,which is based on the bookModern Accounting Concepts in
Kautilya’s Arthasastraby Anjan Bhattacharyya, Firma KLM, Calcutta, 1988.
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clearly aware of how accounts must sometimes show a deficit and that people may
carry a negative net worth.

Although the Arthásatra does not mention negative numbers explicitly, they
appear full blown in Brahmagupta’s treatiseBrâhma-sphuta-siddhânta(628 CE).
The development of mathematics in India in the first millennium CE is connected
much more strongly to astronomy than to accounting. For muchof this period,
treatises covering both mathematics (ganita) and astronomy (the motion of the sun,
moon and planets and their positions at a given time and placein the sky) and called
siddhantaswere composed. Many of these were in verse, highly compressed and
cryptic, meant to be memorized and handed down generation bygeneration from
teacher to student.

TheBrâhma-sphuta-siddhântaincludes two Chapters on mathematics which are
a compendia of the mathematical concepts and techniques which had been devel-
oped over previous centuries. Here we find all the correct rules for arithmetic with
negative numbers and in itpositive numbers are referred to as “fortunes”, negative
numbers as “debts”. It appears that accounting led naturally to an arithmetic in
which negative numbers took their natural place. Here are some quotations, show-
ing first the rules we laid out in table I and then, significantly, going on to describe
how to multiply negative numbers10:

[The sum] of two positives is positive, of two negatives, negative; of a positive and a negative
[the sum] is their difference; if they are equal, it is zero. The sum of a negative and zero is
negative, of a positive and zero positive, of two zeros, zero.

[If] a smaller [positive] is to be subtracted from a larger positive, [the result] is positive; [if]
a smaller negative from a larger negative, [the result] is negative; [if] a larger from a smaller,
their difference is reversed – negative becomes positive and positive negative.
. . . .

The product of a negative and a positive is negative, of two negatives positive, and of positives
positive; the product of zero and a negative, of zero and a positive, or of two zeros is zero.

A positive divided by a positive and negative divided by a negative is positive; a zero divided
by a zero is zero; a positive divided by a negative is negative; a negative divided by a positive
is negative.

Chapter 18, verses 30–34

The only oddity seems to be his confident assertion that 0/0 = 0. The rest is
as clear and modern as one could wish for. It would be wonderful to know what
considerations led Indian mathematicians in the late centuries BCE or the early
centuries CE to these conclusions – especially for the multiplication of nega-
tive numbers. The predominately oral transmission of knowledge in the Vedic

10We quote from the translation by Kim Plofker in her book,Mathematics in India, 500 BCE – 1800
CE,Chapter 5, p.151.
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tradition – and perhaps the difficulty of preserving perishable writing materials
through yearly monsoons – has not left us with any record of these discoveries.
They just appear full blown in Brahmagupta’s summary. R.Mattessich has devel-
oped at length the idea that it was the highly developed tradition of accounting which
led to the full understanding of negative numbers11 but unfortunately no evidence
for this plausible conjecture exists.

As in China, having negative numbers opened the way to deeperstudies of
algebra itself. Perhaps the deepest of these was the Indian work on Pell’s equation
x2 − N y2 = m, especially finding solutions form = 1. Brahmagupta himself made
the first huge step, discovering the multiplication law arising from the factorization

x2 − N y2 =
(

x +
√

N y
) (

x −
√

N y
)

.

More exactly, he showed how from solutions of the equation for m1, m2, one gets
one for their productm = m1 ·m2. Some centuries later, Jayadeva found a complete
algorithm for constructing solutions withm = 1.

We find reflections of the Indian use of negatives in their astronomy too. As
stated, the main goal of these scholars was not to develop mathematics for its own
sake but to apply mathematics to predict the positions of thesun, moon and planets.
An epicyclic theory is used and, for the planets, both a ‘slow’ and ‘fast’ correction
is added to the mean motion of the planet (in our terms, one is due to the ellipticity
of their orbit, the other to the shift from a heliocentric to ageocentric description).
David Pingree12 has hypothesized that through the intermediary of the Indo-Greek
empire, some version of the pre-Ptolemaic Hipparchan theory of planetary motion
reached India. What is quite striking is that in making these corrections the sine
function in all four quadrantsis understood. Hipparchus had computed tables of
chords, which are fundamentally unsigned positive quantities. The Indian tradition
shifts to sines (actually ‘Rsines’, sines multiplied a large radius and rounded to the
nearest integer) and then it is natural to extend them from the first quadrant to the
full circle. Here is a quote from theBrâhma-sphuta-siddhânta, Chapter 2, verse 16
describing the corrections made by adding or subtracting appropriate sine function
corrections to the mean position:

(In successive quadrants) (in the slow case) negative, positive, positive, negative correction,
otherwise in the fast case. (The sum) of two positives (is) positive, of two negatives (is)
negative, of positive and negative (is their) difference, of equals (positive and negative is)
zero.13

11See Chapter 7 in Mattessich,Op. Cit.
12David Pingree, The History of Mathematical Astronomy in India, in Dictionary of Scientific

Biography, Charles Gillespie editor, Scribner, 1978, pp.533–633.
13Translation by J. Shah (personal communication).
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It would be nice if they had drawn a graph of the correction in all quadrants, i.e. of
the sine function, to clarify this verse, but that was clearly not theirmodus operandi.
But further evidence that the sine function was seen as beingextended to more than
one quadrant comes from the rational approximation of the sine in the first two
quadrants given by Bhaskara I (7th century CE)14:

sin(θ ) ≈
16 · θ (π − θ )

5π2 − 4θ (π − θ )
, 0 ≤ θ ≤ π

This is an extraordinarily accurate approximation which would be hard to come up
with if they had not grouped the first and second quadrant together.

