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SCIENCE

Fields Medals (IV): An Instinct for the Key Idea

Pierre Deligne was born in Brussels,
Belgium, in 1944. When he was 14 an en-
thusiastic high school teacher, M. J.
Nijs, lent him several volumes of the Ele-
ments of Mathematics by N. Bourbaki.
This work develops a solid foundation
for all of modern mathematics, in a most
logically efficient manner, proceeding
from the general to the particular; for ex-
ample, the real number system is dis-
cussed only in the fourth chapter of the
third long book, after general topology
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and abstract algebra have been exten-
sively treated. In the whole treatment
there is (except perhaps for the excellent
historical notes) no motivation given at
all, other than the internal logic of the de-
velopment itself. That Deligne not only
survived but even thrived on his ex-
posure to such a work at such a tender
age was perhaps already an indication of
his genius, as well as of Nijs’ good judg-
ment.

Thus when Deligne went to the Uni-

versity of Brussels he already knew the
fundamentals of most of modern mathe-
matics. There he learned much from
group theorist Jaques Tits now at the
College de France, and Tits gave him ex-
cellent advice on his general mathemati-
cal development. In 1965, at Tits’ sug-
gestion, Deligne went to Paris to pursue
further his interests in algebraic geome-
try and number theory. It would be hard
to imagine a better place for this at the
time. Among other activities there were
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the seminars in algebraic geometry of Al-
exander Grothendieck (Fields Medal,
1966) and the lectures of Jean-Pierre
Serre (Fields Medal, 1954), which had a
more number-theoretical flavor. Deligne
was strongly influenced by both these
men.

Deligne’s association with Grothendi-
eck during the late 1960's at the IHES
(European Institute for Advanced Study,
in Bures-sur-Yvette just south of Paris)
was especially close. We personally first
heard of Deligne in 1966 from Grothen-
dieck, who was more impressed than
we had ever seen him be by a young
mathematician. At that time Deligne was
21 and Grothendieck immediately recog-
nized him as his equal. The significance
of this and of their collaboration will be
clearer if we explain the situation in alge-
braic geometry at this time. In the 1930’s
algebraic geometry had an antiquated
air, with many appealing charming re-
sults but an embarrassingly handmade
and dusty look. During the period 1940
to 1960 several of the greatest mathema-
ticians of this century contributed to
building suitable foundations for alge-
braic geometry and fitting it into the ab-
stract conceptual framework that had by
then been built for most of the rest of
mathematics. After the great contribu-
tions of Oscar Zariski now at Harvard
University, André Weil, and Serre of the
Institute for Advanced Study in Prince-
ton, it was Grothendieck who pushed
this program through to its uitimate logi-
cal conclusion. Grothendieck was an un-
tiring, implacably logical, almost fanati-
cal force. He was guided in his thinking
perhaps more than any other mathemati-
cian has ever been by the desire to view
each concept in the greatest possible de-
gree of generality with no artificial re-
strictions—that is, no restrictions not ab-
solutely forced by the logic of the situa-
tion. The result, as Grothendieck wrote
his monumental works on the founda-
tions of algebraic geometry, was an ut-
ter transformation of the subject. As he
pursued the ultimate in generality the
volume of the work increased exponen-
tially, and algebraic geometry became
a vast structure, gleaming, hard to
grasp, overpowering. The key ideas
seemed hidden, let alone the appealing
artifacts of the previous century.

Deligne mastered this structure of
Grothendieck’s seemingly without ef-
fort, but his style was not to add a whole
new layer of systematic development to
the theory unless it was absolutely nec-
essary. He preferred to find an elegant
fundamental new idea suddenly clari-
fying a whole area or an old problem.
Deligne was able to use the extensive de-
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velopments of Grothendieck as well as
any one, but his own ideas were often
more concise, more particular. To con-
trast their styles metaphorically, one
could say that Grothendieck liked to
cross a valley by filling it in, Deligne by
building a suspension bridge.

During the next few years Deligne
touched on virtually all areas of algebraic
geometry, making extraordinary contri-
butions. In 1970, at the age of 26, he was
promoted to a permanent professorship
at the THES, the position he now holds.
We will not try to describe his early work
but will focus instead on his most ex-
citing and deepest result, his proof in
1973 of the last and hardest of Weil's
conjectures. Fortunately this result is
relatively easy to state in simple lan-
guage, and it may convey an idea of the
almost mystical flavor of the direction in
which this frontier of mathematics is
growing.

