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Did you know that Vedic priests were using the so-
called Pythagorean theorem to construct their fire
altars in 800 BCE?; that the differential equation
for the sine function, in finite difference form, was
described by Indian mathematician-astronomers
in the fifth century CE?; and that “Gregory’s”

series π/4 = 1− 1

3
+ 1

5
−· · · was proven using the

power series for arctangent and, with ingenious
summation methods, used to accurately compute
π in southwest India in the fourteenth century?
If any of this surprises you, Plofker’s book is for
you.

Her book fills a huge gap: a detailed, eminently
readable, scholarly survey of the full scope of

Indian1 mathematics and astronomy (the two were
inseparable in India) from their Vedic beginnings
to roughly 1800. There is only one other survey,
Datta and Singh’s 1938 History of Hindu Mathe-
matics, recently reprinted but very hard to obtain
in the West (I found a copy in a small special-
ized bookstore in Chennai). They describe in some
detail the Indian work in arithmetic and algebra
and, supplemented by the equally hard to find Ge-
ometry in Ancient and Medieval India by Sarasvati
Amma (1979), one can get an overview of most

topics.2 But the drawback for Westerners is that
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1The word “India” is used in Plofker’s book and in my re-

view to indicate the whole of the Indian subcontinent, in-

cluding especially Pakistan, where many famous centers

of scholarship, e.g., Takshila, were located.
2For those who might be in India and want to find

copies, Datta and Singh’s book is published by Bharatiya

Kala Prakashan, Delhi, and Amma’s book by Motilal

neither gives much historical context or explains
the importance of astronomy as a driving force
for mathematical research in India. While West-
ern scholars have been studying traditional Indian
mathematics since the late eighteenth century and
Indian scholars have been working hard to assem-
ble and republish surviving Sanskrit manuscripts,
a widespread appreciation of the greatest achieve-
ments and the unique characteristics of the Indian
approach to mathematics has been lacking in the
West. Standard surveys of the history of mathe-
matics hardly scratch the surface in telling this

story.3 Today, there is a resurgence of activity in
this area both in India and the West. The prosperity
and success of India has created support for a new
generation of Sanskrit scholars to dig deeper into
the huge literature still hidden in Indian libraries.
Meanwhile the shift in the West toward a multi-
cultural perspective has allowed us Westerners to
shake off old biases and look more clearly at other
traditions. This book will go a long way to opening
the eyes of all mathematicians and historians of
mathematics to the rich legacy of mathematics to
which India gave birth.

The first episode in the story of Indian mathe-

matics is that of the Śulba-sūtras, “The rules of the
cord”, described in section 2.2 of Plofker’s book.4

Banarsidass, Delhi. An excellent way to trace the litera-

ture is through Hayashi’s article “Indian mathematics” in

the AMS’s CD History of Mathematics from Antiquity to

the Present: A Selective Annotated Bibliography (2000).
3The only survey that comes close is Victor Katz’s A

History of Mathematics.
4There are multiple ways to transcribe Sanskrit (and

Hindi) characters into Roman letters. We follow the pre-

cise scholarly system, as does Plofker (cf. her Appendix A)

which uses diacritical marks: (i) long vowels have a bar

over them; (ii) there are “retroflex” versions of t, d, and n

where the tongue curls back, indicated by a dot beneath

the letter; (iii) h, as in th, indicates aspiration, a breathy

sound, not the English “th”; and (iv) the “sh” sound is

written either as ś or as s. (the two are distinguishable to

Indians but not native English speakers).
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These are part of the “limbs of the Vedas”, secular

compositions5 that were orally transmitted, like
the sacred verses of the Vedas themselves. The

earliest, composed by Baudhāyana, is thought to

date from roughly 800 BCE. On the one hand, this
work describes rules for laying out with cords the

sacrificial fire altars of the Vedas. On the other

hand, it is a primer on plane geometry, with many
of the same constructions and assertions as those

found in the first two books of Euclid. In particular,
as I mentioned above, one finds here the earliest

explicit statement of “Pythagorean” theorem (so it

might arguably be called Baudhāyana’s theorem).
It is completely clear that this result was known to

the Babylonians circa 1800 BCE, but they did not

state it as such—like all their mathematical results,
it is only recorded in examples and in problems

using it. And, to be sure, there are no justifica-

tions for it in the Śulba-sūtras either—these sutras
are just lists of rules. But Pythagorean theorem

was very important because an altar often had to

have a specific area, e.g., two or three times that
of another. There is much more in these sutras:

for example, Euclidean style “geometric algebra”,
very good approximations to

√
2, and reasonable

approximations to π .

