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Calculus Reform—
For the Millions

David Mumford

About twenty years ago I was part of a group of
professors from many fields who met once a
month for dinner and an after-dinner talk given
by one of the members. It was entertaining to
hear glimpses of legal issues, historical problems,
discussions of what freedom meant in different
cultures. But then I had to give one of these
talks! I was working on algebraic geometry then,
and I tried to figure out what I could say that
would hold my colleagues’ attention while di-
gesting a large meal. In the end I decided to stick
to a rather anecdotal level but to inject one bit
of real math. I thought I would try to explain to
them the first mathematical formula that I had
seen in school which totally bewildered me. This
was eiπ = −1. It seemed to me that here was a
nugget of real math and maybe it could be ex-
plained. Here is how I tried. 

I got e into the picture by discussing a sav-
ings bank which pays 100% interest, and con-
vinced them that in a year they would get more
than $2 for each $1 invested. It was not hard to
convince them they would get between $2.50
and $3 per dollar invested, and we could define
e to be their balance after a year. Then I needed
i. Most people have heard of i, and I just de-
scribed it as part of a game invented by math-
ematicians to get enough numbers so every equa-
tion has solutions: starting with the one new
rule that multiplying i by i you get −1, you get
all the numbers a + ib and their arithmetic. Next,
imagine you go to the neighborhood savings

bank, and it is running a special promotion with
a new account which pays imaginary interest at
the rate of 100%. The audience immediately sees
that you get imaginary interest building up and
that the interest on the interest is decreasing
your total of real dollars. You run them through
a few more numbers, and they see that their real
funds will go to 0, while their imaginary funds
build up to about 1.i; then they go into real
debt, next imaginary debt, and finally get their
real $1 back, which they immediately withdraw!
A little picture in the complex plane convinces
them that this will take 2π years, while after π
years they were in debt $1 : voilà, eiπ = −1!

What is the point of this struggle to commu-
nicate some tiny bit of math? For me, the lesson
was that I think my audience got a bit of hon-
est math from this and that what they struggled
to learn consisted of some numerical fiddling,
some geometry (the circle showing the evolution
of your balance in the complex plane), and some
thinking about the rules which underlie arith-
metic and exponentiation. I do not think I said
anything mathematically dishonest, yet I cer-
tainly gave no proof of anything. I think this is
the same approach as that taken by many cal-
culus reform texts, and it is exactly the philos-
ophy of the Gleason-Hallett Calculus Consor-
tium.

The problem of communicating comes up in
many situations other than after-dinner
speeches. For nearly fifteen years I have been
doing applied mathematics, and I have to talk
especially to biologists, psychologists, and en-
gineers. The same rules seem to apply. If I men-
tion Lp, they have me pegged as “one of them”.

David Mumford is University Professor, Division of Ap-
plied Mathematics at Brown University. His e-mail ad-
dress is David_Mumford@Brown.edu.

comm-mumford.qxp  3/14/97 10:02 AM  Page 559



560 NOTICES OF THE AMS VOLUME 44, NUMBER 5

Of course, the tolerance level varies. Some en-
gineers have been rather thoroughly math-
ematicized: in control theory everything is done
in multiple Banach spaces. But I know a psy-
chologist who hates math yet understands ab-
solutely correctly the meaning of robust statis-
tics. For pure mathematicians and statisticians,
robust statistics refers to statistics that work
when the variables being measured are not nor-
mally distributed and still give you good esti-
mates of things like the mean and variance of
the variable. In real life I think it is fair to say
that nothing is ever normally distributed be-
cause there are always “outliers”, exceptional
cases which are off the scale. My psychologist
friend spent much of his time measuring reac-
tion times and would average over his subjects
to get a mean. When I did the same and got ter-
rible results, he said, “Maybe you forgot to throw
out the slowest 3 percent?” The point is that
about 3 percent of the time, his subjects’ minds
wandered, and he got absurdly slow responses.
Is this math? In fact, yes: there is a very sub-
stantial body of theory on what “α-trimmed
means” do for you with unknown distributions.
My friend has an excellent intuitive grasp of this
without knowing any of these theorems.

Often a picture is what facilitates communi-
cation. When you were in grade school, you
might have been puzzled, as I was, when asked
to accept the formula 1

1
a

= a. Of course, modern

books “prove” this, more or less, manipulating
the axioms in the usual way. But does it not be-
come just as clear from a picture which com-
pares:

An example, a picture, an explanation is pre-
sented. Would it be better to present a proof?

