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Preface

The present volume contains the final chapter of this work on theta func-
tions. Like the other chapters, it originated with the senior author’s lectures
at the Tata Institute of Fundamental Research during November 1978-
March 1979. Excellent notes on these lectures were made by M. Nori, but,
due to the shortage of time, not all the projected topics were covered. In
the next few years, the ideas in this chapter were developed in various di-
rections while the other parts of these lectures were published. However,
this final chapter was not completed until a collaboration with Peter Nor-
man beginning in 1988 infused new life into the project. At the same time,
the interest of string oriented theoretical physicists in theta functions gave
extra impetus to completing these notes. We are pleased that this joint
effort has now made it possible to publish this volume.
The idea behind this chapter was to bring together and clarify the
interrelations between three ways of viewing theta functions:
a) as classical holomorphic functions in the vector " and/or the period
matrix T,
b) as matrix coefficients of a representation of the Heisenberg and /or
metaplectic groups,
¢) as sections of line bundles on abelian varieties and/or the moduli
space of abelian varieties.
Although equivalent on a deep level, superficially these three points of
view look totally different and require quite different vocabularies. A more
specific motivation was that the purely algebraic theory of theta functions,
which comes from (c), has not been very widely understood. This approach
originated the senior author’s three part paper in Inventiones Math., in
1966-67, On the Equations defining Abelian Varieties. This paper is not
easy to read, however, and with the exception of a few papers by Kempf,
Barsotti, Igusa, Moret-Baily and Norman, the ideas in it have not been
developed very far. For this reason, one goal of these lectures was to give
a reasonably simple explicit treatment of the algebraic definition of theta
functions, valid over any ground field (or base scheme). In the last few
sections many open questions are raised: we hope this will make it clear
how little is known beyond the foundations and will stimulate further work
in the subject.

Cambridge
February, 1991




1. Heisenberg groups in general

The abstract approach to the theory of theta functions is intimately
bound up with a certain class of non-abelian groups, called Heisenberg
groups. We begin by devel;)ping the representation theory of this class
of groups. We consider locally compact groups G which lie in a central
extension:

1—C —G— K — 0

ie., C} = {z € C| |z] = 1} is a normal subgroup of G, in the center
of G, and G/C} is an abelian locally compact group K (which we write
additively: hence the notation 1 — ... — 0 above). We assume that G

admits a continuous section over K, so that we can describe G as
G=C}xK (asaset).
Then the group law on G is given by:
(A z) - (1,y) = Ang(2,9), 2 +)

where

v:KxK — C

is a 2-cocycle:
I/)(J,', y) * ¢(£ + Y, Z) = ¢(zr Yy + z)¢(ya Z).

Next, if we choose any elements z,y € K, let ,§ € G lie over them and
form # § £~'§~1. This lies in C} and is independent of the liftings Z,§, so
we may define:

e:KxK — C}

by

e(z,y)=z g5y
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It is easy to verify that
e(z +2',y) = e(z,9) - (=, y)
e(z,y+y) = e(z,9) - e(z,y)
e(z,z) =1, e(z,y) = e(y, )"
¥(z,9)

e(z,y) = ——=

¥(y,z)
e is a skew-multiplicative pairing. Let K be the character group of K (its

“Pontrjagin dual”). Define
p: K — K

by
p(z)(y) = e(z,v)

or

ghg™' = p(@)(R) -k, (Yg,h€ G, §=mg, h=rh).

DEFINITION 1.1. G is a Heisenberg group if  is an isomorphism.

Given such a G, we will want to consider closed subgroups H C K
such that equivalently:
a) egxn = 1 and H is maximal with this property.
b) ¢ restricts to an isomorphism between H C K and (K//\H )C K.
¢) H=H"*, where H: = {z € K | e(z,y) = 1, ally € H}.
(The equivalence is easy noting that w“(KTH) = H' and that if e]gxn =
1,z € HL, then the group H' which is the closure of H +Z -z in K also
satisfies e|g/xm = 1.) When egxy = 1, we say H is isotropic; when H is
maximal with this property, we say H is mazimal isotropic. Note also that
the following two properties of a closed subgroup H C K are equivalent:
a) H is isotropic.
b) x:G — K splits over H, i.e., 3 homomorphismo : H — G such

that oo = 1g.
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Here b) = a) by the definition of e. To see a) = b), let H be isotropic

and consider #~!(H). Then #n~!(H) is commutative, and taking duals we

have:

Ob—lc——-w‘/l(\H)e———flb——O.

Lift 1 € Z to an element ¢ € w'T(\H). Then ¢ is a character of #~!(H) such
that ¢(A) = ), all X € C}. Thus = restricts to an isomorphism from Ker(()
to H and its inverse here is the section ¢. In terms of co-cycles, splitting =

over H in K amounts to giving
o(z) = (afz), z), Vre H

such that
a(z+y) =a(z) o(y), Vr,y€ H
or

oz +y)
a(z) - a(y)

After these preliminaries, we are now ready to state the Main Theorem

=1vy(z,y), Vr,y€H.

about the representations of such groups:

THEOREM 1.2. (Stone, Von Neumann, Mackey). Let G be a Heisenberg

group. Then

i) G has a unique irreducible unitary representation
U:G — Aut(?‘lo)

such that Ux = X -1id., all A € Cj.
ii) For all maximal isotropic subgroups H C K and splittings o(z) =
(a(z),z) of = over H, this representation may be realized by
measurable functions f : K — C such that
Ho={ 9 f@+h)=a(h) " Y(h2)" f(z), VheH
b) / |f(2))?dz < +00
KJH
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U(A,y)f(x) =X 1/;(:!:,y) ' f(:L‘ + y)‘

We will write this Ho as
L*(K//H).

ifi) All representations (U, H) such that U = ) -id, all X € C}, are isomor-
phic to Hy @ H,, G acting trivially on H,.

This theorem was first proven independently by Stone and von Neu-
mann in the case K = R?". The general case is due to Mackey. We give the
proof first for the case where K is finite, where all the steps are completely
elementary. Then we indicate the modifications necessary to deal with the
general case, but following exactly the same method. We shall use as a
reference for the general case the treatment in V.S. Varadarajan, Geomelry
of Quantum Mechanics, vol. 11, and simply isolate the steps where analytic
lemmas are needed. This does not seem to distort the situation.

Assume then that (U, ) is any unitary representation of G, that K
is finite, that H C K is maximal isotropic and that o(z) = (a(z),z) is a

splitting of = over H.

Step 1. Decompose H under the action of the abelian group ¢(H):

H=PH

el

where H; = {a € H | Ug(zya ={(z)-q, allz € H}. Another way of writing
this is to classify the {’s according to dim H,. Let
H,={¢ € H|dimH, = n}, (n=0,1,2,...;00)

and let K, be a standard n-dimensional Hilbert space. Then

[e e
H =P L*(Hni Kn)

n=0

HEISENBERG GROUPS IN GENERAL 5

where L2(H,,K,) = { space of K,-valued functions f(z) on Hy} and the

above isomorphism carries Uy () for z € H to the map
{7} — (@}, 300 = (@) £ ().

Step II. 7~ 1(H), which is C} x H via the section ¢, is a normal subgroup
of G. But if n(g) = y,h = (A, z), then
ghg™! = (A -e(y,2),2) = (A - p(¥)(2), 7).
Therefore if Uy acts on a vector a € M by the character { € H, then Ughg-1
acts on e by the character o(y) +¢ :
Ugng-1a = ¢(y)(z) - Un(a)
= p(y)(z) {(z) - a
= (p(y) +¢)(z) - a.

Thus
dim 7{( = dim7i¢(y)+< .

Since g is surjective, this proves that dim #, is independent of {; hence
H = L*H,K,)
for some fixed n. Sofor feH,ye H,z € H,

Uta)n) f(=) = 2(y)f(=)-

Step III. Now let us write down how the rest of G must act on H in terms

of a 1-cocycle. We use the simple

LEMMA. Automorphisms V of L2(H,K,) that commute with the action

of H are given by:
(VA = AOF(Q)
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where
A[Q): Kn — K,
is a set of unitary maps depending on (.

To apply the lemma, take z € K and let ¢ denotes the composition of
¢ with the restriction from K to H. Consider the map f —— V f, where

(VHQ) = (U, f)E - 6(2))-

Then for all y € H,
V Vet f(€) = Un o) Uianf (€ = 6(2))

= e(z, )Van Va0 f( — 8(2))
= e(z, 1)a(¥)(¢ — $(2))WVq,)f(€ - ¢(2))
= e(z, y)a(¥)(¢ - ¢(=))(¥) - V()
={(y) - a(w)V £($)
= Uay))V f(C)-

Therefore

U,y f(€) = A= (O (¢ + ¢(2))]

where A;(¢) are unitary isomorphisms of K,.

Step IV. Now define a map
W L}(H,Kn) — L*(K//H;K,)
where

space of maps g : K — Kp such that }

LY(K//H;Ky) = {
g(z +h) = a(h)"P(h,z) " g(z), YVhEH
= LYK/ H)®Kn.

Let
Wi(z) = U o) f(e) = Az(e)[f(8(2))].

HEISENBERG GROUPS IN GENERAL 7

(The 29 and 379 expressions are equal by Step IIT). By Step III, we see
that

2 = x r= 2 .
mewmnu—ﬂmww)Wd mem«

So W is a unitary map. Moreover, for h € H
Wf(z + k) = U z4n)f(€)
= [Uwhzy-1.m) - Unn o) f(e)
=%(h, )" - a(h) " Uia(ny,m)(Un,) ()
= y(h,2)"" - a(h)™! -e(h) - Un,o)f(e)
= ¥(h,2)" - a(h)™ - Wf(z)
hence Wf € L*(K//H;K,). Thirdly
WU f(2) = Uno)Ua,gf(e)
= Uw(ew)=+9)f(€)
= Y(z, )W f(z +y)
which is the rule given in the theorem by which G is to act on
L*(K//H)®K,, (generalized to arbitrary n). Finally, as f can be given
arbitrary values in K,, for each { € H, it follows that A.(e)f(¢(z)) has
arbitrary values in K,, for z ranging over a set of coset representatives in
K mod H. Thus W is surjective. Putting this together, W is a unitary
isomorphism of the G-representations H and L%(K [/ H)®Kp.
Thus if M is irreducible, n = 1, and every irreducible representation U
such that Uy = X - id. is isomorphic to L2(K //H). This proves (i) and (ii).
Moreover every non-irreducible one is a direct sum of L(K//H) with itself

n times for some n.
QED for finite K

We now outline the modifications necessary to deal with general n.
The generalization of Step I is the classification theorem for arbitrary

unitary representations of locally compact abelian groups. This is called
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the theory of spectral multiplicity, and may be found, e.g., in P. Halmos,
“Introduction to Hilbert space and Spectral Multiplicity”. The result is
that any unitary representation (U, ) of an abelian H is of the form:

o0

H =D L*(Hn, #n); Kn)

n=1
where H is the disjoint union of Borel sets H,, pn is a measure supported
on H, and L?((Hy, pn);Kn) is the Hilbert space of measurable functions
f: H, — K,, with norm

117 = [, NP din()

and H acts by
Unf(¢) =¢(h) - F(S).

In this decomposition, the measure class of s, (i.e., the set of subsets
S C H of measure zero) is uniquely determined.

To generalize Step 11, the argument given above shows that for every
n € H, if we modify the representation (Un,H) on H by multiplying by
the character n(h), we get a unitarily equivalent representation. In terms
of the decomposition via the measures yy,, this means that we translate all
the measures pn on H by 5. Therefore by Step I, the measures p, must
have the property:

All translates of g, by { —— (+n,n€ H, are in the same measure

class as gy
We now cite the well-known lemma:

LEMMA 1.3. If H is an abelian locally compact group, there is a unique
measure class which is translation invariant, and it contains a unique mea-

sure which is also translation-invariant: the Haar measure.

(See V.S. Varadarajan, op. cit., Lemma 8.12, p. 19). Thus all u, may be

assumed to be multiples of Haar measure. Since the p,’s also have disjoint
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support, only one of them can be non-zero, i.e., for some n:
H = LYH,K,).

To generalize Step III we need to know that any unitary isomorphism

of L?(H,K,) commuting with H is given by
(V) = ANf()

where

Al) : Ky — Ky

are unitary maps depending measurably on {; and that if V; f is a measur-

able family of such V’s, it is given as above with
A€): Kn — Ky

depending measurably on t and ¢. This is the content of Lemmas 9.4 and
9.5 in V.S. Varadarajan, op. cit., pp. 63-66.

It is when we reach Step IV that we are in trouble. The definition
of W does not make sense because we have to evaluate Uiy,z)f or Az(¢)
at specific points, and we are dealing with measurable functions, which
are only well-defined modulo functions supported on a set of measure zero.
This is the key point which Mackey was able to solve. His idea was that
A(¢) is essentially a co-cycle and as such it can be made continuous, mod a

coboundary, and then it has good values everywhere. To be precise, let

B:(y) = —A;f;(f;), Vz,y € K.

Then the fact that for all z,y € K:

Ua,e)Uawf = ¥ )00 240 f
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tells us that
(Bray (2) )0z + 2 +9)) = ¥(2,2 + ) (Az 4y (0(2))))(8(2 + 2 + 1))
= (2,2 + 9) " U,z 40) f(8(2))
= P(z, 2 +9) 7 (2, 4) " V0,00 F(8(2))
= P(z +z,y) (2, 2) 7
Az(p(2)) 0 Ay((z + 2))f(8(2 + = +))
= (Bs(z) 0 By(z + 2)f)(8(z + =+ v))

i.e., for all z,y € K, then for all z € K except in a set of measure zero

(depending on z,y):
Buyy(2) = Ba(2) 0 By (z +2).

Then Mackey’s fundamental lemma in this quite special case says that there
is a measurable function A : K — Aut(K,) such that for allz € K, then

for all y € K except in a set of measure zero (depending on z):
B:(y) = A(y)" o A(z + y).

We may normalize A by requiring A(e) = id. So B:(e) = A(z). Our old
definition of W can now be rewritten:
(W£)(z) = Ac(e)f(¢(2))

= 9(e, z) Bz (e) f((z))

= 9(e, 2)A(z)f(p(2))-
This formula does not involve taking a function defined up to a set of
measure zero and substituting a particular value for one of its variables. It
is now straightforward to verify that this W is a unitary isomorphism of H
with L2(K // H)®K, although, since we do not have the formula U1+ f(e)
for W f(z), the proofs are more roundabout than in the original Step IV.

We give the proof of Mackey’s lemma in order to convey the style of

this type of argument. We write “VV” to mean “for almost all”.
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a) Let C(z,y) = By-(z) = A(z)~' 0 A(y). Then in terms of C the cocycle
condition on B gives
W(z,y,2) € K3, C(z,2) = C(z,y) 0 C(y, 2).
It follows that there is some particular value yg of y such that
W(z,z) € K%, C(z,z) = C(=z, o) o C(yo, 2)-

Write
C(yo, 2) = Ci(2), C(=z,y0) = Ca(z),

W(z,2) € K?, C(z,z) = Ca(z) o C1(2).

b) Define B.(y) = C1(y) o Bz(y) 0o Ci(z +y)~'. Then B’ satisfies the same
hypothesis as B, and moreover Y¥(z,y) € K?
Bi(y) = Ci(y) 0 Cy,z +y) 0 Ci(z +)™

= Cy(y) o Cay) 0 Ci(z +y) 0 Ca(z + )"

= Cs(y), say.
¢) Use the identities that B satisfies, and it follows that
W(z,y,2) € K3, C3(2) = By, (2)

= B,(z)0 By(z + z)
=C3(z) 0 C3(2 + )

le.,

Wz € K, Cs(x) = id;
hence W(z,y) € K?, BL(y) = id.
d) Finally fix any z € K. Then WV(y, 2) € K?, the 3 formulae:
BL(2) = B;+v (2)o B!',(z +z)™!
Bl,,(z) = id.
By(z +2) =id.
all hold. Thus Wz € K, B.(z) = id., hence VWz € K
B.(2) = Ci(2)" o Cy(z + 2)

as asserted.
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We finish this section by making three remarks to amplify the idea of

the Heisenberg representation.

PROPOSITION 1.4. Given a Heisenberg group
1-Cl—-G—-K—0,

let H C K be a compact isotropic subgroup of K, and o(h) = (a(h),h) a
splitting of G over H. Then

1= C} -~ Y(HY)/oH — HY/H -0
is a Heisenberg group, and if Ho is the Heisenberg representation of G,

(Ho)°H is the Heisenberg representation of Gg = " 1(HY)/oH.

PROOF: It is easy to see that Gy is Heisenberg (without assuming compact-
ness of H). To check the assertion about representations, let H C H; C H L

be a maximal isotropic subgroup of K and extend o to o1 : Hy — G: Then
L3(K /| H,) = the Heisenberg repres. of G

L*(H* J/H1) = the Heisenberg repres. of Gy.

Via e, H and K/H" are dual abelian locally compact groups; since H is
compact, K/H* is discrete, i.e., H L is open in K. Therefore we may iden-
tify L2(H* //H,) with the subspace of L*(K /| Hy) of functions supported
on the open and closed subspace H L. Writing out the quasi-periodicity
formula with respect to Hj, it is easy to see that f € L}(K//H)) is o(H)-
invariant if and only if it is supported on Ht. Q.E.D.

ProPoOSITION 1.5. Given 2 Heisenberg groups:
1-C] —-G;i— K;i =0, i=1,2
then

1—C} — G xG2/{(’,)")) | A€ C}} = Ky x K3 =0

HEISENBERG GROUPS IN GENERAL 13

is a Heisenberg group, and its Heisenberg representation is

Hi®Ho.

The proof is straightforward.
The third remark is this. If G is any Heisenberg group, we get a
“universal” representation (U, Hy) where Uy = A - id. by taking the space

of all functions
f:G—-C

such that
f(Ag) = A- f(9)

/ If)?dg < .
G/c:

Call this L},)(G). It is in fact a left and a right G-module via

(ny,yzf)(!l') = f(gi-lglg2)-

Equivalently, via the set-theoretic section o of G over K, this space is just

L?(K) with G x G acting by:

Voexen ) = f\'l#-zé—:,-—z-%:—;f(z _z4).

I claim:

PROPOSITION 1.8. There is a G x G-equivariant unitary isomorphism
L*(K) = HL @M.

ProoF: Let G = G xG/{(), )| ) € C}}. This group acts on L?(K). But

it is also a Heisenberg group in a sequence
1-C -G —-KxK—0,

and K, embedded diagonally in K X K, is a maximal isotropic subgroup.

Working out L2(K x K//K), we find that the representation of G x G on
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L2(K) is just the Heisenberg representation of G. On the other hand, if G°

is G with its center identified with C} in the opposite way, then
G=G"xG/{(MA )| eCi)
so by Proposition 1.5, this representation is isomorphic to
Hgo®Hg.

But Hgo 2 H;, hence Prop. 1.6 follows. QED

2. The real Heisenberg groups

We want to specialize the theory of §1 to the case of Heisenberg groups
1— C} — Heis(V) -V — 0,

V areal vector space. We construct explicit realizations for this Heisenberg
representation and use these, given an element T' of the Siegel upper-half
space, to get special elements fr,ez of the representation space. The theta
function appears as a matrix coefficient for the representation using fr and

ez.

The commutator e : V x V — C} can be written in the form

e(z’y) — e2~n’A(1:,y)

where A : V x V — R is a non-degenerate, R-bilinear skew-symmetric form
on V. From now on we will write e(z) for e2***. We shall choose V' to be
R, and A to be:

Alz,y)="z1 92— "22° 1
where z = (:1 ), y= (ij: ), and z; and y; are g-rowed column vectors.
Choosing a suitable splitting, the group Heis(V') may be described as:
set of pairs (), z), A € C},z € R*, with group law
(M 2) - (1,9) = Qn e(A(2,9)/2), 2 +9)-
In the notation of §1, ¥(z,y) = e(A(z,y)/2) = e(%,y). The most obvious

Heis(2¢,R) = {

kind of maximal isotropic subspace in V is a real sub-vector space W C V

which is a maximal isotropic for A. We shall use the notation

m={(7)} e
w={(2)}ew

Taking W, as the group H in Theorem 1.2, we obtain

Mo = functions f : R? — C such that
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0
flz+ ( )) =e('y2 - 21/2)f(z), / |f(’;;)|2dz, < oo
Y2 W,
Vo flz) =2 e((*z1-y2 — ‘22 -1)/2)f(z + ).
These functions f are obviously determined by their restrictions to W, so

setting ¢(z1) = f(( %1)), we find:

Realization I:

‘H, = functions ¢ : RY — C such that /|<p(z,)|2d:n < 00

U ye(z1) = e(z1+31)
U anpten) = e(Con- /D31 )
= e('zl -y2)e(z1)
hence
Ui yaye(21) = A e('z1 - 32 + 91 - 92/2) o(z1 + 11)-

Here we have the well-known Heisenberg representation, i.e., the irreducible
group of unitary maps of L?(R?) consisting of translations and multiplica-
tion by characters.

Another maximal isotropic subgroup of V is a lattice L such that A is
integral on L x L, and L is maximal with this property, i.e., if you express
A on L x L by a matrix, then det A = 1. Take L to be 729, the standard
lattice in R?9, and split Heis(2g,R) over L by

o(n) = (es(n/2), 1), Vn € 2%,
where e.(;;) =e(2- (*z1 - 23)). Then
e.(n/2) € {1} if neZ®,

and
o(n) - 0(m) = (ex(n/2)ea (m/2)$(n,m), n + m)
= (e((*n1 - n2 +'my -mp)/2+ (*n1 - ma — 'ng - my)/2),n+ m)

= (e(*(n1 +m1)(n2 + m2)/2) -e(~"ny - my),n + m)

= (o(5), nk m) = o(n + m)
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if n,m € Z%9. Notice that e, is a quadratic form on $Z%¢/Z with values

in {£1} and o is a section because

eo(E e Sy e (§) = (5.0

The main theorem in the previous section gives

Realization II:

functions f : R? — C such that
Ho={ @ +m) = eu(De(3,9)7 f(2),  Vne

fnag/lu If(@)]? < o0

Unypf(z) =A- 6(;, iz +y).

The space H; will be called L?(R?9 //Z%9).
The Heis(2g,R)-equivariant unitary maps between these 2 realizations

are easily written down:

f€L*R%)  corresponds to f* € L2(RY J/7%9)
iff

f‘(”’) = Y flz1+n)e('n - 22+ 21 - 22/2)

X
2 nels

f(z1) = /Mlg f‘(:;)e(—'zl - 22/2)dz

We leave this to the reader to check.

There is a 3rd realization which is very important and which is based,
not on a maximal isotropic subgroup of K, but on a maximal isotropic
subalgebra of Lie(K)c. Before explaining this, it is convenient to make

explicit a little linear algebra underlying complexifying the vector space V.
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PROPOSITION 2.1. Given a real vector space V of dimension 2g and a non-
degenerate alternating form A:V xV — R, then the following data on
V are all equivalent:
1) A complex structure J on V such that A(Jz,Jy) = A(z,y), allz,y €
V and A(Jz,z) > 0,allz € V,z #0,
2) A complex structure J on V and a positive definite Hermitian form
H such that
Im H = A,
3) A g-dimensional complex subspace P C Ve such that Ac(z,y) =0,
allz,y € P,iAc(z,Z)<0,allz€ P,z #0.
The set of all these we call the Siegel space fijv associated to V (and
A). If, furthermore, we choose a basis egl), 652) of V in which A(efl), eg-l)) =
A(e,(z), 65_2)) =0, A(egl), eg.z)) = &;; and let zgl), 1:52) be corresponding coor-
dinates, then a point of fy is given by a g x g complex symmetric matrix
T, with Im T positive definite, i.e., a point T € §,, the Siegel upper half
space.

The connections between these data are:

a) Given J,
H(z,y) = A(Jz,y) + iA(z,y),

P = locus of points iz — Jz.

b) Given P, the complex structure J comes from the isomorphism

V o Ve —» Ve/P

and T is defined by the property: efl) - ET,-jeg-?) €P.

c) Given T, H is defined by H(e,(-z),eg-z)) = (Im T),-'J-’, P is the span of
egl) - Efl}jef.z), and the complex structure J comes from requiring that
z; = LT;; 1:5-1) + z,(-z) are complex coordinates.

Finally, the symplectic group Sp(V, A) acts on the space Hiv by

v(J) =+vJy7", v € Sp(V, A).
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This action is transitive, and the stabilizer of J is the unitary group U(V, H),

hence

In terms of a basis, the action is given by

T — (DT — C)(=BT + A)~", if—,:(é g).

(The usual formula, except for the automorphism
A B\ _ (D -C
C D -B A
of Sp(2g,R).) (For more details see Tata Lectures on Theta, L)

We now chose H,J, and T as in the Proposition, so that we have a
complex structure on R%9, and even a definite isomorphism
CY =~ R%
with the complex coordinates

z =Tz +z2.

From Chapter 2, we recall that the formulae
Iz, T) = Iz + na,T) np €29
Iz, T) =e(m-z+'n-T-m/2)0(z+Tn,,T) m el
describe the invariance of ¥(z,T), and that these extend to actions of R?

on the space of holomorphic functions on C4:
Uaya)f(@) = flz +32)
Unynf(@) =e(n-z+ 'y -T-9/f(2+T y).

Combining these, we find that we have a representation of the Heisenberg

group Heis(2g,R), provided we set Uy = A~1.Id., hence

Unpyf(@) =2 "e('yr -z +'p -3/ f(z +y)-
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This called the Fock representation of Heis(2g,R). This A~1 looks like an
accident but it is actually rather basic as we shall see. We make this into

a unitary representation by setting

AI? = /c If(z))Pe= 251 T2t . dg dxs.

It is easily checked that the Uy ,)’s are unitary on the Iilbert space
H3(C9,T) of holomorphic f’s for which ||f|| < +oo.

We shall show that the Fock representation is irreducible. It then fol-
lows from Theorem 1.2 that it is canonically the dual of the other two repre-
sentations, and also, because it is a Hilbert space, hence is conjugate-linear
to its dual, there is a Heis(2g, R)-equivariant conjugate-linear isomorphism
of the Fock with the other representations. To prove this irreducibility, a
modified version of the Fock representation is more convenient: namely one
in which the action of W, and W, are symmetrical. In previous chapters,
we have used the trick of modifying the periodicity of ¥ by multiplying by
e9®) | Q quadratic. We do the same here: define

’Hi(C”,T) = space of holomorphic functions f(z) on C9 such that

17 = [ 1) e Ddz < +oo,

where H(z,z) =‘z-(ImT)™! -Z as in Prop. 2.1.

Define a unitary isomorphism
HH(C?,T) = H3(C!,T)

by

flz) — eSTMTTEf(g).

Then it is an elementary, though tedious, calculation that the group action

on My takes the form:

(U )(z) = A7t HED- 3T f(z + ).
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The deeper analysis of real Heisenberg groups depends on the fact
that they are Lie groups, hence have Lie algebras. We use the Lie algebra
structure to construct for each choice of T € $ a unique element fr of Hy.
This element is used to express ¥ as a matrix coefficient. The uniqueness of
fr will imply that Hg is irreducible. In general, when a Lie group G acts
on a Hilbert space M, then for all X € Lie G, we let ezp(tX) € G be the
1-parameter group X generates, and consider for all z € H:

(Uezpexyz) — 2
e

This limit will exist for a dense set S of z’sin H and § Ux : S — H will

1) Ux(z) = }I_I.I('l]

be a skew-adjoint, but not bounded operator. One defines Hoo C H to be
the set of all z € M such that

§Ux,0---06 Ux,(x)

is defined for all Xy,..., X, € Lie G. It is a theorem that He is dense in
H. We do not want to discuss the general theory here, but only want to

illustrate what it says in our example. Here Lie G has a basis:

A1,..., Ay, B1,..., By, C

such that )
exp(z z?)A.') = (1, (; ))
exp(E zE”Bz’) =(1, (g(z)))
exp(t C) = (¢*™,0).

Then

[A.',Aj] = [B.',Bj] = [C, Ai] = [C: B"] =0
[As, Bs] = 6:5C.

In realization I:

§ U (f)(e) = lim LE 1) 2T _ 2L
ez-n't::.' z2)— f(z
f(z) f()=27riz,~-f(z)

§ Us,(f)(z) = lim :

e f(z) - (2)
t

§ Uc(f)(2) = lim = 2ri f(z).
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6 Uga, are called the momentum operators, § Up, the position operators.
Hoo is the set of functions with “[2-derivatives %;é” of all orders with
"z” . g—:é" < 400. By Sobolev’s lemma, Moo is the set of C*-functions
f(z) with

o f

ama| € OUll™™), all Ve,

also known as the Schwartz space S(RY). We do not work out 8U for
realization II, but note that, by our formula for the isomorphism between
these, the space Mo, Will be the space of C*® quasi-periodic functions. In
the Fock representation, in its symmetrical form, abbreviating Im T-! by

S, we find:
5 Un.f(z) = }il‘% %[e—1‘55‘7‘(“-‘)‘('/2)'("‘)TST('e‘)f(g +1Te;) — f(z))
— i}
= —WET:‘,’ - Sjezy - f(2) +ZTija—;,f_
3.k i =

o1 " ) ¢ )
§Up, f(z) = }E%?[e—x zS-te;—x[2 (“')5'("')f(£+te,-) _ f(g;)]

o
= —'WESHCQJC f(.’t)-{-'gzi
k =1

The complex span of these operators is the same as that of the operators:

f +— 8f/8z;, called the annihilation operators

and
f —zf, called the creation operators.

In fact:

Wr = {Span of §U4, — 3 Tij - 6Us; all i} = {Span of f — z;f}
j

Wi = {Span of U, — Y Ty; -6Up, all i} = {Span of f —— o1
T i ] J

9z,
i

and these are conjugate abelian complex subalgebras of Lie(G) ® C. These

subalgebras have a remarkable property:
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THEOREM 2.2. FixT € $y.

a) In the Heisenberg representation M of Heis(2g,R), there is a element
fr, unique up to a scalar, such that § Ux(fr) is defined and equal to
0,all X € Wy.

b) In L2(R9), fr = ™' T,

¢) In L2(R¥)Z%), fr = e*'*129(z, T).

d) InM%(C4,T), there is a unique fr killed by W and it is f7 = 1, the
“vacuum state”. Hence ’Hg is irreducible and in the conjugate linear
isomorphism with L?(R?), 1 corresponds to e™ 7%

Proor: In M,
of

317,' !
6UB'.f = 27riz,-f.

8Up, f =

So a function f annihilated by Wr is one satisfying
of Y
Erol 2#1(; Tijz)- f.

The only solution to these equations is f(z) = e"'=T=  Going over to
L*(R% //Z%9) by the formula given above, the function becomes

«f T1) _ %t (z140)T(z14n)+27i'n 2ot itz 22
f =) e

2
n

= e'n'('rlTrl+'1:1-1:3) Zeﬂ"nTn+2'n"n(Trl+zg)
n

= e™'sr2g(g, T).

Finally, in M2, f is killed by Wi if and only if 3f/0z; =0, all i, i.e., fisa
constant. Q.E.D.

This theorem says that in the big Hilbert space Hy we have a canonical
way of singling out a finite-dimensional submanifold of the “most elemen-
tary vectors”, i.e., the fr’s. And in the quasi-periodic representation, we

get exactly the theta functions, multiplied by a simple exponential factor



24 TATA LECTURES ON THETA III

which puts their periodicity in the simplest form. The Fock representation

suggests a whole filtration of M defined by
H4(C9,T) D Vo = (vector space of polynomials in z of degree < n).
Then
V,, = Span of {(6U,, 0---8U,,)fr | i € Lie(Heis(2g,R))}.

In physics, V, is called the space where there are < n particles present.
In order to complete our construction of theta as a matrix coefficient
we now single out a second element ez. Following the idea of distributions,

we can enlarge M canonically by defining
H _o0o = {Space of conjugate linear continuous maps £ : Heo — C}

where

HCH-x

by mapping z € H to £, : Ho — C,
£:(y) = (2, ).

(The inner product (z,y) is taken to be linear in z, conjugate-linear in y.
Here continuous means that there is a finite set of conditions ||6U, 0 ---0
§U., z|| < 6 on z € Ho, implying [{(z)| < 1.) In our case, it can be shown
that:

In realization I, H_o, = Space of tempered distributions on RY.

In realization II, H_o = Space of all distributions f on R?7 such that
n n 2
f(z+n)=e.(§)e(z,-§)f(z) all z € 2%,

In the Fock representation ’Hi:

He = Space of holomorphic functions f(z) such that

f(@) = 0 @D /|z"),  alln
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H_o = Space of holomorphic functions f(z) such that
f(z) = O(lz||” -e3H(=2),  some n.

We will not use these facts though. Our reason for introducing X is to

prove the following theorem.

THEOREM 2.3. Let 0(Z29) C Heis(2g,Z) be the set of elements:
n
{(e'('i)’ n))

n€ 1%}

a) In the distribution completion H_o, of H, there is a element ez,
unique up to scalars, which is invariant under U, for all g € o(Z%9).

b) In L:(R?), ez = Znezsbn, (62 = the delta function at a).

¢) In L2(R¥ JT%9), ez =3 ,cp20 €+(3)0n.

d) In H3(C4,T), ez =9(z,T).
PROOF: Consider an arbitrary (no continuity assumed) conjugate-linear
map

C* — functions f on R* s.t. }
— C
f(z +n) = e.(3)e(z, 3)f(2)

such that (U, (g)mf) =£f, all f. 1 claim

£:S(R¥)1*) = {

o((f) = « - f(0), some a.

In fact, m
Uteu(g)m S (@) = eo(F)e(5, mf(= + m)
= e(z,m)f(z)
8o
(1 - e(z,m)f(z) =0, allmeZ¥.
Let €1, ..., €24 be the unit vectors in 729 and for some & cover R?¢ by

Uo=Bs+2%, Bs={z|l|| <6}

Ui={z|e(z,6;) #1}, 1<i<2g.
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Let {p;} be a partition of unity by C* functions on R?9/Z?¢ such that
supp(p;) C image U;. Take any f € S(R??//Z?9) such that f(0) =0. If § is

small enough, then by Taylor’s theorem, we can write
f= Zzifi in Bs.

Then pof =Y gi, where supp g; C Bs, and z; = 0 => g;(z) = 0. Extend
gi to a quasi-periodic function in S(R?9//Z?9). Then

29
f=pf+) pif

i=1

_Z g,+Z(l ez, 6)) T e(z p»
=1 =1

= E(l e(z,€)) - [ gi +pif

—e(z, € )
Then h; = i{%ﬁf{s € S(R¥ /1%, so
Uf) =Y (1 - e(z,&))hi) = 0.

Thus £ is of the form ¢ —— ag(0). This particular linear functional is
continuous by Sobolev’s lemma again . We may write ¢ +— g¢(0) as an

inner product between quasi-periodic functions:

= @ ¥ e
R29/23%9 nel?e
and this proves (c) and (a) together. (b) follows from the transformation
formula between Realizations I and II: In fact, for all f(z;) € L*(RY), f

corresponds to

f‘ (17,, 172) = E f(zl + n)ezx'"”3+"‘31'32

nels
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and
/ f‘ (zl ’ .’52) E eﬁ‘ml . 6m1.m2(z) dz
R29 /1% my,my€Ld

= / f*(z, z2) - eﬁ'm‘.mzamhmz(z)dz’
F
(if F C R* is a fundamental domain containing the lattice point m;, m,)

= F*(m1, mg) - € ™2

e ————— 113 . - 133 . -1 .
§ : f(ml + n) . e—2‘n n:ma—%i mymy e‘n my-ma

nel?
=3 I
nel?
= [ 7@ (X su(e)i
nels

As for (d), the transformation formula for ¥ says that ¥ is invariant under

the required U,’s. Q.E.D.

With Theorems 2.2 and 2.3, everything can be fitted together very
elegantly. First, the essential relation between the theta function and the

Heisenberg representation is given by:
COROLLARY 2.4. FixT € $,, let H be the Heisenberg representation of

Heis(2g,R), let fr € Hoo be killed by Wy, and let ez € H_oo be fixed by
0(2%). Then ifz = Tz, + z2, we have:

(Uasyfr,ez) = ¢ " *129(2, T)
for some ¢ € C*.

PRrRooF: We compute in L2(R?9//Z?9). Then ez = ¢, Z es(3)6n,
n€el??
fr = c2e™'Tr29(z, T), s0

(Un,z)fr.ex) =1Uqa,2) fr(0)
=% fr(x)
= 5162615":'.!‘0(5, T)

Q.E.D.
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Recall that in Ch. 2, §5 we defined
9° [:2] (T) = e™¥'svT1+22) . §(Tzy + 25, T).
In terms of theta-functions with characteristic,
9° [2] (T) = e~ ™' 1729 [2] ;7).

We will see that in many ways J° is the most natural and most important
variant of 9. In particular, Cor. 2.4 says that 9% is just a matriz coefficient
of the representation H! Moreover, by looking at matrix coefficients, we

construct the quasi-periodic and Fock realizations of H directly, i.e.,

COROLLARY 2.5.
The space of functions on R?¢

z +— ¢5(2) = (Un,)f, ez),
some f € Hoo
The space of C® — functions g(z),z € R*,

such that
g(z +n) = e.(3)e(z, 3)g(z), alln € T?