Another major root of Indian mathematics is the
work of Pān. ini and Piṅgala (perhaps in the fifth

century BCE and the third century BCE respec-

tively), described in section 3.3 of Plofker’s book.
Though Pān. ini is usually described as the great

grammarian of Sanskrit, codifying the rules of the
language that was then being written down for the

first time, his ideas have a much wider significance

than that. Amazingly, he introduced abstract sym-
bols to denote various subsets of letters and words

that would be treated in some common way in

some rules; and he produced rewrite rules that
were to be applied recursively in a precise or-

der.6 One could say without exaggeration that he
anticipated the basic ideas of modern computer

science. One wishes Plofker had described Pān. ini’s
ideas at more length. As far as I know, there is

no exposition of his grammar that would make

it accessible to the non-linguist/Sanskrit scholar.
P. P. Divakaran has traced the continuing influence

of the idea of recursion on Indian mathematics,7

leading to the thesis that this is one of the major

distinctive features of Indian mathematics.

5Technically, they are called smr.ti (“remembered text”)

as opposed to śruti (“heard”, i.e., from divine sources).
6To get a glimpse of this, see Plofker, p. 54; F. Staal,

“Artificial languages across sciences and civilization”,

J. Indian Philosophy, pp. 89–141 (esp. sections 11–12),

2006; or B. Gillon, “As. t. ādhyāyī and linguistic theory”, J.

Indian Philosophy, pp. 445–468, 2007.
7“Notes on Yukti-Bhās. ā: Recursive methods in Indian

mathematics”, forthcoming in a book entitled Studies in

the History of Mathematics in India.

Piṅgala, who came a few centuries later, ana-
lyzed the prosody of Sanskrit verses. To do so,
he introduced what is essentially binary notation
for numbers, along with Pascal’s triangle (the bi-
nomial coefficients). His work started a long line
of research on counting patterns, including many
of the fundamental ideas of combinatorics (e.g.,
the “Fibonacci” sequence appears sometime in
500-800 CE in the work of Virahānka). There is an
interesting treatment of this early period of Indian
mathematics in Frits Staal’s excellent recent book
Discovering the Vedas,8 ch.14. For example, Staal
traces recursion back to the elaborate and precise
structure of Vedic rituals.

After this period, unfortunately, one encoun-
ters a gap, and very little survives to show what
mathematicianswere thinking about for more than
500 years. This was the period of Alexander’s in-
vasion, the Indo-Greek Empire that existed side by
side with the Mauryan dynasty including Aśoka’s
reign, and the Indo-Scythian and Kushan empires
that followed. It was a period of extensive trade
between India and the West, India and China. Was
there an exchange of mathematical ideas too? No
one knows, and this has become a rather political
point. Plofker, I believe, does a really good job dis-
cussing the contentious issues, stating in section
4.6 the “consensus” view but also the other points
of view. She states carefully the arguments on both
sides and lets the reader take away what he or she
will. She deals similarly with the early influences
from the Middle East in section 2.5 and of the
exchanges with the Islamic world in Chapter 8.

For my part, I follow my late colleague David
Pingree,whotraineda whole generationofscholars
in ancient mathematics and astronomy. He argues
that the early version of Greek astronomy, due
to Hipparchus, reached India along with Greek
astrology. The early Indian division of the ecliptic
into twenty-eight Naks. atras, (the moon slept with
a different wife every night in each trip around the
ecliptic) was replaced by the Greek zodiac of twelve
solar constellations and—more to the point—an
analysis of solar, lunar, and planetary motion
based on epicycles appears full-blown in the great
treatise, the Āryabhat. īya of Āryabhat.a, written
in 499 CE. But also many things in the Indian
treatment are totally different from the Greek
version. Their treatment of spherical trigonometry
is based on three-dimensional projections, using

right triangles inside the sphere,9 an approach

8Penguin Books, 2008.
9A basic formula in the Gola section of the Āryabhat.̄iya is

that if P is a point on the ecliptic with longitude λ, then

the declination δ of P is given by sin(δ) = sin(λ). sin(i),

i the inclination of the ecliptic. If I understand it right,

later writings suggest this was proven by considering the

planar right triangle given by P, P1, P2, where P1 is the

orthogonal projection of P onto the plane of the equator

(inside the sphere!) and P2 is its projection onto the line
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which I find much simpler and more natural than

Ptolemy’s use of Menelaus’s theorem. Above all, as
mentioned above, they found the finite difference
equation satisfied by samples sin(n.∆θ) of sine
(see Plofker, section 4.3.3). This seems to have
set the future development of mathematics and
astronomy in India on a path totally distinct from
anything in the West (or in China).

