
 1

Chapter Eleven: Fourier Series and Spectrograms 
 

We have skirted around three obvious questions: 
• Is every periodic function y(x) satisfying ( ) ( )y x p y x+ =  for all x and some fixed 

period p given by a so-called Fourier Series,  a sum of sines and cosines: 
0 1 1 2 2( ) sin(2 / ) cos(2 / ) sin(4 / ) cos(4 / )y x B A x p B x p A x p B x pπ π π π= + + + + +

or (using the rule that sin( ) cos( )A x B x+  can be rewritten as sin( )C x D+ ), by a 
sum of sines with phase shifts: 

0 1 1 2 2( ) sin(2 / ) sin(4 / )y x C C x p D C x p Dπ π= + + + + +  
• Is every function y(x) with y(0) = y(L) = 0 a sum of sinusoids like this: 

1 2 3( ) sin( / ) sin(2 / ) sin(3 / )y x C x L C x L C x Lπ π π= + + +  
• Is every solution of the vibrating string equation of the form written down by 

Euler: 
1 1 2 2

3 3

( , ) sin( / ) cos(2 ) sin(2 / ) cos(4 )
               + sin(3 / ) cos(6 )
y x t C x L ft D C x L ft D

C x L ft D
π π π π

π π
= ⋅ + + ⋅ + +

⋅ + +
 

 
The first arises in our description of a singing voice in Chapter 9, the second and third in 
our description of a vibrating string in Chapter 10. The answer to all these questions is 
YES to both IF you’re a little careful about how jumpy and erratic the functions y are 
allowed to be and about how you go about adding up the infinity of terms of higher and 
higher frequency. (These ‘IF’s are the typical questions that can occupy months – years 
even – of study in higher math courses but that are usually irrelevant for applications and 
computations.)  Their truth was one of the most important mathematical discoveries of 
the 18th and 19th century. The ‘take home message’ is that writing a function as a sum of 
sines and cosines is as important as writing a function as a polynomial: both are universal 
tools that display basic parameters in the functions makeup. 
 
Relationship between the three bullets: 
(a) The second bullet follows from the first because we can get sine series as a special 
case of Fourier series as follows. If y(x) is defined between 0 and L and is zero at 0 and L, 
then first extend y to a function between –L and 0 to have values –y(–x) and then make y 
into a function defined for all values of x by making it periodic with period 2L. Then the 
Fourier expansion of this periodic extension y turns out only to have sine’s in it because y 
is ‘odd’, y(–x)=–y(x) for all x, and so we get the sine series. [FIGURE FOR THIS] 
 
(b) If we know that Fourier and sine series always exist, then we also know that these 
series give all the solutions of the vibrating string equation – the third bullet. This is 
because we saw from the difference equation approach to the PDE that if we know where 
y starts and its rate of change, i.e. y(x,0) and yt(x,0), then the vibrating string equation has 
only one solution continuing these. So we just need to write out the two sine series: 

 
( )

1 2

1 2

( ,0) sin( / ) sin(4 / )
( ,0) 2 sin( / ) 2 sin(4 / )t

y x B x L B x L
y x A x L A x L

π π
π π π

= + +
= + +

 

and contrive the C’s and D’s so that 
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 sin(2 ) cos(2 ) cos(2 )k k k kA kft B kft C kft Dπ π π+ = +  
With this choice of C’s and D’s, the function in bullet 1 is easily seen to have the right 
values of y(x,0) and yt(x,0).  
 
The theorem that all, not too erratic, periodic functions y(x) have Fourier expansions has 
one of the most curious histories one could imagine. Euler, who found and published 
such expansions for all the basic functions and who loved manipulations of this kind, 
resisted strongly the idea that every function could be so expanded. The great 
mathematicians of the 18th century were polarized: on one side, the mathematicians who 
leaned to ‘pure’ mathematics, Euler, D’Alembert and Lagrange, insisted that functions 
given by Fourier series were special but, on the other side, the truly applied 
mathematicians and mathematical astronomers, Bernoulli and Clairaut, believed it was 
true. Fourier, after whom these series are named, was a 19th century polymath, who split 
his career between teaching and serving as prefect in various Departments of France, and 
applied these series to understand the spread of heat in the earth. Although not the 
inventor of ‘Fourier series’, he claimed strongly that they did represent all periodic 
functions and stimulated the rigorous theory of these series whose twists have continued 
to this day1. 
 