Another natural place for using negative numbers is for coordinates, e.g. to
measure the celestial latitude (perpendicular to the ecliptic), or the declination (per-
pendicular to the celestial equator), of a planet or star. Tradition, however, sanctifies
describing latitudes and declinations as north/south instead of positive/negative and
this is hard to change. But this latitude must often be put into formulas when convert-
ing from celestial coordinates to horizon based coordinates, e.g. when calculating
thevery important rising timesofplanets.At thispoint, rules fornegativesagainmust
be used. Here is an example from Brahmagupta’sKhandakhâdyaka,Ch.6, verse 515

Multiply the northcelestial latitude by the equinoctial shadow and divide by 12; apply the
quotient taken as minutes negatively or positively to (the longitude measured from) the orient
and occident ecliptic points. When the celestial latitude is south, apply the resulting minutes
to the same points positively or negatively.

In modern terms (see Figure 3), he is computing (longitude KA) ± (latitude K V)
× tan(φ), whereφ is the observer’s latitude and distinguishing the cases where
longitude is measured eastwards or westwards and where the planet’s latitude is
north or south.

An explicit interpretation of negatives as coordinates on anumber line occurs
later in the work of the 12th century Bhaskara II (so-called to distinguish him from
the earlier 7th century Bhaskara I). He wrote an immensely popular textbookon
Algebra, theLîlâvatî16. The title was said by a Persian translator to be the name of
Bhaskara’s daughter and, although this is not made explicitin the book, it is full of
verses addressed to the “beautiful one”, “the fawn-eyed one”, etc. Present day texts
are so drab in comparison!

The remarkable passage is in verse 166 and again it is given without any fanfare
stating that a new interpretation of negative numbers is being given. But, to my

14Bhaskara I,Mahabhaskariya, Ch. 7, verses 17–19.
15The Khan. d. akhâdyaka of Brahmagupta, with the commentary of Bhat.t.otpala, edited and translated

by Bina Chatterjee, World Press, Calcutta, 1970, p.122–3.
16We follow the classic translation by H. T. Colebrooke, first published by in 1817 and subsequently

reprinted in numerous editions.
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Figure 3. Diagram for calculation of rising time. Planet atV ,
r K A ecliptic, P north celestial pole.

knowledge, it is the first occurrence of the “number line”, ofusing positive and
negative numbers as coordinates on either side of an origin.Bhaskara is in the
middle of a discussion of triangles and, specifically, giventhe three sidesa, b, c of
the triangle with a distinguished sidec, the base, how to find the altitude and the
position of the foot of the perpendicular dropped on the base. If you let x be the
distance from one endpoint of the base to the foot, then (c − x) is the distance from
the other endpoint to the foot and Pythagoras’s theorem tells us:

a2 − x2 = altitude2 = b2 − (c − x)2

which gives us:

x = (a2 + c2 − b2)/2c

In verse 166, he poses the problem:

In a triangle, wherein the sides measure ten and seventeen and the base nine, tell me promptly,
expert mathematician, the segments, perpendicular and area.

and his formula gives himx = −6, c − x = 15 (see Figure 4). Aha: what to do?
Well, if you draw this triangle, you find the foot of the perpendicular lies outside
the base. So what does Bhaskara say?

(The result 6) is negative, that is to say, in the contrary direction. Thus the two segments are
found 6 and 15. From which, both ways too, the perpendicular comes out 8.

This is stated so casually, as if it were common wisdom, that one can only
conclude that this way of thinking about negative distanceswas well-known in his
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Figure 4. A triangle with a perpendicular falling outside the
base, Bhaskara II

time. Nonetheless, as we will see, it doesn’t occur in Europebefore the work of
Wallis near the end of 17th century.

3. The Shunning of Negative Numbers, From Al-Khwarizmi to Galileo

I now turn to the Arab and Western treatment of negative numbers. To keep the
story within bounds, I will pick a small selection from the many figures who might
be discussed, those who seem to me key figures in the story or who exemplify a
particular stand.

Al-Khwarizmi (c.790–c.840)

It is repeated everywhere that the Indians invented zero andplace notation and that
the Arabs learned it from them and later transmitted this to Europe. It’s bizarre
that such a misunderstanding should be widespread but in fact, the Babylonians
invented place notation (albeit using base 60) and their arithmetic was used by
many Greeks, e.g. Ptolemy. I hope I have made the case that themost substantial
arithmetic discovery of the Indians – and independently theChinese – was not
merely that of zero but the discovery of negative numbers. Sadly this discovery was
not absorbed in any but a superficial way by the Arabs.

Al-Khwarizmi (whose full name was Abu Ja’far Mohammad ibn Musa Al-
Khwarizmi) was familiar with Indian mathematics and astronomy and apparently
with Brahmagupta’sBrâhma-sphuta-siddhântawritten some 200 years earlier. He
worked under the patronage of the caliph Al-Mamun about whomhe says “That
fondness for science, . . . , that affability and condescension which he(the caliph)
shows the learned . . . has encouraged me to compose a short work on calculating by
Completion and Reduction .. such as men constantly require in cases of inheritance,
legacies, partition, law-suits and trade . . .”17 His book on Algebra is entitledAl-
jabr w’al muqabalawhich refers to the operations of completion and reduction with

17The Algebra of Mohammed ben Musa,Translated by Frederic Rosen. Facsimile reprint of 1831
edition by the Oriental Translation Fund, London, Adamant Media Corporation 2002.
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which he simplified his equations. These were relations between an unknown, its
square and constants, given in prose. Nearly half of his bookconcerns incredibly
complex inheritance cases.