It is important to recognize two essential dif-
ferences here between the Indian approach and
that of the Greeks. First of all, whereas Eudoxus,
Euclid, and many other Greek mathematicians
created pure mathematics, devoid of any actual

numbers and based especially on their invention
of indirect reductio ad absurdum arguments, the
Indians were primarily applied mathematicians
focused on finding algorithms for astronomical
predictions and philosophically predisposed to
reject indirect arguments. In fact, Buddhists and
Jains created what is now called Belnap’s four-
valued logic claiming that assertions can be true,
false, neither, or both. The Indian mathematics
tradition consistently looked for constructive argu-
ments and justifications and numerical algorithms.

So whereas Euclid’s Elements was embraced by Is-
lamic mathematicians and by the Chinese when
Matteo Ricci translated it in 1607, it simply didn’t
fit with the Indian way of viewing math. In fact,
there is no evidence that it reached India before
the eighteenth century.

Secondly, this scholarly work was mostly carried
out by Brahmins who had been trained since a very
early age to memorize both sacred and secular
Sanskrit verses. Thus they put their mathematics
not in extended treatises on parchment as was
done in Alexandria but in very compact (and

cryptic) Sanskrit verses meant to be memorized by
their students. What happened when they needed
to pass on their sine tables to future generations?
They composed verses of sine differences, arguably
because these were much more compact than the
sines themselves, hence easier to set to verse and
memorize.10 Because their tables listed sines every
3.75 degrees, these first order differences did not
closely match the sine table read backward; but
the second differences were almost exactly a small
negative multiple of the sines themselves, and this
they noticed.

There are several excellent recent books that
give more background on these early devel-
opments. The mathematical sections of the
Āryabhat. īya with the seventh century commen-

tary on it by Bhāskara (I) and an extensive
modern commentary, all entitled Expounding

through Υ , the intersection of the equator and the ecliptic.

It is immediate to derive the formula using this triangle.
10Using R = 3438, the number of minutes in a radian

to the nearest integer, and ∆θ = 3.75 degrees, they

calculated R · sin(n∆θ) to the nearest integer.

the Mathematical Seed, has been published11 in
English by Agathe Keller. One hopes she will
follow this with an edition of the astronomical
chapters. And Glen van Brummelen has written a
cross-cultural study of the use of trigonometry,
entitled The Mathematics of the Heavens and the

Earth,12 which compares in some detail Greek and
Indian work.

Chapters 5 and 6 of Plofker’s book, entitled
The Genre of Medieval Mathematics and The Devel-
opment of “Canonical” Mathematics, are devoted
to the sixth through twelfth centuries of In-
dian mathematical work, starting with Āryabhat.a
and ending with Bhāskara (also called Bhāskara
II or Bhāskaracharya, distinguishing him from
the earlier Bhāskara). This was a period of in-
tense mathematical-astronomical activity from
which many works have survived, and I want
to touch on some of its high points. We find
already in the seventh century the full arithmetic
of negative numbers in Brahmagupta’s Brāhma-
sphut.a-siddhānta (see Plofker, p. 151). This may
sound mundane but, surprisingly, nothing sim-
ilar appears in the West until Wallis’s Algebra

published in 1685.13 And in the Bakhshāl̄i man-
uscript, an incredibly rare birch bark manuscript
unearthed by a farmer’s plow in 1881, we find
algebraic equations more or less in the style of
Viète, Fermat, and Descartes. It is incomplete and
neither title nor author survives, but paleographi-
cal evidence suggests that it was written between
the eighth and twelfth centuries, and Hayashi ar-
gues that its rules and examples date from the

seventh century.14 The manuscript puts equations
in boxes, like our displayed formulas. On p. 159 of
Plofker’s book, she gives the example from bark
fragment 59. The full display in the original is
below.

