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Chapter Three: Oresme and the Invention of Graphing 
 
 
Alfred Crosby’s book “The Measure of Reality” quotes the Arab scholar Ibn 
Khurradadhbeh as describing Western Europe in the mid-9th century as a source of 
“eunuchs, slave girls and boys, brocade, beaver skins, glue, sables and swords” and not 
much else. Indeed, the Arab Middle East and China were the intellectual leaders of the 
world at that time, cultivating science, poetry and art and investing heavily in large 
libraries and scholarship. In particular, algebra was greatly advanced by al-Khwarizmi’s 
book Hisab al-jabr w'al-muqabala (from which the word ‘algebra’ came into use). 
Europe was at the margins of civilization. Crosby’s book deals with an analysis of what 
happened next, what sparked the resurgence of Europe and the Renaissance of Western 
culture. His hypothesis is that the turning point was in the 14th century, when clocks were 
invented, better sailing charts were devised and better accounting was worked out.   
 
The accepted view of the world in the middle ages had 
been very finite and very non-empirical. Time, for 
example, had, on the basis of the bible, been calculated 
by various scholars to have started at dates like 3952 
BCE or 5194 BCE. And Christ’s life was supposed to 
be the midpoint of time, so the last judgment was 
expected at 4000-5000 AD. This means all of time 
included only 300 or so generations of mankind. 
Likewise, the day was divided crudely by times of 
prayer and the tolling of church bells, matins at sunrise, 
prime at breakfast time, tierce in the morning, sext 
around noon, none in the afternoon, vespers at sunset 
and compline in the evening – with intervals growing 
and shrinking according to the seasons. Space was 
similarly small: the earth was surrounded by 9 
concentric crystal spheres and these had shrunk 
remarkably since the Greek calculations. Now Roger 
Bacon had the moon at a distance of only 100,000 miles (a distance which could be 
walked in a pilgrimage of about 15 years!) and Gossoin of Metz placed the outermost 
crystal sphere at 6,500,000 miles, a 700 years walk. Much later, even Columbus 
estimated the earth as 25% smaller than it was, hence his naïve optimism at expecting to 
reach the Spice Islands of the Far East. 
 
So what changed? Crosby’s thesis is that people discovered the power and usefulness of 
measuring things accurately and fell in love with this new modern way of doing things. It 
infected everyday life, from the speculations of the scholastics to the accounting of 
business to music and art. It was a rediscovery of the true power of mathematics and 
science. Crosby cites the wave of construction of great town clocks which swept Europe 
in 1270-1330 as the first sign of this sea change. Never before and nowhere in the world 
had anything like this been invented. They cost an arm and a leg: townspeople might put 
a full year’s tax to build one. Here is the mechanism of a typical 15th century town clock. 



 2

The picture does not show the heavy weight 
attached to a rope which is wound around the 
shaft. As we are looking at the crown wheel, 
this weight seeks to turn the crown wheel 
counter-clockwise. But it is held back by one 
of the 2 pallets. The sequence of events is 
this: the heavy foliot swings counter-
clockwise until the pallet ceases to block the 
crown wheel. The crown wheel then 
advances until it hits the second pallet. Its 
pressure on the second pallet stops the motion 
of the foliot and then swings it clockwise 
until this pallet twists out of the way of the 
crown wheel. Then the wheel turns until 
blocked by the first pallet. This repeats itself 
indefinitely, the foliot swinging back and 
forth and the crown wheel advancing once for 
every swing. It worked although technicians 
were needed to tune it up and repair it daily 
and it was never more accurate than 15 
minutes a day. But now the town could 
regulate its life. 
 
 
A second advance was accurate measurement 
of the earth itself. ‘Portolan’ charts, using 
multiple polar coordinates, were invented. 
Here is a part of such a chart of the 
Mediterranean, showing the part of the 
coastline of Spain and France: 
 
 
A third advance was the invention of double-
entry bookkeeping, which enabled much 
more complex business enterprises to be 
tracked and reduced to clear unambiguous 
numbers. Started in the 14th century, this 
method was brought to essentially its modern 
form by the mathematician Luca Pacioli in he 
renaissance.  
 