The best way to understand what was at issue is to look at an example. Euler had the idea 
that a sum of trig functions could be made to add up to any y(x) that could be given by a 
single closed formula, such as a polynomial. But he also introduced what was then a 
radically new idea of what a function 
was: it could be given by one formula 
for some values of their argument and 
another function for others (or it might 
even be a freehand curve, drawn by 
hand). He called these discontinuous 
because the formula for them changed 
abruptly even though their value need 
not jump or anything. A typical 
example of a function that we call 
continuous, but Euler called 
discontinuous, is the tent function: 
 

( ) | | ,       if  0 / 2
( ) | |,  if / 2

y x x x L
y x L x L x L
= ≤ ≤
= − ≤ ≤

 

 
which is shown on the right for L = 1. Euler felt he could expand the first part and the 
second half into trig functions but not the combination of the two. But he was wrong. The 
answer is this (with L = 1 for simplicity): 

                                                 
1 The key issues are how erratic a function can be to be expanded in such a series and in what sense this 
infinite series converges for increasingly wild functions. The upshot is that ‘any’ periodic function y(x) has 
a unique Fourier expansion but at a very small number of points where y is erratic, e.g. it jumps, the series 
may not converge. 
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 21 1( ) sin( ) sin(3 ) sin(5 ) ,  where 4
9 25

y x C x x x Cπ π π π
 = − + − =  

 

This is not irrelevant to music: the above shape is a plausible way to pluck a string and 
the expansion shows that it produces all odd harmonics, that is the note itself, then its 
third harmonic, then its fifth, etc. Let’s graph this expression truncating the infinite sum 
of sines – thus check it numerically, and then we’ll see how to find such facts.  
 
 
Here is a plot of three approximations to the 
tent curve,  (a) with a single sine, (b) with 
two sines  sin( ) sin(3 ) / 9x xπ π−  and (c) 
with  five sine terms of frequencies 1,3,5,7 
and 9. It gets close to the tent everywhere 
except at the peak, but eventually, the trig 
sum will get close at the peak too (though 
each finite sum will be round at the peak of 
the tent if you look closely). 
 
 
Where did we get these strange coefficients 
1/9, 1/25 etc and outside everything 4/π2? 
There’s a simple trick that can be used based 
on a trig identity. This is the formula: 
 

( ) ( )( )1cos(2 )cos(2 ) cos 2 ( ) ( ) cos 2 ( ) ( )
2

at D bt E a b t D E a b t D Eπ π π π+ + = + + + + − + −

 
This means that if you multiply two sinusoidal functions of frequencies a and b, then the 
result is a sum of sinusoidal functions of frequencies a+b and a-b. We use cosines here 
instead of sines only to make the formula a bit simpler – just add π/2 to the arguments 
and the cosines become sines. This formula is just the result of rearranging the addition 
formula for cosines 

 
:     cos( ) cos( )cos( ) sin( )sin( )

:      cos( ) cos( )cos( ) sin( )sin( )
: c

Add
and
getting os( ) cos( ) 2cos( )cos( )

x y x y x y
x y x y x y
x y x y x y

+ = −
− = +
+ + − =

 

 
This formula is one of the key reasons why periodic sines and cosines are so versatile. 
 
Now, going back to our Fourier expansion of the tent function, if we want the coefficient 
of the first term sin(πx), we multiply both sides of the equation by sin(πx), so that the 
equation reads: 

2 1 1sin( ) ( ) sin ( ) sin( ) sin(3 ) sin( ) sin(5 )
9 25

x y x C x x x x xπ π π π π π
 ⋅ = − ⋅ + ⋅ −   
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The point is that 2sin ( )xπ  is never negative while the other terms on the right are again 
sinusoids and have equal positive and negative swings. In fact, the average value of 

2sin ( )xπ  is ½ and the average value of the others is 0. So just integrate both sides of the 
equation between 0 and 1 and we’ll get an equation that can be solved for C! 
 
Let’s check the details here: 

a) By the identity above with a=b=1/2 and D=E=π/2, we get 
( )2sin ( ) 1 cos(2 ) 2x xπ π= − . So 2sin ( )xπ  has average ½.  The same identity 

shows that the other terms are ½(cos((n-1)πx)–cos((n+1)πx)) and now both cosine 
terms have average 0.  

b) We conclude
1 1

2

0 0

( ) sin( ) sin ( ) / 2y x x dx C x dx Cπ π= =∫ ∫ . 

c) Now the integral on the left is easy to compute if you remember a trick from 
calculus – integration by parts. It works out like this (but just accept this if you 
want): 

1 1/ 2

0 0
1/ 21/ 2

1/ 2
20

00

( ) sin( ) 2 sin( )

2 2 sin( ) 2                           cos( ) cos( ) 0

y x x dx x x dx

xx x x dx

π π

ππ π
π π π π

=

      = − + = + =      

∫ ∫

∫
 

d) Thus C = 4/π2! 

e) This trick works to get all the coefficients. Using (a) and (b), we first show that 
the coefficient of sin(nπx) is equal to 2 ( )sin( )y x n x dxπ∫ . This is easily worked 

out by integration by parts as in (d) and that it equals 0 if n is even, and equals 
(2/nπ)2 if n is odd. 