Hence the space on the right is contained in L*(R?$//Z%¢). Let
L?(R% J/T%9) be acted on as in Realization II; then the map

Heo 3 f +— ¢y € L*(R¥ /7%

is equivariant:

bu, sy = Ug(dy)-

PROOF: Calculating the space on the left in the realization L?(R?¢//Z%9),

we see that

(Un,eyfrex) = f(z)

so the space on the left is L2(R* /Z%9), i.e., the C* functions in

L?(R? [/1%9). Now we check the assertion concerning the group actions:
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du 1 (2) = UaaUont, ez)
= (Unez.netufrez)
=X e(3,9)ds(= +1)
= Uny)85(2)-

QED

Likewise the Fock representation?! is just the action of Heis on a space

of matrix coeflicients.

COROLLARY 2.6.

The space of functions on C?
z — s (z) = (Ua,0)f1, f) =

some f € H_o
The space of holomorphic

functions g(z),z € C? such that e~ 3H(z.2),
9(z) € 0(||zl[e 37 =2)), some n
The action of Heis(2g,R) on the space on the right given in the Fock

representation is just

U(,\,—y)[e%”wf] = C%H ' 1IJU(A,y)f'

PROOF: We calculate the space on the left in the Fock representation ’Hi
to which M is conjugate linear isomorphic. Here fr corresponds to the

function 1, so if f corresponds to a holomorphic function f(2)

1We state this assuming the identification of H_o, in the Fock representa-
tion asserted above. If this is not assumed, one can limit the corollary to
the subspaces where f € H on the left and g € ’Hi on the right.
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Yi(z) = Ua,»)fr, f) = (U(l,z)fr,f)ﬂg

= /f(g) Tamyfry)e 1Dy

= / Fly)e FED-FHED - HE9) gy

= [ Fge e sHEa-THGgy

= e'%”(z,z)/f'(g' —z)e™ ' D .eﬂ"(z'»!')d!_/

if Y = y + z. But by the Mean Value Theorem, there is a consant ¢ such

that

for all holomorphic

We calculate easily:

C%H@’z)lﬁv(,,,)j(z)

/ g(2)e”H@Ddz = ¢ g(0)
Cy

functions g. Therefore

¥1(z) = c- e HED . f(—pz).

—_ e+%”<£’£)(U(],1:)fT1 U(,\’y)f)

x _ T
= e+7”(£)£) . A le(iyy)(U(llz—y)fT,f)

= e+%H(—"—"£) . A_l . e’”mH(?-'E) . e"’}”(ﬁ'_y_ﬁ_!)f(z _ y)
= A"t HED-FHEY f(g - y)

= U(,\,_y)f(z)

= Un,-y) (€37 - ¢y)(2). QED
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We may summarize the situation in the important diagram:

H'QH

|

“essentially” all fcns.
on R¥, Heis x Heis acting

Space spanned by fcns.
(Une)f 9
feMHe,9€ H-x

¢ \D

Wr-right-annihilator o(Z%) — left-invariants

Space spanned by fcns. Space spanned by fens.
(Ul,sz)f)v (Ul,a:f, 61),
f€H o J€EH-w

_= [Fock space ] Quasi—i)eriodic space]

M 2 ((oL0 y W L2(R* [[7%)
| 1
H* H

Y ¢

the unique fcn.
I*[z)(T) = (Uq,=)fr, €x)

31
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To explain this, we define the left and right actions of Heis(2g,R) on the

space of functions on R?¢ by

VS f(@) = X1e(Z,9)f(z - 9)
UGS F(2) = Xe(Z, 0)f (= +1).

We urge the reader to check that these are commuting actions of Heis(2g,R)

and that ett
USoltUnf, 9] = (Un,e) f, U )9)

igh
Ui WU f,9)] = (U o) - U, 9)-
But as we saw in Proposition 2.3, L?(R?9) is the Heisenberg representation
of Heis x Heis/{(), A)|,A € Ci}, and is isomorphic to #* @ H. Thus, if

we replaced the space spanned by the matrix coefficients

(U(l.r)fvg),f € Hoo,g € H—oo,

by the space of L2-convergent combinations

Ea.-j(U(,,,,)f,-, i), E |a.~j|2 < 0o, fi € H an orthonormal basis,

we would get L2(R?9). As it stands, the space in the upper right is es-
sentially all functions on R?4, in a function space that we do not make
precise.

What the above diagram does, in essence, is to give a representation
theoretic proof that 9 is the only function on R%¥ which is a) quasi-periodic

for Z%¢, and b) multiplied by a simple factor, holomorphic.
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We can describe the situation by a picture:

The Fock spaces
’Hg(C”', T)-oo
for various T'

Mysterious subset
of the functions
9%[2)(T)

for some T

L*(R* [[1%9)
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3. Finite Heisenberg groups and sections of line bundles on

abelian varieties

We have seen in §2 that the theta function occurs as a matrix coeffi-
cient of the real Heisenberg representation. In Ch.2, §1, we used a finite set
of translates of the theta function to embed various complex tori Xz, in
projective space. We now want to relate these two aspects of the theory of
theta functions and show how a finite version of the Heisenberg represen-

tation theorem occurs naturally in each of these projective embeddings.

We first recall some fundamental definitions. A complex line bundle

on a complex analytic space consists of

(A) a complex analytic space L and a morphism p : L — X such that,
for each point z € X, p~!(z) is endowed with the structure of a

one-dimensional complex vector space, and

(B) each point of X has a neighbourhood U and an isomorphism ¢y :
C x U — p~Y(U) of analytic spaces such that p(¢y(z,z)) = z and for
each z € U, the map from C to p~!(z) given by z v py(z,z) is a

linear transformation.

The trivial line bundle on X is simplyL=Cx X,andp: L — X is
the projection: p(z,z) =z for 2 € C,z € X.

A section of a line bundle p: L — X is a holomorphicmaps: X — L
such that ps(z) = z for all z € X. The collection of all sections of L forms

a vector space denoted by I'(X,L).

Note that a section of the trivial line bundle is necessarily of the type
s(z) = (h(z),z) where h is a holomorphic function on X. Thus, in this

case, ['(X,L) is just the vector space of all holomorphic functions on X.

An automorphism of a line bundle L on X is a pair (¢, 1)) where ¢ and

FINITE HEISENBERG GROUPS 35

v are analytic isomorphisms of X and L respectively such that the diagram

i

X ¢ X

¥

commutes, and in addition, the restriction of ¢ from p~!(z) to p~'(4(z))
is complex linear.

The collection of automorphisms of L, to be denoted by Aut L, forms a
group under the obvious composition law (41, Y1)o(¢2,¥2) = (4106¢2,¥10
¥2). The group Aut L acts on the vector space I'(X,L) by Uygy)s =

Yosog L.

We shall now define an action of Heis(2g,R) on the trivial line bun-
dle on C9 (equivalently, a homomorphism from Heis(2g,R) to the group
of automorphisms of the trivial line bundle on C?) such that the corre-
sponding action of Heis(2g,R) on the sections, that is, on entire functions
on CY, is identical to the Fock representation H3(C¢,T) if one ignores the
square-integrability hypothesis. Fix T € ), and hence fix an isomorphism
R? = C9 viay = Ty1 +y; as in §2. Forany h = (M y) € Heis(29,R)
where y = (31, 42) put

¢n(z)=2-y forallze€C, and

ta(a,z) = (axezp mi'y1(22 —y),z2—y), foralla€C,z€ Cs.
Then h — (¢n, ¥n) is the action we are looking for.

If s(z) = (f(z), 2) is a section of the trivial line bundle on C4, then

Vnsdi () = Yns(z +2)
=n(f(z+y),z+y)
=(f(z + g))"lczp mi'y1(22+ 2y — ), 2)
=(f(z +g))\'lezp mi'y1(22 + 9), 2),

which is the Fock representation HZ(C4,T).
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Now for any lattice L C Z%9, we defined, in §1, a complex torus Xz 1 =
C9/L. We can now define a basic line bundle L on each of these complex

tori. Recall that there is a section o : 229 — Heis(2¢,R) defined by

o(n) = (e.(n/2),n)

where e,(n/2) = e(3(*ny - n3)) if n = (ny,n2). Via o, 2% acts on the
trivial line bundle on CY : n € Z% acts by the pair (¢¢(n), Yo(n)), and of
course, (n) is simply translation by —n. The action of 2% and therefore
of any sub-lattice L, on C x C? and CY is free and discontinuous. Thus the
quotient of C x C? by L is a complex manifold and we get a commutative

diagram

CxCy¢ —m— L=CxC9/L

l

(o]

Xrp=C/L
where the horizontal arrows are universal covering maps and the vertical

maps give line bundles on C¢ and Xr .

DEFINITION. The basic line bundle on Xr f is the line bundle L = C x

CY/cL constructed above.
DEFINITION. For a line bundle L on a complex torus X,

G(L) = {(¢,¥) € Aut L | ¢ is a translation},
K(L) = {a € X| if ¢(z) = = + a, then there exists a pair (¢, ¢) € G(L)}.

Thus G(L) comes equipped with the exact sequence:
1 — C — gL) S KL) — 0.

In fact the kernel of 7 is identified with the group of all holomorphic nowhere
zero functions defined on all of X, which by compactness of X and the

maximum modulus principle is just C*.
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Let N(¢L) = {normalizer of oL € Heis(2g, R)}. There is an action
of N(¢L) on L: Let ) € N(oL). Under the action of (L), z is identified
with o(£)(z) for all £ € L. Is ¥n(z) identified with ¢, (o(£)(x))? Yes,
since Yo (£)(z) = o(m)Pn(z) for some m € L by normality. This shows
that v, descends to a map ¥,: L — L. Also,ifn € L, the induced
action of #(n) on L is clearly the identity by the very definition of L. Let
7 : Heis(2g,R) — R be the usual projection. Since a~'(L)yNno(L) has
exactly one element, any element which under conjugation normalizes o (L)
actually centralizes it. Thus if z € N((L)), then n(z) € L. This gives a

homomorphism between exact sequences:

1— €} — N(oL)feL — /L —0

]— € — GL) — K(L) —o.

Because of our conventions, the reader will see that the vertical arrows
here C} — C* and L /L — K(L) (between subgroups of Xr,1) are both
the reverse of the identity.

From the general results of §1, we see that
1 — C} — N(¢L)/oL — L*/L — 0

is a Heisenberg group built from the finite abelian group Lt/L. Let us
define, for any field k, an algebraic Heisenberg group over k as a group G

plus an exact sequence:
1 —k* —G5K—0

with K finite abelian and k* = center of G. Then we have:
PROPOSITION 3.1. L*/L 2 K(L), hence N(oL)/oL = G(L) and G(L) is
an algebraic Heisenberg group over C.

PROOF: The homomorphism from N(¢L)/oL to G(L) already showed that
LY/L is contained in K(L). If a € CY is such that its image in X7 is in
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K(L), then by applying an elementary lifting argument there is an automor-
phism (75, ¥) of the trivial line bundle on CY (where T, = translation by a)
which normalizes the o L-action, and therefore centralizes it. Now putting
¥(a, z) = (ah(z), 2 + a) where h is nowhere zero, the above condition can
be read off as

h(z - a)'lh(z —-a —g) = ezxp 27ri'yla

for all y € L and z € CY. Putting h(z) = ezp 2wif(z), one finds that
f(z — y) — f(z) is a constant function for all y € L. It follows that all
the partial derivatives of f are invariant under translation by L and are
therefore constant because X7 1 = C9/L is compact, implying that f(z) =
A+ g(z) where A € C and g is a linear form on C¢. Substituting for A in

terms of ¢ in the last equation now gives

9(y) ='via (mod T)

forallye L. If a =} =Tb; + by, then

-t

9(y) = 'ybr =‘'pra—"yb1 (mod Z)
9 (Thy + ba) — H(Tyr + y2)b1

tyrby — tyaby
= A(y,b) (mod Z).

Now L generates C¢ as a real vector space, which implies that the complex
linear form g(y) — *yb; takes only real values and is therefore identically
zero. This implies that A(L,b) C Z, or equivalently, that b € L. Therefore
K(L)=L*/L. QED

Next we consider the sections ['(X7 r,L) of the basic line bundle L

over Xr 1. We easily see that

trivial bundle C x C9 on C¢

Space of entire functions f(z) on C¢ invariant by
o(L) in the Fock representation H;(C4,T) '

I(X7p,L) = {Space of o(L) — invariant sections of the}

R
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In fact these invariant functions must belong to the space H3(C?,T)-co,
as one checks as follows:

a) Define the norm
N:CxC! —R*

by

N(o,z)=a- e~ iavIm Ty
=,

b) asmall calculation shows that
N(a,z) = N(¥n(a,2)), alhe Heis(29,R),

where

va(a,z) = (X lexp 7ityi (22 - 9), 2 — y)-

¢) hence if {(f(z), 2)} is a o(L)-invariant section, N(f(z),2) isa function
of z € C9/L, hence is bounded,
d) hence
f(z) € O™ v Im Tmy,

Using the characterization of Hy —co before Theorem 2.3 and the map

from Hs to M, we see that
I(Xr,,L) = (H3(C, T)-0)",

where L = C x C9/L is as constructed above.
In fact, [(Xr r,L) is the irreducible Heisenberg representation of G(L).
To prove this, we next define a whole set of elements c[Z] in the distribu-

tional completion H_o of the real Heisenberg representation space . For

all a,b € QY, set

e[;:] = Z e '("=a)bs _ (z) in realization I
necl9
= Z emi'(n=a)mib) 5 -s(z) in realization II

nmel?
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These are easily seen to correspond by the proof used in Theorem 2.3. Or
else, their equality follows by noting that ez = e[g] is the unique o(Z%9)-

invariant vector of that Theorem and that
a 0
e[b] = U(e—'-"-'b,a,b)e[()]'
Moreover, in the conjugate-linear isomorphism with H3, e[g] corresponds

to the unique o(Z%9)-invariant element, namely ¥(z), hence e[‘bl] corre-

sponds to
U(e-""'b,a,b)l,(-@-) = cm'ia.b . exi‘a'(Ta+b+2g)0(£+ Ta+ b)

= Zem‘[‘a.b+‘a.(Ta+b+2£)+‘n.T-n+2‘n-(g+Ta+b)]

= Z emil (n+a)T(n+a)+2' (n+a)(z+b)]

a
=9 b](ﬁ)
the theta function with characteristic of Ch. 2, §1.

We now prove

PROPOSITION 3.2. Let (a;,b;) be coset representatives for L* /2%9. Then
identifying T'(Xr,r,L) with its image in Hs(C?,T)—co, the 19[;)'._‘] form a
basis of I'(Xr,1,L), and I'(Xt,r,L) is the irreducible Heisenberg represen-
tation of G(L).

PROOF: We show that I'(Xr r,L) is irreducible under the action of the
group N(oL)/oL. Now any A € C] C N(osL)/oL acts on this vector
space by multiplication by A~!, and by §1 it follows that I'(X7,L) =
K®K...®»K where K is the unique irreducible representation such that
A € C} acts by A™1. To show that I'(Xr ,L) = K it suffices to prove
that the subspace of I'( X7 r,L) fixed by 029 /o L has dimension one. Now
this subspace of I'(X7,,L) is identified canonically with the subspace of
I'(C x €9, C9) fixed by 62%9. For n; € Z¢ x {0} and nz € {0} x Z¢ we have
by the formulas in §2.
Uony)f(2) = f(z + Tny)exp(ni'niTny + 2win,‘z)

U,(",)f(z) = f(z + n2).
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And any holomorphic function on C¢ invariant under these two sets of

operations is a scalar times 9(z,T).

If ¢; = (a;, b;) form a system of representatives for Lt /2%, then
N(oL) = UU(I,,.) o(Z¥)-C}

and therefore the functions Uqy,c;)9(z, T) span a N(oL)/o L-invariant sub-
space of I'(Xr,z,L). Because I'(X7,r,L) is irreducible and its dimension is

[Lt : Z%9), it follows that
—xitagbi o B¢
U(l.ci)l’(ly T) =€ b l9[ b; ](lv T)

form a basis of I'(Xr,r,L). QED

Thus we have arrived again at the situation of Ch. 2, §1: to embed
Xr,1 in projective space, we take the basis 19[:'] for the global sections of
1§

the basic line bundle. Now we use:

LEMMA 3.3. IfL C nL*, then there is a line bundle M on X7 1 such that
M®n >,

PROOF: Note that if () is a basis of L, then L is C x C# modulo the

automorphisms generated by

(a,2) — (a- e @ Te) ;) D el

Define M to be C x C¢ modulo the automorphisms generated by
n-'eg").(z_z__ng‘))/n’ z—e), Del.

(e, z) — (ae

Using the fact that %c(") €Lt e, A(e(‘),e(j)) € nZ, one checks easily
that these maps commute, hence define the needed M. QED

Now a theorem of Lefschetz (cf. D. Mumford, Abelian Varieties, p.
29) says that if n > 2, the sections of M®" define a holomorphic map

éro:Xpp — P v=[2¥:1)
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and if n > 3, érr is an embedding. This gives us a projective version
of the Heisenberg representation: the action of G(L) on I'(Xr r,L) induces
an action of the finite abelian group K(L) on P¥~1 which is irreducible,
(i.e., there is no linear subspace ps-1 ¢ PY~! which is mapped to itself by
K(L)) and which makes ¢r  K(L)-equivariant, i.e., if a € K(L) induces
pa : P~ = PY7! then

ér.L(z + a) = pa(¢r,L(2)).

This group action leads in low dimensional cases to very beautiful explicit
descriptions of Im ¢ r. In chapter I, we studied the case ¢ =1, L = 2- 72
The cases g = 1, L = 2Z +Z and g = 1,L = 3Z + 7 are the well-known
representation of elliptic curves as double covers of P! ramified in 4 points
+a,+a"! and as cubic curves X3 + X3 + X3 + AXoX1 X2 = 0, respectively.
The case ¢ = 2, L = 2Z% + Z? is the representation of principally polarized
a 2-dimensiona! abelian surface as a double cover of a “Kummer” quartic
surface with 16 nodes. The case g = 2, L = 4Z 4 Z3 leads to a beautiful
class of octic surfaces in P3: the case ¢ = 2,L = 5Z + Z? leads to an
interesting story in P* (cf. Horrocks & Mumford, Topology, vol. 12, 1973).

Much of the above theory concerns only the algebraic varieties obtained
when a complex torus is embedded in projective space. This part of the
theory is really a branch of algebraic geometry and has nothing to do with
analysis. We want next to sketch this variant of the Heisenberg circle of

ideas. We begin with some basic definitions:

DEFINITION. Let k be a field. An abelian variety defined over k is a pro-
jective variety X defined over k with a morphism f : X x X — X and a
k-rational point 0 € X which makes X into a group. For every k-rational

point a, let T, : X — X be given by T,(z) = f(z,a).
Facts about abelian varieties that we shall freely use are:

LEMMA 3.4. (A) X is a commutative group, whose inverse is a morphism

~-1: X - X.
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(B) The set of all points z of X defined over the algebraic closure k of k
such that nz = 0 for some n > 1 is dense in X, and

(C) Xn = {z € X(k)|nz = 0} = (Z/nZ)*, if n is not divisible by char k.

When X = X7, these facts are obvious. For the general case, see D.
Mumford, Abelian Varieties, §§4,6. The fundamental definitions related to

line bundles in the algebraic case are:

DEFINITION. A line bundle L on a variety X defined over k is a morphism
p: L — X and isomorphisms ¢q : Ug X Al =, p~Y(U,) on an open cover

Uy of X such that
(081U NUp x A1)V o (pa|Ua NUs x AY) : UaNUp x A' — Uy NTp x A

is given by (z,t) — (2, ¥ap(2)t) where ¥qp and ¢;; are regular functions
on the open set U, NUp.

A section of L on an open subset U of X is a morphisms: U — L such
that ps = iy where iy is the inclusion morphism of U in X. The collection
of sections of L defined on U is a k-vector space denoted by I'(U,L). The
sheaf of sections of L is the sheaf on X given by attaching to every open set
U in X the abelian group T(U,L). This sheaf is a locally free sheaf of rank
one and this sets up a one-to-one correspondence between line bundles L

on X and locally free sheaves of rank one on X.

DEFINITION. The tensor product L, ®L 2 of two line bundlesL, and L3 on
X is a line bundle on X such that its sheaf of sections is the tensor product
of the sheaves of sections of Ly and L,. Equivalently there is a morphism
L; xx L, — L, ® L, making the fibre of L, ® L, over each k-valued point
of X into the tensor product over k of the fibres of Ly and L,. The line
bundles L ®L,L®L®L,... are denoted by L®Z L83 ... . The line bundle
L is ample if for some n > 1, L®" is generated by its sections, and these

sections define an embedding of X in PV.

DEFINITION. For a line bundle L on an abelian variety X defined over an
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algebraically closed field k,

GL) = {(¢,¥) € Aut LI¢ =T, for somea€ X}
K(U) = {a € XITIL) L),

Clearly there is an exact sequence
1—k*—GL)— K(L)—0.

The main results of the algebraic theory parallel those for locally com-
pact Heisenberg groups and assert the existence of a canonical Heisenberg

representation:

PROPOSITION 3.5. Consider all k-vector spaces (finite-dimensional or not)
equipped with an action of an algebraic Heisenberg group G such that
X € k* C G acts by multiplication by X. There is one among these, denoted
by H, with dim M = /#K, which is irreducible, and furthermore, any
such representation is a direct sum of copies of H. H will be called the

Heisenberg representation.

ProPosITION 3.6. IfL is an ample line bundle on an abelian variety X

defined over an algebraically closed field k, with first chern class ¢,(L), then
(A) dimT(X,L)= ﬁ(cl(L)”) > 0, and this integer is called deg L.
If the characteristic of k does not divide deg L, then

(B) G(L) is an algebraic Heisenberg group; K(L) has (deg L)? elements,

and

(C) T(X,L) is the Heisenberg representation of G(L).

There is still another variant of the Heisenberg theory to cover the case
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char(k) | degL. Using the language of schemes, we define group schemes

G(L) = group scheme whose R — valued points are the pairs

L XSpec k Spec R 5, L XSpec k Spec R

X Xspec k Spec R LR X xspec;,SpecR

where ¢ is translation by an R — valued point of X and
v is an isomorphism of line bundles; the bijection

between points of G(L) and pairs (p, ¥) is functorial in R.

K(L) = the sub-group scheme of X whose R — valued points a
(for any local ring R) are those such that if ¢ is translation by a,
then
¢*" (L Xspec k Spec R) 2 L Xspec & Spec R.

If char k + deg L and k is algebraically closed, then K(L) will be discrete
and finite, and the k-valued points of G(L), K(L) will be the ordinary
groups G(L), K(L) defined above. If char k 1 deg L, but & is not al-
gebraically closed, the “Scheme” structure just amounts to an action of
Gal(E/k) on G(L xx k) and K(L x; k). But if char k| deg L, K(L) may
have nilpotent elements in its structure sheaf. Next, we define a Heisenberg

group scheme to be a group scheme G plus an exact sequence

where K is a finite abelian group scheme and G, is the center of G. The

main results generalize to:

PROPOSITION 3.7. Consider all representations p : G — GL(n) such that

the center G,, acts by p(A) = X - I,. There is one among these, denoted
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by H, with dim H = J/order K (here order K = dim; I'(Ok)), which is
irreducible. And furthermore any such representation is a direct sum of

copies of H. H will be called the Heisenberg representation of G.

ProPoSITION 3.8. IfL is an ample line bundle on an abelian variety X
defined over k, then G(L) is a Heisenberg group scheme, K(L) has (deg L)?
elements and T'(X,L) is the Heisenberg representation of G(L).

For proofs, see D. Mumford, Abelian Varieties §16, §23 and T. Seki-
guchi, J. Math. Soc. Japan, 29 (1977), p. 709.

4. Adelic Heisenberg groups and towers of abelian varieties

The algebraic theory of Heisenberg groups of §3 seems like merely a
faint residue of the real Heisenberg representation in the context of projec-
Live varieties and might suggest that only a small part of the theta function
could be reconstructed from abelian varieties. This is not correct, however,
and by using adelic methods, we will see that a purely algebraic theory of
adelic Heisenberg groups and adelic theta functions can be given which is
quite parallel to the analytic theory. We will explain how this goes in §5. In
this section, we will merely define the adelic Heisenberg group g (L) associ-
ated to any line bundle L on any abelian variety X and give a systematic
exposition of its basic properties.

We begin with some basic definitions:

DEFINITION 4.1. Let A be an abelian group. The groups Vo (4), V(4),
V?(A) and T,(A), T(A), T,(A) are:

i) V,(A) = the group of all sequences (a0, a1,0az,...) where a; € A such
that:

pais1 = a; and pYag = 0 for some N > 0

ii) V(A) = the group of all sequences (a1,a2,03,...) where a; € A such
that:

Mamp = 6n and Naj = 0 for some N21

iii) VP(A) is the same as V (A) except that the a; are defined only for i not
divisible by p and there is an N, not divisible by p, such that Na; = 0.
iv) T,(A),T(A) and T?(A) are the subgroups of V,(A),V(A) and VP(A)

given by ap =0,a1 =0 and a; = 0, respectively.

Note that V,(Q/Z) is the field of p-adic numbers Q,; T,(Q/Z) is the
subring of p-adic integers Z,,; V(Q/Z) is the ring of finite adeles A;; T(Q/Z)
is the subring of integral finite adeles, Z, a completion of Z; V?(Q/Z) is the
ring of finite adeles without the p-factor, which we write AP, and T#(Q/2)
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is the subring of integral finite adeles without the p-factor, which we write

70).
LEMMA 4.2. T(A) = HT,(A) and T?(A) = [[Te(A) where the ¢ range
through all primes, and V(A) and VP(A) are th;:p‘ “ restricted” direct prod-
ucts:
v(4) = {(ac) € [TVe(4) | all but finitely many ag belong to T,(4) }
)

VP(4) = {(ag) e [] ve(a) | all but finitely many a, belong to Te(4) }.
t£p

There are exact sequences,
0 - T(A) = V(A) — Ator — 0
0 — Ty(4) — Vy(4) — A(™) = 0
0= T7(4) — VP(A) = AL, —
where Ao is the torsion subgroup of A, A(p™) is the subgroup of A of

points of order pV for some N, A} __ is the prime-to-p torsion subgroup, and

tor

the homomorphism from V(A) to Aqor is given by (ay,as,as,...) — a;.

We omit the proof which depends only on the fact that any element a

of finite order in any abelian group A has a unique decomposition a = Za[
¢
where each a; is annihilated by some power of £.

DEFINITION 4.3. Let G be any commutative group scheme defined over a
field k. In practice we shall put G = an abelian variety or G = G, (the
multiplicative group scheme of the field k) only. Let G(k) = all points of
G defined over the algebraic closure k of k. We put

Vp(G) = V,(G(F)), if p # char. k,

T,(G) = T,(G(¥)), if p # char. k,

V(G) = V(G(k)) and T(G)=T(GE)) ifchar. k=0,
and finally

V(G) = VP(G(k)) and T(G)=T"(G(k)) ifchar.k=p.
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Actually, these groups remain unchanged if k is replaced by k,.p the
separable closure of k, and all of them are acted upon naturally by the
galois group Gal(k,.p/k).

LEMMA 4.4. For an abelian variety X of dimension g defined over k of
characteristic # p, the pair (V,(X), T,(X)) is isomorphic to (Q2%,22%) and
the pair (V,(6), Tp(6m)) to (Qp,Z,). Also the pairs (V(X),T(X)) and
(V(6:m),T(6ym)) are isomorphic to (A;’,i”) and (Ay,Z) when the char-
acteristic of k is 0 and to ((A(fp))“,(i(”))”) and (A(fp),i(”)) when the

characteristic is p.

ProoOF: The second statement follows from the first after an application

of Lemma 4.2.

Let X(p™) = all points of X defined over k annihilated by some power

of p. By definition V,(X) is the inverse limit of the chain of arrows:
= X(p) B X () - X ()

There is an isomorphism X(p™) = (Q,/Z,)?9. Once this isomorphism has
been fixed, V,(X) is the inverse limit of:
(/L)Y D (L) s (Q)1)7

o~

P’ p|l= 1| =

20— (@)Y — (Q/PL) — (/1)
which by the commutative diagram above and the completeness of ng in
the p-adic topology is just QP”. It is clear that T,(X), given by the first
member of the chain = 0, gets identified to Z;”. The Lemma holds for G,,

because Gm(p™) = Qp/Z, holds too. Q.E.D.

On various occasions below we will fix an isomorphism
5 n T
e: Af / 71— kt or

(or A(fp)/i(l’) =, E,,, in char. p) and we will always use bold-face e for

such a map.



50 TATA LECTURES ON THETA III

DEFINITION 4.5. IfE is a line bundle on X and f : Y — X a morphism,
then the line bundle f*E onY is the fibre product:
ffE=YxxE — E

l L.

y L
Ifg=(¢,¥) € Aut E and ¢’ : Y — Y Iis an isomorphism so that ¢ o f =
fod' then (¢',¢') € Aut f*E is the lift of g covering ¢’ where ¢¥'(y,£) =
(¢'(9),%(9)) for all (y,£) €Y xx E.

The most important group associated to a line bundle L on an abelian

variety is:

DEFINITION 4.6. Assume first that characteristic k = 0. Then G(L) = all
sequences of pairs (zn, ¢,) where:
A. The z, € X(k) define a member of V(X), ie., mZm, = z, and
Nz, =0 for some N > 1.
B. The ¢p are defined for all n such that z,, € K(n*L).
C. (Ty,..)bmn) is the lift of (T, ¢n) covering T, as in Definition 4.5.
withE=nm%L, Y =X, f=mx.
D. The group law in G(L) is given by

(1!",([)") o (yn) 1/"n) = (zn + Yn,Pno ¢n)

In é(L, ifchar. k # 0, then (z,, ¢,) are to be defined only for n not divisible
by p, and 3N such that p [N and Nz; = 0.

The power ofé(L) is due to this: For any element & = (zy,---) € V(X),
there is an N such that for all n divisible by N, x,, € K(n*L). Indeed we

have

PRroPosITION 4.7. The group é(L) has an exact sequence:

1 —F — 6L V(X)) — 0
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where 1 takes (zn,$n) to the sequence (z,) defining an element of V(X)
and the inclusion of & in G(L) is given by @ +— (2n,én) where z, = 0

and ¢, = a(n*1) for all n. Further, " is contained in the centre of G(L).

PrRooF: To see that 7 is surjective, let {z,} € V(X) and let N be the
smallest integer so that Nzo € K(L), so Tyz,L ® L™} is trivial. Now
T; N°L ® (N*L)™'= N*(Tj,,L®L™Y)
= T L ® L-! (by the theorem of the square)
& (trivial bundle).
QED
COROLLARY 4.8. Ifp:L, Z L, is an isomorphism of line bundles on X,

then the induced isomorphism of G(L,) and G(Ly) is independent of o.

ProoF: To check the Corollary, it suffices to show that any isomorphism
¢ : L 2L induces the identity isomorphism from G(L) to itself. And this
is so because any such ¢ is ap where a € % and therefore the correspond-
ing automorphism of é(L) is conjugation by a € k' C G(L) which is the
identity. QED

The next proposition describes the functorial nature of G().

PROPOSITION 4.9. If f:Y — X is a homomorphism of abelian varieties
and L is a line bundle on X, there is a commutative diagram:
1— k — G 5 vy) —o
s iw [ve
1— kB — G(L) I V(X) —o.
IfL, and L, are line bundles on X and
H = {g1,92) € 6(L1) xG(L2)| 1(01) = 7(g2)} and
A = {(ay,a2) ek xk C H| a1az = 1},
then there is a diagram:
1— F — HIA — V(X) —0

.

1— k* — GLi®L) — V(X) —o.
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PROOF: Let (y,#n) be a sequence in G(f*L). Choose an N such that
N?yn = 0; this implies that ¢ is defined. Then f(yn) € K(NkL) allowing
one to choose a (Ty(yy),8) € Aut NxL. By modifying 8 by a unique
element of & one may assume that the lift of (Ty(yy), 8) to Aut f* N3 L is
(Tyn,8n). Let (f(¥n), #n) be the unique sequence in G(L) so that ¢y =
B. Put 5(f,L)(yn,¢n) = (f(yn), ¢n). This gives j(f,L) in a well-defined
manner, and gives j(f,L)(a) = a for @ € ¥'; that w0 j(f,L) = V(f) o7 is

immediate.

We shall content ourselves with defining A’ : H — §(1®L2) such that
h'(A) = 0. Let u = (2n,¢n) € G(L)) and v = (€n, ¥n) € G(L3). Then
(T:,,¢n) and (T:,,¥n) are in Aut nkL; and Aut n%L; respectively; they
induce (7%, ,¢n ® ¥n) an automorphism of L; ® L,. Now put h'(u,v) =
(Tz. ) #n @ ¥n). This satisfies h'(A) = 0 and gives a factoring of h":

K:H— H/A-"-»é(l_l ®Ls)
QED

The homomorphism 7 : é(L) — V(X) has a section o over the sub-

group T(X) Cc V(X):

DEFINITION 4.10. If z € X,, let (T;,0n(z)) € Aut n%L be the lift of
(1x,1) € Aut L covering T;. For z € T(X), where z = (z;,22,23,...),
let oL (z) € G(L) be the sequence of pairs (zn,0n(zn)). Alternately, ot (z)
is the unique element of G(L) with m(c%(z)) = « and ¢, = 1 (where

ot(2) = (zn, én)).

LemMMA 4.11. The map o, defines an action of X, on nkL so that
p(on(z)) = p(€) + x. The quotient of n%L by this action is precisely
the line bundle L on X.

The functoriality of oo is given by:
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LEMMA 4.12. With notation as in Proposition 4.9, we have
L) Y (e) = A (V(N)(@))
for all z € T(Y) and h(oL1(z), o%3(z)) = oL1®L2(z) for all z € T(X).
Lemmas 4.11 and 4.12 follow by just plain checking.

PROPOSITION 4.13. The three subgroups of é(L) defined below are iden-
tical:
(A) the normaliser of oL T(X),
(B) the subgroup of (zn,¢n) with z; € K(L), and
(C) the elements g of G(L) which have a representative of the type (zn, $s)
with ¢, defined for all n.

Consequently, this subgroup, modulo oYT(X), is isomorphic to the

subgroup of elements g of G(L) with n(g) a torsion element of K(L).

PROOF: Step I: Weprove A C B, i.e.,ifg € N(¢LT(X)), then 2, € K(L)
where g = (Zn,$n). If u € oL T(X), then gug™'u~! € k* NotT(X) = 1
showing g commutes with u. Assume that ¢, is defined. Reading off

'y~1 one sees that ¢mom(y) =

the m*? element of the sequence for gug~
m(y)ém for all y € X,,. By Lemma 4.11, because ¢ : myL — mxL
commutes with the o,-action of X, there exists ¢ : L — L and a

commutative diagram

miL 2% myL

Lt X L
Clearly (Trmz.,, %) = (T, , ¥) € Aut L implying that z, € K(L).

Step II: Next prove B C C. If g = (z,,4n) has z; € K(L), then ¢; is
defined and so z, € K(n*L) for all n.

StepIII: If g = (2m,Pm) € G(L) has ¢, defined, then g commutes with
oL (y) for all y € T(X). This is so because both go' (y) and oL (y)g have

their m*? coordinate as the lift of (T5,, 1) covering Tz, 4y, -
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This shows that the three groups are equal. Now define
h: N(e*T(X)) — G(L)
h((zy, é1), (z2,42),...) = (Tz,, 1) €G(L).
By definition the kernel is just o 7'(X) and the image is all (T}, ) €
G(L) with , a torsion point of K(L). In particular, if L is ample,
G(L) = N(o* T(X))/o"(T(X))
QED

PROPOSITION 4.14. Let X be an abelian variety and L a line bundle on
X. For z,y € V(X) choose Z,§ € G(L) with n(Z) = z and #(y) = y. Put

et(z, y) =T §Z~ 1§}, then

A) €Y (z,y) is independent of the choices of ¥ and Y and is an alternatin
g

form with values in the group of all the roots of unity in .
B) e(z,y) =1 forz,y € T(X).
C) Let At(z,y) = (eL(x,y),eL(g,y),eL(g,y), ...)in V(Gy,). Then
AL V(X) x V(X) — V(6p)
is an alternating R;-bilinear form on V(X), and if
0= T(6m) — V(6,) —k;,, — 0
is the exact sequence of Lemma 4.2, then
e(A(z,y)) = e (z,y) forallz,y € V(X).
D) IfL is an ample line bundle on X, then define
T(X)' = {y € V(X)|eY (2,y) = 1 for all z € T(X)}
= {y € V(X)|A"(z,y) € Z for all z € T(X)}.
Then [T(X)1 : T(X)] = (deg L)? in characteristic 0, or the prime-

to-p factor of (deg L)? in characteristic p. ( See Proposition 3.4 for
definition of deg L.)
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E) In particular, if deg L =1, then T(X) = T(X)*.

