Algebraic Geometry II
(a penultimate draft)

David Mumford and Tadao Oda






Foreword

[from DM] I gave an introductory course in algebraic geometry many times during the 60’s
and 70’s while I was teaching at Harvard. Initially notes to the course were mimeographed and
bound and sold by the Harvard math department with a red cover. These old notes were picked
up by Springer and are now sold as the “Red Book of Varieites and Schemes”. However, every
time I taught the course, the content changed and grew. I had aimed to eventually publish more
polished notes in three volumes. Volume I, dealing with varieites over the complex numbers
appeared in 1976 and roughly 2/3rds of a first draft for volume II was written down at about
the same time. This draft covered the material in the Red Book in more depth and added
some advanced topics to give it weight. Volume III was intended to be an introduction to
moduli problems but this was never started as my interests shifted to other fields in the 80’s.
To my surprise, however, some students did read the draft for volume II and felt it made some
contribution to the growing literature of multiple introductions to algebraic geometry.

[from [TO] I had the good fortune of first getting acquainted with schemes and functorial
approaches in algebraic geometry when the first author gave a series of introductory lectures
in Tokyo in spring, 1963. Throughout my graduate study at Harvard from October, 1964
through June, 1967, I had many chances to learn further from the first author as my Ph.D.
thesis advisor. It is a great honor and privilege to have this opportunity of sharing with as
many people as possible the excitement and joy in learning algebraic geometry through the first
author’s fascinating style.

The Herculean task of preparing the manuscript for publication, improving and fixing it
in multiple ways and adding some half a dozen new sections and results is due to the efforts
of the second author. Both authors want to thank those who have assisted in this draft that
we are posting on the Web, especially Ching-Li Chai, Vikraman Balaji, Frans Oort, Fernando
Quadros Gouvéa, Dinesh, Amnon Neeman and Akihiko Yukie. A number of extra sections
were added to make the book better. Thanks are due to John Tate for the new proof of
the Riemann-Roch theorem, Carlos Simpson for the proof of Belyi’s three point theorem and
Shigefumi Mori for the proofs of some results of his. The exercises are those found originally
in the manuscript plus further exercises kindly provided by Ching-Li Chai who gave a graduate
course in algebraic geometry at the University of Pennsylvania using a preliminary version of
this book. No systematic attempt was made to produce further exercises.

Special thanks are due to Ching-Li Chai for providing valuable suggestions during the prepa-
ration of the manuscript.
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CHAPTER 1

Schemes and sheaves: definitions

1. Spec(R)

For any commutative ring R, we seek to represent R as a ring of continuous functions on
some topological space. This leads us naturally to Spec(R):

DEFINITION 1.1. Spec(R) = the set of prime ideals p C R (here R itself is not considered as
a prime ideal, but {0}, if prime is OK). If p is a prime ideal, to avoid confusion we denote the
corresponding point of Spec(R) by [p].

DEFINITION 1.2. For all z € Spec(R), if z = [p], let
k(z) = the quotient field of the integral domain R/p.
For all f € R, define the value f(z) of f at x as the image of f via the canonical maps
R — R/p — k(z).

In this way, we have defined a set Spec(R) and associated to each f € R a function on
Spec(R) — with values unfortunately in fields that vary from point to point. The next step is
to introduce a topology in Spec(R):

DEFINITION 1.3. For every subset S C R, let

V(S) = {z € Spec(R) | f(z) =0 for all f € S}
= {[p] | p a prime ideal and p O S}.
It is easy to verify that V has the properties:
a) If a = the ideal generated by S, then V(S) = V (a),

b) S1 D So = V(S51) C V(Ss),
c) V(S) =0 <= [1 is in the ideal generated by S].

PROOF. <= is clear; conversely, if a = the ideal generated by S and 1 ¢ a, then
a C m, some maximal ideal m. Then m is prime and [m] € V(). O

d)
V(U Sa) = m V(Sq) for any family of subsets S,

V(Z ay) = ﬂ V(a,) for any family of ideals a,.

e) V(Cll n 02) = V(Cll) U V(ClQ).

PROOF. The inclusion D follows from (b). To prove “C”, say p D ajNag but p 2 a;
and p 2 ag. Then 3f; € a; \ p, hence f1 - f2 € a; Nag and fi - fo ¢ p since p is prime.
This is a contradiction. O

) V(a) = V(va).



2 I. SCHEMES AND SHEAVES: DEFINITIONS

Because of (d) and (e), we can take the sets V(a) to be the closed sets of a topology on
Spec(R), known as the Zariski topology.

DEFINITION 1.4. For f € R

Spec(R)s = {x € Spec(R) | f(z) £ 0}
= Spec(R) \ V().
Since V(f) is closed, Spec(R); is open: we call these the distinguished open subsets of
Spec(R).
Note that the distinguished open sets form a basis of the topology closed under finite inter-
sections. In fact, every open set U is of the form Spec(R) \ V(.5), hence

U = SpecR\ V(95)
= Spec R\ [ V(f)

fes

= | J (Spec R\ V(f))

fes

and

DEFINITION 1.5. If S C Spec R is any subset, let
I(S)={f€eR| f(x)=0, all z € S}.

We get a Nullstellensatz-like correspondence between subsets of R and of Spec R given by
the operations V' and I (cf. Part I [87, §1A, (1.5)], Zariski-Samuel [119, vol. II, Chapter VII,
§3, Theorem 14] and Bourbaki [27, Chapter V, §3.3, Proposition 2]):

PRrorosITION 1.6.

(a) If a is any ideal in R, then I(V(a)) = 1/a.
(b) V and I set up isomorphisms inverse to each other between the set of ideals a with
a = +/a, and the set of Zariski-closed subsets of Spec R.

PROOF. In fact,

f€I(V(a)) < f €p for every p with [p] € V(a)
<~ fepforeverypDa

I(V(a)=(]p
p2a
—Va

(cf. Zariski-Samuel [119, vol. I, p. 151, Note II] or Atiyah-MacDonald [20, p. 9]).

(b) is then a straightforward verification. O
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The points of Spec(R) need not be closed: In fact,

{[p]} = smallest set V(S), containing [p], i.e., S Cp
= V(95), with S the largest subset of p
=V(p),
hence:
[p'] € closure of {[p]} <= p’ D p.

Thus [p] is closed if and only if p is a maximal ideal. At the other extreme, if R is an integral
domain then (0) is a prime ideal contained in every other prime ideal, so the closure of [(0)] is
the whole space Spec(R). Such a point is called a generic point of Spec(R).

DEeFINITION 1.7. If X is a topological space, a closed subset S is irreducible if .S is not the
union of two properly smaller closed subsets S, .52 ; S. A point z in a closed subset S is called
a generic point of S if S = {x}, and will be written 7g.

It is obvious that the closed sets {x} are irreducible. For Spec(R), we have the converse:

ProPoOSITION 1.8. If S C Spec(R) is an irreducible closed subset, then S has a unique
generic point ng.

PROOF. I claim S irreducible = I(S) prime. In fact, if f-g € I(S), then for all z € S,
f(z)-g(x) =0 in k(z), hence f(z) =0 or g(z) = 0. Therefore

S=[SnvVHIuISnV(g)l

Since S is irreducible, S equals one of these: say S = SN V(f). Then f = 0 on S, hence
f e 1(S). Thus I(S) is prime and
S =V(I(9))
= closure of [I(5)].
As for uniqueness, if [p1], [p2] were two generic points of S, then [p1] € V(p2) and [pa] € V(p1),
hence p1 C p2 C pi1. U

PROPOSITION 1.9. Let S be a subset of R. Then

Spec(R) = U Spec(R)f| < |1 € Z f - R, the ideal generated by S
fes fes

PROOF. In fact,
Spec R\ U Spec(R)f =V Zf ‘R

fes fes
so apply (c) in Definition 1.3. O

Notice that 1 € Zfes f+ R if and only if there is a finite set fi,..., f, € S and elements
g1,--.,9n € R such that
= Zgi - fi-

This equation is the algebraic analog of the partitions of unity which are so useful in differential
geometry.

COROLLARY 1.10. Spec R is quasz'—compactl, i.e., every open covering has a finite subcover-
mng.

1“con1pact” in the non-Hausdorff space.
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PROOF. Because distinguished open sets form a basis, it suffices to check that every covering
by distinguished opens has a finite subcover. Because of Proposition 1.9, this follows from the
fact that

1€Zf-R = IEZ]‘}-R, some finite set fi,...,fn, € 5.
fes 1=1

When R is noetherian, even more holds:

DEFINITION 1.11. If X is a topological space, the following properties are equivalent:
i) the closed sets satisfy the descending chain condition,
ii) the open sets satisfy the ascending chain condition,
iii) every open set U is quasi-compact.
A space with these properties is called a noetherian topological space.
Because of property (b) of V' in Definition 1.3, if R is a noetherian ring, then Spec(R) is a
noetherian space and every open is quasi-compact!
The next big step is to “enlarge” the ring R into a whole sheaf of rings on Spec R, written
OSpecR

and called the structure sheaf of Spec R. For background on sheaves, cf. Appendix to this
chapter. To simplify notation, let X = Spec R. We want to define rings

Ox(U)

for every open set U C X. We do this first for distinguished open sets X ;. Then by Proposition
7 of the Appendix, there is a canonical way to define Ox(U) for general open sets. The first
point is a generalization of Proposition 1.9:

LEMMA 1.12.
n
[Xf <U Xgi] = [Hm > 1, a; € R such that f™ = Zaigz} .
i=1
PrOOF. The assertion on the left is equivalent to:

gi([p]) =0 all i = f([p]) = 0, for all primes p,

iy (Sam) = (Sak

which is the assertion on the right. O

which is the same as

We want to define
Ox(Xy) = Ry
= localization of ring R with respect to multiplicative system
{1, £, f2,...}; or ring of fractions a/f", a € R, n € Z.

In view of Lemma 1.12, if Xy C X, then f™ = a - g for some m > 1, a € R, hence there is a
canonical map

Rg — Rf.
(Explicitly, this is the map b/g™ — ba"/(ag)"™ = ba"/f™™.) In particular, if X; = X, there are
canonical maps Ry — R, and Ry, — R; which are inverse to each other, so we can identify Ry
and R,. Therefore it is possible to define Ox(Xy) to be Ry. Furthermore, whenever Xy C X,
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we take the canonical map Ry — Ry to be the restriction map. Whenever X C X, C X;, we
get a commutative diagram of canonical maps:

Ry ——— > Ry,
Ry
Thus we have defined a presheaf Ox on the distinguished open sets. We now verify the sheaf
axioms:

KEY LEMMA 1.13. Assume X; = Y, X,,. Then
a) if b/ f* e Ry maps to 0 in each localization R, then b/fF =0,
b) if b,-/gfi € Ry, is a set of elements such that b,-/gfi = bj/g?j in Rg,qg,, then 3 b/ € Ry
which maps to b,-/gfi for each i.

Proor. The hypothesis implies that

fmzzaigi

for some m > 1 and a; € R. Raising this to a high power, one sees that for all n, there exists

7= "dg!

too. To prove (a), if b/f¥ = 0 in R,,, then g" - b = 0 for all 4, if n is large enough. But then
f™ b= ai(gib) =0

hence b/ f* = 0 in Ry. To prove (b), note that bi/gfi = bj/gfj in Ry, means:

an m’ and a} such that

(9i95)™79;"bi = (gig;)™" g;"b;
for some m;; > 1. If M = maxm;; + max k;, then

call this b,

M-k
b; bigi IR
=2 inR,
k‘i M 9i»
g; 9;
and
M—k;j M—k;\ K
g Yi=(g; Vg ") g;'bs
= (g?/[_kjgy_ki) -gfibj, since M — k; and M — k; are > my;
M
=9 - b;'-

Now choose k and a; so that k= > a;glM. Let b=>" a;b;-. Then I claim b/f’C equals bg/gZM in
Ry, In fact,

g'b="> " gMdi¥)
7

- S
J

= f*- .
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This means that Ox is a sheaf on distinguished open sets, hence by Proposition 7 of the
Appendix it extends to a sheaf on all open sets of X. Its stalks can be easily computed:
if = [p] € Spec R, then
O%X = lim Ox(U)

€l open

zelU

=_ lim Ox(Xy)
dist. open Xy
f(x)#0
= lim Ry
e
feR\p
= Rp

where R, as usual is the ring of fractions a/f, a € R, f € R\ p.
Now R, is a local ring, with maximal ideal p - R, and residue field:

R,/(p - Ry) = (quotient field of R/p) = k(z).

Thus the stalks of our structure sheaf are local rings and the evaluation of functions f € R
defined above is just the map:

R = 0Ox(X) — Oy x — residue field k(z).

In particular, the evaluation of functions at = extends to all f € Ox(U), for any open neighbor-
hood U of x. Knowing the stalks of Ox we get the following explicit description of Ox on all
open U C X:

U is covered by distinguished
Ox(U) =< (sp) € H R, | open Xy, and 3s; € Ry,
[p]eU inducing s, whenever f; ¢ p

The pairs (Spec R, Ospec r) are called affine schemes. We give a name to one of the most
important ones:

T}ZZ = (SpeCR[le s 7Xn]7 OSpecR[Xl ..... Xn])

= affine n-space over R.

2. M

An important aspect of the construction which defines the structure sheaf Ox is that it
generalizes to a construction which associates a sheaf M on Spec(R) to every R-module M. To
every distinguished open set X, we assign the localized module:

set of symbols m/f™", m € M, n € Z,

M; = modulo the identification my/f™ = mgo/ f"2
¢ iff fretk oy = fmtk omy, some k € Z
=M ®g Ry.

We check (1) that if Xy C X, then there is a natural map My, — My, (2) that

lim M, = M,
s
[pleXy



where

set of symbols m/g, m € M, g € R\ p,
modulo the identification mj /g1 = ma/g2
iff hgomi = hgimg, some h € R\ p

M,
P e def

and (3) that Xy — My is a “sheaf on the distinguished open sets”, i.e., satisfies Key lemma
1.13. (The proofs are word-for-word the same as the construction of Ox.) We can then extend
the map Xy — My to a sheaf U — M (U) such that M(X;) = My as before. Explicitly:

={s€ H M, | “s given locally by elements of M’s”
[pleU

The sheaf M that we get is a sheaf of groups. But more than this, it is a sheaf of Ox-modules

in the sense of:

DEFINITION 2.1. Let X be a topological space and Ox a sheaf of rings on X. Then a sheaf
F of Ox-modules on X is a sheaf F of abelian groups plus an Ox (U)-module structure on F(U)
for all open sets U such that if U C V, then resyy: F(V) — F(U) is a module homomorphism
with respect to the ring homomorphism resy: Ox (V) = Ox(U).

In fact check that the restriction of the natural map
II 2= [ M — ][] ™
[pleU [pleU [p]eU
maps Ox (U) x M(U) into M(U), ete.
Moreover, the map M — M is a functor: given any R-homomorphism of R-modules:
po: M — N
induces by localization:
(pf:Mf—>Nf, VfeR
hence
p: M(U) — N(U), V distinguished opens U.
This extends uniquely to a map of sheaves:
Q: M —s N ,
which is clearly a homomorphism of these sheaves as Ox-modules.

PROPOSITION 2.2. Let M, N be R-modules. Then the two maps

Homp(M, N) m———— Homp, (M, N)

oy %

$(X), the map "
on global sections

are inverse to each other, hence are isomorphisms.
PrROOF. Immediate. O

COROLLARY 2.3. The category of R-modules is equivalent to the category of Ox-modules of
the form M.
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This result enables us to translate much of the theory of R-modules into the theory of sheaves
on Spec R, and brings various geometric ideas into the theory of modules. (See for instance,
Bourbaki [27, Chapter IV].)

But there are even stronger categorical relations between R-modules M and the sheaves M:
in fact, both the category of R-modules M and the category of sheaves of abelian groups on X
are abelian, i.e., kernels and cokernels with the usual properties exist in both these categories
(cf. Appendix to this chapter). In particular one can define exact sequences, etc. The fact is
that preserves these operations too:

PROPOSITION 2.4. Let f: M — N be a homomorphism of R-modules and let K = Ker(f),
C = Coker(f). Taking s, we get maps of sheaves:

RAY el

K—M
Then
(a) K =Kex(f), i.e., K(U) = Kex[M(U) — N(U)] for all U.

(b) C = Coker(f): by definition this means C is the sheafification of U — ]\Nf(U)/f(M(U)),
but in our case, we get the stronger assertion:

C(X,) = Coker (M(Xa) — N(Xa)> ., all distinguished opens X,.
PRrOOF. Since 0 - K - M — N — C — 0 is exact, for all a € R the localized sequence:
0O—-K,—-M,—N,—C,—0
is exact (cf. Bourbaki [27, Chapter II, §2.4]; Atiyah-MacDonald [20, p. 39]). Therefore
0— K(Xa) = M(X,) = N(Xa) = C(Xa) =0

is exact for all a. It follows that K and Ker(f) are isomorphic on distinguished open sets,
hence are isomorphic for all U (cf. Proposition 7 of the Appendix). Moreover it follows that
the presheaf N(U)/ f(M (U)) is already a sheaf on the distinguished open sets X,, with values
C (Xa); there is only one sheaf on all open sets U extending this, and this sheaf is on the one
hand [ sheafification of U — N(U)/ f(zTi (U))] or Coker(f), (see the Appendix) and on the other
hand it is C. O

COROLLARY 2.5. A sequence
M—N-—P

of R-modules is exact if and only if the sequence
M—N-—P
of sheaves is exact.
Moreover in both the category of R-modules and of sheaves of Ox-modules there is an
internal Hom: namely if M, N are R-modules, Homp (M, N) has again the structure of an R-
module; and if F, G are sheaves of Ox-modules, there is a sheaf of Ox-modules Homo, (F,G)

whose global sections are Home , (F, G) (cf. Appendix to this chapter). In some cases Proposition
2.2 can be strengthened:

PROPOSITION 2.6. Let M, N be R-modules, and assume M is finitely presented, i.e., 3 an
exacl sequence:
RP— RT — M — 0.
Then
Homo, (M, N) = Homp(M, N) .
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PRrROOF. There is a natural map on all distinguished opens Xj:

Hompg(M,N) (Xy)=Hompgr(M,N)®gr Ry
—%IIODlRf(AffPAv)
= Hom A5 sheaves of (M|Xfa N|Xf)a by Proposition 2.2

x p-modules
Oan

= Homo (M, N)(X).

When M is finitely presented, one checks that the arrow on the second line is an isomorphism

using:
0 — Homp(M, N) — Homp(R?, N) — Homp(RP, N)
hence
0— HOIHR(M, N) RRr Rf — HOHIR(Rq, N) KRR Rf — HOHIR(Rp, N) KRR Rf
00— HOHlRf (Mf, Nf) B — HOHlRf (R;Zc, Nf) —_— HOHlRf(R?, Nf)
(]
Finally, we will need at one point later that "~ commutes with direct sums, even infinite
ones (Proposition-Definition 5.1):
PROPOSITION 2.7. If {My}acs is any collection of R-modules, then
S M= YV
a€EsS a€cs
PROOF. Since each open set X is quasi-compact,
<Z ]/\Za) (Xy) = Z (Ma(Xf)> cf. remark at the end of Appendix
=Y (Ma);
@ f
= Z M, (Xf)
Therefore these sheaves agree on all open sets. U

3. Schemes
We now proceed to the main definition:

DEFINITION 3.1. An affine scheme is a topological space X, plus a sheaf of rings Ox on
X isomorphic to (Spec R, Ogpec r) for some ring R. A scheme is a topological space X, plus a
sheaf of rings Ox on X such that there exists an open covering {U,} of X for which each pair
(Ua, Ox|u,,) is an affine scheme.

Schemes in general have some of the peculiar topological properties of Spec R. For instance:

PROPOSITION 3.2. Every irreducible closed subset S of a scheme X is the closure of a unique
point ng € S, called its generic point.

PROOF. Reduce to the affine case, using: U open, z € U, x € @ = yel. O
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PROPOSITION 3.3. If (X,Ox) is a scheme, and U C X is an open subset, then (U, Ox|y)
is a scheme.

Proor. If {U,} is an affine open covering of X, it suffices to show that U N U, is a scheme
for all . But if U, = Spec(R, ), then U N U,, like any open subset of Spec(R,) can be covered
by smaller open subsets of the form Spec(R,) s> /3 € Ra. Therefore we are reduced to proving:

LEMMA 3.4. For all rings R and f € R,
((Spec R)f, OSpeCR‘(Spec R)f) = (SpeC(Rf)v OSpec(Rf)> )

hence (Spec R) ¢ is itself an affine scheme.

Proor oF LEMMA 3.4. Let i: R — Ry be the canonical map. Then if p is a prime ideal of
R, such that f ¢ p, i(p)-Ry is a prime ideal of Ry; and if p is a prime ideal of Ry, i~!(p) is a prime
ideal of R not containing f. These maps set up a bijection between Spec(R); and Spec(Ry) (cf.
Zariski-Samuel [119, vol. I, p. 223]). This is a homeomorphism since the distinguished open sets

Spec(R) q C Spec(R)
and

Spec(Ry), C Spec(Ry)
correspond to each other. But the sections of the structure sheaves Ogpec(r) and OSpec(Rf)
on these two open sets are both isomorphic to Ryf,. Therefore, these rings of sections can be
naturally identified with each other and this sets up an isomorphism of (i) the restriction of
Ospec(r) to Spec(R)y, and (ii) Ospec(r;) compatible with the homeomorphism of underlying
spaces. U

O

Since all schemes are locally isomorphic to a Spec(R), it follows from §1 that the stalks O, x
of Ox are local rings. As in §1, define k(x) to be the residue field O, x /m, x where m, x =
maximal ideal, and for all f € T'(U,Ox) and z € U, define f(x) = image of f in k(z). We can
now make the set of schemes into the objects of a category:

DEFINITION 3.5. If (X,Ox) and (Y, Oy) are two schemes, a morphism from X to Y is a

continuous map
f: X—Y

plus a collection of homomorphisms:

Iy _
D(V,0y) =5 T(f71(V), 0x)
for every open set V C Y2, such that

a) whenever V] C V3 are two open sets in Y, then the diagram:

*

fv2
[(Va,Oy) ——— T (f}(V2),Ox)

J(res lres
f*

Vi

I'(V1,0y) —— T(f~'(11), Ox)
commutes, and

2Equivalently, a homomorphism of sheaves
Oy — f* Ox
in the notation introduced at the end of the Appendix to this chapter.
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b) because of (a), then f{’’s pass in the limit to homomorphisms on the stalks:
f;: Oy,Y — Om,X

forallz € X and y = f(z); then we require that f be a local homomorphism, i.e., ifa €
m,y = the maximal ideal of O, y, then f}(a) € m, x = the maximal ideal of O, x.

Equivalently, if a(y) = 0, then f(a)(z) = 0.

To explain this rather elaborate definition, we must contrast the situation among schemes
with the situation with differentiable or analytic manifolds. In the case of differentiable or
analytic manifolds X, X also carries a “structure sheaf” Oy, i.e.,

Ox(U) = {

Moreover, to define a differentiable or analytic map from X to Y, one can ask for a continuous
map f: X — Y with the extra property that:

for all open'V C Y and all a € Oy (V), the compositie function aof on f~1(V)
should be in Ox(f~1(V)).

Then we get a homomorphism:

ring of real-valued differentiable or
complex-valued analytic functions on U |

L(V,0y) — T(f71(V),0x)
ar—aof
automatically from the map f on the topological spaces. Note that this homomorphism does
have properties (a) and (b) of our definition. (a) is obvious. To check (b), note that the stalks
O, x of the structure sheaf are the rings of germs of differentiable or analytic functions at the
point z € X. Moreover, m, x is the ideal of germs a such that a(x) = 0, and
O x =my x @R -1, (differentiable case)
Orx =my x @C-1, (anallytic case)
where 1, represents the germ at x of the constant function a = 1 (i.e., every germ a equals
a(x) - 1z + b, where b(x) = 0). Then given a differentiable or analytic map f: X — Y, the
induced map on stalks f7: O,y — O, x is just the map on germs a — a o f, hence
acemyy <= a(y) =0
<= aof(x)=0
= fra € myx.
The new feature in the case of schemes is that the structure sheaf Oy is not equal to a sheaf of
functions from X to any field k: it is a sheaf of rings, possibly with nilpotent elements, and whose
“values” a(x) lie in different fields k(x) as x varies. Therefore the continuous map f: X — Y
does not induce a map f*: Oy — Ox automatically. However property (b) does imply that f*

is compatible with “evaluation” of the elements a € Oy (U), i.e., the homomorphism f induces
one on the residue fields:

k(y) = Oy,Y/my,Y Ox,X/mx,X = ]k({L')
Note that it is injective, (like all maps of fields), and that using it (b) can be strengthened to:

(b') For all V. C Y, and 2 € f~1(V), let y = f(x) and identify k(y) with its image in k(x)
by the above map. Then

f# modulo maximal ideals

for all a € I'(V, Oy).
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Given two morphisms X Loy andy %z , we can define their composition gof: X — Z
in an obvious way. This gives us the category of schemes. Also very useful are the related
categories of “schemes over 5.

DEFINITION 3.6. Fix a scheme S, sometimes referred to as the base scheme. Then a scheme
over S, written X /S, is a scheme X plus a morphism px: X — S. If S = Spec(R), we call this
simply a scheme over R or X/R. If X/S and Y/S are two schemes over S, an S-morphism from
X/S to Y/S is a morphism f: X — Y such that the diagram

f
X——Y

N

S

commutes.
The following theorem is absolutely crucial in tying together these basic concepts:

THEOREM 3.7. Let X be a scheme and let R be a ring. To every morphism f: X — Spec(R),
associate the homomorphism:

R=T (SpeC(R), OSpec(R)) f—> F(X, OX)

Then this induces a bijection between Hom (X, Spec(R)) in the category of schemes and Hom(R,T'(X, Ox))
in the category of rings.

ProoF. For all f’s, let A;: R — I'(X,Ox) denote the induced homomorphism. We first
show that f is determined by A;. We must begin by showing how the map of point sets
X — Spec(R) is determined by Ay. Suppose x € X. The crucial fact we need is that since
p ={a € R | a([p]) = 0}, a point of Spec(R) is determined by the ideal of elements of R
vanishing at it. Thus f(z) is determined if we know {a € R | a(f(z)) = 0}. But this equals
{a € R| f;(a)(x) =0}, and f;(a) is obtained by restricting A¢(a) to Oy x. Therefore

f(z) =[{a e R|(Afa)(z) = 0}].

Next we must show that the maps f}; are determined by Ay for all open sets U C Spec(R).
Since f* is a map of sheaves, it is enough to show this for a basis of open sets (in fact, if U = |J U,
and s € I'(U, Ogpec(ry), then ff(s) is determined by its restrictions to the sets f~1(U,), and
these equal f7; (resyu, s)). Now let Y = Spec(R) and consider f* for the distinguished open
set Yy. It makes the diagram

*

%,
L(f1(V),0x) «—T'(¥},,Oy) = Ry

T res Tres

Af
NX,0x)«——I'(Y,0y) =R
commutative. Since these are ring homomorphisms, the map on the ring of fractions Rp is
determined by that on R: thus Ay determines everything.
Finally any homomorphism A: R — I'(X, Ox) comes from some morphism f. To prove this,
we first reduce to the case when X is affine. Cover X by open affine sets X,. Then A induces

homomorphisms
res

Aai R — F(X, OX) — F(XOUOXQ).
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Assuming the result in the affine case, there is a morphism f,: X, — Spec(R) such that
Ay = Ay,. On X, N Xg, fo and fg agree because the homomorphisms

I'(Xq, Ox)
Aa &
k %

F(Xﬁv OX)

R F(XaﬂXg,Ox)

agree and we know that the morphism is determined by the homomorphism. Hence the f, patch
together to a morphism f: X — Spec(R), and one checks that Ay is exactly A.
Now let A: R — B be a homomorphism. We want a morphism

f: Spec(B) — Spec(R).
Following our earlier comments, we have no choice in defining f: for all points [p] € Spec(B),

F(Io]) = [A7 (p))-

This is continuous since for all ideals a C R, f~*(V(a)) = V(A(a)-B). Moreover if U = Spec(R)q,
then f~1(U) = Spec(B) (), so for ff; we need a map R, — Ba,). We take the localization of
A. These maps are then compatible with restriction, i.e.,

R, — Ba)

| !

Ry — Ba(a)-ap)

commutes. Hence they determine a sheaf map (in fact, if U = |JU,, U, distinguished, and
s € (U, Ogpec(r)) then the elements f7; (resy, s) patch together to give an element f7;(s) in
F(f_l(U),Ospec(B))). From our definition of f, it follows easily that f* on O4-1, takes the
maximal ideal m{4-1,) into my). U

COROLLARY 3.8. The category of affine schemes is equivalent to the category of commutative
rings with unit, with arrows reversed.