In fact, we can expand any periodic function into a sum of sines and cosines, finding its 
coefficients by the above trick, known as the orthogonality of the trig functions, the fact 
that the average value of products of different trig functions is zero. We give another 
example in the problem below.  

Let’s formulate the general rule. Suppose y(x) is now any periodic function, with period 
p. That is, ( ) ( )y x p y x+ = for all x. Then y(x) can be written uniquely as an infinite sum 
of trig terms: 

 0 1 1 2 2( ) sin(2 ) cos(2 ) sin(4 ) cos(4 )x x x xy x B A B A B
p p p p

π π π π= + + + + +  

 
Moreover, the coefficients can be found by: 
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0

0
0

0

2 sin(2 ) ( ) ,

1 ( )

2 cos(2 ) ( ) ,  if 0

p

k

p

p

k

xA k y x dx
p p

B y x dx
p

xB k y x dx k
p p

π

π

=

=

= >

∫

∫

∫

 

This called the Fourier Series for y(x). Of course, each sine/cosine pair can be rewritten: 

 sin(2 ) cos(2 ) sin(2 )k k k k
x x xA k B k C k D
p p p

π π π
 + = +    

 

where 2 2
k k kC A B= +  is called the amplitude of the kth harmonic and Dk its phase ( 2

kC  is 
called its power). 

There’s a beautiful graphical way to display music using Fourier series that is the 
mathematical version of a musical score! It’s called a spectrogram. All you need to do is 
break the sound up into ‘windows’ and expand each piece into a Fourier series as above 
and make a picture out of the amplitude of the various harmonics in each window. What 
you do exactly is take a ‘window function’, a smooth hump-like function (a) zero outside 
the window, (b) 1 on 90% of the window and (c) with shoulders near the beginning and 
end of the window. You multiply the sound by this window function and treat the product 
as though it were a periodic function, wrapping the beginning and end of the window 
together. Then it expands as a Fourier series by the formula above. [NEED FIGURE]  

In the figure on the next page, the amplitude of the coefficients has been graphed by 
colors (another twist on Oresme’s precepts!). 

[EXPAND SECTION ON MODULATION] The formula above which showed that the 
product of two sinusoids of frequencies a and b was the sum of sinusoids with 
frequencies a+b and a-b has another immensely important application in communication. 
This is the idea of modulation, of combining many slow messages into one very fast 
message. The idea is to take, for instance, a human voice given by the air pressure 
function y(t) which varies ‘slowly’, e.g. in the figure above, it is made up of vibrations in 
the range 60-6000 hertz, and multiply this function by a carrier wave c(t)=sin(2πft) of 
much higher frequency, like 1,000,000 hertz (AM radios) or 100,000,000 hertz (FM 
radio, TV). Then – taking the old-fashioned AM case – the product y(t).c(t) is a sum of 
sinusoids of frequencies between 994,000 and 1,006,000 hertz. [FIGURE HERE] If you 
want to broadcast many stations at once, each station uses carrier frequencies spaced at 
least 20,000 hertz apart. If station 1 sends voice y with carrier c at 1,000,000 hertz and 
station 2 sends voice z with carrier d at frequency 1,020,000 hertz then the total signal s(t) 
is: 
 ( ) ( ) ( ) ( ) ( )s t y t c t z t d t= +  
The frequencies of the first term are in the range 994,000 to 1,006,000 and the second in 
the range 1,014,000 to 1,026,000. These frequencies do not overlap, so by the Fourier 
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trick, we can pull them apart and recover the two voices y and z. By this trick, we 
multiply the signal s(t) by sinusoids in the range 994,000-1,006,000 and average and we 
get back the Fourier coefficients of y(t) hence we get back y(t). It’s actually easier than 
this: you just multiply s once by the carrier c, which, after all is just a single sine wave of 
frequency 1,000,000 and you get: 
 2( ) ( ) ( ) ( ) ( ) ( ) ( )s t c t y t c t z t c t d t= +  
and by taking the right kind of average over windows of size 1/20,000-second (a so-
called ‘low-pass filter’), [MOLASSES] you can eliminate the second term and reduce 
c(t)2 to a constant and out pops y again. All this is basically a fancy version of the method 
used to recover the coefficients of the tent function expansion by making one term 
positive while the others oscillate.  
 
The idea of modulating multiple low frequency signals onto carriers at suitably spaced 
high frequencies and adding has been the source of all our ability to communicate 
efficiently until quite recently, when optical fibre, ‘solitons’ and digital signals have 
taken over (see Chapter ??).The spectrogram of the major scale sung by a female voice.  

The 8 vertical strips show the 8 notes do, re, mi, fa, sol, la, ti and do. The dark horizontal 
lines in each strip represent strong harmonics present in each note: the lowest is the 
fundamental, then the second harmonic etc. Ti for example shows only the fundamental 
and the fifth harmonic and also has a marked trill. La shows significant power in the 11th 
harmonic. Note the dark high frequency signal between fa and sol: this is called ‘white 
noise’ and what happens when you speak an ‘s’.  It also occurs as a burst in the stop 
consonants ‘t’ and ‘d’ of ti and the final do. 