F) If f:Y — X is a homomorphism of abelian varieties, then

AY(V(H)z, V(fly) = A4 (z,y)

and
t(V(NHz,V(y) = e L (z,v)
and finally,
G)
ALreLa(z ) = AV (z,y) + AV (2, y)
and

eL‘®L’(z, y) = el (=, y)eL’(.r, )

The group-law on V(6,,) is written + rather than - because it is an

A;-module. We give only some of the proofs.

A) eL(z,y)'"’ = eb(mz,my) = 1 if m is chosen so that mz and my both

belong to T(X).

B) The existence of the group homomorphism ot T(X) — §(L) shows
that

e(z,y) = [the commutator of o*(z) and o*(y)] = 1.
C) AL (z,y) is clearly additivein y. Alsoe'(%,y) = (2, L) =et(z, L)

showing that
Al(z,9) = (M) et (2. 5) 2 D), )

from which AY(z,y) is additive in z. Also t(z,£) = H(Z,E)m™ =0

showing A (z,z) = 0. We omit the rest of C).
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D) Letting X%, be the prime-to-p torsion subgroup, the sequence
0 — T(X) — V(X) — Xf,, =0

from Lemma 4.2 allows us to identify T'(X)+ /T(X) with a subgroup of X},,.
It follows from Proposition 4.13 that this subgroup is precisely Xf, N K(L).
By Proposition 4.4, K(L) has (deg L)? elements and is therefore contained

in Xgo,-.

F) This follows from Proposition 4.9. Put j = j(f,L). Choose Z,7 €
G(f°L) so that 7(Z) = z and #(§) = y. Then:

=ji@)i@iE) @™
= ¢! (nj(Z), 7i(7))
= e (V(f)z, V(f)y)

Now Al is defined using e so the same formula holds for it, and G follows

from Proposition 4.9 too in a similar manner. QED

LEMMA 4.15. Let K be the reduced connected component of K(L), where
L is a line bundle on an abelian variety X.

A) The null-space of e* is V(K), and e* gives a non-degenerate pairing on
V(X)/V(K).

B) Also, for any prime p # char. k, the null-space of e* on V,(X) is Vp(K).
C) If K(L) is finite and an isomorphism Ay = V(G,,) is fixed, then there is
an isomorphism V(X)) & A;” such that AL becomes the form®z, -y, —'z2-91
for all (z1, z2), (y1,¥2) € Af”, and T(X) becomes a subgroup of finite index
in 7% (replace Ay by Asp ) in characteristic p > 0).

PROOF A: The pairing b : K(L)x K(L) — Gy, is trivial when restricted

to K x K(L) because K is complete, connected and reduced and et(0,z) =

1. The same argument shows that e"x" is trivialon K x K(n*L) D K x X,
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for all n > 1 because K C K(n;L), and consequently, et(z,y) = 1 for all
z € V(K),y € V(X). Denoting the induced pairing on V(X)/V(K) by &
and the image of T(X) in V(X)/V(K) by T, we have T*/T = K(L)/K
by 4.13, where

T+ = {z e V(X)/V(K)|e* (z,y) =1 forallye T}

Thus [T : T] is finite, showing that €' is non-degenerate.

B) follows from A) by looking only at Tp(X), Vp(X).

To prove B) implies C), we cite the normal form for non-degenerate
skew-symmetric forms on each V,(X), defining V,(X) = Q2 separately
for each p such that T,(X) goes over to Z;",-" except for finitely many p. All
these isomorphisms together give us the isomorphism of V(X) with Af” .
We leave the details to the reader. QED

We add the last bit of structure to §(L) Assume L is isomorphic to
i*L where i is the inverse map. This induces an automorphism of G(L)
which allows us to define a section T to the map = : G(L) — V(X). The

section 1 is the key to an algebraic definition of ¥.

PROPOSITION 4.16. Let Aut' X be the group of all automorphisms f of
X such that f*L = L. Then there is an action of the group Autt X on

).
PROOF: Any f € Aut X induces a j(f,L) as in Proposition 4.9:
Ly 5 ov(X)
oo
G() = V(X).
By functoriality j(f,L)oj(g, f*L) = j(fog,L). Now f € Autt(X), so there
exists A : f*L 2 L; further the isomorphism induced by A : G(f'L) — G(L)

is independent of the choice of A (Cor. 4.8). Thus j(f,L) can be regarded as
an automorphism of G(L) when f € Aut'X; furthermore if f,g € Aut* X,




58 TATA LECTURES ON THETA 111

then j(f,L)j(g,L) = j(f o g,L). By Proposition 4.9, j(f,L) acts on the
exact sequence for G(L) as follows:
1— F — G() I V(X) —s0

11 1j(f, L) [V(f)

1— F — duny S vx) —o.
QED

DEFINITION 4.17. A line bundle L. on X is symmetric if (~1x)*'L =L, or
equivalently if —1x € AuttX. The involution j(—1x,L) on G(L) will be

denoted by i, so that there is an exact sequence:
1— B — GL) 5 VvV(X) —0
ol
1— F — dun 5 vx) —o.
This allows us to make the important
DEFINITION. Let z € V(X) and choose y € G(L) such that 27 (y) = =.
Define r(z) € G(L) to be yit (y)~".
REMARK 1: #(7(z)) ==z.
REMARK 2: 7(z) is independent of the choice of y. To show this note
y can only be replaced by a - y with a € k* and ay(i(ay))™! = y(iy)™!
because i(ay) = ai(y).
We shall abbreviate ob, it etc., to 7,1, etc. when there is no possibility of

confusion.

PROPOSITION 4.18. Let L be a symmetric line bundle on an abelian va-
riety X.
A. ioo(z)=o(—z) forz € T(X).
B. Any element of é(L) can be written uniquely as ) - (x) with A € x
and r € V(X); the multiplication table ofé(L) is given in this set-up by
z 1
Ar(z) - pr(y) = /\yeL(E, Yr(z+y) = /\pe(iAL(:c, y))r(z +y).

The involution i is given by i(Ar(z)) = Ar(—xz).
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C. If we define e+ by o' (z) = €& (%)r(), for all z € T(X), then et isa

quadratic form on $T(X) with values in the group *1; eb satisfies:
et (z +y)et (2) et (y) 7! = et (z,v)%.
PROOF: A. Lemma 4.12 says j(f,L)o! "\ (z) = o*V f(z) which gives for
f=i
j(=1x,L)0~ %t = L V(=1x)z = o* (~2),
which in our notation reads as ito'(z) = o' (-z).

B. We verify the multiplication formula: assume 27 (p) = z and 27(¢q) = y,

then
Ar(z)ur(y) = Mupi(p) " gi(g) ™"
= et (n(pi(p)~"), 7(9))api(p) ' i(g) ™!
= /\peL(x,%)qP -i(gp)”"
= A#et(g, y)r(z +y).
Also

i(Ar(z)) = iApi(p)™") = Xi(p)p™! = Ap~li(p) = Ar(~2).
C. o'(2z) = o4 (z)? = L (%)’r(x)? = €L (§)?r(2z) by B. But r(2z) =
ot (2z) for all z € T(X) because oL (z) is a lift of z so that by definition
r(2z) = ot (z)ict (z)~! = o (z)ot (z) = ot (2)?.

This shows e (£) = 1 for all z € T(X). It only remains to check that

et (z +y)et @b (@) = Mz y)”
We have
o (e +9) = ()0 (v)
= et ($er G)r(@)r()

= (G G 97 +1)
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by the multiplication formula in B. On the other hand, by the definition of

e we have

z+y

UL(Z‘ +y) = e!‘( >

)r(z + y).
QED

LEMMA 4.19. Any non-degenerate quadratic form in 2g variables over

g g
2/21 is equivalent to either Ea.-b,- or a? + ayb, + b2 + Za,-bg.

i=1 i=2
PROOF: Let g be the quadratic form and A(z,y) = ¢(z+y)—q(x)—q(y) the
associated alternating form. If ¢ > 1 and z # 0 there is certainly a non-zero
y different from z such that A(z,y) = 0 because {y|A(z,y) = 0} has 229!
elements. For such a pair at least one of the values ¢(z),¢(y), ¢(z + ¥)
is zero. So let v; # 0 be such that g(v;) = 0 and choose v; such that
g(v2) = 0 and A(v1,v2) = 1, and take the orthogonal complement and
proceed by induction until one has chosen a basis so that
g-1

¢(a,b) = Z a;b; + 6103 + e2a,by + c;;bi.

i=1

The only possibilities for the last bit in a; and b, are

2
1) a2 +azb, + b2 2) a,b, 3) ay(a, +b,) 4) (ag + by)b, ,
and 2), 3) and 4) are all equivalent. It only remains to show that the two
quadratic forms in the statement of the lemma are inequivalent. Simply
count the number of zeroes. The first has 229! + 29~ and the second has

229-1 _ 29-1 geros. QED

From this, it is now easy to show

PROPOSITION 4.20. Let L be a symmetric ample line bundle of degree
one on an abelian variety X. Fix an isomorphism, once and for all, of
(V(6m), T(Gm)) with (A;,Z). Then there is an isomorphism of (A%, 7%)
with (V(X), T(X)) so that A and and e are now given by A" (u;,v;) = 6;;
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and AY(u;,uj) = A% (vi,v;) = 0, and

e%(%(z Tiu; + Zyivi)) = (-—l)z-‘"”‘ or

I e DI
= Y

=(-1)
where (u1, sz, -+, Ug, V1,2, -,V) is a basis. Of course this means that
the u; and v; form a Z-basis for T(X) and an Aj-basis for V(X). The
L’s for which the first normal form holds are called “even symmetric” and

those for which the second holds are called “odd symmetric”.

One uses Proposition 4.14E, Proposition 4.18C, Lemma 4.19 and works
a little to get to the proof of this fact. If the characteristic is p, replace Ay
and Z by R,, S,.

We remark here that this problem of the two choices for e, occurred
earlier in §2. We had L, a maximal isotropic lattice in V, and found that
the collection (1, £) with £ € L formed a subgroup of Heis(2g, R). Calling

this subgroup G for the moment, the exact sequence
0—-{+1}—-G—-L—1

has its splittings in one-to-one correspondence with quadratic forms: L—
((=1)/©, ¢) is a splitting if and only if f(£1 +£2)— f(£1) — f(£2) = A(lr, £2)
(mod 2). And under the symplectic group of the lattice L these quadratic
forms break up into two orbits (Lemma 4.18). Only in the case g = 1 is
there a canonical choice: a? + ab + b2 has the property that any quadratic
form is equivalent to this one. This corresponds to the fact that there is a
canonical choice in an algebraic equivalence class of line bundles of degree
1 on an elliptic curve, but not so when g > 1.

The subgroups of V(X) can be used to classify isogenies.

DEFINITION 4.21. A “good” isogeny f : X — Y of abelian varieties is a
homomorphism which is surjective and has finite kernel whose order is prime

to char. k. A rational “good” isogeny or a Q-isogeny from X toY is a triple



62 TATA LECTURES ON THETA III

(Z, f1, f2) where Z is an abelian varietyand f; : Z — X and f3: Z - Y
are good isogenies. In what follows, we shall omit the adjective good,
but always make the “prime-to-p” assumption. Two Q-isogenies (Z, fi, f2)
and (W, g1, g2) are equivalent if there is an abelian variety R and isogenies
a:R— Zandb: R— W so that fioa=g;obfori=1and2. A line
bundle L on X and a line bundle L’ on X' are related by a Q-isogeny if
there is a Q-isogeny (Z, fy, f2) from X to X' such that f{L = f3L’.

Many of the formal properties of isogenies carry over to Q-isogenies.
Since an isogeny f : X — Y induces an isomorphism V(f) : V(X) —
V(Y), a Q-isogeny a = (Z, f, f2) from X to Y induces an isomorphism
V(a) : V(X) — V(Y) defined by V(a) = V(f2) o V(f1)~!. Equivalent

Q-isogenies induce the same map.

LEMMA 4.22. Equivalence classes of Q-isogenies from X to Y for a fixed
X are in 1-1 correspondence with compact open subgroups of V(X), hence-

forth referred to as lattices.

PRrOOF: We can describe the correspondence between isogenies and finite

subgroups of X in a slightly different way. An isogeny induces:
0 — T(X) — V(X) — Xtor — O

| vin| 7l
0— T(Y) — V(¥) — Yir — 0
as in Lemma 4.2. It follows that ker f can now be identified with the group
V(f)"'T(Y)/T(X). Associate to a Q-isogeny a from X to Y the lattice
L(e) = V(a)~!T(Y). Note that L(a) depends only on the equivalence
class of a.

Conversely, given a lattice L C V(X)) there is some m > 1 for which
mT(X)CL. Put Z=X and fy = mx. Then V(f})"'L = M C V(2)
contains T(Z) and M/T(Z) gets identified to a finite subgroup H of Z.
Now let fo : Z — Y be the quotient map of Z by H. It follows that
V(f2)7'T(Y) = M and therefore L = V(fi)M = V(fi)V(f2)"!T(Y) =
V(a)~1T(Y). QED
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Let f: X — Y be an isogeny and let L,M be ample line bundles on
X and Y respectively so that f*(M) = L. We can recover M from ker(f)
plus a splitting of the natural map G(L) — K(L) over the subgroup

ker(f) C K(L): U — KL
o 1
ker(f).
Equivalently, to give (Y,M) we need to give a lattice L with T(X) C L C
V(X) and an extension of o : T(X) — §(L) to L. This procedure gener-

alizes to rational isogenies.

Let a = (Z, f1, f2) be a rational isogeny from X to X5, and let L; and
L, be line bundles related by a, so, fiL; = f3La. We write a*ls =L,;.
z
ho/ NJf2
Xi--=->X3

Since j(fi,Ls) : o(fiL) — G(L;) are both isomorphisms we can define
an isomorphism j(a) : G(L1) — G(Lz) by j(e) = j(f2,L2) 0 j(f1,L1) ™"
Let L(a) = V(a) ! (TXz) and define o(a) : L(a) — G(Ly) by a(a)z =
j(a)~}(e*?(V(@)z)) for all z € L(a). Conversely if L is a lattice in V(Xh1)
andop : L — §(L1) agrees with ot on LNT(X,), then we can construct
a rational isogeny @ : X1 — X3 and a line bundle, L, on X> so that
a*(Ly) =L,

PROPOSITION 4.23. A. If L, and L, are both symmetric line bundles
related by a, then i7 - j(a) = j(a) - i** and iY10(a)z = o(a)(—z) for all
z € L(a).

B. If L, is assumed to be symmetric, then L3 is symmetric if and only if
itigr(z) = oL(-z),Vz € L.

C. Choose a € Xn and £ = (£,&2,--+,) € V(X) with & = a. Let
E = T*L. Then n%L = n%E, ie,a = (X,nx,nx)isa Q-isogeny from X
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to itself by which L and E are related. The pair (L(a), o(a)) associated to
the triple (X,E,a), is then: L(a) = T(X) and o(a) : T(X) — G() is
given by o(a)(z) = EUL(z)E_l = eL (¢, z)o" (z) where £ is some lift of § to
é().

D. In the notation of C if L is symmetric and 2a = 0, then E is symmetric
and E(z) = et (z +€)ek (6)-

ProoF: A. follows quickly from the definitions. For example, showing
it2j(a) = j(a)i'" reduces to the case of a plain isogeny. B. is left to the
reader.

C. Forg € X, let ¢ : n°L = T;n"‘L be the descent data for L. Let
b€ X with nb = a; let ¥ : n*L = Tyn*"L. The descent data for T;L is just
{T; ¢4}. The diagram

- Tyt
n’L -i»T;n"L 7-’ﬁ»"Tg‘T,;‘n'L BN Tyn*L
shows that
(¢" b)_l ’ (¢,y) : (¢" b)

is the descent data needed to construct T;L from n*L = Tyn*L. To finish

it is only necessary to formulate this in terms of the big group §(L)

D. If 2a = 0, then the line bundle E = T;L is symmetric because
PE=¢#T/L=T",L=T,L.
Define j :é(L) — G(E) by fitting together the various
jm : G(m"L) = G(m"E)

for m divisible by 2. For ¢ € é(L), by the construction of j, j(y) € §(E)
over the fiber z € X “is” ¢(z). Consequently joit(p) is p(—z) on the fiber

over z € X, but by the same kind of reasoning i€ 0 j(p) “is” ¢(—z) over
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£ € X. Hence i€ 0j = joit. This implies 7€ = jor': Let 2y = z € V(X),
and 7 € G(L) such that x(7) = y. Then
r&(z) = @3 0 i@ =i@G o @)
=jFoit@ ) =jort(a).

Apply 5! to the equation o€ (z) = r8(2)eE(z/2) and we get
L E(E
o(@)(z) = ™ (2)E():

On the other hand, by 4.23C

o(@)(@) = o4 (2)e" (6,2),
= @)k (5)e (6,2),

z
= (z)es (5 +£)es (€) (by 4.18C).
Now by comparing the RHS of the first and last equations we get D. QED

COROLLARY 4.24. If L is a symmetric line bundle of degree one on X,

there is a point a € X, such that T;L is even symmetric.

PROOF: By 4.23D, it suffices to prove that if ¢ is a non-degenerate quad-
ratic form in 2g variables with Z/2-coefficients, then there isa y € (Z2/2)%
such that g, defined by ¢y(z) = g(z +y) — q(y) and ¢ are non-isomorphic
quadratic forms. But if ¢ has s zeros and g, has t zeros, it is clear that
s=tifqly)=0and s+t =2%ifg(y) = 1. But s # 3. 2%, by Lemma
4.19, showing that any y with ¢(y) = 1 will do. QED

The following will be of use in §6.

LEMMA 4.25. If et = 2 and et' = eL3 for symmetric line bundles L,

and L, on X, then L, = L, (assuming char k # 2).

ProoF: If L = L; @ L7, then el = 1and ¢t = 1. By 4.15 we have
K(L) = X and the group-scheme G(L) with involution i sits in the exact
sequence: 1 — Gy — G(L)-~>X — 0. Mimicking the construction of r,

define h : G(L) — G(L) by h(z) = z-i(z)". Then h(Az) = h(z)for A € Gm
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and r € G(L) showing that h = ¢ -7 and 7 - ¢ = 2x where ¢ : X — G(L)
is a morphism.

Now ¢ is actually a homomorphism: ¥(z,y) = ¢(z + y)é(z) "1 é(y)~!
defines a morphism from X x X to 6, such that ¥(0,0) = 1, and therefore
¥ = 1 (because X x X is projective and Gy, is affine). Also for any z €
X, ¢(z) = €L (€) where ¢ = (x,...) € $T(X). This shows that ¢ is trivial
on X, so that ¢ = 27 where 7 : X — G(L) is a homomorphism so that
77 = 1x. The morphism from L(0) x X to L given by (a,z) — 1(z)a is
an isomorphism and this finishes the proof that L is the trivial line bundle.

QED

A construction which makes the definition of G(L) and the theorems

that followed more transparent is:

DEFINITION 4.26. Consider the so called “tower” of all isogenies f : Y —

X (degrees prime-to-p if characteristic k = p):

A4 A4
Yl Yz

NS g
X
More precisely, we have a partially ordered set whose elements are isogenies
f:Y — X and f > g means there exists a homomorphism h with f = goh.
Cofinal in this tower are the isogenies nx : X — X under the ordering
nx > mx if m|n.
DEFINITION 4.27. Let X be the inverse limit of the tower on X so there
are maps [, : X — X so that nx fmn = fm-
X= lim Y.
JY—=X
Put fy = f. The limit X has the structure of a proper k-scheme. Put
E = f*L.
A. Then é(L) is the subgroup of G(E) which sits above V(X) C K(E) C

geometric points of X.
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B. X is the quotient of X by T(X) and L is the quotient of E by o(T'(X)).

It may seem that X is a rather abstract and “unreal” sort of object.
This is not so: to make it explicit, let {Uy} be an open affine cover of X,

and consider the inverse and direct systems:
I'(nm%' U, Ox) (nm)3'(Us) C X

- -
['(n%'Ua, Ox) n%'(Ua) C X

In} nx
I'(Uq, Ox) Uy C X

Let R, = limI'(n;'Uq, O;). Then Spec Ry is a scheme over U,, and

n
X is formed as the union of the affine opens Spec Rq. In characteristic p, a

more comprehensive theory will be obtained if we replace X by the inverse
limit of all coverings
nx: X —X

including n = p*. If p|n, nx is inseparable, and ker(nx) must be considered
as a group scheme. We can construct V(X) as a formal scheme, viz. the
direct limit of schemes f~!(X,) C X for all n. Likewise, we get a formal
group scheme G(L) extending V(X). An immediate advantage is that for
L ample, eb is non-degenerate on p-torsion too, and that in 4.22 we can
treat all isogenies. Our primary interest is in characteristic 0 however and

we will not discuss this further here.

We now tie together the algebraic approach of this section with the
analytic approach of §3.

Now we shall put k = C, X = X7, asin §3 where T € 9, and L C 2%,
and L the basic line bundle defined on X. For z € Q%,z = Tzy + z2, the
sequence 1z (or rather its image in Xr,1) gives an element of V(X). Thus,
there is a homomorphism from Q2 to V(X), inducing an isomorphism

Q¥ ®A; = A?” = V(X) so that T(X) is the closure of the image of L.
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Recall that L was defined, using a particular action of Heis(2¢,R) on
the trivial line bundle on C? in which (},y) = (A, %1, ¥2) acts on C x C? by

(o, 2) +— (a/\‘lgoy(z), z—-y)= (a/\'lexp(ri'(yl) (22 -y)), 2 - y).

This is the Fock action. The bundle L is the quotient of C x C# by the

maximal isotropic subgroup of Heis(2g,R) consisting of
{(e-(3),mln € 7).

To connect the algebraic to the analytic constructions first note that we

can replace the tower of coverings of X

N/ N/
b ¢ b ¢

Nmo/n
b ¢

with a single universal covering space C4. Then a € Q29 corresponds to the
sequence (@,...=,...) in V(X). Secondly we relate G(L) to Heis(2g,R).
Let b € Q%9, so b corresponds to a sequence (..., %, ...) € V(X). Assume
Nb € 2%, and N|n. Consider n*L. as the quotient of Cx C? by the pullback
of multiplication by n of the relations defining L. Then (A, %) € Heis(29,R)
descends to an action on n*L, hence (A, £) € K(n*L). This defines a map
Heis(2g,R) DHeis(29,Q) — G(L)
A8 — (..., (A b/n),.. ),

and gives the diagram:

1— G — Heis(2g,R) — R%» —0
T p +
1— C —+ Heis(29,Q) — Q2 —0
inverse inverse
1— C — L) — V(X)=A¥ —o.

REMARK: This diagram of groups respects the various actions on C x C¢

and n*L. Indeed part A of the proposition below follows immediately.
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PROPOSITION 4.28. A. Forz,y€ V(z)= /—\?', we have
et (z,y) = e(*zryz — ‘zapn) "

B. The line bundle L is symmetric and the subgroup Heis(2¢g,Q) of

G(L) is stable under the involution i. The element
(A, 2) — (X ezp(ritn(2z — y), 2 — ) = (Apy(2), 2—Y)

of Heis(2g,Q) has its image in G(L) equal to T(y) whenever y € Q%.

PRroOF: For T € , let L be the basic line bundle on X = C?/(TZ¢  Z¢);
the bundle i*L is constructed as the quotient of C x C? by the pullback via
i of the action defining L

(0,) —  (apon(-2)es(~2)",z=n)

i i

(@rms) — (apon(~2)es(~3)", 2+ 7).
Since p-n(—2)es(—2)"! = pn(2)e.(3), the bundles i*L and L are the
same.

We compute the map 7 : Q% — Heis(2¢,Q). Lety € Q29, and let g be

an element of Heis(2g, Q) that projects to y/2; then, by definition, r(y) =

g-i(g)~!. First we compute it (g). By definition i* is the composition
o) =Gy’ ® éq).

Since i*L = L, the first map is the identity. If ¢ € G(L), then j(i,L)(¢) = ¢
means i*¢ = . Since i*0i* is the identity, (i, L) isjust i*. If g = (A, y/2) €
Heis(2g,Q), then i'(g) is the map

CxC! —CxC!

(o, 2) — (@A pyya(=2), 2 + y/2);

in terms of Heis(2g9,Q),

it (g) = (’\Wy/2(“z)_l¢—y/2(z)s -y/2).
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Plugging in the explicit formula for ¢ gives it (g) = (), —y/2). From this

we see that
my) =g-i(9)" = (Ly).

QED

5. Algebraic theta functions

Our aim is to define a U-function algebraically. Let L be an ample
symmetric line bundle on an abelian variety X, and let s € T(L) (if the
characteristic is p, we assume p J deg L). We will associate to every s a
function ¥, on V(X). We begin by studying the basic representation of
é(L):

DEFINITION 5.1. T(L) = liml'(X, n:L), where G(L) acts on T(L) as fol-
lows: for g = (n,én) € G(L), Uy(s) = ¢n 0 80 T—,,, which is independent
of the n chosen. (In the above limit, the n’s are assumed prime to char(k)

if char(k) > 0.)

According to 4.15 and 4.18, G(L) has the normal form ¥ x A?g or
k" x R29 (char =0 or char > 0) with group law

(0 2)- (0,9) = Oue(3 (713 =22 31), = +).

PROPOSITION 5.2. Consider E-vector spaces W with an action U of the
group Heis(2g, Ay) such that Uy = A- 1w for A € 75*, and foreachw € W
there is an m such that Uy(mzw = w for all z € 7%9. We call these
continuous representations.

Among all such representations there is a unique irreducible one which
we call the Heisenberg representation M, and any such representation is a
direct sum of copies of H. H has the following models:

A. H can be realized as the space of all locally constant k-valued functions
g on A} with compact support and the action of Heis(2g, Ay) is given
by:

Ui wa)9(2) = de(ya-z + %'yl -y2)9(x +91)-

B. ‘H can be realized as the space of k-valued functions f on Ai” with

compact support and quasi-periodicity:

f(zi +ny,z2+n2) = (—1)"‘1"‘?e(%('z‘1 ‘ng — 2o -my)) - f(z1,22),
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for all (ny,n,) in 229, and the action of Heis(2g,Ay) is given by
Upya,92) (71, 72) = ’\e('21‘(t"1 Yy — 'z (1 + 1,22 + y2).
The map between these 2 realizations is given by

- 1
f(z1,z0)=N"* E g(z1 + n)e('n ~z9+ 5'1‘1 - z3),
ne(i’/Ni’)

(N large enough so that g is constant on cosets of NZ¢ and =, € ﬁi-")

)= X fenmle-3'n o)

t:ﬁA;/i’
PROOF: Let o : 229 — Heis(2g, Ay) be the section
U(xli z3) = ((—1)'21"211‘1’2“2)

Let Gy = N(o(mZ29))/o(mZ29). This is a finite Heisenberg group.

For the representations V of Heis(2g, Ay) under consideration, it is
true that V = Up»1 Vi, where Vi, = {v € V|Uymryv = v,z € iz-"}. Given
a representation V of G,,, by the Stone-Von Neumann theorem it is isomor-
phic to V@) @ H,, where H,, is the unique irreducible representation of
G- Each V,, is a representation of G,, and hence V,, 2 H,, ® V} canoni-
cally where H,, is the irreducible representation of G, with the following
model: all functions f on N(a(miz-") such that f(Ae(my) - z) = Af(z)
for all z € N(o(mZ%), y € 229, A € E*. Extending these functions by
zero outside N(o(mZ??), H,y, is realized as a space of E-valued functions on
Heis(2g, Ay) and Hpm C Hmn for all m and n. Call K the increasing union
of the H,,. The canonical isomorphisms V;, = H,, ® V] for all m lead to an
isomorphism V 2 H ® V;: equivalently, V is a direct sum of copies of H.
That H is irreducible follows from the fact that %, = {f € H|U,(,)f = f for
all z € 729} is one-dimensional. Thus if 0 # V C H, then V°@**) # 0 and
consequently V°@*) = H, which generates H as a Heis(2g, A;)-module.
The rest of the proof we leave to the reader. QED
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To apply this theorem, we prove:
PROPOSITION 5.3. f(L) is the irreducible Heisenberg representation of
).
ProOF: When deg L = 1, this follows from observing that the subspace
of ['(X,L) fixed by ¢T(X) is just [(X,L) which is one-dimensional.

If deg L > 1 and H is a maximal isotropic subgroup of K(L) then
there is a line bundle L’ on X/H = Y such that the pull-back of L’ is

isomorphic to L. As we have seen in the last section G(L) = G(L'), and

clearly T(X,L) = f(Y, L’) so that we are reduced to the previous case.
QED

Next the realizations constructed for the Heisenberg representation in
Proposition 5.2 can be adapted to irreducible representation of G(L) as

follows:
(B) becomes CE(V(X)//T(X)), the space of k-valued functions f on

V(X), with compact support that are quasi-periodic for T(X):
t t
flz+t) = e.(E)e(z, -é)f(.r) vteT
with G(L) acting by

FEN ER

The superscript o denotes compact support.

To give a version of A, we fix V(X) = V1 ® V3, a decomposition into
subspaces V;,V, maximal isotropic for e. Then the analogue of (A) is
Cg(W), the space of E-valued locally constant functions f on V; with com-

pact support, with G(L) acting by
Urf=Af,
Ur)f(z) = f(z +y) forye ¥
Ury)f(z) = e(y,2)f(z) fory€Va.
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COROLLARY 5.4. There are G(L.)-linear isomorphisms, unique up to a con-

stant:

fL) = c(v(X)y1(X))
= Ci(V).

Next we are going to interpret members of I’ (X,L) as functions on

V(X). The following is the main definition of this book:

DEFINITION 5.5. Fix an isomorphism € : L(0) — k. Let z € V(X) and
assume 7(z) = (£, ¢n). For each s € f(X, L), define a k-valued function
on V(X), ¥,, by

9s(z) = e(¢7" 5(2n))-

This is defined of all sufficiently divisible n and it is independent of the n

chosen.
Thus J,(z) is defined by the chain of maps

5(zn) € (1*L)(2n) = (T2, n"L)(0) 29 n*L(0) 5 &

There are 2 ways to interpret this definition, both quite important.
One is that via the section 7 of G(L) over V(X), we can trivialize the

pull-back of the bundle L to V(X). To be precise, consider

p*L L
| |7
V(X) i X.

Then G(L) acts as a group of automorphisms of p*L and we define an
isomorphism

A v 2y
x V(X) = p'L

by requiring firstly that for all z € V(X), r(z) should be identity map

between the fibres over 0 and over z, i.e.,

r(z)[®(,0)] = (), z),
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and requiring secondly that over 0,® is e~!. By this trivialization, each

section of p*L over V(X) is just a function f,(z) via
(fi(z),2) = @7 's(2).

It then follows that
s(z) = ((fs(z), z))

= r(@)®((f:(2),0))
= r(@)e” (f1(2))
£.(@) = d(r() " (s(2)))
= 9,(z).

Thus ¥, is the function corresponding to the section s.

or

This definition can be beefed-up to show that when X is a family of
abelian varieties parametrized by a scheme S (an abelian scheme over S),
then V(X) over S becomes a direct limit of schemes T,,(X) over S and 9,

becomes a family of morphisms

Ta(X)

1 e

"n+!
Tam(X) ——> A}

......

We shall work this out in an appendix. For the present, we note only one

important consequence which follows without any fancy apparatus:
PROPOSITION 5.6. If X,L and s € I'(X,L) are all defined over the field
k, then

Js(oz) = 0d,(z)
for all o € Gal(k/k),z € V(X).

Proor: Note that every o € Gal(k/k) acts as automorphism of G(L) and

that o(rz) = r(oz). The formula is then immediate from the definition of

9,. QED
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The second way of interpreting ¥, is as a matrix coefficient of the
irreducible Heisenberg representation I'(L) of G(L). In fact, evaluation at

0 defines linear functionals
£ : T(X,n¥L) — L(0) — F,
and passing to the limit, a linear functional
L:T(L) — &
Then for all 5 € T(L),
T — lo(U,(,)s)
is a matrix coefficient of this representation. I claim this is essentially ¥,(z).

In fact, say 7(z) is represented by (¢n,2,) and s by s, € I'(X,n2L). Then

(U,(,)s)(y) = ¢n(s(y — zn)),
hence

£o(Ur(z)8) = e(¢n(s(—2n)))-
Since 7(—z) is represented by (¢;!, —s,), it follows that

Js(z) = bo(Uy(-2)9).
This interpretation makes it clear that Yu,(s) can be computed from

J, forall g€ §(L) In fact:
Lemma 5.7. dy, . )(z) = X -e(y, g)ﬂ,(z - 9).

Proor:
'9Uh(v)(')("') =4 (Uf(-z)Uh(y)(s))

= Lo (Us (52 gyriy-2)(9))
= Je(y, g)eo(Uf(,,_n(s))
= Ae(y, ;)ﬂ,(z -9).

QED
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Thus one of the functions ¥, determines the rest. We express this as
follows: as above let Ci(V (X)) be the space of all locally constant k-valued
function on V(XX), and let G(L) act on C¢(V(X)) by the right action, so

U f(z) = 2 e(%,z) flz—v).

Then the map

s — U,
T(L) = CV(X))
is linear with respect to these actions of G(L).
DEFINITION 5.8. When deg L = 1, let 0 # s € I'(X,L) and put ¥%(z) =
9,(z), a k-valued function on V(X).
We shall see below that if k = C, X = X7 73, then the 9 above

coincides with the 9 of §3 on Q2.
From Lemma 5.7 and the invariance of s € I'(X,L) under ¢7(X), we

have
LEMMA 5.9. c(%,z)e.(%)ﬂ“(z) = ¥%(z +y) for all z € V(X), y € T(X).
Proor: Using that e.(})7(y)s = s, we have
9%(z +y) = e(r(z +9) " s(z + )
= (1(2) 1) (L, 2)s(z + )
= e(3,D)ea(3)e(r(z))(=)
= e(3,2)es(5)7°(2)
QED
Let us see what happens now if we investigate the space of all matrix
coefficients of the representation of G(L) on I'(L), as we did in §2 for the
real Heisenberg representation. We start with some linear algebra revolving
around the actions of G\ (L) on Ck, the space of locally constant k-valued
functions on V(X). There are two actions:
Uty f@) =2, D)f+y)
UsE £(@) = Ae(3, )f(z )
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One checks that
left ight __ ight left
Uty © Ussty) = Usry © Usetey-

Let Ci(V//T) be the space of functions
{fe G UEYf = £, Yy e T(X))
={f € Cil f(z +1) = eu(De(5, 2)f(2), Yy € T(X)},
and recall that CZ(V//T) is the space of functions on V' that have compact
support and satisfy
s y
f(l + y) - C,.(-Z—)C(:C, E)f(z)v Yy e T(X)’

and that C{(V//T) is an irreducible right G(L) module.

LEMMA. There is a perfect pairing
C(VJT) x Co(VJIT) —k
respecting the action of §(L) up to a change of sign in argument:

(UIR_ )M, 9) = (f, UrEtg).

Proor: Define

(fLe)= ). [f@9@)

zeV(X)/T(X)
This is well-defined: if ¢ € T(X), then

oz + (2 +1) = g(e)es ()elz, 5)f@en (55, 2)
= g(z)f(=).
We check the assertion regarding group actions:
> () N@IE) = 3 U))@))
zeV/T z€eV/T

= Z /\c(%, ) f(z + y)g(z).

zeV/T
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On the other hand

> f@ U@ = Y f@e,2)ez-y)

zeV/T zeV/T

> Sz + uhe(3, 2 + 1)o(z).

QED

In the case of real Heisenberg representations we found that a choice

of T € § gives two subspaces of the space of functions on R%¢, one a right
Heis(2g,R) module, the other a left Heis(2g,R) module; furthermore the
functions in one space enjoy the quasi-periodicity of theta while the func-
tions in the other space are analytic with respect to the complex structure
associated with 7. We have the adelic analogue of this, We assume deg

L =1 and 0 # sp € I'(X,L). Then we get the diagram of spaces:

space of functions

~ space of functions = (U s
A ={ wreray } c \acnmtirn
allseI'(L) g )

8 € (L)
W
Lo(Ur(—2)50 space of functions
{€o( (” y50)} ¢ (T@)=UUns) | _\
{9%(z)} all linear functionals 1
lll
(WY

ProposITION 5.10.

A) V = the space CL(V(X)) of all f € Cx(V(X)) such that for some N
we have U5 f = f, all y € N - T(X).

B) Vi = the space Ci(V(X)//T(X)) of all f € Cy such that Us&y f = f,
all y € T(X), i.e.,

flz+y) = e.(g)e(%, 2)f(z), ally€eT(X), z € V(X).

C) There is an isomorphism of G(L) x G(L)-modules
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VHQrH
such that for some e;,€2:

9% corresponds to ey ® ez
T(L) corresponds to H ® ez
Vi corresponds to ey @ H*.
Here the action UT8h of G(L) on V restricts to the given action of
G(L) on (L) and the action U™ of G(L) restricts on V; to the dual action
of G(L) on T(L)*. So if f € Cy satisfies the quasi-periodicity condition in

B then it corresponds to an element of the form ey ® h for some he™*.