COROLLARY 3.9. If X is a scheme and R is a ring, to make X into a scheme over R is
the same thing as making the sheaf of rings Ox into a sheaf of R-algebras. In particular, there
is a unique morphism of every scheme to SpecZ: “SpecZ is a final object in the category of
schemes™!

Another point of view on schemes over a given ring A is to ask: what is the “raw data” needed
to define a scheme X over Spec A? It turns out that such an X can be given by a collection of
polynomials with coefficients in A and under suitable finiteness conditions (see Definition I1.2.6)
this is the most effective way to construct a scheme. In fact, first cover X by affine open sets
U, (possibly an infinite set) and let U, = Spec R,. Then each R, is an A-algebra. Represent
R, as a quotient of a polynomial ring:

Ro=AL.., X, /(. f9,.0)

where the féa) are polynomials in the variables X éa). The scheme X results from glueing a whole

lot of isomorphic localizations (Ua, )ga,ay @04 (Uay )ha,a,vs and these isomorphisms result from
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A-algebra isomorphisms:

1
Al xe, b /< IO
I 67 ) a »Jy 9
goqazl/(Xé 1))

1
AL X2 ——————— | e )
’ ga ) a y Jy )
ha1a2V(X( 2)) /

B
given by
X(ag) _ ¢a1a21162(. .. ,Xéal), .. )
& (gOélocQV)Nalo‘Q’/ﬁ?
X(al) _ 1’[}‘)‘10‘2%31(‘ ) Xgm), .. )
& (halazl/)Mala?”ﬁl

Thus the collection of polynomials f, g, h, ¢ and @ with coefficients in A explicitly describes
X. In reasonable cases, this collection is finite and gives the most effective way of “writing out”
the scheme X.

It is much harder to describe explicitly the set of morphisms from Spec R to X than it is to
describe the morphisms from X to Spec R. In one case this can be done however:

PrRoOPOSITION 3.10. Let R be a local ring with maximal ideal M. Let X be a scheme. To
every morphism f: Spec R — X associate the point x = f([M]) and the homomorphism

f;: OZ,X — O[M],SpecR = R.

Then this induces a bijection between Hom(Spec R, X) and the set of pairs (x,¢), where z € X
and ¢: Oy x — R is a local homomorphism.

(Proof left to the reader.)

This applies for instance to the case R = K a field, in which case Spec K consists in only
one point [M] = [(0)]. A useful example is:

COROLLARY 3.11. For every x € X, there is a canonical homomorphism

iz: Speck(x) — X
defined by requiring that Image(i,) = x, and that
iyt Oz x — O[0)]Speck(z) = k(%)
be the canonial map. For every field k, every morphism
f: Speck — X
factors uniquely:
Spec k L+ Speck(z) NS¢

where x = Image(f) and g is induced by an inclusion k(x) — k.
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4. Products

There is one exceedingly important and very elementary existence theorem in the category
of schemes. This asserts that arbitrary fibre products exist:
Recall that if morphisms:

X Y
N s
S
are given, a fibre product is a commutative diagram
X x S Y
X Y
N ) o

with the obvious universal property: i.e., given any commutative diagram

lh/Z\i]z
X Y
N
S

there is a unique morphism t: Z — X xgY such that g1 = p1ot, go = ps ot. The fibre product
is unique up to canonical isomorphism. When S is the final object SpecZ in the category of
schemes, we drop the S and write X x Y for the product.

THEOREM 4.1. If A and B are C-algebras, let the diagram of affine schemes
Spec(A ®¢ B)
— T~
\ /
Spec(C)

Spec(A) Spec(B)

be defined by the canonical homomorphisms C — A, C — B, A - A®c B (a — a® 1),
B - A®c B (b— 1®b). This makes Spec(A ®c B) a fibre product of Spec(A) and Spec(B)
over Spec(C).

THEOREM 4.2. Given any morphismsr: X — S, s:' Y — S, a fibre product exists.

PROOF OF THEOREM 4.1. It is well known that in the diagram (of solid arrows):

/\

A®034>D
B//

the tensor product has the universal mapping property indicated by dotted arrows, i.e., is the
“direct sum” in the category of commutative C-algebras, or the “fibre sum” in the category of
commutative rings. Dually, this means that Spec(A ®¢ B) is the fibre product in the category
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of affine schemes. But if T" is an arbitrary scheme, then by Theorem 3.7, every morphism of T
into any affine scheme Spec(F) factors uniquely through Spec(I'(T, Or)):

T Spec(E)

\ /),
~

Spec(I'(T, (’):r))

Using this, it follows immediately that Spec(A ®¢ B) is the fibre product in the category of all
schemes. O

Theorem 4.1 implies for instance that:
A% = Ay x Spec R.

PROOF OF THEOREM 4.2. There are two approaches to this. The first is a patching argu-
ment that seems quite straightforward and “mechanical”, but whose details are really remarkably
difficult. The second involves the direct construction of X xgY as a local ringed space and then
the verification that locally it is indeed the same product as that given by Theorem 4.1. We will
sketch both. For the first, the main point to notice is this: suppose

» XXSYP

1 2

X/ \Y
N A

is some fibre product and suppose that X, C X, Yo C Y and S, C S are open subsets. Assume
that r(X,) C S, and s(Y5) C So. Then the open subset

pr(Xo) Npp ' (Ya) € X x5 Y

is always the fibre product of X, and Y, over S,. This being so, it is clear how we must set
about constructing a fibre product: first cover S by open affines:

Spec(Cy) = Wy, C S.

Next, cover 7~ (W},) and s~1(W},) by open affines:

Spec(Ay,;) = Ug; C X,

Spec(By;) = Vi; C Y.
Then the affine schemes:

Spec(Ax,i ®@c;, Brj) = P
must make an open affine covering of X x5 Y if it exists at all. To patch together ®; ; ; and
v 7, let p1, pa, and p}, py stand for the canonical projections of ®j;; and Py v j» onto its
factors. Then one must next check that the open subsets:
P1 (Ui N Uk ir) O p3 " (Vi N Viejr) © P
and
() (Urrir N Uki) 0 (95) ™ (Vi jr O Vi j) © P i o

are both fibre products of Up; N Uy » and Vi ; N Vi j» over S. Hence they are canonically
isomorphic and can be patched. Then you have to check that everything is consistent at triple
overlaps. Finally you have to check the universal mapping property. All this is in some sense

obvious but remarkably confusing unless one takes a sufficiently categorial point of view. For
details, cf. EGA [1, Chapter I, pp. 106-107].
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The second proof involves explicitly constructing X xgY as a local ringed space. To motivate
the construction note that if 2 € X xgY liesover x € X, y € Y and s € S, then the residue
fields of the four points lie in a diagram:

ot k(z) -
AN
k() k(y)
N
k(s)

From Theorem 4.1, one sees that the local rings of X xg Y are generated by tensor product of
the local rings of X and Y and this implies that in the above diagram k(z) is the quotient field
of its subring k(z) - k(y), i.e., k(z) is a compositum of k(x) and k(y) over k(s). We may reverse
these conclusions and use them as a basis of a definition of X xg Y

i) As a point set, X xgY is the set of 5-tuples (z,y, L, o, ) where
reX, yevy,

lie over the same point s € S and

L = a field extension of k(s)

a, B are homomorphisms:
o,
x) k(

N
k(s)

k( Y)

such that
L = quotient field of k(x) - k(y).

Two such points are equal if the points x, y on X and Y are equal and the corresponding
diagrams of fields are isomorphic.
ii) As a topological space, a basis of open sets is given by the distinguished open sets

UV, W {fi};, {a})

where
V C X is affine open
W C Y is affine open
fie Ox(V)
g1 € Oy (W)
U={(z,y, L, ) [z €Vy e W,
Za(fl) - B(g1) # 0 (this sum taken in L)}.
l

iii) The structure sheaf Ox .y is defined as a certain sheaf of maps from open sets in
X xXgY to:

T %ures
z7y)L7a’ﬂ
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where
localization of O, x R0, s Oyy
O(m,y,Lu:ﬂ) = | at p= Ker((?w Ko, Oy —ﬁ> L)
a®

(i.e., the elements of the sheaf will map points (z,y, L,a, 5) € X XgY to elements of
the corresponding ring O, 1,4,8)-) The sheaf is defined to be those maps which locally
are given by expressions

Shoa
> [ ®g
fi, fl € Ox(V)
91,91 € Oy (W)
on open sets UV, W, {f/}.{qg/}).

This certainly gives us a local ringed space, but it must be proven to be a scheme and to be the
fibre product. We will not give details. For the first, one notes that the construction is local on
X and Y and hence it suffices to prove that if X = Spec R’, Y = Spec S’ and S = Spec A, then
the local ringed space X xg Y constructed above is simply Spec(R’ ®4 S’). The first step then
is to verify:

LEMMA 4.3. The set of prime ideals of R® 4 S is in one-to-one correspondence with the set
of 5-tuples (pr,ps, L, o, B) where pr C R and ps C S are prime ideals with the same inverse
image pa C A and (L, o, B) is a compositum of the quotient fields of R/pr, S/ps over A/pa.

The proof is straightforward.

COROLLARY 4.4 (of proof). As a point set, X xg Y is the set of pairs of points v € X,
y € Y lying over the same point of S, plus a choice of compositum of their residue fields up to
isomorphisms:

L. s
NG
x) k(

o
K(s)

k( Y)
O

Summarizing the above proof, we can give in a special case the following “explicit” idea of
what fibre product means: Suppose we are in the situation

Spec(B)

X
N s

Spec(A)
and that X = JU,, U, affine. Then each U, is Spec R, and via ¥,
Ro=AL.., X /(L 0

as in §3, where the fasa) are polynomials in the variables X éa). Represent the glueing between
the U,’s by a set of polynomials go,,a0,0s Par,a0,vs Par,asw,fe A Yoy as,0.8, as in §3 again. Let
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s correspond to a homomorphism o: A — B. If f is a polynomial over A, let °f denote the
polynomial over B gotten by applying o to its coefficients. Then

X Xgpec A Spec B = U Ua X8pec 4 Spec B

[0}

~ | JSpec [(A[. ..,Xé“),...]/(...,f§a>,...)) ®4 B}

o USpec [B[...,Xéa),...]/(...,"fﬂsa),...)] .

o

In other words, the new scheme X Xgpec a4 Spec B is gotten by glueing corresponding affines,
each defined by the new equations in the same variables gotten by pushing their coefficients
from A to B via 0. Moreover, it is easy to see that the identification on (Us Xgpec 4 Spec B) N
(Ug Xgpec A Spec B) is gotten by glueing the distinguished opens %gq, 0., 7# 0 and ®ha; a0 # 0
by isomorphisms given by the polynomials % and °). Or we may simply say that the collection
of polynomials “f, g, °h, %p, %) with coefficients in B explicitly describes X Xsgpec 4 Spec B by
the same recipe used for X.

We can illustrate this further by a very important special case of fibre products: suppose
f+ X — Y is any morphism and y € Y. Consider the fibre product:

X xy Speck(y) — X

Ll

Speck(y) ——— Y
DEFINITION 4.5. Denote X xy Speck(y) by f~!(y) and call it the fibre of f over y.

To describe f~1(y) explicitly, let U C Y be an affine neighborhood of y, let U = Spec(R),
and y = [p]. It is immediate that the fibre product X xy U is just the open subscheme f~1(U)
of X, and by associativity of fibre products, f~1(y) = f~1(U) xy Speck(y). Now let f~1(U) be
covered by affines:

Vo = Spec(Sa)
Sa = R, X /G 9,00,
Then f~!(y) is covered by affines
Vo N f7H(y) = Spec(Sa @r k(y))
= Spec k(;,)[...,X}f%...]/(...jg“),...)}

(f = polynomial gotten from f via coefficient homomorphism R — k(y)). Notice that the
underlying topological space of f~!(y) is just the subspace f~1(y) of X. In fact via the ring
homomorphism
(z) )
Sa = (Sa/PSa) (r/p\(0)) = Sa @R k(y)
the usual maps

q——— &(a) - (Sa/PSa) (r/p\ (0)

¢~ (a) < K
set up a bijection between all the prime ideals of (Sa/pSa)(R/p\(O)) and the prime ideals q C S,
such that ¢ N R = p, and it is easily seen to preserve the topology. This justifies the notation

().
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5. Quasi-coherent sheaves

For background on kernels and cokernels in the category of sheaves of abelian groups, see the
Appendix to this chapter. If (X, Ox) is a scheme, the sheaves of interest to us are the sheaves F
of Ox-modules (Definition 2.1). These form an abelian category too, if we consider Ox-linear
homomorphisms as the maps. (In fact, given a: F — G, the sheaf U — Ker(a: F(U) — G(U))
is again a sheaf of Ox-modules; and the sheafification of U — G(U)/aF(U) has a canonical
Ox-module structure on it.) The most important of these sheaves are the quasi-coherent ones,
which are the ones locally isomorphic to the sheaves M defined in §2:

PROPOSITION-DEFINITION 5.1. Let X be a scheme and F a sheaf of Ox-modules. The
following are equivalent:
i) for allU C X, affine and open, F|y = M for some T'(U, Ox)-module M,
ii) 3 an affine open covering {Uy} of X such that F|y, = M, for some I'(Uy, Ox)-module
Mo,
iii) for all x € X, there is a neighborhood U of x and an exact sequence of sheaves on U:

(Ox|v)" = (Ox|v)” = Flu =0
(where the exponents I, J denote direct sums, possibly infinite).

If F has these properties, we call it quasi-coherent.

PROOF. It is clear that (i) = (ii). Conversely, to prove (ii) = (i), notice first that if U is
an open affine set such that F|y = M for some I'(U, Ox)-module M, then for all f € T'(U, Ox),
Flu, = My. Therefore, starting with condition (ii), we deduce that there is a basis {U;} for

the topology of X consisting of open affines such that F|y, = M;. Now if U is any open affine
set and R = I'(U, Ox), we can cover U by a finite number of these U;’s. Furthermore, we can
cover each of these U;’s by smaller open affines of the type Uy, g € R. Since U, = (U;)y, Flu,

P

is isomorphic to (M;)s. In other words, we get a finite covering of U by affines Uy, such that
Flu,, & Ni, Ni an Rg,-module.
For every open set V' C U, the sequence
0—T(V,F) — [[r(VnU,, F) — [[T(V U, NU,,, F)
( ,J

is exact. Define new sheaves F" and F; by:

LV, 7)) =LV NnUy, F)
LV, F) =T(V Uy, NUg,, F).
Then the sequence of sheaves:
0—F—[[7 — 1175
i i

is exact, so to prove that F is of the form M , it suffices to prove this for F and .7-"i*j. But if

7

My is M; viewed as an R-module, then F;" = ]’\4:5 In fact, for all distinguished open sets Uy,
F(Ugj}—z’*> = F(Ug N Ugi’F)
= F((Ugi)g7f’Ugi)
= (Mi)g
= (U, My).

The same argument works for the F/,’s.
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Uy Uz

[(0)]

generic pt

(0]
[M]
closed pt

FiGure I.1. The Spectrum of a discrete valuation ring

Next, (i) = (iii) because if Fly, = My, write M, by generators and relations:
Rl — R — M, —0
where R, = I'(U,, Ox). By Corollary 2.5
(/R\gj — @ — M, — 0

is exact. But Rq = Ox|u, since U, is affine and " commutes with direct sums (even infinite
ones by Proposition 2.7) so we get the required presentation of F|y, .

Finally (ili) == (ii). Starting with (iii), we can pass to smaller neighborhoods so as to
obtain an affine open covering {U,} of X in which presentations exist:

h
(Oxlv,)! — (Ox|v,)” — Flo, ——0

| |
(Rg) (RY)
By Proposition 2.2, h is induced by an R,-homomorphism k: R, — RJ. Let M, = Coker(k).
Then by Proposition 2.4, M, = Fly, . O

COROLLARY 5.2. If a: F — G is an Ox-homomorphism of quasi-coherent sheaves, then
Ker(«) and Coker(«) are quasi-coherent.

PRrOOF. Use characterization (i) of quasi-coherent and Proposition 2.4. O

We can illustrate the concept of quasi-coherent quite clearly on Spec R, R a discrete valu-
ation ring. R has only two prime ideals, (0) and M the maximal ideal. Thus Spec R has two
points, one in the closure of the other as in Figure I.1: and only two non-empty sets: U; consist-
ing of [(0)] alone, and U, consisting of the whole space. M is principal and if 7 is a generator,
then Uj is the distinguished open set (Spec R),. Thus:

a) the structure sheaf is:
OSpecR(U2) - R,

Ospecr(U1) = R [H

= quotient field K of R
b) general sheaf of abelian groups is a pair of abelian groups
F(Uy), F(Us) plus a homomorphism res: F(Us) — F(Uy),

c) general sheaf of Ogpec g-modules is an R-module F(Us), a K-vector space F(U;) plus
an R-linear homomorphism res: F(Us) — F(Uy),
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d) quasi-coherence means that F = F(Us), i.e., res factors through an isomorphism:
F(U) — F(U2) @r K = F(Uh).
The next definition gives the basic finiteness properties of quasi-coherent sheaves:

DEFINITION 5.3. A quasi-coherent sheaf F is locally of finite type if every x € X has a
neighborhood U in which there is a surjective Ox-homomorphism:

(OX‘U)” — .F‘U —0

some n > 1. F is locally of finite presentation, or coherent® if every x € X has a neighborhood
U in which there is an exact sequence:

(Oxl(])m — (OxlU)n — ]:’U — 0.

F is locally free (of finite rank) if every z € X has a neighborhood U in which there is an
isomorphism
(Ox[v)" — Flu-

The techniques used in the proof of Proposition 5.1 show easily that if U C X is affine and
open and F is locally of finite type (resp. coherent), then F|;; = M where M is finitely generated
(resp. finitely presented) as module over I'(U, Ox).

REMARK. (Added in publication) Although the notion of “locally of finite presentation”
coincides with that of “coherent” for X locally noetherian, the standard definition of the latter
is slightly different for general X. A quasi-coherent Ox-module F is said to be coherent, if

e F is locally of finite type over Ox, and
e for every affine open U C X and every Op-linear homomorphism h: (Oy)™ — F|y, the
kernel of h is of finite type.

Note that if X is covered by a finite number of affine opens U; such that the above property
holds for each (U;, Fly,), then F is coherent.

Here are the basic properties of Ox-modules that are locally of finite presentation or coher-
ent:

(1) If H is an Ox-module that is locally of finite presentation, then for every Ox-module
G and every x € X, the natural map

(/HOmOX (Ha g))x — HOHI(;)X,E (/Hx’ gfr)

is an isomorphism.

(2) If ¢: F — G is an Ox-linear homomorphism between coherent Ox-modules, then
Ker(¢), Coker(¢), Image(¢) and Coimage(¢) are all coherent Ox-modules.

(3) If 0 - Fi — Fa2 — F3 — 0 is a short exact sequence of quasi-coherent Ox-modules
such that F; and F3 are coherent, then Fy is coherent. (Actually, the statement
remains valid if we only assume F5 to be an Ox-module instead of a quasi-coherent
Ox-module.)

(4) If F and G are coherent Ox-modules, then F ®p, G and Homp, (F,G) are coherent
Ox-modules.

(5) Ox is a coherent Ox-module if and only if X is locally noetherian.

3IF X is locally noetherian, i.e., X is covered by Spec R’s with R noetherian (see §I1.2), then it is immediate
that a quasi-coherent F locally of finite type is also coherent; and that sub- and quotient-sheaves of coherent F’s
are automatically coherent. The notion of coherent will not be used except on noetherian X’s. (What about
§IV.47)
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(6) If X is locally noetherian, then a quasi-coherent Ox-module is coherent if and only if
it is locally of finite type over Ox.

The proof is left to the reader.
Here is an unpleasant example: Let k be a field. For each integer n > 1, let

R, = k[xg, x1,. .. ,a:n]/(x(%,:noxl,a:oxg, ey TOTy)

for variables zg,x1,...,2,. Let R := [],~; Rn, and let u € R be the element whose n-th
component is the image of zg in R,,. Let X = Spec R, and let ¢: Ox — Ox be the Ox-linear
homomorphism given by the multiplication by u € R. Then Ker(¢) is the quasi-coherent Ox-
ideal associated to the ideal I := [],~; I of R, where I,, is the ideal of R,, generated by the
images of zg,21,...,%, in R,. It is easy to see that I is not a finitely generated ideal of R,
hence Ox is not a coherent O x-module.

DEFINITION 5.4. Let F be a quasi-coherent sheaf on a scheme X. Then for all x € X, in
addition to the stalk of F at =, we get a vector space over k(x) the residue field:

F(x) = Fr @ k(z)
I‘kx F = dimk(x) .F(JZ)
4

A very important technique for quasi-coherent sheaves locally of finite type is Nakayama’s
lemma:

ProPOSITION 5.5 (Nakayama). Let F be a quasi-coherent sheaf locally of finite type on a
scheme X. Then

i) if z € X and if the images of s1,...,sy € Fy in F(x) span the vector space F(z), then

the s; extend to a neighborhood of x on which they define a surjective homomorphism

(OxlU)n M) .F‘U — 0

on U. When this holds, we say that s1,...,s, generate F over U.

ii) if rky F =0, then x has a neighborhood U such that F|y = {0}.

iii) rk: @ — rky F is upper semi-continuous, i.e., for all k > 0, {x € X | tky F < k} is
open.

iv) (Added in publication) (cf. Mumford [86, Souped-up version II, Chap. III, §2, p. 213])
Suppose X is noetherian and reduced. Then tk is locally constant if and only if F is
locally free.

PROOF. (i) is the geometric form of the usual Nakayama lemma. Because of its importance,
we recall the proof. (i) reduces immediately to the affine case where it says this:

R any commutative ring, p a prime ideal, M an R-module, generated by
mi,...,mg. If ny,...,n; € M satisfy

n1,...,n; generate M, @ k(p) over k(p)
then 3f € R\ p such that

ni,...,n generate My over Ry.

4(Added in publication) According to Nakayama himself, this lemma should be attributed to Krull-Azumaya-
Nakayama, or, NAK.
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But the hypothesis gives us immediately:
a;m; = Zbijnj + ch-jmj, 1<i<k

for some a; € R\ p, bjj € R, ¢;j € p. Solving these k equations for the m; by Cramer’s rule, we
get

!
(c;eqt(apépq - cpq)> -my = Z bijn;.
3 le

Let f be this determinant. Then f ¢ p and ny,...,n; generate My over Ry.
(ii) and (iii) are immediate consequences of (i). O

The following Corollary is often useful:

COROLLARY 5.6. Let X be a quasi-compact scheme, F a quasi-coherent sheaf of Ox -modules
locally of finite type. Suppose that for each x € X, there exists a finite number of global sections
of F which generate F(x). Then there exists a finite number of global sections of F that generate
F everywhere.

An important construction is the tensor product of quasi-coherent sheaves. The most general
setting for this is when we have

plXXSYPQ
X/ \Y
N T

F quasi-coherent on X
G quasi-coherent on Y.

Then we can construct a quasi-coherent sheaf 7 ®o, G on X X gY analogously to our definition
and construction of X xg Y itself—viz.?

Step I: characterize F®p,G by a universal mapping property: consider all quisi-coherent®
sheaves of Ox«y-modules H plus collections of maps:

FU)x G(V) = H(p'UNpy'V)

(U C X and V C Y open) which are Ox(U)-linear in the first variable and Oy (V)-
linear in the second and which commute with restriction. F ®o4G is to be the universal
one.
Step II: Show that when X = Spec A, Y = Spec B, S = SpecC, F = ]\7, g = N, then
(M ®c¢ N)N on Spec(A ®c¢ B) has the required property.
Step IIT: “Glue” these local solutions (M, ®c, Na)N together to form a sheaf F ®p, G.
We omit the details. Notice that the stalks of F ®o, G are given by:

If € X XxgY hasimagesz € X,y €Y and s € S,
localization of the O, x ®0, ¢ Oy y-module
(F®0sG), 2 Fr®o, s Gy with respect to the
prime ideal my x ® O%Y + O:p,X @myy
(Use the description of ® in the affine case.) Two cases of this construction are most important:
5(Added in publication) F Moy G is the accepted notation nowadays.
6In fact, F ®og G is universal for non-quasi-coherent H’s too.
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i) X =Y =5: Given two quasi-coherent Ox-modules F, G, we get a third one F ®o, G
with stalks F; ®o, y Gz On affines, it is given by:
M®SpecRﬁ = (M R N)N

ii) Y =5, F = Ox: Given a morphism r: X — Y and a quasi-coherent Oy-module G,
we get a quasi-coherent Ox-module Ox ®p, G. This is usually written r*(G) and has
stalks (r*G): = Oz x ®0,y Gy (y = r(x)). If X and Y are affine, say X = Spec(R),
Y = Spec(S), then it is given by:

(M) (M®sR)
The general case can be reduced to these special cases by formula:
F ®og G = nF ®OX><SY p3G.

Also iterating (i), we define F; ®o, -+ ®o, Fi; symmetrizing or skew-symmetrizing, we get
Symm® F and A* F just like the operations Symm®* M, /\k M on modules.
We list a series of properties of quasi-coherent sheaves whose proofs are straightforward

using the techniques already developed. These are just a sample from the long list to be found
in EGA [1].

5.7. If F is a quasi-coherent sheaf on X and T C Ox 1is a quasi-coherent sheaf of ideals,
then the sheaf
T F — subsheaf of F generated by
def | the submodules Z(U) - F(U)

is quasi-coherent and for U affine
Z-FU)=ZU)-F).
5.8. If F is quasi-coherent and U C'V C X are two affines, then
FU)=2FV) o) Ox(U).
5.9. Let X be a scheme and let
Uw— F(U)
be a presheaf. Suppose that for all affine U and all f € R=T1(U,Ox), the map
F(U) ®r Ry — F(Uy)
is an isomorphism. Then the sheafification sh(F) of F is quasi-coherent and
sh(F)(U) = F(U)
for all affine U.

5.10. If F is coherent and G is quasi-coherent, then Homo, (F,G) is quasi-coherent, with a
canonical homomorphism

F ®oy Homo (F,G) — G.
(cf. Appendiz to this chapter and Proposition 2.6.)

5.11. Let f: X — Y be a morphism of schemes, F a quasi-coherent sheaf on X and G a
quasi-coherent sheaf on'Y. Then

HOH’IOX (f*g7f) = Hom(’)y(gaf*]:)‘
(See (ii) above for the definition of f*G.)
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5.12. Let R be an S-algebra and let f: Spec R — Spec S be the corresponding morphism of
affine schemes. Let M be an R-module. Then M can be considered as an S-module too and we
can form Mg, Mg the corresponding sheaves on Spec R and SpecS. Then

f<(Mp) = Ms.
(cf. Appendiz to this chapter for the definition of f.)

6. The functor of points

We have had several indications that the underlying point set of a scheme is peculiar from
a geometric point of view. Non-closed points are odd for one thing. Another peculiarity is that
the point set of a fibre product X xgY does not map injectively into the set-theoretic product
of X and Y. The explanation of these confusing facts is that there are really two concepts of
“point” in the language of schemes. To see this in its proper setting, look at some examples in
other categories:

ExaMpPLE. Let C = category of differentiable manifolds. Let z be the manifold with one
point. Then for any manifold X,

Mor¢(z, X) = X as a point set.
EXAMPLE. Let C = category of groups. Let z = Z. Then for any group G
Mor¢(z,G) = G as a point set.
ExAMPLE. Let C = category of rings with 1 (and homomorphisms f such that f(1) = 1).
Let z = Z[X]. Then for any ring R,
Mor¢(z, R) 2 R as a point set.
This indicates that if C is any category, whose objects may not be point sets to begin with,

and z is an object, one can try to conceive of Mor¢(z, X) as the underlying set of points of the
object X. In fact:

X — Mor¢(z, X)

extends to a functor from the category C to the category (Sets), of sets. But, it is not satisfactory
to call Mor¢(z, X) the set of points of X unless this functor is faithful, i.e., unless a morphism
f from X7 to Xo is determined by the map of sets:

f: More(z, X1) — More(z, Xa).
EXAMPLE. Let (Hot) be the category of CW-complexes, where
Mor(X,Y)

is the set of homotopy-classes of continuous maps from X to Y. If z = the 1 point complex,
then

Mor (ot (2, X) = mo(X), (the set of components of X)

and this does not give a faithful functor.

ExXaAMPLE. Let C = category of schemes. Take for instance z to be the final object of the
category C: z = Spec(Z). Now
Mor¢(Spec(Z), X)

is absurdly small, and does not give a faithful functor.



6. THE FUNCTOR OF POINTS 27

Grothendieck’s ingenious idea is to remedy this defect by considering (for arbitrary categories
C) not one z, but all z: attach to X the whole set:

UMorc(z,X).