 7

Chapter Twelve: The Square Root of -1 and Complex Numbers 
 

We have been concerned with the line of development of mathematics that started with 
Galileo and Newton and centered on the issue of predicting the evolution of the physical 
world with the aid of differential equations. We could continue, but an new and 
completely unexpected element enters the story in the 18th century, the gradual 
understanding that a completely new type of number was extremely useful for calculating 
the progression of events in the world. These new numbers are called “complex numbers” 
and are based on the introduction of the square root of minus one. Although we could 
skip this if we were trying to explain, in simplest terms, the mathematical models of 
waves with differential equations, the story of the square root of minus one is such an 
amazing one, such an unexpected twist, that it begs to be included. Of all the devices that 
mathematicians have found and used to model nature, this one seems – to me at least – as 
if God decided to throw us a curve ball, something unexpected, something that ‘needn’t 
have been so’ but nonetheless really is true. My Aunt, studying maths at Girton College 
nearly a hundred years ago, called the square root of minus one a ‘delightful fiction’. 
Modern scientists, however, take complex numbers for granted, FORTRAN makes them 
a predefined data type, and they are standard toolkit for any electronic engineer.  Perhaps 
the most remarkable fact about complex numbers is that they are absolutely essential to 
quantum mechanics: in this theory, not only can the universe exist probabilistically in two 
states at once, but the uncertain composite state is constructed by adding the two simple 
states together with complex coefficients, introducing a complex ‘phase’, as we shall 
describe below.   
 
Over millennia, many cultures have wanted to solve polynomial equations. Along with 
trying to make sense of the planets and the moon, solving quadratic equations appears as 
a strange mathematical obsession with so many cultures. Already in 1800 BC, we find 
Babylonian clay tablets posing problems like: 
 
“I have multiplied length and breadth and the area is 10. The excess of length over 
breadth I have multiplied by itself and this result by 9. And this area is the area obtained 
by multiplying length by itself. What are the length and breadth?” 
 
This translates in modern terms into: 

 
2 2

length, breadth
10

 and 9( )

L B
L B
L B L B L

= =
⋅ =
> − =

 

which leads to a quadratic equation for L2 and has solution 15L = . There is always an 
issue when you do this: what sort of numbers are allowed as solutions? Usually, this 
meant positive real numbers as both negative numbers and square roots of negative 
numbers were not legitimate. But both the Chinese and the Indians introduced negative 
numbers, for example to represent debts. The 12th century Indian mathematician 
Bhaskara addressed the issue of square roots explicitly: he states that positive numbers 
have 2 square roots, the usual positive one and its negative – but that negative numbers 
have no square roots. He was well acquainted with the fact that the product of a negative 



 8

and positive number is negative while the product of 2 negative numbers is positive. 
Incidentally, he also said when he found an equation with one positive and one negative 
solution: “The (negative) value is in this case not to be taken, for it is inadequate; people 
do not approve of negative solutions”.   
 
In the late Renaissance (c.1500-1550), it became a sporting competition for Italian 
mathematicians to challenge each other to solve various higher degree equations. Ferro, 
Tartaglia, Cardano and Ferrari were players. But Girolamo Cardano (1501-1576) spoiled 
the game by publishing their secrets in his famous book Ars Magna (The Great Art) in 
which the general procedure for solving third and fourth degree equations was explained. 
He was a boisterous figure, interested in everything, a gambler who was jailed for casting 
the horoscope of Jesus. But in his book, negative numbers were treated with suspicion 
and called fictitious solutions. Fourth powers were likewise a game – squares stood for 
areas of squares, cubes stood for volumes of cubes, but, in the absence of a fourth 
dimension, what should one make of fourth powers? Believe it or not, as recently as 
1831, Augustus de Morgan, Professor of Mathematics at University College London 
could say:  
 
“The imaginary expression a−  and the negative expression –b have this resemblance, 
that either of them as occurring as the solution of a problem indicates some inconsistency 
or absurdity. As far as real meaning is concerned, both are equally imaginary, since 0-a 
is as inconceivable as a− .” 
 
These sound like silly scruples to us now. But once you play games with formulas to 
solve equations, not only do you find it much easier to allow negative numbers and fourth 
powers, but you find it hard not to take square roots of all numbers. Cardano, in 
particular, found a very strange thing: his formula for the solutions of cubic equations, 
which usually worked fine, sometimes involved intermediate steps which were square 
roots of negative numbers, even when the final answer should be an honest positive real 
number! He ends his book saying “So progresses arithmetic subtlety, the end of which, as 
is said, is as refined as it is useless”.  His point of view was the same as my Aunt’s. 
  