PrOOF: We begin with (B). Since T(L) is an irreducible representation of

§(L) we know there is an isomorphism
¥ : CUVX)NT(X)) = T(L).

Note that e,(Z)ér(x)(z) is the unique o(T(X ))-invariant function in
C(V(X))//T(X) (here 6,(z) is the function with value 1 ifz e S, 0if
z ¢ S). Therefore ¥(e.(£)6r(x)(z)) = 8o. Using the G(L)-equivariance of
¥, it follows that for all y € V(X)

Blea( 2L, 2)8r00-5(2) = YU yen (56100 ()
= Unoyy¥len (3600 @)
= Ur(-y)So-
Now we identify C¢(V//T) with the dual of C¢(V//T). Using our description

of 1 we calculate the G(L) isomorphism
¥ Ty 2 CuVX)T(X).
If ¥*(¢) = g, then

(U yy0) = (es (G 261004 (2),9(2) = 9(-0)
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Thus the matrix coefficient £(Uy(—y)s0) (except for reversing the sign in v)
is the element g of Cix(V(z)//T(z), and since ¥* is an isomorphism, this
proves (B).

To prove (A) and (C), note that the matrix coefficient map
s®£€ +— the function f(z) = &Ur(-s)s)

is always a map
¢:TL)eTL) — Cr(V(X))

and with our conventions it will carry the action of G x G on the left hand

side to the action of G x G by Ur8ht x U'e® on the right hand side. We
verify this:
U:i(?,‘;t(s ® &) = ((Ury)s) ® f).

This maps to the function
(€U )((#) = £(Ur(-2)r(x)3)
—Z
=e(5 Wz -v)
= (U;E)' 1) ().
On the other hand

U (s® 0 = s® (U350

which maps to
(U0 (Ur(-2)8) = &(Un(—y)r(-2)5)
= (Ur(-2-y)ect )
= f(z+y)e(3,2)
= (Ule(f;)f)(”)-
The action of ¢ on T'(L) is continuous in the sense of 5.2: Yw € T'(L),

Ims.t. Uymayw = w, all z € T(X). Thus under U*ight the image of ¢ is
continuous, i.e., Im ¢ C C4(V(X)). By Proposition 5.2, C}, is isomorphic
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in the U"'8".action to H ® [¢(T(X))-invariant subspace], i.e., to H® Ci(V/
/T). Thus ¢ is an isomorphism if its restriction to the o(T(X))-invariant
subspace is an isomorphism. But this restriction is 4*. This proves (A)
and (C). QED

We can describe the situation by a picture as in §3:

Mysterious subset

of those fcns. which Ck(Aiy//izy)

occur as 9< for some ‘possible’ functions J¢
abelian variety over & Dual of irreducible

some symplectic isom._ Heisenberg module
(V(X),T(X) = (A, 3%)

images of T(L)
under ¥ for various
abelian varieties
irred. by yrisht
action of Ileis
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Note that one feature that is missing, compared to §3, is the characteriza-
tion of the image of T'(LL) as the holomorphic functions for various abelian
varieties. An obvious question is to try to characterize those functions
which arise as 9¢ in some more algebraic way. We will try to do this in the
next section and in §11. Another way of phrasing this problem is to use
realization A of the Heisenberg representation. Choose V(X) = V1 @ V5.
We get
T(L) = CR(V(X)//T(X)) = CE(V1)
Note that the dual of CZ(V1) is the space My(V1) of all finitely additive
%-valued measures g on the Boolean algebra of all compact open subsets of
V1, hence
FL) = C(V(X)IT(X)) = Mi(V2)

Thus ¢, € f(L)" (or 9= € Ce(V//T)) defines, up to scalars, a measure p.
Can we characterize those measures g which arise from abelian varieties?

Let us go back to the classical case: Let T € §, X = X7, and L the
basic line bundle and let’s see what f, é, ¥, 9 and p are. The vector space
L(0) is canonically identified with the fibre of the trivial line bundle C x C?
at 0 and thus there is a natural ¢ : L(0) = C. We pick up the situation as in

Proposition 4.28 and the remarks preceding it, as well as §2, big diagram.

PROPOSITION 5.11. A. T(X,L) is the linear space spanned by ¥,,(z, T')
where (a,b) € Q%, and in fact the 9,4(z,T) for (a,b) € Q% /7% form a
basis.
B. The natural action of Ieis(2g,Q) on the span of the ¥4’ coincides
with the action of G(L) on T(X,L) restricted to Heis(2g,Q).
C. For any z € Q¥ s € I(X,L) (s is identified with an entire function
on CY),

J,(z) = exp wi'z) (Tz) + 22) - 5(Tz1 + 72).
D. In particular, when L = 7?9, deg L = 1 and z € Q¥ ,

9°(2) = (e + 2, Thewp mi'er(Tzy +22) (defined as 9°(21)(T))
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whenever z € Q9.
E. From Proposition 4.28, A; x 0 and 0 x A; are maximal isotropic sub-
spaces of Ai’ = V(X). Call them V; and V; respectively. Then the finitely
additive measure u on V; (now identified with A; x 0) corresponding to
¢, € H* is given (up to scalars) by

p(U) = Z exp wi'zTz  for all compact open U C A;.
zeUNQY

Thus p is countably additive when restricted to compact subsets of
A; (i.e., a Radon measure on A; ) and is totally singular, being supported

exactly on the countable subset Q¥ C Af.

Proor: A follows from Proposition 3.2.

Parts B, C and D follow without any tedium in our set-up. In partic-
ular, B is contained in Proposition 4.27. The specific formulae in C and D
rely on Proposition 4.28B. When z € Q% C V(X), r(z) is the transforma-
tion

(A, 2) — (X exp wi'zy(—z + 22), 2 — z).
Therefore r(z)~! takes (s(z),z) to (s(z) exp nitz z,0) showing that

d(z) = s(z) exp mi'z1Z

for all z € Q9. D follows by putting s(z) = 9(z,T).
We prove E. Let H be the space of locally constant functions on A'”,
and 9 : f‘(L) —— M the unique equivariant map. The evaluation at 0 map:

’f(L) — k induces via ¢ a measure dp on A; so that

/ $(t)du = 1(0) te fL).

Since deg L = 1,0 # s € T'(L) corresponds, under 1, to §, the characteristic
function of Z9. Since Yy, ,,+(0) = A 9¢(—y) we have

9Ta(T) = 0,(2) = 9r(-(0) = [ $lr(-2)5)dn
= / U(l,—z)(é)du-
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Recall that 19"’[:; (T) = e(3'nTn+'n(Tzi +22)+ %t:cl(T:cl +22)). To
complete the proof we must verify that for the measure p in E that

190['81 ](T) = /(U(ll_z,,o)cs)dp ::l\ dp,

I9+z,

or 0
10ND) = [Wrp et = [[ o'z -v)da
2 Z9
This is straightforward. QED

When k = C we may also relate the real and adelic Heisenberg repre-
sentations. We do this in an appendix to this section.

Proposition 5.11 plus Proposition 5.4 have the following corollary:

COROLLARY 5.12. Let T € $, and consider the abelian varieties Xp 324,
iLe.,

X7 =CI/(T-1° +19)

and the basic line bundle L on it. Also, for all a,b € Q¢ and let
z(a, b)m = Image in X1 of%(Ta +b).

Then suppose that (a,b) € %22’, k C C is a subfield such that Xr and

L can be defined over k and z(a,b)s, is rational over k. Then

LT/ NT) € k.

Proor: The Galois group Aut(C/k) acts on X7, hence on V(X), which is
isomorphic to A;’ . This representation does not preserve the “lattice” Q%
in Aiy. However, if £ € V(X) has its image 2o € X mod T(X) rational
over k, then oz — z € T(X), all ¢ € Aut(C/k). Therefore for the point
(a,b) € Q* C V(X), the hypotheses of the Corollary imply that for all
o € Aut(C/k):

o(a,b) = (a,b)+ 6

some § € 2nT(X).
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Now using the equality of the analytic 9 with the algebraic J°, we
get

’90[1;](T) _ (ﬂ“((a,b)))”
,9a[g](T) 92((0,0))

_ 9%(o(a,b))

#2((0,0))
— C.(%)c(%, (a) b)) . ’190(0, b)
- $2(0,0)

_ 9%(a,b)
~ 92(0,0)

) [, )(T)

o))

QED

It is this result that distinguishes ¥ from the other functions which
differ from it by an elementary exponential factor and that motivates the
definition of 9. This is not true for 9(Ta + b,T); it is almost true for
¥4,5(0,T) since this differs from 19"’[;:](T) only by a root of unity, but still
not true. It is unfortunate to add another notation for an almost identical

function, but this corollary is the ultimate reason.
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Appendix I: ¥, as a morphism

We shall now define the ¥, scheme-theoretically. This has three sub-
stantial advantages: .

A. Statements like Proposition 5.6 follow trivially.

B. It proves that when an abelian variety in characteristic 0 has good
reduction mod p, the values of its theta function are integers which
reduce mod p to the char p theta-function.

C. There is no need to avoid p-torsion when working over a field of char-
acteristic p.

Let j : X — S be an abelian S-scheme (see D. Mumford and J.
Fogarty, Geometric Invariant Theory, Ch. 6) and let L be a relatively
ample line bundle on X such that (—1x)*L = L with a fixed isomorphism

€:0"L = Og where 0: S — X is the zero section.

Step 1. The construction of fi = f: X —Xandf, : X — X such that
nxfmn = fm as in Definition 4.26 goes through without a hitch. Define
To(X) = f71(0) = f~!(Xn) which is a closed subgroup scheme of X.
Each T,(X) is a closed subgroup scheme of Tnm(X). For each k and n,
multiplication by k from Ti,(X) to itself maps Tin(X) isomorphically onto

the subscheme 7,,(X). In particular we have inverses
1
2T = T

We define V(X) to be the directed system of closed immersions:
T(X)=Ti(X) & Ta(X) = Tam(X) < ...

Step IL.  G(n%L) makes sense as a group scheme over S with the exact
sequence:

1 — Gy — G(nkL) — K(nxL) — 0.
Put G, = 7~1(X,2), and T, = j.nkL a locally free coherent sheaf on S.
There is a natural action of G, on ', (when S is affine, T, is given as a

co-module over the co-algebra which is the coordinate ring of Gy).
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Step IIL. Now f, induces a map from T;s(X) onto X,2. Put G,(L) =
Gn xx_; Tha(X).
We get the following commutative diagrams of exact sequences:
1—6,,— Gn(L) - Tpa(X) — 0
1
1—->Gm—-b§,,k(l_) —I-PT(,,,C):(X)—-b 0.

We can then define G(L) as the directed system of inclusions:
Gi(L) = Ga(L) = Gmn(L) — ...

Finally, put f(X,L) = Hn')' I'y = (jo f).f*L. We have a homomor-
phism from é,,(L) to G, and an action of G, on I'y,, hence we get an action

of Ga(L) on T(X,L).

Step IV. Given a global section of I'(X, L), we shall construct a compati-
ble system of morphisms from é,,(L) to A! which we shall call a morphism
from G(L) to Al. One only has to check that the old formula e(U,-158)(0)

for ¢ € G,,, s € T, makes scheme-theoretic sense.

Step V. The construction of 7. The symmetry of L gives as usual a
compatible system of involutions i on an(L). The morphism z — zi(z)~!
from én(L) to itself clearly factors through a morphism b : T,(X) —
Gn(L) such that 7h is multiplication by two. Put 7 = ho 1.

Combining this with Step IV, each s € T(S,T(X, L)) gives a sequence
of morphisms 9, : T,(X) — A!.

ALGEBRAIC THETA FUNCTIONS 89

Appendix II: Relating all Heisenberg representations

First consider the abstract Heisenberg representations
H = the irreducible Hilbert space representation of Heis(2g,R) with Uy =
A, Ve Gy
Heoo CH C H_oo, the C=- vectors in H and its dual,

M, = the irreducible continuous representation of Heis(2g, Ay) with Ux =

Avrec
(cf. 5.2; here Heis(2g, Ay) is C* x A}' with group law as in 5.1 ff;

(A z)- (1Y) = Oy e(zy-y2 —'z2-11), 2+)
e(a+b) =™ acQbel)

PROPOSITION 5.13. There is a unique Heis(2g, Q)-linear embedding
6 M —H

the image of which is the linear span of the vectors e[z], a,beQI.

PrRoOF: The image of such a map must contain a vector fixed by o(2%9)

and c[g] is the only such vector in H_e. Thus the image of ¢ is the
lincar span of the e[;:]’s. But Heis(2g,Q) acts continuously on the span of

the c[:]’s with respect to the topology defined by the subgroups o'(mizg),
and Heis(2g, Ay) is the completion of Heis(2g,Q) for this topology. So

Heis(2g, Ay) acts continuously on this span and by 5.2 it is isomorphic to
Hy. QED

This abstract result allows us to pass between the realization of these

representations via the full adeles as follows:
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where
span of the funs.

A= fa,b(l) = (Ur(z)a, b)
a€Ho,bEH -
z € R%
span of the funs.
B= fa,b(l’) = (U,(,w)a, Uf(xl)b)
a E HOO) b E H!
r € A¥
span of the funs.
C= fap(z) = (Ursya, b)
aeH;,be Hj
z€ A}’

i) Note that the functions in the middle space are quasi-periodic w.r.t.

Q%9 C A%: in fact for y € Q%

fap(z +¥) = (Ur(zoo 4900)8 Ur(zs+3,)b)
z 1
= (e(=57 1 90) - Ur()Ur(ew) @, (5 A(5,41)) - Ur()Ur(zb)

x5 1
—e A(zm,yoe)e(_gA(:c,, yj)(U‘r(z@)a’ U"'(zl)b)
1
=€/(54(2,4)) - fap(@)

where ¢’ : A — C} is the map e/(Meo, Ay) = e?"A=e(—A;) and A(z,y) =
2y -yp —‘zy - Y1

ii) The map ry is given by restricting a function on A% to the infinite

factor, a map which gives an isomorphism

C fncs. f on R%9,
quasi-periodic w.r.t. N - Z%¢
some N, i.e.

f(.‘l! + k) —_ criA(z,k)f(I),
for all k € NZ%

Fens. f on A% C* in real
variable, locally constant

in finite-adele variable, and B
quasi-periodic w.r.t. Q2

I
B !
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iii) The map r; is given by restricting a function on A2 to the finite-adele

variables and substitutes —z for z, giving an injective map:
Loc. constant fens. f on A%9
29 o0 3 s

Fcr{s. f on A%, C* in real quasi-periodic w.r.t. N - 2%
variable, locally constant N. i
in finite-adele variable, and | < some &, 1. |
n R . 4. 0 f(a:+lc)=e(5,z)f(z),
quasi-periodic w.r.t. Q% 52

for all k € NZI%

I
I
B c
iv) The group Heis(2g, A) of pairs (A, z), group law

()1 ) = (e (A, ),z + )

acts on the middle space by combining the action of Heis(2g,R) on a,
Heis(2g, A;) on b, and the middle space is its irreducible Heisenberg
representation (more precisely, the subspace of “Schwartz functions”

in it).

v) The Heisenberg actions match up (with various sign changes) as fol-
lows:
left Heis(2g, Q) on A <L Heis(2g, Q) C Heis(2g, Ay) action on B
right Heis(2g, R) on A «“» Heis(2g, R) action on B
right Heis(2g, A;) on C <2, action on B
left Heis(2g, As) on C <2 Heis(2g, Q) C Heis(2g, R) action on B

The situation is summarized in the diagram below:
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Holo. fcns. on Heis(2g,R)? acting
C?, Heis(29,R) U(Ii',‘,)f(z) =2"Te(5,9)/(z - v)

Fock repres. Fens. on R?
'l':r: . [ ] C
acting on left U(';":;[(z) = Ac(-;' y)[(z +vy)

Udense U dense

C>{cns. on R, fixed
by left action of

span of (1,n2%) ~
93,(z),a,b€Q* C U, | Heis(29,Q) acts on left res
Heis(2g,Q)acts on left Heis(2g,R) acts on right
extending to Heis(29,R)
action

U

Quasi — periodic repres.

C* fens. on R, such that

fz+a) = e.(§)elz, §)/(2)
allac 2%

Heis(29,R)

acting on right

C-97(z) €
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Schwartz fcns. on A%

(C* in real variable, Inc. cnst.
in p-adic variable)

left quasi-periodic for Q% :

C—-——-.

f(z +a) = e'(A(§,a))f(z),a€ Q¥ | reso(-1)

Heis(2g,RA) acts

Uap(z) = ' (A(5. )M/ (z + )

U

left quasi-periodic wrt Q?**
right quasi-periodic wrt Z%/

[Scllwarlz fcns. on A%
Heis(2g,R) acts

]
reso(—1)

U.

Fcns. on A;‘ , loc. enst,
Heis(2g,A;)? acting

U('f.\'_':)f(‘) =2""e(4,2)f(z + )
Ua‘_,;f(f) = de(%,2)f(z ~y)

fixed by U(':f:; ,y €nl?

U

Fcns. on A;', st

f(z+a) = e(§)e(3,2)(2)
sllae?

Heis(2g,R) acts on left

93




6. Theta functions with quadratic forms

The purpose of this section is to construct generalizations of the theta
functions considered so far, which are associated to an auxiliary positive
definite rational form. These functions are important for various reasons.
In Chapter I, we discussed the application of theta functions to the problem
of the representation of integers by quadratic forms and these general theta
functions can be used to study the representation of one quadratic form by
another. Our interest, however, is in the algebra of theta functions, e.g., the
polynomial identities satisfied by them. We have encountered Riemann’s
theta relation repeatedly in earlier parts of this book, but this is only the
simplest in a large class of theta relations. These relations are naturally
deduced from the more inclusive algebra of the full family of theta functions
associated to quadratic forms.

We begin by constructing theta functions with quadratic forms over
C. In what follows, for any ring R, R(g, k) will denote the g x h matrices

over R.

DEFINITION 6.1. For a rational, symmetric, positive definite h x h matrix
Q and a T € 9, define
992, T)= ) ezp niTr('NTNQ+2'NZ)
Nel(g,h)
where Z € C(g, h).

It is easy to see that the following holds:
99(Z + TMQ + N, T)ezp niTr(! MTMQ + 2'MZ) = ¥9(Z,T)

for all M, N € Z(g, h). This suggests that 99(Z, T) is just Riemann’s theta

function for the complex torus C(g,h)/TZ(g,h)Q + Z(g,h). To see this,
Z

fix the isomorphism Z = (Z,22,--,23) — z = Z2 of C(g, k) with
Zh
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C(gh,1) = C**. If Z,W, F,--- € C(g, h) we shall denote the corresponding
elements of C9* by z,w, f,---. Now T* = T®Q can be represented by the

gh x gh block matrix:

TQu TQi2 -+ TQin
TQ2z TQa2 -+ TQ2n

TQnrt TQn2 --- TQnn
Once it is checked that
(i) W = T2ZQ implies w = T*z, and
(ii) Tr(*W2) = ‘wz,

™ =

we can prove our claim:

LEMMA 6.2.

A. C(g,h)/(Z(g, h) + TZ(g,h)Q) = Xr- z3sn. This torus will be called
X9,

B. 99(2,T) =9(z,T*).

h .
C. The complex tori X9 and (XTJ:,) are isogenous.

PROOF: A is clear. By (i) and (ii) above, we get
TrNTNQ+2'NZ) ="'nT*n+ 2'nz
which shows that
99(2,T)= Y ezp mi(*nT*n+2'nz) = 9(z, T*).
nezZor
This proves B.
The two complex tori in part C are C(g, h) modulo the lattices
TZ(g,h)Q + Z(g, k) and TZ(g,h) + Z(g, h) respectively. But both these

lattices generate the same rational vector space (because Q is a rational

invertible matrix) showing that the two tori are isogenous. QED

More of the underlying geometry that connects X9 and X7 73, and

the basic line bundles they inherit will be explained later. Meanwhile we

define the analogues of 19[:](z,T) and ﬂ"{:](T) :
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DEFINITION 6.3. With Q and T as above, A, B € Q(g,h) and
X1, X2 € R(g, b),
A.
9922, T)
= Y nea(on €20 TTT((N + A)T(N + A)Q +2'(N + A)(Z + B))

= Z x{g](N)ezp aiTr(!NTNQ + 2'NZ)
NeQ(g,h)
= ezp niTr(!ATAQ + 2'A(Z + B)) - 99(Z + TAQ + B, T),

where
x{g](N) = exp 2miTr'NB, if N — A € L(g,h)

=0 otherwise.

B.
190-Q [i;] (T) =ezxp WiTT('Xl(TX1Q + X2)) . 0Q(TX1Q + XZ,T)

= Y eapmTr( X\ TXi1Q +'X1 Xz + 'NTNQ + 2N(TX,Q + X2))
Nel(g,h)
= ezp( —miTr(' X, X2))- 5 ezp miTr(* Xy +N)T(X1+N)Q+2 (X +N)X2)

= e:cp(——vriTr'Xl - X2) .99 [iz] (0, 7).
By (i) and (ii) above, we have
Al
A a "
99 [B] (2,T)=9 [b] (2, T*).
B'.
99 [i;] (T) = ezp ni*zy (T 21 + 22) - 9T 21 + 22, T*)

e[z

the “algebraic” theta function for the torus X Q
Following the approach in §2 we define Heis(2(g, h); R) to be the set of
(A, X1, X2) with X € C} and X1, X» € R(g,h) with multiplication defined

as follows:

(A, X1, X2)-(p, Y1,Y2) = (Apezp ni Tr(' X, Y2~ Y1 X3), X1 411, X2+Y2).
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In fact, Heis(2(g, h);R) = Heis(2gh,R), and it acts on the space of all

holomorphic functions on C(g, k) by the formulae:

Unoof = Af
U(l,A'o)f(Z) = exp(mi Tr('ATAQ +2'AZ))f(Z +TAQ)

Uno.8)f(Z) = f(Z + B)
U a.8)f(Z) = A" f(Z + TAQ + Blezp(wi Tr(*A((TAQ + B) +22))).

Then ¥9(Z, T) considered as a function of Z is, up to a scalar, the only

holomorphic function on C(g, k) invariant under the action of the discrete

subgroup
(1 x Z(g,h) x 0) - (1 x 0 x Z(g,h))

of Heis(2(g, h); R). We shall call this subgroup o(Z(g, k)?). Similarly,

Q §1 (T) can be realized as a function invariant under o(Z(g, h)?) for

the following action of Heis(2(g, h); R) on the space of all functions defined
on R(g, h)%:

Uar,4s,42)f (X1, X2) = A tezp mi Tr(* Xo Ay — ' X1 A2) f( Xy + Ay, X2+ A2).

Denoting the first action by U! and the second by U?, and by R the

linear transformation from the first space to the second given by
R: f(Xl,Xg) —_ ezp(m' TT"Xl(Tle + Xg))f(xl s Xg),
then we see that
U:Rf = RU;f for all g € Heis(2(g, h);R).
REMARK: Since
Q = 9@ [ X2
RIYUTX,Q + X2,T) = 9% X, (1),

we can convert J9-identites to ¥ Q-identities.
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The following results contain the generalization of Riemann’s theta
relation:

6.4 FIRST FUNDAMENTAL IDENTITY: Let @, and @5 be rational symmet-
ric positive definite (h; x hy) and (h X h2) matrices. Let Q = <0Ql OQz ) .
Then
A
992y, 25 T) = 99'(21, T)99( 22, T),

and
X X X X
g |t 2 S LICT *Q 2
[Yl Yo } (T)=9 [Yl } (T)9*<: [Y2 } (T),
where Z; € C(g, h;) and X;,Y; € R(g, k).

6.5 SECOND FUNDAMENTAL IDENTITY: Let A € GLi(Q) and Q' = *AQA.
Set P ={Z* : AZ" nZ*]79. Then

A.
99(2A,T) =P Z ZU(II,R,O)U(ILO,S)’?Q(Z’ T)
R s
=P Z ZU(ll,o,S)U(ll,R,o)ﬂq(ZyT)
R s
=P Y S0 [’;] 2,7).
R S
B.

ag [X1-1A7T w0l X
9o [ Xz2-A ](T)zp > D UbroyUlosy? 'Q[X;](T)-
R s

9z =P Y T 99 [’SZ] (247, T).
R S

99’ [§;} (1) =

P Yo Soexpmi Tr('RX2A"1-'SX ' A-'SR) .99 [ XA+ R

XA~ 4 s] (1),
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where R and S are (g x h)-matrices whose g rows run through a (finite)
system of coset representatives for Z(1,h)*A/Z(1,h)*ANZ(1, k) and
Z(1,h)A~Y/Z(1,R) A NI(1,R).

PrRooF: Formulae C and D will be used in applications for various choices
of Q, A,Q', and they are immediate consequences of 6.5A and B: replace Z
X Xi'A
-1 1 1
by ZA~! and [X2] by XgA'l]'
PROOF OF 6.5A:
99'(ZA,T)= Y ezpmiTr('NTN'AQA+2'NZA)
Nel(g,h)
= Y expmTr(A'NTN'AQ+24'N2Z)
Nel(g,h)
= Z ezp miTr((NTNQ +2'NZ)
Nel(g,h)A

=y > ezp miTr(*(N + R)T(N + R)Q + 2(N + R)Z)

R NeI(g,h)t ANZ(g,h)
=y > ezxp miTr(NTNQ +2'N(Z + TRQ)+

R Nel(g,h)t ANZ(g,h) ‘RTRQ + 2'RZ)
where the R range through a system of coset representatives for
Z(g,h)' A/Z(g,h)' AN (g, h),
=Py Y Y x(W)ezp niTr(!NTNQ+2'N(Z + TRQ)+

R NEl(g,h) X gRTRQ +2¢RZ)

where the y range through the character group of Z(g, h)/Z(g, h)* ANZ(g, h)

and

P=[L(g,h): g, k) ANZ(g, k)]
=[Z(1,h) : Z(1, R} ANZ(1,R)]*
=[2": A" nZH)79.
Observing that any such x can be uniquely represented by
X(N) = ezp 27iTr(*SN) where S € [Z(g,h)A™" + Z(g, k)] /Z(g, h), the
above expression boils down to

PYY" ) ezpmiTr(!NTNQ+2'N(Z+TRQ+5)+! RTRQ+2'RZ)
R S Nel(g,h)
= PY_ ) eapmiTr(*RTRQ +2'RZ) - 99(Z + TRQ + 5, T)
R S
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=[2h: AP N ZP0Y D UL royUles)PO (2 T).

The S above weI:e :hosen as coset representatives for Z(g,h)A~! +
Z(g,h)/Z(g, h); they could equally well have been chosen to be coset repre-
sentatives for Z(g, h)A~1/Z(g,h)A~*NZ(g, h). Forsuch Rand S, R = M*A
and S = NA~! for some M, N € Z(g, k) and therefore exp 27iTr(*RS) =
exp 2miTr(* MN) = 1. Consequently, the U(ll,R,O) and U(ll,O,S) can be in-
terchanged; also

U(ll,o,S)U(ll,T,o)ﬂq(Z’ T)

= ezpmiTr(*RTRQ + 2'R(Z + S))99(Z + TRQ + 5, T)

=99 [’;] (Z,T).

This proves the second and third formulae in 6.6A.
We show that upon applying R to formula (A) we get (B). It is evident
that RYQ = 99, On the other hand, if Z = T'X,Q + X3, then
RYY(ZA,T) = exp(xi Tr ' X2y (TX:Q + X2)99 (TX1Q + X2)A,T)
=ezp(mi Tr('(X,' A7) - (TXIATIQ + X24)).
99 (TX, 'A71Q + XA, T)
(since ‘ATIQ' A = Q)

wa [ XA

QED

REMARK 1: Note that the summation over R (resp. S) disappears when

A (resp. A~!') is an integral matrix.

REMARK 2: In 6.5D, the ezp miTr(! RX,A™! —'SX,'A — 'SR) are roots

of unity when X; and X, are rational.

REMARK 3: Replacing Z by Z+TMQ'+ N in 6.5C and multiplying both

sides by ezp miTr(*! MTMQ' +2' M(Z + N)) gives a generalization of 6.5C:
99’ [%] (2,T) =

- v M!'A+R
¢ 9 'ZR,S ezp 27i(—Tr(M!AS))99 NA-1 4§

where ¢ = [AZ" : I} N AZH)

](ZA"I,T),
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dy 0
COROLLARY 6.6. IfQ = is diagonal, and
0 ' dp
Z = (21,22, +,2n), X = (21,22, -,218), Y = (¥1,¥2," ", %),

then
h
99(2,T) = [] 9(z:,diT)

i=1

S

This follows immediately from the first fundamental identity.

and

COROLLARY 6.7. Let Q be rational positive definite. Choose B € GLx(Q)
so that D = *B.Q.B is diagonal. Replacing the matrices (Q,Q’, A) in 6.5.C
by (D,Q, B™"), we get:
h
19Q(Z, T)y=a"" RZ’SH J [;:] (zj: bjiz;, d;T)
where a is some natural number, the d; are the diagonal entries of D, and

the r;, s;, z; are the i-th columns of R, S, Z respectively.
This shows that the theta functions with arbitrary quadratic forms
are easily calculated in terms of the usual theta functions for the period

matrices dT.

Put Q =20,,Q' =I; and A= %(i __11> in 6.5C; so

A= (] _11) is integral, and Z(g,2) -'A/Z(g,2)' AN 2(g,2) = L(g, 2) -

A/Z(g,2) has coset representatives (n,n) where n € %Z’/Z’. Therefore,

COROLLARY 6.8.

I, Tz, T) = Y 0{3](411+z2,2T)z9{g](z1—-z2,2T).
neLxI/Is

This theta relation will play a major role in §7.
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Next put @ = Q' = I and

1 1 1 1
111 -1 41
A‘21—11—1
1 -1 -1 1

in 6.5C. Here A =*A = A~! and coset representatives for

2(g,4)A/[2(g,4)ANZ(g,4)] are (n,n,n,n) where 5y € $29/Z°. Thus:

COROLLARY 6.9 (RIEMANN’s THETA RELATION).
9(21)9(22)9(23)9(24) =
279 cesee, ne,}zv/zvﬂ(g](%(zl +12+za+24))'0(,€7](%(zl+12-Za—z4))

'0{167](%(21 —z+23—24))" ’9{67](%% — 22— 23+ 21)).

Finally, choose an orthogonal basis 81, - - -, By of Q" starting with 5
(1,---,1). Let B be the k x h matrix whose ith column is G; and let d;

behthe square of the length of §;. Put A = B!, Q' = I, and Q =
0

d;
. Then Q' = 'A-QA. Apply Remark 3 following 6.5

ang specialize Zdhe CM to Z = (2,2,---,2) with z € CY ; we get:
COROLLARY 6.10.

H?:l v [r::] (z,T) =

¢! Y p s exp2miTr(M -1 AS) -9 [: : :] (hz, RT)[T}=, ¥ [: : :] (0,d;T).

On the left hand side, we are taking products of the ¢ [r::] € f(X, L)
where X = Xr 23, and L is the basic line bundle. The R.H.S. consists
of linear combinations of ¥ [ ] (hz,hT) € f(X, L*). Thus the above
formula gives an explicit description of the multiplication map S” (f(L)) —

f‘(L") in terms of the natural bases that both vector spaces possess.

We now wish to explain how, up to separate scalars for each @, we can

define the functions

99 . V(X — &
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purely algebraically and over any ground field. The basic idea is quite
straightforward, although its execution is notationally involved. We start
with an abelian variety X and an ample degree one symmetric line bundle
L on X, to which we can associate the function ¥* on V(X) as in §5.
However suppose you consider L™ and wish to associate to (X ,L") a single
theta function. Since L™ has degree bigger than one you need to construct
an isogeny
f™:x —Y,

and a line bundle M on Y such that

(Ff™ymM=L"

where M has degree one. Over C one obtains in this way U(z,1T) for
this bigger lattice, hence it defines the new function. Indeed, if h = 1,
Q(z) = ’"—’, then 99(Z,T) is just J(Z,1T). Algebraically, the operation
of passing to a bigger lattice is dividing X by a so-called “Gopel group”
HCX,

(X, = n-torsion in X): write V(X) = V1 @ V3, V; isotropic for b, so that
T(X)=Ty®Ty, T; = inT(X). Then H = 1T,/Ti. We must verify that
for such H, if Y = X/H, then L™ is the pull-back of a degree 1 line bundle
onY.

This construction can be extended to products X» of X. Thus on X 2

for example, we have three line bundles to play with:

piL, oL, (pr+p2)’L

where p; : X2 —» X are the projections and py +p2 : X% — X is addition.

If Q is a 2 x 2 integral symmetric matrix, we can form the combination

L@ = (p}L)°% & (53L)°9" © ((m +p2)" L@ AL @psL )7

which turns out to be ample if Q is positive definite. It is again not

hard, via a splitting V = V) @ V2, to define an isogeny f: X2 >Y
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and a degree 1 bundle M on Y which pulls back to L(?). This gives us
still more theta functions. Over C, one gets Y by dividing C? @ CY not
by (TZ¢,0) + (Z9,0) + (0,TZ9) + (0,Z9) but by the bigger lattice of vec-
tors (Tn(Q~ )11, Tn(Q@ " )i2), and (Tn(Q~ )21, Tn(Q)22), n € 29 plus
(Z¢,0) + (0,29). This torus is the torus X9, so it follows that the new
theta function is just 997 (z, T).

To work this out in detail, we first do the complex case geometrically
and describe the relations between X = Xrp 73, and X9 = Xre z20n very
explicitly. Let L and L9 be the basic line bundles on X and X respectively
and f? : X* — XQ the rational isogeny! defined by fQ(z) = z for all
z € C,

We have already seen in §4 that there is a canonical isomorphism
A7 ® A7 = V(X) such that any (z,y) € Q’ @ Qf corresponds to the
sequence %(Tz + y) in V(X). By this isomorphism, 2N & goes over
to T(X) and ob = b on the subgroups Z¢ & 0 and 0 @ Z9.2 We have
e (z,y) = e(—A(z,y)) = e(—'z132+ 11 22) Where 2 = (2),23), ¥ = (v1, ¥2)
and e(a + fB) = exp 2mia where a € Q and 8 € Z. Under the canonical
isomorphism of Ay (2g, k) with V(X), the pairing becomes

el-(<§;> (2)) = e(Tr(~'X1Y3 + ' X,11)).

ProPosITION 6.11. A. Identify V(X") with Ay(2g, h) as above; similarly

!This means that f9 is given by an equivalence class of diagrams

Y

r/” \¢
h

X X9

where p and ¢ are isogenies and f9 is the formal combination g o p~!.
Equivalently, ef(z) = 1ifz € }Z9®0orz € 0® 32¢. To determine a

symmetric line bundle uniquely, we need to specify both et and e!, so for
all our line bundles we shall keep track of et and et.
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identify V(X9) = A;(2¢,h) using T ® Q. In these terms

V(f9): V(X*) = Ay(29,h) — V(X)) = As(29,h)

(7)—(F)

B. V(f9)(Z(g,h)Q®L(g, h)) = T(X?) and ot = 719 on the subgroups
V(f9)(Z(g,1)Q ® 0) and V(f9)(0® Z(g, b)) of T(X?).

where X, Y € Ry(g, h).

C.

v (B) v (i )=+ ((382).(1))

where L is the basic bundle on X*, i.e., L(® 2 p}(L)®...® p}(L), the
p; are the projections from X* to X, and X;,Y; € Ay(g, h).

D. IfX,, X2 € Q(g,h) and 1,z are the corresponding elements of Q9%
then

X z Q le
«Q |2t =9* | “1 [ (T*) = const. 9L~ [ V(£9 ( ))
J [Xz] (T)y="9 [22] (T*) = cons f*) 2,
Here the first two are analytically defined expressions while the last is al-

gebraically defined (see 6.5).

PrROOF: A. The two isomorphisms j; and j» of R(2g, k) with C(g, k) cor-
. (X
responding to the complex tori X» and X9 are j; Y) =TX+Y and

j;,(if) = TXQ +Y. This shows that V(fQ)(i,() = (Xg'l) for

. X xQt
X,Y € Q(g,h). Because Q is dense in Ay, V(fQ)<Y) = ( ?, ) for
X, Ye Aj(g, h).
B follows from A and the remarks preceding the Proposition. We prove

C. Under the identification of V(X ?) with A(2g, h) using T ® Q,

L9 <<§:> (2)) = e(Tr(=' X1z + ' X21)).
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Given this, C is straightforward:

oo (oo () o) = (") (')

= e(Tr(-{(X1Q")Y2 + 'X2¥1Q ")
-+((35) ()
- XQQ—I "\ T, '

6.3 B’ says that the first two expressions in D are equal and by 5.11D
the second is equal to const. g9 [;1] = const. 9L [V(fQ) (I;.Q)]
2 2

QED

We take this Proposition as our cue for defining (f9,X9,L9) and
99 purely algebraically. For ease of exposition, we shall assume we are
dealing with an abelian variety over a field k of characteristic 0. With
straightforward modifications and suitable restrictions that various integers

are prime-to-p, everything extends to char(k) = p # 0.