In a natural way, this always gives a faithful functor from the category C to the category (Sets).
Even more than that, the “extra structure” on the set |J, Mor¢(z, X) which characterizes the
object X, can be determined. It consists in:
i) the decomposition of | J, Mor¢(z, X) into subsets S, = Mor¢(z, X ), one for each z.
ii) the natural maps from one set S, to another S,/, given for each morphism ¢: z’ — z in
the category.
Putting this formally, it comes out like this:
Attach to each X in C, the functor hx (contravariant, from C itself to (Sets)) via
(%) hx(z) = More(z, X), z an object in C.
(xx) hx(g) = [induced map from Mor¢(z, X') to More(z', X)], g: 2 — z a morphism in C.

Now the functor hx is an object in a category too: viz.
Funct(C®, (Sets)),

(where Funct stands for functors, C° stands for C with arrows reversed). It is also clear that if
g: X1 — X5 is a morphism in C, then one obtains a morphism of functors hy: hx, — hx,. All
this amounts to one big functor:

h: C — Funct(C?, (Sets)).
PROPOSITION 6.1. h is fully faithful, i.e., if X1, Xo are objects of C, then, under h,
More (X1, X2) — Morpunct (hx,, hx,)-
PrRoOOF. Easy. O

The conclusion, heuristically, is that an object X of C can be identified with the functor hx,
which is basically just a structured set.
Return to algebraic geometry! What we have said motivates I hope:

DEFINITION 6.2. If X and K are schemes, a K -valued point of X is a morphism f: K — X;
if K = Spec(R), we call this an R-valued point of X. If X and K are schemes over a third
scheme S, i.e., we are given morphisms px: X — 5, px: K — 5, then f is a K-valued point
of X/S if px o f = px; if K = Spec(R), we call this an R-valued point of X/S. The set of all
R-valued points of a scheme X, or of X/, is denoted X (R).

Proposition 3.10, translated into our new terminology states that if R is a local ring, there
is a bijection between the set of R-valued points of X and the set of pairs (z, ¢), where x € X
and ¢: Op x — R is a local homomorphism. Corollary 3.11 states that for every point z € X in
the usual sense, there is a canonical k(z)-valued point i, of X in our new sense. In particular,
suppose X is a scheme over Speck for a field k: then there is a bijection

set of points z € X such that
= ¢ the natural map k — k(z)
is surjective

set of k-valued points
of X/ Speck

given by associating i, to z. Points z € X with k — k(z) are called k-rational points of X.
K-valued points of a scheme are compatible with products. In fact, if K, X, Y are schemes
over S, then the set of K-valued points of (X xgY)/S is just the (set-theoretic) product of the
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set of K-valued points of X/S and the set of K-valued points of Y/S. This is the definition of
the fibre product.

The concept of an R-valued point generalizes the notion of a solution of a set of diophantine
equations in the ring R. In fact, let:

fl,...,fm S Z[Xl,,Xn}
X = Spec(Z[Xb s 7Xn]/(f17 e afm))

I claim an R-valued point of X is the “same thing” as an n-tuple aq,...,a, € R such that

filar,...,;an) == fm(ai,...,a,) =0.

But in fact a morphism
SpeC(R) i> SpeC(Z[X17 cee 7Xn]/(f17 RS fm))

is determined by the n-tuple a; = ¢*(X;), 1 <i < n, and those n-tuples that occur are exactly
those such that h +— h(aq,...,a,) defines a homomorphism

R(ﬂZ[Xl,---7Xn]/(f17---afm)7

i.e., solutions of fi,..., fm.

An interesting point is that a scheme is actually determined by the functor of its R-valued
points as well as by the larger functor of its K-valued points. To state this precisely, let X be a
scheme, and let hg?) be the covariant functor from the category (Rings) of commutative rings
with 1 to the category (Sets) defined by:

h)(R) = hx (Spec(R)) = Mor(Spec(R), X).

(©)

Regarding Ay’ as a functor in X in a natural way, one has:

PROPOSITION 6.3. For any two schemes X1, Xo,
Mor (X1, X3) — Mor(hg?z,h(;;).
Hence h'© is a fully faithful functor from the category of schemes to
Funct((Rings), (Sets)).

This result is more readily checked privately than proven formally, but it may be instructive
to sketch how a morphism F': hg — hg?g will induce a morphism f: X; — Xs. One chooses an

affine open covering U; = Spec(4;) of X7; let
I;: Spec(Ai) =2U, = Xy
be the inclusion. Then I; is an A;-valued point of X;. Therefore F(I;) = f; is an A;-valued
point of X, i.e., f; defines
UZ‘ = Spec(Ai) — X2.
Modulo a verification that these f; patch together on U; NUj, these f; give the morphism f via

U~ x,,

n /
f
X1
Proposition 6.3 suggests a whole new approach to the foundations of the theory of schemes.

Instead of defining a scheme as a space X plus a sheaf of rings Ox on X, why not define a
scheme as a covariant functor F' from (Rings) to (Sets) which satisfies certain axioms strong
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enough to show that it is isomorphic to a functor hg?) for some scheme in the usual sense? More

precisely:

DEFINITION 6.4. A covariant functor F': (Rings) — (Sets) is a sheaf in the Zariski topology
if for all rings R and for all equations

n
1=>"figi
i=1

then

a) the natural map F(R) — [[, F'(Ry,) is injective
b) for all collections s; € F'(Ry,) such that s; and s; have the same image in F(Ry,y,),
there is an s € F/(R) mapping onto the s;’s.

If F is a functor and £ € F(R), we get a morphism of functors:
¢¢: hg — F
i.e., a set of maps
51 hr(S) = Hom(R, S) = F(S5)

given by:

VR = S

e,s(@) = F()(§)-
If a C R is an ideal, define the subfunctor

® Chr

by
he(S) = set of all homomorphisms a: R — S
R | such that a(a)-S =S .
DEFINITION 6.5. Let F': (Rings) — (Sets) be a functor. An element £ € F(R) is an open
subset if

a) ¢¢: hp — F is injective
b) for all rings S and all n € F(5), consider the diagram:

hpf—) F
be
-
hs

Then there is an ideal a C S such that ¢, Y(hg) = subfunctor h% of hg.

DEFINITION 6.6. A functor F': (Rings) — (Sets) is a scheme functor if

a) it is a sheaf in the Zariski-topology,
b) there exist open subsets &, € F(R,) such that for all fields &,

P(k) = ¢e.hra (k).
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We leave it to the reader now to check that the scheme-functors F' are precisely those given

by
F(R) = Mor(Spec R, X)

for some scheme X. This point of view is worked out in detail in Demazure-Gabriel [35].
It is moreover essential in a very important generalization of the concept of scheme which
arose as follows. One of the principal goals in Grothendieck’s work on schemes was to find a
characterization of scheme-functors by weak general properties that could often be checked in
practice and so lead to many existence theorems in algebraic geometry (like Brown’s theorem” in
(Hot)). It seemed at first that this program would fail completely and that scheme-functors were
really quite special®;but then Artin discovered an extraordinary approximation theorem which
showed that there was a category of functors F' only a “little” larger than the scheme-functors
which can indeed be characterized by weak general properties. Geometrically speaking, his
functors F' are like spaces gotten by dividing affines by étale equivalence relations (cf. Chapter
V) and then glueing. He called these algebraic spaces (after algebraic functions, i.e., meromorphic
functions on C satisfying a polynomial equation; see Artin [16], [17], [18], [19], Knutson [71])°.

7. Relativization

The goal of this section is to extend the concept of Spec in a technical but very important
way. Instead of starting with a ring R and defining a scheme Spec R, we want to start with a
sheaf of rings R on an arbitrary scheme X and define a scheme over X, w: Specy R — X. More
precisely, R must be a quasi-coherent sheaf of Ox-algebras. We may approach the definition of
Specx R by a universal mapping property as follows:

THEOREM-DEFINITION 7.1. Let X be a scheme and let R be a quasi-coherent sheaf of Ox -
algebras. Then there is a scheme over X:

m: Specy R = X
and an isomorphism of Ox-algebras:
R i> W*(OSpecX R)

uniquely characterized by the property:
For all morphisms
Y —=>X
plus homomorphisms of Ox -algebras

a: R — f.(Oy)

there is a unique factorization:

Y -9 Specx R

N

R i> 7I'>|<((98pecx R) g_> f*(OY)

for which « is given by g*:

"See Spanier [109, Chapter 7, §7].
8See for instance Hironaka [60] and Mumford [83, p. 83].
9(Added in publication) For more details and later developments see, §8 below and, e.g., FAG [3].
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The situation is remarkably similar to the construction of fibre products:
Firstly, if X is affine, then this existence theorem has an immediate solution:

Specy R = Spec(R(X)).

The universal mapping property is just a rephrasing of Theorem 3.7 and (5.12).

Secondly, we can use the solution in the affine case to prove the general existence theorem
modulo a patching argument. In fact, let U, be an affine open covering of X. Then the open
subset

71 (Uy,) C Specy(R)
will have to be
Specy, (Rlu.)
(just restrict the universal mapping property to those morphisms f:Y — X which factor
through U, ). Therefore Specy (R) must be the union of affine open pieces Spec(R(U,)). To use
this observation as a construction for all o, 8, we must identify the open subsets below:
??

Spec(R(Ua)) > 75t (Ua NUp) === (Us N Up) © Spec(R(Up))

T S

U, > UanNUs c Ug

Note that
Wa,*(OSpecR(Ua)) = R‘Ua
by (5.12) hence
F(ﬂ(;l(Ua N Uﬁ)7 OSpecR(Ua)) = R(Ua N Uﬁ)
Composing this with
R(UB) — R(Ua N Ug)
res
and using Theorem 3.7, we get a morphism
75 (Us NUg) — Spec R(Up)
that factors through ﬂﬂ_l(Ua NUg). Interchanging o and 3, we see that we have an isomorphism.
Thirdly, we can also give a totally explicit construction of Specy R as follows:
i) as a point set, Specy R is the set of pairs (z,p), where z € X and p C R, is a prime
ideal such that if
1: Op — Ry
is the given map, then
iil(p) = My
ii) as a topological space, we get a basis of open sets:
{U(V, f) | V C X open affine, f € R(V)}

where

UV, f)={(z,p) |z €V, f¢p}

iii) the structure sheaf is a certain sheaf of functions from open sets in Specy R to
H(RI)P’
z,p
namely the functions which are locally given by f/f’, f, f/ € R(V), on U(V, f).

COROLLARY 7.2 (of proof). m has the property that for all affine open sets U C X, 7= 1(U)
s affine.
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In fact, we can formulate the situation as follows:

PROPOSITION-DEFINITION 7.3. Let f: Y — X be a morphism of schemes. Then the follow-
ing are equivalent:

i) for all affine open U C X, f~1(U) is affine,
ii) there is an affine open covering {U,} of X such that f~1(Uy,) is affine,
iii) there is a quasi-coherent Ox-algebra R such that

Y = Specyx(R).
Such an f is called an affine morphism.

PRrROOF. (i) = (ii) is obvious.
(iii) = (i) has just been proven.
(ii) = (iii): let R = f.Oy. Note that if V,, = f~1(U,) and f,, is the restriction of f to

fa: Vo — U,

then f.Oy, is quasi-coherent by (5.10). But R|y, = f.Oy,, so R is quasi-coherent. Now
compare Y and Specy R. Using the isomorphism

[+Oy =R = 71'>»<(OSpecX R)

the universal mapping property for Specy R gives us a morphism ¢

Y _°* Specx R

N

fHUa) = Specy, (£:0v]u.)
= Specy, (Rlv.)
= W_I(Ua)

But f~1(U,) is affine, so

hence ¢ is an isomorphism. O

8. Defining schemes as functors
(Added in publication)
To illustrate the power of Grothendieck’s idea (cf. FGA [2]) referred to in §6, we show

examples of schemes defined as functors.
For any category C we defined in §6 a fully faithful functor

h : C — Funct(C®, (Sets)).

Here is a result slightly more general than Proposition 6.1:

PROPOSITION 8.1 (Yoneda’s lemma). For any X € C and any F € Funct(C°, (Sets)), we
have a natural bijection

F(X) = Morpunct(hx, F).

The proof is again easy, and can be found in EGA [1, Chapter 0 revised, Proposition (1.1.4)].
From this we easily get the following:
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PROPOSITION-DEFINITION 8.2. F' € Funct(C®, (Sets)) is said to be representable if it is
isomorphic to hx for some X € C. This is the case if and only if there exists X € C and
u € F(X), called the universal element, such that

Mor(Z,X) 3 ¢ — F(p)(u) € F(Z)
is a bijection for all Z € C. The pair (X, u) is determined by F up to unique isomorphism.
Let us now fix a scheme S and restrict ourselves to the case
C = (Sch/S) = the category of schemes over S and S-morphisms.

For schemes X and Y over S, denote by Homg(X,Y') the set of S-morphisms. (cf. Definition
3.6.)

A representable F' € Funct((Sch/S), (Sets)) thus defines a scheme over S.

Suppose F' is represented by X. Then for any open covering {U; };cr of Z, the sequence

F(z)— [[Fw) = [] Fwinuy
i€l 1,7€1

is an exact sequence of sets, that is, for any (fi)ier € [[;c; F'(U;) such that the images of f;
and f; in F(U; N Uj) coincide for all 4,j € I, there exists a unique f € F(Z) whose image in
F(U;) coincides with f; for all 4 € I. This is because a morphism f € F(Z) = Homg(Z, X) is
obtained uniquely by glueing morphisms f; € F(U;) = Homg(U;, X)) satisfying the compatibility
condition fi|v,nv; = fjlu;nu; for all 4, j € I. Another way of looking at this condition is that F
is a sheaf of sets (cf. Definition 3 in the Appendix below).

Actually, a representable functor satisfies a stronger necessary condition: it is a sheaf of sets
in the “faithfully flat quasi-compact topology”. (See §IV.2 for related topics. See also FAG [3].)

ExAMPLE 8.3. Let X and Y be schemes over S. The functor
F(Z) =Homg(Z,X) x Homg(Z,Y)
={(q1,2) | q1: Z — X, qs: Z — Y are S-morphisms},
with obvious maps F(f): F(Z) — F(Z') for S-morphisms f: Z' — Z, is represented by the
fibre product X xg Y by Theorem 4.2. The universal element is (p1,p2) € F(X xgY'), where
p1: X XgY — X and p2: X XgY — Y are projections.

ExAMPLE 8.4. The functor
F(Z)=1(Z,0z), for Z e (Sch/S)
F(f)=f*"T(Z,0z) =T(Z',0gz), forfecHoms(Z', Z)
is represented by the relatively affine S-scheme G, g := Specg(Og[T]) by Theorem-Definition
7.1, where Og[T] is the polynomial algebra over Og in one variable T'. The universal element is

T €I'(S,0g[T]). This S-scheme G, g is a commutative group scheme over S in the sense to be
defined in §VI.1.

More generally, we have (cf. EGA [1, Chapter I, revised, Proposition (9.4.9)]):

ExaMpPLE 8.5. Let F be a quasi-coherent Og-module on S. Then the relatively affine S-
scheme
Specg(Symm(F)),
where Symm(F) is the symmetric algebra of F over Og, represents the functor F' defined as
follows: For any S-scheme ¢: Z — S, denote by ¢*F = Oz ®o, F the inverse image of F by
the morphism ¢: Z — S (cf. §5).

F(Z) =Homo, (07 ®o4 F,0z), for Z € (Sch/S)
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with the obvious map
F(f) = f*:Homo,(Fz,0z) = Homo,, (Oz @0y F,0z) = Homo,, (f*(Oz ®og F), f*Oz)

for f € Homg(Z', Z). If we denote by m: X = Specg(Symm(F)) — S the canonical projection,
then the universal element is 7*F — Ox corresponding to the canonical injection F — 7,Ox =
Symm(F). This S-scheme is a commutative group scheme over S in the sense defined in §VI.1.

Similarly to Example 8.4, we have:

EXAMPLE 8.6. The functor
F(Z)=T1(Z,0z)", for Z € (Sch/S)

F(f)=f"T(Z,02)" =T(Z,0z)*, for f e Homg(Z' Z),
where the asterisk denotes the set of invertible elements, is represented by the relatively affine
S-scheme
Gm,s = Specg(Os[T, T~1)).
The universal element is again T' € T'(S, Og[T, T7!]). This S-scheme G, s is a commutative
group scheme over S in the sense to be defined in §VI.1.

More generally:

ExaMPLE 8.7. Let n be a positive integer. The relatively affine S-scheme defined by

1
GL,,s = Specg <OS {Tn, ooy T, det(T)]) )

where T' = (Tj;) is the n x n-matrix with indeterminates Tj; as entries, represents the functor
F(Z) = GLy(I'(Z,0z)),  for Z € (Sch/S),

the set of invertible n x n-matrices with entries in I'(Z, Oz), with obvious maps corresponding

to S-morphisms. This S-scheme is a group scheme over S in the sense defined in §VI.1.

Even more generally, we have (cf. EGA [1, Chapter I, revised, Proposition (9.6.4)]):

EXAMPLE 8.8. Let &£ be a locally free Og-module of finite rank (cf. Definition 5.3). The
functor F' defined by
F(Z) = Autp,(0Oz ®o4 E) for Z € (Sch/S)

with obvious maps corresponding to S-morphisms is represented by a relatively affine S-scheme
GL(E). (cf. EGA [1, Chapter I, revised, Proposition (9.6.4)].) This S-scheme is a group scheme
over S in the sense defined in §VI.1. Example 8.7 is a special case with

GL,.5 = GL(O%™).

ExaMpPLE 8.9. Let F be a quasi-coherent Og-module, and r a positive integer. For each
S-scheme Z, exact sequences of Oz-modules

Oz @og F — & —0
Oz ®os F — & — 0,

where £ and £’ are locally free Oz-modules of rank r, are said to be equivalent if there exists
an Oz-isomorphism a: & — £’ so that the following diagram is commutative:

Oz F —&—0

I

Oz F — & —0.
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For each S-scheme Z, let
F(Z)={0z ®0s F - & — 0| exact with £ locally free Oz-module of rank r}/ ~

(~ denotes the set of equivalence classes). For each S-morphism f: 7' — Z and an exact
sequence Oz ®oy F — £ — 0, the inverse image by f

Oy @0y F = f(Oz 004 F) — ff&—0
defines an element of F(Z’), since the inverse image preserves surjective homomorphisms and
local freeness. Thus we have a functor F': (Sch/S)° — (Sets). This functor turns out to be
representable. The proof can be found in EGA [1, Chapter I, revised, Proposition (9.7.4)].

The S-scheme representing it is denoted by m: Grass”(F) — S and is called the Grassmannian
scheme over S. The universal element is given by an exact sequence

T F —Q—0
with a locally free O assm(7)-module Q of rank r called the universal quotient.

Locally free Og-modules of rank one are called invertible Og-modules. (cf. Definition III.1.1.)
As a special case for r = 1 we have the following:

ExampLE 8.10. Let F be a quasi-coherent Og-module. The functor
F(Z)={0z ®py F = L — 0| exact with £ invertible Oz-module}/ ~

with the map F(f): F(Z) — F(Z') defined by the inverse image by each f: Z' — Z is repre-
sented by an S-scheme
m: P(F) = Projg(Symm(F)) — S
with the universal element given by the universal quotient invertible sheaf
o F — O[p(]:)(l) — 0.
(cf. Definition I1.5.7, Theorem II1.2.8.)

When S = Spec(k) with k an algebraically closed field, the set of k-rational points of the
Grassmann variety Grass” (k") over k parametrizes the r-dimenensional quotient spaces of k"
hence parametrizes (n — r)-dimensional subspaces of k®" that are the kernels of the quotient
maps. In particular the set of k-rational points of the (n—1)-dimensional projective space P(k®")
parametrizes the one-dimensional quotient spaces of k¥™ hence (n — 1)-dimensional subspaces.
To have a functor in the general setting, however, it is crucial to take the quotient approach
instead of the subspace approach, since tensor product is not left exact.

S-morphisms between representable functors can be defined as morphisms of functors by
Proposition 6.1. Here are examples:

ExaMpPLE 8.11. Let F be a quasi-coherent Og-module. Then the Pliicker S-morphism

,
Grass"(F) — P(/\ F)
is defined in terms of the functors they represent as follows: For any S-Scheme Z and
Oz ®oy F — & — 0 exact with locally free Oz-module £ of rank r,

the r-th exterior product gives rise to an exact sequence

Oz®(f)s/\]:—>/\g—>0,

with A" €& an invertible Oz-module, hence a morphism Z — P(A" F). EGA [1, Chapter I,
revised, §9.8] shows that the Pliicker S-morphism is a closed immersion (cf. Definition I1.3.2).
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For quasi-coherent Og-modules F and F’, the Segre S-morphism
P(F) xg P(F) — P(F ®0g F')

is defined in terms of the functors they represent as follows: For any S-scheme Z and exact
sequences

Oz®0s F —L—0 and Oz ®04 F — L — 0,

with invertible Oz-modules £ and £’ the tensor product gives rise to an exact sequence
Oz ®og (F ®og .7:/) — L ®0o, L —0,

with £ ®p, L' an invertible Oz-module, hence a morphism Z — P(F ®og F'). The Segre
S-morphism also turns out to be a closed immersion (cf. EGA [1, Chapter I, revised, §9.8]).

Some of the important properties of schemes and morphisms can be checked in terms of
the functors and morphisms of functors representing them: for instance, valuative criterion for
properness (cf. Proposition 11.6.8) and criterion for smoothness (cf. Criterion V.4.10).

In some cases, the tangent space of a scheme over a field at a point can be defined in terms
of the funtor representing it (cf. §V.1).

ExaMPLE 8.12. The Picard group Pic(X) of a scheme X is the set of isomorphism classes
of invertible Ox-modules forming a commutative group under tensor product (cf. Definition
II1.1.2). The inverse image by each morphism f: X’ — X gives rise to a homomorphism
f*: Pic(X) — Pic(X’). The contravariant functor thus obtained is far from being representable.
Here is a better formulation: For each S-scheme X define a functor Picx/g: (Sch/S)° — (Sets)
by

Picx/5(Z) = Coker[p™: Pic(Z) — Pic(X xg Z)], for each S-scheme ¢: Z — S.

The inverse image by each S-morphism f: Z' — Z gives rise to the map f*: Picx/s(Z) —
Picx,g(Z'). The representability of (modified versions of) the relative Picard functor Picy/g
has been one of the important issues in algebraic geometry. The reader is referred to FGA
[2] as well as Kleiman’s account on the interesting history (before and after FGA [2]) in FAG
[3, Chapter 9]. When representable, the S-scheme Picy, g representing it is called the relative
Picard scheme of X/S and the universal invertible sheaf on X x g Pic x/s 1s called the Poincaré
invertible sheaf. It is a commutative group scheme over S in the sense defined in §VI.1.

ExAMPLE 8.13. Using the notion of flatness to be defined in Definition 1V.2.10 and §IV.4,
the Hilbert functor for an S-scheme X, is defined by

Hilbx/s(Z) = {Y C X x5 Z | closed subschemes flat over Z}

with the maps induced by the inverse image by S-morphisms.
Giving a closed subscheme Y C X xg Z is the same as giving a surjective homomomorphism

Oxxgz — Oy — 0

of Ox x¢z-modules. Thus the Hilbert functor is a special case of the more general functor defined
for a quasi-coherent Ox-module £ on an S-scheme X by

Quote/x/5(Z) ={Oxxsz ®ox € = F — 0| with F flat over Oz}/ ~

with the maps induced by the inverse image by S-morphisms.
The representability of Hilbx s and Quotg, x/¢ has been another major issues. See, for
instance, FGA [2] and Nitsure’s account in FAG [3, Chapters 5 and 7].
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There are many other important schemes that could be defined as functors such as Autg(X)
for an S-scheme, Homg(X,Y") for S-schemes X and Y, moduli spaces, etc. introduced in FGA
[2]. For later purposes, we list here the basic representability theorem for Homg(X,Y).

Let S be a scheme. For S-schemes X and Y, the functor

Homg(X,Y): (Sch/S)° — (Sets)

is defined as follows: For each S-scheme T,

Homg(X,Y)(T) = Homp(X xgT,Y xgT)
and for each S-morphism ¢: T" — T,

¢*: Homg(X,Y)(T) — Homg(X,Y)(T")
sends f: X xgT =Y xgT to

" (f)=(fop,p2): X xgT' = (X xsgT) xp T — (Y xsT) x0T,
where p1: (X xgT) xpT' — X xgT and po: (X xgT) xpT" — T' are projections.
THEOREM 8.14 (Grothendieck). (cf. FGA [2, exposé 221, p. 20], FAG [3, Theorem 5.23]) Let

S be a locally noetherian scheme. Let X be an S-scheme that is projective and flat over S, while

Y is an S-scheme that is quasi-projective over S. (For “projective” and “quasi-projective”, see
Definition 11.5.8, while for “flat” see Definition IV.2.10 and §IV.4.) Then the functor

Homg(X,Y): (locally noetherian Sch/S)° — (Sets)

is representable. In other words, there exists a locally noetherian S-scheme Homg(X,Y') and a
uniwersal Homg(X,Y')-morphism

u: X xg Homg(X,Y) — Y xg Homg(X,Y)
such that for any locally noetherian S-scheme T, and a T-morphism f: X xgT — Y xg T,
there exists a unique S-morphism ¢: T — Homg(X,Y) such that f = ¢*(u).

Appendix: Theory of sheaves

DEFINITION 1. Let X be a topological space. A presheaf F on X consists in:

a) for all open sets U C X, a set F(U),
b) whenever U C V C X, a map

resyy: F(V) — F(U)
called the restriction map,
such that
c) resyy = identity
d) if U ¢V C W, then resy,y oresyy = resy,y.
DEFINITION 2. If F, G are presheaves on X, a map a: F — G is a set of maps
aU): F(U) — G(U)
one for each open U C X, such that forall U C V C X,

a(V)

FV) ——=6(V)
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commutes.

DEFINITION 3. A presheaf F is a sheaf if for all open V' C X and all open coverings {Up, }aes
of V' the two properties hold:
a) if s1,s0 € F(V) and resyp, (s1) = resy,u, (s2) in each set F(Uy,), then s; = so.
b) if s, € F(U,) is a set of elements such that for all o, 8 € S,

TeSU,, UanUs (8a) = Tesu, v.nu, (s5) in F(Us NUp),
then there exists an s € (V') such that resyp, (s) = s, for all a.

(Thus F(V') can be reconstructed from the local values F(Uy,), F(Un NUg) of the sheaf.) If
F is a sheaf, we will sometimes write I'(U, F) for F(U) and call it the set of sections of F over
U.

DEFINITION 4. If F is a sheaf on X and x € X, then with respect to the restriction maps,
one can form
Fr= lim F(U).

all open
with z € U

F, is called the stalk of F at x.

Thus F, is the set of germs of sections of F at x — explicitly, F, is the set of all s € T'(U, F),
for all neighborhoods U of x, modulo the equivalence relation:

S1 ~ 8§89 if reSUl,UlﬂUg (81) = reSUQ,UlﬂUz (82).

The usefulness of stalks is due to the proposition:

PROPOSITION 5.
i) For all sheaves F and open sets U, if s1,s2 € F(U), then s1 = s9 if and only if the
images of s1,s9 in F, are equal for all x € U.
ii) Let a: F — G be a map of sheaves. Then a(U): F(U) — G(U) is injective for all U
(resp. bijective for all U), if and only if the induced map on stalks ay: Fu — Gy i
injective for all x € X (resp. bijective for all x € X ).

(Proof left to the reader.)

DEFINITION 6. A sheaf F is a sheaf of groups, rings, etc., if its values F(U) are groups,
rings, etc., and its restriction maps are homomorphisms.

A typical example of a sheaf is the following: Let X and Y be topological spaces and define,

for all open U C X:

F(U) = {continuous maps from U to Y}.
If Y =R, F is a sheaf of rings whose stalks F, are the rings of germs of continuous real functions
at x.

In our applications to schemes, we encounter the situation where we are given a basis B =
{U,} for the open sets of a topological space X, closed under intersection, and a “sheaf” only
on ‘B, i.e., satisfying the properties in Definition 3 for open sets and coverings of 8 — call this
a B-sheaf. In such a situation, we have the facts:

PROPOSITION 7. Every 2B-sheaf extends canonically to a sheaf on all open sets. If F and G
are two sheaves, every collection of maps

(Us): F(Us) = G(Uy)  for all Uy € B

commuting with restriction extends uniquely to a map ¢: F — G of sheaves.
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IDEA OF PROOF. Given F(U,) for U, € B, define stalks

Fp = lim F(Uy,)
Uae%
:EGUQL

as before. Then for all open U, set

3 a covering {U,, } of U, U,, € ‘B,
F(U) =1 (sz) € [[ 7= | and s; € F(Us,) such that

zeU sy = res s; whenever x € Uy,

If F is a presheaf, we can define several associated presheaves:
a) YU, Vs1,s9 € F(U), say
s1 ~ sy if 3 a covering {U,} of U such that
resy,u, (s1) = resyu, (s2), for all a.
This is an equivalence relation, so we may set

F®(U) = F(U)/(the above equivalence relation ~).
Then F® is a presheaf satisfying (a) in Definition 3 of sheaves.
b) YU, consider sets {Uy, so} where {U,} is a covering of U and s, € F®(U,) satisfy
resy, UanUs (Sa) = T€8u, U.nus (), all o, B.
Say
Wa, sa} ~ {Va, ta} if resy, v.nv;(8a) = resv, v,nvg (ts), all a, 8.