So how should we look at ‘numbers’ like a−  today. Firstly, we adopt modern notation 
and represent 1−  by the innocuous symbol i. (Some people, particularly electrical 
engineers, refer to the same quantity by j.) All you have to remember is that 2 1i = − . 
Then multiples of i like i/3 and 2 i⋅  are called imaginary  numbers (in distinction to 
real numbers like -2.16 and +π) and they multiply in the usual way:  
 ( ) ( ) ( ) 2ai bi ab i ab⋅ = = −  
It is easy to see with this sort of calculation that all negative numbers now have square 
roots of the form ai. If we now add a real and an imaginary number we get a number like 
-3.1 + 2.6i which is called complex. We simply define a complex number to be a sum 
a+bi for any real numbers a and b. To show that a complex number should be thought of 
as a single entity, we often represent x+iy  by a single symbol z.  The (real) number x is 
called the real part of z, written Re(z), and y is called the imaginary part, written Im(z). 
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The miracle is that once we have allowed ourselves to take this bold step, we are done!  
Using the usual rules of arithmetic, we can mechanically add, subtract and multiply to our 
heart's content: no contradictions arise and no new kinds of `numbers' will ever appear.  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2

a ib c id a c i b d
a ib c id a c i b d
a ib c id ac ibc iad i bd ac bd i bc ad

+ + + = + + +
+ − + = − + −
+ ⋅ + = + + + = − + +

 

Division is a bit harder, but there is a simple trick that makes it clear there is only one 
possible way it could work.  Every complex number a+ib has a sort of twin, called its 
‘conjugate’ which is given by a-ib – just change the sign of the imaginary part. This is 
because there is really no difference between i and –i. Then you divide like this: 

 
( ) ( )
( )

2

2 2 2 2 2 2 2 2 2

( )
( )

a ib c ida ib ac iad ibc i bd ac bd i bc ad ac bd bc adi
c id c id c id c i d c d c d c d

+ ⋅ −+ − + − + + − + −   = = = = +   + + ⋅ − − + + +   
 

Even more strikingly, in the mid 18th century, D’Alembert showed that really remarkable 
fact that no further fictitious or imaginary numbers need to be invented in order to solve 
all possible polynomial equations: every nth degree equation has n roots if you allow them 
to be complex numbers. This was called the fundamental theorem of algebra, a 
reasonable name since it capped more than 3 millennia of solving polynomial equations. 
In spite of all this, there was an air of unreality about them. Felix Klein writes about the 
attitude of enlightenment mathematicians toward complex numbers as follows: 

“Imaginary numbers made their own way into arithmetic calculations without the 
approval, and even against the desires of individual mathematicians, and obtained 
wider circulation only gradually and to the extent that they showed themselves 
useful”. 

 
A key step in taming complex numbers was 
them see them geometrically. Negative 
numbers seem much less daunting when you 
just say they represent points to the left side 
of the origin on the x-axis (or numbers 
below the zero point on your thermometer). 
Representing all the points on a line by 
positive and negative numbers makes it 
seem inevitable to include them on an equal 
footing as legitimate numbers. This can be 
done with complex numbers by representing 
them as points in a plane. The idea goes 
back to John Wallis in his 1685 book 
Treatise on Algebra. He was concerned with 
making a picture to describe the roots of a 
quadratic equation even when the quadratic 
formula requires you to take the square root of a negative number. He says, take a line 
with an origin, the positive and negative reals being to its right and left. Then represent 
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a+ib by going a distance a along this line and then a distance b along a perpendicular 
line. This is shown in the figure above where the man is standing at the origin, his house 
is at the point 2+3i, and his office is at the point 2-3i. This geometrical representation 
appears again, much more fully developed, in the work of a Norwegian surveyor, Caspar 
Wessel (1745-1818), who found that using complex numbers to represent his 
observations made many calculations much simpler. It finally became the accepted way 
of understanding complex numbers in the work of Carl Frederich Gauss (1777-1830), the 
greatest mathematician since Newton. 
 
What Wessel realized is that, in this planar representation of complex numbers, 
multiplication becomes extremely simple: multiplying all the points in the plane by a 
fixed complex numbers x+iy has two effects: it stretches (or shrinks) everything by some 
factor r and rotates the plane around the origin through some angle θ. To see this, we 
merely need to change to polar coordinates: 

 Let cos( ), sin( ),
then (cos( ) sin( ))

x r y r
z x iy r i

θ θ
θ θ

= ⋅ = ⋅
= + = ⋅ +  

Here 2 2r x y= +  is called the absolute value |z| of z, the distance of z from the origin 
and arctan( / )y xθ = is called the argument arg(z), the angle which a line from z to the 
origin makes with the positive x-axis  The special complex numbers cos(θ)+isin(θ) are the 
points on the unit circle (because cos2+sin2 = 1).  Now multiply 2 complex numbers 
expressed in polar coordinates: 