 
But I want to focus on what seems to me the 
biggest mathematical step that was taken at 

that time: the invention of graphing. The Greeks had been concerned with geometry of 
the plane for its own sake, the complex way in which triangles and circles interact and 

A detail of the 1466 Roselli portolan chart of 
the Mediterranean 

1392 Wells Cathedral Clock 
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structure 2-dimensional space. This is very different from using the plane for the sake of 
visualization, which is what graphs are all about. In particular, the idea of tracking some 
measurable quantity like position, velocity, temperature or brightness over an interval of 
time or for all the points of an object and making a geometric representation of all these 
numbers – of this function of time and space – was brand new. The idea is due to Nicole 
Oresme. 
 
Oresme (pronounced ‘Orem’) was a scholastic philosopher who lived from 1323 to 1382, 
taught at the then recently founded University of Paris and eventually rose to become a 
bishop. Among other works, he wrote, in 1353, Tractatus de configuationibus qualitatum 
et motuum (Treatise on the configurations of qualities and motions) which seems to me 
the first really big European book on mathematics: it made explicit the idea of functions, 
x- and y-coordinates and, above all, of the graphs of functions. Of course, he didn’t use 
these terms, in Latin or English. I think it’s very instructive to see what he actually wrote: 
you get some insight in the way he viewed the world. Here’s how his book begins, in 
Clagett’s English translation together with my gloss: 
 
Every measurable thing except numbers is 
imagined in the manner of continuous quantity. 
Therefore, for the mensuration of such a thing, it 
is necessary that points, lines and surfaces, or 
their properties be imagined. For in them, as the 
Philosopher has it, measure or ratio is initially 
found, while in other things it is recognized by 
similarity as they are being referred to by the 
intellect to the geometrical entities. Although 
indivisible points, or lines, are non-existent, still 
it is necessary to feign them mathematically for 
the measures of things and for the understanding 
of their ratios. Therefore, every intensity which 
can be acquired successively ought to be 
imagined by a straight line perpendicularly 
erected on some point of the space or subject of 
the intensible thing, e.g. a quality. For whatever 
ratio is found to exist between intensity and 
intensity of the same kind, a similar ratio is found 
to exist between line and line, and vice versa.  … 
Therefore, the measure of intensities can be 
fittingly imagined as the measure of lines. 

1. Roughly, he’s saying that all measurable 
things in the world are either discrete things 
like whole numbers, or vary continuously.  
2. Given 2 such measurements, they always 
have a ratio, one to the other; and the most 
basic case of this sort of measurement is the 
length of line segments or the area of 
surfaces, because 2 lengths or 2 areas have a 
definite ratio, one to the other. ‘The 
Philosopher” is Aristotle. 
3. Points are infinitely small and lines 
infinitely thin, so they are idealizations. 
4. ‘Successive’ means a quantity that varies 
in time f(t).  
5. The ‘subject’ is the set of points on which 
the function f is defined, its domain. 
6. His graph is given by imagining 
perpendicular lines erected on the domain, 
like a bar graph. 

 
 
In the next few chapters, he calls ‘longitude’ the axis of the independent variable (which 
can be space or time and which varies over a set of values he calls the ‘subject’ or the 
‘extension’); and ‘latitude’ the perpendicular axis plotting values of the ‘quality’ or 
dependent variable, these values being called the ‘intension’ or ‘intensity’. A few pages 
later (I.iv), he states the idea of graphing quite clearly: 
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The quantity of any linear quality is to be 
imagined by a surface whose length or base is a 
line protracted in a subject of this kind and whose 
breadth or altitude is designated by a line erected 
perpendicularly on the aforesaid base. And I 
understand by “linear quality” the quality of 
some line in the subject informed with a quality. 
 