DEFINITION 6.12. Let k be a field of characteristic zero, X an abelian
variety defined over k, and L an ample, even, symmetric line bundle of
degree one on X. A Géopelstructure for (X,L) is a pair (V}, V2) of subspaces
of V(X) isotropic for the pairing et such that V(X) = V; ® V2 and
A. ot =1t onT; = V;NT(X) fori = 1,2; or equivalently et (z) = 1 for
z€ -%T;, and
B. T(X)=T,®Ts.

In what follows, members of V(X)" will be thought of as row vectors
with entries in V(X), and if a Gopel structure is chosen, then members of
V(X") will be thought of as a 2 x h matrix with top row from Vi, bottom

row from V;.

PROPOSITION AND DEFINITION 6.13. Let (V4,V2) be a Gopel structure
for (X,L) and let Q be a rational symmetric h x h positive definite matrix.

Then there is a triple (f,Y,M) where f is a rational isogeny from X b to
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Y and M is an even symmetric ample line bundle of degree one on Y such
that
A MV(HAV()B) = ¥ (AQ1,B) for all A,B € V(X)*, where
L® =p(L) @ ... 8 pi(L),
B. V() (TtQe&T}) =T(Y), and
C. (V(f)V}, V(f)V4) is a Gopel structure for (Y,M).

If (f,Y',M) is another such triple, then there is an isomorphism
g:Y' — Y such that f = go f' and ¢*M = M'. We shall denote such a
triple by (f9,X9,LQ).

IfQ=Q:®Qa, then

(an x fQ’,XQ‘ x XQI’LQI ®LQ:) — (fQ,XQ,LQ).

PROOF: Choose a natural number n such that S = n?Q~! is an integral
matrix. Let L; = piL and L;; = (p; +p;)'L ® pjL™' @ pjL~!. Define
H= ®Lf“®i<ijj"; this is a line bundle on X*. Our immediate aim is
to con;pute the pairing e®. From 4.14F and 4.14G it follows that
evi(a,b) = e*(a;,b;) and
evii(a,b) = eb(a; + aj,b; + b;)et (ai, b:) " tet (a5, 55) "
= e (a;,b;)e (a5, b:)
where @ = (aj,a2,---,a5) and b = (by,bz,---,bs) with the a; and b; in
V(X). A repeated application of 4.14G now shows that
eM(a,b) = [[e" (ai, b:)% [] €* (e, 85)% " (aj, b)°
i i<j
= H et (ai, b))% = He"(z aiSij, b;)
(1) i i
= e"m(aS, b) = e"(h)(n?aQ"l, b).
Consequently V;* and V;} are maximal isotropic spaces for this pairing,
and in addition, n~}(T?Q & T}) is a maximal isotropic subgroup for this

pairing: if a; € V}* and a3 € V;, then

eM(ay +a2,n10,Q +n7 b)) = e"(h)(nalQ'l,b'z)_1 -e"m(nag, bh)=1
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for all b, € TP, by € TP if and only if na; @~ € T} and na; € TZ, ice., if
and only if a; € n7'T}Q and a; € n~1T5.

Now the subgroup TH(n=1T}Q) - ™M(n~1TF) of G(H) gives rise to an
abelian variety X9, a symmetric line bundle L? and a rational isogeny
g: X" — X9 by 4.22B so that H and L? are related by the Q-isogeny g (so
if ¢ is an actual isogeny ¢*L? = H). In addition j(g,L9) : G(H) = G(L9)
takes TM(n~1TPQ) - T¥(n~1T%) isomorphically onto o (T X?). Now put
fQ = n~1g, and it is easily seen that the triple (f9, X?,L?) satisfies A,
B and C. What is missing, however, is the ampleness of L9 which depends
on the fact that Q is positive definite and not just non-degenerate which is

all we have used so far. We postpone the proof of this fact.

Now let (f,Y,M) and (f',Y’,M’) be two such triples. Because
V)TITY = V() ' TX =TIQo TP

4.21D implies that there is g : Y/ = Y such that f = go f'. In addition,
et = et and et (z) = e (z) = 1 for z € LV(f)T}Q and for z €
Ly ()T}, showing that eL'(z) = ! *(z) for all z € 1TY" by 4.17C. By
4.23 g*L. 2 L finishing the proof of the Proposition. QED

We head towards a proof of the Fundamental Identities in the algebraic

case; along the way we show that L9 is ample.

When A is an integral (h x h) matrix, let ¥4 : X* — X" be the
homomorphisin defined by ¥ 4(z) = y where y; = ZAJ-.--:cJ-. If A € GLi(Q)

j
choose a non-zero n € Z such that nA is integral and define

Y4 = Yna o (nx»)~! which is a Q-isogeny from X" to itself (see 4.20).

PROPOSITION 6.14. Let @' = 'A- Q- A where A € GL,(Q) and Q is a

rational h x h positive definite symmetric matrix. Choose an n > 1 so the
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Q-isogenies f9, f Q' 4 are represented by morphisms in:

Xh
/ l"
XxQ <——f-Q-—— Xh R X* > X<
A f

Then, for suitable n, the pull-backs of LQ and LYQ (o the top XP are
isomorphic.
ProoOF: Let fQ' o140 (f9) ! be the Q-isogeny ¥/y. We first show that
&7 (V)2 V(#Y) = & (2,9)

for all 2,y € V(X9); this clearly being necessary for the Proposition to be
correct. If z = V(f9)v and y = V(f9)w, then

&7 V()2 VDY) = &7 (VT 0 b, VY 0 va)w)

= LT VEN)A), VIY)(wA) = V(04 Q7 wA)

=tV A-Q 7 A W) = (v Q w) =€ (2,9).

Choose a non-zero m so that my’, = ¢ is a morphism. The above shows

that e™ "L = €9"L9 | Replacing m by 2m if necessary, we may assume that

e. of both bundles vanish identically, so by 4.23, y‘LQ' >~ mL9, QED

We can now prove the ampleness of L9. It is clear that if two line
bundles are related by a rational isogeny both are ample or neither is am-
ple. By the above Proposition we need to show that L9 is ample only for
diagonal, integral Q (because any quadratic form can be diagonalised), and
by the last statement in Proposition 6.13, it suffices to do so when h = 1,
Q = d > 0. In this case, L9 on X9 and L% on X are related by a suitable
rational isogeny, showing that L9 is ample.

Notice that given 99 and A, with J9 the unique element fixed by a
maximal isotropic subgroup of Heis(2(g x k),Ay), we can construct 99 in
a purely group theoretic way without reference to the underlying abelian
varieties.

We now make the algebraic definition:
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DEFINITION 6.15. Given any rational symmetric positive definite h x h
matrix Q, abelian variety X, ample, degree 1, even symmetric line bundle

L, and Gdpel structure for (X, k), define:
929 [2] = 0w (s9)(aQ + 1)

for all z € V*,y € V}*. Here 9* is the algebraic theta function on V(X9)

associated to LY.

Comparison with 7.9D shows that when & = C, we have the same
theta function as the analytically defined 9*°9. We wish to prove the two

fundamental identities for these algebraic theta functions:

(6.16). IfQ= ( 0‘ 32) and z, € V(X)™ 25 € V(X)*2, then

9% [2,]99[z,] = cnst. 9*9zy, 2],

(6.17). IfQ'='A-Q-A,andz €V} ye V] then

[z .tA-l
99 [ y-A ] = cnst. ZZU’(R)U’(S)’?G’Q [;] ,
R s

where R and S run through a system of coset representatives for

T} - *A/(TP NTP -tA) and TP - A7Y/(T} - A=' N T}) respectively, and
r(R), 7(S) € G(L™) act on functions on V(X)" as usual (right action of
§5 U)\r(y)f(z) = Ae(%! z)f(z - y))

ProoF: We shall consider only (6.17) as (6.16) is quite simple. Note that

by (6.14), we have an isomorphism
(¥ :TLY) = TL9

equivariant for j(¥/y)* : G(L?) < G(L?'). (6.17) states a relation between

2 distinguished elements in these spaces:

seTMLY) CTLY
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and
te(LY) c TLY).

The idea of the proof is this: the elements s and t are characterized as
the unique elements of an irreducible representation fixed by certain max-
imal isotropic subgroups. To compare these elements we need to compare
explicitly the representation spaces and the maximal isotropic subgroups

of s and ¢. To do this, it is convenient to have the same Heisenberg group

acting on both spaces.

Define A9 : G(L(M) = G(L9) as follows:
Btz - Ty) = ArV(f)(2Q) - TV (f9)(y) forall X € ¥,
z € V},y € V}. To show that 39 is a homomorphism we must check that
& (V(F9)Q), V() = e (z,y),

but this is Proposition 6.13A; furthermore A9 commutes with the involution

and there is a commutative diagram:

1 —kF — GLM) L V(XP) — 0
e
1 —F — LQ@) L v(x9 — 0
where a®9(z + y) = Vf9(zQ + y). In addition,
a9(TX") = TX?

and
ﬂQUL(A)(z) = ULQQQ(Z) zeTX"

Composing 82 with the action of G(L?) on T(L9) we get the desired action
of G(L™) on T(LQ). Moreover, we define

99(z] = 4,[a%z), for all s € T(LY), z € V(XP).
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As in §5, we check that U,9% = 193‘0( o for all g € G(LM),s € T(L?)
g

where G(L(")) acts on the space of functions on V(X") as usual.

Let h4 be the composition
~ Q ~ (')~ A (B9 o
ha - GLM) 26019 ¥G )P g™,

and define ¢4 by the diagram
g‘(l_(h)) — I v(xth)

"

§(L(h) — I v(x®),
Putting this together we have the diagram:
L®) L

~

V(X?) ——-—=> V(Xh
a9 o9
e | foyLe
vixhy AL yxh
L9 fQ fQ’ Le
e

™ V(X9) V(X9)

The map ¢4 is the dotted arrow.

LEMMA 6.18. The map ha preserves the involution and ¢4(z +y) =

A~ + yA where z € V* and y e V.

PROOF: h4 preserves the involution simply because B9, 89 and iy, LQ')

preserve the involutions in question.
$a(z1,22) = (@)t o V(4) 0a(z1,22)
= a7 o V(A)(21Q, 22)
=a?”" (z1QA, z224)
= (21QA(Q) ™, 224)
= (:cI'A"l, z24).
QED for the lemma.
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LEMMA 6.19. IfUQ and U’ denote the actions of G(L™) on T(L?) and
on T(L?') induced by 89,89 respectively and ¢§ : T(L?') — T(L?) is
the isomorphism induced by vy, then

A VUL s=URYss forallg € GL™),s € T(LY), and

B. 3., =99 0¢4 for all s € T(LY).
A
The proof is left to the reader.
Let 0 # s € I(L?) and 0 # t € T(LY'). Put & = ¢/5t. In the classical
case, s corresponds to 99(Z,T) and &' to 190'(ZA,T), and Proposition 6.6

describes the relation between them.

Note that s is fixed by the subgroup
Bt (TX9) =tV (Txh =T
while, on the other hand, using Lemma 6.19 we see that s’ is fixed by
ha (T) = r(T} - *A) - 7(T4 - A=) = T'. The following simple lemma tells
us how to get hold of s’ given s:
LEMMA 6.20. Let T and T’ be subgroups of Heis(2g,R;) such that TNk =
T'nk = 1 and 7(T) and n(T") are maximal isotropic lattices (i.e., compact
open subgroups) of A;’ . Let 0 # s be a T-invariant vector in the Heisenberg
representation H of Heis(2g,A;). Then s’ = ZU_,,S, where g runs through
P)
a system of coset representatives of T" {[TNT", is T'-invariant and is non-zero
if and only if (T) Nx(T") = #(TNT’).
PROOF: It is clear that &' is T'-invariant. The important thing is that it is
non-zero when #(T) N #(T") = x#(T NT')! Let 5" = ZU;.S’ where h runs
through a system of coset representatives of T/TNT’. Then

=3 UnUgs =YY e(n(h), n(9))UsUns
h 9 g A
=Y U, (3 e(n(h),x(g))s = [T:TNTs
g h

because if g ¢ TNT", Y _e((h),7(g)) = 0. This shows that s’ # 0. We
h

don’t need the converse. QED for the lemma.
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Applying Lemma 6.20 to the situation T = r(T}) - 7(T}),
T = (T} -*A) - 7(TP - A~!) we find:

s’ = const. ZZUr(R)Ur(S)s'
R s

Taking 99 of both sides and using Lemma 6.19B, the fundamental identity
979 o ¢4 = const. Z Z U,(R)U,(s)ﬂa’q,
R 5§

is proven. QED

The algebraic development of this theory goes through if char. k = p
and Q and A both belong to GLx(Z[1]) and p t a. If p > 0 we may either
ignore p-torsion to formulate 6.17 or assume that X is an ordinary abelian
variety, in which case a Gopel structure at the prime p can still be put on
(X,L). If 2 t a the assumption that L is even symmetric can be dropped

for 6.1 to be true (assuming that L is still symmetric).

CoROLLARY 6.21. IfL is a symmetric ample line bundle of degree one on
X, then 9°(z) = e9*(—z) where e = 1 if L is even symmetric and ¢ = —1

if L is odd symmetric (char. k # 2).

When k = C and L is even symmetric, then X = Xr for some T € §,

and L is then the basic line bundle. Therefore
9 [;1] = expritz (Tz1 + z3)-9(Tzy +22,T)
2

which is obviously an even function of (z1, z3). However there seems to be

no straightforward algebraic proof of this fact.
PROOF: Assume that L is even symmetric. Put h =1 and Q@ = Q' =
and A = —1in 6.17. This gives 9°[—z] = e¥*[z] for some constant ¢, and

therefore ¥°[z] = e9°[—z] = €29°[z] showing that ¢ = 1.

Nowputh=2Q=1d,Q =2 1d, A = (} _}) in 6.17:
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92z + g9z —gl=c 3 Urn9°le]-Uniny9°l
n€iTa/T,

=c Y eF,z+u)°l-n+ [0+
n€iTy/T;

=c Y e(Fz+v)e(-nu)9°[-n+2li"ln+ 1)
n€iT:/T,

=c Z e(g, z — y)9°[-n+ z]9%[n +
€T, /T,
(because Uy (aq)9* = 99).
Replacing y by —y does not alter the L.H.S. while the R.H.S. becomes
e D e(Fz+ul-n+al[n-]
n€LTa/T,

=e€c Z e(g, 4+ y)9°[-n+2]9°[-n+ 4]
€T, /T,
which is the old R.H.S. multiplied by ¢ and this shows € = 1.

Take any £ € %T(X)/T(X), with &€ = (£1,€2,--7). Let M = T{,(L)-
By 4.22D, M is even or odd symmetric depending on whether e.(£) equals
1or —1. Now 2%L = 2%M so that T(L) = (M) and G(L) = G(M) and
oM(z) = et (£, z)ot(z). If 0 # s € T(L), then Uygys = s’ € T(M) and
therefore 9*M(z) = const. Ur)d*t(z).
Denoting 9%t by 9° as before, we have:
9*M(z) = e(g, 2)9%(~€ + z)
9*M(—z) = e(%, —2)9%(-€—-z) = e(%, —z)9%(¢ + )

= e(g, —z)e(€,z)e.(E)9*(—26 + £ + 2)
(by the quasi-periodicity of J%)

= eu(©e(}, 2)9°(~€ + 2)

= (9" M ().

This finishes the proof of the Corollary because any odd symmetric

M = T:L for some z such that 2z = 0 and for some even symmetric L from

Corollary 4.24. QED
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As in §5, 99(z) can be described as a matrix-coefficient:
999(z) = L9 (Ur(z)5)

where €9 is the composite T(L9) — L9(0) — k and 0 # s € r(L9),
the subspace of T(L9) fixed by the subgroup o(T X b ¢ G(L™). Thus
£9 € T(£9)* determines the function 9%9. Let S(V;*) denote the space of
locally constant functions on V{* that have compact support. Choosing an
isomorphism f : S(V{*) = f(LQ), u9 = £9 o f now appears as a finitely
additive k-valued measure on the Boolean algebra of compact open subsets
of V. Note that 49 is determined only up to a scalar because f and Il
are only uniquely determined up to scalars.

We want to compare
(A) 49,49 and u@ where Q = ( %’ 32),
and
(B) 49 and y9@ where Q' = 'AQA.
(A) Let Q; be (hi x h;)-matrices for i = 1,2 and let h = hy + ha. Choose
isomorphisms fi : S(V*) = T(L9"). We then have the following chain of

isomorphisms of G(L(")-modules:
Nh®fa ~ -~
S =SV e s = TL9) @ T(L9) = T(LI).

The last isomorphism comes from the fact that X 9 = X9 x X9 and
L? = piL9 ® p3L 92 (which also shows that up to a non-zero constant
multiple £9 = £91 @ £92). 1t follows that const. u9 = p9 x u9 where
491 x 497 is the unique k-valued measure on Vi such that (u9* x #92)(F x
Fy) = 9 (Fy) - p92(F3) where Fy and F; are compact open subsets of v

and V{*? respectively.

(B) Let r = ¢/ : T(LY) — T(L9). Then 9 or = const. 9", Choose
f:S(VP)=T(L?) and f: S(V) = T(L9") to be G(L™M)-module isomor-

phisms.
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Then
p=0of

and p9' =9 o f'
= const. 8 orof
= const. u90 f~orof.
From Lemma 6.19A, r o Uﬁy = Uf orfor all g € §(L(h)), soif F =
florof ,FoUy,y=UjoF forallge G(L™).

But such an F is unique up to scalars because S(V{*) is irreducible.
Now f(z) — f(A™'z) is a candidate for this isomorphism so that F f(z) =
const. f(A~1z). If xy is the characteristic function of a compact open
subset U C V',

#9W) E u¥ (xw)

const. u?(Fxv)

= const. u@(xy 0 A7Y)
= const. p?(xav)
= const. u9(AU).

We summarize:

PROPOSITION 6.22. Given a Gopel structure (Vy,V2) on (X,L), every ra-
tional symmetric positive definite matrix Q determines, up to scalars, a
finitely additive measure u@ on the Boolean algebra of compact open sub-
sets of V{* such that
A IfQ= (%‘

B. IfQ' ='AQA with A € GL,(Q), then

, then 49 = const. 9 x u92, and

49 (U) = const. u®(AU).




7. Riemann’s theta relation

Although the results of the previous section give us a huge class of
identities satisfied by the theta functions, Riemann’s theta relation is special
in having some elegant reformulations. The purpose of this section is to
explain these interpretations: in particular we give its formulations in terms
of

(i) the Heisenberg action on the tower of spaces
F(L)s F(L2)1 F(L3)1 T

(i1) explicit formulas, and
(iii) the measures on AJ that define 9 (see §5).
THEOREM 7.1. Let X be an abelian variety over an algebraically closed
field and L a symmetric line bundle of degree one on X. Taken > 1 and
char k 4 n; then trivializing L on V(X) as in §6, we can consider f‘(L") as
a subspace of the functions on V(X). Then
(a) (L") is the space of function generated by polynomials of degree n in
T).
(b) T(L") is mapped into itself by G(L) acting by:
for A€ k,z € V(X), (UL, )(v) = Ae(z/2,9)" f(y - 2)
(c) T(L™) is irreducible under this action.
ProoF: Note that (c) implies (a) because the group action on T(L") is
just the n*? symmetric product of the action on f(L)
Choose a splitting V(X) = Vi & V, into maximal isotropic subspaces

for the skew pairing induced by L. Define
G(UL") = {(m,Zm) | $m : miL" = T _mxL"}.

Then G(L") acts on T(L") and there is a map
G(L) S T

($m)2m) —— (B8 2m) -
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The kernel of this map is pn; hence this map is an isomorphism §(L") >
G(L)/pn. The commutator of G(L™) is et (z,y)", so G(L") isstill an Heisen-
berg group. Let W; = T(X) NV;; then H, = 1/nW; & W, is maximal
isotropic for et(z,y)". Lift H, to M, = r(1/nW))7(W>) and take the
quotient of L™ by H,, to get

[

X — X/H,
Then K(E) = 0 since 1/nW; @ W, is maximal isotropic; therefore deg E =
1, and T(L")"~ is one-dimensional. This implies T(L") is acted on irre-
ducibly by G(L"). QED

LEMMA 7.2. Let ¥: F\fg —— k be a locally constant function such that
(2) O(z + k) = e.(k/2)e(k/2,2)d(z), Vk €729, and
(b) 9(—z) = J¥(z).
Then there exists a finitely additive measure p on F\g such that for all
z=(1),22) € f—\i’

i) 9(z) = /’ . e(‘=x2)e(~"z, - w)dp(u), and

ii) Forbe€l,

‘al - a2

pulay + bi’) =b"9 Z e( )9(ay, az).

az€(b-129/29)
Proor: This can be verified by a straightforward calculation. We can also
proceed as follows: By Proposition 5.10 we know that the space of functions
S generated by the action of the Heisenberg group on 9 is irreducible (the
action is (Unr(x)f)(z) = Ae(k/2,z)f(z—k). Under this action ¥ is fixed by a
maximal isotropic subgroup; hence there is a unique (up to a multiplicative
constant) map
¥:CYAY) — S

sending &, the characteristic function of 79 to 9. The action on Ci(R}) is

Urgy, ya)f(2) = e(:”-‘—z'-u)e(yz, z)f(z +y1). Define a linear functional £ on S
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by €: f — f(0). Then £ corresponds, via ¢, to a finitely additive measure

on Af. Since 4 is equivariant

3(z) = UUs(—r)9) = / ™ (Us(osyd)dp

: ‘z) -2
= [Uy(-)bdp = _e(—"zg - u)e( 2 Ydu(u).
zy

+1s

QED
Let 9 satisfy properties (a) and (b) of the lemma above.

LEMMA 7.3. If there exists a function ¢ : Af’ — k such that
(B1)  9(z1,22)9(3n,¥2) =
Te(yiofie) o= 1 22)Y(BFE + 0,22 + ) p(HFH + 0,25 - 12)
then
(B2)  ¥(z1,22)¥(1r,42) =
279 z:(e(%’ig/’ig) e(‘( : 21)1’(21 + 0, ﬂ%ﬂ + ()1’(21 - Y1, ’_3%#_2 + ()
and vice versa: if there exists 1 so that (B2) holds, then (B1) does also.

ProoF: We often use the quasi-periodicity of ¥ in the form
3(z1 + 20, 22) = e(*n - 22)9(21, 22)

for n € %i’. We only show that (B2) implies (B1), since the proof that
(B1) impies (B2) is similar. We start with the R.H.S. of (B1) and show
after a short calculation that it is, indeed, 9(z1, z2)9(w1, y2). First express
¢(f'—;’“— + 1,22 + y2)Y (5L + 1,22 — y2) in terms of J’s by using (B2)

after changing variables:

{n—»ﬂ%’ﬂwl yx-—»ﬂ%“l+n}

zy — 22+ Y2 Yo —T2— Y2
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One obtains for the right side of Bl
2(2—’)3("171 -za)e('¢ - (El—;q‘l‘ + n))9(z1 + 29,22 + ()9 (y1,92 + ()
7€
(by quasi-periodicity)

=279 e(-'n- z2)e(’¢ - (5%_111_ +n)e('n- (z2+))-
76 O(z1, 22+ ()41, 12 + ()

=270 e(¢- El—;-—y!-)e(Z‘( -m¥(z1, 22 + ()91, 2+ C)-
KA

Since ¢ € %i’ /i’ , the sum over 5 is non-zero if and only if { € 229. Hence
the sum is, indeed, ¥(z1, 22)9(1, ¥2). QED

Choose a decomposition of f—\;g = W) @ W, so that e, vanishes on W
and on Wy, and e(z,y) = e(*z1 -y2 — *zy - y1). The main result of this
section is:
THEOREM 7.4. Let ¥: Af’ — k be a non-zero function satisfying

(i) O(z + k) = en(k/2e(k/2,2)9(z), VEET =1%.

(ii) 9(—z) = ¥(z).

Let p be the measure on F\g associated to ¥ as in Lemma 7.2. Then the

following are equivalent:

(A) Riemann’s theta relation holds:

4
H 1’(2,‘) =

i=1
279 )" eu(n)e(—n,21)9(fi(z) + n)d(La(=) + n)I(bs(2) + n)9(4s(z) + ).
n€(3729/T%9)

Here
6(z)=(z14+ 22+ 23+ 24)/2

fz(z) =(zy1+ 23— 23— 24)/2
[3(2) = (21 —Zo+ 23— 24)/2
ly(z) = (z1 — z2 — 23+ 24)/2

and z; € f—\fg.
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(B) There exists ¢ : A?’ — k so that (B1) and (B2) hold as in
Lemma 7.2.

(C) Under the action of the Heisenberg group Heis(2g,RAy) given by
Up ) f)(z) = ey, 2/2)f(z - y)
the span of the set of functions
{Usy9 - Un g9l (A, 9), (X, ¥f) € Heis(2g,A)}

is an irreducible Heis(2g,As)-module.
(C') For all n = 2¥, Symm™V, the span of

{H Uz\-’.yi”l (A, wi) € Heis(2g,A;)}

is an irreducible Heis(2g,Ay)-module. Moreover

Symm®'V =2+ (Symmzk-’ V).

Here 2x is the map induced on functions by multiplication by 2 on F\fg .

(D) There exists a measure v on A} such that
A'(px p)=vxv

where A is the matrix A = (} _11 )
PROOF: We give all the details; thus the proof is long, but easy to under-

stand. We follow the diagram:

Step one Step three
A = B < D
Step two — — — — — > ]I
c’ = C
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STEP ONE: (A <= B). Write £(z,y) for the function on the R.H.S. of
(B2) so (B2) says
I(z,y) = $(=)¥(y)-

This implies
*) E(z,)E(u,v) = E(z, 1) E(y, v).
On the other hand (*) implies £(z, y) is the product of two functions

I(z,y) = (%) - Z(y, v)-

Since ¥ can be expressed in terms of ¥, ¥ can’t vanish identically, so this
makes sense. Now (*) implies that if £ = ¢, - ¢, then ¢4 = Yo up to a
constant. Hence we’ve shown (B) <= (*). The rest of step one is given to
showing that (*) is equivalent to the Riemann theta identity.

We write out (*). Set

7 = (21 + 0, (22 + 42)/2) z3 = (ur + v, (uz + v2)/2)

22 = (21— y1,(22 = 92)/2) 24 = (= 1, (uz — v2)/2).
We get
£3(2) = (11 + v1, (y2 + v2)/2)

£4(2) = (1 — 1, (y2 — v2)/2).

£(2) = (21 + w1, (22 + 42)/2)
£y(2) = (21 — w1, (22 — 42)/2)

(*) becomes

D e(*(n-21)9(z1 + y1, (22 + y2)/2 + 0)V(z1 — w1, (22 — 1)/ 2+ m))-

n
[ e(*(C - u1)d(us + v1, (w2 + 82)/24+ C)I(wr — v, (2 = v2)/2+ ()] =
¢
[Ee(‘(n -21)9(z1 + wr, (22 + u2)/2 4+ n)(z1 — ty, (22 — u2)/2 4+ n)]-

n
D e('(¢ - y1)I(mr + v1, (y2 + v2)/2+ )11 — v, (g2 — v2)/2 4 ().
¢
Here both n,({ range over %ig /ig . Now substitute z’s into this, replace ¢

by (0,¢), n by (0,7) (so we are summing over (W, NT)/(W,NT)):
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4
Yo TI3G + me(=n, (21 + 22)/2)e(—¢, (23 + 24)/2) =

7, i=1

4
3 e(—n, Crtmadye(—¢, s TTo(t(z) +0).

i=1

7¢
In this formula substitute 2, +& for 21, za+ A for z3, multiply by e(—x/2, z1)
and e(—\/2, z3); sum over A,k € (W1NT)/2(WyNT). The L.H.S. becomes,

using quasi-periodicity,

+n+k +24+ A
Y e(on, BERE R o, BEHE Dy /2, 1)e(~)/2, 75)
7,(,%,2

e(r/2, 21 + n)e(A/2, z3 + )F(z1 + n)d(22 + M)I(2z3 + €)I(24 + ().
Simplifying, we get
3 e(x, me(\, Qe(=n, (21 + 22)/2)e(—C, (23 + 24)/2)-
e D1+ )9(z2 + MI(ea + 9z +C).
If we sum over &, A, keeping 1,( fixed, we see the sum is zero unless both

n,¢ equal zero. Thus the L.H.S. is

4
229 H 19(2,').
i=1

We now evaluate the R.H.S. After summing over &, A, we have
Z e(—n, (21 + 22 + k) /2)e(=C, (21 — 22 + £)/2)e(—£/2, 21)e(—A[2, z3)
e I((2) + 52 + m)9(6az) + 552 +n)-
I(b3(z) + 22 + ()9(8a(2) + 552 +0).
Change —A/2 to A/2 using quasi-periodicity. This introduces the factors

8(—/\/2, (Zl —22—23+Z4+l€—/\)/2+()6(—/\/2, (Zl +22—23—Z4+l€—/\)/2+1]).

Simplifying, the R.H.S. becomes

Z e(=)A/2, 21 — z3)e(—K/2, 21)e(—A/2, 23)e(—n, 7 -;-zz).
7,(,8,A
e(=C, 2 ; 23 )e(" ; '\,n)e(n ; '\,()19([1(2) + K'_'zti +n)-

) + SR o) + 2 ot + 32 )
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The term e(—)/2, &) = 0 since A, & are both in Wy. The first three factors
give e(—(k + A)/2, z1); the last two e-factors give

a:=e(k—A)/2,n+ ).

Fix £ + A = v; sum over p with & = x4+ p, X' = A — p. Note that the

arguments in the J-terms stay fixed. Since 5—21 = % — X we have

a=e(z,n+Ce(=N, n+).

This does not stay fixed; we see that n+ ¢ must be in W N T, i.e, n=¢(,

to get non-zero summands. So, summing over y gives for the R.H.S.

4
29 > le(v, Q)e(—v/2, 21)e(=¢, 21) [] 9(8i(2) + v/2+ Q)]
ve(WLnT)/2(W\NT) i=1
C€3(WanT)/W,onT

Notice that the sum can be viewed as running over all n € %T/T, S0
e(v,¢) = eu(n) and e(—v/2, 21)e(—(,z1) = e(=n, ). This gives the Rie-
mann theta identity and completes the proof (A) if and only if (B).

STEP Two: We begin by showing that (B) implies (C).

Claim. Equation (B1) implies that the span of the functions of the form
Up,y® - Urr ¥ is the same as the span of the functions of the form U y";)tz
where J(zl,zz) = ¢(z1,223).

ProoF oF CLAIM: We calculate

(**) N _
(U((xz,)(y+y')/2)¢)(z) =e((y+9)/2 1‘/2)2¢(= -(y+ !/)/2)

=e(y+¥,2/29((21 - y1 = ¥1)/2,(222 — y2 — ¥,)/2)
= e(y + !/v 2/2)¢((221 ) B !/1)/2) 220 — Y2 — y;)

On the other hand, using formula Bl:
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(Uy9 - Uy 9)(2) = e(u, 2)9(z ~ Vel , 5)9(= ~ &)
=ely+v.3) 3 e(-'n-(z2-w)

ner/2qsfTs
Y21 = —¥1)/2+4 0,222 —y2 — 5) - V(- +11)/2+ 0, —y2 + 45)-

We can ignore the last factor since the variable z does not appear there.

Since

UE, oy 9(z) = e(="n - z2)¥(z1 + m, 222),
looking at (**) we see that
e(="n-22)9((221 — 1 — ¥1)/2+4 0,222 — 12 — 1)

is in the span of Ulfz):z. Hence the span of the U(z)tZ’s contains the span of
the U, 9Uy9’s.
From (B2) we have

Y(z1,229) =

Y(1, 2yz)"2"”ze(‘( ‘)z + p, 22+ 2 + Q) (z1 — ni, 22 — Y2 + ).
¢

Now

Ua,-y1,-43-09)Uq1,91,95-0)9)(z) =
e(*¢-z)d(z1 4+ 1,22+ y2 + O)I(z1 — 1, 22— ¥2 + (),
and this gives the non-trivial part of the formula for IZ Hence the span of

the ¥'s contains the span of the U(z)tZ’s. QED for Claim

The claim implies
4
{span of HUA,ya”} = {span of U)(‘23¢U)(‘,2)!,,1Z} .
i=1
This last space, by the same argument as above with ¥ and 1 interchanged,
is the same as the span of U)(‘4y)5 where 5(::) = ¥(2z), but the span of Ui?;
is just 2 * { span of Uy 49}. This last space is an irreducible Heis(2g,Ag )-
module. Therefore all these spaces are irreducible.
We now show that (C) implies (B). Since 7(T1)7(73/2) is maximal

isotropic for the action of U(?), there is a unique (up to a non-zero constant)
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invariant function under 7(T})7(T2/2). Call this function ¢. Let M be the
subgroup fixing Uy y9 Uy g9 inside 7(T1)7(T2/2). Then

) UP(Ux y9)(Urg9)(z) = (A, N, 3, )¥(2),
n€(r(T1)r(T2/2)[M)
where ¢(), X, y,¥') is a constant depending on the indicated variables. Set

8(z) = (U1,,9) (U y9)(z) = e(y + ¥/, 2/2)9(z — 1)z — ¥).
The function ¢(z) is an eigenfunction for 7(T3)7(T3).
PROOF: Let z € Ty, T,; then
UD 6= e(z,2/2) ey + ¥, (2~ )/DV(z -y~ (= =¥ - 2)
= e(z,2/2) ey + ¥/, (z — 2)/2)9(z - y)¥(z - ¥)
eu(3)e(=2/2,2 — y)e(~2/2,2 = ¥)
= e(z,y + ¥ )$(2).

Thus the projection of ¢ to the invariant subspace of 7(T1)7(T2/2) is

zero unless ¥ = —y. Setting ¥’ = —y, we sum over %Tz/Tz to calculate this
projection:

2 U\ Ury Vs -y 9)(2) =

Se(n,z/2)*0(z —y—n)(z+y—1n) =

Te(n, z)0(z +y + (= — y + n)e(—n, 2z) =

Te(~n, z)d(z +y + 1)d(z —y + 1) = o(¥)¥(2),
where the sum is over n € 1T3/T3, and o(y) = ¢(1, 1,y,~y). Notice that
we have the R.H.S. of (B2).We now show that this is ¢(z)¥(y). Indeed we

assert that o(y)¥(z) is symmetric in z and y:

W)= D e(-nz)(z+y+n)Hy—z-n)
n€(47a/Ta)

(quasi-periodicity) = Z e(-n,z)9(z+y+n)d(y—z+n)e(—ny—z)
=) e(-ny)¥(z+y+n)d(y—z+1)
= o(z)¥(y).
This gives (B2).
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STEP THREE: We show that (D) => (B). Let h = 2 and write
AY =A{®Af=VieVy=V

Set z = (z1,22) € V,y = (y1,42) € V2. Let

(10 (1 1 s _ (20
o=(0 1) 4=(1 1) 2=(0 3).

so Q' =*AQA. We start with a non-zero quasi-periodic function 9 and we
define
99 [; ] = 9(z1, 1)9(22, ¥2)

for [;] € V. We deduce (B2) in two steps.

ONE: We show 99 satisfies a relation of the form 6.17 for some function
99,

Two: We show there exists a function ¥ on f—\?’ so that

29 [y] = Y(e1,)¥(e2, 32)

STEP ONE: Define

¢ : Heis(2gh, R;) — Heis(2gh, Ay)

o)

One checks that this is an isomorphism of groups. Let Ci(V) be the space
of k-valued locally constant functions on V with Heis(2gh,A;) acting by

(U,\',f)(:c) = /\e(g, z)f(z — 2).
Define a map Gg from Ci(V) to itself by
z ztA~!
G°(f)[y] =f[ yA ]

One verifies that Gy is a ¢— Heis(2gh, As)-map, so Uy(Gof) = Go(Ug(g)f)-
Since ¥ is quasi-periodic, the Heis(2gh, A;)-submodule T' generated by ¢
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is irreducible by Proposition 5.10. Let I’ = Gg!(T) and let Go, when
restricted to I, be denoted by G. Let 99’ be a non-zero element in I

fixed by o(Z)2%. Thus we have the diagram

Heis(2gh, A;) ¢ Heis(2gh, A;)

Cr(V) —S o

r ..._.__.6_.-—-) r
W ¥
99’ 99
Lemma 6.20 now implies there is a relationship of the form 6.17 between

G(99') and 99 since 99 is fixed by o(Z)2":

¢ t4-1 z
ok 9*9 l:'t ] =S UymUs ,90.0[ ] )
(***) oA § ®Ur?™? [

STEP Two: As in Lemma 7.2 we introduce measures. Let a be the
unique Heis(2gh, Ay)-map from T to S(V*), the space of locally constant,
compact support functions on V{*; similarly let o’ : T + S(V}*)' be an
Heis(2gh, A;)-isomorphism where S(V;*)’ denotes a second copy of S(V;*).
Define linear functionals on S(V{*) and S(V*)' by

Uf) = (™' £)(0)

£(f) = [G o (') T(N))(0).
Then £ and # are induced by measures on V}?; in particular, the measure

# from Lemma 7.2 satisfies
Un=[rduxdu fesw)
Define the measure & by

() = / fdo fe Sy
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Define F by requiring that the diagram below commute

r —_— r

Sy —— S(vh).