One starts with a set of one or more
simultaneous polynomial equations in
several unknowns. This could be some-
thing as simple as one equation in two
unknowns, such as y? — x* + 1 = 0, but
in general would be fi(x,y,z,...) =0,
fix, y, z,...)=0,.... The fs, as
stated, are to be polynomials, and we as-
sume that their coefficients are whole
numbers. The oldest question in arith-
metic is to find, or give procedures for
finding, all solutions in which the un-
knowns x, y, z, . . . are whole numbers.
But this has turned out to be intractable
in all but some elementary cases. Anoth-
er question is to consider the set of solu-
tions in which x, y, z, . . . are complex
numbers. These solutions form a contin-
uum, or manifold, X, of a certain dimen-
sionality, called an algebraic variety be-
cause it is described by algebraic equa-
tions (sometimes one adds points at in-
finity to X to ‘‘complete’’ it). Such

manifolds have been extensively stud-
ied, and in particular certain properties
of X are described by its so-called Betti
numbers By, B, B,,. . .. Thus B, is the
number of connected pieces of X, and B,
describes how many essentially different
loops X contains. For example, in the
case of the single equation y? —
x3 4+ 1 = 0, X turns out to be two-dimen-
sional (remember that we are allowing
complex values for x and y, not only real
values) and to be like the surface of a
doughnut (a space called a torus). In this
case B, = 1, because X is connected,
and B, = 2, because there are really two
different ways around a torus (Fig. 1).
There is a third type of solution to our
equations f; = f; = . .. = 0 that is very
important: one tries to put the unknowns
X,¥,2, - . . equal to whole numbers, but
requires only that the values fix, y,
Z, . . .) of the polynomials be divisible by
a fixed prime number p (that is, be con-
gruent to zero modulo p) instead of being
0.If (x,vy, z, . . .) is one such set of val-
ues for the unknowns, then adding multi-
ples of p to them, for example (x + 2p,

y —3p,z +p,...), gives another such
set of values. So one can restrict x, y,
Z, . . . to be one of the p whole numbers
0,1,2,...,p — 1 and not miss any-

thing. We then have in all only a finite set
of values for the x,y, z, . . . to try, and
there will be a finite number Np of solu-
tions in the sense just described. For ex-
ample, try the possible values 0, 1, and 2
for x and for y, and out of the nine possi-
bilities you will find three of them such
that 3 divides y2 — x* + 1. Thus in this
case’ N, = 3. With a bit more patience
you can check Ny=5, Ny =2, and
N, = 3 for the same equation.

We can now state a famous result of
Weil, which is the leitmotiv of this whole
development. Take the case of one irre-
ducible polynomial equation in two vari-
ables. Alsp modify the number Np slight-
ly to take into account infinite solutions
and singularities; we omit describing
this. Then

INp —(p+ DI<B,\Vp (1
where B, is the first Betti number of the
complex variety associated to the same
equation. This variety will be like the
surface of a doughnut with a certain
number of holes, and B, is twice the
number of holes. The point that is so
startling here is that this sets up a con-
nection between the solutions modulo p
with whole numbers and the geometry of
the continuum of complex solutions.
What other cases can one find of such a
miraculous connection between arith-
metric and geometry? This question

SCIENCE, VOL. 202



tantalizes many mathematicians today.

What should one expect for a general
set of equations of the type we are con-
sidering? Weil guessed the answer in
1949, and Deligne proved that his guess
was correct 24 years later. To explain
this guess we must view the number Np
described above in a more sophisticated
way, as the number of solutions to our
equations in the finite field with p ele-
ments. For each positive integer r there
is an essentially unique finite field withp™
elements, and if Np" denotes the number
of solutions withx,y, z, . . . in that field,
Weil conjectured that for each prime p
there should exist complex number a;
such that for each r

(¥))

where n is the dimension of the space X
of complex solutions and the B, are the
Betti numbers of X. Moreover the abso-
lute values of the numbers x;; should be
given by

3)

(In this brief statement of Weil's con-
jectures we have exaggerated a bit: one
must desingularize X and add some
points at infinity, and make the corre-
sponding modifications in counting the
solutions in finite fields; also one must
exclude a finite set of primes p, those for
which X does not have ‘‘good reduction
modulo p.”") In the case of one equation
in two unknowns, n =2, B, =B, = 1,
x0 =1, and x,, = p, so that Eq. 1 is a
consequence of Eqgs. 2 and 3. A formula
of the same type as Eq. 2 was proved by
Bernard Dwork of Princeton University
in 1959, and Eq. 2 was proved by
Grothendieck in 1965. However, Eq. 3 is
much harder, and it is this result for
which Deligne is justly famous. Clearly,
Eqs. 2 and 3 strengthen and confirm the
link between the arithmetical problem of
solving polynomial equations modulo p
and the geometry of their complex solu-
tions.