That the quantity of such a linear quality can be 
imagined by a surface of this sort is obvious, 
since one can give a surface equal to the quality 
in length or extension and which would have an 
altitude similar to the intensity of the quality. But 
it is apparent that we ought to imagine a quality 
in this way in order to recognize its disposition 
more easily, for its uniformity and its difformity 
are examined more quickly, more easily and 
more clearly when something similar to it is 
described in a sensible figure. … Thus it seems 
quite difficult for some people to understand the 
nature of a quality which is uniformly difform. 
But what is easier to understand than that the 
altitude of a right triangle is is uniformly difform. 
… 
Now, just as the quality of a point is imagined as 
a line and the quality of a line by a surface, so the 
quality of a surface is imagined as a body whose 
base is the surface informed with the quality…. 
Moreover, since in any kind of a body there is an 
infinite number of equivalent surfaces and the 
quality of any one of them is imagined as a body, 
it is not unfitting but necessary that one body be 
imagined to be at the same time in the place 
where another body is imagined to be.  We can 
think of this taking place by penetration or 
mathematical superposition. … It does not 
happen that a fourth dimension exists or is 
imagined, still a corporeal quality is imagined to 
have a double corporeality: a true one with 
respect to the extension of the subject in every 
dimension and another one that is only imagined 
from the intensity of this quality taken an infinite 
number of times and dependent upon the 
multitude of surfaces of the subject. 

1. In modern terminology, ‘linear quality’ 
means a dependent variable y depending on 1 
independent variable, i.e. y=f(x).  
2. ‘Subject’ means the domain of x, in this 
case a line segment I. 
3. The surface referred to is the plane figure  
0≤y≤f(x), x in I. The “quantity” of the quality 
means the area of this surface or the integral 
of f over I. Note that the x and y axes are 
required to be perpendicular. 
4. Next, he says that any such quality can be 
graphed like this. Note that his qualities are 
always positive. 
 
5. Some such qualities are “uniform”, 
meaning f is constant, and others “difform”, 
meaning f is non-constant and he notes that 
one sees such things much better by making 
a graph, because it is then “sensible”, i.e. 
visible to the eye. 
 
6. Finally “uniformly difform” means the rate 
of change of y is constant, or equivalently the 
graph is a straight line and so it is part of the 
hypotenuse of a right triangle erected in the x 
axis. 
 
7. If a function is defined only at a point, it is 
represented by a single line segment; if it is 
defined on a line, its graph is a surface; if it is 
defined on a surface, its graph is a solid 
object. Note this graph is the set 0≤z≤f(x,y), 
(x,y) in I. 
 
8. Now he says, can we graph a function of 
three variables? We’d like to use a fourth 
dimension but this doesn’t exist, so he says 
we have to imagine the graph as having 
‘double corporeality’, consisting of 
superimposed objects. 
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Here are some of the examples of such graphs 
from his book. (a) is uniform, (b) is uniformly 
difform and the two examples in (c) are 
“difformly difform”. They are pretty basic: he 
didn’t engage in much real life data gathering but 
only in the theory of this. 
 
One thing he was very clear about is that the key 
thing about a graph is that its shape should depict 
accurately the ratios of the quality being 
measured against the true distances in the subject, 
an interval of space or time. Suppose you are 
graphing some quality like heat. You can choose 
any scale you want in the vertical axis by 

assigning some distance to a unit of heat; but regardless of what unit is chosen, if one 
measurement is twice another, the plot should be twice as high on one as on the other. If 
this is simple principle is violated, the graph is quite misleading. In recent times, Edward 
Tufte wrote a wonderful and quite famous book entitled “The Visual Display of 
Quantitative Information” which, in particular, inveighs against the absurdity of graphs 
that flaunt this basic principle. Here is a recent example from USA Today, where the 
‘bull’ market is forced to look like a bull’s horn in spite of the fact that the same data, 
plotted correctly climbs relatively a much more modest amount and it has nearly the 
opposite ‘S’ shape, (unlike the horn, it starts off steeply, then climbs less rapidly and ends 
with a steep increase).  
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Here’s another example from Tufte’s book: 
 

 
 
Note that the extreme fuel economy standards have a ratio 27.5/18, about 1.5, while the 
corresponding line lengths have a ratio 5.3/0.6, about 8.8, violating Oresme’s precept to 
accurately represent ratios by nearly 6. Tufte calls this a ‘Lie Factor’ of 15 (because a 
50% increase is shown as a 780% increase). Allow me to inveigh too: I think that if the 
educated public was used to reading accurately drawn graphs and to using this geometric 
presentation of an often complex situation to understand what the data shows, our ability 
to make sensible economic and political judgments would be vastly improved. 
 