0
1

5
1

yu mu 0
1

sa 0
1

7
1

+ mu 0

Here the 0’s (given by solid dots in the manu-
script) stand for unknowns, the 1’s (given by the
sigma-like subscripted symbols in the manuscript)

11Springer-Verlag, 2008, for an obscene price of $238!!
12Princeton University Press, 2009.
13For example, both Cardano and Harriot were unsure

whether to make (−1) · (−1) equal to −1 or +1.
14See the fully edited and commented edition by Takao

Hayashi, The Bakhshali Manuscript: An Ancient Indian

Mathematical Treatise, John Benjamin Pub. Co., 1995.
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are just denominators, the yu means 5 is added to
the unknown on its left, + sign signifies that 7 is
subtracted, mū means square root, and sā is a pro-
noun indicating that the 1st and 3rd unknowns are
equal. The whole thing has the modern equivalent:

√
x+ 5 = w,

√
x− 7 = z.

This is to be solved in integers, giving x = 11.
Note, however, that the Bakhshāl̄i manuscript
does not solve its problems using manipulations
of its equations. In Brahmagupta’s treatment of
algebra in the Brāhma-Sphut. a-Siddhānta, distinct
colors are used to represent distinct unknowns
(see Plofker’s discussion of his Chapter 18, pp.
149–157).

The use of negative numbers to representpoints
on a line to the left of a base point appears
in Bhāskara’s Līlāvat̄i. This twelfth-century book,
described in section 6.2.1 of Plofker’s book, is
arguably the most famous of all Indian texts on
mathematics. Given the fact that Līlāvat̄i literally
means “beautiful” or “playful” and that many
verses are addressed to “the fawn-eyed one”,
the conjecture made by a Persian translator that
the book was written to explain mathematics to
Bhāskara’s daughter seems quite reasonable.

Another basic tool which appears in all Indian
manuscripts is what they called the pulverizer.
This is an extension of the Euclidean algorithm,
the idea of starting with two positive integers and
repeatedly subtracting the lesser from the greater.
They go further than Euclid in using this to sys-
tematically write down all solutions of first-order
integer equations ax + by = c. It seems unlikely
that the Greek algorithm, embedded in the Ele-
ments in highly abstract form, was transmitted
to India, hence more likely that the idea was
discovered independently in India. In fact, Indian
astronomers had a very pressing application for
this algorithm. Although they had, in fact, aban-
doned almost all of the ancient Vedic astronomy,
they were not happy doing this and they retained
one startling idea from that tradition: the vast
epochs into which the past was divided, the yugas,
all had to begin with one spectacular conjunction
of the sun, the moon, and all the planets. To as-
certain when the present yuga began and thus put
future predictions on a sound basis, they had to
solve such integer equations involving the periods
of the heavenly bodies.

There are other high points of the work of this
period. One of them is Brahmagupta’s formula for
the area of a quadrilateral inscribed in a circle.
How he discovered this is a fascinating question.
No justification has been found in any manuscripts
earlier than the Kerala work (see below). It can
be derived from Pythagorean theorem and sim-
ple geometry but only with substantial algebraic
computation. Did Brahmagupta use algebra, ma-
nipulations of algebraic equations, to find it or

not? That he gives many quite complex auxiliary

results on cyclic quadrilaterals suggests he played

with such quadrilaterals extensively.15

Indian work on Pell’s equation in the general
form x2−Ny2 = c also goes back to Brahmagupta.
He discovered its multiplicative property—
solutions for c1 and c2 can be “multiplied” to give

one for c1c2 (Plofker, pp. 154-156). A complete
algorithm, known as the “cyclic method”, for
constructing a solution to the basic equation
x2 −Ny2 = 1 was discovered by Jayadeva, whose
work is dated indirectly to the eleventh century
(Plofker, pp. 194-195). Note again the emphasis
on construction instead of indirect proofs of

existence, which are the staple of our treatment of

the subject.16 Why such a focus on this equation?
One idea is that if x, y is a solution, then x/y is a
good approximation to

√
N.

The discovery of the finite difference equation
for sine led Indian mathematicians eventually to
the full theory of calculus for polynomials and for
sine, cosine, arcsine, andarctangent functions, that
is, foreverythingconnected to the circle andsphere
that might be motivated by the applications to
astronomy. This work matured over the thousand-
year period in which the West slumbered, reaching

its climax in the work of the Kerala school in the
fourteenth to sixteenth centuries. I won’t describe
the full evolution but cannot omit a mention
of the discovery of the formula for the area and
volume of the sphere by Bhāskara II. Essentially, he
rediscovered the derivation found in Archimedes’
On the Sphere and the Cylinder I. That is, he sliced