Since everything in sight is an irreducible Heis(2gh,A;)-module, F is char-
acterized, up to a constant, by being a map of Heis(2gh,Ay)-modules. One
checks that the map from S(V{*)' to S(V;*) defined by

[ fr(2)=f(z'A7")
is a map of Heis(2gh,A;)-modules, so we can conclude that this is, indeed,

the map F'.

CLAIM: There exists a measure v on V) so that # = v x v.

PROOF:
/ F(w)do(u) = £0 G o (')"1(f)
=fo G_I(Ff)

= [ )dux du
- / FA*(dp x dp)
= /f(du x dv).

This last equality is hypothesis (D). Since 99’ is defined by 7 we have shown
there exists 1 so that

99 [;] = P(21, 11)¥(22,92).

We show the converse. Given Q,Q’,A,z’q,19°' and the function ¥
corresponding to the measure u and we get (***). Replace z,y by A
and yA~!; the R.ILS. is (B2). Use (B2) to conclude there exists ¢ so that
g’ [;] = ¥(z)¥(y). Let v be the measure corresponding to ¥. By
Proposition 7.20, 929" corresponds to A*(p x p), but it also corresponds
to v x v. So (D) holds. QED for Theorem 7.4
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Does a function ¥ satisfying the equivalent conditions of Theorem 7.4
come from an abelian variety? This is almost true, but not precisely so.

What can be proven is:

ASSERTION 7.5. Let ¥ satisfy the conditions i), ii) and A) of Theorem 7.4
and also the non-degeneracy condition:

iii) For all z € F\?’ , there exists n € 379 such that
Hz+n)#0.

Then there is an abelian variety X defined over k, an even sym-

metric degree one ample line bundle L on X and an isomorphism
29
V(X) =A;

carrying T(X) to 229, € toe and e! to e. such that 9 for (X, L)

is equal to V.

This assertion is in unpublished notes of the senior author, and is a
straightforward generalization of the results of §10 in Equations defining
abelian varieties I11, Inv. Math., vol. 3, 1967. The results of that paper
deal with ¥’s on Qg’ satisfying the conditions of Theorem 7.4 and in this
case, one can extend Assertion 7.5 to degenerate #’s which don’t satisfy iii).

The result in §11 is:

THEOREM 7.6. Let 9 : Q39 — k satisfy the conditions i), ii) and A) of
Theorem 7.4. Then there exists:

a) a subspace W C Q3f such that W+ C W, where
Wt = {yle(z,y) = 1, allz € W}

Let dim W/W+ = 2h.
b) an element ng € %Zg’ such that e,(no) = 1 and e.(z) = e(x, 210),
alzeWin %Zgg,
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c) an abelian variety X of dimension h and an even symmetric degree
one ample line bundle L on X,
d) an isomorphism V3(X) =2, w/WH carrying To(X) to W N 1%,

el to elwxw and eb to the form
€x (2)8(2, 2”0)'%l:!nw ]

such that

e) =0 on Q% — (0 + W +1%),

f) The function z + e(z,’2)9(mo + z) on W is invariant modulo
translation by W+ and induces on W/ W+ the algebraic theta
function 9% defined by X and L.

It would be very nice if Theorem 7.6 were also true for the full adelic
case of Assertion 7.5, but unfortunately, this isn’t true: if J is a non-
degenerate theta function as in 7.5, then let U = Qg’ + 729 and let xy be
the characteristic function of U. Then yy ¥ also satisfies the conditions of
7.4 but certainly isn’t 9% for any abelian variety. What we need are some
further conditions on ¢ that imply:

(A*) For every rational orthogonal hxh matrix A, the following identity
holds:

h h s
[To0 = e S TTeCn-0) e~ 252, (aepo(canye+ m)

n,¢ i=1
for an appropriate constant ¢ and where 7 and ¢ range over
Z(g,h) -*A/2(g,h)-*ANZ(g,h) and
Z(g,h) -*A"1[Z(g,h)- tA"1N1Z(g,h) resp.
and:
(C*) For all n > 1, Symm™V is irreducible as Heis(2g, Ay )-module.

This is an interesting topic for investigation.

8. The metaplectic group and the full functional equation of J

In Chapter I, §7 we derived the functional equation in 7 for ¥(z, 7)
by direct methods and the same procedure can be generalized to get the
functional equation for the many variable function ¥(z,T). We shall adopt
another method however. In §3, 9¢ ;; (T') was characterized as a matrix-

coefficient of the representation H of Heis(2g,R):

” [;;] (T) = Waerenfrsea)s
and this combined with the fact that ez is fixed by ¢(Z?9) allows us to

deduce immediately the functional equation of ¥ in z:
¥(z,T) = exp(mi'mTm + 2wi'mz) - 9(z + Tm + n,T).

In this section we shall construct a two-sheeted covering of Sp(2g, R) which
is called the metaplectic group Mp(2g,R) and show that there is a com-
bined action of Mp(2g,R) and Heis(2g,R) on . We then see that 9(z,T),
multiplied by an exponential factor, is a matrix coefficient of this represen-
tation, enabling us to write down the full functional equation of ¢ in both
z and T.

Roughly speaking we obtain an action of Mp(2¢,R) on H, the irre-
ducible representation of Heis(2g,R), as follows: Let ¥ € Sp(29,R), so v
defines an automorphism of Heis(2g,R) by (A,z) — (},7(z)). Define a
new action of Heis(2¢g,R) on H by

(Usf) = Urae)f)-
By the Stone-Von Neumann-Mackey theorem there must be a unitary map
Ay : H — M intertwining these two representations. The map A, is
determined only up to a constant; indeed, there is no well-defined map
v — A, giving a group action of Sp(2¢,R) on H; however there is an
action of a two sheeted covering of Sp(2g,R). This is the group Mp(2g, R).
We know that

o [2] (0= o triea)
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Let v C Sp(29,R) act on H via A,, then

I [::] (T) = (A Ur(-s)fr, Avex)
= (U'r(‘y(—z))A‘yfT, A‘yel)~
The functional equation falls out of this equation once we compute A, fr

and Ayez. Unfortunately, there are many details involved in carrying out

this program, although the essential idea is so simple.

In this section H will always be the unique irreducible representation of
Heis(2g,R), Hoo and H_o, as in §2, and fr(y) = exp(ni'yTy) € L2(RY).
Because we are working with a fixed g we shall abbreviate Heis(2g,R),
Sp(29,R), Mp(Zg,R), and Mp(2g,R) to Heis, Sp, Mp, and Mp respec-
tively.

ProprosiTION 8.1. Let U(M) be the group of unitary isomorphisms of M
and Mp(29,R) = {A € U(H)|AUR,)A™" = Uprpw) Y(A,v) € Heis, for
some v € Sp}. Given A € M; p, the corresponding v € Sp is unique; denote
this v by p(A). Then there is an exact sequence of groups:

1 — C} — Mp-2Sp — 1.

PROOF: Let A € Mp, and let v;,7v2 € Sp be such that:
U(/\,‘Yiv) = AU(,\,,,)A-I V(/\, v) € Heis.

Then Uy 4,0) -U(;,l,hv) = Id. and therefore it commutes with U, Yh €
Heis, showing that e(71v — y2v,w) = 1 Yw € R%, and therefore, that
7v = 720, Yv € R¥. This shows that p : Mp — Sp is well-defined; we
omit the trivial checking that M, p is a group and p is a homomorphism.
The kernel of p = {A € U(’H)|AU;,A’1 = Uy, Yh € Heis} = C} by
the irreducibility of H.
It only remains to show that p is surjective. This follows from our

remarks above explaining how Sp(2¢,R) can almost act on H. QED
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Next we shall write down explicitly members of M, p sitting above a
generating set of Sp for the model H = L?(R?) where U(y 4,0) is translation
by z and Uy ¢, is multiplication by the character exp(2ni‘zy).

A

0 ,Ao_l); for this v we

LEMMA 8.2. I. For all A € GLy(R), let v = (
define

Pf(y) = f(A™"y)l det A|72,
II. For all symmetric C € GLy(R) let v = ((I;, 2), for this v we define

Pf(y) = f(y)exp(—mi'yCy).

I Ify = (g 'OI ) then set

Pf(y) = fly) = / f(z)exp(—2ni*zy)dz.

In all these cases P € Mp,‘y € Sp and p(P) = 7.

Proor: It suffices to check that PU(I’,,)P'1 = U(1,yv) for v €R? x 0 and
v € 0 x RY in all three cases.
L (PUx,,0 P )(¥)
= (Up,z,00P 7' )(A™ y)| det A]71/2
= (P Uf)(A 'y + z)| det A"}/
= f(A(A"'y + z))| det A]'/?|det A|"!/?
= f(y + Az)
= (Uq1,42,00/)(y)-
(PUG0.5)P~ N)(¥)
= (Ug,00)P 7' )(A7"y)| det A|71/?
= (P~ f) (A~ "y)exp (2mi'zA~'y) - | det A|~Y/2
= f(AA ' y)exp (2mi'(*A™'2)y)
= (Ua0,0a-10)f)Y)-
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IL (PU(1,2,0P~ ' )(¥)

= (U,2,00P ™~ f)(y) - exp(~7i*yCy)

= (P71f)(z + y) - exp(—7i*yCy)

= f(z + y)exp[ri'(z + y)C(z + )] - exp(—7i'yCy)

= f(z + y)exp(27i'yCz + ni'zCx)

= (U,z,c0)f)(¥)-
Also (1,0,z) = (1,7(0,z)) and clearly Uy 0,-) commutes with P so that
PU,06)P~" = U1,0,0) = Ut (0,0))-

II1. is just the usual properties of the Fourier transform. QED

Because the matrix representation of Sp(2g,R) comes from its action

on the Heisenberg group, we must let it act on $, by

¥(T) = (DT - C)(-BT + A)7!,

which is the usual action after conjugation of v by _OI (I) . We will see

below that this is necessary for everything to be compatible. In any case,
Sp(2g,R) acts transitively on §; and the stabilizer of i[ is:

U(g) = {(g ‘AB) 'AA+'BB=1'AB = 'BA} .

Recall that the Lie algebra of Heis(2g,R) acts on Moo C H; in par-
ticular, 6Uy4, and §Up; denote the operators corresponding to the elements
(1,€:,0) and (1,0,¢;) if {ey,...,e5} is the standard basis of RY. Wr de-
notes the span of the operators §U,; — ET;;6Up; for i = 1,...,g. Under
the action of ¥ € Sp on ), given above, Wr gets transformed into W ().

Because C - fr is the subspace of Ho annihilated by Wz (Theorem
3.2), if P € Mp and p(P) = 7, then Pfr is annihilated by W,(r) and
therefore:

P fr = (const. depending on P and T) - fy(1).

We shall compute these constants explicitly:
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THEOREM 8.3. Let P € Mp, p(P) = v = (g g). Recall that in

L*(R?), fr = e*'T=_ Then VT € %,
Pfr =C(P;T)fyr)

where C(P;T) is, up to a scalar of absolute value one, a branch of the
holomorphic function [det(—BT + A)]"/? on T € %,.

Proor: Let Gy = {P € ﬁp|PfT = const.fypyr, VT € $H,}.
For P € Gy, let Pfr = C(P;T)fypyr, VT € 9.
Let
C(P;T) is continuous in T € b, and
Gy={ P€G | C(P;T)? det(—BT + A)| = F(P;T)

is independent of T with values in C}

The Theorem is equivalent to the statement: G; = G2 = M, p (that
G, = M, p follows from the above remarks, but we wish to deduce it from
Lemma 8.2).

Clearly G, is a subgroup of M, p- To show that G5 is a subgroup of G
it suffices to show that C(P;T) and det(~BT + A) are 1-cocycles:
() C(P;T)C(Q;p(P)T) = C(QP;T),YP,Q € Gy,
and
(i) det(—BT + A)det(~B'y(T) + A’) = det(~B"T + A”)

wherev= (A BYana (4 BY(4 BY_ (4" B").
T=\c¢ p)™\¢ p)\c p)~\c" D»)
’ /
é g and (g, g,) belong to Sp.
But (i) follows from the definition of C(P;T) and (ii) is straightforward.

A 0 I 0 .
Now (0 tA—l) for A € GL,(R), (C I) for symmetric (g X g)-

here

matrices C, and ((I) -;)I) generate Sp and consequently the P € M, P
given in Lemma 8.2 [, II, Il and A € C} C Mp generate Mp and we shall
show that all these elements belong to G2. This will conclude the proof of

the theorem.
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For P = XA € C}, Afr = X fyp)r and therefore we get C(P;T) =
A\ F(P;T) = A%

For Pasinl,

(Pfr)(y) = fr(A7"y)| det A|7}/?
= exp(nity! AT'TA 1 y)| det A|7Y/?

:f:A-uTA-l(y)ldet A|—1/2
= f,Y(T)(y)ldet Al—llz.

For P asin I,
Pfr(y) = exp(ri'yTy) - exp (—7i'yCy) = fr-c(y)-
Here C(P;T) = F(P;T) = 1.
For P as in I1I,
pr=fo=(f mtern = [aE] " f

-1/2

so C(P;T) = [det(T)] with C(P;il)=1and F(P;T)=4#.  QED

DEFINITION 8.4. Let x(P) = F(P;T) = det(—BT + A)C(P, T)?. The
above shows that x : Mp — Cj is a character and

x(A) = A%, VA € C; C Mp.

The metaplectic group Mp(2g,R) or Mp is defined as ker x.

Note that we now have an expression of 9%[z](T) as a matrix coefficient

of the combined representation of Mp(2g,R) - Heis(2g,R) in H:
9°[z)(+(iI)) = C(P;ily) ™ (Ur(-s) - P - fir,»ex)

where P € Mp(2g,R) and v = p(P).

We shall topologize M, p and Mp in the following way:
STEP I: Let Cr : Mp — C* be defined by Cr(P) = C(P;T). Fix
Ty € $H, and give 1]7[; the weakest topology so that p : M; p — Sp and
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Cr,: M, p — C* are continuous. With this topology it will be shown that
M, p is a Hausdorfl manifold.

Define g : Mp — C* x Sp by g(P) = (Cr,(P), p(P)). Clearly the
topology on M, p is the weakest so that g is continuous. Also g is one-to-
one: if g(P) = g(Q), then p(P) = p(Q) and thus Q@ = AP for some A € Cj,
but Cr(Q) = ACr(P) = Cr(P) implies now that A = 1 and P = Q.
Let f: C* x Sp — C* be defined by f(A,v) = A?det(~BTy + A) where
v = (é g) By Theorem 8.3, g(Mp) = f~1(C?). Now & # 0 and C} is
a submanifold of C* implying that g(ﬁ p) is a submanifold of C* x Sp (and
is thus automatically Hausdorff because both C* and Sp are Hausdorff).

STEP 11: We show that C(P; T) considered as a function from Mprj, —
C* is continuous. Thus the topology on M, p is the weakest one so that p
and Cr are continous, VT € §,.

C(P; T)? det(~BT + A) = x(P) where p(P) = (‘é g). Putting

T = Ty we see that x is continuous and therefore
C(P;T)? = x(P)det(~BT + A)™

is continuous. To see that C(P;T)? has a continuous square-root H(P; T)
on MP x g, it suffices (from the lifting theorem and the fact that §, is
simply connected) to show that C(P; T)? when restricted to M; px{Ty} has
a continuous square-root, but by definition Cr,(P)? = C(P;Tp)? and Cr,
is continuous. Thus we may choose a function M on M, p X $i, uniquely by
demanding that H(P;Tp) = C(P; Ty) and H(P; T)? = C(P,T). Now fixing
P € Mp, the functions H(P;T) and C(P;T) on £, are both continuous,
H(P;T)? = C(P;T)? and H(P,Ty) = C(P,Tp); from which H(P;T) =
C(P;T) for all T € $,. This holds for all P € Mp and thus H = C and

therefore C is continuous.

Step III: The multiplication m : M p X M p— M p is continuous. We
have to check that
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(a) pom is continuous, and

(b) Cr, o m is continuous.
But (a) follows from the fact that Sp is a topological group, and Cr, o
m(P,Q) = Cr,(PQ) = C(Q; To)C(P; p(Q)Tp) is continuous because C :
ﬁp xH, —C* p: ﬁp — Sp and the map Sp x $, — H, given by

(7, T) — ¥(T) are all continuous.

STEP IV: We now show that h : ﬁp — C] x Sp given by h(P) =
(x(P), p(P)) defines a connected two-sheeted covering of the Lie group Cix
Sp and thus gives Mp the structure of Lie group.

h = (x, p) is a continuous homomorphism and ker h = ker xNker p =
ker xNC} = ker(x|C}) = {£1}. Now h = h'og where h’ : C*x Sp —» C* x
Sp is defined by h'(X,v) = (f(A,7),7) and f and g are asin Step L. Clearly
h' is a two-sheeted covering projection. Now (h')~1(C3 x Sp) = g(M; p) so
h' restricted to g(M p) is a two sheeted covering: g(ﬁ p) — Ci x Sp.

It only remains to prove that M p is connected; but this follows easily

from the connectedness of Sp and C}. The following is a more subtle fact:

ProprosiTION 8.5. Mp is a closed connected subgroup ofﬁp and p|Mp :
Mp — Sp is a covering projection with kernel = {+1}.

PROOF: Except for the connectedness of Mp, everything else follows from
the preceding remarks. Put p|Mp = q. Recall that U(g) is the stabilizer in
Sp of il € $,. The coset space of Mp with respect to Y (U(9)) is 5, by
9 — q(9)(iI). Since $, is connected it suffices to show that ' (U(g)) is

connected. Here U(g) sits inside Sp(2g, R) as
A B\ ‘BB =~ T 'AR — ¢
{(_B A) 'AA+'BB =1,'AB="BA}.

It follows that Cr for T = i1, i.e. Cis : ¢~ '(U(g)) — C3, is a continuous

character and

(c.-; (_“}9 ﬁ ))2 = det(—B(iI) + A)~! = det(4 —iB)!.
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We shall define det* : U(g) — C} by det” (_AB ﬁ) = det(A — iB)~!.

Thus, ¢~}(U(g)) along with its topology is the fibre-product of det* and
Sq : C} — C} where Sq()) = A%:
- Ci .
(U) = G

l [ss

U@y 5 ¢
QED

and is therefore connected.

In fact, m1(Sp) = Z because Sp = U(g) x $, as topological spaces
and §, is a Euclidean space and det* : U(g) — Cj} gives an isomorphism
of fundamental group. Thus for each n > 1 there is a unique connected

n-sheeted covering of Sp, and Mp is the unique connected two-sheeted
covering of Sp.
COROLLARY 8.6. The exact sequence 1 — {%1} — Mp-HSp — 1is

non-split and Mp = [Mp, Mp].

Proor: Embed U(1) in U(g) by z+— _ , and embed U(g)
0 1
in Sp(2g,R) as above. Then the sequence

1 — {1} — ¢ (U()-SU(1) — 1
can be identified to

1— {1} — Ct25C — 1.

To see this use the diagram in the proof of Proposition 8.5 and note that
C;r restricted to ¢~!(U(1)) must be one-to-one (the kernel of ¢ is {1}

which is killed by Sq). This sequence is non-split (e.g., restricting to the

torsion subgroups one gets

0 —2/21 — Q/1-%.Q/1 — 0)
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and thus the sequence
*) 1— {£1} — Mp— Sp— 1

is non-split.

Because [Sp, Sp] = Sp, [Mp, Mp] sits in the exact sequence
1 — {£1}n[Mp, Mp] — [Mp, Mp] — Sp — 1.

If {£1}n[Mp, Mp] is trivial, then Sp = [Mp, Mp] C Mp and the sequence
(*) splits. Thus {£1} n[Mp, Mp] = {£1} and [Mp, Mp] = Mp. QED

CoRoLLARY 8.7. For T € §,, let U(T) = {v € Sp|y(T) = T'}. Then

Cr(P)? = det*q(P), VP €q ' (U(T)).

Proor: This is easy; the case T = +il has already been checked while
proving Proposition 8.5. QED

~

From now on, we shall denote elements of Mp by %,6,-- -, assuming
implicitly that they sit over corresponding elements 7,4, - - - of Sp.

We shall now write down the functional equation for 9%[z}(T) in T
where z € R¥,T € §,. Denote by ¢(Z?) the subgroup (1 x Z9 x 0) -
(1 x 0 x Z24) of Heis(2g,R), and by T, : Heis(2g,R) — Heis(2g,R) the
automorphism (A, v) — (A, yv) where v € Sp(2g,R). Then

T'y2 = {y € Sp(2g,R)|T;(0Z%) = 0(Z%)}

is easily checked to be

_ (A B '*C'A and 'BD both have
{7 - (C D) € Sp(29,2)| even diagonal entries } '

Recall that Cez is the subspace of H_., annihilated by U, — 1, Vz €
o(Z?%) C Heis(2g,R). Thus, for ¥ € Mp, with v € T 4, Fez is annihi-
lated by Ur sy — 1Vz € 0(Z%7) and thus ez = n(7)ez where n(¥) € C*.
It follows that n : ¢~'(T'y,2) — C* is a character. We can now write down

the functional equation of ¥*[z])(T’) in terms of n:
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~ A B
PRoPosITION 8.8. Forz € R¥,T € $,,7 € ¢~ !(I'1,2), andy = (C D)’

we have:
9°[z)(T) = n(7) det(—BT + A)~/29°[yz]((DT — C)(-BT + A)™),

where the square root det(—BT + A)~!/? is determined to be C(¥;T).
PRroOOF:
9[z)(T) = (Uq o) fr, ex)

= (YU ,2)fr, Yex)

= 1@ (FUq,0)7 ' fr,ex)

= 1V,20)6(F T) fv(ry, e2)

= 1(7)c(F; THU( yz) fr(r)» €1)

= n(3)e(¥; T)9[r=)(2T).

QED

We immediately deduce the functional equation of 9(z,T) in T"

COROLLARY 8.9. For all z € CI,T € §,,7 € ¢~ !(T1,2),7 = (é g),
we have:
9(z,T) =
1(7)-det(— BT+4)~"/?-exp (ni*z(~ BT+A)™" Bz)-9('(~BT+4)~'z,7(T)).

PRooOF: Starting from the functional equation for 9%, and using 9% =
exp( wi'zy - z)d(z, T) we see that we only need to check

(A) if z = T'zy + 2, then

(DT — C)(~BT + A)~'(Azy + Bz3) + (Cz1 4 Dz;) = '(—-BT + A)™ 'z

and
(B) '(Az, + Bz3)!(=BT + A)~'z —'z1z = '2(~BT + A)"'Bz.

PRooF OF (A): (DT — C)(—BT + A)~! € $, and is therefore symmetric.
Thus
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(DT = C)(~BT + A)~}(Az1 + Bz3) + (Cz1 + Dz2)
= ([(DT - C)(-BT + 4)7},1) (é g) (2)
=(-T'B+'A7\(T*'D~'C,~T'B + ‘A)(g g) (2)
=(-T'B+'A4)7!(T, 1)(:{)0 —t;B) (2‘ g) (2)

-crasaran (3 5)(2 3)(3)

={(~BT + A) YT, 1)y -7 (::)

= (=BT + A)"(Tx; + z2).
PROOF OF (B): Let @ = (—BT + A)~!. Then a(~BT + A) = I which
implies aA = aBT + 1.

'(Azy + Bzg)laz —'z12 = '(a(Azy + Bzz))z - 112
= '((aA -~ I)J—'l + aB.l’z)Z
=YaB(Tz) + 12))z

='z.(~BT+ A)™' - Ba.
QED

It is clear that 8.8 stands incomplete without a complete description of
n. However we discuss only 5?; this has the advantage of being a character

on I'y 2 and not just on ¢ (T1,2).

ProrpostTION 8.10.
A. 7 surjects onto the eighth roots of unity.
B. Ifker(n)? = A, then A contains T's = {v € Sp(2g,Z)|y = I(mod 4)};

in fact
A B
AﬂI‘g:{(C D) €F2|Tr(D-—Ig)EO(mod4)}.

C. The image of A in the composite A < T'y 3 — Ty 2/T2 = 0(29,2/2)
is precisely SO(2g,2/2).
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We only sketch the proof and leave the details to the reader. Let p
0 -1

1 0
homomorphism from SL2(Z) x ... x SL2(Z) — Sp(29,Z). 1t is easy to see
that n*(p) = ’72((1) _01> ?(I)-n*(1)...0% () = ”2((1) _01). The fact

. M 1 1 -—1
that the Fourier transform preserves ez quickly implies that n? ((1) 0/~

be the image of x I x ... x I under the action of the natural

i~1. Therefore n%(p) = i~! and the image of n contains the eighth roots of
unity. The proof of A will be complete if we show that [['; 2 : A] < 4.

For (g ,Ao_l) with A € SLy(Z) the operator P from 8.2is Pf(y) =
f(A‘ly)|detA|'%; since ez = )&y in L*(R?), we have Peg = ez. The
operator associated to ]{, (I) with N symmetric integral and even di-
agonal is multiplication by exp(7i'yNy). The conditions on N insure that

Peg = ez and hence both of these terms belong to A. Consequently ma-

trices of the form (I N

0 I ) with the same restrictions on N belong to A

being conjugates of I 0 . Let A’ be the subgroup of I'; » generated
N 1 '

.y 0 0 0
" o 0 0 -1

by the above three subgroups. Writing p as and do-
0 0 I,y O

0 1 0 0
ing systematic column reduction, one sees that I'; 2 = A’'UApUA’ pPUA/p3.

This finishes the proof of A.

B. By column reduction again one checks that (g ' Ao_l) with A €

_ I 2N I 0\ .y v
SLy(Z), A = I(mod 2) and (0 ] and aN I) with N integral
generate a subgroup A” of T'y such that A” U A" p? = I';. We have by our

calculations in A that A” C A; thus we have

A" C(ANTy) C Ty

But A” C A" = {(é g) € T3|Tr(D - I;) = 0(mod 4)} which is a

subgroup of index 2 in Tz, and therefore A” = A™. Also n*(p%) = —1,
which implies that An Ty = A™.
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C. It follows from A and B that the image of A in O(2¢9,Z/2) is a
subgroup of index 2, but SO(2¢,2/2) = [0(2¢,2/2),0(2g,1/2)] always,

and this proves the result.

9. Theta Functions in Spherical Harmonics

There is still another extremely natural and important generalization
of the theta function! In §6, we introduced theta functions with quadratic
forms Q, which arise inevitably either by considering the algebraic identi-
ties on 9 or by seeking more general modular forms represented by theta
series. In this section, we introduce theta functions defined using both a
quadratic form @ and a spherical harmonic polynomial P. These can be
motivated and then analyzed either by considering the derivatives of ¥ or by
carrying further the representation-theoretic definition of ¥, yielding still
more modular forms given by theta series. We shall split our discussion
in three; first defining these new functions by differentiating analytic theta
functions, then by matrix coefficients, and finally by differentiating sections

of line bundles on abelian varieties, leading to an algebraic theory.
VIEWPOINT I: Differentiating analytic thetas

As usual, T € H,, Q is a positive definite symmetric rational (h x h)-
matrix, and Z is a complex (g x k) matrix. As in §6, let

'9Q[g](Z;T) = Y x[g](N)exp 7 Tr((NTNQ+2'N2)
NeQ(s.h)

]
where

X[ BIN) = 0if N — A ¢ 2(3, h)
= exp 2mi Tr' N B otherwise.

Let R = C[zi;; 1 < i < g,1<j < h], the ring of polynomial func-
tions on the Z-space of complex (g x h)-matrices. For any homogeneous
polynomial P € R, let P(8) = P (3%;) Then differentiating the 19Q[g]
termwise, we get
PEWCIANZT)= T X[ §1(N)P(2riN)expmiTr(: NTN Q+2'N Z),

NeQ(s.h)

Omitting the 2mi factors, we give these functions names:
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DEFINITION 9.1. For T,Q, Z as above and for P € R homogeneous and

A,B € Q(g,h),

(a) PARNZT) = Y x| AN P(N)expriTr( NTNQ +2'N2).
NeQ(g.h)

(b) 9PR(Z;T) = 9PRLN(Z:T).

(c) 9PRLANT) = 9PRL IO T).

The above shows that when P is homogeneous of degree k, then

,,P.o[g](z;T) = (21ri)-’=P(a)a9Q[§](Z T)-

We want to find out for which polynomials P € R, the 19P'Q[g](T)
are modular forms (in a generalized sense which we shall explain later) for
all A, B € Q(g,h). The answer is: if and ony if P is pluri-harmonic in the
following sense:

DEFINITION 9.2. Let S = (sp,) be the inverse of Q. Then P € R is

pluri-harmonic with respect to Q if and only if
*p ..
Z G0, - 8pg =0 for all (i, 7).

Let’s work out some examples of what pluri-harmonic means:

A. When g =1, put 21, = zp. Then

82
luri-h P=0.
P is pluri-harmonic <= (pzq:sp, 7 3z,)

But A = Zquﬁizq is just the Laplacian operator for @ (and hence

P
invariant under the orthogonal group of the quadratic form Q). In this

case P is pluri-harmonic iff P is harmonic in the usual sense.
B. When h = 1, put 23 = z;. Then P is pluri-harmonic iff 5%20%,-' =0 for

g
all i, 7; i.e., if P has the form: P = c+2a;z.' for some ¢, a;,az,---,ay € C.
i=1
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C. When h =2 and Q = I, put z;; = z; and z2 = y;, and z; = z; +
vV-1l-4,Zi=z;—vV-1 4. ThenR"C[Zij]=C[3—'1,"',1‘g,y1,"',yg]=

Clzy, -, 24571, %2, z,] P € R is pluri-harmonic iff 355 az 81 + a:,o; =0

for all i and j. It is not hard to see that this is so if and only if

pP= h‘l(zlvz21 ot '»zg) + hZ(El)EZ) o '17g) + zcl’j(zizj - zjzi),
i<j

where h;y and kg are polynomials and the ¢;; € C.

Next we put ¢ = h =1 and Q@ = 1, and use the results of Chapter I to
get some idea of when 979 is a modular form. The functional equation of

Chapter I, §7 says:

'9[5](”T)=(°’+d)_l/2'e"p”i( r+d) [](c1’+d ::3)

b\ .
for all Z 4 ) in some congruence subgroup of SL3(Z) with the sign of

(cm + d)~1/2 carefully chosen. Differentiating with respect to z:

3%.9 [;’] (z,7) =

_ —27icz —micz? z ar+b
er+d ‘/2~( ) WP (22
( ) cr+d) Por+d g] \er+d’ cr+d

+(cr+d)'3/2exp( micz ) [ ]( ar+b
er+d’ cr+d

and

32
3z20 [ ] (1) =
_ —2ric —micz? ar+b
+d 1/2( ) p
(er ) cr+d \ c +d g c‘r+d er+d
_ 2wicz —~micz? ar+b b
+(cr+d 1/2( ) -9
(7 ) et +d exp cr+d c1'+d cr+d
+2(cr + d)~3/2 (‘2’”'“ ) —micz? ar +b
er+4d A cr+d cr+d cr+d
2512 (—mcz ) ,,[ z_ar+b
Her+d) exp cr+d v gl \erxd’ cr+d/’

Putting z = 0, we get:

9 [5] (0,7) = (cr +d)~2/%0' [fl’] (0, %ﬂ) )




150 TATA LECTURES ON THETA III
ap _ -1z —2ric P ar+b
J [q] 0,7) = (e + d) (—cr+d J T 0’cr+d
-5/2 gn|P ar + b)
+(er+d) Y [q] (0’cr+d

which shows that 9%/ [g] (7) is a modular form of weight 3/2, whereas

9:* f; () is not a modular form. This is in agreement with the fact

that P(z) = z is pluri-harmonic and P(z) = 2% is not. In explicit series:
z x(n) -n- TN’

is a modular form, but
ZX(") .p2 . emin’T

is not.

Note that 9%/ [g] (r) = Zn exp min?r = 0 for all 7 so that the

nel
modular forms obtained this way are not all non-zero. However, for any

P,Q and T, 979(Z;T) is not identically zero as a function of Z. And since
A+ B-T are dense in C(g, k), there are A and B such that 979 [g} (T) #

0, i.e., for suitable A and B, these series are non-zero.

We shall now show that the functional equation of the 974 [g] (1)
can be deduced exactly as above: by differentiating the functional equation

of 99 [g] (Z,T) . Having done this, we shall proceed to interpret the

IPQ [152] (T) as modular forms in a suitable generalized sense. The two

functional equations are:

THEOREM 9.4. For rational (¢ x h)-matrices R and S,

99 [152] (2,T) = det(CT + D)~"2 exp(~miTr(* Z(CT + D)™'C2Q""))

.99 [153] (*(CT+ D)™'2,(AT + B)(CT + D)™')
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A B
C D

THEOREM 9.5. Let P be a pluri-harmonic polynomial with respect to the

for all ( ) in a suitable subgroup of Sp(2g,Z).

quadratic form Q. Then, for rational (g x h)-matrices R and S,
9PQ [’;’] (T) = det(CT + D)~"/29P'2 [’;] ((AT + B)(CT + D))

A B

c D) in a suitable congruence

with P'(Z) = P((CT + D)~'2), for all (
subgroup of Sp(2g9,7).

Theorem 9.4 will be proved in Viewpoint II.

First we need some generalities on pluri-harmonic polynomials.

LEMMA 9.6. For A € C[X,, X2, -+, Xn], we let A(3) denote the operator
A5k 5%z). For AB € ClXy, Xa,-, Xal, (4,B) = (A(9)B)(0)
is a symmetric non-degenerate bilinear form on C[X;, X3, -+, X,] which

satisfies: (A, BC) = (B(9)A,C) for all A,B,C € C[X;, X2, -+, Xa]-

PROOF: (XM XP2... Xk~ X§1X§*.--Xg) = 0 if the exponents satisfy
(h1,ha, -, hn) # (91,92, -+, 9n) and equals hy'hy!---hy! otherwise. This
proves that (A, B) is symmetric bilinear non-degenerate (in fact, positive
definite when restricted to R[X;, X2,---, Xs]), and similarly (A, BC) =
(B(9)A,C) is checked for monomials A, B and C, from which the lemma
follows. QED

LEMMA 9.7. Let HC R = [z;;1 < i < g,1 < j < h] be the space of
all pluri-harmonic polynomials with respect to Q and I C R be the ideal

generated by the h;; = Equz;pz,-, for all i and j (S = (spq) = Q™" as
P
before). Then H = I' with respect to the pairing (,) introduced in the

previous lemma, and R=H® 1.

Proo¥F: (fhij, P) = (f(8)h;(8)P)(0) = O for all f € R, for all i and
4, if and only if the h;;(8)P vanishes along with all its repeated partial
derivatives at 0, i.e., if and only if h;; (8)P = 0 for all i, j, i.e., if and only
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if P is pluri-harmonic. Thus H = I*. The same argument shows that
Hg = I§ where Hp = R[z;]NH and I = I NR[z;]. But (,) is positive
definite on R[z;;] and therefore Ix ® Hp = R[z;j}; thus R=H@® 1. QED
LEMMA 9.8. If P is pluri-harmonic, then P(8)[g(Z)exp Tr(*ZCZQ™!))
and P(8)g(Z) coincide at Z = 0, where C is any complex (g x g)-matrix
and g is any function analytic in a neighborhood of Z = 0.

PRrooF: Let h(Z) = Tr(*ZCZQ~') and S = (sp) = Q™. Clearly it

suffices to prove this for polynomials g(Z). Expanding, we see that:
[e o] 1 n
P(8)g(Z)exp h(Z) =) P (0)9(2)h(2)
n=0

when Z = 0 since only finitely many terms of the summation are non-zero.

Therefore P(8)g(Z)exp h(Z) at Z = 0 equals

Y a(Pg-h") = Y~ (hOY Prg) = (P.g) = P(d)g

n=0 n=0
at Z =0, provided we show h(8)P = 0.

Now
h(Z) = z 2§5Cik 2kt Stj
i.J,k,e

= z Cik(z %5 Zke8¢5)
ik it

= E cikhir,
ik

and therefore since P is pluri-harmonic h(3)P = Ec;k(h;k(a)P) = 0,
ik
which finishes the proof. QED

The following will be used in Viewpoint 1I.

COROLLARY 9.9. If P is pluri-harmonic,

P(d)exp Tr(*ZCZQ~') = P(2C2Q )exp Tr('ZC2Q™").