Back to Oresme’s book. Oresme goes on to talk about many ‘qualities’ which he believes 
ought in principle to be graphed – he discusses temperature, pain and grace. The only 
requirement is that two instances of such a quality should have a ratio. It is a bit 
astonishing to see him propose that one person has been given twice as much grace as 
another, but he was a scholastic philosopher after all.  Although his qualities are always 
positive, from a modern point of view, you can see that he realizes something like 
negative numbers are needed when he talks about temperature as made up of the 
opposites hotness and coldness. This leads him to the idea of complementary graphs, 
where one, placed on the top of the other makes a constant total, i.e. f(x) and C-f(x). 
Although he never talks of oscillating qualities (which play such a key role for Galileo, 2 
centuries later), he does talk of ‘rough and difform’ qualities to describe a soul ‘occupied 
by many thoughts and affected by many passions’. Part II of his book is concerned 
specifically with functions of time and functions of both time and space. He illustrates the 
significance of graphs having specific non-linear or ‘difformly difform’ shapes by the 
example of the optimal force for throwing a javelin: if the force is the right function of 
time, one can make a better throw than if not. It is also interesting that he makes very 
little distinction between physical qualities that we know how to measure today and 
psychological qualities that still defy measurement. Here is a rather interesting passage 
about the measurement and graphing of pain in which you see that he understands 
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integration (II.xxxix). Pain is conceived of as a function p(t) of time. When he says that 
two pains p1(t) and p2(t) are ‘simply equal’, he is saying that they have the same integral! 
 
I suppose, therefore, that pain or sorrow is a certain quality of the soul which is extended in time 
and is intensifiable by degrees. Hence it is possible for two such qualities to be simply equal and 
yet for one to be more shunned and worse than another. This can happen in two ways: in one way 
as the result of an inequality in intensity, and in the other way as a result of a diversity in the 
configuration of their difformity. As an example of the first, let A and B be two pains, with A 
being twice as intensive as B and half as extensive. Then they will be equal simply … although 
pain A is worse than and more to be shunned than pain B. For it is more tolerable to be in less 
pain for two days than in great pain for one day. But these two equal and uniform pains when 
mutually compared are differently figured … so that if pain A is assimilated to a square, then 
pain B will be assimilated to a rectangle whose longer side will denote the extension and the 
rectangle and the square will be equal. 
 
Finally, in Part III, he basically defines the Riemann integral and evaluates the integral of 
several functions including some improper integrals where the graph goes to infinity or 
the domain, the subject, is infinitely long. Integration, you see, has much older roots than 
Newton and Leibniz. Perhaps the most important fact about integration that he discovered 

is that area under a linear graph is the product of the length 
of the base times the height of the graph at the midpoint of 
the base. The figure below is from one of the manuscripts 
of his book. In his words (III.vii): 
 
“Every quality, if it is uniformly difform, is of the same quantity 
as would be the quality of the same or equal subject that is 
uniform according to the degree of the middle point of the same 
subject” 
 
 In modern terminology: 

 ( )( ) .
2

b

a

a bCx D dx C D b a
  +  + = + −     ∫  

 
Here is a final example to show how far Oresme went with 
his primitive mathematics. He considers a ‘quality’ that has 
value n between points 2-n and 2-(n+1), so that it ‘blows up’ 
when x=0. The graph from his book appears on the left. By 
rearranging the blocks as shown in the figure to make one 
rectangle, he showed that the area is just twice the length AB 
times the height of the graph over A. Again, in modern 
terminology, he is approximating the evaluation of an 
improper integral: 

 
1

0

log(1/ ) 1x dx=∫  

Oresme’s assertion: 
area(ABDC) = 
area(ABGF) 
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Although Oresme did not discover the fundamental theorem of Calculus, he was very 
aware of one special case of this: that if you plot the velocity of an object as a function of 
time, then the area under this graph equals the distance travelled. 
 