I find three things especially striking in this book. Firstly, negative numbers
appear only once, in a section on multiplication whose goal appears to be to explain
the identity

(a − c) · (b − d) = ab− ad − bc+ cd

and justify it by geometry, just as in our discussion of “Method II” for multiplying
negative numbers. But then they are never mentioned again. The second striking
thing is that quadratic equations always have positive coefficients and thus belong
to three types:

1. ax2 + bx = c, a, b, c > 0 (referred to as “roots and squares are equal to
numbers”)

2. ax2 + c = bx, a, b, c > 0 (“squares and numbers are equal to roots”)

3. ax2 = bx + c, a, b, c > 0 (“roots and numbers are equal to squares”)

This separation of cases continues down through the whole European tradition
through De Morgan. An equation, in short, must be an identitybetween two positive
numbers. Thirdly, he discusses exactly the same problem that Bhaskara II was to
take up: finding altitudes of triangles whose sides are given. But, unlike Bhaskara,
all the examples he treats have the foot of the perpendicularinsidethe base so this
big clue about negatives never comes up.

Leonardo of Pisa (1170–1250)

LeonardoofPisawasoneof thefirstEuropeans tomaster theArabartsofcalculation,
including the use of Indian symbols and place notation. He wrote a remarkable book,
hisLiber Abaci(Book of Calculation), in which the rules for all the basic arithmetic
operations are laid out in great detail and exhaustively illustrated by numerical
examples. This occupies the first half of his book which is essentially what we
would call a primer. But he deals exclusively with the arithmetic of positive integers
and positive fractions. His section on subtraction is entitled On the Subtraction of
Lesser Numbers from Greater Numbers.

As in the Indian tradition, accounting was one of the principle stimuli for the
development of arithmetic in the Middle Ages and much of the book deals with
the arithmetic of money, goods and possessions. The second half of the book treats
a huge number of “word problems” involving goods and money. He is following
a curious tradition going back to Diophantus (and found in Chinese and Indian
works also) of what, to modern eyes, are quite bizarre artificial “word problems”
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involving a group of people who, after exchanging various sums of money, have
sums satisfying some linear relationships. Here is an example18:

Three men had pounds of sterling, I know not how many, of whichone half was the first’s, one
third was the second’s and one sixth’s was the thirds; as theywished to have it in a place of
security, every one of them took from the sterling some amount, and of the amount that the
first took he put in common one half, and of it that the second took, he put in common a third
part, and of that which the third took, he put in common a sixthpart, and from that which they
put in common every one received a third part, and thus each had his portion.

In modern algebra terms, ifSis the sum of sterling andx1, x2, x3 are the sums which
the three men took, so that

(

x1
/

2 + x2
/

3 + x3
/
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is what “they put in common”,
then the last sentence “each had his portion”, sets up three equations:
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This is only one of hundreds of such problems. He develops methods of laying
out the coefficients in rows and manipulating the numbers to get the answer. In the
above, the ‘answer’, is the smallest set of relatively primex’s which solve these three
homogeneous equations in 3 unknowns. Leonardo has a rather awkward and special
version of the Chinese algorithm for solving linear equations in many unknowns.

Now most of his problems are set up so all the numbers which occur are positive.
But not all! First of all, negative numbers can arise in the course of the calculation.
He then says things like19:

[he is in the middle of an algorithm]. . .and from the240you subtract288leaving minus48,
and this I say because the288 cannot be subtracted from the240;from this48you take1/3
for the1/3 of the second position; there will be minus16 . . . .

He is getting close to the red and black rods of the Chinese, but these examples are
few and far between and are not pursued very far. In a few othercases, the answer
itself is negative. For example, after solving the problem described in the first quote,
he varies the proportions ofSowned by the three men to 1/2, 2/5 and 1/10. In this
case, the solution isx1 = 326,x2 = 174 andx3 = −30. The setting of the problem,
that all thex’s are amounts of money, comes to his rescue. The third man, hesays,

18Leonardo of Pisa,Liber Abaci, p.415 of the English translation by L. Sigler,Fibonaccis’ Liber
Abaci, Springer-Verlag, 2002.

19Ibid, p.419.
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does not take anything from the sumS which they share but instead puts in an
additional 30 pounds of his own “proper” money: there were 470 pounds in all, and
when they “wanted to have it in a place of security”, the thirdmanadded30, the
first man took 326 and the second took 174. When money is concerned, negative
quantities can always be given a simple meaning!

Leonardo is making the first tentative steps towards enlarging the number system
to include negatives. With money, he is comfortable with assets and debts, giving
and taking. But his examples are few and he never makes explicit rules for extending
arithmetic.