the surface of the sphere by equally spaced lines
of latitude and, using this, reduced the calculation
of the area to the integral of sine. Now, he knew
that cosine differences were sines but, startlingly,
he integrates sine by summing his tables! He
seems well aware that this is approximate and
that a limiting argument is needed but this is
implicit in his work. My belief is that, given his

applied orientation, this was the more convincing
argument. In any case, the argument using the
discrete fundamental theorem of calculus is given
a few centuries later by the Kerala school, where
one also finds explicit statements on the need for
a limiting process, like: “The greater the number
[of subdivisions of an arc], the more accurate the
circumference [given by the length of the inscribed

polygon]” and “Here the arc segment has to be
imagined to be as small as one wants. . . [but] since
one has to explain [it] in a certain [definite] way, [I]
have said [so far] that a quadrant has twenty-four
chords.”

15Added in proof: I just received a copy of S. Kichenas-

samy’s article “Brahmagupta’s derivation of the area of a

cyclic quadrilateral”, Historia Mathematica, 2009.
16See, e.g., Artin’s Algebra, Prentice-Hall, 1991, pp. 434-

437.
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Chapter 7 of Plofker’s book is devoted to the
crown jewel of Indian mathematics, the work of
the Kerala school. Kerala is a narrow fertile strip
between the mountains and the Arabian Sea along
the southwest coast of India. Here, in a number
of small villages, supported by the Maharaja of

Calicut, an amazing dynasty17 of mathematicians
and astronomers lived and thrived. A large pro-
portion of their results were attributed by later
writers to the founder of this school, Madhava of
Sangamagramma, who lived from approximately
1350 to 1425. It seems fair to me to compare him
with Newton and Leibniz. The high points of their
mathematical work were the discoveries of the
power series expansions of arctangent, sine, and
cosine. By a marvelous and unique happenstance,
there survives an informal exposition of these
results with full derivations, written in Malayalam,
the vernacular of Kerala, by Jyes.t.hedeva perhaps
about 1540. This book, the Gan. ita-Yukti-Bhās. ā,
has only very recently been translated into English

with an extensive commentary.18 As a result, this
book gives a unique insight into Indian methods.
Simply put, these are recursion, induction, and
careful passage to the limit.

I want to give one example in more detail, the
derivation of the power series expansion for sine.
It seems most transparent to explain the idea of
the proof in modern form and then to indicate how
Jyes.t.hadeva’s actual derivation differed from this.
The derivation is based on the integral equation
for sine:

θ − sin(θ) =
∫ θ

0
(1− cos(β))dβ

=
∫ θ

0

(∫ β

0
sin(α)dα

)
dβ = (K ∗ sin)(θ)

where K(x, y) = max(0, x− y).

Jyes.t.hadeva uses a finite difference form of this
equation using discrete samples of sine: he sub-
divides the arc [0, θ] into n “arc-bits” of size
∆θ = θ/n and, choosing a big radius R (like
3438, see above), he works with sampled “Rsines”
Bk = R · sin(k∆θ) and also the “full chord” of the
arc-bit: 2R sin(∆θ/2). Then, based on the formula
for the second difference of sines which goes back
to Aryabhata, he derives:

θ − sin(θ) ≈ bB1 − Bn = (2 sin(∆θ/2))2

· ((B1 + · · · + Bn−1)+ (B1 + ·· · + Bn−2)

+· · · + (B2 + B1)+ B1) .

17The names we know form an essentially linear se-

quence of teacher and student (sometimes son).
18Translated and edited by the late K. V. Sarma, with

notes by K. Ramasubramanian, M. D. Srinivas, and M. S.

Sriram, and published in India in 2008 by the Hindustan

Book Agency at a price of $31 and distributed in the West

by Springer for $199, a 640% markup.

Note that the right-hand side is exactly the finite
difference version of the double integral in the cal-
culus version. Here is how Jyes.t.hadeva expressed
this formula (p. 97 of Sarma’s translation; here
“repeated summation” stands for the sum of sums
on the right):

Here, multiply the repeated sum-
mation of the Rsines by the square
of the full chord and divide by
the square of the radius. . . . In
this manner we get the result that
when the repeated summation of
the Rsines up to the tip of a par-
ticular arc-bit is done, the result
will be the difference between the
next higher Rsine and the corre-
sponding arc. Here the arc-bit has
to be conceived as being as minute
as possible. Then the first Rsine
difference will be the same as the
first arc-bit. Hence, if multiplied by
the desired number, the result will
certainly be the desired arc.