Let
the set of sets {Uy, sq} modulo }

sh(F)(U) = { the above equivalence relation
Then sh(F) is in fact a sheaf.

DEFINITION 8. sh(F) is the sheafification of F.
It is trivial to check that the canonical map
F +—— sh(F)

is universal with respect to maps of F to sheaves, i.e., VF — G, G a sheaf, 33: sh(F) = G
such that
sh(F)

commutes. A useful connection between these concepts is:

PROPOSITION 9. Let B be a basis of open sets and F a presheaf defined on all open sets,
but which is already a sheaf on 6. Then the unique sheaf that extends the restriction to B of F
is the sheafification of the full F.

(Proof left to the reader)

The set of all sheaves of abelian groups on a fixed topological space X forms an abelian
category (cf., e.g., Bass [21, p. 21]). In fact
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a) the set of maps Hom(F,G) from one sheaf F to another G is clearly an abelian group
because we can add two maps; and composition of maps is bilinear.
b) the 0-sheaf, 0(U) = {0} for all U, is a 0-object (i.e., Hom(0, F) = Hom(F,0) = {0},
for all F),
¢) sums exist, i.e., if F, G are two sheaves, define (F & G)(U) = F(U) ® G(U). This
is a sheaf which is categorically both a sum and a product (i.e., Hom(H,F & G) =
Hom(#,F) ® Hom(H,G) and Hom(F & G, H) = Hom(F,H) ® Hom(G, H)).
(This means we have an additive category.)
d) Kernels exist: if a: F — G is any homomorphism, define
Ker(a)(U) ={s € F(U) | a(s) =01in G(U)}.
Then one checks immediately that Ker(a) is a sheaf and is a categorical kernel, i.e.,
Hom(#H, Ker(a)) = {# € Hom(H,F) | o 8 = 0}.
e) Cokernels exist: if a: F — G is any homomorphism, look first at the presheaf:
Pre-Coker(a)(U) = quotient of G(U) by a(F(U)).
This is not usually a sheaf, but set
Coker(a) = sheafification of Pre-Coker(a).
One checks that this is a categorical cokernel, i.e.,
Hom(Coker(a),H) = { € Hom(G,H) | 5o o = 0}.
f) Finally, the main axiom: given a: F — G, then

Ker(G — Coker ) = Coker(Ker oo — F).

PRrROOF. By definition

Coker(Ker a — F)
= sheafification of {U — F(U)/Ker(a)(U)}
= shealfification of {U — Image of F(U) in G(U)}.
Since the presheaf U — aF(U) satisfies the first condition for a sheaf, and is
contained in a sheaf G, its sheafification is simply described as:
Coker(Kera — F)(U)

B 3 a covering {U,} of U
= {S S g(U) such that resy,u, (S) S af(U> }

But
Ker(G — Coker ) (U)

= {s€gGU)|s+ 0in Coker(a)(U)}
image of s in the presheaf

= ¢seGU) | U—GWU)/aF(U) is killed by
process (a) of sheafification

B 3 a covering {U,} of U such

- {3 €4(U) ‘ that s — 0 in G(Ua)/aF(Ua) }

B 3 a covering {U,} of U such
N {S €46(U) that resyy, (s) € aF (Uy) }
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The essential twist in the theory of abelian sheaves is that if
0=F—=>G—->H—-0
is an exact sequence, then:
0— F(U) — G(U) — H(U) is exact
but
G(U) — H(U) is not in general surjective.
In fact, to test the surjectivity of a sheaf homomorphism «: G — H, one must see whether the

presheaf U —— H(U)/G(U) dies when it is sheafified, i.e.,

Vs € H(U), 3 covering
[a: G — H surjective] <= | {Uy} of U such that
resy v, (s) € Image of G(Uy)

As one easily checks, this is equivalent to the induced map on stalks G, — H, being surjective
for all x € X.

The category of abelian sheaves also has infinite sums and products but one must be a little
careful: if {F,}aes is any set of sheaves, then

Ur— [ Fa(U)
a€esS
is again a sheaf, and it is categorically the product of the F,’s but
Ur— > Fo(U)
a€es
need not be a sheaf. It has property (a) but not always property (b), so we must define the
sheaf > F, to be its sheafification, i.e.,

3 a covering {Ug} of U such that
Z Fo(U)=4qs€ H Fa(U) | for all B, resyy,(s) has only a

a€s aEs finite number of non-zero components

This ) cg Fa is a categorical sum. But note that if U is quasi-compact, i.e., all open coverings
have finite subcoverings, then clearly

D Fall) =) (Fall)).
aEesS aesS
There are several more basic constructions that we will use:
a) given F, G abelian sheaves on X, we get a new abelian sheaf
Hom(F,G) by
Hom(F,G)(U) = {homomorphisms over U from F|y to G|y }.
b) given a continuous map f: X — Y of topological spaces and a sheaf F on X, we get a
sheaf f,F onY by
LFU) = F(fHU)).

It is trivial to check that both of these are indeed sheaves.
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Exercise

Let F be a presheaf of sets on a topological space X. Show that there is a sheaf aF on
X and a map a: F — aF of presheaves such that a induces a bijection

Homsheaves(a]:a g) — Hompresheaves (]:a g)

for every sheaf of sets G on X. Here the first Hom means maps in the category of
sheaves, while the second Hom means maps in the category of presheaves.

Hint: Try to use a direct limit construction to force the sheaf property to hold. You
probably will need to apply the same procedure twice, because when applied for the
first time you are likely to get only a separated presheaf, i.e., for every open covering
U; of an open U, the map G(U) — [[, G(U;) is injective. Repeating the process, you
get the exactness of

GU) = [[oW) = [[owinu;).
(2 1,7
Let f: X — Y be a continuous map of topological spaces.
(i) Show that the functor f, from the category of presheaves on X to the category of
presheaves on Y has a left adjoint f*%.
Hint: Let F be a sheaf of sets on Y. For any open subset U C X, let
AUy = lim  F(V),
U=f=1(V)
where the indexing set of the direct limit is the set of all open subsets V' C Y such
that f(U) C V.

(ii) Show that the functor f, from the category of sheaves on X to the category of
sheaves on Y has a left adjoint f°.

Hint: Let f*F be the sheafification af*(F) of the presheaf f#(F).

(iii) When X = Spec(R), Y = Spec(S), f is given by a ring homomorphism from S
to R, and F = M is the quasi-coherent Oy-module attached to an S-module M,
check that O x ® pey. f*F is naturally isomorphic to the quasi-coherent O x-module
attached to R ®g M.

Let f: X — Y be a morphism of schemes, and let F be a quasi-coherent Oy-module.

Verify that f*F := Ox ®pep, f*F is canonically isomorphic to the pull-back of quasi-

coherent modules explained after Corollary 5.6 and before (5.7). Similarly, suppose

that 7: X — S and s: Y — S are S-schemes, and F (resp. G) is a quasi-coherent Ox-
module (resp. Oy-module). Verify that p{F ®Oxx gy p5G is canonically isomorphic to

the quasi-coherent Ox x ¢y-module “Ox ®p, Oy” after Corollary 5.6 and before (5.7).

Verify that for any commutative ring R with 1, the set of all R-valued points of GL,, 7

is in bijection with the set of all units of the algebra M, (R) of n x n-matrices with

entries in R.

Denote by Ag the ring of all Q-adeles, defined to be the subset of R x ]_[p Qp, consisting

of all sequences (z;);cx, where the indexing set ¥ consists of oo and the set of all

prime numbers, z, € R, 2, € Q, for all p, and x, € Z, for all but a finite number
of p’s. Describe explicitly the set of all Ag-points of G, := Spec(Z[T,1/T]), GL,, and

A\ {0,1}.

Give an example of a sheaf on Spec(Z[T]) that is not quasi-coherent.

Let X be a scheme. Do infinite products exists in the category of all quasi-coherent

Ox-modules? Either give a proof or a counterexample.
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(8) Let k be a field. Are Spec(k[x,y, 2]/(z? — y? — 2*)) and Spec(k[z,y, 2]/ (2% — y? — 22))
isomorphic as k-schemes? Either give a proof or a counterexample.

(9) Let k be a field of characteristic p > 0. Let o: Spec(k) — Spec(k) be the morphism
such that ¢* is the Frobenius homomorphism u +— uP for u € k. For any k-scheme X,
denote by X®) the fibre product X X spec(k) (0, Spec(k)). Give an example in which the

scheme X ® is not isomorphic to X.

(10) Give an example of an additive category which is not an abelian category.

(11) (Weil’s retriction of scalars) Let T'— S and X — T be schemes. The Weil restriction
Ry/s(X) is the contravariant functor from the category of S-schemes to the category
of sets such that

RT/S<X)(Z) = HOHIT(T Xgs Z,X)

for every S-scheme Z — S. If T' = Spec(R) and S = Spec(A), one often shortens the
notation to Rg/4(X). Prove that Re/r(Gm) = Spec(Rlz,y, (z* + %)~ 1]).

Note: Here is a more intrinsic way to think about the ring R[z,y, (z2+4?)7!]. Let B =
Symm*(C") be the R-algebra of polynomial functions on C, where CV = Homg(C, R).
Let Tr and Nm be the elements in B corresponding to Tr¢ g and Nmc /g, respectively.
Then the localization B[(Nm)~'] of B represents R¢/g(Gm).-

(12) (Continuation on the Weil restriction) Let A be a ring, and let R be finitely generated
A-algebra which is a projective A-module. Let RY = Homy (R, A) be the A-module
dual to R. Denote by d§ the element of R ®4 R" corresponding to the identity map
id € End4(R) under the natural isomorphism Ends(R) = R®4 R".

(i)

Let B be an R-algebra. For any f € B and any u € RY, let u,(f) € R¥ ®4 B be
the image of the element § @ f € R®4 RY ®4 B under the map
u®idrvgp: R®4 RY ®4 B — RY ®4 B.
For any f1, fo € B and any element u € RY, let u(f1, f2) be the image of (§® f1)®
(6 ® f2) under the composition of the following maps
(R4 RY ®4B)®4 (R®a Ry ® B)
= (R®AR)®4(RY®aB)®4 (R ®aB)

HEean R®4 Symm?(R" ®4 B)

usid Symm?(RY ®4 B),
where the arrow g ® can is induced by the multiplication yu: R® R — R of R
and the natural surjection can: (RY ®4 B) ®4 (RY ®4 B) — Symm?(RY ®4 B).
Let F = Symm®(RY ®4 B) be the symmetric algebra of the A-module RV ®4 B.

Denote by Rg/4(B) the quotient ring of F' with respect to the ideal I generated
by all elements of the form

u(f1, f2) — wy(f1- f2), UER\/, f1, fo € B.

Show that Spec(Rp/4(B)) represents Rp/4 Spec(B).
Show that for any R-scheme X, the functor Rp/4(X) is representable in the cat-
egory of S-schemes.






CHAPTER II

Exploring the world of schemes

1. Classical varieties as schemes

Having now defined the category of schemes, we would like to see how the principal objects
of classical geometry—complex projective varieties—fit into the picture. In fact a variety is
essentially a very special kind of scheme and a regular correspondence between two varieties is
a morphism. I would like first to show very carefully how a variety is made into a scheme, and
secondly to analyze step by step what special properties these schemes have and how we can
characterize varieties among all schemes.

I want to change notation slightly to bring it in line with that of the last chapter and write
P™(C) for complex projective n-space, the set of non-zero (n + 1)-tuples (ag, .. ., a,) of complex
numbers modulo (ag, . ..,a,) ~ (Aag,...,Aa,) for A € C*. Let

X(C) c PY(C)
be a complex projective variety, i.e., the set of zeroes of the homogeneous equations f € p,
p C C[Xp,...,X,] being a homogeneous prime ideal. Next for every irreducible subvariety:
W(C) c X(C), dimW(C) > 1

let my be a new point. Define X to be the union of X(C) and the set of these new points
{...,nw,...}. This will be the underlying point set of a scheme with X(C) as its closed points
and the ny’s as the non-closed points. Extend the topology from X (C) to X as follows:

for all Zariski open U(C) C X(C),
let U=U(C)U{nw | W(C)NU(C) £ 0}.
One sees easily that the map U(C) — U preserves arbitrary unions and finite intersections,
hence it defines a topology on X. Moreover, in this topology:
a) Vo € X(C), z € {nw} < z € W(C)
b) vV(C) € X(C), nv € {mw} < V(C) c W(C),

hence {nw} is just W, ie., qy is a generic point of W. You can picture P? for instance,

something like that in Figure II.1.
To put a sheaf on X, we can proceed in two ways:

METHOD (1). Recall that we have defined in Part I [87, Chapter 2], a function field C(X)
and for every x € X(C), a local ring O, x with quotient field C(X). Now for every open set
U C X, define

Ox(U)= () Oux
zeU(C)
and whenever U; C Us, note that Ox (Uz) is a subring of Ox(U;): let

resy,,u; : OX(UQ) — Ox(Ul)

be the inclusion map. In this way we obviously get a sheaf; in fact a subsheaf of the constant
sheaf with value C(X) on every U.

45
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FiGureg I1.1. P2

METHOD (2). Instead of working inside C(X), we can work inside the sheaf of functions
from the closed points of X to C:

CX(U) = {set of functions f: U(C) — C}
restriction now being just restriction of functions. Then define

subset of CX(U) of functions f such that for every
x € U(C), there is a neighborhood Uy of z in U and a

rational function a(xg,...,z,)/b(xo,...,2y), a and b
Ox(U) = { homogeneous of the same degree, such that
a/ y07 AR yn
f(y()a?yn):(i) b(?/0>,2/n)7é0

b(y07 LR 7yn)’

for every y € U,

This is clearly a subsheaf of CX. To see that we have found the same sheaf twice, call these
two sheaves (’)g(, (’)E} for a minute and observe that we have maps:

[0}

—
Ox(U) - OX(U)

alf) = the function x — f(z) (OK since f(x) is defined)
| whenever f € O, x

the element of C(X) represented by any of the
rational functions a(xg, ..., xz,)/b(xo, ..., Tn)

_J which equal f in a Zariski open subset of U.
b (OK since if a/b and ¢/d have the same values in a
non-empty Zariski-open U NV, then ad — bc =0
on X, hence a/b=c¢/d in C(X).) )

From now on, we identify these two sheaves and consider the structure sheaf Ox either as a
subsheaf of the constant sheaf C(X) or of CX, whichever is appropriate. The main point now is
that (X, Ox) is indeed a scheme. To see this it is easiest first to note that we can make all the
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above definitions starting with a complex affine variety Y (C) C C™ instead of with a projective
variety. And moreover, just as X (C) C P"(C) is covered by affine varieties

Yi(C) = X(C)\ X(C) nV(Xi)

so too the pair (X, Ox) is locally isomorphic at every point to (Y;, Oy,) for some i. Therefore it is
enough to show that (Y;, Oy;) is a scheme. But if the affine Y'(C) equals V (p), p C C[X7,..., X,)]
a prime ideal, then I claim:

(1'1) (Y OY) (Spec(c[Xh--an]/paOSpec(C[X]/p)'

PROOF. The prime ideals § € C[Xy,...,X,]/p are in one-to-one correspondence with the
prime ideals q:
pCqCClXy,..., X,
and these are in one-to-one correspondence with the set of irreducible closed subsets of V' (p),
i.e., to the points of Y (C) plus the positive dimensional subvarieties of Y (C). Therefore there
is a canonical bijection:

Y = SpecC[Xy,..., X,]/p
via
Nv(q) < [a] for § not maximal
Y(C)sa+—[(X1 —a1,..., X, —a,) mod p]
[Recall that the maximal ideals of C[X1,..., X,]/p are the ideals I(a) of all functions vanishing

at a point a € X(C), i.e., the ideals (X7 —a1,..., X, —a,)/p.] It is seen immediately that this
bijection is a homeomorphism. To identify the sheaves, note that for all f € C[X1,..., X,],

Oy (Yy) = (| Oay
aEYf((C)
I(a)

= () (localization of C[X1,...,Xy]/p at (X1 —ay,...,Xn—an)/p)

acY (C)
f(a)7#0

while
OSpec(C[X}/p (Yf) locahzatlon (C[Xq,... ,Xn]/p)f

These are both subrings of C(Y'), the quotlent field of C[X7, ..., X,]/p. Now since f(a) # 0 =
€ (C[X]/p) \ I(a), we see that

CX)/prc () (CIX/P)rw

acY (C)
f(a)#0
And if
ge N
acY (C)
J(a)#0
let

a={heC[X]/p|gh € C[X]/p}.
If f(a) # 0, then 3gq, he € C[X]/p and h, & I(a) such that g = gq/hq, hence h, € a. Thus a ¢
V(a). Since this holds for all @ € Y/(C)y, we see that V(a) C V(f), hence by the Nullstellensatz
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(cf. Part I [87, §1A, (1.5)], Zariski-Samuel [119, vol. II, Chapter VII, §3, Theorem 14| and
Bourbaki [27, Chapter V, §3.3, Proposition 2]) fV € a for some N > 1. This means precisely
that g € (C[X]/p)s. Thus the sheaves are the same too. O

To simplify terminology, we will now call the scheme X attached to X(C) a complex pro-
jective variety too. Next, if

X(C) cPY(C)
Y (C) c P*(C)
are two complex projective varieties and if
Z(C)c X(C) xY(C)
is a regular correspondence from X to Y, we get a canonical morphism
fz: X —Y.

In fact, as a map of sets, define the following.
If x € X(C): fz(x) = the unique y € Y(C) such that (z,y) € Z(C)

ny ifdimV(C) >1
If X(C): =
W(C) € X(©) fom) ={ ™ LG
where V(C)=p [(W(C) xY(C))n Z(C)].

One checks immediately that this map is continuous. To define the map backwards on sheaves,
proceed in either of two ways:

METHOD (1). Recall that Z defined a map Z*: C(Y) — C(X) and the fact that Z is regular
implies that for all z € X(C), if y = fz(z), then

Z*(O%y) C 0357)(.

Therefore, for every open set U C Y,

ZHOoyU)=2"| () Oy
yeU(C)

c () Oux
z€f,;'U(C)
= Ox(f;'U)
giving a map of sheaves.
METHOD (2). Define a map
f7:CY(U) — C¥(f;'U)
by composition with fz, i.e., if a: U(C) — C is a function, then ao f is a function fz_lU((C) —

C. One checks immediately using the regularity of Z that f7 maps functions « in the subring
Oy (U) to functions a o fz € Ox(f,;1(U)).

There is one final point in this direction which we will just sketch. That is:

PRrOPOSITION 1.2. Let X(C) C P*(C) and Y(C) C P™(C) be complex projective varieties.
Let Z(C) c P"™ ™ (C) be their set-theoretic product, embedded by the Segre embedding as
third complex projective variety (cf. Part I [87, Chapter 2]). Then the scheme Z is canonically
isomorphic to the fibre product X Xgpec(cy Y of the schemes X and Y.
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IDEA OF PROOF. Let Xo,...,Xp,Yp,...,Y,, and Z;; (0 < i < n,0 < j < m) be homoge-
neous coordinates in P"(C), P"™(C) and P""*+"*™(C). Then by definition Z(C) is covered by
affine pieces Z;,;, # 0 which are set-theoretically the product of the affine X;, # 0 in X (C) and
Yj, # 0in Y(C). The Segre embedding is given in this piece by

Zy X Y,
Zivio  Xio Yo

0J0

so the affine ring of Z comes out:

Zij
Cl..., ,...]/{functions 0 on Z(C)}
Ziojo
=CJ..., &, cee ﬁ, ...]/{functions 0 on X(C) x Y/(C)}.
X, Y,

To see that this is the tensor product of the affine rings of X and Y:

X; Y.

Cl...,~=,...]/{functions 0 on X(C)} | ®c (C[..., >

X, Y;

one uses the ordinary Nullstellensatz (cf. Part I [87, §1A, (1.5)], Zariski-Samuel [119, vol. II,
Chapter VII, §3, Theorem 14] and Bourbaki [27, Chapter V, §3.3, Proposition 2]) plus:

, . ..]/{functions 0 on Y((C)})

LEMMA 1.3. If R and S are k-algebras with no nilpotents, k a perfect field, then R®y S has
no nilpotent elements.

(cf. §IV.2 below.) O

COROLLARY 1.4. Let X(C), Y(C) be complex projective varieties. Then the set of reqular
correspondences from X(C) to Y(C) and the set of C-morphisms from the scheme X to the
scheme Y are the same.

IDEA OF PROOF. Starting from f: X — Y, we get a morphism
f X ly: X XSpec((C) Y —Y XSpec((C) Y.

If A(C) € Y(C) x Y(C) is the diagonal, which is easily checked to be closed, define I' =
(f x 1y)"Y(A), then I'(C) is closed in X(C) x Y (C) and is the graph of res(f). Therefore I'(C)
is a single-valued correspondence and a local computation shows that it is regular. O

2. The properties: reduced, irreducible and finite type

The goal of this section is to analyze some of the properties that make classical varieties
special in the category of schemes. We shall do two things:

a) Define for general schemes, and analyze the first consequences, of three basic properties
of classical varieties: being irreducible, reduced, and of finite type over a field k. A
scheme with these properties will be defined to be a variety over k.

b) Show that for reduced schemes X of finite type over any algebraically closed field k, the
structure sheaf Ox can be considered as a sheaf of k-valued functions and a morphism
is determined by its map of points. Thus varieties over algebraically closed k’s form
a truly geometric category which is quite parallel to differentiable manifolds/analytic
spaces/classical varieties.

PROPERTY 1. A complex projective variety X is irreducible, or equivalently has a generic
point Nx.
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This is obvious from the definition. To put this property in its setting, we can prove that
every scheme has a unique irredundant decomposition into irreducible components. In fact:

DEFINITION 2.1. A scheme X is locally noetherian if every x € X has an affine neighborhood
U which is Spec(R), R noetherian. A scheme is noetherian if it is locally noetherian and quasi-
compact; or equivalently, if it has a finite covering by Spec’s of noetherian rings.

PROPOSITION 2.2. Fvery scheme X has a unique decomposition

X = U Za, Lo trreducible closed, Zo ¢ Zg if o # f.

If X is locally noetherian, this decomposition is locally finite. If X 1is noetherian, then the
decomposition is finite.

PRrROOF. The general case is immediate, and the noetherian cases from the fact that in a
noetherian ring R, 1/(0) is a finite intersection of prime ideals. O

An important point concerning the definition of locally noetherian is:

PROPOSITION 2.3. If X s locally noetherian, then for every affine open Spec(R) C X, R is
noetherian.

Without this proposition, “locally noetherian” would be an awkward artificial concept. This
proposition is the archetype of a large class of propositions that “justify” a definition by showing
that if some property is checked for a covering family of open affines, then it holds for all open
affines.

PROOF OF PROPOSITION 2.3. Let U, = Spec(R,) be an open cover of X with R, noether-
ian. Then Spec(R) is covered by distinguished open subsets of the U,, and each of these is of
the form Spec((Rqa)y, ), i-e., Spec of another noetherian ring. But now when f € R is such that:

Spec(Ryf) C Spec(Rqy) .,

then
Spec(Ry) = Spec (((Ra)fa)resy), Via res: R — (Ra)y,,
hence
Ry = (Ra) fo)yes 1

hence Ry is noetherian. Therefore we can cover Spec(R) by distinguished opens Spec(Ry,) with
Ry, noetherian. Since Spec(R) is quasi-compact, we can take this covering finite. This implies
that if a, is an ascending chain of ideals in R, a, - Ry, is stationary for all ¢ if « is large enough,
and then

n n
Aa+1 = ﬂ aoz—i—lRf,L- = ﬂ ClaRfi = Oq-
i=1 =1

PROPERTY 2. A complex projective variety X is reduced, in the sense of:

DEFINITION 2.4. A scheme X is reduced if all its local rings O, x have no non-zero nilpotent
elements.

It is easy to check that a ring R has non-zero nilpotents if and only if at least one of its
localizations R, has nilpotents: therefore a scheme X is reduced if and only if it has an affine
covering U, such that Ox(U,) has no non-zero nilpotents, or if and only if this holds for all
affine U C X. Moreover, it is obvious that a complex projective variety is reduced.
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Reduced and irreducible schemes in general begin to look a lot like classical varieties. In
fact:

PROPOSITION 2.5. Let X be a reduced and irreducible scheme with generic point . Then
the stalk O, x is a field which we will denote R(X), the function field of X. Then

i) for all affine open U C X, (resp. all points v € X ), Ox(U) (resp. Oy x) is an integral
domain with quotient field R(X),
ii) for all open U C X,
Ox(U) = () Oux
reX
(the intersection being taken inside R(X)) and if Uy C Uy, then resy,y, : Ox(Uz) —
Ox (Uy) is the inclusion map between subrings of R(X).

PROOF. If U = Spec R is an affine open of X and n = [p], p a prime ideal of R, then @ U
implies that p is contained in all prime ideals of R, hence p = \/@ in R. But R has no nilpotents
sop = (0), i.e., Ris an integral domain. Moreover O, x = O] spec g = Ry = quotient field of R.
Thus O, x = R(X) is a field and is the common quotient field both of the affine rings R of X

and of all localizations Rg of these such as the local rings Ry = O x (9 C R any prime ideal).
This proves (i). Now if U C X is any open set, consider

res: Ox(U) — O, x = R(X).

For all s € Ox(U), s # 0, there is an affine U’ = Spec R’ C U such that resy y(s) is not 0 in R’
Since R’ C R(X), res(s) € R(X) is not 0. Thus res is injective. Since it factors through O, x
for all x € U, this shows that
Ox(U) C ) Ou.x.
zeU
Conversely, if s € () cx Oz, x, then there is an open covering {U,} of U and s, € Ox(Ua)
mapping to s in R(X). Then s, —sg € Ox(Uy NUp) goes to 0 in R(X), so it is 0. Since Ox is
a sheaf, then s,’s patch together to an s € Ox(U). This proves (ii). O

PROPERTY 3. A complex projective variety X is a scheme of finite type over C, meaning:

DEFINITION 2.6. A morphism f: X — Y is locally of finite type (resp. locally finitely
presented) if X has an affine covering {U,} such that f(U,) C V,, V,, an affine of Y, and the
ring Ox (Uy) is isomorphic to Oy (V,)[t1, ..., tn]/a (resp. same with finitely generated a). f is
quasi-compact if there exists an affine covering {V,} of Y such that each f~!(V,) has a finite
affine covering; f is of finite type (resp. finitely presented) if it is locally of finite type (resp.
locally finitely presented) and quasi-compact.

It is clear that the canonical morphism of a complex projective variety to Spec(C) has all
these properties. As above with the concept of noetherian, these definitions should be “justified”
by checking:

ProprosITION 2.7. If f is locally of finite type, then for every pair of affine opens U C X,
V CY such that f(U) CV, Ox(U) is a finitely generated Oy (V')-algebra; if f is quasi-compact,
then for every quasi-compact open subset S C'Y, f~1(S) is quasi-compact. (Analogous results
hold for the concept “locally finitely presented”.)

PrOOF. The proof of the first assertion parallels that of Proposition 2.3. We are given U, ’s,
Vo's with Ox (U, ) finitely generated over Oy (V,). Using the fact that Ry = Rz]/(1 — zf),
hence is finitely generated over R, we can replace U,, V, by distinguished opens to get new
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Ug’s, V’s such that Ox(Up) is still finitely generated over Oy (V3), but now Ug C U, Vg C V
and U = |JUs. Next make another reduction until U, (resp. V) is a distinguished open in
U (resp. V). Then since Ox(U,) is finitely generated over Oy (V,) and Oy (V) = Oy (V)y, is
finitely generated over Oy (V'), we may replace V,, by V. We come down to the purely algebraic
lemma:

S is an R-algebra

1= Z fig9i, [fi:9i €S = S finitely generated over R.

Sy, finitely generated over R

PrOOF. Take a finite set of elements x) of S including the f;’s, ¢g;’s and elements whose
images in Sy, plus 1/f; generate Sy, over R. These generate S, because if k € S, then
Pi(z))
sz

P; = polynomial over R.

k:

in Sfi

Thus fN™k = fMP,(z,) in S. But
1= (Z figi

=> Qilf.9)- £V
=1

>n(N+M)

hence .
k= Qi(f,9) M Pi(xy).
i=1 -
We leave the proof of the second half of Proposition 2.7 to the reader. O

A morphism of finite type has good topological properties generalizing those we found in
Part I [87, (2.31)]. To state these, we must first define:

DEFINITION 2.8. If X is a scheme, a constructible subset S C X is an element of the Boolean
algebra of subsets generated by the open sets: in other words,

S=5U---US5;
where S; is locally closed, meaning it is an intersection of an open set and a closed subset.