Nicole Oresme (1323–1382)

Nicole Oresme was a mathematically inspired scholastic, working in Paris in the
mid-14th century. He made a giant stride taking geometry beyond Euclid. In his
great book,Tractatus de configurationibus qualitatum et motuum(Treatise on the
configurations of qualities and motions)20, he proposed considering all intensities
which varied in time and whose values at different times could be compared by a
proportion. To any such quality, he proposed constructing agraph. First he took a
line segment, called thesubject,whose points represented the interval of time over
which the quality was varying. This, in itself, was a radicaldeparture from Euclid:
now space was being usedanalogically, as a substitute for time. Then he proposes
erecting line segments perpendicular to the subject whose lengths had the same
proportions as the qualities being graphed:

Therefore, every intensity which can be acquired successively ought to be imagined by a
straight line perpendicularly erected on some point of the space or subject of the intensible
thing, e.g. a quality. For whatever ratio is found to exist between intensity and intensity of the
same kind, a similar ratio is found to exist between line and line, and vice versa. . . . Therefore,
the measure of intensities can be fittingly imagined as the measure of lines.(Oresme, I.i)

He talks about graphing many things (although he never gathers data or actually
goes beyond making simple cartoons of his graphs – see Figure5). In particular,
he discusses graphing velocity, temperature, pain and grace (of a soul). Some of
these are clearly positive quantities by nature, e.g. pain and grace. He is interested in
contrasting intensitieswhichareconstant (graph (a) infigure), intensitieswhichvary
at a constant rate (graph (b) in the figure) and intensities which are more complex
(graphs (c) in figure). For example the grace of a soul ‘occupied by many thoughts
and affected by many passions’ will be difformly difform – his name for type (c).
On the other hand, velocities can clearly change sign and, asfor temperature, he
even considers there to be complementary intensities of hotness and coldness. For

20Translations are from Marshall Clagett’s translation,Nicole Oresme and the Medieval Geometry
of Qualities and Motions,University of Wisconsin, 1968.
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Figure 5. Oresme’s examples of graphs

temperature, hotness might have a graph with valuesf (x) and coldness a graph
with valuesC − f (x). In other words, he adds a suitable positive constant so as to
make every intensity positive everywhere.

Because his graph is the whole area, not simply the curve at the tips of the his line
segments, he cannot have a graph which goes from positive to negative, crossing
the ‘subject’. This is especially striking because at one point he makes a catalog
of various types of difformly difform graphs: but no graph inthe catalog is, for
example, regularly oscillating like a sine wave. He even hints at the fact that the
area of the graph of velocity is the distance traveled, the fundamental theorem of
calculus, but to make his picture, the velocity cannot change sign: no backtracking.
Oresme has gone beyond Euclid in a striking way but he cannot make the further
leap of allowing negative values for an intensity.

Luca Pacioli (1445–1517)

Pacioli’s importance is not due to his discoveries but to thefact that he wrote an
encyclopedic workSumma de arithmetica, geometria, proportioni et proportion-
alita which summarizes the contemporary knowledge of arithmetic, geometry and
especially accounting. The work’s greatest influence was due to its description of
double-entry book keeping which was a key step in the expansion of the interna-
tional business enterprises which characterized the Renaissance. Here we find a
small number of linear equations involving amounts of moneywhose solution is
negative. As in Leonardo, when the result was a negative number, it is described as
a debt. In one case, the price of an egg comes out negative – owning the egg puts
you in debt so the sellers are paying you to take their eggs.
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Sesiano (op.cit.), however, tracked down one isolated instance of a problem in
Pacioli’s writings which is more exciting. There is an untitled manuscript, writ-
ten for his students in Perugia, which survives in the Vatican21. A standard class
of problems (going back to Babylonian times) involves dividing a number into
two parts which satisfy some quadratic condition. After solving some such prob-
lems with positive solutions, he comes to what he calls thebellissimo caso.This
example asks you to divide 10 into two partsthe difference of whose squaresis
200. The reader may like to check that the answer is 10= 15 + (−5). Here
is a problem not only in pure numbers one of which is negative but requiring
squaring this negative number. Although an obscure and forgotten footnote to his-
tory, it seems that the young Pacioli ventured briefly into uncharted territory in
a truly original way. It is unfortunate that in hisSumma, he did not pursue these
ideas.

Girolamo Cardano (1501–1576)

The only reason to include Cardano is that he wrote the bookArs Magna22, so
we can analyze how he thought, how he looked on negative as well as imaginary
numbers. The solution of cubic equations was due to Scipionedel Ferro, Pro-
fessor of Mathematics at Bologna around 1515, and the solution of the quartic
to Cardano’s student Ludovico Ferrari. Cardano himself wasan arrogant man, a
compulsive gambler, who led a wild life of ups and downs. Thathe computed
the odds of various sorts of gambling was arguably his greatest mathematical
achievement.

If Al-Khwarizmi had spun out the solutions for quadratic equations in to many
different cases, Cardano really went to town describing howto solve 13 distinct
cases of cubic equation (and 44 types of derivative cases). Why so many? Because
(a) the coefficients all had to be positive and (b) the equation had to equate a positive
quantity to another positive quantity. The many sections are entitled things like “On
the cube and square equal to the first power and number, generally” . Nonethe-
less, he did recognize that some of his equations had negative solutions: these he
called

“fictitious (for such we call that which is a debitum or negative)”

but he does very little with such roots, ignoring them systematically. But in the later
Chapter, “On the rule for postulating a negative”, he does explore a bit what algebra

21Cod. Vat. lat. 3129.
22Quotations are from the 2007 Dover reprintThe Rules of Algebra: (Ars Magna), translated by T.

Richard Witmer.



What’s so Baffling About Negative Numbers? 133

can do for you if you admit negative roots. His example of a problem requiring
negative numbers is this:

The dowry of Francis’ wife is 100 aurei more than Francis’ ownproperty, and the square (?)
of the dowry is 400 more than the square of his property. Find the dowry and the property.

This works out to give Francis –48 aurei of property, that is,he is in debt 48 aurei, but
fortunately is getting a dowry of 52 aurei. Here he correctlyidentifies the negative
solution with a debt. This is an excellent illustration although squaring a sum of
money is a pretty weird thing to do.