 
Problems: 

(a) Suppose Marco Polo, on his return from China in 1295, had brought with him a 
marvelous oriental invention in which a Tibetan prayer wheel, a cylinder with many slots 
was spun around a brilliant light of burning phosphorus. (I’m making this up!) The 
Chinese had been delighted with its rapidly flickering light and the marvelous illusions it 
made when dancers were seen by its light. We moderns think of this device as an early 
precursor to a high frequency strobe light! IF Oresme had seen such a device, he might 
have related this to his theory of graphing. Write a paragraph in his style doing just this. 

(b) Either (i) find an example of an outrageous graph in some newspaper or magazine 
that violates Oresme’s and Tufte’s principles and hand it in together with a proper version 
of the same data or (ii) find some data of real interest to you and make an informative 
graph of it, describing what its ‘configuration’ tells you. 
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Chapter Four: Galileo and the leaning tower of Pisa 
 

With Galileo Galilei (1564-1642), we are entering the period of history that is much 
closer to us, that we can understand much more easily. Below is a time line of major 
Western mathematicians (mostly those who will come up in this course), and a few 
events to help one keep one’s bearings.  

 
Galileo lived just after the Renaissance, that wonderful 
storm of creativity, imagination and exploration. But 
before he was born, Luther had nailed his theses 
attacking corruption in the Catholic Church on the door 
of the Wittenburg Cathedral (1517) and Copernicus has 
published De Revolutionibus (1543) attacking the idea 
that the earth was the center of the universe. The Church 
was on the defensive, the counter-reformation and the 
inquisition had begun and scientists had to wary as 
Galileo found out all too well. In the middle of his life, 
Galileo became convinced that Copernicus was right that 
the earth turned about the sun. But the Church had 
decided this contradicted scripture, for example: 
     And the sun stood still, and the moon stayed, while 
    the nation took vengeance on its foes (Joshua 10:12) 
and had allowed Copernicus’s book to be published only 
as a scheme for more efficient calculations, not as 
presenting objective truth. They burned Giordano Bruno 
when he refused to comply. So Galileo adopted the 
strategy of writing a dialogue between three characters, 
Salviati, Sagredo and Simplicio. Salviati is clearly a 
stand-in for Galileo himself, Simplicio states the 
Aristotelian and Church positions (though not very well) 

and Sagredo is meant to be the intelligent man-in-the-street whom Galileo is seeking to 
convince of his ideas. His book was called ‘Dialogues concerning Two Chief World 
Systems’. and pits the Ptolemaic model with the sun revolving around the earth against 
the Copernican one. Ironically, one of his main arguments that the earth turned was based 
on the tides and was quite wrong. Moreover his ruse to get around the papal prohibition 
did not work very well and Galileo was hailed before the inquisition. There he was forced 
to renounce the Copernican model, reportedly, however, muttering under his breath as he 
left ‘Eppur si muove’ (But still it moves). He lived out the rest of his life under house 
arrest near Pisa. 
 
But what got Galileo into the ‘Natural Philosophy’ as a young man was not the traditional 
problems of the heavens but things that were much closer to home, like the motion of 
falling bodies and the trajectories of cannon balls. He realized that the laws of motions of 
such bodies on the earth’s surface should also be studied and measured and that when 
you actually checked, things didn’t happen at all the way Aristotle had written. Galileo’s 
forte was experimental science and his two major interests were mechanics and later 
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astronomy (he discovered the moons of Jupiter, sunspots and the rings of Saturn). His 
mathematical models were fairly rudimentary, more or less on the level of Oresme but his 
discoveries were far reaching. Not until Newton published Principia Philosophiae (1687) 
did the right mathematical models (and a clear general statement of the physical laws) for 
his ideas emerge.  
 
Galileo’s most famous experiment was certainly that of dropping two balls off the 
leaning tower of Pisa to see if they hit the ground at the same time. It is believed he did 
this in 1569 at age 25 or soon after. As in studying Oresme, it is much more interesting to 
hear Galileo tell the tale himself than simply to describe his ideas. He writes about this in 
the book ‘Dialogues concerning Two New Sciences’ published in 1638 when he was an 
old man under house arrest. 
 