THEOREM 2.9 (Chevalley’s Nullstellensatz). Let f: X — Y be a morphism of finite type and
Y a noetherian scheme. Then for every constructible S C X, f(S) CY is constructible.

PRrOOF. First of all, we can reduce the theorem to the special case where X and Y are
affine: in fact there are finite affine covering {U;} of X and {V;} of Y such that f(U;) C Vi. Let
fi =res f: U; — V;. Then for every S C X constructible, f(S) =] fi(SNU;) so if f;(SNU;)
is constructible, so is f(S). Secondly if X = Spec R, Y = Spec S, we can reduce the theorem to
the case R = S[z]. In fact, if R = S[z1,...,xy], we can factor f:

X = Spec S[z1,...,xy] = Spec S[x1,...,xp-1] — -
- — Spec S[z1] — Spec S =Y.
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Now a basic fact is that every closed subset V(a) of an affine scheme Spec(R) is homeomor-
phic to the affine scheme Spec(R/a). In fact there is a bijection between the set of prime ideals
q C R/a and the set of prime ideals q C R such that q D a and this is readily seen to be a home-
omorphism (we will generalize this in §3). Also, since V(a) = V(y/a), V(a) is homeomorphic to
the reduced scheme Spec(R/+/a) too. We use this first to make a third reduction to the case

f+: Spec S[X] — Spec S.

In fact, if R is generated over S by one element, then R 2 S[X]/a and via the diagram:

SpecR = V(a) c S[X]
NS
Spec S

the theorem for f implies the theorem for f’. Fourthly, we make a so-called “noetherian in-
duction”: since the closed subsets V(a) C Spec S satisfy the descending chain condition, if the
theorem is false, there will be a minimal V(a) C Spec(S) such that

res f: f~1(V(a)) — V(a)

does not take constructibles to constructibles. Since f~1(V(a)) = V(a - S[X]), we can replace
Spec S by Spec S/a and Spec S[X] by Spec(S/a)[X] and reduce to the case:

for all constructible sets C' C Spec S[X], if f(C) & Spec(S),
then f(C) is constructible.

()

Of course we can assume in this reduction that a = /a, so that the new S has no nilpotents.
Spec S in fact must be irreducible too: if not,

Spec S = Z1 U Zo, Z; G Spec S, Z; closed.

Then if C' C Spec S[X] is constructible, so are CN f~1(Z;), hence by () so are f(CNf~Y(Z;)) =
F(C)NZ;; hence f(C) = (f(C)NZ1)U(f(C)NZ3) is constructible. Thus S is an integral domain.
In view of (x), it is clear that the whole theorem is finally reduced to:

LEMMA 2.10. Let S be an integral domain and let n € SpecS be its generic point. Let
C C Spec S[X] be an irreducible closed set and Cy C C an open subset. Consider the morphism:

f: Spec S[X] — Spec S.
Then there is a non-empty open set U C Spec S such that either U C f(Cy) or U N f(Cy) = 0.

PROOF OF LEMMA 2.10. Let K be the quotient field of S. Note that f~1(n) = Spec K[X] =
A}(, which consists only of a generic point n* and its closed points. C' N f~1(n) is a closed
irreducible subset of f~1(n), hence there are three possibilities:

Casei) C' D f~1(n), so C = Spec S[X],
Case ii) C'N f~1(n) = {¢}, ¢ a closed point of f~1(n), and
Case iii) C' N f~1(n) = 0.
In case (i), Cp contains some distinguished open Spec S[X] 4, where g = ap X" +a1 X" 1+ - -+ay,,
ag # 0. Let U = Spec S,,. For all z € Spec S, f~1(x) 2 Speck(x)[X] = Aﬂlg(m) and:

Coﬂf‘l(x)z{yeAulg(x) ’ 9(y) #0, where g =GoX" +--- + }

and @; = image of a; in k(x)
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So if # € U, @y # 0, hence g # 0, hence the generic point of f~1(x) is in Cy N f~!(z), hence
x € f(Cp). In case (ii), let C =V (p). Then
p- K[X]| =g K[X], g irreducible.
We may assume that g = ag X" + - - - + a,, is in p, hence a; € S. Then
V(g) > C > Cy,

but all three sets intersect the generic fibre f~1(n) in only one point ¢. Thus V(g) \ Cp is a
constructible set disjoint from f~!(n). Let:

V(g)\Co=WiU---UW;, W, irreducible with generic points w; ¢ f~1(n).
Then f(W;) C {f(w;)} and {f(w;)} is a closed proper subset of Spec S. Thus

t
f(V(g)\ Co) C U {f(w;)} C some subset V() of Spec S
i=1
(€S, a«#0). Now let U = Spec Sgyq. Then if x € U,

a(z) # 0= f"H(z)NCo= f (z)NV(g)

= {y € Ay | 9y) = 0} :

Since ag(z) # 0, g #Z 0, hence g has an irreducible factor g, and the prime ideal g, - k(z)[X]
defines a point of f~!(x) where g is zero. Thus = € f(Cp), which proves U C f(Cp). In case
(iii), let ¢ be the generic point of C. Then

F(C) c{f(O}
hence U = Spec S\ {f(¢)} is an open set disjoint from f(Cp). O

COROLLARY 2.11. Let k be a field and X a scheme of finite type over k. If x € X then

T 18 an algebraic point

s closed] <
[ s closed] i.e., k(z) is an algebraic extension of k.

ProoF. First assume « closed and let U = Spec R be an affine neighborhood of z. Then x
is closed in U and hence {z} is a constructible subset of U. Let R = k[X1,...,X,]/a. Each X;
defines a morphism p;: U — A} by Theorem 1.3.7. p; is clearly of finite type so by Theorem 2.9
pi(x) is a constructible point of Al. Now apply:

LEMMA 2.12 (Euclid). For any field k, A,lg contains an infinite number of closed points.

PROOF. Al = Speck[X] and its closed points are of the form [(f)], f monic and irreducible.
If fi,..., fn is any finite set of such irreducible polynomials, then an irreducible factor g of
Hf\il fi + 1 cannot divide any of the f;, hence [(g)] # [(f;)] for any 3. O

It follows that the generic point of A} is not a constructible set! Thus k(p;(x)) is algebraic
over k. Since the residue field k(z) is generated over k by the values of the coordinates X, i.e.,
by the subfields k(p;(x)), k(z) is algebraic over k. Conversely, if = is algebraic but not closed,
let y € {2}, y # x. Let U = Spec R be an affine neighborhood of y. Then z € U too, so x is
not closed in U. Let x = [p] and use the fact that if £ is algebraic over k, then k[{] is already
a field. Since k(z) D R/p D k, all elements of R/p are algebraic over k, hence R/p is already a
field. Therefore p is maximal and x must be closed in U — contradiction. U

COROLLARY 2.13. Let k be a field and X a scheme of finite type over k. Then:
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generic point [(0)]

FIGURE I1.2. “Parody of P}.”

a) If U C X is open, and x € U, then x is closed in U if and only if = is closed in X.

b) For all closed subsets S C X, the closed points of S are dense in S.

¢) If Max(X) is the set of closed points of X in its induced topology, then there is a natural
bijection beween X and the set of irreducible closed subsets of Max(X) (i.e., X can be
reconstructed from Max(X) as schemes were from classical varieties).

PROOF. (a) is obvious by Corollary 2.11. To prove (b), we show that for every affine open
UcCX,ifUNS # 0, then U N S contains a point closed in X. But if U = Spec R, and
UNS =V(p), then in the ring R, let m be a maximal ideal containing p. Then [m] is a closed
point of U in UN S. By (a), [m] is closed in X. Finally (c) is a formal consequence of (b) which
we leave to the reader. (]

To illustrate what might go wrong here, contrast the situation with the case
X = Spec(O), O local noetherian, maximal ideal m.

If
U=X\[m],

then U satisfies the descending chain condition for closed sets so it has lots of closed points.
But none of them can be closed in X, since [m] is the only closed point of X. Take the case
O = k[X,Y](x,y): its prime ideals are m = (X,Y’), principal prime ideals f (with f irreducible)
and (0). In this case, U has only closed points and one generic point and is a kind of parody of
P} as in Figure I1.2 (cf. §5 below).

We have now seen that any scheme of finite type over a field shares many properties with
classical projective varieties and when it is reduced and irreducible the resemblance is even
closer. We canonize this similarity with a very important definition:

DEFINITION 2.14. Let k be a field. A variety X over k is a reduced and irreducible scheme
X plus a morphism p: X — Spec k making it of finite type over k. The dimension of X over k
is trdeg;, R(X).

We want to finish this section by showing that when k is algebraically closed, the situation
is even more classical.
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PROPOSITION 2.15. Let k be an algebraically closed field and let X be a scheme of finite type
over k. Then:

a) Forallz e X
[z is closed) <= [x is rational, i.e., k(z) = kJ.

Let X (k) denote the set of such points.
b) Ewvaluation of functions define a homomorphism of sheaves:

Ox — k¥R
where
EX®(U) = ring of k-valued functions on U(k).
If X is reduced, this is injective.
Now let X and Y be two schemes of finite type over k and f: X — Y a k-morphism. Then:

c) f(X(K)) CY (k).

d) If X is reduced, f is uniquely determined by the induced map X (k) — Y (k), hence by
its graph

{(z, f(2)) |z € X(k)} C X(k) x Y (k).
PROOF. (a) is just Corollary 2.11 in the case k algebraically closed. To check (b), let

U = Spec R be an affine. If f € R is 0 at all closed points of U, then U \ V(f) has no closed
points in it, hence is empty. Thus

fe (1 »=v0
p prime of R

and if X is reduced, f = 0. (c) follows immediately from (a) since for all x € X, we get inclusions
of fields:

k(z) «—k(f(z)) «—k.
As for (d), it follows immediately from the density of X (k) in X, plus (b). O

3. Closed subschemes and primary decompositions

The deeper properties of complex projective varieties come from the fact that they are closed
subschemes of projective space. To make this precise, in the next two sections we will discuss
two things—closed subschemes and a construction called Proj. At the same time that we make
the definitions necessary for characterizing complex projective varieties, we want to study the
more general classes of schemes that naturally arise.

DEFINITION 3.1. Let X be a scheme. A closed subscheme (Y,Z) consists in two things:

a) a closed subset Y C X
b) a sheaf of ideals Z C Ox such that

Im;OX,ac if z€eY
and such that Y, plus the sheaf of rings Ox /Z supported by Y is a scheme.

DEFINITION 3.2. Let f: Y — X be a morphism of schemes. Then f is a closed immersion
if

a) f is an injective closed map,
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b) the induced homomorphisms

Iy Ox ) — Ovy

are surjective, for every y € Y.

It is clear that

a) if you start from a closed subscheme (Y, Z), then the morphism (Y, Ox/Z) — (X, Ox)
defined by the inclusion of Y in X and the surjection of Ox to Ox/Z is a closed
immersion;

b) conversely if you start with a closed immersion f: Y — X, then the closed subset f(Y)
and the sheaf 7:

Z(U) = Ker (Ox(U) = Oy (f'U))

is a closed subscheme.

Thus these two concepts are essentially equivalent. A locally closed subscheme or simply
subscheme (resp. immersion) in general is defined to be a closed subscheme of an open set
U C X (resp. a morphism f such that f(Y) C U open and res f: Y — U is a closed immersion).
The simplest example of a closed immersion is the morphism

f: Spec(R/a) — Spec(R)

where a is any ideal in R. In fact, as noted in the proof of Theorem 2.9 above, f maps Spec(R/a)
homeomorphically onto the closed subset V' (a) of Spec(R). And if ¢ C R/a is a prime ideal,
q = q/a, then the induced map on local rings is clearly surjective:

(R/a)y = Rg/a-Rq«— Ry
| |

Ospec(R/a),[d] Ospec(R), 4]

We will often say for short, “consider the closed subscheme Spec(R/a) of Spec(R)”. What
we want to check is that these are the only closed subschemes of Spec R.
We prove first:

PropoOSITION 3.3. If (Y,Z) is a closed subscheme of X, then T is a quasi-coherent sheaf of
Ox-modules.

PROOF. On the open set X \ Y, Z = Ox so it is quasi-coherent. If z € Y, we begin by
finding an affine neighborhood U C X of x such that U NY is affine in Y. To find U, start with
any affine neighborhood U; and let Vi C U; N'Y be an affine neighborhood of z in Y. Then
choose some «a € I'(Uy,Ox) such that « =0 on U; NY \ Vi, while a(x) # 0. Let U = (Uy)q.
Since UNY = (U1NY )resa = (Vi)resa, UNY is affine in Y too. Next, suppose that U = Spec R,
UNY = Spec S and let the inclusion of UNY into U correspond to ¢: R — S. Let I = Ker(¢):
I claim then that

Iy =T
hence 7 is quasi-coherent. But for all 8 € T'(U, Ox),

I(Ug) = I3
= Ker(Rg — S3)
= Ker (Ox (Ug) — Oy (Y NUp))
= Z(Us)

hence I = T|y. O
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COROLLARY 3.4. If (Y,Z) is a closed subscheme of X, then for all affine open U C X,
UNY is affine inY and if U = Spec R, then U NY = Spec(R/a) for some ideal a C R, i.e.,
Y = Specx(Ox/I).

PROOF. Since 7 is quasi-coherent, Z|; = a for some ideal a C R. But then

Oy |y = Coker (Z|y — Ox|v)
— Coker(a — R)
= R/a
hence
(Y. 0y) = (V(a), R/a) = (Spec(R/a), Ospec r/a)-
O

COROLLARY 3.5. Let f: Y — X be a morphism. Then f is a closed immersion if and only
if:
(%) 3 an affine covering {U;} of X such that f=*(U;) is affine
and T'(U;, Ox) — D(f~1(U;), Oy) is surjective.
PrOOF. Immediate. O

We want to give some examples of closed subschemes and particularly of how one can have
many closed subschemes attached to the same underlying subset.

EXAMPLE 3.6. Closed subschemes of Spec(klt]), k algebraically closed. Since k[t] is a PID,

all non-zero ideals are of the form
a= (H(t — ai)”) .

i=1
The corresponding subscheme Y of Al = Spec(k[t]) is supported by the n points ay, ..., a,, and
at a; its structure sheaf is
Oa,-,Y = OahA}C/mzi?
where m; = m,, a1 = (¢t —a;). Y is the union of the a;’s “with multiplicity r;”. The real

significance of the multiplicity is that if you restrict a function f on A,lc to this subscheme, the
restriction can tell you not only the value f(a;) but the first (r; — 1)-derivatives:

d'f
dt!

In other words, Y contains the (r; — 1)st-order normal neighborhood of {a;} in A}.

(a;), 1 <r;—1.

Consider all possible subschemes supported by {0}. These are the subschemes
Yo = Spec (k[t] /()

Y7 is just the point as a reduced scheme, but the rest are not reduced. Corresponding to the
fact that the defining ideals are included in each other:

ODO>EHD>EH D D" D---D(0),
the various schemes are subschemes of each other:

YicYaCY3C---CY,C - CAL
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Fi1GURE II.3. O-dimensional subschemes of Ai

EXAMPLE 3.7. Closed subschemes of Spec(k[x,y]), k algebraically closed. Every ideal a C
klz,y] is of the form:

(Hne

for some f € k[z,y] and @ of finite codimension (to check this use noetherian decomposition
and the fact that prime ideals are either maximal or principal). Let Y = Spec(k[z,y]/a) be the
corresponding subscheme of A2. First, suppose a = (f). If f = [[lL, f*, with f; irreducible,
then the subscheme Y is the union of the irreducible curves f; = 0, “with multiplicity r;”. As
before, if g is a function on A%, then one can compute solely from the restriction of g to Y the
first ; — 1 normal derivatives of g to the curve f; = 0. Second, look at the case a of finite

codimension. Then

a=01N---NQ;
where /Q; is the maximal ideal (z — a;,y — b;). Therefore, the support of Y is the finite set
of points (a;,b;), and the stalk of Y at (a;, b;) is the finite dimensional algebra k[x,y]/Q;. For

simplicity, look at the case a = Q1, v/Q1 = (z,y). The lattice of such ideals a is much more
complicated than in the one-dimensional case. Consider, for example, the ideals:

(z,y) D (az + By,2*,zy,y*) D (2%, zy,y°) D (2°,4%) D (0).
These define subschemes:
{(0,0) with reduced structure} C Y, 5 C Yo C Y3 C A}.

Since (ax + By, 2%, 2y, y*) D (ax + By), Yap is a subscheme of the reduced line ¢, g defined by
ar + By = 0: Y, g is the point and one normal direction. But Y3 is not a subscheme of any
reduced line: it is the full double point and is invariant under rotations. Y3 is even bigger, is
not invariant under rotations, but still does not contain the second order neighborhood of (0, 0)
along any line. If g is a function on AZ, gly, ; determines one directional derivative of g at
(0,0), gly, determines both partial derivatives of g at (0,0) and g|y, even determines the mixed
partial %(0,0) (cf. Figure I1.3). As an example of the general case, look at a = (22, zy).
Then a = (x) N (2%, 2y,y?). Since \/a = (), the support of Y is y-axis. The stalk O,y has no
nilpotents in it except when z = (0,0). This is an “embedded point”, and if a function g on Ai
is cut down to Y, the restriction determines both partials of g at (0,0), but only 8% at other
points (cf. Figure 11.4):
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Fi1GURE I1.4. Subschemes of A%

ExaMPLE 3.8. The theory of the primary decomposition of an ideal is an attempt to describe
more “geometrically” a general closed subscheme of Spec R, when R is noetherian. In fact, if

Z = Spec R/a C Spec R
is a closed subscheme, then the theory states that we can write:
a=ain---Na,
where q; is primary with p; = /q; prime. Then geometrically:
Z =scheme-theoretic union of (i.e., smallest closed
subscheme containing) W1,..., W,
where W; =Spec R/q;
=set-theoretically V (p;), the closure of [p;]
but with some infinitesimal thickening.
The property which distinguishes the W;’s is described as follows:
q is p-primary <= p = /qgand q=RNq- (Ry)
<= set-theoretically Spec R/q is V(p) and the map
L(Ospec r/q) — (the generic stalk Ogpec g /qy[p])
is injective.
(In other words, a “function” f € R is to have 0 restriction everywhere to Spec R/q if it restricts
to 0 at the generic point of Spec R/q.) The unfortunate thing about the primary decomposition
is that it is not unique: if W; is an “embedded component” | i.e., set-theoretically W; ;Ct W;, then
the scheme structure on W; is not unique. However the subsets W, are uniquely determined
by Z. By far the clearest treatment of this is in Bourbaki [27, Chapter 4] who considers the

problem module-theoretically rather than ideal-theoretically. His theory globalizes immediately
to give:
THEOREM 3.9. Let X be a noetherian scheme, F a coherent sheaf on X. Then there is a

finite set of points x1,...,x: € X such that

i) VUcC X,Vse F(U), 3 C{1,...,t} such that:

Supp(s) = {z € U | the image s, € Fy is not 0} = U {z;} NU
def el
ii) if U is affine, then any subset of U of the form \J;c;{w:} NU occurs as the support of
some s € F(U).
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These x; are called the associated points of F, or Ass(F).

PRrOOF. Note that if U = Spec R, F|y = M, s € M, and Ann(s) = {a € R | as = 0}, then
s; Z0in F, <= s4 0 in M,
where = = [p]
< Vac€ R\p,a-s#0
<= Ann(s) C p
<= z € V(Ann(s))

so that Supp(s) = V(Ann(s)). It follows from the results in Bourbaki [27, Chapter 4, §1] that
in this case his set of points Ass(M) C Spec R has our two required properties!. Moreover, he
proves in [27, §1.3] that Ass(My) = Ass(M)NSpec Ry: hence the finite subsets Ass(M) all come
from one set Ass(F) by Ass(M) = Ass(F) N Spec R. O

Note that Ass(F) must include the generic points of Supp(F) but may also include in
addition embedded associated points.

COROLLARY 3.10. If Z C Spec R is a closed subscheme and
Z=WyU---uW,
is a primary decomposition, then
Ass(Ogz) = {w1,...,w},
where w; = generic point of W;.

PROOF. Let Z = Spec R/a, W; = Spec R/q;, so that a = () ¢;. A primary decomposition is
assumed irredundant, i.e., V,
a7 (g

J#
This means 3f € ﬂ#i q; \ ¢, i.e., the “function” f is identically 0 on the subschemes Wj,
J # i, but it is not 0 at the generic point of W;, i.e., in Oy, w,. Therefore as a section of Oz,
Supp(f) = W;. On the other hand, we get natural maps:

t t
R/a— @R/Qi - @Rpi/qiRm
i=1 i=1
hence

t t
Oz — @ Ow, — @ (constant sheaf on W; with value O, w;)
i=1 i=1
from which it follows readily that the support of any section of Oy is a union of various W;’s. [J

For instance, in the example R = k[z,y], a = (22, 2y),
(Supp in R/a)(y) = whole subset V' (a)
(Supp in R/a)(z) = embedded pointV (z,y).

In order to globalize the theory of primary decompositions, or to analyze the uniqueness
properties that it has, the following result is very useful:

Un fact, if s € M, then R/Ann(s) < M by multiplication by s, hence Ass(R/Ann(s)) C Ass(M); if
Supp(s) = S1 U --- U Sk, S; irreducible and S; ¢ S;, then S; = V(p;), and p; are the minimal primes in
Supp(R/ Ann(s)), hence by his [27, Chapter 4, §1, Proposition 7], are in Ass(R/ Ann(s)). This gives our assertion
(i). Conversely, for all p € Ass(M), there is an s € M with Ann(s) = p, hence Supp(s) = V(p). Adding these, we
get our assertion (ii).
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PROPOSITION 3.11. If X is locally noetherian? and Y C X is a locally closed subscheme,
then there is a smallest closed subscheme Y C X containing Y as an open subscheme, called the
scheme-theoretic closure of Y. The ideal sheaf I defining Y is given by:

Z(U) = Ker[Ox (U) — Oy (Y NU),

and the underlying point set of Y is the topological closure of Y. Y can be characterized as
the unique closed subscheme of X containing Y as an open subscheme such that Ass(Oy) =
Ass(Oy).

PRrROOF. Everything is easy except the fact that Z is quasi-coherent. To check this, it suffices
to show that if U = Spec R is an affine in X and Uy = Spec Ry is a distinguished affine subset,
then:

Ker(R — Oy (Y NU)) - Ry = Ker(Rf = Oy(YN Uf))

because then Ker(R — Oy (Y N U)) agrees with Z on all Uy’s, hence agrees with Z on U.
Since “ C 7 is obvious, we mush check that if a € R and a/f" = 0 in Oy (Y N Uy), then Im,
f™a/f") =01in Oy (Y NU). Now U is noetherian so Y N U is quasi-compact, hence is covered
by a finite number of affines V;. For each i,

af " = 0 in Oy((Vi)y) = Fms, f™ (/") =0 in Oy (V)
and taking m = max(m;)
= Im, fM(a/f")=01in Oy (Y NU).
O

REMARK. (Added in publication) As noted in the footnote to Proposition 3.11,if f: X — Y
is a quasi-compact morphism of schemes (cf. Definition 4.9 below), then Ker (Oy — f.Ox) is a
quasi-coherent sheaf of ideals of Oy . This ideal defines a closed subscheme of Y, which is called
the scheme-theoretic closure of the image of f.

Here is a sketch of the proof: We may assume Y to be affine. Let {U; | i € I} be an open
affine cover of X indexed by a finite set I. Let ¢;: U; — X be the inclusion morphism. Applying
f« to the injection

OX — H LZ'*L;(OX,

i€l

we get an injection
£:0x — [](f 0 1)+O0u,.

el

Hence
Ker(Oy — f.Ox) = Ker <(’)y — H(f ) L,-)*OUZ) )
i€l

Note that [[;c;(f o ¢)+Oy, is a quasi-coherent Oy-module since each Uj; is affine, hence the
kernel of the above map is quasi-coherent.

We can apply Proposition 3.11 to globalize Example 3.8:

THEOREM 3.12. Let X be a noetherian scheme, let Z be a subscheme and let Ass(Oz) =
{wy,...,wi}. Then there exist closed subschemes W1, ... , Wy C Z such that

2Actually all we need here is that the inclusion of Y in X is a quasi-compact morphism. (cf. Definition 4.9
below.)
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a) W is irreducible with generic point w; and for all open U; C W,
OWi(Ui) — Owi,Wi

is injective (i.e., Ass(Ow,) = {w;}).
b) Z is the scheme-theoretic union of the W;’s, i.e., set-theoretically Z = W1 U --- U W,
and

t
) 7z — EB OWi
i=1
18 surjective.

PROOF. For each i, let U; = Spec R; be an affine neighborhood of w;, let ZNU; = Spec R;/a;,
let w; = [p;] and let g; be a p;-primary component of a;. Let

W; = scheme-theoretic closure of Spec R;/q; in X.
(a) and (b) are easily checked. O

Proposition 3.11 can also be used to strip off various associated points from a subscheme.
For instance, returning to Example 3.8:

SpecRD Z=WiU---UWs, a primary decomposition,

and applying the proposition with X = Spec R, Y = ZNU where U is an open subset of Spec R,
we get

Znu= J w,

7 such that
W;NU#D

and hence these unions of the W;’s are schemes independent of the primary decomposition
chosen.
Two last results are often handy:

PRrROPOSITION 3.13. Let X be a scheme and Z C X a closed subset. Then among all closed
subschemes of X with support Z, there is a unique one (Z,Ox/ZI) which is reduced. It is a
subscheme of any other subscheme (Z,Ox /T") with support Z, i.e., T DT'.

PRrROOF. In fact define Z by
ZWU)={s€O0Ox(U)|s(z)=0,VeeUNZ}.
The rest of the proof is left to the reader. O

ProprosITION 3.14. Let f: X =Y and g: Y — Z be two morphisms of schemes. If go f is
an immersion, then f is an immersion.

ProoF. The morphism f is the composite of the graph I'y: X — X Xz Y and the second
projection pa: X xz Y — Y. We know that I'y is an immersion for every morphism f (cf.
Proposition 4.1 below), while p2 is an immersion since it is a base extension of the immersion
go f X = Z. U

(Added in publication) The corresponding statement for closed immersions is false as was
pointed out by Chai. As an example, let Y = U; U Uy be “Al with duplicated origin” as in
Example 4.4 below. Let X = U; = Speck[11] and Z = Spec k[T], with f the inclusion of U; to
Y and with g: Y — Z the natural projection. Clearly, g o f is a closed immersion (in fact an
isomorphism), but f is not a closed immersion, since U; is not closed in Y.
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4. Separated schemes

In the theory of topological spaces, the concept of a Hausdorff space plays an important role.
Recall that a topological space X is called Hausdorff if for any two distinct points z,y € X,
there are disjoint open sets U,V C X such that x € U, y € V. This very rarely holds in the
Zariski topology so it might seem as if the Hausdorff axiom has no relevance among schemes.
But if the product topology is given to the set-theoretic product X x X, then the Hausdorff
axiom for X is equivalent to the diagonal A C X x X being closed. In the category of schemes,
the product scheme X x X is neither set-theoretically nor topologically the simple Cartesian
product of X by itself so the closedness of the diagonal gives a way to interpret the Hausdorff
property for schemes. The most striking way to introduce this property is by proving a theorem
that asserts the equivalence of a large number of properties of X, one of them being that the
diagonal A is closed in X x X.

Before giving this theorem, we need some preliminaries. We first introduce the concept of
the graph of a morphism. Say we have an S-morphism f of two schemes X, Y over S, i.e., a
diagram:

f
X —Y

L
s

Then f induces a section of the projection:
X x S Y
pll IRI Ff
/
X

defined by I'y = (1x, f). I claim that I'y is an immersion. In fact, choose affine coverings {U;}
of X, {V;} of Y and {W;} of S such that f(U;) C V; and ¢(V;) C W;. Then

I (Ui xs Vi) = U
and if U; = Spec R;, V; = Spec S;, W; = SpecT;, then
resl'y: Uy — U; Xg 'V
corresponds to the ring map

R, @7, Si — R;
a®b —a- f

which is surjective. Therefore if U = |J;(U; xs V;), then I'y factors

X — U C X xgY.
closed open
immersion subscheme

This proves:

PROPOSITION 4.1. If X and Y are schemes over S and f: X — Y is an S-morphism, then
I'y=1x,f): X = X xgY is an immersion.

The simplest example of I'; arises when X =Y and f = 1y. Taking S = SpecZ, we get the
diagonal map

(5:(1x,1x)1X—>XXX.
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T, =0 Pl‘/Ul
\\:‘>

T :O/P;\U

2

FiGURE I1.5. A! with “duplicate origin”

We have proven that if {U;} is an open cover of X, then § is an isomorphism of X with a closed
subscheme §(X) of U C X x X, where

u = Jw x ).

But is 6(X) closed in X x X7 This leads to:

PROPOSITION 4.2. Let X be a scheme. The following properties are equivalent:
i) 6(X) is closed in X x X.
ii) There is an open affine covering {U;} of X such that for all i, j, Uy NUj is affine and
Ox(Ui>, O)((Uj) generate Ox(UZ N Uj).
iii) For all open affines U,V C X, UNV is affine and Ox (U), Ox (V) generate Ox(UNV).