There would little else to say except for the curve ball that was thrown to Cardano:
for all cubic equations which have only one real root, del Ferro’s formula worked
like a charm. But if there were three real roots (the other possibility, known as the
casus irreducibilis), it gave an apparently meaningless result. His formula forthe
roots of the equationx3 + ax + b = 0 is:

x = 3
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, whereD = −4a3−27b2

D, the discriminant, is equal to the square of the difference of all pairs of distinct
roots, hence it is positive if all the roots are real. So we need to find the a square
root of a negative number even though in the end we only want the real numberx.
Cardano struggled unsuccessfully with what this might possibly mean.

His one attempt to deal with these complex expressions is in the same Chap-
ter, “On the rule for postulating a negative” mentioned above. Here he considers
problems which have complex roots, such as the following:

Divide 10 into two parts the product of which is 40.

The usual quadratic formula gives the two parts as 5+
√

−15 and 5−
√

−15. This
is also the answer his math gives him and which he puts in writing in his book but
he doesn’t attribute much meaning to it. He makes his famous comment:

So progresses arithmetic subtlety, the end of which, as is said, is as refined as it is useless.

At the end of this Chapter, he gives a third type of example where he reasons
incorrectly with products of a real and an imaginary. In a later edition, he added
an appendixDe aliza regula liberin which he flirted with the idea that maybe
(−1)2 = +1 was wrong. Why not try (−1)2 = −1? Between ‘fictitious’ neg-
ative numbers and useless imaginaries, you get the sense that Cardano was at
sea.
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Galileo (1564–1642)

Perhaps mathematicians were stuck thinking that negative numbers were fictitious
but surely physicists who were actually measuring things inthe real world, had a
clearer view? Arguably, Galileo’s great contribution to physics was his recognition
that momentum was a key property of objects, that it was constant when no forces
were acting and that the force of gravity acting on projectiles and falling bodies
changed their momenta at a constant rate, not their positions. As an old man, when
the Pope commuted his sentence for heresy to house arrest, hewrote down these
theories in hisDialog concerning Two New Sciences23. He starts off with his foil
Simplicio getting put down again and again by Galileo’s mouthpiece Salviato. But
by the Fourth Day, Galileo lapsed into a more standard Euclid-style exposition
and puts out the centerpiece of his theory: the demonstration that a projectile
follows a parabolic arc under the force of gravity. Here was something he had
actually experimented with and he was on solid ground, theoretically as well as
experimentally. Figure 6 is an excerpt from his notebooks working on projectiles.

The central assertion in these dialogs is that gravity endows the projectile with
a constant downward acceleration. Thus its vertical velocity will be positive going
up, zero at the peak and negative coming back down. It is a linear function changing
from positive to negative. The math couldn’t be simpler –if you are willing to use
negative numbers.

What does Galileo do? His main result is:

Theorem 1. A projectile which is carried by a uniform horizontal motioncom-
pounded with a naturally accelerated vertical motion describes a path which is a
semi-parabola.

Note that he uses a semi-parabola: the half of the parabola inwhich height is
a monotone function of time. Considerably later, after a long discussion of the
time and distance of the semi-parabolic arc carrying the projectile to the ground,
he reverses time without any discussion and concludes that the rising phase of a
projectile is also a semi-parabola.

The discussion continues on optimal angles at which to fire guns. But the as-
tonishing point is that he never talks about the whole parabolic arc, with ascending
and descending halves and how there is constant downward acceleration through-
out the path.All the diagrams in the book resemble the figure from his notes: a
semi-parabola with some auxiliary chords and tangents. He analyzes the geometry
of the semi-parabola and the physics of a falling body and then asserts without any
discussion that one can reverse the direction of motion froma fall to a climb –
nothing else. That the velocity changes at the apex from positive to negative is not
stated anywhere.

23Quotations are from the 1956 Dover edition,Dialogues Concerning Two New Sciences, translated
byby Alfonso De Salvia Henry Crew.
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Figure 6. Galileo’s notes on projectiles

Fermat (1601–1665)

Fermat and Descartes, at essentially the same time, had the idea of introducing
coordinates into the plane and connecting geometric loci with polynomial equations
in two variables. Plane curves are not confined to the positive quadrant, so one might
expect that their logic would have pushed them to allow theirvariables to take on
both positive and negative values. But no! Their coordinates were only in a positive
quadrant and the other parts of a curve were treated separately if at all.

Below are two figures from Fermat’s paper on the subject,Ad Locos Planos
et Solidos Isagoge, (Introduction to Plane and Solid Loci). Incidentally,planeloci
meant lines and circles,solid loci meant the other conic sections, terminology which
dates from Greek times.
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Figure 7. Two diagrams from Fermat’sIsagoge

In these figuresN is the origin,NM is thex-axis (although Fermat used the letter
A, notx because his variables were vowels),N D or N P is they-axis (the letterE
for Fermat),x = N Z, y = Z I so I is the point with coordinates (x, y). On the left,
he is describing the locus of the equation:

d∗ + x · y = r · x +s· y (which he writesDpl.+ A in E aeq.R in A+ S in E).