 ( ) ( )
( )

cos( ) sin( ) cos( ) sin( )
           (cos( ) cos( ) sin( )sin( )) (cos( )sin( ) sin( ) cos( ))
r i s i

rs i
θ θ φ φ

θ φ θ φ θ φ θ φ
+ × + =

− + +  

At first sight, this is a mess. But we use again the somewhat cumbersome addition 
formulas for sine and cosine: 

 sin( ) sin( ) cos( ) cos( )sin( ),
cos( ) cos( ) cos( ) sin( )sin( ).

x y x y x y
x y x y x y
+ = +
+ = −  

Then the above simplifies to: 
( ) ( )

( )
( )

cos( ) sin( ) cos( ) sin( )
           (cos( )cos( ) sin( )sin( )) (cos( )sin( ) sin( ) cos( ))
           cos( ) sin( )

r i s i
rs i
rs i

θ θ φ φ
θ φ θ φ θ φ θ φ
θ φ θ φ

+ × + =
− + + =

+ + +
 

In other words, multiplying geometrically multiplies the distances r and s from the origin 
and adds the angles θ and φ the points make with the x-axis. The pair of figures below 
show the result of multiplication by 1+i (on the left, blue circles going to red circles) and 

by powers of 30.8
2 2

i 
+  

 
 and its inverse (on the right: the red fox being carried in the 

spiral by successive powers). Note that the absolute value of these are 2  and 0.8, so 
one expands, the other contracts. One rotates by 45 degrees, the other by 30 degrees. It is 
this ability to handle rotations as well as expansions and contractions that makes complex 
arithmetic so handy – to mathematicians as well as surveyors. 
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Euler, who loved formulas with all his heart, found a link between trigonometry and the 
square root of minus one and comes up with the most beautiful formula of all, the 
formula which established the importance of complex numbers once and for all.  
 
To explain his idea, we have to go back to some a really simple differential equation 
which we skipped over when we were developing the consequences of Newton’s laws. In 
Newton’s language, suppose you have a fluent whose rate of increase is proportional to 
its value. This sort of growth is familiar to us in interest bearing bank accounts: the rate 
of growth is constant so the absolute growth is proportional to money in the account. And 
if the rate is negative, so we get shrinkage instead of growth, it well known from 
radioactive decay: in any period of time, a fixed percentage of the Uranium (for example) 
will decay. This leads to a simple formula connecting the fluent to its fluxion, i.e. the 
function to its derivative: 
 ( ) ( )x t ax t=  
 
This equation is not in Newton’s form: it doesn’t express the acceleration of x in terms of 
positions and velocities but is simpler and expresses the velocity or rate of change of x 
directly in terms of the value of x. In finite difference, computer-ready form we can 
express it: 

 
( )

( ) ( ) ( )

( 1) ( )
( ), which works out to be:

( 1) ( ) ( ) 1 ( )

x k t x k t
ax k t

t
x k t x k t t ax k t a t x k t

+ ∆ − ∆
= ∆

∆
+ ∆ = ∆ +∆ ⋅ ∆ = + ∆ ⋅ ∆

 

Thus the solution is simply ( ) (1 ) (0)kx k t a t x∆ = + ∆ . If a is positive, x is growing 
exponentially and if a is negative, it is shrinking exponentially. Suppose t is measured in 
years and a=0.1. Then this shows the interest on a bank account yielding 10% per year. 
∆t is simply the interval at which interest is posted. Thus if interest is paid monthly, then 
∆t = 1/12 and after k months you have (1 0.1/12) (0)k x+ dollars. The differential equation 
corresponds to interest being compounded continuously. Suppose the interest rate is 
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100%, i.e. a = 1, and suppose you start with $1.00 in the bank. If the interest is credited 
once a year, you have $2.00 after 1 year. If it is credited quarterly, you have 

4(1 1/ 4) $2.36+ ≈  at the end of the year. If interest is compounded daily, you 
have 365(1 1/ 365) $2.71+ ≈  at the end of the year. If, however, it is compounded after 
every infinitesimal passage of time, the money you have turns out to be $2.71828.... 
which is one of those numbers, like π, which don’t have a simple expression, so we give 
them a name – in this case e, after Leonard Euler. The solution to the boxed equation, 
which stands for continuous exponential growth, growth proportional to how much you 
have (‘To him who has, more shall be given’, Matt 20:21) is just: 
 ( ) (0)atx t e x=  
where e = 2.71828..., which you should remember from ‘intro calc’. If a<0, then a 
common example is that of radioactive decay, the amount for example of Uranium 
present after some lapse of years. By the way, the computer gives us the approximation 

( )( ) 1 / (0)nx t at n x≈ +  if we use /t t n∆ = , so we see that 

 ( )1 / ,  with equality in the limit for nate at n n≈ + →∞  
 
Note that changing the constant a in the equation has the effect of making time go faster 
or slower. If a is increased, then the rate of change of x is faster and the whole future 
unravels at a faster pace; while if a is decreased, the future comes to pass at a slower rate. 
We will see this again and again, when the constants in these differential equations are 
considered. 
 