PRrooF: Put h(Z) = exp Tr(*ZCZQ™"). For any A € C(g,h), let f(Z) =
h(Z + A) = h(Z)h(A)g(Z) where g(Z) = exp Tr(2'ZCAQ™"). Then
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P(0)h(Z) evaluated at Z = A

P(8)f(Z) evaluated at Z =0
h(A) - P(8)g(Z) evaluated at Z = 0, by the above lemma.
But

7] 7] 1 -
'5;;9(2) = ‘5‘;;8’“’ 2(pzq: 2pg(CAQ™ )pq) = 9(2)(2CAQT )i
A repeated application of this shows that P(8)g(Z) = P(2CAQ Y)g(2),
and when Z = 0 this equals P(2CAQ™?). QED

LEMMA 9.10. Let f/(Z) = f(AZB) and P'(Z) = P(*AZ'B), where A and
B are complex (g x g) and (h x h)-matrices respectively. Then P(3)f'(Z) =
(P'(8)f)(AZB). In particular, (P, f') = (P', f).

We omit the proof.

COROLLARY 9.11. For the action of GL,(C) x O(Q) on R given by
(A,B)P(Z) = P(A'ZB) for all A € GL,(C), B € O(Q), P € R, the

space of pluri-harmonic polynomials, H, is an invariant subspace.

ProoF: By 9.7 the orthogonal complement of H is the ideal I generated by
hi; = Y spqzip2jq. So by 9.10 it suffices to check that h;;(AZ) and h;;(Z B)

belong to I for all A € GL,(C), B € O(Q), where h;j(Z) = Zsp,z.-pzj,.
P

hij(AZ) = E Gi22tp0im Zmg Spq
t,m,p,q

= E Git@jm (z ztpzmqqu)
{,m

P9
= z a,-taj,,,htm(Z) el

Lm

hi;(ZB) = Z 2itbep Zimbmg Spq
¢L,m,p,q

= Zz,-tzjm(BQ"l . 'B)gm.

{Lm
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But !BQB = Q; therefore B-1Q~! {B~! = Q7 thus Q7! = BQ-! 'B.
Therefore hij(ZB) = hi;(Z). QED
We shall now prove Theorem 9.5. Let P be a homogeneous pluri-
harmonic polynomial of degree k. Apply the operator (27i)~* P(3) to The-
orem 9.4 and put Z = 0. By Lemma 9.8, we get:
9PQ [?] (T) = (2mi)~* det(CT + D)~*/2.

.P(8)99 [?] ({(CT + D)~'Z, (AT + B)(CT + D)~')
evaluated at Z = 0. By Lemma 9.10 this simplifies to:

det(CT + D)~M29P'Q [?] ((AT + B)(CT 4+ D)™")

where P'(Z) = P((CT + D)~'Z). QED

In the functional equation for 9@ 9PQ is related to 9P'Q for a P’
obtained from P by the action of GL,(C) on the space of pluri-harmonic
polynomials. A clearer way to express what’s happening is to group the
9P Qs together into vector-valued functions which transform into them-

selves if we view these vectors as points in a homogeneous vector bundle

over fig.

Recall that a homogeneous vector bundle E on $, is a holomorphic
vector bundle over $, together with a lifting of the action of Sp(2g,R) from
Hy to E. Actually, we want to allow for the usual ambiguity of sign in the
functional equation, so we generalize this slightly and ask for an action of
the double cover Mp(2g,R) of Sp(29,R) on E which makes the projection
E — $, equivariant. As usual, these bundles are obtained from finite
dimensional representations of the subgroup of Sp(2¢,R) (or Mp(2g,R))
which fixes a base point, e.g., il,, in $,. This subgroup is the unitary
group U(g) and its finite dimensional representations extend to holomorphic
representations of GL4(C). Then homogeneous vector bundles for Sp(2g, R)

are given by:

E® = E x 9,
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where p : GL,(C) — Aut(E) is a representation of GL,(C) and Sp(2g, R)
acts by
X, T) = (o(CT + D)X, (AT + B)(CT + D)™")

A
forall X € E,T € 9,y = (C g) € Sp(2g,R). As in §8, to be con-
sistent we are sometimes forced to let Sp(2g,R) act after conjugating by

o I\ . . .
_7 o)im which case it come out as:

¥(X,T) = (p(-BT + A)- X, (DT 4+ C)- (=BT + A)~").

To include metaplectic actions, we need to define a double cover GL7 (C)

of GL,(C) by:
GL;(C) = {(a, A)|a® = det 4, a€C', A€GLy(C)}.

In what follows, o will simply be denoted as \/det(A4). Then if

p: GLy(C) — Aul(E)

is a representation, E(?) = E x $, as before and Mp(2g, R) acts by:

~ A B
where ¥ maps to (C D) € Sp(29,R) and C(¥;T) was defined in (8.3).
The simplest example is given by the one-dimensional representation in
which p(a, 4) = o = V/det A. This defines a homogeneous line bundle on
54 which we write as L2 je.,

LY/?2=C x %, with action :

(=, T) = (C(HT)™" - ,%(T))

= (det(—BT + A)Y/? .z, (DT — C)(~BT + A)™")

Its square L is the homogeneous line bundle for Sp(2g, R) associated to the
determinant.

As usual, a vector-valued modular form on $, is a holomorphic sec-

tion of such a bundle E(®), which is invariant under some Tc Mp(24,R)
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whose image T in Sp(2g,R) is a congruence subgroup. Such a form is a

holomorphic map f : $§; — E such that
£(T) = p(C(%; T), (BT + A)™")- f((DT - C)(~BT + A)™")

for ally € T.
Now let W be some GL4(C)-stable subspace of H, the space of pluri-

harmonic polynomials. Define dw }SE 1 5y, — W* as follows:

(e [g)) =]

forall P e W C H.

Theorem 9.5 now reads as:
Sw [?] (T)(P) = det(CT + D)2 . 9w [?] ((AT + B)(CT + D)~ ')(P")

where P'(Z) = P((CT + D)"'Z). Denoting by p the action of GL,(C)
on W C H given by (p(A)P)(z) = P(A™'2)), P’ is simply p(CT + D)P.
The action p* of GL,(C) on W* is given, as usual, by: (p*(A){)(P) =
£p(A)~'P) for all A € GL,(C), £ € W*,P € W. The above formula now
reads:
R

det(CT + D)~%2p*(CT + D)~ 'dw [?] ((AT + B)(CT + D)™ 1).
Combining this with the remarks at the beginning of the section, we have:
THEOREM 9.12. The dw [?] (T) defined above is a modular form with

values in W* ® L*2. For any W and T, it is non-zero for suitable R and

S.
This is the “modular form interpretation” of Theorem 9.5.

We want to give an interesting application that shows the usefulness
of these series. The following theorem is a version of results of Freitag and

Stillman:
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THEOREM 9.13. For allg > 2 and 1 < r < g — 1, there are congruence
subgroups T' C Sp(2g, Z) and T-invariant non-zero holomorphic k-forms on
glg+1) r(r+1)

2 2
This is a basic insight into the complex geometry of the Siegel modular

$5g where k =

varieties H,/T: for r = g — 1,9 — 2,---, this means that we get g-forms,
(29 — 1)-forms, (3g — 3)-forms, (4g — 6)-forms,- - - on these varieties.

The first step in the proof is to identify holomorphic forms as sections
of a homogeneous vector bundle:
LEMMA 9.14. If V denotes the g-dimensional identity representation of
GL,y(C), then there is an Sp(2g,R)-invariant isomorphism:

Symm?(V) = Q},’

where Q! is the cotangent bundle or bundle of 1 forms.

PrOOF: Use the elementary identity:

(A(T +6T) + B)(C - (T +6T)+ D) ' =

(AT + B)(CT + D)~ +Y(C(T + 6T) + D)~! - 6T - (CT + D)~.
This implies that a tangent vector to fi,, given by a symmetric g x g matrix
X, transforms by the rule:

+X,T) = ((CT +D)"' - X - (CT + D)™}, (AT + B)(CT + D)™").
Therefore the dual action on cotangent vectors is given by:
+(w,T) = ((CT + D) -w - Y(CT + D),(AT + B)(CT + D)™")
where w is also given by a symmetric g x g matrix, (paired with a vector
X via Tr(w - X).) But V is defined by the action
v(z,T) = ((CT + D) - z,(AT + B)(CT + D)™!)

where z is a column vector. So if we write the elements of Symm?(V) as

Tz; ® 'z;, then we get the same rule:
YO~ @'z, T) = (CT+D)(}_ z:®'z:)(CT+D), (AT+B)(CT+D)™").
QED
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COROLLARY 9.15. There is an isomorphism of homogeneous bundles:

A¥(Symm?(V)) = Q5.

Now recall the classification theorem for irreducible representations p
of GLy(C): for every sequence di > dy 2> -+ 2 dgy, there is a unique

irreducible representation E of GL,(C) which contains a vector z such

that
apayz - Qg
™) p a”: .. .azg z= (alldla%’d2 . ‘ayyd’) z
6] agg
and every irreducible representations arises in this way. (di,---,dg) is called

the hightest weight vector of E.

The representation A*(Symm?(V)) of GLy(C) has a rather compli-

cated decomposition into irreducibles. However, if
k=g(g+1)/2—r(r+1)/2,

there is one quite simple piece: namely, if e, - - -, e, are the unit vectors in

V, consider

= /\ (e,- (o] e,-).
1<i<j<y
i<g-r
Here e;o¢; € Symm?V and exactly k terms are wedged. It’s easy to see that

r satisfies (*) withdy = - - = dy—r =g+landdjpy1 =---=dg=g—r.

This proves:

LEMMA 9.16. If E(™") is the irreducible representation of GL4(C) with
highest weight dy = -+ =dm =0, dmy1 = - =dy =0, then there is an
embedding of homogeneous bundles:

+1 r{r4l

E(g—r,r+l) ® Ly—r C Q;-(%—l =
9
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Finally, we need some pluri-harmonic polynomials in order to get global
sections of this bundle via theta series. Take Q to be the identity matrix
of size 2(g — r) x 2(g — ), so our harmonic polynomials P are functions of
a g x 2(g — r)-matrix X;;. By the examples given in the beginning of the

section, all polynomials:
P Xigjo14 V=1X; 35, )

are pluri-harmonic. In particular, look at
r4l
P(X) = if%‘?g;(xmj—l + V=1 Xi5)

Under the action of GL,(C), it is easy to see that P satisfies the highest
weight condition (*) withd) = ---=d, =0,dryy =---=dy = —(r + 1).
Therefore H contains the corresponding irreducible representation W of
GLy(C). But W* has highest weight dy = --- =dy_r = (r+ 1), dg—r41 =
co=dy =0, ie.,, W* = E@-"r+1) Proposition 9.12 plus Lemma 9.16

therefore imply Theorem 9.13.
VIEWPOINT II: Representation theory

Let V be a real vector space with a non-degenerate alternating form
A and let W be a real vector space with a positive definite quadratic form
B. Then V ® W has a natural non-degenerate alternating form A ® B:
(A® B)(v® w,v ® v') = A(v,v') - B(w,w'). If ¢ € Sp(V,A) and o €
O(W, B), then ¢ ® 0 € Sp(V ® W, A® B). This gives a homomorphism

Sp(V, 4) x O(W, B) — Sp(V ®@ W, A® B).

Let Hy and Hygw be the irreducible unitary representations respec-
tively of Heis(V) and Heis(V ® W) such that Uy = A-Id, VA € C]. The
action of Mp(V @ W, A® B) on Hygw restricts to an action of a double-
covering of Sp(V, A) x O(W, B) on Hygw. In fact, when h = dim W is
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odd, the double covering is almost Mp(V, A) x O(W, B) but not quite, and

it is {£1} xSp(V, A) x O(W, B) when h is even. To see this, note:

(a) Let V = V; & V,, with V; and V; isotropic spaces, then Vo W =
(Vi ® W) ® (V2 ® W) and the V; ® W are clearly isotropic spaces. In
the model Hygw = L*(Vi ® W), for ¢ € O(W, B), f € L} (Vi @ W),
p(0)f = fo(ly, ® ¢~') defines an action of O(W, B) on L}(Vi @ W).
From Lemma 8.21, it follows that p(¢) € Mp(V @ W, A® B) if
o € SO(W, B) or if 0 € O(W, B) and dim V} is even.

(b) Now put W in standard form: W = R* with B(z,y) = ‘zy. Then

rwew)zL*VieVi...e W)
= [A(V)®L*V1)...®L (V1)
For ¥ € Mp(Vi, A), define p(Y) =7 ®7®---®7. This defines
p: Mp(V,A) — Mp(V @ W,A® B).

In any case, (a) and (b) combine to give
p: Mp(V, A) x O(W,B) — Mp(V®W,A® B) — Aut(Hvew).

The complete decomposition of Mygw under the action of the group
Mp(V,A) x O(W, B) is studied in Kashiwara and Vergne, On the Segal-
Shale- Weil representation and harmonic polynomials, Inv. Math., Vol. 44,

1978.
Let 2g = dimV and h = dimW. Their main result is that we have two

decompositions. Firstly, the space of pluri-harmonic polynomials decom-

poses:
(9.17) H = P(Es ® Fa)

where E, are distinct irreducible GLy(C)-modules and Fy are distinct ir-

reducible O(W, B)-modules, while

(9.18) Hyew = €D [[(9;, B @ LM?) @ F.
a
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(here T refers to the space of L2-sections of the homogeneous bundle as
defined in Viewpoint I, considered as a representation of Mp(V, A).) They
also give a detailed algorithm for describing which representations of G L,

and of O(W, B) are paired in this sum.

We do not discuss all this but go just far enough to write down the

functional equations for 9bhQ [}SE] . This will involve the transformation

—00

laws for P(Y)exp 7i'Y TY Q and the invariance of e [152] € Hygw-
As we have seen in §8, the functional equation for ¥ comes from
(a) defining ¥ as a matrix coefficient of fr = e ¥'TY with respect to
e[g], and

(b) studying the action of Sp (or rather Mp) on fr and e[g].

We proceed in exactly that fashion here. Of course we do not want
to determine how all of Mp(V ® W) acts, rather just how Mp(V) acts on
P(Y)fr-(Y), where T* corresponds to T ® Q as in §6 (note that there is
an embedding i : iy — Hvew sending T to T*). We shall now proceed

to work everything out in detail in matrix notation.

I. Let V = RY®RY and W = R*, the members of V and W being thought
of as columns and rows respectively. Then V ® W is naturally identified
with R(g, k) ® R(g,h) where R(g,h) = the space of all (g x h)-matrices
with real entries. Let A(z,y) = ‘z1y2 ~ 'zoy1 where z = (z1,22) and
y = (y1,y2) and z1,22,y1,y2 € R?. Let B(z,y) = = - Q! .ty where Q
is a positive definite rational symmetric matrix. Then (A ® B)(X, Y =
Tr((*X}Y - 1 X3Y!) - Q71), where X’ = (X{,X3) and Y’ = (¥{,Y;) and
'Y}, X4,Y} € R(g,h). However we want A ® B in standard form, so it
is prudent to put (X}, X3) = (X1Q, X2) so that the pairing is
(A® B)(X',Y') = A(X,Y) =Tr(' X1 Y, - ' Xo1).
II. Let Sp(2(g,h);R) be the group of all linear transformations from the
space R(g,h) @ R(g,h) to itself that preserve the pairing A(X,Y) =
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Tr(*X,Y2—'X,Y1). We write down j : Sp(29,R) — Sp(2(g, h);R). If ¢p =
(& 5) € 5pta), then S9)(Xs, Xi) = (AXG + BX3, OX{ + DXY).
Changing coordinates by (X1, X3) = (X1Q, X2), we get:

i@)(X1, X2) = (AX1 + BX2Q™!,CX1Q + DX3).

I11. We have ,
Mp(29,R) —  Mp(2(g,h);R)

l l

Sp(2g,R) —  Sp(2(g,h);R).
We compute p explicitly on a set of generators for the model of the
representation L2(R(g, h)) = Hvew. For v € Sp(2¢,R) and ¥ € Mp(29,R)

over it:
(a) Hy= ('g ,Ao_l),
(PF)F)(Y) = S(A'Y)(det A)*/2, where C(F;T) = (det A4)™'/2.
(b) Iy = ( L ?) with C symmetric and C(5;T) = 1, then
pFF(Y) = F(¥)exp miTr(‘'YCYQ).

@ 1= (5 ) then S0, Xo) = (-X2@71, Xi), hence

pAf(Y)=f(YQ)-i™™* where i™'/?=C(5;il).
(d) If§ = ~1,7 = Id. € Sp(2g,R), then

p(¥) = (D

These follow immediately from Lemma 8.2 and the formula in II above.

IV. We discuss i : $§; — H(y,n). Let T € Hy. The complex structure on
RI @RI is given by h :RI ORI — C9, h(z),22) =Tz1 + z2. It follows
that the complex structure on R(g, k) ® R(g, h) is given by (X{, X3) —
TX! + X, Putting (X],X3) = (X1Q, X2), the isomorphism R(g, h) &
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R(g, k) — C(g, h) given by (X1, X2) = TX1Q + X2 gives the complex

structure. This corresponds to T +— T* of §6. Thus
fimy(Y) = exp miTr'YTYQ € L*(R(g,h)).

V. We now come to the main calculation: the transformation laws for
fir) € L*(R(g, h)), and more generally, of P(Y)fiyr)(Y) € L%(R(g, b))
where P is pluri-harmonic with respect to Q, under the action of the meta-
plectic group Mp(2g,R). Put f(Y) = P(Y)fir)(Y).
(a) Ify= ('3 ,Ao_l ), then apply I1I(a) from above:
P(WF(Y) = (det A)~M2(A7Y)
= (det A)"*2P(A™'Y)exp miTr('Y'AT'TAT'YQ)
= (det A)"*2P(A™'Y) fiyr)(Y).

I 0 ~
(b) Ify= (C I) and C(7;T) = 1, then

PN (Y)Y = P(Y) fir)(Y) - exp(—miTr'Y CY Q)
= P(Y)fir-c)(Y) = P(Y) fixr)(Y)-

(c) y= (? :)I), then we have defined p(7)f(Y) = i~h2 (Y Q).

We compute this. For all T € ijg,fr(y) = det(%)'l/2 - f-r-1(y). This

holds for any g, and in particular,

Fin(v) = det(TEL) rexpmiTr(y (-1 )Y Q)

= det(%)"‘/z -det (Q)™9/? - expmiTr('Y (=T~ 1)YQ™1).

Assume now that P is a homogeneous pluri-harmonic polynomial of degree
k. Since f(Y) = P(Y)fir)(Y) = (2xi)"* P(271Y) fyr)(Y), and since the
Fourier transform interchanges differentiation and multiplication by the

variable, it follows that

F(Y) = @ri) ™ P(8) fim)(Y)




164 TATA LECTURES ON THETA I
= (2mi) "t P@)expmiTr('Y (=T~ )Y Q1) det(§)~"/2 - det (Q)~¢/?
= P(—T‘IYQ'l)expm'Tr(‘Y(—T'l)}"Q‘l)det.(-f—)"'/2 - det (Q)~9/2
from Corollary 9.9. Therefore
p(P)F(Y)=i"M?f(YQ)
= i~M2p(=T=1Y)exp(miTr(*Q'Y (~T~1)Y) det(%)~*/2 - det (Q)~9/*
= finyP(-T~1Y) det(-T) 7.
Finally,
(@) If 7 = ~1,v = Id. € Sp(29,R), p() fi(r) = (=) ficm)-
Using exactly the same method as in Theorem 8.3, we deduce:
PRroPOSITION (9.19). For all v = (é g) € Sp(29,R), T € H, and P

pluri-harmonic,

o) fi)(Y)P(Y) = fiyery(Y)P((—BT + A)7'Y) det(~BT + A) ™"/,

VI. We now investigate how Mp acts on ¢ [?] € Hygw Where

R,S € Q(g,h). Now e }SE] is defined as a distribution by:

(fe ])-NG%M o[ 5] s

where

(NY=0 if N—R¢Z(g,h)

)

= exp2miTr! NS otherwise.
We have:

(f,e [S y= Z exp2niTr!(R+ N)S- f(R+ N)
NeX(g,h)

Y. UosH(R+N)

NeZ(g.h)

= Z (U1,r,0)U(1,0,5))(N)

Nel(g,h)

0
= (Un,ro)Un 0,5/ € [0] )

0
= (£, Un0,-9U0,-R0)¢ [0])-
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As usual, e [g] will be denoted by ez.

We shall show that the § € Mp(2(g, h);R) that satisfy Fe [}SE] =

e [152] form a group G so that ¢(G) C Sp(2(g, h); R) contains a congruence
subgroup. Let
A = {7 € Mp(2(g, h);R)|7ez = ex}.

By 8.10, ¢(A) D the principal congruence subgroup of level 4. Let
A= {7 € Alg(3) = 1 (mod 2k7))

where k is chosen so that kR and kS are integral. Then, for
7€ &, q(7) = v € Sp(2(9, k); Z),
Ye [g] =3Ua,0,-5)U1,-r0)e2
= Ut yo-snUa-ropTez
= Un,212,2ew - 5)U(1,28 2/~ R 2k W) €T

= Uq1,0,-5)U(1,-R,0)€2

=e|g|-
From the explicit formula for Sp(2¢9,R) — Sp(2(g, h); R), we see finally

that
o{7 e ol [ §] =< [ 5]}

contains {y € Sp(2¢,Z)|y = 1 (mod 2k?n)} where n is chosen so that nQ

and nQ~! are integral.
VII. The functional equations now follow easily: the relation
R R
19P’Q [S] (T) = (P(Y)fl(T)(Y)»e [S])

combined with V and VI above allows us immediately to deduce Theorem

9.5.
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Since

R . R
(UI,X,,X;)fi(T)(Y)ye [S]) = exp WITT‘XIZ .99 [S] (Z,T)

where Z = T X, Q+ X, using the reults of V and VI we can deduce Theorem
9.4 exactly as in 8.8.

The idea of treating theta functions as matrix coefficients is due to
Weil in his classic paper, Sur certains groupes d’opérateurs unilaires, Acta
Math., vol. 111, 1964. From this point of view, it is natural to view the
whole construction of theta functions as embodied in a basic map, which is

often called the Weil map. Abstractly, the situation is as follows: suppose
G = any algebraic group defined over @,
and suppose that one comes up somehow with a representation
r:Gg — Aut(H)

and a vector

e € H_, such that
v(e) = e, all ¥y € some arithmetic subgroup I' C Gq.
Then define the Weil map:

w:Heo — C(I'\Gr)

by

w(f)(r) = (r(7)/, e,
In other words, one gets automorphic functions of some kind from any such
representation r and vector e. Moreover, if

H; = {¢'|r(v)e’ = ¢ for all v in some congruence subgroup},

then we can extend w to:

w:He @ Hy — U C(I" \ Gr)
congruence subgroups
rer
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w(f ® ¢)(7) = (r(")f, €¢)

This is almost exactly what theta functions do for us: let G = Sp(2g),
H = L*(R(-?)) and let p be the 2-valued representation:

p: Sp(2g,R) — Aut(H)

(single-valued if h is even). Let ez = ¢ [g] Then for some congruence
subgroup T' C Sp(2g, R), lifted to Mp, we get

w : SROM) — C(T'\ Mp(29,R))

w(f)(v) = (p(1)f, ex)

and using the e [?] ’s, we can extend this map to:
h
(9.19) w: SREM) @ S(APM) — | ] €(T \ Mp(29,R)).
r

This can be reformulated adelically if one wants. In order to get classical
modular forms from this map, we need only to specialize to particular
elements f € S(RU*)) and then combine the resulting functions of v with
elementary factors (to make them right invariant by the maximal compact

subgroup U(g) instead of left-invariant by T'): start with
Fp, g(2,T) = Pa(2) - " TT(2T2Q)

where the P, are pluriharmonic and transform under GL, by the represen-
tation 7, ie., Pa(AZ) = Trap(A) - Ps(Z). Let fp, o(2) = Fp, q(Z,il,).
Then

w0 ®e| 5] = @r.ae[ §])

= det(A — iB)™M2 T rap((A ~ iB)™")(Fp,,q(,7(ily)), "’[g] )

which we may invert to show:




168 TATA LECTURES ON THETA 111

det(A — iB)"? 3" rop(A ~ iBYw(fp, @ ® € [g ] )F)
]

= (Fr. a2l e[ 5]
= 9P [g] (v(il,)), a modular form on %,/K.

I don’t want to pursue the applications of these ideas any further, but
I would like to make a few conjectures which highlight exactly how little
beyond the definitions we know. There is a vast unknown area concerning
the image and kernel of the Weil map. Let’s specialize to the very simplest

case g=1,Q=I4,P=1,s0 f = ¢~ *(:i++:), Then
@= v wisoe 7] =0 [7] (o).

Fixing f, but letting r and s vary over h-tuples of rationals, this extends

to a map

modular forms on $ of wt.
h/2, w.r.t. congruence
subgroup of level k of
SL(2,2)

(a—ib)"*.w:S(A}) — |J
k

Explicitly, this is the map

X — Z X(ﬁ)em’(zn?)r
ny, -, nr€Q

where y is supported on #Zh and is constant modulo mZ", for some integer
m. Here are two questions:

QUESTION 1: Does the range of this map include all cuspidal modular

forms if h even, h > 47

QUESTION 2: Is the kernel of this map spanned by the obvious relations
XoA—-x, A€O(h,Q)?
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To go a little further, the question arises whether pluriharmonic P’s
actually add new scalar modular forms, or just vector-valued ones. To get

scalar modular forms, we need pluriharmonic P’s such that:
P(AZ) = det(A)" - P(Z)

for some Z and all A € GL(g). The first caseis h = g, P(Z) = det Z. Then
we get the family of power series (for x; € S(A}')):

A(T) = Z X1(N) - det(N) . eMTr(*N-T-N)
NeQ(s:9)

which are modular forms for the homogeneous line bundle defined by the
representation (det)!*(#/2) je., L(#+2)/2. On the other hand, multiplying

g + 2 ordinary theta series, we get the modular forms:

£(T) = Z XZ(N),eﬁTr('N-T-N)
NeQ(e.9+2)

which are also sections of L(#+2)/2,
QUESTION 3: For which x; and x2 are f; and f; equal?

This has a long history: for ¢ = 1, a particular case is the famous

identity of Jacobi
T (~1)"(2n + l)exi(n+l/2)’r
= Enel exin’t Znel(_l)” L exin’r 'znel emin+1/2)%

proven in Ch. 1. For g = 2,3 and 4, Riemann and Frobenius found gener-
alizations of this identity (some proofs were discovered in his unpublished
papers by Edwards!). Fay (On the Riemann-Jacobi Formule, Nachr. Akad.
Wiss. Gottingen, 1979) found a generalization to g = 5 analyzed the sit-
uation for higher g and found that not all forms of type f; were equal to

some f5.




170 TATA LECTURES ON THETA 111
VIEWPOINT III: The algebraic version

A purely algebraic method of defining the analytic modular forms
9hQ g (T), for pluri-harmonic P and positive definite rational @ can
be found by following the beautiful ideas of I. Barsotti, contained in his
paper, Considerazioni sulle funzioni theta, Symp. Math. 3 (1970), p. 247.
In characteristic p, the story is more complex and has its own twists — as
does any construction involving differentiating — so here we develop the
method only for characteristic 0. Barsotti’s theory has been developed in
many interesting ways by Cristante, to whose papers we refer the reader.

First, recall the basic result:

THEOREM 9.20. Let X be an abelian variety and let pi,..;, : X® = X
denote the map (21, ++,Zn) — i, + -+ &i,. Let L be any line bundle

on X. Then there is a canonical isomorphism v between the line bundle

on X x X xX:
L= plpb ®piL 7' @pisl ! ®puLl 'epiLepLopl ® L)™'

and the trivial line bundle.

This is an immediate consequence of the theorem of the cube: if we

restrict L to X x X x (0), we get
phLepL el el @piL@pL o L) oL (0)™

which is trivial. The same holds on X x (0) x X and (0) x X x X, so
L is trivial. Moreover, at (0,0,0), L is defined as the tensor product
L(0)* ® L(0)™4, i.e., it is canonically trivial, so the “trivialization” of Lis
canonical too.

Barsotti’s result concerns trivializing an arbitrary line bundle L over
an abelian variety X in a neighborhood of O € X in the sense of formal
power series. Over an arbitrary field k, since X is smooth at O, we can

start with arbitrary functions z,,---,z, in the local ring Op x of rational
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functions regular at O. Then if z;(O) = 0 and the differentials dz;, - - -, dz,
are independent at O (algebraically, this means z; € Mo x and %; €
Mo x[MD x are independent over k), an arbitrary function f € Oo,x
can be expanded as a formal power series in z1,- -+, 4. The algebraic way
of saying this is that the completion 60, x of Op x is isomorphic to the

ring k[[z1, - - -, z4]] of formal power series in z1,---,z,.

When X is abelian and char k = 0, there are power series coordinates
t1,---,t € 60,)( in terms of which the group law on X is just addition,

ie.,

Oox 2 k[ltr, -, 1)

and

t(P+Q)=t(P)+(Q)

(for any R-valued points P,Q of X factoring through Spec(@o,x)). In
other words, these ¢; play the role algebraically of the linear coordinates
t1,--,ty on the universal cover C? of X, when k = C. We won’t develop
this theory here at any length, except to show how the t; are constructed:
starting with any local coordinates z,,---,z, in Og, x, the dz; span the
cotangent space to X at O, and their duals 8/8z; span the tangent space
to X at O. Translating by the group law, 8/8z; extends to an invariant
vector field D; on X. Algebraically, D; is a derivation from Ox to Ox. We

form the expression

[+ 9]
p=) (1Di+---+1,D,)* [k!
k=0

which defines a ring homomorphism from 60, x to 60, x[[t1,- -, 1g]}, hence
to k[[t1,- - -,14]) (by evaluating functions on X at O). This is an isomor-
phism of 60,)( with k[[t;,---,t,]] and the inverse images of the ¢; are the

desired additive coordinates. To see what we’re doing, recall the dictionary:
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vector field X — derivation D of a ring

1-parameter group
of automorphisms — automorphisms e'? of a ring.

generated by X
Thus 5t; D; are the invariant vector fields on X and % is dual to the map

CIxX — X

obtained by integrating simultaneously the commuting vector fields D;.

Thus
CIx(0) - CfxX — X

gives additive coordinates, and this is dual to (eval. at O) o 9.
Now fix such additive coordinates ty,-- -, € 50,)(.

Barsotti’s basic result is the following:

THEOREM 9.21. Suppose X is an abelian variety in char. 0 and L is any
line bundle on it. Let 50. x be the completion of the local ring of X at 0.

Then there is an isomorphism
¢:L®os Oox = Oo,x
such that the induced isomorphism
é:Lo 50,XxXxx = 50,Xxx><x

is the completion of the canonical trivialization ¢ of Theorem 9.20. More-

over, any two such ¢’s differ by:

¢ = c-e9W . g,
where Q is a homogeneous quadratic polynomial in additive coordinates
ty, -t at O€ X.

We can re-phrase Barsotti’s theorem in terms of formal power series

as follows. Let
¢:LoOox — Oo.x
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be any formal trivialization of L at 0. Then using ¢ we obtain trivializations

of all bundles Pf,,u.,.'.l- at (0,0,0), and hence a trivialization
$ Lo 6O,XxXxXi 6O,XxXxX~

Our aim is to choose ¢ so that $ equals the canonical trivialization .

Denote the power series ) 0 ¢~ by
f(z,y,2) € Oo xxxxX-

What we must show is that if ¢ is modified by multiplication by some
g(z) € ©o.x, 9(0) # 0, then f becomes 1. But changing ¢ by g(z) changes
Pla3é by 9(z +y+2), P26 by g(z +), etc., so it changes the trivialization

of L by
9(z + y + 2)g(=)g(y)g(2)
9(z + y)g(z + 2)g(y + 2)9(0)

We need to show that for suitable g:

9(z + y + 2)9(=)g(y)g(2)
9(z + y)g(z + 2)g(y + 2)9(0)

f(z,y,2) =

Obviously we need some identities on f to do so. What can we say about
f? We claim:

(a) f(e,4,0)=1

(b) f(z,y,z) is symmetric in z,y,

(©) flz,9,u+v)flz,u,v)= flz,y+u,v) f(z,3,u)
(a) follows because the factors in El XxXx(0) all cancel out, so both the
restriction of ¥ and trivialization induced by ¢ are canonical, hence equal.
(b) follows similarly because both the canonical trivialization ¢ and that
induced by ¢ are invariant under permuting the factors of X x X x X.

To prove (c), we consider pjyaql on X x X x X x X. Now pj, ... .i\
denotes the appropriate projection from X x X x X x X. Let’s abbreviate
P, ixL to Liy .5, Then we will construct a diagram of bundles on X x

XxXxX:




174 TATA LECTURES ON THETA HII

Lou®lholoLlnr oLl oLioL, ol:oli® L(0)™!

a/ Nb
L134®L3 0L OL ®L1®Ls®L, L1230L54 ®L1, ®L13 oL18L.8Ls
c\, s d

OXxXxXxX ®L(0)

Here d is just the trivialization ¢ of 9.20, and cis the analogous trivialization
on the 1st, 3rd and 4th factors, i.e.,
map ¢ = (p1,ps, p4)"¢

map d = (p1, p2, p3)" ¥-

But consider the morphism
(pr,p2,P34) : X X X x X x X —> XxXxX
(ie., (z,y,u,v) — (2,y,u +v)). Then (p1, P2, P34)* ¥ is a trivialization of
the bundle:
Lizss®Li; ®Li ® L5 ®L1 ®L: ®Las ®L(0) ™.

Thus, checking that the factors cancel appropriately, we see that

map a = (p1, P2, P34) ¥-
Likewise:

map b = (p1, 23, P4)"¥.

Now the diagram must commute, because it certainly commutes up to
an automorphism of Oxx xxxx x , i.€., up to a scalar, and, at 0, all 4 bundles
have fibre L(0) and the maps are the identity. Finally, the trivialization ¢
of L® 50, x also gives us a commutative diagram, and comparing the two

diagrams, we get the identity
£ o (p1,p2,p3a) - f 0 (p1,P3,p4) = f o (Pr,p23,p4) - f o (P1,P2,P3)

which is (c).
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This is the first step of the proof. The second is the lemma:

LEMMA 9.22. Let z,y, z stand for g-tuples of variables (z1,---, ), etc.

Then for all power series f(z,y) over a field k of char. 0, if f satisfies:

a) £(0,0)=0
b) f(z,y+2)+ f(y,2) = flz +v,2) + f(z,9),
then f has the form:

‘2. A y+g(z+y)—g(z)-9(y)

for some skew-symmetric g x g matrix A and some power series g(z) without

constant or linear terms.

PROOF OF LEMMA: Note that because of (b), f can have no linear terms.
f can have an arbitrary bilinear term however, which we can express by

tz Ay, A skew and by g(z + y) — g(z) — g(v), ¢ quadratic. So let’s assume

these parts are dealt with. We now assume f has no linear or bilinear

terms.

Take identity (b), differentiate with respect to z; and set z = 0. If
fa; denotes the partial of f with respect to the i*h component of its 2°¢

argument, we get:
f25(2,¥) + f2i(y,0) = fai(z +¥,0).

Write hi(z) = f2,i(z,0), so that

™) f24(z,y) = hi(z + y) — hi(y)-

Now if k; ; denotes the partial of h; with respect to its j* component

32

ay’_ayj (f(z» ) = hi.j(z +y)— hi,i(y)

and  =hji(z+y) - hjiy)

Thetefore
hi j(z) = hji(z) + ki j(0) — h;:(0).
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But by the absence of bilinear terms in f, differentiating (*) with respect
to z;, and evaluating at 0, we get:

0= % (aiy‘(f(z,y))) (0,0) = -a—(:—jfz,i(l, v)(0,0) = h; ;(0).

Thus h; ; = h; ;. Therefore there exists a power series g(z) such that
hi(e) = g(@),  9(0)=0
i\Z) = azig bl g -
But then (*) says

a%f(ﬂv,y) = a%g(ﬂc +v) - a%y(y), all i,
or f(z,y) = 9(z + ) — 9(v) — h(2),
for some h(z) with k(0) = 0. Putting this back into (b) and setting y =0,
we get immediately h(z) = g(z). QED

Finally we put these together. Let f(z,y,z) be the power series sat-
isfying (a), (b), (c) in the beginning of the proof of 9.21. Let f*(z,y,2) =
log(f(z,y,2)) to make everything additive. Considering z as constant, I
satisfies the conditions of the lemma. As the lemma is just a formal ma-

nipulation of power series, it tells us that
*Y  zy2) ="y AR) 2+ g(z,y+2) —g(z,y) — 9(2, 2)

for some skew matrix A with power series entries and some power series
g(z, y) without linear terms in y. Since f* is symmetric in y and 2, A(z) =
0. Now let f3; be the partial of f* with respect to the i*" component of
its 3"9 argument, g2 ; similarly. Differentiating (**) with respect to z; and

setting z = 0, we get:
£3:(2,4,0) = g2,i(2, ¥) — 92,i(2,0) = 92,4(2, 9)-

But by the symmetry of f*, f3 ;(z,y, 0) = f:;‘,'-(y, z,0). Likewise, f* satisfies

the cocycle condition in its 1st two variables, so f3; does too:

fg,i(z + y,z,O) + f;,i(z)y) 0) = f;,i(za v+ 2!0) + f;,i(y’ 210)‘
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Therefore g, ; is symmetric and satisfies the cocycle condition so by the

lemma again:
(***) 92,i(2,¥) = hi(z + y) = hi(z) — hi(y)
for some h; without constant or linear terms. But
3_2((1. ))_i( i(z,y) = hi j(z + i
ay‘ayJ anz,y)) = ay] yzy'(z’y - 'y](z y) - l,](y)
8
and = 5&(92,1'(1,!/)) = hji(z +y) — hyi(y):
Therefore setting y = 0, we get
hi j(z) = hji(z) + ki j(0) = kji(0) = hj,i(2).