Here s = N O, r = N D and d∗ is a constant area, so we have a rectangular
hyperbola, centered atV , with asymptotesV OandV P. The curious point is that he
draws only this small part of the hyperbola, cutting it off onthex-axis. He also cuts
it off at the plotted pointI . On the right, he is describing a parabola with equation:

x2 = d · y (which he writesAq .aequaturD in E)

Again, he cuts the locus off at his axes (and atI ).
Descartes’ treatment is similar, except that he does say in the text that there are

multiple orderings possible for the relevant points on the axes and that you must set
up different equations depending on the directions and ordering of both the variable
point and the constants in the construction. The goal is to make both sides of your
equation sums of positive quantities, just as in Al-Khwarizmi and Cardano’s work
on quadratic and cubic equations. Note that this is how Fermat’s version of the
equation for the hyperbola reads.

4. Clarifying the Muddle: Wallis and Newton

So when did European mathematicians begin to make their peace with negative
numbers? The first treatment which seems to me quite modern isthat of John Wallis
(1616-1703), Professor of Mathematics at Oxford. He published hisTreatise on
Algebra24, written in English, in 1685. This was just two years before Newton
published by his earth-shakingPrincipia Mathematicaand well after Newton had
done his major work in mathematics. In his mathematical notes, where he used

24Available online at http://eebo.chadwyck.comthrough subscribing universities.
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algebra and coordinates, Newton was equally modern in his treatment of negative
numbers, putting them on equal footing with positive numbers. So we should
attribute the first clear European view of negative numbers to Wallis and Newton
equally.

In Chapter 16,Addition, Subduction, Multiplication and Extraction of Roots in
Specious Arithmetic, Wallis defines negative numbers as nicely, simply and clearly
as you could wish (here ‘Specious’ is Viete’s term for arithmetic with variables
given by letters):

To these Notes, Symbols or Species are prefixed (as occasion requires) not only numeral
figures, but the signs+ and – (or plus and minus), the former of which is a Note of Position,
Affirmation or Addition; the other of Defect, Negation or Subduction: According as such
Magnitude is supposed to be, or to be wanting. And where no such Sign is, it is presumed to
be Affirmative and the sign+ is understood.

And accordingly these Signs are still to be interpreted as ina contrary signification. If
+ signify Upward, Forward, Gain, Increase, Above, Before, Addition, etc. then – is to be
interpreted of Downward, Backward, Loss, Decrease, Below,Behind, Subduction, etc. And if
+ be understood of these, then – is to be interpreted of the contrary.

In this quote, the capitalization is his. With this understanding of negatives, how
does he justify the rule for multiplying negatives? Here is what he says:

For the true notion of Multiplication is this, to put the Multiplicand, or thing Multiplied
(whatever it be) so often as are the Units in the Multiplier. .. . and this, whatever the
thing Multiplied, Positive or Negative: for there may well be a Double Deficit as a Double
Magnitude; and−2A is as much the Double of –A as+2A is the Double of A. . . .

But in case the Multiplier be a Deficit or Negative quantity; suppose−1; then instead of
Putting the Multiplicand so many times, it will signify so many times to Take away the
Multiplicand. . . . so that+ by – makes –; But to Multiply –A by−2 is twice to take away a
Defect or Negative. Now to take away a Defect is the same as to supply it; and twice to take
away the Defect of A is the same as twice to add A or to put 2A . . . :So that – by – (as well as
+ by+) makes+.

As far as I know, this is the first place in Western literature in which the rule of signs
is not merely stated but explained so clearly. After this, when he gets to writing
out the formulae for roots of equations, he no longer has to separate all these cases
which we saw in Al-Khwarizmi and Cardano. For the quadratic he writes:

Given the equation, x2 ± 2bx = ±c2

the roots arex ± b =
√

±c2 + b2

(I have only changed his variable froma to x and noted squares by using e.g.c2 for
hiscc.) Note that he follows Euclid is making all terms homogenous– so that, for
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example,x, b, c can all be lengths and the equation relates an area to an area.For
this reason, he needs the symbol± in front of thec2.

Finally, Wallis gives what I believe is the first explicit useof the full number line,
positives to the right, negatives to the left, in Western literature:

Yet is it not that Supposition (of Negative Quantities) either Unuseful or Absurd when rightly
understood. And though, as to the bare Algebraick Notation,it import a Quantity less than
nothing: Yet, when it comes to a Physical Application, it denotes as Real a Quantity as if the
Sign were+; but to be interpreted in a contrary sense.

As for instance: Supposing a man to have advanced or moved forward (from A to B) 5 yards;
and then to retreat (from B to C) 2 yards; If it be asked, how much had he Advanced (upon
the whole march) when at C? I find . . . he has Advanced 3 Yards. But if, having Advanced 5
Yards to B, he thence retreat 8 Yards to D; and it then be asked,How much is he Advanced
when at D, or how much Forwarder than when he was at A: I say –3 Yards. . . . That is to say,
he is advanced 3 Yards less than nothing. . . . (Which) is but what we should say (in ordinary
form of Speech), he is Retreated 3 Yards; or he wants 3 Yards ofbeing so Forward as he was
at A.

 

Figure 8. Wallis’s illustration of the “number line”

Newton, as one would expect, had a full command of negative numbers and all
their uses. He wrote lecture notes on arithmetic, algebra and geometry at some point,
presumably early in his career. They were first published (without his approval) in
1707 and later translated into English with the titleUniversal Arithmetick. Here he
introduces negative numbers at the very beginning with the following sentences25:

Quantities are eitherAffirmative, or greater than nothing; orNegative, or less than nothing.
Thus in human affairs, possessions or stock may be called affirmative goods, and debts
negative ones. And so in local motion, progression may be called affirmative motion, and
regression negative motion; because the first augments, andthe other diminishes the length
of the way made. And after he same manner in geometry, if a linedrawn in a certain way be
reckoned for affirmative, then a line drawn the contrary way may be taken for negative.