Now, following Euler, we are going to put together exponential growth with the complex 
numbers. We saw above that: 
 ( ) ( ) ( )(*)       cos( ) sin( ) cos( ) sin( ) cos( ) sin( )i i iθ θ φ φ θ φ θ φ+ ⋅ + = + + +  
This has as a Corollary a formula that DeMoivre had found a few years before Euler got 
involved. If θ=φ, then we get  

 ( )2cos( ) sin( ) cos(2 ) sin(2 )i iθ θ θ θ+ = +  

and if we take θ=2φ and combine it with the previous formula, we get: 

( )3cos( ) sin( ) cos(3 ) sin(3 )i iθ θ θ θ+ = +  
 Proceeding by induction, we get deMoivre’s formula: 
 ( )cos( ) sin( ) cos( ) sin( )ni n i nθ θ θ θ+ = +  

But it was Euler who made the next wonderful leap: fix the product φ=nθ but let n get 

larger and larger, θ get smaller and smaller. Then sin(θ) is very close to θ and cos(θ) is 
very close to 1, so: 

 ( )
( )

cos( ) sin( )
       cos( / ) sin( / )
       1

n

n

i
n i n

i n

φ φ
φ φ
φ

+
= +
≈ +
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Now remember the rule we just found for compound interest, for continuous exponential 
growth. This was that: 
 ( )lim 1 nax

n
e a n

→∞
= +  

So now Euler makes the conclusion: 
 
 cos( ) sin( )ie iφ φ φ= +  
 
What in heaven’s name does this mean? Well, it is really a definition of exponentials of 
imaginary numbers, the definition that one is compelled to make in order to keep 
arithmetic working smoothly. For example, look at what the formula which we labeled 
(*) above becomes if we use exponentials: 
 ( ) ( ) ( ) ( )cos sin . cos sin cos( ) sin( )i i ie e i i i eθ φ θ φθ θ φ φ θ φ θ φ +⋅ = + + = + + + =  

which is what must happen if the power law .b c b ca a a +=  is true. And look what it says 
for derivatives: 

 ( ) ( ) ( )cos( ) sin( ) sin( ) cos( ) cos( ) sin( )iat iatd de at i at a at ia at ia at i at iae
dt dt

= + = − + = + =  

which is exactly the same equation we had above without the i. 
 
 
Its most astonishing corollary is the special case when y = π, when it says: 
 1ie π =−  
 
I once had to give an after dinner talk to a distinguished group of non-mathematicians 
about mathematics, and thought, can I explain this weird formula to them? Here’s the 
explanation: 

 
Suppose an imaginative and enterprising banker decides to offer an exciting new type 
of savings account – one that pays imaginary interest, at the rate of (10 1− )% each 
year. The public, fascinated by imaginary money, wants to participate in this new 
financial offering. Joe Bloggs deposits $100 in such an account. After one year, he has 
earned 10 imaginary dollars in interest and his balance stands at $(100+10 1− ). The 
next year he gets 10 more imaginary dollars and is thrilled: but to his chagrin, the 
imaginary balance of 10 imaginary dollars also earns interest of (0.1 1− ) x $10 1−  
dollars, or –1 real dollars. So his balance after two years stands at $(99+20 1− ). As 
the years go by, he keeps building up his pile of imaginary dollars but, as this gets 
bigger, he also sees the interest on this imaginary balance whittle away his real dollars 
at an ever-increasing rate. In fact, if the bank used continuous compounding of interest 
rather than adding the interest once a year, then after 5 years Joe would have 
$(88+48 1− ), having lost 12 real dollars in return for his 48 imaginary ones. Joe 
doesn't quite know what  these imaginary dollars are good for, but maybe they aren't a 
bad deal in return for the 12 real ones he lost! Time passes and, after 10 years, he has 
$(54+84 1− ) and now his real money is bleeding away fast because of the interest on 
his imaginary balance. In fact, at 15 years, his balance is $(7+99.5 1− ) and finally at 
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15 years, 8 months and 15 days he checks his balance, only to find he no real money at 
all, but 100 imaginary dollars. This length of time is in fact 10π/2 years and what we 
have done is track his balance by Euler's formula.  Explicitly, since continuous 
compounding is the same as using exponentiation, we have: 

 

( )

(Interest rate)

0.1 1

Balance after  years  (Initial deposit) e
                                  $100
                                   $100 cos(0.1 ) 1sin(0.1 )

t

t

t
e

t t

−

= ×
= ×
= + −

 