To see how Deligne proved Eq. 3, we
must go back again to Grothendieck. It
was in order to prove a formula like Eq.
2, and with the hope of using it to prove
Eq. 3, that Grothendieck began doing al-
gebraic geometry. Weil had pointed out
that Eq. 3 could be obtained as a *‘Lef-
schetz fixed point formula,”’ if one had a
**cohomology theory of varieties in char-
acteristic p*’ (indeed NpT is just the num-
ber of fixed points of the transformation
Fr, where F is the Frobenius map of
the set of solutions in characteristic p
into itself). At the start of his work
Grothendieck had guessed that such a
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Fig. 1. The two ways to go around a torus.

cohomology theory could be obtained by
systematically confusing the two mathe-
matical senses in which the word cov-
ering is used (Fig. 2). This was the kind
of abstract idea at which Grothendieck
excelled, and in this case he was abso-
lutely right. With the aid of Michael Ar-
tin of the Massachusetts Institute of

Technology and Jean Louis Verdier of

the University of Paris he constructed
a new cohomology theory, known as
**étale cohomology,’’ yielding the num-
bers x,; in a natural way. This theory was
one of the building blocks of Deligne’s
proof.

The other main ingredient came from a
little-known prewar (1939) paper of Rob-
ert Rankin in the Procéedings of the
Cambridge Philosophical Society, in
which Rankin made some progress on an
analogous conjecture of the Indian math-
ematician Srinivara Ramanujan, by a

_squaring trick. It is hard to imagine two

mathematical schools more different in
spirit and outlook than were those of the
British analytic number theorists in the
1930’s and of the French algebraic geom-

a2
07—
C

,,.%;n»

L LD

O

Fig. 2. (a) Covering of type 1. A set of pieces
that fill the whole. In this case, an oval region
covered by nine smaller oval regions, two of
which are shaded. (b) Covering of type II.
One space lying smoothly over another. In
this case, an infinite spring covering a closed
loop.

eters in the 1960’s. That Deligne’s proof
is a blend of ideas from both is an in-
dication of the universality of his mathe-
matical taste and understanding. He had
a clue to the connection because already
in 1968 he had shown that Weil’s con-
jectures implied Ramanujan’s. The ideas
behind this were due to the Japanese
mathematicians Kuga, Sato, Shimura,
and Ihara, but it was Deligne who had
the technical power to carry them out,
and it was Serre who realized this and
urged him to do it. At any rate, Deligne
saw that Rankin’s method could be un-
derstood geometrically and could be
greatly extended. Combining this with a
very delicate analysis of the cohomology
via so-called Lefschetz pencils, using
also a theorem of David Kazhdan now at
Harvard University and Margoulis (one
of this year's Fields Medalists), Deligne
put together his sensational proof of
Weil's conjecture: Besides its own in-
trinsic interest, this result has also al-
ready yielded several important con-
sequences in number theory and algebraic
geometry.

Since 1973 Deligne’s center of interest
has shifted slightly from geometry to-
ward number theory. He has made sev-
eral key contributions to problems con-
nected with the vast program of Robert
P. Langlands of the Institute for Ad-
vanced Study to relate the way in which
the numbers x; mentioned above vary
with p to the theory of automorphic
forms.

Deligne’s economy and clarity of
thought are amazing. His writings con-
tain few unnecessary words, little or no
redundancy. The ideas are there, simply
and clearly stated, but so densely that al-
most every phrase is relevant.

Deligne’s nonmathematical interests
and activities exhibit the same sim-
plicity. For years he has cultivated a
large vegetable garden in the rich soil of
the housing project of the IHES. He en-
joys organizing Easter egg hunts for the
children living there. For transportation
he prefers a bicycle to a car, and his va-
cations are usually spent hiking. There is
nothing artificial about him. He is self-
assured but modest and able and willing
to discuss almost any mathematical sub-
ject with anyone. There are few subjects
that his questions and comments do not
clarify, for he combines powerful tech-
nique, broad knowledge, daring imagi-
nation, and unfailing instinct for the key
idea.
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