Later on, he discusses multiplication and is very clear thatpure numbers arise as
ratios of quantities with the same dimension and one can either multiply a quantity
with a dimension by a pure number, getting another such quantity or multiply two

25Page 3 of the second edition published in 1728.
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pure numbers. He states the rule for the sign of the product simply as “. . . making the
productAffirmative if both factors are Affirmative or both Negative; andNegativeif
otherwise.”Unfortunately,hesaysnothingaboutwhyoneshouldbelieve in this rule.

Whereas Fermat had given a systematic study of quadratic equations in two
variables showing that they all defined conic sections and Descartes had introduced
several cubic equations giving new curves (notably the “Cartesian parabola” and
his “Folium”), Newton went on to look at all possible cubics,in an article entitled
“Curves” in Lexicon Technicumby John Harris published in London in 1710. He
classified them into 72 types and sketched them.Without hesitation, he used all four
quadrants of the planeand plotted all roots (x, y), positive and negative. Here is an
example:

Figure 9. One of the 72 types of cubic curves plotted by Newton

After Wallis and Newton’s work, a modern arithmetic with negative numbers
was widely accepted in Continental Europe, where there was an explosion of math-
ematical research during the Enlightenment. In England, curiously, the resistance
to negative numbers continued for some 150 years, culminating in De Morgan. A
long debate ensued between those who accepted them and thosethat didn’t, a story
which is beautifully described in Pycior’s book that we havecited. In the end, De
Morgan and Hamilton founded the general theory of fields and negative reals took
their place in the greater world of complex numbers and quaternions.

5. Two Factors in the World View of 15th–17th Century Europe

I hope I have proven my point that Europe in the 16th and 17th centuries resisted
expanding their numbers to include negatives in a way which calls for some expla-
nation. China and India both seem to have moved naturally to this bigger domain of
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numbers when the occasion presented itself. I want to make the case that the Euro-
pean reticence was due to two factors. The first was the overwhelming importance
of Euclid in defining what is and what is not mathematics and the fact that negative
numbers had no place in Euclid’s view of mathematics. The second is that, at the
time negative numbers should have been accepted, imaginarynumbers cropped up
too and the idea arose that both negative and imaginary numbers had the same
twilight existence. It was because of negatives that squareroots had a problem, so
maybe it was best to consider them both as second class citizens of the world of
numbers.

Euclid’sElementswerewritten in thenewly foundedschool/libraryatAlexandria
around 300 BCE and integrated the mathematical ideas of Theaetetus, Eudoxus and
many others in a systematic treatise. It is written in a monolithic theorem/proof
style not seen again in the History of Mathematics until the collective ‘Bourbaki’
composed their treatise in the 20th century. It was translated into Arabic in the 8th

century CE and from Arabic into Latin in 12th century. As a result, it came to define
what mathematics is for every generation of Arabs and Europeans, arguably until
Newton and the Enlightenment when concepts with no roots in the Elements began
to take center stage.

But what is Euclidean mathematics? There are roughly three parts to theEle-
ments: Books I–VI on plane figures, Books VII–X on number theory andirrationals
and Books XI–XIII on three dimensional geometry. What numbers occur in the
Elements? Here’s a list:

1. “magnitudes”: the length of a line, the area of a plane figure and the volume
of a solid figure

2. positive integers implicitly as in “The greater is a multipleof the less when
it is measured by the less” (definition 2, Book V) and explicitly as in “A
numberis a multitude composed of units” (definition 2, Book VII). Note that
the number is still a length but, because he always has a “unit” around when
studying numbers, it becomes in effect dimensionless.

3. ratios as in “A ratio is a sort of relation in respect of size between two
magnitudes of the same kind” (definition 3, Book V).

Note that none of these concepts give numbers which can be negative or even zero.
What sort of arithmetic does Euclid have for these numbers?

1. Magnitudes are clearly added and subtracted (so long as the result remains
positive), lengths are multiplied to give areas and volumes, etc. But “units”
are only introduced in Book VII and there are no actual calculations and
certainly no approximations (e.g. forπ ).

2. Positive integers are also added and subtracted and multiplication is defined
in “A number is said to multiply a number when that which is multiplied is
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added to itself as many times as there are units in the other and thus some
number is produced”.

3. Addingandmultiplying ratios is themaingoal in theextremelyabstractBook
V, which is said to be the work of Eudoxus. Book V begins with defining
when two ratios are equal. For any ratio given by two linesA and B, he
considers which multiples satisfyn A > mB and which satisfyn A < mB.
Of course, this is the ‘cut’ Dedekind re-introduced in the 19th century to
constructreal numbers from rationals. Here Eudoxus doesn’t need to define
real numbers – they are ratios given by geometry. What he needsto do is to
define equality of ratios and he does this by requiring that their associated
cuts are the same. Addition and multiplication of ratios areboth implicit in
that (a) if a line segmentA is divided into two partsB andC then A : D
is going to the sum ofB : D andC : D and (b)A : C is to going to be
the product ofA : B and B : C. What is not at all clear is that addition
and multiplication arewell-definedoperations on the equivalence classes
called ratios. This is exactly what is asserted in Proposition 24, Book V (for
addition) and in Proposition 22, Book V (for multiplication) after a long
and subtle sequence of intermediate steps. One stands amazed at Eudoxus’
mathematical skills.