Therefore there is a power series h(z) such that
9

hi (1,') = 61:.-

h(z), h(0) =0.
Therefore by (***)
- (o(2,3) — h(z + 1)+ K)) = ~hi(o),
or
9(z,y) = h(z +y) — h(y) = D_ hi(2) - yi — k(z)-

Putting this into (**) and recalling that g(z,y) is a power series without

linear terms in y, we see that
f(z,y,2) = [z + y+2) - h(y + ) — k()]
= [h(z + ) - h(y) ~ k(2)]
= [h(z + z) = h(2) - k(2)]
=h(z+y+2)—h(z+y)—h(z+2)—h(y+2)
+ k(z) + h(y) + h(2).
Setting y = z = 0, we see that h(z) = k(z) and that if g*(z) = *(*), then

(z+y+2)-¢°(2) 9" (¥) - 9*(2)
fenn) =LE
(=.3.2) g*(z+y)-g*(z+2) g*(y+2)
as required. QED for Th. 9.21
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Barsotti’s basic result leads directly to the algebraic construction of the
theta functions with pluri-harmonic polynomials. Now analytically these
functions are vector-valued modular forms in T, when z = 0, so what do
we expect to be able to define algebraically? Firstly, we need an analog
of homogeneous vector bundles E on ;. These are functorial ways of

assigning a k-vector space:
E(X,L)
to a pair:
X = abelian variety over k

L = ample, degree 1, symmetric line bundle on X,

which, moreover, “glue” together to vector bundles:
E(X,L) over S

whenever
X = abelian scheme over S
L = relatively ample, degree 1, symmetric line bundle on X'.

Then an E-valued algebraic modular form ¢ is a functorial rule for defining

elements
#(X,L) € E(X,L)

which glue together to sections:
¢(X, L) € T(E(X, £)).

We don’t want to develop the abstract theory of these at all, but only
use these definitions as a setting in which to draw out the consequences of

Barsotti’s theorem.

Let’s first of all consider the case ¢ = 1. Start with an elliptic curve

X/k. Then ['(X,L) is one-dimensional and let ¥ € I'(X,L) be a non-zero
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section. Let t € 50, x be an additive coordinate. Then the theorem tells

us that there is a canonical trivialization
¢:L®0ox = 0o x

unique up to

¢*=C'Cat2'¢

for a,c € k,c # 0. Therefore 3(t) = ¢(¥) is a power series in t, unique up
to transformations.

9 — c-et -9(t),

i.e., modulo representations of the multiplicative group G,,:

3!——)6‘", 5, a € G,
Expand
-~ t2 t3 t4
=g+ t4V9r —+03 - —F+0g—+---
) o+ V1-t+ Y, 2+ 3 6+ 424+

Let R(do,---,Y.) be any polynomial which is homogeneous of degree h.

Then polarizing R, write

R(Yo,--+,9.) = RO, -, 900;.. ;0. 9

where R is linear in each set of variables 195,"), ceey 199). Then
- ¢ - 89
(t) R(”Oy y e) R("(zl), ] 32{ ) ) l9(2"’I)1 32,’.) S
~ 98 8¢ 8 8 |~ -~
= R(l’ 52—1, ceey a_zf’ cees ,5-;;, ceey ﬁ)(l’(zl) .o -19(Zh) srmman 0

- p(%,...,%)(mzl)m@(n)

zy=:z=mzp=0
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where P(zy,---,25) = ﬁ(l,zl,---,zf;---; 1,zp,--,zf). Now we can also
expand

-~ t2 t3
(¢* - 9(t)) = Jo + 91t + (92 + 2a%0) 5 + (95 + Bath)
t4
+ (194 + 120192 + 1202190)52 +

_Eak k|

giving a representation of the additive group in a on the vector space of

sequences (Yo, 71, --). Then

~ - 8¢ -
R(95,---,9%) = R(e“?v(zl),---,—e(e"?ﬂ(zl));~--)

zy=--=zp=0

= Pl o ) () e ()

zy=--=2p=0

Therefore R(Jo,- -+, V.) = R(J3,- - -, 9:) for all a if and only if

8

. a(z ++23) 3, i}
Pz ,az == ) (e HIY(2) - - 9(2n))

zy=---=2)5=0
is independent of a. By Lemma 9.8, this means that P is a harmonic poly-
nomial. Taking low degree harmonic polynomials P we get the following

R’s:

P R
1 D2
21 l91
Z? - 321 Z% 193190 - 3191192

- 62122% + Z; 2(194190 - 319%)
Z{’ - 102?2% + 5212; J5p — 109389, + 5949

10,3 5 5,92
Bz - Y33+ 200 - 393)

Thus any harmonic polynomial P(z1,--+,24) in h variables defines by 1)
an algebraic modular form. How does this work: first of all ¥ is just the

image of ¥ € I'(X,L) by evaluation at 0:

r(X,L) — L(0).

~
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To put this in terms of modular forms, the 1-dimensional vector spaces
Hom(I'(X,L),L(0))

glue together into the basic “theta” functorial line bundle on $;, which we

will write Co(X,L). Then Vg is a section of this line bundle Ly:
Jg € I‘(E,)

How about 9,7 9 is the differential of ¥ at 0, i.e., the image of # € I'(X,L)
by:
r(x,L) — L(0)® Q%(0).
Thus if w is the functorial line bundle defined by
w(X,L) = 2%(0)
or w(X, L) = Qy,5(0)
then
J; €T(Lo @ w).
Similarly, i looks like a section of £y ® w¥ — except that it depends on
the trivialization ¢. To eliminate this dependence, start with a harmonic
polynomial P(z1,--+,24). Then as above, P defines a polynomial R in the
coefficients ¥; invariant under replacing ¢ by e’ . ¢. If P is homogeneous

of degree e, then one checks that:

Plamy 3 )Far) - Fan) € I(ch @ ')

zy1=- =z =0

This still looks a bit more complicated than the analytic theory. The

final step is to construct a canonical isomorphism of the line bundles
LIy

over some finite covering of the moduli space $, i.e., for (X, £)’s with some
finite extra structure. In terms of this fundamental isomorphism, a section
of £} ® w® becomes a section of [,Z""z’, which we call a modular form of
degree h/2+e. This is an algebraic construction of the modular forms I

for g = 1, @ = identity h x h matrix.
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For ¢ > 1, the same construction works. Barsotti’s theory gives us a

nearly canonical trivialization:
$:L®Oox = 0o x

hence a power series 9= #(9) unique up to multiplication by a quadratic
exponential. As above, for any pluriharmonic polynomial P(z;)in a g x k-
matrix Z

P(%)(ﬂ(m, s 2g1) - (21m, o, 2gn))

zij=0

is a polynomial in the coeflicients of ¥ invariant under such transformations.
Thus we can construct algebraic modular forms for ¢ > 1. Where do they

lie? As in the case g =1,
Lo(X,L) = Hom(I'(X,L),L(0))
defines a functorial line bundle for g-dimensional abelian schemes and
w(X,L) = Q% (0)

defines a functorial vector bundle of rank g. They are connected by a

canonical isomorphism:
L£22Aw
defined for (X, £)’s with some finite extra structure (cf. Morel-Baily, Pin-
ceauz de Variétés Abeliennes, Astérisque 129, 1985). If P is homogeneous
of degreee ¢, then it is easy to see that
4 h e
P(—)I(zi1," -+, zin) € T(Ly ® Symm® (w)).
aZ,'j zi;=0

These sections give an algebraic construction for the modular forms 999’s
with @ = h x h-identity matrix (which can readily be generalized to arbi-

trary Q).

10. The homogeneous coordinate ring of an abelian variety

One of the main applications of theta functions is to provide ezplicit
bases for linear systems I'(X, ) on abelian varieties X. The goal of this
section is to study the consequences of having such explicit bases. Now
one of the main elements of structure of these vector spaces is the set of

multiplication maps:
I(X,£) @T(X,M) — T(X,L®M)
and, in particular, the ring structure on
(o]
R(X,£) = EPr(x,Ln).
=0

The theta identities described in §6 and §7 allow us in many cases to express
these multiplications in terms of the theta bases with coefficients given by
the values at 0 of other theta functions. Moreover, we can hope that the

polynomial identities defining the ring, i.e., the kernel I, of:
®: S™(I'(X, L)) — I'(X, L")

will be spanned by linear combinations of suitable theta identities as found
in §6 and §7. In this case, the whole algebra of the equations defining
abelian varieties can be determined from the theory of theta functions.
Let us now be more precise. The basic case is where £ is an ample
symmetric degree 1 line bundle on the complex abelian variety X7. Then

a basis of I'(X, £") is given by:
a l 9/29
D) [0] (nz,nT), a€ nZ JZ8.

An analog of Cor. 6.10 will give the multiplication map explicitly in terms

of this basis: to determine

*) I(£") ® (N(£™) — T(L"*™)
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. 0
we use the equivalence of the quadratic forms Q' = (8 m) and @ =

(n+m)((l) n‘:n) given by:
Gm) G Gm=0tm wmmem)
and deduce formulae of the type:
9 [g] (nz,nT) -9 [3] (mz,mT) =
Eo[ n+m tn ”]((n+m)z (n+m)T)- o[ 0*”](0 (n + m)T),

where the sum is over all € ;#29/29 . (This is Remark 3 preced-
-1

ing Cor. 6.6. Set A = (i —T:n) , N =0,2 = (nz,m2), @ =

(n-l(;m nm(n0+ m)) and Q' = (8 0)) Note, however, that dif-

ferent theta functions are used for each n making the story a bit complex.

We do know that the two theta functions
d(nz,nT) and 8(n€?z,nl?T)

are essentially the same (because the two quadratic forms nX 2 and nf?X?
are equivalent over Q and we use the second fundamental identity). There-
fore, the full description is in terms of the entire family of theta functions
J(nz,nT), for all square-free n.

One way to get a handle on this algebra is to stick to the linear systems

r(x,c)

and the products:
(**) (X, £2) @ T(X, £2") — T(X, £7)
In this case, all bases are written using one of two theta functions I¥(z,T)
or ¥(2z,2T), depending on whether n is even or odd and the multiplication

comes from use of the simplest identity:

() G066
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applied in Cor. 6.8 and §7. In the paper Equations Defining Abelian Vari-
elies, this was the approach taken. In particular, this approach allows one
to prove that (**) is surjective and to give its kernel explicitly if n > 2.

Subsequently, the questions of when the more general map (*) is sur-
jective and the description of its kernel have been investigated at length by
Koizumi, Sekiguchi and Kempf. Two methods have emerged: the explicit
description of the map via theta functions and the use of more abstract co-
homological arguments together with the use of the finite Heisenberg group.
The latter gives more powerful results and we want to show here how these
methods work. We follow Kempf, Linear Systems on Abelian Varieties,
Am. J. Math. (1989), closely.

We will first prove:

THEOREM 10.1. If £ is an ample line bundle on an abelian variety over
any field k, then
[(L") @ T(L™) —s (L")

is surjective if n > 2,m > 3.

The main new tool we need is the concept of the dual abelian variety
X. A general reference is D. Mumford, Abelian Varieties, Oxford Univ.
Press. X classifies the line bundles on X which are deformations of the
trivial bundle. In fact, there is a “universal” bundle P over X x X called
the Poincaré bundle such that the restrictions P, of P to X = X x {a}, for
various a € X , run through all such line bundles exactly once: i.e.

)P =Py iffa=b

ii) all deformatins of the trivial bundle occur.
If £ is any line bundle on X, then {T}(L)}zex gives us a family of de-
formations of £ itself, parametrized by X. Thus {T3(L) ® L7 },ex is a

family of deformations of the trivial bundle and we can define a map:

bc: X —X
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by
éc(z) = [point a of X such that T L ® £™! 2 P,
This map ¢ is a morphism of varieties, and it can be used to construct X.
In fact, if £ is ample
ker(¢c) = {z|T3 £ = £}
= K(£)

so we may define X as the quotient X/K(L). (In char. p, w must use the
full group scheme K (L) defined at the end of §3). Finally, the addition on

X is a result of the tensor product operation on line bundles, i.e.,
Pars 2P ®Ps.
In the above construction, the “theorem of the square”:

i3
ity

LETILRT LOL™
implies then that ¢, is a homomorphism:
Poczr+oc) = Poc) @ Pocty)
(Lo L )R LeL™)
L® L™ (by the theorem of the square)

~ *
=T,

= Por(e+y)
hence ¢c(z) + dc(y) = dc(z + ).
Our first step in proving 10.1 is the
LEMMA 10.2. Let R, S be invertible sheaves on X such that ['(R) # 0 and
I(5) #0, and R® S is ample. Then
Y T(R@P.)@I(S®P-.) — T(RES)

aEf
is surjective. Indeed, there exists an open dense subset U so that if you

sum over a € U the assertion remains true.

This result is shown in D. Mumford’s lectures in the C.I.M.E. Sum-
mer School, 1969, Questions Concerning Algebraic Varieties (these notes,

unfortunately, are almost unobtainable).
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PrRooF: Let W denote the image; we show that W is invariant under the
action of the Heisenberg group G(R ® S). This suffices: Since T'(R® S) is
G(R® S)-irreducible either W = (0) or W =T'(R®S5). The first possibility
does not occur since T'(R) and I'(S) have non-zero elements.

Let r e T(R®P,), s € T(S ®P-,) with divisors D, E. Thus r® s has
divisor D+ E. If ¢ € G(R® S) gives an isomorphism R® S X T;(R® S),
then ¢ acts on r® s and gives a section of R® S with divisor T2, (D + E).
We need to find elements r',s' € T(R ® Pg), ['(S ® Pg) so that r' ® s’ has
divisor T* (D + E).

Since z € ker(¢rgs), $r(z)+ds(z) =0. Iff = a+¢nr(z) = a—¢s(z),
then

T} (R®P.)=R®(TAROR ) ®Pa= RO Pypz)®Pa=R®Pp.

Similarly, T2 (S ® P—s) = S® P_p. Thus T;r =r' € I(R® Pp),

Tts=s € (S®P_p)and r' - ¢ has divisor T2, D+ T2 E. QED
Using this, we follow Kempf and prove:

THEOREM 10.3. Fix y € X. For z in any dense open set of X, the multi-

plication
m(z) :T(L2 ®P_.) @ T(L2 @ Pryy) — T(L'@Py)
is surjective. If dim I'(C) = 1, then m(z) is an isomorphism.

ProoF: If dim I'(C) = 1, the source and target of m(z) have the same
dimension; hence surjective implies isomorphism.

The proof goes as follows. First we find a group K acting on the domain
and range of m(z) in such a way that m(z) is equivariant. The key point
here is to show that the target has a finite number of maximal K-invariant
subpaces, 8o as z varies the images of m(z) cannot span the target unless
almost all m(z) are themselves surjective.

Let G = G(£?). Then G acts on L2®@P_,: note that L?@P_; = T;(L?)

for some z € X since ¢oe2 is surjective, hence if ¢ € G, then ¢ acts on
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L2®P_; by T;(v). Similarly G acts on L£? ® Py4y. Tensoring these, we
get an action of G on £* ® Py so that m(z) is equivariant.
We restrict the action of G to an abelian subgroup. Let Ko be a

maximal isotropic subgroup of K(£) and set
K = {z € X|2z € Ko}

CLAIM: e"(KI,KI) C pa.

PROOF OF CLAIM: €£’(K,K)? = ¢£(2K,2K) = e*(Ko, Ko) = 1.

This has two consequences. First it implies that K is maximal isotropic
in K (L% since e (K,K) = e’ (K,K)? = 1 and the rank of K, as a finite
group scheme, is correct. Second, note that the action of G(£?) on the
space T'(L2 ® P_;) ® I'(£L? ® Py-.) and on I'(£* ® P,) factors through
G(£?)/u2 = G'. The claim implies that we can split G over K:

1 — Gy — G' —K(£L32)— 0
o
N\
N\
N\
K

Thus K acts on the domain and range of m(z). We now study m(z) as a

map of K-modules.

LEMMA 10.4. IfK C K(L) is a maximal isotropic subgroup then there are

only a finite number of maximal K-invariant subspaces W in I'(X, £).

PRrooF: The irreducible Heisenberg representation of G(£) can be con-

structed as the space of functions on K (£)/K.! By the Heisenberg property,

If K(L) is an ordinary finite group, this is clear. In the case where K (L)
is a group scheme, we prove this by considering a splitting o of G(L) over
K and showing that

3 . Az :AfI,AEGms
vV, = {functlons fongG(L) ﬁ, .),,(k)) L }(z), allk e IC}

is the Heisenberg representation of G(L), cf. Moret-Baily, Pinceauz de
Variétés Abéliennes, Astérisque 129, 1985.
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this is the dual abelian group K to K and K operates here by multiplication
by characters. Therefore T'(X, £) is isomorphic to the affine ring of K and
we need only show that this ring contains only a finite number of maximal
subspaces invariant under multiplication by all characters. But a subspace
is invariant like this if and only if it is an ideal in the affine ring of K and
any finite dimensional commutative ring contains only a finite number of
maximal ideals.

Note that this proof is valid in char. p where G(£) and K(£) may be
group schemes. One should notice that even if, e.g., K consisted of only one
point, so K had only the trivial character, for W C I'(K) to be invariant
under the character action of the scheme K still implies that W is an ideal.

This is because the ring multiplication in I'(K):

*) I(€) 8 T(R) — I'(K)

is dual to the character action of the group scheme K on I‘(IE):
(k) — I(K)®T(K)

via the duality of I'(K) and I‘(IE) More explicitly, let g be an R-valued

point of K for some k-algebra R. Then g is given by a k-homomorphism
I'(K) — R,

which may be viewed s an element of Hom(T'(X), k)® R which is T'(K) ®¢
R. In this way, the set X(R) of R-valued points is a subset of I‘(;(:') ®r R,

and using the ring multiplication (*), we get an action:
K(R) x (T(K) ® R) — (T(K) ® R).

Since, as R varies, the points K(R) span F(fﬁ), we see that a K-invariant

subspace of T'(K) is indeed an ideal. QED
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Apply this to our K in K(L£*). It follows that for each z the image
W(z) of m(z) is either all of T(L*®P,) or is contained in one of a finite set

Uy,---,Un of subspaces of I'(L*® P,). Now as z varies, the vector spaces
r(C2@P_;), (resp. T(L2®Psyy))

fit together into vector bundles, and the maps m(z) vary continuously.
Therefore, for all z in a dense open set, m(z) will have a fixed maximal
rank. Therefore, either W(z) = I'(£* ® P,) for all z in a dense open set,
or W(z) C some fixed U;, all z. But Lemma 10.2 says that

Y W(z)=T(L*QP,y).

Therefore W(z) must equal I'(£* ® Py ) for almost all z.
QED for Theorem 10.3.

To prove Theorem 10.1, note that by Theorem 10.3,
T(c*) ® T(£? @ Pz) — T(L* @ P)

is surjective for all z in a dense open set U of X. (Take y = 0 in 10.3 and
note that the maps

F(£?@P_:)® (L@ P,) — I(LY)

T(£?) @ T(£2 Q@ Pys) — I(L* ® Pa:)
are just translates of each other, so have the same rank.)

By Lemma 10.2,

D T(£'®P.)®T(L ®P;) — (L)

el
is surjective. But it factors through I'(£2) ® T'(£3)! This proves 10.1 for
n = 2,n = 3. The higher cases follow similarly. QED for Theorem 10.1.

In particular, 10.1 implies:
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COROLLARY 10.5. If M = L™ and

R = Prx, m*),
k=0

then R is generated by T'(X, M) if n > 3, hence M is very ample.

We now turn to the relations in the homogenous coordinate ring of an

abelian variety. The main result is this:

THEOREM 10.6. If £ is an ample line bundle on an abelian variety X over

any field k and M = L", let I be the kernel of:

PsHrx, M)} — Pr(x, M*).

Then the ideal I is generated by its quadratic and cubic polynomials I, I3

if m > 3 and by its quadratic polynomials alone if n > 4.

In fact, if n > 4 and n is even, then we can give a basis of I by theta
relations resulting from the Riemann theta relation. The simplest case is
the pair of quadratic equations defining elliptic curves embedded in P3 by
['(X, £*) with deg £ = 1, given in Chapter I. Let’s describe these quadratic
relations for general ¢ when X = Xr is a principally polarized complex

abelian variety and £ is the basic degree 1 line bundle. Then as above
e (nz,nT) a€ —l-Z-"
0 R n
is a basis of I'(X, M), and instead of writing multiplication by

9 [g] (nz,nT) -9 [g] (nz,nT)
o 4

= ¥ 19["_560*”](0,2@)-0[ ] ](2nz,2nT)

nelze /s

as above, we replace a and b by a + 71,5+ m and multiply by a character
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of 1. This gives us (compate Ch. 11, (6.5), (6.6) and (6.7)):

E edrite(atn) g [a-(i)-n] (nz,nT) -9 [b-(i)-ﬂ] (nz,nT)

n€dZ9/19

—b
= eftritea. Z edmiten .y [ a_2_0+ 77] (0,2nT)

(*) nedls /19

. atb
E eiri'en g [ 2 0+ 77] (2nz,2nT)

ne%l’/l’
N ) n a+b n
_0[ . ](O,ET)-ﬂ[ . ](nz,2T)

for any ¢ € %Zg /29. The last equality is verified by using the standard

Fourier expansion for 9. Here we use the alternate basis:
91%| (02, 27), aelzijzs, celzoszs
c et n ’ 2

of I'(X, M?). Since I'(X, M) ® T'(X, M) maps onto I'(X, M?), the RHS’s
of (*) must span I'(X, M?), so taking d = a + b, a Corollary is the non-
vanishing result:

**)

Forallde 129, ce 12 9 [d"2"] 0,2T) £ 0 for some b€ 229,
n 2 c 2 n

Now since the equations (*) are a basis for the full multiplication table
(X, M) ® I'(X, M) — (X, M?), they tell us that a basis of the space

I, of quadratic relations is given by
2[00, 21T e 9 [ (nz,nmy9 |2 7] (nz, )
c 12 - 0 ’ 0 ’
=9]|* "%, T)-Y e -9 S0 o ayo [V ] (20T
c 3 2’ 0 ) 0 3 )
n
ifa+bd=a +¥ mod Z9. We multiply this by

g [a+b] (n 0,_T) [a+b+2d] o, T),
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where 2 =T -d, d € %Zg ; this factor can be made non-zero by suitable
choice of d. Then using (*) and putting nz into the characteristic, the

identity becomes:

(Esﬂ{“’*{,’*”](o T). 0[b+d+”](o,nT))
-"(znjsn o[*4 7 enmy-o [ 47] o nT))

_ (Ev [ 48+ .m0 [P+ 447] (O,HT))
. (Xn:s"ﬂ [“ &7 anmy-o [V 3 7] (,,z,,,T))

where s, = (~=1)'9)(20)_ In this form, we have a basis of I whose coef-

(10.7)

ficients are the value at 0 of the basis of I'(X, M). Using algebraic theta
functions, this result extends to any field k if char(k) + n. Also note
that if we set 2 = 0 in (10.7), we get quartic identities on the theta-nulls
J [g] (0,nT): these are just another form of Riemann’s quartic theta re-

lation.

Our next goal is to describe Kempf’s proof of Theorem 10.6 (implying
that in the case n even, n > 4 the relations above generate the whole of
I). Tt is based on ideas similar to the proof of Theorem 10.1, except that
Heisenberg groups are not used, but instead we use more cohomology. The
point is to look at families of maps where the line bundles involved are
tensored with P,’s, and put these together into maps of bundles over the
space X ofalla’s. Ata key place, we will make use of a basic calculation of
the higher cohomology, groups of P itself, which can be found in Mumford,
Abelian Varieties.

First, some notation: If V is a vector space, ¥ is its dual and if S is
an Oy-sheaf for a scheme Y, then S = Hom(S,Oy). Let 7 and 7 denote
the projections of X x XtoXand X respectively. As we will be dealing
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with many powers £% of the basic ample £ (with £ > 0), we abbreviate

this to £;. Finally, the family of vector spaces
{N(X,£i ®P1a)} ez
fits together into a vector bundle WE(£;) on X. Formally:
WE(L;) = 7u(7"£; @ PE!)

Since tensor product maps £, ® P, times L3 ® P, to L1 @ Lo, we get a

map of bundles:
M:WH(L) @ W(£2) — T(£1® L2) ® O
Bic LEMMA 10.8. The map M induced by M:
M :T(L1 @ L))" — T(X,(WH(L1) @ W (£2))")

is an isomorphism.

ProoF: We introduce the sheaf F on X x X x X defined by:
F=mLli'@msP l@n3L; @ n3,P

where m;; (resp. ;) is the projection onto the (i, 7)™ factors (resp. ith
factor). The proof goes by calculating the cohomology of F in two different
ways: via the restriction of F to the fibres of 73 and via the restriction of

F to the fibres of 7.
CrLam I:
] 0 ifi#2g
R’ﬂ'sl.{(}-) =
(WH(L1) @ W= (L)) ifi=2g

PrRoOOF: The restriction of F to X x X x {a} is

(LT @ P_a) @ 75(L5' @ Pa),
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so its k*" cohomology is the tensor product of terms:
D (X, L7 ©P_a) ® HI (X, L7 @ Pa)].
i+j=k
But the £; are ample, hence H(X, £; ® Py) = (0) if i > 0, hence by Serre
duality H¥(X,£;7'® Ps) = (0) if i < g. Thus the only non-zero group here
is
H?(X x X x [0}, Fy, x o)) = HLT ©P-a) @ H(L5' @ Pa)
= [HY(L, @ Ps) @ HY (L @ P_,)]"

by Serre duality. Therefore all R¥ 73, are zero except for the 2g*" one, which

is the dual of the bundle

U[Ho(ﬁl ® Pa) ® HO(£2 ® P—a)]v

i.e, the dual of WH(£,) @ W~ (L2).
Craim II:
) 0 ifitg
R'ﬂ'lg'.(]:) =
(£7" @oxxx £7')®0a ifi=g

where O, is the structure sheaf of the diagonal in X x X.

ProoF: Here’s where we need the result

(0), i#g

RinP ={ ]
O, i=g

forPon Xx Xandm: XxX — X. (See Abelian Varieties, §13). To

reduce the claim to this, note that
5P @ m3gP = (my — 7y, 73)"P

(here (my — m1,73) is the map (z,y,2) — (y — z,2) from X x X x X to

X x X). This follows from the theorem of the cube (Abelian Varieties,
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§10) since the bundles are isomorphic on {0} x X x X, X x {0} x X and
X x X x {0}. Therefore substituting the expression for F, we get:
Rimi2,4(F) = (L7 ®0xxx) £31) ® R miz,u((m2 — 71, 73)"P)
¥ (L7 ®oxxx) £31) ® (12 = ) (R'm.P)
(the second is flat base change for the diagram:

XxXxXx Fommm) v o %

This gives Claim II immediately.
We now finish the proof of the big lemma. Apply the Leray spectral

sequence for m3:
HP(X x X, R'my2.(F)) = HPY(X x X x X, 7).

By Claim II, this sequence degenerates to:
HY(X x X x X,F) = H*9(X x X, R9m12,.(F))
= B 9(A,(£1© £2)7Y)
= H¥-¥(X,L£,® L2)* by Serre duality.

Thus

(0) if k#2g

(£, ® L2)* if k=2g.

On the other hand, by Claim I the Leray Spectral sequence for w3

*) H"(XxXx)?,f-)={

degenerates to:
(**)  HYX x X x X,F)= H¥2(X,(WH(£1) @ W™ (£2))).

Comparing (*) and (**), we get the lemma.
To prove the theorem, it is helpful to have a notation for “relations”
in more general contexts: for all sheaves F,G on X, we denote the kernel

of multiplication
NF)QI(G) — I'(FQG)

by R(F,9)-
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LEMMA 10.9. If¢y,€5 > 2 and ¢y + €3 > 5, then

Y R(£1,£2®Pa) - [(X,L3® P-q) = R(L1, L2 ® La).
ek

PRrooF: Let R be the left hand side of this equality. By definition, we have

an exact sequence
0— R(Cl, Lo, ®L3)A — (F(Cl) ® F(Cg ® Cs))A — F(Cl ®RL® Cg)A

so to prove the lemma, we just have to show that if A is a linear functional
on I'(£1) ® I'(£2 ® L3) that vanishes on R, then A is induced by a linear
functional on ['(£1 ® L2 ® L3).

Since
Y T(£1) ® T(£2 ®Pa) ® T(£3® P_a) — I(£1) ® T(L3 ® L3)
aeX

is surjective by Lemma 10.2, X is determined by its restrictions A, to

T(£1) ®T(L2 ® Pa) ® I'(L3 ® P_q). We have the diagram:

R(‘Cl,‘CZ@Pa) F(Ll) ®F(C2®Pa) F(Cl X Cg@?a)

0— ® — ® — ® —0
F(LS ®P-—a) F(L3®P—a) F(‘C3®P—a)
l'\"'/
k

Surjectivity in the top line follows from Theorem 10.1. Since A, vanishes
on R(£1,£2® Py) - T(L3® P_q), Aq induces sty as in the diagram. Now
let’s put all these maps together into maps of bundles over X. Let S be
the kernel of the map

F(Cl) ®*.(Cz ®P) —_ ?r.([:l ® Lo ®1—’).

This map of bundles is surjective, so S is a bundle too.
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Consider the exact sequence of sheaves on X:

I'(£1) @ Tu(L2 @ P) F(L1®L2®P)
0-S®F(L3@P1)— ® - ® -0
*.([:3@?_1) *.(Cs@P_l)
lx /
Ox

Here X is just the globalization of the As’s, i.e., it arises from
T(£1) @7, (L20P) 7. (L3®P 1) — T(L1)®T(L28L3)®@05 22 0.

2 restricts to zero on each fibre of the bundle § ® 7. (L3 ® 1—"1), hence it
is zero on the whole bundle. Consequently /i exists.

We apply the Big Lemma: Since the multiplication
I(X,(7.(£1 ® L20P) @F(L3®P7))*) — T(L1®L2®Ls)"

is an isomorphism, Ji corresponds to an element of I'(£1 ® £2 ®L3)*. QED

THEOREM 10.10. If¢; > 3,€> 4 (or £1 > 2,85 > 5), and {3 > 2, then

R(Cl, Ly ® C3) = R(CI,CQ)F(Cs).

PrRoOF: Write L5 = £4 ® L5 with €5 = 2, so ¢4 > 2. By the above lemma

R(£1,L2®L3) = Y R(£1,£4®Pa)[(L5® L3® P-a)-

By our surjectivity results
(L5 ® P-o)T(L3) = (L5 ® L3® P_a);

therefore

R(Cl, Ly ® Ls) = ZF(LI, Ls® Pa)r(‘c5 ® P-—G)JF(‘Cfi)

In
R(Ll) L?)
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This gives
R(Ly,£L3® L3) = R(Ly, L2)T(Ls). QED

In particular, if ¢; > 4,
R(C1, €54 = R(Cy, LOD(E]) i >0

and if £, > 3
R(£y, £3+D) = R(L,, £O2)D(L8).

This proves Theorem 10.6.
Let us recapitulate the results so far: let M = L, n > 4, £ ample of

degree one. Let Hy, denote 129/Z9. Then the basis {¢ [8] (nz,nT)}eeH,
of I'(X, M) defines an embedding

ig: X — PH-

into the fixed projective space whose coordinates are indexed by H,. Here
we have taken the complex case for simplicity, but the same construction
can be made using algebraic theta functions so long as char(k) t n. We
have shown

a) the ideal of i5(X) is generated by quadrics,

b) if n is even, the quadrics can be given explicitly by (10.7) in terms

of the coordinates of i4(0).

We can go further and give a geometric construction of the quadrics con-
taining #g(X) using only the point i9(0) which is valid for any n > 4, even

or odd. To do this, let Kn = 1Z2¢/7% and let K, act on P#» by the maps:
X; = 62.‘”"‘0"’2 . Xa-i-bn a€E Hn

for all (b1,b2) € Kn. This_is obviously the projective version of the irre-
ducible action of the finite Heisenberg group Heis(2g, (Z/nZ)) and the usual

formulae for 6-functions show that:
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ProPoSITION 10.11. K, maps is(X) to iself and restricts on is(X) to

translating by the n-torsion subgroup X,,.
In particular, i5(X,) = K, (i9(0)) and we claim:

PROPOSITION 10.12. If n > 3, a quadric Q C PH~ contains is(X) if and

only if it contains ig(Xy).

Proor: Note that ¥ [Z] (n2,T) is a basis of I'(£""). Choose some y € X
where none of these functions are zero. Assume Q is a quadric which
contains ig(X,). Then Q defines a section s € ['(£2") which is zero on X,,.
Then T2, (s) € T(T%,£?") is zero on y + X,. Since n > 3, o ®T: L2
is ample so it has a non-zero section t. Then T;(s) ® t is a section of
£™ zero on y+ X,. Now X, is an isotropic subgroup of K(L"’) = Xp2
so translation by X, lifts to an action of X, on £" and on I'(X, L"’).

Therefore, write

T;(s)®t= Z € - 8
reX,

where s, are eigenfunctions for X,,. There s, are just o [Z] (nz), as is

immediate by calculating ¢ [Z] (n(z + pt of order n)). Since each cys) is
a linear combination of translates of T7(s) ® t by Xy, casy is zero at y.
But all 4 [Z] s are non-zero at y, so ¢y = 0 all A. Therefore T2 s ®t = 0,
hence s = 0, hence @ contains i(X) QED

COROLLARY 10.13. For alln > 4,

ig(X) = {ﬂQIaII quadrics Q such that Q D K, (is(0))}.

To end this section, we want to rephrase the fact that the coordinates of
i9(0) determine X and M by saying instead that {J [8] (0,nT)}aen, are
homogeneous coordinates on a suitable moduli space of abelian varieties.
The precise statement is a little technical because, before the algebraic

analogs of ¥ [8] (0, nT) can be defined on an arbitrary abelian variety X,
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some labelling of its points of finite order must be done. We will sketch
the result. Whenever char(k) { n, the moduli space Ay, is defined to be
the variety which classifies up to isomorphism triples (X, £, ¢,), where X
is an abelian variety, £ is a degree one, ample line bundle on X and ¢,
is an isomorphism of X,, with (Z/nZ)%¢ carrying the skew-symmetric form
eL on X, to the standard form on (Z/nZ)* (a primitive n*" root of 1 in &
must be fixed to define this). ¢y, is called a “level n structure”. When n|m,
there is a map A,, — A,, because a level m structure determines a level n
structure, i.e., we have the usual tower {4, } of moduli spaces. To work out
the meaning of Cor. 10.13, we need a moduli space intermediate beween
Ay, and A,,, which Igusa named Ay, 3,. We assume n is even. Ap 2, is the
variety which classifies up to isomorphism triples (X, M, ), where X is an
abelian variety, M is an ample symmetric line bundle on X with eM =

and o is a symmetric? isomorphism
G(M) — Heis(2g,2/nZ).

Then « induces an isomorphism (unique up to scalars) between the Heisen-
berg representation I'(X, M) of G(M) and any of the standard realizations
of this representation for Heis(2g,Z/nZ). This gives us algebraically a basis
Sa, @ € (Z/nZ)?, of T'(X, M) generalizing the basis 9 8] in the complex

case, hence an embedding is : X — PH», The map
(X, M,a) — ig(0) € P~

gives us a map

6,.: .An_gn — PH"

which is itself one-to-one because ig(0) allows us to reconstruct X, M and

«. The final result is:

%i.e., the symmetry i of G(M) corresponds to the involution (A, z, y) +——

(A, -z,-y).
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THEOREM 10.14. a) For all n > 4, ©,, is an immersion of the scheme Ay, 2
in PH»,

b) If n is even and n > 6, then Im(©,,) is a Zariski-open subset of the
closed subscheme in PH» defined by the quartic polynomials given by the
equations (10.7) with z = 0:

(Z sera'+a+nXb'+d+rr) : (Z s,,X,,+,,X1,+,,) =
n

n

(E s,,Xa+d+,,Xb+d+ry) : (E s'rXa’+'rXb’+'r)
" "

where s, = (—1)'2°27, q b a’,¥',d € (329/29) satisfying a4+ b = o' 4+ b
and the sum being over n € 329 /79.

PROOF: See Mumford, Equations Defining Abelian Varieties II, §6 for the
case 8|n and Kempf, Linear systems on abelian varieties, Am. J. Math.,
(1989), for the general case. It would be really nice if this were also true

for n = 4, but this is open.
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