Below and on the next page, we give an excerpt from Two New Sciences concerning the 
speed at which bodies fall. It begins in the middle of a speech by Salviati claiming that 
Aristotle is wrong on several points and probably never tested whether heavier and 
lighter bodies fall at the same rate. When Simplicio begins to quote Aristotle saying the 
heavier body falls faster, Sagredo interrupts and says that he has actually tried the test 
and they fell at the same rate. Then Salviati goes on a long ‘thought experiment’ about 
dropping two bodies of different weights, what happens when you tie them together or 
merely let the heavier stone fall while being on top of the lighter. Simplicio now is 
beginning to doubt. You see the idea: some experiments are referred to with no actual 
data but supplemented with some general argument from common sense. The dialog 
continues and after this passage, Salviati does acknowledge that the resistance of the air 
affects the speed of falling but claims that for heavy objects this is a secondary effect. 
This is also one of Galileo’s strengths: he realized that in many situations one should 
describe the main effect and ignore small discrepancies as being due to other causes. 
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Galileo was very concerned with finding the actual law obeyed by projectiles fired off at 
some angle, including ones simply dropped and by bodies falling down inclined planes. 
His piece de resistance was his deduction of the law 

 2

2

x at
gy bt t

=

= −  

for a projectile with initial speed (a,b) where g denotes the acceleration downwards due 
to gravity and where we ignore the resistance of air. Three key things should be noted: (i) 
the mass of the body does not appear (hence two falling bodies or projectiles of different 
mass move in lock step), (ii) except for gravity, the velocity would be constant and (iii) if 
you solve the first equation for t: t=x/a and substitute this into the second equation, you 
find that the path of the projectile is a parabola, specifically: 

 ( )22
22

2
gy b g x ab g
a

− =− −  

Note that when a=b=0, we have the case of a falling body starting at rest and the formula 
is simply y = –gt2/2.  Now Galileo did not use equations to work this out! Algebra had 
been around since the Babylonians, continuing through Diophantus in Alexandria, al-
Khwarizmi in Baghdad and Cardano in renaissance Italy, but it was more an esoteric art, 
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not a general purpose language for use in any numerical study. Galileo preferred to use 
the tried and true methods of Euclid. Here is how he derived this law: 
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Let’s go through this passage in some detail. It starts with a Theorem stating the same 
result that we saw in Oresme: if the velocity of a body increases at a constant rate over 
some time interval, then the total movement is the same as if its velocity had a constant 
value equal to what it was the exact middle of the time interval. It is interesting to 
speculate whether or not Galileo had read Oresme’s work. He never cited Oresme and in 
the absence of great libraries (and the internet), it was a matter of accident whether he 
had seen a copy of this manuscript. However this rule was also known to the scholastic 
Swineshead at Merton College, Oxford, in the 14th century and many others in the 
intervening 2 centuries and it seems probable that these ideas came down somehow to 
Galileo, directly or indirectly. Note that his proof of this fact is entirely in the spirit of 
Euclid.  
 
In the previous several pages, he had been discussing the basic equation for a body 
moving at constant speed: 
distance = (velocity) x (time) 
But instead of writing this algebraically, he states three separate theorems, namely if you 
fix the velocity, then the distance moved are proportional to the time elapsed; if you fix 
the time interval, then the distance moved is proportional to the velocities; and if you fix 
the distance travelled, then the velocities are inversely proportional to the time elapsed. 
After that come three more theorems in which two of the qauntites are varied and the 
change in the thrid is described as a ‘compound ratio’! All this seems very strange to us, 
as we are accustomed to the simplicity of putting everything together in the simple 
formula above. But the huge advantages of using algebra became obvious and universally 
used only a century later. 
 
The next Theorem draws the conclusion that the distance fallen is proportional to the 
square of time. But the idea of the expressing this as a formula is again thought very 
abstract and Sagredo pitches in with what he views as a better way to see it. This is that 
the distance a body falls in successive equal time intervals will be like the sequence of 
odd numbers 1,3,5,7,… (because 3 = 22-12, 5 = 32-22, 7 = 42-32, etc.) Which way of 
expressing these facts do you find most elegant and memorable? Not to belabor a point, 
but it turns out that Oresme had also stated both these results in another work of his: 
Questions on the Geometry of Euclid.  
 