PROOF. (i) = (iii): Given open affines U, V', note that U x V is an open affine subset of
X x X such that Oxxx (U x V) is Ox(U) @ Ox (V). If §(X) is closed in X x X, ¢ is a closed
immersion. Therefore ~1(U x V) is affine and its ring is generated by Oxxx (U x V). But
5 YU x V) =UnNV so this proves (iii).

(iii) = (ii) is obvious.

(i) == (i): Note that if {U;} is an open affine covering of X, then {U; x U;} is an open
affine covering of X x X. Since 6 *(U; x U;) = U; N Uj, (ii) is exactly the hypothesis () of
Corollary 3.5. The corollary says that then ¢ is a closed immersion, hence (i) holds. U

DEFINITION 4.3. X is a separated scheme if the equivalent properties of Proposition 4.2
hold.

Here’s the simplest example of a non-separated scheme X:
EXAMPLE 4.4. Take X = U; U Us where
Uy = Spec k[T7]
Us = Spec k1]
and where Uy and Us are identified along the open sets:
(U1), = Speck[T1,T; !
(Us)1, = Speck[Ty, Ty !
by the isomorphism
1: Spec k[Tl,Tl_l] — Spec k[Tg,Tz_l]
i(Ty) = To.
This “looks” like Figure IL.5, i.e., it is A,lf except that the origin occurs twice!

The same construction with the real line gives a simple non-Hausdorff one-dimensional man-
ifold. Tt is easy to see 6(X) is not closed in Uy x Uy or Uy x Uy because (P, P5) € Uy x Uy and
(P2, P1) € Uy x Uy will be in its closure.
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Once a scheme is known to be separated, many other intuitively reasonable things follow.
For example:

PROPOSITION 4.5. Let f: X — Y be a morphism and assume Y is separated. Then
Iy: X — XxY
is a closed immersion. Hence for allU C X,V CY affine, UN f~Y(V) is affine and its ring is
generated by Ox (U) and Oy (V).
PrOOF. Consider the diagram:

Ly
X —XxY

fJ{ J/(fXIY)

Y —Y xY
oy

It is easy to see that this diagram makes X into the fibre product of Y and X x Y over Y x Y,
so the proposition follows from the following useful result: O

ProrosiTIiON 4.6. If X — S is a closed immersion and Y — S is any morphism, then
X xgY =Y is a closed immersion.

PRrOOF. Follows from Corollary 3.5 and (using the definition of fibre product) the fact that
(A/I)®4 B=B/I-B. g

Before giving another useful consequence of separation, recall from §1.6, that two morphisms

J1
Spec k ? X
2

are equal if and only if fi(Speck) = fo(Spec k) — call this point x — and the induced maps
fik(z) —k
o k(z) — k
are equal. Now given two morphisms
1
73X
f2
one can consider the “subset of Z where f; = f3”: the way to define this is:
fi(z) = fa(z) and the induced maps }

Eq(f1, f2) = {z ez FE 13 k(f1(2)) — Kk(2) are equal

Using this concept, we have:

PROPOSITION 4.7. Given two morphisms f1, fo: Z — X where X is separated, Eq(f1, f2) is
a closed subset of Z.

PRrROOF. fi and fo5 define
(fl,fz)l Z — X xX
and it is straightforward to check that Eq(f1, f2) = (f1, f2) "1(6(X)). O
Looking at reduced and irreducible separated schemes, another useful perspective is that

such schemes are characterized by the set of their affine rings, i.e., the glueing need not be given
explicitly. The precise statement is this:
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PROPOSITION 4.8. Let X and Y be two reduced and irreducible separated schemes with the
same function field K = R(X) = R(Y). Suppose {U;} and {V;} are affine open coverings of X
and Y such that for all i, Ox(U;) = Oy (Vi) as subrings of K. Then X =Y.

Proor. Left to the reader. O

Another important consequence of separation is the quasi-coherence of direct images. More
precisely:

DEFINITION 4.9. A morphism f: X — Y of schemes is quasi-compact if for all U C Y quasi-
compact, f~1U is quasi-compact. Equivalently, for all affine open U C Y, f~'U is covered by a
finite set of affine open subsets of X.

PROPOSITION 4.10. Let f: X — Y be a quasi-compact morphism of separated schemes and
let F be a quasi-coherent sheaf on X. Then f.JF is quasi-coherent.

PROOF. The assertion is local on Y so we may assume Y = Spec R. Let {U;} be a finite
affine open cover of X and let f;: U; — Y be the restriction of f to U;. Since X is separated,
U;NUj is also affine. Let f;;: U; NU; — Y be the restriction of f to U; NU;. Then consider the
homomorphisms:

0— f*]" i> Hfz,*f i) Hfjk,*]:
i gk

where « is just restriction and f is the difference of restrictions, i.e.,

B({si})jrx = res(s;) — res(sg).

By the sheaf property of F and the definition of direct images, this sequence is exact! But f;
and fj; are affine morphisms by Proposition 4.5 and the products are finite so the second and
third sheaves are quasi-coherent by Lemma (1.5.12). Therefore f.F is quasi-coherent. O

REMARK. (Added in publication) A morphism f: X — Y of schemes is said to be separated
(resp. quasi-separated) if the diagonal morphism

AX/Y:X—>XXYX

is a closed immersion (resp. quasi-compact).
Proposition 4.10 above remains valid in the following form:

Let f: X — Y be a quasi-compact and quasi-separated morphism of schemes
and let F be a quasi-coherent sheaf on X. Then f,F is quasi-coherent.

The proof is essentially the same.

From this point on a blancket assumption is made that all schemes are separated over
SpecZ, which implies that all morphisms are separated. Without this blancket assumption,
some adjustment may be needed in subsequent materials. For instance, in Lemma I11,4.1 below,
(i) holds for any quasi-compact scheme X, but in (ii) one needs to assume that X is quasi-
separated over Spec Z.

(xx) In the rest of this book, we will always assume that all our
schemes are separated, hence all morphisms are separated. (xx)
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5. ProjR
The essential idea behind the construction of P™ can be neatly generalized. Let
R=Ry®R®R®---

be any graded ring (i.e., R; - Rj C R;4;), and let

R =PR;
i=1

be the ideal of elements of positive degree. We define a scheme Proj R as follows:

(I) As a point set:

Proj R = {p CR ‘ p a homogeneous prime ideal }

(e, p=B;2 pNR;) and p p Ry
(IT) As a topological space:
for all subsets S C R, let V(S) ={[p] € ProjR| S C p}.
If a is the homogeneous ideal generated by the homogeneous parts of all f € .S, then
V(S)=V(a).

It follows easily that the V' (S) are the closed sets of a topology and that the “distin-
guished open subsets”

(ProjR)f = {[p] € Proj R | f € p}, where f € Ry, some k > 1

form a basis of open sets.
[Problem for the reader: check that if f € Ry, then

{leProjR| f¢p} =] | (ProjR)sy]

k>1 geRy

(III) The structure sheaf:
(*) for all f € R, k>1,let OprojR((PrOj R)f) = (Rf)(),

where (Rf)o = degree 0 component of the localization Ry. This definition is justified
in a manner quite parallel to the construction of Spec, resting in this case however on:

PROPOSITION 5.1. Let f, {gi}ties be homogeneous elements of R, with deg f > 0. Then

(ProjR)f = U(Proj R)y | = [f" = Zaigi, somen > 1, some a; € R| .

1€S

PRroOOF. The left hand side means
V[p] € Proj R, f ¢ p = Ji such that g; € p
which is equivalent to saying

fe m p homogeneous prime ideal such that
Pl poSgRrbutp 2 Ry |

Since p O Ry implies f € p, we can ignore the second restriction on p in the braces. and what
we need is:
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LEMMA 5.2. If a C R is a homogeneous ideal, then

Va= (] »
p homogeneous
pOa

PROOF OF LEMMA 5.2. Standard, i.e., if f ¢ \/a, choose a homogeneous ideal g D a maxi-
mal among those such that f™ & q, all n > 1. Check that q is prime. O

O
COROLLARY 5.3. Ifdeg f,degg > 0, then
(ProjR)f C (ProjR)y = f" =a-g, somen, a
= 3 canonical map (Ry)o — (Rf)o.

— [R+ = m]

We leave to the reader the details in checking that there is a unique sheaf Op,o;j r satisfying
() and with restriction maps coming from Corollary 5.3. The fact that we get a scheme in this
way is a consequence of:

COROLLARY 5.4. Ifdegg; >0, Vi € S, then

Proj R = |_J(Proj R),,
€S

PROPOSITION 5.5. Let f € Ry, k > 1. Then there is a canonical isomorphism:
((PI‘Oj R)f, res OProj R) =~ (Spec ((Rf)o) , OSpec((Rf)o)> .
PrOOF. For all homogeneous primes p C R such that f & p, let
p'={a/f" la€pN Ry} =p- Ry (Ryo.
This is a prime ideal in (Rf)o. Conversely, if p’ C (Ry)o is prime, let

o0

p:@{aeRn

n=0

a*/f" ep’}-

It follows readily that there are inverse maps which set up the set-theoretic isomorphism (Proj R) y =
Spec(Ry)o. It is straightforward to check that it is a homeomorphism and that the two structure
sheaves are canonically isomorphic on corresponding distinguished open sets. O

Moreover, just as with Spec, the construction of the structure sheaf carries over to modules
too. In this case, for every graded R-module M, we can define a quasi-coherent sheaf of Opyj(r)-

modules M by the requirement:

M ((Proj R)f) = (My)o.
We give next a list of fairly straightforward properties of the operations Proj and of e
a) The homomorphisms Ry — (Ry)o for all f € Ry, all k> 1 induce a morphism
Proj(R) — Spec(Ry).
b) If R is a finitely generated Ry-algebra, then Proj(R) is of finite type over Spec(Rp).
c) If Sy is an Rp-algebra, then
Proj(R ®r, So) = Proj(R) Xspec Ry, SPec Sp.
d) If d > 1 and R(d) = @;- Rax, then Proj R = Proj R(d).
[Check that for all f € Rg, k > 1, the rings (Ry)o and (R(d)a)o are canonically
isomorphic; this induces isomorphisms (Proj R)y = (Proj R(d)) fa,. . . .]
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Because of (c), it is possible to globalize Proj just as Spec was globalized in §1.7. If X
is a scheme, and

Ro®GR1OR2B -+

is a quasi-coherent graded sheaf of Ox-algebras where each R; is quasi-coherent, then
one can construct a scheme over X:

T Pron(@Ri) — X

as follows: for all U C X open affine, take the scheme Proj(@p R;(U)), which lies over
Spec Ox (U), i.e., U. For any two open affines Uy, Uy C X construct an isomorphism

P12:
Proj(@ Ri(U)) ——— U

\
P12 | ~ Ul N U2
/

Proj(@ Ri(Uz)) ——— Us

by covering Uy N Us by open affine Us, and noting that:
7T1_1(U3) & Proj (@ RZ(U1> ®OX(U1) Ox(U3)>

= Proj (P Ri(Us))
= Proj (D Ri(U2) @0 (1) Ox (Us) )
=, | (Us).
If a C R is a homogeneous ideal, then there is a canonical closed immersion:
Proj R/a — Proj R.

A somewhat harder result is the converse in the case when R is finitely generated over
Ry: that every closed subscheme Z of Proj R is isomorphic to Proj R/a for some a. The
proof uses the remark that if fi, fo,g € R, and g/f1 vanishes on Z N (Proj R)¢, then
for some k, gf{“/féngl vanishes on Z N (Proj R)y, .

Proj R is separated.

ProoOF. Use Criterion (ii) of Proposition 4.2, applying it to a covering of Proj R
by distinguished affines. O

The map taking R to Proj R is not a functor but it does have a partial functoriality.
To be precise, let R and R’ be two graded rings and let

¢»:R— R
be a homomorphism such that for some d > 0,

¢(Rn) C Ry, all n.
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(Usually d = 1 but this isn’t necessary.) Let

Ry => Ry,

n>0
a=¢(Ry) R.
Then ¢ induces a natural map:
f: Proj R\ V(a) — Proj R.

In fact,
Proj R\ V(a) = | J |J (ProjR)sa.
n>1a€R,
Define the restriction of f to (ProjR’)s, to be the morphism from (ProjR')s, to
(Proj R), induced by the ring homomorphism

¢ (Ra)o — (Rya)o

o(8)- ven

It is easy to check that these morphisms agree on intersections hence glue together to

the morphism f.
If R and R’ are two graded rings with the same degree 0 piece: Ry = Ry, then

Proj R Xspec Ry Proj R =ProjR"
where

R" =P R ®r, R,
n=0

ProOOF. This follows easily from noting that for all f € R,,, f' € R],,

(Rf)o @R, (R0 = (Rfg )0
hence
(Proj R) f Xspec Ry (Proj R') p = (Proj R") fe
and glueing. O

M — M is an exact functor; more precisely V¢: M — N preserving degrees, we get
an Opyoj g-homomorphism ¢: M — N and if

0—M-5HNLP—0

is a sequence with 1 o ¢ = 0 and such that
0— M, — N, — P. —0

is exact if £ > 0, then

0—M-—N-—P—0
is exact.
There is a natural map:

My —s I'(Proj R, M)

given by

m — element m/1 € (My)o = M((ProjR)y).
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There is a natural relationship between Spec and Proj which generalizes the fact that or-
dinary complex projective space P" is the quotient of C**1\ (0) by homotheties. If R is any

graded ring, let
.

n>0
Then there is a canonical morphism

m: Spec R\ V(R4+) — Proj R.
In fact, for all n > 1, a € R, the restriction of 7 to (Spec R), will be the morphism

(Spec R)q, —— (Proj R),
| |
Spec R, Spec(Rq)o

given by the inclusion of (Rg)o in R,.
The most important Proj is:

DEFINITION 5.6. P = Proj R[ X, ..., X,].

Note that since Xy, ..., X, generate the ideal of elements of positive degree, this Proj is
covered by the distinguished affines (Proj R[Xy,..., X,])x,, i.e., by the n 4+ 1 copies of A’:
X X .
U; = Spec R [)gj,,)él] , 0<i<n

glued in the usual way. Moreover if R = @;°, R; is any graded ring generated over Ry by ele-
ments of Ry and with R; finitely generated as Ro-module, then R is a quotient of Ry[Xo, ..., Xy]
for some n: just choose generators ao,...,a, of R; and define

Ro[Xo, . ,Xn] — R
by X; — a;.
Therefore by (f), Proj R is a closed subscheme of P, .

More generally, let X be any scheme and let F be a finitely generated quasi-coherent sheaf
of Ox-modules. Then we can construct symmetric powers Symm"(F) by

Symm"(F)(U) = Symm"(F(U)), all affine open U
and hence a quasi-coherent graded O x-algebra:
Symm* F = Ox @ (F) @ (Symm? F) @ (Symm3 F) @ - - - .
DEFINITION 5.7. Px(F) = Projx (Symm* F).

Note that by (f) above, if R is any quasi-coherent graded Ox-algebra with

Ro=0Ox
R1 finitely generated
R, generated by Ri, n > 2,

then we get a surjection
Symm*R; - R
hence a closed immersion
Projx(R) < Px(Ra).

This motivates:

DEFINITION 5.8. Let f: X — Y be a morphism of schemes.
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a) f is projective if X = Projy (D R;), some quasi-coherent graded Oy-algebra € R; but
such that Rg = Oy, R finitely generated as Oy-module and R1, multiplied by itself
n times generates R,, n > 2. Equivalently 3 a diagram:

closed

XC immersion PY ( f)
N

where F is quasi-coherent, finitely generated.
b) f is quasi-projective® if 3 a diagram:

where f’ is projective.
Note that if Y = Spec R, say, then

f projective <= X is a closed subscheme of P%, some n
f quasi-projective <= X is a subscheme of P%, some n.

We can now make the final link between classical geometry and the theory of schemes:
when R = C it is clear that Py becomes the scheme that we associated earlier to the classical
variety P"(C). Moreover the reduced and irreducible closed subschemes of P¢ are precisely the
schemes Proj(C[Xy, ..., X,]/p), which are the schemes that we associated earlier to the classical
varieties V (p) C P"(C). In short, “complex projective varieties” as in Part I [87] define “complex
projective varieties” in the sense of Definition 5.8, and, up to isomorphism, they all arise in this
way.

Note too that for P, the realization of P} Xspec r P as a Proj in (i) above is identical to
the Segre embedding studied in Part I [87]. In fact, the construction of (i) shows:

IP% XSpec R P% - PI‘Oj R[XOa oo 7Xn] XSpec R PI‘Oj R[Yb, R 7Ym]

~ Pro; subring of R[X] ®g R[Y] generated by
- J polynomials of degrees (k, k), some k

~ Proi subring of R[Xo,...,Xn, Y0, ..., Y]
N generated by elements X;Y; '

Let U;;, 0 <@ <n, 0 <j <m, be new indeterminates. Then for some homogeneous prime ideal
p C R[UJ,

R[U()o,...,Unm]/p = [

via Uij — XZ}/]

subring of R[Xy, ..., Y]
generated by elements XY

Thus P} Xspec r PR is isomorphic to a closed subscheme of Pﬁm+”+m. This is clearly the Segre
embedding from a new angle:

The really important property of Proj is that the fundamental theorem of elimination theory
(Part I [87, Chapter 2]) can be generalized to it.

3Grothendieck’s definition agrees with this only when Y is quasi-compact. I made the above definition only
to avoid complications and have no idea which works better over non-quasi-compact bases.
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THEOREM 5.9 (Elimination theory for Proj). If R is a finitely generated Ry-algebra, then
the map

m: Proj R — Spec Ry
is closed.

PROOF. Every closed subset of Proj R is isomorphic to V' (a) for some homogeneous ideal
a C Ry. But V(a) = ProjR/a, so to show that w(V(a)) is closed in Spec Ry, we may as well
replace R by R/a to start with and reduce the theorem to simply showing that Image 7 is closed.
Also, we may reduce the theorem to the case when R is generated over Ry by elements of degree
1. This follows because of Proj R = Proj R(d) and the amusing exercise:

LEMMA 5.10. Let R be a graded ring, finitely generated over Ry. Then for some d, R{(d) is
generated over Ry by R(d)1 = Ry.

(Proof left to the reader).
After these reductions, take pg C Ry a prime ideal. Then

A homogeneous prime p C R such ]

[po] ¢ Imagem <= [ that p N Ry = po, p B Ry

Let R' = R®R, (Ro)p,- Then homogeneous primes p in R such that pN Ry = po are in one-to-one
correspondence with homogeneous primes p’ in R’ such that p’ D pg - R’. Therefore

A homogeneous prime p’ C R’ such
that p’ D po- R and p’ R/,

< /po-R' DR,

< dn, po- R D (R/,)" (since Ry is a finitely generated ideal)

[po] & Imagem <= [

<= 3n, po- R, D R, (since Ry is generated by R;)

In, R, = (0)
<= | (by Nakayama’s lemma since R,
is a finitely generated R’-module)

Now for any finitely generated Rg-module M,
My, = (0) = My = (0), some f € Rg\ po,
hence
{[po] € Spec Ro | My, = (0)}
is the maximal open set of Spec Ry on which M is trivial, i.e.,
Supp M = {[po] € Spec Ry | My, # (0)}
and this is a closed set. What we have proven is:

[po] € Image 7 <= Vn, R, ®r, (Ro)y, # (0)

<= [po] € () Supp Ry

n=1

Thus Image 7 is closed. O
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6. Proper morphisms

Theorem 5.9 motivates one of the main non-trivial definitions in scheme-theory:

DEFINITION 6.1. Let f: X — Y be a morphism of schemes. Then f is proper? if
a) f is of finite type,
b) for all Y/ — Y, the canonical map
X xy Y — Y

is closed.

When Y = Speck, X is complete over k if f: X — Spec(k) is proper.

Since “proper” is defined by such an elementary requirement, it is easy to deduce several
general properties:
Suppose we are given X L Y -%5 Z. Then
i) f, g proper = g o f proper
ii) go f proper = f proper
iii)
g o f proper
f surjective —> ¢ proper
g of finite type

iv) Proper morphisms are “maximal” in the following sense: given

X C X
A /r
Y
where X is open and dense in X’,
f proper = X = X',

For instance, take (ii) which is perhaps subtler. One notes that f can be gotten as a composition:

17
XMX xZYLY

l Jg
X ——Z
gof

where (1, f) is a closed immersion.
Using the concept proper, the Elimination Theorem (Theorem 5.9) now reads:

COROLLARY 6.2. A projective morphism f: X — Y is proper.

PrOOF. Note that f: X — Y is closed if there exists an open cover {U;} of Y such that
f~1U; — Uj is closed. Therefore Corollary 6.2 follows from Theorem 5.9, the definition of Proj
and Property (c) of Proj. O

4(Addod in publication) According to the standard definition, a morphism f: X — Y is proper if it is

separated, (a) of finite type and (b) universally closed. Here both X and Y are assumed to be separated over Z
by the convention at the end of §4. Hence f is automatically separated.
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On the other hand, “projective” is the kind of explicit constructive property that gives one
a very powerful hold on such morphisms, whereas “proper” is just an abstraction of the main
qualitative property that projective morphisms possess. Now there exist varieties over k that
are complete but not projective—even non-singular complex varieties—so proper is certainly
weaker than projective. But what makes proper a workable concept is that it is not too much
weaker than projective because of the following:

THEOREM 6.3 (“Chow’s lemma”). Let f: X — Y be a morphism of finite type between
noetherian schemes. Then there erists

a) a surjective projective morphism w: X' — X, “birational” in the sense that there is an
open set U such that:

7T_1(U) C X!

dense
isomorphismlz g
C
U dense X’

b) a factorization of fom:

/\
Y A

P" xY
where i is an immersion, so that f ow is quasi-projective.

If f is proper, then i is a closed immersion, so we have m and f o m projective, i.e., f is a
“factor” of projective morphisms!

PROOF. We do this in several steps:
STEP (I). 3 a finite affine covering {U;} of X such that (| U; is dense in X.

PROOF. Let X = X; U---U X; be the components of X and let {V;} be any finite affine
covering of X. For all s, 1 < s <t, let X be an affine open subset of X such that
a) XNX, =0ifr#s
b) X? C V; whenever X, NV, # (.
Then define U; to be the union of V; and those X¢ such that V; N X, = (). Since V; and all these
X are disjoint, U; is affine too. Moreover (U; D |J X, hence is dense in X. O

STEP (II). For each i, res f: U; — Y can be factored
Ui — A" xY —Y
I; D2
where I; is a closed immersion.

PrOOF. Let {V;} be an affine covering of Y. Then U; N f~1(V;) is affine and its ring is
generated by Ox (U;) @ Oy (V;). Let fi,..., fi,, € Ox(U;) be enough elements to generate the
affine rings of U; N f~1(V;) over Oy (V;) for all j. Define I;1: U; — AY by I (Xk) = fi and
define I; = (I;1,res f). One sees easily that I; is a closed immersion. O

STEP (III). Consider the immersions:

I U; P xY



6. PROPER MORPHISMS 77

gotten by composing I; with the usual inclusion of A¥ in P¥. Let U; be the scheme-theoretic

closure:
U, C ﬁz — P xY.

open  closed
dense immersion

Let U = O, Ui. Consider the immersion:
U—P"x.---xP"xY

given by (I,...,I%) and the inclusion of U in each U;. Let U be the scheme-theoretic closure
of the image here. Via the Segre embedding, we get:
Uc¢ U P" xY

open . closed
dense ‘/ immersion

f p2

Y

Note that by projecting P** x --- x PYN on its i-th factor, we get morphisms:

U open U
dense
Pi

U;

' open
dense

Define X’ to be the open subscheme of U which is the union of the open subschemes p{l(Ui).
Finally, define 7: X’ — X by:
X ---=X

U U
pi

p; U —— U
Note that this is OK because on the open set U C ﬂpi_lUi, all these morphisms p; equal the
inclusion morphism U < X, and hence p; = p; on p;” Ui pjflUj since U is scheme-theoretically
dense in pz-_lUi ﬂpj_lUj.
STEP (IV). 7: X’ — X is projective. In fact note that p;: U — U is the restriction of

the projection P"! x --- x P» x Y — P x Y to U, hence it is projective, hence it is proper.
Therefore resp;: pi_l(Ui) — U, is proper. We are now in the abstract situation:

LEMMA 6.4. If m: X = Y is a morphism, U; C X, V; CY open dense sets covering X and
Y such that m(U;) C Vi, resw: U; — V; proper, then m=Y(V;) = U; and 7 is proper.

(Proof left to the reader.)
But now consider the morphism
j: X' —P"x X
induced by a) X’ c U — P*x Y 2% P" and b) 7: X’ — X. It is an immersion since the
composite X’ LPrx X ﬁ) P" x Y is an immersion. Since m: X’ — X is proper, j is proper
too, hence j(X') is closed, hence j is a closed immersion. Thus 7 is projective. Finally, if f is

proper too, then fom: X' — Y is proper, hence the immersion X’ — P x Y is proper, hence
it is a closed immersion, hence f o 7 is projective. (]
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Interestingly, when this result first appeared in the context of varieties, it was considered
quite clear and straightforward. It is one example of an idea which got much harder when
transported to the language of schemes.

Proper morphisms arise in another common situation besides Proj:

PROPOSITION 6.5. Let ¢p: A — B be a homomorphism of rings where B is a finite A-module
(equivalently, B is a finitely generated A-algebra and B is integrally dependent on A). Then the
induced morphism f

f: Spec B — Spec A
18 proper.

PROOF. This is simply the “going-up” theorem (Zariski-Samuel [119, vol. I, Chapter V, §2,

Theorem 3]). It suffices to show f is closed. Let Z = V(a) C Spec B be a closed set. I claim

f(2) =V (¢~ ().
We must show that if p is a prime ideal:
¢~ (a) CpC A
then there is a prime ideal q:

acqCcB, ¢ '(q) =p
Apply the going-up theorem to p/¢~!(a) and the inclusion:

A/¢~(a) C B/a.

One globalizes this situation via a definition:

DEFINITION 6.6. A morphism f: X — Y is called finite if X = Specy R where R is a
quasi-coherent sheaf of Oy-algebras which is finitely generated as Oy-modules.

COROLLARY 6.7. A finite morphism is proper.
There is a very important criterion for properness known as the “valuative criterion”:
PROPOSITION 6.8. Let f: X — Y be a morphism of finite type. Then f is proper if and only

if the “valuative criterion” holds:

For all valuation rings R, with quotient field K, every K-valued point o of X
extends to an R-valued point if the K-valued point f o o of Y extends, i.e.,
given the solid arrows:

Spec K *— X

/?(
SpecR —— Y

the dotted arrow exists.

PRrOOF. It’s obvious that the criterion is necessary: just make the base change by the
extended morphism : Spec R — Y:

X' =X xy SpecR—— X

/ . —~ -
a'=(a) - Jf’ J{f

Spec K——— Spec R ﬂ—> Y
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Then « defines a morphism o’ = (a,i) from Spec K to X Xy Spec R, l.e., a section of f! over
Spec K. Let z € X xy Spec R be the image of o’ and let Z = {z}. Then if f is proper:

f(Z) = f(Z) = {f'(2)} = Spec R.

Let w € Z lie over the closed point of Spec R. Then we get homomorphisms

Ow,Z
/ Tu
K D R
Since R is a valuation ring and (f’)* is a local homomorphism, this can only hold if R = O,, z (a

valuation ring is a maximal subring of its quotient field with respect to local homomorphisms:
Zariski-Samuel [119, vol. II, Chapter VI, §2]). Then

SpecOy,z — Z
defines the required extension:
SpecR —ZCc X — X

of a.

The converse is only a bit harder. Assume f satisfies the criterion. Then so does py: X Xy
Y’ — Y after every base change Y’ — Y, so replacing f by ps, it suffices to check that f itself
is closed. Everything is local over Y so we may also assume Y is affine: say Y = Spec S. Since f
is of finite type, X is the union of finitely many affines X,: say X, = Spec R,. Now let Z C X
be closed. Then

Z=|]J(ZnXa)

so if f(Z N X4) is closed for every «, so is f(Z). We can therefore also replace Z by Z N X, for
some «, i.e., we can assume Z N X, dense in Z for some «. There are two steps:

a) for every irreducible component W of f(Z), the generic point ny equals f(z), some
z €7, L
b) for every z € Z and y € {f(2)}, there is a point x € {z} such that f(z) = y.

Together, these prove that f(Z) is closed.