He is always clear about which formulas are
exact and which formulas are approximations. In
the modern approach, one has the usual iterative
solution to the integral equation θ−K∗θ+K∗K∗
θ−·· · , and you can work out each term here using

the indefinite integrals
∫ y
0 x

ndx = yn+1

n+1
resulting

in the power series for sine. Jyes.t.hadeva does
the same thing in finite difference form, starting
with sin(θ) ≈ θ, and recursively improving the
estimate for sine by resubstitution into the left-
hand side of the above identity. Instead of the
integral of powers, he needs the approximate sum

of powers, i.e.,
∑n
k=1 k

p = kp+1

p+1
+ O(kp), and he

has evaluated these earlier (in fact, results like
this go way back in Indian mathematics). Then
repeated resubstitution gives the usual power

series θ − θ3

6
+ θ5

120
− · · · for sine. I consider this

argument to be completely correct, but I am aware
that it is not a rigorous proof by modern standards.
It can, however, be converted into such a proof by
anyone with basic familiarity with ǫ, δ-techniques.
I hope I have whetted your appetite enough so you
will want to feast on the riches laid out in Plofker’s
book and the Gan. ita-Yukti- Bhās. ā itself.

It is very tempting to read the history of math-
ematics as a long evolution toward the present
state of deep knowledge. I see nothing wrong with
understanding the older discoveries in the light
of what we know now—like a contemporary met-
allurgist analyzing ancient swords. Needham, the
great scholar of Chinese science, wrote “To write
the History of Science we have to take modern
science as the yardstick—that is the only thing
we can do—but modern science will change and
the end is not yet.” Nevertheless, it is much more
satisfying, when reading ancient works, to know as
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much as possible about the society in which these
mathematicians worked, to know what mathemat-
ics was used for in their society, and how they
themselves lived.

Chapter 1 in Plofker’s book is an extensive
introduction that gives vital background on the
history and traditions from which all the Indian
work sprang. A series of extremely helpful appen-
dices provide basic facts about Sanskrit, a glossary
of Sanskrit terms, and a list of the most signifi-
cant Indian mathematicians with whatever basic
facts about them are known (often distressingly
little). In places she gives some literal translations
such as those of numbers in the colorful concrete
number system that uses a standard list of sets
with well-known cardinalities, e.g., “In a kalpa, the
revolutions of the moon are equal to five skies [0],
qualities [3], qualities, five, sages [7], arrows [5]”,
which means 5,753,300,000 lunar months with the
digits described backwards starting from the one’s
place. It is becoming more and more recognized
that, for a good understanding of ancient writings,
one needs both an extremely literal translation
and one paraphrased so as to be clear in modern
terms. In Sanskrit a literal translation of the com-
plex compound words sometimes gives additional
insight into the author’s understanding (as well as
the ambiguities of the text), so one wishes there
were more places in this book where Plofker gave
such literal translations without using modern
expressions.

I have not touched on the astronomical side of
the story. Suffice it to say that almost all treatises
from the sixth century on deal with both astron-
omy and mathematics. To follow these, one needs
a bit of a primer in geocentric astronomy, a van-
ishing specialty these days, and Plofker provides
a very handy introduction in section 4.1. Just as
in Indian mathematics, there is a steady increase
in sophistication over the centuries, culminating
in dramatic advances in Kerala. Most strikingly,
N̄ilakan. t.ha in the fifteenth century proposed a
model in which the planets were moving in ec-
centric and inclined circles with respect to the
mean sun moving in its ecliptic orbit—a “virtu-
ally” heliocentric model remarkably better than
Ptolemy’s.

It is high time that the full story of Indian math-
ematics from Vedic times through 1600 became
generally known. I am not minimizing the genius
of the Greeks and their wonderful invention of
pure mathematics, but other peoples have been
doing math in different ways, and they have often
attained the same goals independently. Rigorous
mathematics in the Greek style should not be seen
as the only way to gain mathematical knowledge.
In India, where concrete applications were never
far from theory, justifications were more informal
and mostly verbal rather than written. One should
also recall that the European Enlightenment was

an orgy of correct and important but semirigorous
math in which Greek ideals were forgotten. The
recent episodes with deep mathematics flowing
from quantum field and string theory teach us the
same lesson: that the muse of mathematics can
be wooed in many different ways and her secrets
teased out of her. And so they were in India: read
this book to learn more of this wonderful story!
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