Then comes one of the most interesting parts: Simplicio asks for empirical evidence that 
this actually happens. And finally, Galileo goes into some detail on what we nowadays 
call the ‘Methods Section’ of a science paper. He describes how ‘scantlings’ are given a 
groove, polsihed, etc. and balls rolled down them. Note that he uses balls rolling down 
inclined planes instead of freely falling objects. He argues elsewhere that they obey the 
same sort of rule and, as the speed is much less, he can measure them better. This passage 
is a real window into 16th century technology. 
 
Later in the book he comes to projectiles and the fact that their orbits are parabolas 
(neglecting air resistance). You’ve probably read enough Galileo and we won’t reproduce 
this as well. He actually computes the first ‘ballistic tables’, indicating altitudes and 
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ranges of missiles fired at various angles. But I can’t resist including a reproduction of 
one of his folios on which he apparently was actually testing his parabolic trajectory law: 
 

 
 
We will come back to Galileo twice, as his interests touched on many important things 
that were more fully developed later – especially his interests in the pendulum and in 
music. But to make our story a bit more coherent, it’s easier to go on next to Newton. 
 
Problems: 
(I) Suppose Galileo had at his disposal a primitive strobe light, as described in the last 
Chapter. Write some dialog between Salvatio, Sagredo and Simplicio in which this strobe 
is cited for its relevance to some of Galileo’s (Salvatio’s) theories. 
 
(II) Here is a composite photograph of a 
squash ball being thrown up in front of 
my blackboard (created from a digital 
camera set in movie mode). 
 
a) First either print out this photo to fill a 
piece of paper or, much better, bring it 
up in a program that allows you to track 
the cursor position (e.g. Microsoft photo 
editor). Then you can measure the 15 
positions (xi,yi) of the ball in its arc. Note 
that because of the exposure time, each 
shot shows a blurry streak rather than a 
ball. I suggest you measure both the 
initial and final position of the ball as accurately as possible. This way, you get a good 
measure of the velocity as well as the position at 15 times. Also, measure the outer 
corners of the backboard, which, in the world is 4 feet by 8 feet: this way, you can 
convert the measurements of the ball position into feet (I know there is perspective 
distortion: ignore this). The frame rate for the movie was 15 frames per second, so we 
have good time measurements too. 
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Secondly we want to analyze how well these conform to the equations of motion given 
by Galileo.  

b) Put these numbers in columns in Excel (e.g. the time in column A, starting at 0 and 
adding 1/15 sec for each observation, and then your measurements in the next columns) 
or in vectors in MatLab (one vector for each set of 15 measurements).  

c) Next look at velocities. Compute the horizontal and the vertical velocities as a function 
of time. You can either use differences between the first and last point of each streak 
made by the squash ball or the difference between the first points of consecutive streaks. 
Plot the both the horizontal and vertical velocity -- call them u and v -- against time and 
print this out. Fit a straight line to each: is the horizontal velocity roughly constant as 
predicted or not? Don't expect the law to be followed exactly: there is air resistance as 
well as projective distortion (the camera viewing geometry). Find the time t0 when the 
vertical velocity is zero by the zero crossing of the fitted line (this need not be exactly at 
any single observation but may be between them). Measuring the slope of the line fitted 
to vertical velocity, estimate the vertical acceleration downwards (which we call g). 
 
d) Then look at positions. Fit Galileo's law this way. For horizontal motion, take the 
average u  of the horizontal velocities found above and fit the horizontal position with 

0x ut x≈ + . Then graph the predicted x as well as the measured x and see how close they 
come to each other. Print out this graph. For vertical positions, in part c, we have 
estimated the high point t0 of the trajectory as well as the acceleration downwards g. So 
the predicted vertical position should be 2

0 0( ) 2g t t y− +  where y0 is the position of the 
ball at the apex of its trajectory. Estimate y0, plot the predicted y and the measured y 
against time and print this out. Finally make a plot of the predicted x and y (no time 
shown) and the measured x and y from the photo and see whether the shape of the 
trajectory has come out right! 

 
  
 