PROOF OF (a). The affine morphism
ZNXy — f(Z)=f(ZNX,)

corresponds to an injective ring homomorphism

R./bq LS/a

between rings without nilpotents. 7y corresponds to a minimal prime ideal p C S/a. Localizing
with respect to M = ((S/a) \ p), we still get an injection (res f)* in the diagram

(Ra/ba)ar 2580

| T

Ra/ba < —:f* S/Cl

(Zariski-Samuel [119, vol. I, Chapter IV, §9] and Bourbaki [27, Chapter II, §2.4, Theorem 1]).
But (S/a)y is the field k(nw), so if ¢ C (Ra/bs)y is any prime ideal, ((res £)*)~1(q) = (0).
Then j~!(q) defines a point z = [i71(q)] € Z N X,, such that f(z) = nw. O
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PROOF OF (b). In the notation of (b), let W = {f(2)}. Then we have a diagram of rings
Oy,w — its quotient field k(f(z)) C k(z).

We use the fundamental valuation existence theorem (Zariski-Samuel [119, vol. II, Chapter VI,
Theorem 5]) which states that there is a valuation ring R C k(z) with quotient field K = k(z)
such that O, w — R is a local homomorphism. This gives us maps:

Spec K — {2} ¢ X
\{ Jresf j/f
SpecR —— W c Y

By the criterion, a lifting Spec R — X exists, and this must factor through {27} (since Spec K
is dense in Spec R)i.Then x, the image under this lifting of the closed point of Spec R, is the
required point of {z}. O

O
An amusing exercise that shows one way the definition of properness can be used is:

PROPOSITION 6.9. Let k be a field and let X be a scheme proper over Speck. Then the
algebra T'(X, Ox) is integrally dependent on k.

PROOF. Let a € I'(X, Ox). Define a morphism
fa: X — A}
by the homomorphism
kE[T] — I'(X, Ox)
T+— a.
Let i: A} < P} be the inclusion. Consider the diagram

10 fq

X P!
T~ e

Speck

where 71, my are the canonical maps. Since m is proper, so is i o f, (cf. remarks following
Definition 6.1). Therefore the image of io f, is closed. But co ¢ Image(io f,), so the image must
be a proper subscheme of A,lg. Since k[T is a principal ideal domain, the image is contained in
V(p), some monic polynomial p(T"). Therefore the function

p(a) €e T(X,Ox)

is everywhere zero on X. On each affine, such a function is nilpotent (an element in every prime
ideal of a ring is nilpotent) and X is covered by a finite number of affines. Thus

p(a)¥ =0
some N > 1, and a is integral over k. U

COROLLARY 6.10. Let k be an algebraically closed field and let X be a complete k-variety.
Then I'(X,O0x) = k.

The following result, given in a slightly stronger form in EGA [1, Chapter III, §3.1], will be
needed in the proof of Snapper’s theorem (Theorem VII.11.1) in the proper but non-projective
case.
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DEFINITION 6.11. Let K be an abelian category, and denote by Ob(K) the set of its objects.
A subset K’ € Ob(K) is said to be ezact if 0 € K’ and if the following is satisfied: In an exact
sequence 0 - A" -+ A — A” — 0 in K, if two among A, A" and A” belong to K', then the third
belongs to K'.

THEOREM 6.12 (“Lemma of dévissage”). Let K be the abelian category of coherent Ox-
modules on a noetherian scheme X, and K' C Ob(K) an ezxact subset. We have K' = Ob(K),
if for any closed irreducible subset Y C X with generic point y there exists G € K' with support
Y such that G, is a one-dimensional k(y)-vector space.

PrOOF. For simplicity, a closed subset Y C X is said to have property P(Y) if any S €
Ob(K) with Supp(S) C Y satisfies S € K'.

We need to show that X has property P(X).

By noetherian induction, it suffices to show that a closed subset Y C X has property P(Y)
if any closed subset Y’ & Y has property P(Y”).

Thus we now show F € Ob(K) satisfies 7 € K’ if Supp(F) C Y. Endow Y with the unique
structure of closed reduced subscheme of X with the ideal sheaf 7. Since J O Ann(F), there
exists n > 0 such that J"F = (0). Looking at successive quotients in the filtration

FOIJFOJ*Fo--->J" ' FoJ"F=(0),

we may assume n = 1, that is, 7F = (0), in view of the exactness of K. Let j: Y — X be the
closed immersion so that F = j.j*F.

Suppose Y is reducible and Y = Y" UY” with closed reduced subschemes Y, Y” G Y. Let
J' and J” be the ideal sheaves of Ox defining Y’ and Y, respectively, so that J = J' N J".
Let 7/ = F® (Ox/J') and F' = F @ (Ox/J"), both of which belong to K’ by assumption.
Regarding the canonical Ox-homomorphism

wF —FeF

we have 7' @ F” € K’ by exactness, while Ker(u), Coker(u) € K’ by assumption, since the
induced homomorphism of the stalks at each z ¢ Y/ NY” is obviously bijective. Hence we have
F € K’ by exactness.

It remains to deal with the case Y irreducible. Endowing Y with the unique integral scheme
structure, let y be the generic point of Y. Since O,y = k(y) and j*F is Oy-coherent, F, =
(§*F)y is a k(y)-vector space of finite dimension m, say. By assumption there exists G € K’
with Supp(G) = Y and dimy,) G, = 1. Hence there is a k(y)-isomorphism (G,)" — F,
which extends to an Oy-isomorphism in a neighborhood W in X of y. Let H be the graph in
(G @ F)|w of the Oy |w-isomorphism G®"|y, — Flw. The projections from H to G¥™ |y,
and F|y are isomorphisms. Hence there exists a coherent Ox-submodule Hy C G¥™ @ F such
that Holw = H and that Ho|x\y = (0), since Supp(G), Supp(F) C Y. The projections from H
to G¥™ and F are homomorphisms of O x-modules which are isomorphisms on W and X \ Y.
Thus their kernels and cokernels have support in Y\ (Y N W) G Y, hence belong to K'. Since
G € K/, we thus have Hy € K’, hence F € K'. O

Exercise

(1) Let f: X — Y be a finite morphism. If the fibre f~!(y) over one point y € Y is
isomorphic to Speck(y), show that res f: f~1(U) — U is a closed immersion for some
neighborhood U of y.
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(2) (Referred to in the proof of Lang’s Theorem VI.2.1.) Let f: X — Y be a morphism of
finite type with Y noetherian such that f~!(y) is finite for all y € Y. Show that 3 an
open dense U C Y such that

res f: fHU) — U

is finite.

(3) (Complement to Proposition 3.11) Let f: X — Y be a quasi-compact morphism of
schemes. Show that Z := Ker(Oy — f.Ox) is a quasi-coherent sheaf of ideals of Ox.
(The closed subscheme of X defined by Z is called the scheme-theoretic closure of the
image of X in Y.)

(4) Let f: X — Y be a quasi-compact and quasi-separated morphism of schemes, and let
F be a quasi-coherent Ox-module. Show that f.F is a quasi-coherent Oy-module.
(Recall as in Remark at the end of §4 that f is defined to be quasi-separated if the
diagonal morphism Ax/y: X — X xy X is quasi-compact.)

(5) Give an example of a scheme X with two affine open subsets U and V such that UNV
is not affine.



CHAPTER III

Elementary global study of Proj R

1. Intertible sheaves and twists

DEFINITION 1.1. Let X be a scheme. A sheaf £ of Ox-modules is called invertible if L is
locally free of rank one. This means that each point has an open neighborhood U such that

Lly = Ox|u;
or equivalently, there exists an open covering {U,} of X such that for each «,
Lly, ~ Ox|u,-
The reason why invertible sheaves are called invertible is that their isomorphism classes form

a group under the tensor product over Ox for multiplication, as we shall now see.
(a) If £, L are invertible, so is L& L.

PROOF. For each point we can find an open neighborhood U such that both £, £’
are isomorphic to Ox when restricted to U, so £L® £’ is isomorphic to Ox @ Ox = Ox
when restricted to U. O

(b) Tt is clear that L& Ox ~ L ~ Ox ® L, so Ox is a unit element for the multiplication,
up to isomorphism.
(c) Let LY = Hom(L,Ox). Then LV is invertible.

PROOF. Restricting to a suitable open set U we may assume that £ =~ Ox, in which
case

Hom (L, Ox) =~ Hom(Ox,O0x) ~ Ox.

(d) The natural map
L& Hom(L,Ox) — Ox

is an isomorphism.

PROOF. Again restricting to an appropriate open set U, we are reduced to proving
the statement when £ = Ox, in which case the assertion is immediate. O

Thus £V = Hom(L,Ox), which is call the dual sheaf, is an inverse for £ up to isomorphism.
This proves that isomorphism classes of invertible sheaves over Ox form a group.
We also have the property:

(e) Let f: X — Y be a morphism and £ an invertible sheaf on Y. Then f*L is an invertible
sheaf on X.

DEFINITION 1.2. Let X be a scheme. We let Pic(X), the Picard group, be the group of all
isomorphism classes of invertible sheaves.

83
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Invertible sheaves and Proj are closely related because under a certain hypothesis, Proj R
carries a canonical invertible sheaf, known as Opyojr(1).

Let R be a graded ring,
R =P Ry.

n>0
Then R is an algebra over Ry. The hypothesis that allows us to define Oprojr(1) is that R is
generated by Ry over Ry, that is
R = Ry[Ry]

(cf. Proposition 11.5.1). We shall make this hypothesis throughout this section.

ExaMPLE 1.3. The most basic ring of this type is obtained as in Definition 11.5.6 as follows.
Let A be any commutative ring, and let

R=AlTy,...,T,]

be the polynomial ring in r 4+ 1 variables. Then Rg = A, and R, consists of the homogeneous
polynomials of degree n with coefficients in A. Furthermore R; is the free module over A, with
basis Ty, ..., .
For simplicity, we abbreviate

P = Proj R.
To define Op(1), start with any graded module M. Then for all integer d € Z we may define
the d-twist M(d) of M, which is the module M but with the new grading

M(d)p = Mgip,.

Then we define o

Op(1) = R(1)
where the is the projective . If f € R is a homogeneous element, we abbreviate the open

subset
(ProjR)s =Py or Uy.

PROPOSITION 1.4. The sheaf Op(1) is invertible on ProjR. In fact: Given f € Ry, the
multiplication by f
mys: R — R(1)
is a graded homomorphism of degree 0, whose induced sheaf homomorphism
mp: R=0p — R(1) = Op(1)
restricts to an isomorphism on Uy. Let oy = my. For f,g € Ry, the sheaf map 4,0/?1 o g 18
multiplication by g/ f on Ur N U,.

PrOOF. By definition

Op(1)|u; = (R(1)f)os
and we have an isomorphism
multiplication by f: Ry — R(1);.

This induces an isomorphism on the parts of degree 0, whence taking the affine N, it induces
the isomorphism

OIP”Uf — Op(l)‘(]f.
In fact, the module associated with Op(1) on Uy is just given by

(Rf)o- f,
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and is consequently free of rank 1 over the affine coordinate ring of Spec(Ry)o. Since R is
generated by Ry, the Uy’s cover Proj R, and this shows that Op(1) is invertible. O

ProproSITION 1.5. Let M be a graded R-module. Then the isomorphism
M ®pr R(1) — M(1)

induces an isomorphism

P

M ®0, Op(1) — M(1).

PRroor. Let f € R;. On P; the isomorphism of graded modules induces the corresponding
isomorphism of (Ry)o-modules
(My)o @ (R(1))o — (M(1)1)o,

where the tensor product is taken over (Ry)g. Taking the affine tilde yields the desired sheaf
isomorphism. O

DEFINITION 1.6. For every integer d we define
Oz(d) = R(d),
and for any sheaf F of Op-modules, we define
F(d) = F @0, Op(d).
PROPOSITION 1.7.

(i) For d,m € Z we have F(d+m) =~ F(d) ® Op(m).
(ii) For d positive,

Op(d) = Op(l) ®--- @ Op(1) (product taken d times).
(iii) For d € Z the natural pairing
Op(d) ® Op(—d) — Op
identifies Op(—d) with the dual shiqu[p:(d)v.
(iv) For a graded module M, we have M (d) ~ M(d).
PROOF. The first assertion follows from the formula

(M ®r N) ~ M ®0, N

for any two graded R-modules M and N, because R is generated by R;. Indeed, for f € Ry we
have
(M ®rN)s =My ®r, Ny

The other assertions are immediate. O

The collection of sheaves M (d) attached to M allows us to interpret globally each graded
piece of the module M. In fact, for each d, we get a canonical homomorphism (cf. §I1.5)

My = M(d)o — T(P, M(d)) = T(P, M(d)).
For any sheaf F of Op-modules, we define
I.(F) = @ T @, F(m)).
meZ

Then we obtain a canonical homomorphism

M — T (M).
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In particular, when M = R, we get a ring homomorphism

R — @I (P,0p(d)) = T(R) = T'.(Op),
d=0
where multiplication on the right hand side is defined by the tensor product.
We also note that I'x(F) is a graded R-module as follows. We have the inclusion of Ry in

—

I'(P, R(d)), and the product of Ry on I'(P, Fp(m)) is induced by the tensor product
(P, Op(d)) @ T(P,F(m)) — T(P, F(m + d)).
It is not always the case that there is an isomorphism
I.(Op) ~ R,

so for some positive integer d, it may happen that the module of sections I'(P, Op(d)) is larger
than R;. We now give an example when these are equal.

PROPOSITION 1.8. Let A be a ring and R = A[ly,...,T;], r > 1. Let P = ProjR = P’,.
Then for all integers d € Z we have

Rd ~ F(P, Op(d)) so R=~ P*(Op).

Proor. For ¢ = 0,...,r let U; = Ug,, so U; is the usual affine open subscheme of Proj R,
complement of the hyperplanes T; = 0. A section s € I'(P, Op(n)) is the same as a family of
sections s; € Op(n)(U;) for all i, such that s; = s; on U; N Uj for all 4, j. But a section in
Op(n)(U;) is simply an element

where k(i) is an integer and f;(T") is a homogeneous polynomial of degree k(i)+n. The restriction
to U; N Uj is the image of that element in the localization Ry, Since the elements Ty, ..., T,
are not zero-divisors in R, the natural maps

R — RTi and RTZ- — RTiTJ-

are injective, and all such localized rings can be viewed as subrings of Ry,...1;.. Hence I'y(Op) is
the intersection (| Rz, taken inside Ry,...7,. Any homogeneous element of Ryy...7,, can be written
in the form

f(To,..., TTFO ... T
where f(Tp,...,T,) is a homogeneous polynomial not divisible by any 7; (i = 0,...,r) and
k(0),...,k(r) € Z. Such an element lies in Ry, if and only if k(j) > 0 for all j # i. Hence the
intersection of all the Ry, for i = 0,...,7 is equal to R. This proves the proposition. U

The proposition both proves a result and gives an example of the previous constructions. In
particular, we see that the elements Ty, ..., T, form a basis of R; over A, and can be viewed as
a basis of the A-module of sections I'(P"}, Op(1)).

Next we look at the functoriality of twists with respect to graded ring homomorphisms. As
in §I1.5 we let R’ be a graded ring which we now assume generated by R} over Rj. Let

o: R— R

be a graded homomorphism of degree 0. Let V be the subset of Proj R’ consisting of those
primes p’ such that p’ 5 ¢(R+). Then we saw that V is open in Proj R’, and that the inverse
image map on prime ideals

f:V—ProjR="P
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defines a morphism of schemes.
PROPOSITION 1.9. Let P = Proj R'. Then
frOp(d) = Op(d)ly  and  f(Op/(d)lv) = (f.Ov)(d).

PRrROOF. These assertions about the twists hold more generally for any graded R-module M,
because

F*(M) = (M ®r Ry

and for any graded R’-module N, we have

fo(Nlv) = (Ng),
where Np is NV viewed as R-module via ¢. The proof is routine and left to the reader. O

To conclude this section we note that everything we have said extends to the global Proj
without change. Instead of Proj R, we can consider Projyx R where R is a quasi-coherent graded
sheaf of Ox-algebras. We need to make the hypothesis that R,, is generated by R over Ry,
i.e., the multiplication map

Symmgp, R1 — Ry

is surjective. Let P = Projy R. Then if M is a quasi-coherent graded sheaf of R-modules, we
define M(d) by

M(d)n - Md+n-
Then let

and for every quasi-coherent F on P, let
F(d) = F ®0, Op(d).

As before, Op(1) is invertible, with powers Op(d) and

—_—

M(d) = (M)(d).
The extension of the definition of I',(F) to the global case is:
8 F = P mF(m)
meZ

where 7 is the projection of Projx R to X. This is quasi-coherent provided that R, is finitely
generated as Ro-modules, since this implies that 7 is quasi-compact, hence Proposition 11.4.10
applies. As above, we have a natural graded homomorphism

M — 7E(M).

Finally Proposition 1.8 globalizes immediately to:

PROPOSITION 1.10. Let € be a locally free sheaf of Ox-module and consider P(£) = Projx (Symm* £).
Then the natural homomorphism

Symm? €& — 7 Op(g)(d)

s an isomorphism. In particular, Symm* £ = wfr(?]p(g).
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2. The functor of Proj R

Throughout this section we let R be a graded ring, generated by Ry owver
Ry. We let S = Spec(Ry), P = ProjR and let m: P — S be the canonical
projection.
An important example of a graded ring R as above is Symmp (R1), namely the symmetric
algebra, but we shall meet other cases, so we do not restrict our attention to this special case.
We are interested in schemes X over .S, and in morphisms of X into Proj R over S:

X4>IP’ Proj R

N

In the simplest case, P = P}, and f becomes a morphism of X into projective space.
Given such a morphism f: X — P, we can take the inverse image f*Op(1), which is an
invertible sheaf on X. By the general formalism of inverse images of sheaves, this induces a

natural map on global sections
[T TP, 0p(1)) — (X, f7Op(1)),
and in light of the natural map Ry — I'(P, Op(1)) induces a homomorphism
or=p: Ry — I'(X, f*Op(1)).
Thus to each morphism f: X — P we have associated a pair (£, ¢) consisting of an invertible
sheaf £ (in this case f*Op(1)) and a homomorphism
v: R — I'(X, 0).
To describe an additional important property of this homomorphism, we need a definition.

DEFINITION 2.1. Let F be a coherent sheaf of Ox-modules. Let {s;} be a family of sections.
We say that this family generates F if any one of the following conditions is satisfied:

(1) For every point € X the family of images {(s;),} generates F, as an O,-module, or
equivalently (by Nakayama’s lemma Proposition 1.5.5) F,/m;F,

(2) For each point x € X there exists some open neighborhood U of x such that the sections
{silu} generate F(U) over Ox(U).

Note that by Proposition 1.4, if ¢ € R;, then over the open set (ProjR), of P = Proj R
the section g € I'(P, Op(1)) generates the sheaf Op(1). Since these open sets cover the scheme
PP, it follows that the collection of global sections R; of Op(1) generates Op(1) everywhere (see
Nakayama’s lemma Proposition 1.5.5), or equivalently that

TRy — Op(1)

is surjective.

From the definition of the inverse image f*, which is locally given by the tensor product, it
follows that the inverse image f*R; generates f*Op(1).

Thus finally, to each morphism f: X — Proj R we have associated a pair (£, ) consisting
of an invertible sheaf £ on X and a homomorphism

p: R — F(X , ﬁ)
such that ¢(R;) generates L, or equivalently, the homomorphism

f*Rl — L
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is surjective.

THEOREM 2.2. Let P = Proj R. Assume that R = Symmp (R1). Let S = Spec(Ro). Let
p: X — S be a scheme over S and let (L, ) be a pair consisting of an invertible sheaf L on X
and a homomorphism
p: R — T'(X, L)

which generates L. Then there exists a unique pair (f,¢) consisting of a morphism f: X —
Proj R over S and a homomorphism : f*Op(1) — L making the following diagram commuta-
tive:

R —— S T(X,L)

[

(P, Op(1)) — (X, f*Op(1))
Furthermore, the homomorphism 1 is an isomorphism.

Before giving the proof, we make some comments. An important special case occurs when R
is a free module of finite rank 41 over Ry. Then P = ]P’%O. The Ry-module R; then has a basis
To,...,Tr. Let sq,...,s, be sections of £ which generate £. There is a unique homomorphism
w: Ry — I'(X, £) such that ¢(7;) = s;. The theorem asserts that there is a unique morphism
f+ X — Py such that f*Op(1) is isomorphic to £, and the sections s; correspond to f*T;
under this isomorphism. This is the formulation of the theorem in terms of the homogeneous
coordinates Tp, ..., T;.

The proof of Theorem 2.2 will require some lemmas. We first consider the uniqueness, and
for this the hypothesis that R = Symmp (R1) will not be used.

Let s be a section of an invertible sheaf £ over the scheme X. Let s, be the value of the
section in L;, and let m, be the maximal ideal of O,. Then s, generates L, if and only if
Se & My L.

LEMMA 2.3. Let L be an invertible sheaf on the scheme X. Let s € I'(X, L) be a global
section of L. Then the set of points x € X such that s, generates L, is an open set which we
denote by Xs. Multiplication by s, that is,

mg: OX|U — £|U
is an isomorphism on this open set.

PROOF. We may suppose that X = Spec(4), and £ = Ox since the conclusions of the
lemma are local. Then s € A. The first assertion is then obvious from the definition of Spec(A).
As to the second, s is a unit in A5 so multiplication by s induces an isomorphism on the sheaf
on the open subset Spec(Ag). This proves the lemma. (No big deal.) O

To show uniqueness, we suppose given the pair
f: X —ProjR and ¢: Ry —TI'(X, L),

and investigate the extent to which f is determined by (. Note that for all a € Ry the map f
restricts to a morphism

p(a) — f_l((PI'Oj R)ll) — (PI‘Oj R)CL
and
(Proj R)a = SpeC(Ra)O'
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If b € Ry, then the map ¢ sends b, a to ¢(b), p(a) respectively, and so

* 9 p(b) —m-!
F e Dy = ma (o)

But the set of elements b/a with b € Ry generates (R,)o. Consequently the ring homomorphism
(Ra)o — I‘()(ch(a)7 Ox)

is uniquely determined by . This proves the uniqueness.
Next we wish to show existence.

LEMMA 2.4. Let R be a graded ring generated by Ry over Ry. Let a € Ry. Then there is a
unique (not graded) ring homomorphism

R/(a—1) = (Ra)o

such that for b € Ry we have

br—>é
a

PROOF OF LEMMA 2.4. The map b — b/a defines an additive homomorphism of R; into
(Rq)o. Consequently, this additive map extends uniquely to a ring homomorphism

h: R — (Ra)o,

because of the assumption R = Symmpg (R1), and @ — 1 is in the kernel. Since a becomes
invertible under the map R — R/(a — 1), we can factor h as follows:

R — Ry, — R/(a—1) — (Ra)o-

The first map is the natural map of R into the localization of R by a. Since R; generates R,
any element of the homogeneous component R,, can be written as a sum of elements in the form
by - - - by, for some b; € Ry, so an element of (R,)o is a sum of elements of the form

bi--by (b1 bn
av  \a a )’

Since (Ry)o is contained in Ry, it follows that the composite map

(Ra)o 2wt B R/(a— 1) — (Ra)o

is the identity. Furthermore given an element in R/(a — 1) represented by a product by - - - by,
with b; € Ry, it is the image of an element in (R,)g since a =1 mod (a — 1). Hence the map

(Ra)o — R/(a—1)
is an isomorphism. This concludes the proof of Lemma 2.4. U

We revert to the existence part of Theorem 2.2. Given the data (£, ¢) we wish to construct

the morphism
f: X — ProjR.
For each a € Ry we let X, be the open set of points x € X such that ¢(a)(x) # 0 (we are
using Lemma 2.3). Since ¢(R1) generates L, it follows that the sets X, cover X for a € Ry.
On the other hand,
ProjR = U Spec(Rq)o-
a€Ry

It will suffice to construct for each a € Ry a morphism

Xo(a) — Spec(Rq)o C Proj R
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such that this family is compatible on the intersections of the open sets X (,). The construction
is done for the corresponding rings of global sections. By restriction from X to X, the map
© gives rise to a map

Pa : R1 — F(Xgo(a)a E)

1

Composing with the multiplication m, " as in Lemma 2.3, we obtain a homomorphism R; —

['(X,(a), Ox) as in the following triangle:

Ry F(Xap(a)v [’)

F(Xgo(a)u OX)

But m, ! sends ¢(a) to the section represented by 1. By the assumption that R = Symmp, (R1),
the additive Rg-homomorphism

Ry — T'(Xy(a), Ox)
induces a ring homomorphism
Yo R/(a—1) = (Rg)o — T'(Xy(a), Ox)-
This is the homomorphism of global sections that we wanted. Then 1, induces a morphism
far Xp(a) — Spec(Ra)o-

We now leave to the reader the verification that these morphisms are compatible on the inter-
sections of two open subschemes X N X ). From the construction, it is also easy to verify
that the morphism

v(a)

f: X — ProjR
obtained by glueing the morphisms f, together has the property that
frOop(1) =L,
and that the original map ¢ is induced by f*. This proves the existence.

Finally, the fact that ¢ is an isomorphism results from the following lemma.

LEMMA 2.5. Let+: L' — L be a surjective homomorphism of invertible sheaves. Then 1) is
an isomorphism.

PROOF. The proof is immediate and will be left to the reader. O

We used the assumption that R = Symmp (R1) only once in the proof. In important
applications, like those in the next section, we deal with a ring R which is not Symmpg (R1),
and so we give another stronger version of the result with a weaker, but slightly more complicated
hypothesis.

The symmetric algebra had the property that a module homomorphism on R; induces a
ring homomorphism on R. We need a property similar to this one. We have the graded ring

I.(L)=EPrX, ),

n>0

where £ = L®" is the tensor product of £ with itself n times. The Ro-homomorphism ¢: Ry —
I'(£) induces a graded algebra homomorphism

Symm(y): Symmpg (R1) — T's(L).
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We say that Symm(p) factors through R if there is a commutative diagram of graded algebras

Symmp, (R1) —— [, (L)
\ P

so for each n we have a commutative diagram:

THEOREM 2.6. Theorem 2.2 is valid without change except that instead of assuming R =
Symmp, (R1) we need only assume that Symm(yp) factors through R.

PROOF. The proof is the same, since the hypothesis that Symm(¢p) factors through R can
be used instead of R = Symmp (R1). O

COROLLARY 2.7. Let £ be a locally free sheaf on the scheme X. Then sections s: X —
Px(€) = Projx(Symme, (£)) are in bijection with surjective homomorphisms

E—L—0

of £ onto invertible sheaves over X.
Proor. Take X = S in Theorem 2.2. O

Let R be a quasi-coherent graded sheaf of Ox-algebras, and let P = Projy R. We have a
canonical homomorphism

R1 — m.0p(1)
or equivalently (cf. Lemma (1.5.11))
mR1 — Op(1)
which is surjective. This leads to the following generalization of Theorem 2.2:

THEOREM 2.8. Let p: Z — X be a scheme over X and let L be an invertible sheaf on Z.
Let

h: p*Rl — L
be a surjective homomorphism. Assume in addition that R = Symmp (R1) or that Symm(h)
factors through R. Then there exists a unique pair (f,1) consisting of a morphism

f:Z — Projxy(R)=P
over X and a homomorphism
Y: ffOp(1) — L
making the following diagram commutative:

f*(canonical)

[rm*(R1) =p*(R1) ———— f*Op(1)
\ T

In other words, h: p*(R1) — L is obtained from 7*(R1) — Op(1) by applying f* and composing
with 1. Furthermore, this homomorphism 1) is an isomorphism.
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3. Blow ups
This section provides examples for Proj of some graded rings, in one of the major contexts
of algebraic geometry.
Throughout this section, we let X be a scheme.

Let 7 be a quasi-coherent sheaf of ideals of Ox. We may then form the sheaf of graded

algebras
R=P1"
n>0
where by definition Z° = Ox. Then R satisfies the hypotheses stated at the beginning of §2,
so the results of §2 apply to such R. The sheaf of ideals Z defines a closed subscheme Y whose
structure sheaf is

Oy = O0x/T.
We define the blow up of X along Y, or with respect to I, to be:
Bly (X) = Projx R.
Let
m: Bly(X) — X

be the structural morphism.
Let

f: X —X
be a morphism. Let Z be a sheaf of ideals of Ox. Then we have homomorphism
F'T— fOx = Ox
(cf. §1.5). We let
fYT)Ox oralso ZOx
to be the image of this homomorphism. Then ZOx is a quasi-coherent sheaf of ideals of Ox-.
THEOREM 3.1. Let X' = Bly(X) be the blow up of X along Y, where Y s the closed
subscheme defined by a sheaf of ideals T, and let w: X' — X be the structural morphism.

i) The morphism m gives an isomorphism
X'\l (y) S X \V.
ii) The inverse image sheaf ZOx: is invertible, and in fact
ZOxr = Ox(1).

PRrROOF. The first assertion is immediate since Z = Ox on the complement of Y by definition.
So if we put U = X \ 'Y, then
7~} (U) = Proj,; Oy[T] = U.