I learned calculus during high school when I
stumbled across a great classic of the pedagog-
ical literature: Lancelot Hogben’s Mathematics for
the Million. Hogben explains the essence of cal-
culus, including differentiation, integration (both
with many examples up through trig functions),
the fundamental theorem, and multivariable in-

tegration through Archimedes’ great achieve-
ment, calculating the volume of a sphere. He
does this in fifty pages! Was he successful? Well,
the book went through four editions over more
than thirty years, apparently being read by lit-
erally millions. How did he do this? Here is how
he introduces the derivative:

If the points p and q in the course
(of a cyclist) are very close together,
… the curved line joining them is dif-
ficult to distinguish from a straight
line, and the pointer of the
speedometer will not shift apprecia-
bly during the interval representing
the difference between the x co-or-
dinates of q and p. When p and q are
very close together, so that we can-
not distinguish them, the line pass-
ing through them becomes the tan-
gent at the point p = q , and the
gradient of this line corresponds with
the speedometer-reading at the in-
stant represented by the x co-ordi-
nate of p.

..........

The tangent method is equivalent to
taking two points with x co-ordinates
xp and (xp +∆x) and y co-ordinates
yp and (yp +∆y) so close together
that ∆x and ∆y are too small to mea-
sure. The gradient is ∆y∆x = tan a .
When ∆y and ∆x are immeasurably
small, we write the ratio (pronounced
as dee-wy-by-dee-eks) dydx.

(pp. 521–522, 3rd edition)

Hogben was a genius at putting things in
plain English. He used ∆, but no ε or δ. He was
also very clear about the need to explain calcu-
lus in down-to-earth terms. He railed against
Newton himself:

The intellectual leaders in the New-
tonian period did not realize that
every intellectual advance raises a
constructive problem in education.
Newton himself devoted much of his
energy to devising long-winded
demonstrations in Euclidean geome-
try instead of trying to make his own
methods intelligible to his contem-
poraries. One result of this was that
conspicuous progress in Newtonian
mechanics did not take place in his
own country during the century
which followed the publication of the
Principia.

(op. cit., p. 567)

((••)(••)(••))

How many pairs is 6? As a formula:
Answer: 3 6/2 = 3

How many quarter As a formula:
pies in a whole pie? 1/(1/4) = 4
Answer: 4
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A striking contrast for me was the curriculum
which my oldest son encountered learning Eu-
clidean geometry in a Paris high school in 1976.
Unfortunately, I no longer have the textbook, but
the following is close to the definition presented
there of a “Euclidean line”: a Euclidean line is an
ordered pair {X,Φ}. Its first member is a set X
whose elements will be called “points”. Its sec-
ond member is a set Φ of bijections between X
and the real line R which satisfies two axioms.
First, for all φ,ψ ∈ Φ ,  the composition
f = φ ◦ψ−1 is a map from R to itself of the form
f (x) = ±x + a for some real number a. Second,
for any φ ∈ Φ and any map f (x) = ±x + a , there
is a unique ψ ∈ Φ such that ψ = f ◦φ. 

I believe the same concept was circulating at
the time in research circles under the name
“torseur”. It seemed to me at the time a bizarre
way to prepare the next generation of educated
Frenchmen. But perhaps Hogben is right and
Euclidean geometry has this effect on the ab-
stract thinker.

Watching my children move through the math-
ematical curriculum of elementary and high
schools has been very instructive for me. For in-
stance, I believe there is no universal best way
to teach mathematics which applies to all the
basic skills. It is very tempting to adopt some
pedagogical theory or intellectual standpoint
and convince yourself that this is the yellow
brick road leading to understanding. I am not
convinced that the experts who study pedagogy
in mathematics have a deeper insight into what
works than most concerned parents.

To illustrate, at one extreme I suggest there
are some essential topics which must be mem-
orized. The multiplication tables are the prime
example. People with numerical gifts see the
patterns in the tables and use these to learn
them faster, but by and large a formula like
7× 8 = 56 has to be memorized (one of my kids
learned it because Creature Double Feature was
on from 7 to 8, Channel 56).

There is a large chorus of people who rail
against teaching calculus by “cookbook” meth-
ods. But my gut feeling is that some topics
needed by everyone in a numerical profession
are learned fastest by taking them purely as the
rules of a game prescribed by the inventor of that
game. Solving equations in algebra is a prime ex-
ample. If these are taught like a board game, with
rigid rules about when you can move a piece from
one square to another, they are not much harder
than checkers, say. For me, b2 − 4ac still has the
flavor of a memorized icon. One hopes the mean-
ing will come with practice and application. But
drilling in cookbook methods seems a reason-
able method for bootstrapping the skills of high
school students to the level where they can begin
to deal symbolically with algebraic relationships.

We drill students in conjugating French verbs,
so why not in algebra?