How about algebra, identities and formulas with the arithmetic operations? Euclid
studies at length in Book II what people call ‘geometric algebra’, a series of propo-
sitions which amount to algebraic identities such as

(a + x)2 + (a − x)2 = 2a2 + 2x2

which is essentially the content of Proposition 9, Book II. Now what about the
solutions of quadratic equations? This seems to be essentially what the lengthy and
confusing Book X is all about. As Heath points out in his introduction to Book X,
Euclid’s classification ofbinomialsandapotomescan be read as a systematic study
of all thepositiveroots of all possible quadratic equations. This sets the stage for
the separation of cases in treating roots of polynomial equations in all the works we
have reviewed.

All in all, if you are going to start with Euclid, you are not going to be predisposed
to introduce negative numbers in to your calculations. He has gone to extraordinary
lengths to reduce arithmetic and algebra to geometry and thoroughly inoculate it
against negatives. It is worth looking briefly at what else was known at 300 BCE
which Euclid didnot put in his book. There is apparently an unbroken tradition
starting in Babylon in 1800 BCE and continuing through Ptolemy of calculating
with the sexagesimal equivalent of decimals and approximating e.g.

√
2 andπ to

many sexagesimal places. Moreover, there was also a tradition also going this far
back of solving quadratic equations by algorithms – described in words but exactly
equivalent to the quadratic formula. Euclid, in other words, distanced himself from
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a rich numerical tradition and consciously, it would seem, purified his version of
mathematics.

The Europeans, then, had the benefit of this shining example of pure math and
of the wonderful deductive logic on which they built. But it was hard to go beyond
it in any radical way, to model other phenomena in the real world which cried
out for negatives. Euclid was both the strength and the weakness of the European
mathematical world of the 16th and 17th centuries.

But I think there is a second factor behind the slow acceptance of negatives which
ought to be considered. As soon as one accepted−1, the algebra of the day thrust
upon you formulae requiring its square root and this was truly inexplicable. The
fate of−1 andi were inseparable. Cardano’s book makes this very clear. We have
already quoted from Chapter 37, near the end of his book, entitledOn the Rule for
Postulating a Negative. The Chapter starts with the sentence:

This rule is threefold, for one either assumes a negative, orseeks a negative square root, or
seeks what is not.

He is essentially equating three follies, all problematical. That he later entertained
the idea that perhaps (−1)2 ought to be equal to−1 shows how he viewed the
problems as intertwined. Harriot (1560–1621) also played with both possibilities,
as in the poem:

Yet lesse of lesse makes lesse or more,
Use which is best keep both in store
. . . . . .

(Here ‘lesse of lesse’ means multiplying−1 by −1 and he asks in line 1 whether
this should equal−1 or+1).

Even if you didn’t accept−1, thecasus irreducibilismentioned above, the case
of cubic equations with three real roots, was a bone in the throat of algebraists. As
long one of these roots was positive, you really ought to havea formula for this root.
But the formula of del Ferro for solving cubics requires in this case that you take the
square root of a negative number in an intermediate step. Of course, the imaginary
parts of the resulting complex expressions will cancel at the end but not before. The
full story of this problem is quite ironic. Viète in 159326 discovered that trisecting
an angle was equivalent to solving the special cubic equation which belongs to the
casus irreducibilis:

x3 − 3x = b

26In hisSupplementum Geometriae. A full treatment is inTheoremata ad sectiones angulares[Opera
pp 287–304]
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and he showed how to reduce the generalcasus irreducibilisto this special case.
Thus he reduced a famous unsolved algebraic problem to a famous geometric one,
unsolved in the sense that no ruler and compass constructionwas known (nor exists).
At the same time, Bombelli proposed that Cardano’s formula could make sense if
you solved

(

x +
√

−y
)3 = a +

√
−b

So trisecting an angle was related to taking complex cube roots – but no one put these
together fora long timebyfinding thegeometricmeaningofcomplexnumbers.Later
we have Wallis, knowing the geometric meaning of negatives as the left half line,
searching for a two dimensional geometric interpretation of imaginary numbers.
There was a big clue on the table if anyone had linked Viète’s trisection with taking
cube roots of complex numbers. I believe it was Euler who finally worked out
complex exponentials and made the link between these two. Oddly enough, even
then Euler did not make explicit the geometric interpretation of complex numbers,
leaving this to Wessel, Gauss and Argand.

Finally, there isalso the issueofapsychologicalexplanation foravoidingnegative
numbers. As Tversky and Kanneman have made popular, people are ‘loss averse’,
a loss of $x causes more pain than a gain of $x and they do not act rationally using
mathematically correct expectations. The fear of loss is one of themes in Ionesco’s
bizarre playThe Lesson, where a young woman comes for a tutoring lesson: she
can add with proficiency but cannot subtract. The mathematician doesn’t come off
very rational either: he winds up killing her.

Mathematicians are attracted to Platonism, of believing that their discoveries
are all insights into the eternal true world of mathematicalfacts. This example,
the discovery of negative arithmetic and its incorporationinto our numerical and
algebraic toolkit, shows us that we must not be too literal. Yes, negative numbers
were eventually accepted in the West as well as in China and India and all three
cultures made the same math out of them. But there can be huge differences between
cultures in the way mathematics unrolls. Euclid led the Westdown a certain path,
dominated formanycenturiesbygeometricfiguresandconstructions.Othercultures
were more practical and looked to solving concrete problemswith approximate
numbers. I think the discovery of calculus is another instance of this split: in India,
studying the numerical table of sines led mathematicians tothe idea of first and
second differences and the fundamental theorem of calculus. But that is another
story.