Let's go on. More years elapse and now the interest on Joe's imaginary dollars puts 
him in real debt. And the interest on the real debt begins to take away his imaginary 
dollars. At 20 years, his balance stands at $(–41+91 1− ), at 25 years $(–80+60 1− ) 
and at 30 years $(–99+14 1− ). Finally at 10π years, which works out to be 31 years, 
5 months, he finds himself 100 dollars in debt with no imaginary money. Not willing 
to give up, and finding the banker willing to extend him credit with only imaginary 
interest to pay, he perseveres and after about 47 years, finds that he has only imaginary 
debt now, and no real money either positive or negative. And now the interest on 
negative amounts of imaginary money is positive real money (because (0.1 1− ) x (-
100 1− ) = +10). So he finally begins to win back his real money. On his deathbed, 
after 20π years, that is 62 years and 10 months, he has back his original deposit and 
has paid off his imaginary debt. He promptly withdraws this sum, sues his banker and 
vows never to have any truck with complex numbers again. His odyssey is traced in 
the figure below. 

 
Complex arithmetic takes a bit of 
getting used to, but, when you 
do, it’s like driving a sports car 
instead of a sedan. Here’s some 
points on how this works.  
 
First note that when writing 
complex numbers in polar 
coordinates, instead of  

(cos( ) sin( ))x iy r iθ θ+ = +  
 we can write ix iy re θ+ = . 
 
Second, the basic periodic 
function, with period p is not 
sin(2 / )t pπ  or cos(2 / )t pπ  but 

2 /it pe π . We have repeatedly used 
the fact that sums of sines and 
cosines are equal to a sine (or a 
cosine) with a phase shift. In 

complex terms, this comes out like this: if iDA iB Ce− = , then 
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( ) ( )( )cos( ) sin( )

                              =( )(cos( ) sin( )) cos( ) sin( ) ( sin( ) cos( ))

i D iD iC D i D Ce Ce e
A iB i A B i A B

θ θθ θ
θ θ θ θ θ θ

++ + + = = =
− + = + + −

so, looking just at the real parts of the extreme right and left hand sides, we get 
cos( ) cos( ) sin( )C D A Bθ θ θ+ = +  

But isn’t it simpler to just use ( ) ( )i D iCe A iB eθ θ+ = − ? 
 
Thirdly, simple harmonic motion is much simpler with complex exponentials. Instead of 
the second order differential equation: 

 
2

2

d x x
dt

= −  

we can start with the first order equation dx ix
dt

= , because this implies: 

 ( )
2

2
2

d x d dx d dxix i i x x
dt dt dt dt dt

 = = = = = − 
 

 

In fact dx ix
dt

= −  also implies 
2

2

d x x
dt

= − . The solutions of these first order equations are 

 and it ite e+ −  and adding and subtracting these, we get back our old solutions cos(t) and 
sin(t): 

 
cos( ) sin( ) cos( ) sin( ) 2.cos( )

and 
cos( ) sin( ) cos( ) sin( ) 2 .sin( )

it it

it it

e e t i t t i t t

e e t i t t i t i t

−

−

+ = + + − + − =

− = + − − − − =
 

 
Fourthly, Euler’s formula allows us to express all those complicated expressions for 
Fourier series in a much simpler way. The Fourier series which we wrote as: 
 0 1 1 2 2( ) sin(2 / ) cos(2 / ) sin(4 / ) cos(4 / )y x B A x p B x p A x p B x pπ π π π= + + + + +  
is now: 
 2 / 4 /

0 1 1 2 2( ) real part of ( ) ( )ix p ix py x B B iA e B iA eπ π= + − + − +  
In the most compact form, one just says that a periodic function y(x) can be expanded as: 
 

 
2 /( ) inx p

n
n

y x a e π=∑  

where na are complex coefficients which have both amplitude and phase built in. 
 
The take home message is that, out of the blue, came this miracle 1− ; this led to 
complex numbers; and these now prove to be by far the best way to handle much of two 
dimensional geometry, simple harmonic motion and Fourier series. 
 
An epilog to this story is how quantum mechanics incorporates the complex numbers. 
Quantum mechanics is based on the startling idea that the most we can know about the 
world is represented by an object s  and that any 2 such objects can be both added 
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s t+  and multiplied by complex numbers ire sθ . The strange idea is that, as 

Schrodinger put it, in the world represented by s , a cat might be alive, while in the 

world t , it might be dead: it’s a bit like probability of the cat being dead or alive. So in 

the world s t+  there is no way of knowing whether the cat is dead or alive: it’s 50-50. 

Now the world ire sθ  is indistinguishable from the world s , but in there are many 

half-dead, half-alive cat worlds is e tθ+   which really are different for different 

complex “phases” ie θ . This is hardly something that can be swallowed with this glib 
description but I hope it convinces you that the square root of minus one is deeply 
embedded in God’s plan for the universe. 

 