But everyone agrees that this approach of
memorizing and game playing has real limits.
Learning to correctly convert among fractions,
decimals, and percents was such a case for some
of my children. I do not think this can be learned
either by memorization or by pretending it is a
bizarre game required to pass tests. It is also an
essential skill in later life in thinking about bud-
gets, inflation, savings, and using recipes. What
it seems to require is an understanding of what
it means based on many simple but real exam-
ples: converting dollars to cents, converting pro-
portions in a recipe to numbers of ounces, etc. 

Focusing on calculus reform, let us distin-
guish three types of pedagogical methods. One
is memorization and drill. Because of the ex-
amples just given, I would defend the proposi-
tion that these have their place; they have cer-
tainly been used to attain high standardized
test scores in calculus as well as in arithmetic
and algebra. But we all know that, although often
effective for short-term results, this approach
has its limits if the concept is subtle or will not
be practiced regularly. Another is the use of
many examples, numerical and visual and based
on things already familiar to the student. This
aims at the gradual solidification in the stu-
dent’s mind of an intuitive gut feeling of the
meaning of the concept. This is what I think is
needed for decimals and fractions. It is what Hog-
ben did so successfully in his classic book and
what the Gleason-Hallett reform text aims to
do. The third is the presentation of the under-
lying logic of the theory, making an airtight legal
case that such and such and nothing else must
be true. All professional mathematicians are in
love with this, I among them. The “new math”
attempted to bring in logical arguments at the
very early stage of basic arithmetic—for instance,
by proving rules like 1

1
x

= x. The French defini-

tion of a Euclidean line is an extreme example
of how formal definitions are introduced so that
complete proofs can be given.

A very interesting point relating to the use of
formal definitions has been raised by Saunders
Mac Lane and other critics of the Gleason-Hal-
lett text. They object to the definition of a con-
tinuous function—“the closer x gets to a, the
closer f (x) gets to f (a)” in this book—raising the
example of x sin (1/x). The problem here is that
English syntax is notoriously ambiguous in
common usage, and the intended meaning is
often inferred from common sense rather than
from any general syntactic or semantic rules. To
give an example of ambiguities in normal Eng-
lish usage, an example much discussed by lin-
guists like Montague is “Three lighthouse keep-
ers saw three ships”. In this sentence, the
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problem is that each lighthouse keeper might
have seen a single one out of a set of three dis-
tinct ships, they might all have seen the same
three ships, or maybe they each saw a ship and
no one is sure whether they are the same or dif-
ferent ships. For the sentence above which pur-
ports to define continuity, I suggest you ask a
mathematically naive friend whether they find
anything odd about the sentences: “A clock pen-
dulum is slowing down from friction. As it does
so, it gets closer and closer to the vertical posi-
tion.” Or ask whether the assertion that “runner
x is getting closer and closer to a new world’s
record in the 100-meter” implies that x never has
a bad day? I certainly agree that a footnote clar-
ifying the Gleason-Hallett definition to say that
f (x) need not go straight to f (a), but may wob-
ble on the way, is appropriate. But whether the
Gleason-Hallett definition is correct as it stands
is not a well-posed question: virtually the only
sentences in English with an unambiguous in-
terpretation (not requiring the use of common
sense by the reader) are those written in math-
ematical jargon.

If one says instead, “For any ε > 0, there is a
δ > 0 such that whenever |x− a| < δ , then
|f (x)− f (a)| < ε ,” what happens to most stu-
dents? First off, since Greek letters and complex
English syntax (“for any … there is … such that
whenever … then …”) are used, the student is
convinced that something very complicated must
be going on. What is worse, even if you give the
simple description of the meaning afterwards,
the student will be sure that something more
complex is going on or else why did you put it
in such an opaque way? I think it is impossible
to explain to most students that we prefer the
complex syntax of the ε− δ definition because
we have crafted it precisely to squeeze out all
the ambiguity of normal English. The important
question is: do most people learn a new concept
most efficiently by being exposed to elegant de-
finitions of this sort? For instance, if your neigh-
bor happens to ask you what you are teaching,
and this happens to be calculus, how do you ex-
plain the derivative over the fence to him/her?

Wu makes the case in the December Notices
that even if we admit full rigor is inappropriate
for nonhonors students, we should at least aim
to train them in making logical deductions. Why?
Pure mathematics is the only discipline in which
proofs are deemed so basic to knowing the truth.
Especially since the advent of Ed Witten on the
mathematical scene, we have realized all too
clearly how physicists (and mathematical physi-
cists) can often get at the deepest sort of truths
without paying any heed to rigorous proofs. He
is only the most visible example, as all of mod-
ern physics is built on “derivations” which are
combinations of heuristics, calculations, and oc-

casional precise arguments. In other sciences,
such as chemistry and biology, logical deduction
has virtually no place, because the systems being
studied are too complicated to allow one to
prove anything rigorously: what scientists do is
to argue that such and such is the most likely
explanation, based on data, analogies with other
systems, and appeal to a shared Bayesian model
of what one expects this kind of system will do.
If scientists use logic so rarely, this is even more
true for the rest of the educated public. In po-
litical discourse we not only fail to see logic
used, we do not even see people using numbers
coherently to quantify the issues. If we as a com-
munity want to take up an educational cause,
maybe we would do better to try to get a larger
group of people to believe that numbers can
help them understand the world around them.

Applied mathematicians vary hugely on this
scale, but many are much more interested in
testing a model by simulations than by the much
harder rigorous proof. Since all models are in-
complete on a fundamental level because they
isolate only a few of the complexities of nature,
this test by simulation is often the really crucial
one. How many years have gone by since Lorenz
simulated his three-dimensional dynamical sys-
tem without anyone being able to rigorously an-
alyze his system? This is typical of nonlinear dif-
ferential equations. Hodgkin and Huxley won
the Nobel prize for their family of PDEs which
model conduction on nerve axons. The clincher
in their work was their computer simulation
which correctly predicted the speed of conduc-
tion to within 10 percent. But only toy versions
of their equations have been proven to actually
produce stable traveling waves. In my own ex-
perience in computer vision, a nonlinear para-
bolic equation was proposed to enhance images.
The equation was patently ill-posed, but works
extremely well in simulations! The message for
pure mathematicians is not to throw it out, but
to find a well-posed problem which somehow
captures the same significant behavior. The
moral in all these cases is that the lack of proofs
or even of well-posed models does not inhibit
good applied mathematical modeling.

In the nineteenth century there was no clear
division between pure and applied mathematics,
and people like Riemann went back and forth be-
tween the two areas. He was quite satisfied with
his use of the Dirichlet principle to prove the ex-
istence of solutions of various PDEs, although a
rigorous justification of this argument took
decades.

I believe I am on firm ground in stating that
only lawyers1 love proofs the way we do. The only
colleague in the dinner club mentioned at the be-

1A referee kindly pointed out that religious scholars
form another group which loves proofs too!
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ginning of this article who afterwards wanted to
borrow a math book from me was in fact a pro-
fessor in the law school. But a lawyer’s idea of
formal argument is so convoluted that it has re-
sisted all attempts by computer scientists work-
ing in artificial intelligence to formalize it. A
widespread disinterest in proofs is surely one
reason why pure mathematics is the most iso-
lated of the sciences. If we could give up our ob-
session with always being so precise and com-
municate more loosely what we are doing, we
might break into the New York Times “Science”
section more often. Only when a romantic hero
like Erdös, a mathematician’s mathematician
who maintained a master list of “God’s proofs”,
comes along can we break this barrier. We are
intoxicated with the depth and subtlety of things
like nonstandard four-space and the proof of the
Fermat conjecture. But as a profession we are not
very successful in communicating this beauty.

In summary, we have scientists, engineers,
economists, and people in the world of affairs
in one category—call it P (for “practical”); and
we have the twentieth-century community of
professional pure mathematicians in another—
call it T (for “theorem-loving”). Applied math-
ematicians, lawyers, and mathematicians of other
centuries fall somewhere in between. Many peo-
ple in group P use calculus. A calculus course
is often the last interaction between these two
worlds. I would guess something like 99 percent
of our students in these courses are not going
to join category T. So calculus is our big chance
to talk to the other world, P. We have two strate-
gies open to us. One is to use this opportunity
to preach the gospel of logic and reveal the
beauty of precise definitions. Two examples that
are often given are the rigorous definition of limit
with ε and δ and the mean value theorem. On
the other hand, the calculus reform movement
(or some of the heads of this many-headed mon-
ster) takes the position that neither of these
helps the students in group P understand bet-
ter what calculus is about or what it is good for.
Speaking to my mathematical friends and col-
leagues in group T to find out why they prefer
a rigorous approach, I found that for many of
them, their first exposure to this sort of rigor was
a defining experience in their lives. I seem to be
in the minority in having learned calculus from
a pedestrian book like Hogben’s. But the ques-
tion is whether there are very many graduates
of calculus in group P who found this exposure
to rigor to be equally significant. I doubt it. Are
we teaching calculus in the hope that a small
percentage of our students will catch our love
of rigor, or so that most of our students will
emerge with the ability to use calculus in their
specialties?
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