For (ii), we note that for any affine open set V' in X, the sheaf Ox/(1) on Proj(R(V)) is the
sheaf associated to the graded R(V)-module

ROV)(1) =Pz (V).
n>0

But this is equal to the ideal ZR (V) generated by Z(V') in R(V). This proves (ii), and the
concludes the proof of the theorem. O
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THEOREM 3.2 (Universality of Blow-ups). Let
m: Bly(X) — X
be the blow up of a sheaf of ideals T in X. Let
f1Z2—X

be a morphism such that ZOyz is an invertible sheaf of ideals on Z. Then there exists a unique
morphism fi1: Z — Bly(X) such that the following diagram is commutative.

z—" L Bly(X)

P

ProoF. To construct f; we use Theorem 2.8, taking £L = ZOz and h to be the natural map
h: f*Ri=f"T — IOz =L.

Note that Symm/(h) factors through € L.
To see that f; is unique, take a sufficiently small affine open piece Spec(R) of Z in which

—~—

IOz is (aR), a € Z. Then a is a non-zero divisor in R by hypothesis. Now Spec(R,) lies over
X \ 'Y, over which 7 is an isomorphism:

Spec(Ryg) Bly (X) \ 7~ 1(Y)
X\Y /

Therefore f is unique on Spec(R,). But since a is not a zero-divisor, any morphism on Spec(R,)
has at most one extension to Spec(R). This is because R — R, is injective and hence a
homomorphism S — R is determined by the composition S — R,. This concludes the proof. [J

THEOREM 3.3. Let Y’ be the restriction of Bly (X) to Y, or in other words
Y =Y xy Bly(X).

Then Y' = Projy gr7(Ox) where gr{(Ox) = @nZOI”/I”H. In other words we have the
following commutative diagram:

Projy grz(Ox) =Y’ —— Bly(X) = Projx (D Z")

| |

Y X

PROOF. Let R = @,5,Z" as before. Then IR = @,5,I""!, where "' is the n-th
graded component, and is a homogeneous ideal sheaf of R. The restriction to Y is given by the
graded ring homomorphism

R — R/IR,
which induces the restriction of Projx(R) to Y. Hence this restriction is equal to Projy (R/ZR),
viewing R/ZR as an Ox/Z = Oy-sheaf of graded algebras. But
R/IR =PI1" /T
n>0

This proves the theorem. O
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In general, nothing much more can be said about the sheaf

er7(0x) = P17/

n>0

However, under some conditions, this sheaf is the symmetric algebra of Z/Z2. Assume that A

is a noetherian ring and I an ideal of A. We say that a sequence of elements (ai,...,a,) is a
reqular sequence in I if aq is not a divisor of 0, and if a;41 is not a divizor of 0 in I/(aq,...,a;)
for all ¢ > 1.

LEMMA 3.4. Assume that I is generated by a reqular sequence of length r. Then there is a
natural isomorphism
Symmy,(I/1%) ~ @ 1"/ 1"+
n>0

and I/I? is free of dimension r over A/I.
PROOF. See Matsumura [78, Chapter 6]. O

Now suppose X is a noetherian scheme and 7 is a sheaf of ideals as before, defining the
subscheme Y. We say that Y is a local complete intersection in X of codimension r if each point
y € Y has an affine open neighborhood Spec(A) in X, such that if [ is the ideal corresponding
to Z over Spec(A), then I is generated by a regular sequence of length r. The elementary
commutative algebra of regular sequences shows that if this condition is true over Spec(A), then
it is true over Spec(Ay) for any element f € A. Lemma 3.4 then globalizes to an isomorphism

Symmy (Z/I°) ~ gr(Ox) = P T"/7".

n>0

Furthermore Z/Z? is locally free of rank r over Oy. Therefore we may rephrase Theorem 3.3 as
follows:

THEOREM 3.5. Suppose that Y is a local complete intersection of codimension r in X, and
is defined by the sheaf of ideals T. Let Y' be the restriction of Bly(X) to Y. Then we have a
commutative diagram:

Y = Py(Z/I%) — Bly(X)

| |

Y —— X
In particular, if y is a closed local complete intersection point, then
B,(Z/T%) = F}

where k is the residue class field of the point. Thus the fibre of the blow up of such a point is a
projective space.

We shall now apply blow ups to resolve indeterminacies of rational maps.

Let X be a noetherian scheme and let £ be an invertible sheaf on X. Let sq,..., s, be global
sections of £. By Lemma 2.3, the set of points € X such that (sg)s, ..., (sr), generate L, is
an open set Uy, and these sections generate £ over Us. Here s denotes the r-tuple

S =1(80y-,S)-

Then s defines a morphism
fs: Us — P
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of Uy into projective r-space over X, in line with Theorem 2.2 and the remarks following it. We
shall now define a closed subscheme of X whose support is the complement of Uy, and we shall
define a canonical blow up (depending on the given sections) so that the morphism f; extends
to a morphism of this blow up.

Let sg,...,s, be sections of L. We shall define an associated sheaf of ideals Zs as follows.
Let U be an open affine set where L is free, and so

E|U ~ OX‘U-

Under this isomorphism, the sections become sections of Ox over U. We let Ziy be the sheaf of
ideals generated by these sections over U. If U = Spec(A), then the sections can be identified
with elements of A, and the ideal corresponding to this sheaf is the ideal (so,...,s;) generated
by these elements. It is immediately verified that this ideal is independent of the trivialization
of L|y, and that the sheaf 7y agrees with the similarly defined sheaf L]y on the intersection
U NV of two affine open sets U and V. This is the sheaf of ideals which we call Z, determined
by or associated with the family of sections s.

Since X is assumed noetherian, Z; is a coherent sheaf of ideals, or in other words, it is locally
finitely generated.

Us is the open subset of X which is the complement of the support of Ox/Z;. Thus Z
defines a closed subscheme Y, and U is the complement of Y. We view U; as a scheme, whose
structure sheaf is Ox|y,.

PROPOSITION 3.6. Let s = (sq, ..., 8:) be sections of an invertible sheaf L over X as above.
Let T = I be the associated sheaf of ideals, defining the subscheme Y, and let m: X' — X be
the blow up of X along Y. Then the sections w¥sg,...,n*s, generate an invertible subsheaf of
7L, and thus define a morphism

Jrrs: X' — P )

such that the following diagram is commutative:

f *

—1 TS T

s (US) —_— PX
isomorphism Tinclusion

Us f Py,
ProoFr. By Theorem 3.1 we know that ZOx is invertible, and the sections 7*sg,...,7*s,
generate this subsheaf of 7*L.
Thus the assertion of the proposition is immediate. O

In this manner, we have a globally defined morphism on the blow up X’ which “coincides”
with fs on the open set Us.

4. Quasi-coherent sheaves on Proj R

Throughout this section we let R be a graded ring, generated by Ry over Ry.
We let P = Proj R. We assume moreover that Ry is a finitely generated Ry-
module, hence P is quasi-compact.

The purpose of this section is to classify quasi-coherent sheaves in terms of graded modules
on projective schemes in a manner analogous to the classification of quasi-coherent sheaves in
terms of ordinary modules over affine schemes. We start with a lemma.
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Let £ be an invertible sheaf on a scheme X. Let f € I'(X, £) be a section. We let:
Xy = set of points x such that f(z) # 0.
We recall that f(zx) is the value of f in £, /m,L,, as distinguished from f, € L.

LEMMA 4.1. Let L be an invertible sheaf on the scheme X. Let F be a quasi-coherent sheaf
on X. Assume X is quasi-compact.

i) Let s € I'(X,F) be a section whose restriction to Xy is 0. Then for some n > 0 we
have f"s =0, where f"s e T'(L" @ F) ~ T'(F @ L").

ii) Suppose X has a finite covering by open affine subsets U; such that L|y, is free for each
J. Lett € I'(Xy, F) be a section over X¢. Then there exists n > 0 such that the section
frte (X, F @ L") extends to a global section of F @ L™ over X.

PRrROOF. There is a covering of X by affine open sets on which L is free, and since X is
assumed quasi-compact, we can take this covering to be finite. Hence it suffices to prove that if
U = Spec(A) is affine open such that L|y is free, then there is some n > 0 such that fs =0 on
U. But Fly = M with some A-module M by Proposition-Definition I.5.1. Then we can view s
as an element of M, and f as an element of A under an isomorphism L|yy =~ Ox|y. By definition
of the localization, the fact that the restriction of s to X is 0 means that s is 0 in My, and so
there is some n such that f"s = 0. This has an intrinsic meaning in £ ® F, independently of
the choice of trivialization of £ over U, whence (i) follows.

For (ii), let t € I'(Xf, F). We can cover X by a finite number of affine open U; = Spec(4;)
such that £|y, is free. On each U; there is an A;-module M; such that F|y, = ]\Z The restriction
of t to Xy NU; = (U;)s is in (M;)y,, where f; = f|y, can be viewed as an element of A; since
L|y, is free of rank one. By definition of the localization, for each i there is an integer n and a
section t; € I'(U;, F) such that the restriction of t; to (U;)y, is equal to f"t (that is f™ ®t) over
(Us)¢,. Since we are dealing with a finite number of such open sets, we can select n large to work
for all i. On U; NU; the two sections ¢; and ¢; are defined, and are equal to f"t when restricted
to Xy NU; NU;. By the first part of the lemma, there is an integer m such that f™(¢; —t;) =0
on U; NUj for all ¢, j, again using the fact that there is only a finite number of pairs (4, j). Then
the section ft; € I'(U;, L™ ® F) define a global section of L™ @ F, whose restriction to X is
f™t™¢. This concludes the proof of the lemma. O

We turn to the application in the case of sheaves over P = Proj(R). The sheaf £ of Lemma
4.1 will be Op(1).

Let M be a graded module over R. Then M is a sheaf on P. Suppose that N is a graded
module such that Ny = My for all d > dy. Then

M = N.

This is easily seen, because for f € Ry, we know that [P is covered by the affine open sets Py.
Then any section of M over P ¢ can be written in the form z/f" for some x € M,, but we can
also write such an element in the form

r [T

fr - fm+n

so we can use only homogeneous elements of arbitrarily high degree. Hence changing a finite

number of graded components in M does not affect My, nor M.
If M is finitely generated, it is therefore natural to say that M is quasi-equal to N if My = Ny
for all d sufficiently large. Quasi-equality is an equivalence relation. Two graded homomorphisms

fLg: M — N
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are called quasi-equal if fq = g4 for all d sufficiently large. (fq,94: My — N4 are the restrictions
of f, g.) More generally, we define:

Homye(M,N) = lim Hom (M>p, N>n),

where M>,, denotes the submodule of M of components of degree > n. This defines a category
which we call the category of graded modules modulo quasi-equality, and denote by GrModge(R).
The association

Mr— M (projective tilde)

is a functor from this category to the category of quasi-coherent sheaves on P.

Our object is now to drive toward Theorem 4.8, which states that under suitable finiteness
assumptions, this functor establishes an equivalence of categories. Some of the arguments do
not use all the assumptions, so we proceed stepwise. The first thing to show is that every
quasi-coherent sheaf is some M. Let F be quasi-coherent over P. Then in §1 we had defined

I.(F) =PI (P, F(n)).

nez
PROPOSITION 4.2. Let F be a quasi-coherent sheaf over P. Let M = T'.(F). Then F =~ M.

PrOOF. Let f € R;. We want to establish an isomorphism
(Myf)o — F(Py).
The left hand side is the module of sections of M over P;. The compatibility as f varies will be

obvious from the definition, and this isomorphism will give the desired isomorphism of M with
F. Multiplication by f gives a homomorphism

F(n) L5 Fn+1)
whence a corresponding homomorphism on global sections. There is a natural isomorphism

(Mj)o = lim(M,, f) ~ lim(TF(n), f)

where the right hand side is the direct limit of the system:

MOLMlﬁMQL...LMnL...

Indeed, an element of (My)g can be represented as a quotient x/f" with x € I'F(n). There is

an equality
T Y

7
with y € T F(m) if and only if there is some power f¢ such that
fd+m$ — deLy.

This means precisely that an element of (My)o corresponds to an element of the direct limit as
stated.
On the other hand, let © = Op. We have an isomorphism

Ole, L5 0,
and since F(n) = F @ O(n) by definition, we get an isomorphism

Fley L5 Fn)le,.
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Now we look at the directed system and commutative diagrams:

n

TF(n) — = F(n)(By) «—L— F(Py)

~

d 1
LF(n—1) — F(n—1)(Py)
The top row gives a homomorphism
[ "ores: ' F(n) — F(Py).
The commutativity of the square and triangle induces a homomorphism on the direct limit

(Mp)o = lim(TF(n), f) — F(®y).

The first part of Lemma 4.1 shows that this map is injective. Using the quasi-compactness of
P, the second part shows that this map is surjective, whence the desired isomorphism. We leave
to the reader the verification of the compatibility condition as f varies in Rj, to conclude the
proof. O

THEOREM 4.3 (Serre). Let F be a finitely generated quasi-coherent sheaf on P. Then there
is some ng such that for all n > ng, the sheaf F(n) is generated by a finite number of global
sections.

PRrROOF. Let fo,..., fr generate Ry over Ry, and let P; = Py,. For each ¢ there is a finitely
generated module M; over O(P;) such that Flp, = ]\Aiz For each 4, let s;; be a finite number
of sections in M; generating M; over O(P;). By Lemma 4.1 there is an integer n such that for
all 7, j the sections f]'s;; extend to global sections of F(n). But for fixed ¢, the global sections
fl'sij (j variable) generate M; over O(IP;) since f! is invertible over O(IP;). Since the open sets
P; (i=0,...,r) cover P, this concludes the proof. O

PROPOSITION 4.4. Let F be a finitely generated quasi-coherent sheaf on P. Then there is a
finitely generated R-submodule N of I'yF such that F = N.

PROOF. As in Proposition 4.2, let M = I',F, so M= F. By Theorem 4.3, there exists n
such that F(n) is generated by global sections in I'(P, F(n)). Let N be the R-submodule of M
generated by this finite number of global sections. The inclusion N < M induces an injective
homomorphism of sheaves

0—N-—M=F
whence an injective homomorphism obtained by twisting n times

0 — N(n) — M(n) = F(n).

This homomorphism is an isomorphism because F(n) is generated by the global sections in N.
Twisting back by —n we get the isomorphism N ~ F, thereby concluding the proof. O

We have now achieved part of our objective to relate quasi-equal graded modules with
coherent sheaves. We proceed to the inverse construction, and we consider the morphisms.

PROPOSITION 4.5. Assume that M is a finitely presented graded module over R. Let N be
a graded module. Then we have an isomorphism

lim Hom(Ms,, N>,) < Hom(M, N).
n
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PRroor. Consider a finite presentation
R — R?T — M — 0.
In such a presentation, the homomorphism are not of degree 0, and we rewrite it in the form
F—F—M-—70

where each of F', F is a direct sum of free graded module of type R(d) with d € Z. We then
obtain an exact and commutative diagram

0 —— Hom(M, N) ———— Hom(E, N) ——— Hom(F, N)

| L |

0 li%Hom(MZn,NZn) liﬁmHom( >ns N>n) li%Hom(FZn,NZn).

It will suffice to prove that the two vertical arrows on the right are isomorphisms. In light of
the direct sum structure of £ and F', it suffices to prove that

—_~—

lim Hom (R(d)>n, N>n) — Hom(R(d), N)

is an isomorphism, and twisting by —d, it suffices to prove that

lim Hom (R, N>,) — Hom(R, N)

is an isomorphism for any graded module N. But R = Op and thus
Hom(R, N) = Hom(Op, N) =T'N.
Thus it suffices to prove the following lemma.

LEMMA 4.6. Let N be a graded R-module. Then we have an isomorphism

lim Hom (R, N>,) = T'N.

PrROOF OF LEMMA 4.6. Corresponding to a finite set of generators of Ry over Ry, we have
a graded surjective homomorphism

Ro[To, e ,Tr] — R()[Rl] =R — 0,

which makes P = Proj R into a closed subscheme of P’y where A = Ry. We can view the module
N as graded module over P}, and the sheaves are sheaves over P’;. We also view R as graded
module over the polynomial ring A[Ty, ..., T,]. The relation to be proved is then concerned with
objects on ;.

In this notation, the arrow in the lemma is given as follows: For a homomorphism

a: ATy, ..., Tr]>n — N>p

of graded A[Ty, . . ., T,]-modules, the global section of N corresponding to « is given by a(T7) /(T7),
where I = (ig,...,4,) is an (r+ 1)-tuple of nonnegative integers with |I| :=ip+---+14, > n and
T!:= T ... Tir. In other words, the restriction of this section to the affine open subset (P%) 1
is a(T1)/T!, an element of degree 0 in the localization Np.

We have to prove the surjectivity and injectivity of the arrow. For surjectivity, let x € I'N.
Let P; be the complement of the hyperplane T; = 0 as usual. Then
T

resp, (r) = T
i
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with n sufficiently large and some z; € N,,. Increasing n further, we may assume that
T'zj = Tj'w;

because x; /1" = x;/ T} in Ny, for all ¢, j. Therefore there exists a homomorphism of the ideal
(T§, ..., T7) into N,
e: (1Y, ..., 1) — N

sending 7" — x; for each 7, and this homomorphism maps on x by the arrow

Hom(Rspm, N>p) — T'N,

for m sufficiently large, because R>y, C (1y,...,T;') for m large compared to n. In fact, the
ideals (1§}, ..., T}) are cofinal with the modules R>,, as m, n tend to infinity. This shows that
the map

lim Hom(R>p, N>5) — I'N

is surjective. The injectivity is proved in the same way. This concludes the proof of the lemma,
and also the proof of Proposition 4.5. U

O
The proof of the next proposition relies on the following:

FAcT. Let F be a coherent sheaf on P = Proj R with Ry noetherian. Then U'wF is a finitely
presented R-module.

The proof of this fact will be given as a consequence of theorems in cohomology, by descend-
ing induction, and is therefore postponed to Chapter VII (cf. Theorem VII.6.1, which is the
fundamental theorem of Serre [99], and its proof.)

PROPOSITION 4.7. Let M be a finitely presented graded module over R with Ry noetherian.
Then the natural map

M —T.M

s an tsomorphism modulo quasi-equality.

PRrooOF. By Proposition 4.2 we have an isomorphism

—_~—

@: (T,M) =5 M,

so by Proposition 4.5, and the “Fact” above:

—~—

€ Hom((I', M), M) ~ lim Hom (T« M) >, Ms).

Therefore ¢ comes from a homomorphism
hot (DeM)sn — Msy,

for n sufficiently large since M is finitely presented over R, that is ¢ = hNn But since ¢ is an
isomorphism, it follows from applying Proposition 4.5 to ¢ ~! that h,, has to be an isomorphism
for n large. This concludes the proof. O

We can now put together Propositions 4.2 and 4.7 to obtain the goal of this section.
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THEOREM 4.8. If Ry is noetherian, then the association
M— M

is an equivalence of categories between finitely presented graded modules over R modulo quasi-
equality and coherent sheaves on P. The inverse functor is given by

Fr—T.F.

This theorem now allows us to handle sheaves like graded modules over R. For example we
have the immediate application:

COROLLARY 4.9. Let F be a coherent sheaf on Proj R with Ry noetherian. Then there exists
a presentation
E—F —0

where € is a finite direct sum of sheaves Op(d) with d € 7Z.

PrOOF. The corresponding assertion is true for graded modules, represented as quotients
of finite direct sums of modules R(d) with d € Z. Taking the tilde gives the result for coherent
sheaves. (]

5. Ample invertible sheaves

There will be two notions of ampleness, one absolute and the other relative. We start with
the absolute notion. For simplicity, we develop the theory only in the notherian case.

DEFINITION 5.1. Let X be a noetherian scheme. An invertible sheaf £ on X is called ample
if for all coherent sheaves F on X there exists ng such that F ® L" is generated by its global
sections if n > ny.

EXAMPLE. Serre’s Theorem 4.3 gives the fundamental example of an ample £, namely Op(1)
where P = Proj R with R noetherian.

It is obvious that if £ is ample, then £™ is ample for any positive integer m. It is convenient
to have a converse version of this fact.

LEMMA 5.2. If L™ is ample for some positive integer m, then L is ample.

PRrOOF. Let F be a coherent sheaf on X. Then F ® L™ is generated by global sections for

all n > ng. Furthermore, for each ¢ = 0,...,m — 1 the sheaf

FRL ®Lm
is generated by global sections for n > n;. We let N be the maximum of ng,...,n;,—1. Then
F ® L™ is generated by global sections for n > N, thus proving the lemma. O

DEFINITION 5.3. Let ¢: X — Y be a morphism of finite type over a noetherian base Y. Let
L be an invertible sheaf on X. We say that L is relatively very ample with respect to ¢, or -
relatively very ample, if there exists a coherent sheaf F on Y and an immersion (not necessarily
closed)
t: X — Py (F)

over Y, i.e., making the following diagram commutative

X ———— Py(F

\/
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such that £ = t*Op(1). We say that L is relatively ample if for some n > 1, L®" is relatively
very ample.

The definition is adjusted to be able to deal with a wide assortment of base scheme Y.
However, when Y = Spec(A) is affine, then it turns out that one can replace Py (F) by P, for
some 7, as in the following theorem. Observe that in the affine case, we have

P, =Py (F) with F =05,

THEOREM 5.4. Let X be a scheme of finite type over a noetherian ring A and let L be
an invertible sheaf on X. Then L is ample if and only if L is relatively ample over Spec(A).
Moreover, when this holds the immersion v: X — Pa(F) such that L = *Op(1) can be taken
wnto projective space P’ .

REMARK. Serre’s cohomological criterion for ampleness will be given in Theorem VII.8.2.

PROOF. Suppose that there is an immersion ¢: X — P",. The only problem to show that £
is ample is that X need not be closed in P’;, because if X is closed then we can apply Theorem
4.3. The next result is designed to take care of this problem.

PROPOSITION 5.5. Let F be a quasi-coherent sheaf on a noetherian scheme X. Let U be an

open subscheme of X, and let Gy be a coherent subsheaf of F|y. Then there exists a coherent
subsheaf G of F on X such that

Glv = Gu.

PRroOF. Consider all pairs (G, W) consisting of an open subscheme W of X and a coherent
subsheaf G of F|y extending (Gy, U). Such pairs are partially ordered by inclusion of W’s and
are in fact inductively ordered because the notion of a coherent sheaf is local, so the usual union
over a totally ordered subfamily gives a pair dominating every element of the family. By Zorn’s
lemma, there exists a maximal element, say (G,W). We reduce the proposition to the affine
case as follows. If W # X, then there is an affine open subscheme V' = Spec(A) in X such that
V ¢ W. Then W NV is an open subscheme of V', and if we have the proposition in the affine
case, then we extend G from W NV to V, thus extending G to a larger subscheme than W,
contradicting the maximality.

We now prove the proposition when X is affine. In that case, we note that the coherent
subsheaves of Gy satisfy the ascending chain condition. We let G; be a maximal coherent
subsheaf which admits a coherent extension G which is a subsheaf of 7. We want to prove that
G1 = Gy. If G1 # Gy then there exists an affine open X; C U and a section s € QU(Xf) such
that s & G1(Xy). By Lemma 4.1 (ii), there exists n such that f™s extends to a section s’ € F(X)
and the restriction of ¢’ to U is in F(U). By Lemma 4.1 (i) there exists a still higher power f™
such that

() =0 in (F/G)(U).
Then G; + f™s’'Ox is a coherent subsheaf of F which is bigger than Gy, contradiction. This
concludes the proof of the proposition. O

COROLLARY 5.6. Let X be a noetherian scheme. Let U be an open subscheme, and let G be
a coherent sheaf on U. Then G has a coherent extension to X, and this coherent extension may
be taken as a subsheaf of 1.G, where 1: U — X 1is the open immersion.

PRrROOF. By Proposition 11.4.10 we know that ¢,G is quasi-coherent, and so we can apply
Proposition 5.5 to finish the proof. O
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We can now finish one implication in Theorem 5.4. Assuming that we have the projective
immersion ¢: X — P, we consider the closure X and apply Theorem 4.3 to an extension F
of a coherent sheaf 7 on X. Then F ® O (n) is generated by global sections for n > ng, and
the restrictions of these sections to F generate F, thus concluding the proof of one half of the
theorem.

To prove the converse, we need a lemma.

LEMMA 5.7. Let L be an ample sheaf on a noetherian scheme X. Then there exists an open
affine covering of X by subschemes defined by the property s(x) # 0, for some global section s
of L™, some n.

PROOF. Given a point x € X, there is an open affine neighborhood U of x such that L|y is
free. Let Y = X \ U be the complement of U, with the reduced scheme structure, so that Y is a
closed subscheme, defined by a sheaf of ideals Zy, which is coherent on X. There exists n such
that Zy ® L™ is generated by global sections, and in particular, there is a section s of Zy ® L"
such that s(z) # 0, or equivalently, s, & m,(Zy ® L™),. Since L™ is free, we can view Zy ® L"
as a subsheaf of £". Then by Lemma 2.3 the set X of points z such that s(z) # 0 is open and
is contained in U because s(y) € m, Ly for y € Y. The section s restricted to U can be viewed
as an element of £™(U), and since L, so L", are free over U, it follows that s corresponds to a
section f of Oy and that X, = Uy so X is affine. O

Thus we have proved that for each point © € X there is an affine open neighborhood X
defined by a global section s of £*) such that s(z) # 0. Since X is quasi-compact, we can cover
X by a finite number of such affine open sets, and we let m to be the least common multiple of
the finite number of exponents n(x).

Since we wish to prove that £" is very ample for sufficiently large n, we may now replace £
by L™ without loss of generality. We are then in the situation when we have a finite number of
global sections si,...,s, of £ which generate £, such that X, is affine for all ¢, and such that
the open sets X, cover X. We abbreviate X, by X;.

Let B; be the affine algebra of X; over A. By assumption X is of finite type over A, so B;
is finitely generated as A-algebra, say by elements b;;. By Lemma 4.1 there exists an integer
N such that for all ¢, j the section sZN b;; extends to a global section t;; of LN, The family of
sections sZN , ti; for all 7, j generates LY since already the sections s, ...,sY generate £V, and
hence they define a morphism

v: X — PY
for some integer M. It will now suffice to prove that 1 is a closed immersion. Let T;, T;; be the
homogeneous coordinates of IP)% ,and put P = IP’% for simplicity. If P; is the complement of the
hyperplane T; = 0 then X; = ¢~ }(P;). The morphism induces a morphism

Vi Xi — Py
which corresponds to a homomorphism of the corresponding affine algebras
A[zk, ij] — Bi7

where zj, z; are the affine coordinates: z, = T}, /T; and zy; = Tj;/T;. We see that z;; maps on
tij/ sf-v = b;; so the affine algebra homomorphism is surjective. This means that 1); is a closed

immersion of X; in P;. Since X is covered by the finite number of affine open sets X1,..., X,
it follows by Corollary I1.3.5 that v itself is a closed immersion. This concludes the proof of
Theorem 5.4. (]

Next we want to investigate the analogous situation when the base Y is not affine.
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PROPOSITION 5.8. Let U be open in X and L ample on X. Then L|y is ample on U.

Proor. By Corollary 5.6, a coherent sheaf F on U has an extension to a coherent sheaf on
X. Global sections which generate this extension restrict to sections of F on U which generate
F on U, so the proposition is immediate. O

Now comes the globalized version of Theorem 5.4.

THEOREM 5.9. Let p: X — 'Y be of finite type with X, Y noetherian. The following condi-
tions are equivalent.

i) There exists a positive integer n such that L™ is relatively very ample for .
ii) There exists an open affine covering {Vi} of Y such that L|,-1y, is ample for all i.
iii) For all affine open subsets V' of Y the restriction L|,-1y is ample.
PRrROOF. The implication (iii) == (ii) is trivial and (i) implies (iii) follows immediately
from Theorem 5.4.
We must show that (ii) implies (i). We have done this when the base Y is affine in Theorem
5.4, and we must globalize the construction. When Y is affine, we could take the immersion of
X into a projective space, but now we must use Py (F) with some sheaf F which need not be

locally free.
Applying Theorem 5.4 to L]|,-1y,, we get coherent sheaves F; on V; and immersions 1;

satisfying ¥7 (O(1)) ~ L"|,-1y,. We first make two reductions. First of all, we may assume the
n; are equal because if n = l.c.m(n;) and m; = n/n; then

Py, (7, = Projy, (Symm(F;))

~ Projy, (@ Symmm"k(}})>
k

= Projy, (Symm (Symm™:(F;)) /1;)  for some ideal I;

C Py, (Symm™i(F;)) .
Replacing F; by Symm™:(F;), we find ¢ (O(1)) = L"|,-1y; for the new ;.

Secondly, v; gives us the canonical surjective homomorphisms
a;: (res )" (Fi) — L1y,
hence
Bi Fy — (resgp)*(ﬁnlwﬂvi) (cf. (1.5.11)).

We may assume that §; is injective. In fact, let F; be the image of F; in (res).(L"|,-1v;).

Then Fj is still coherent because (res).(L"|,-1y;) is quasi-coherent (cf. Proposition II.4.10),
and the morphism 1); factors

P (Vi) = Py (F)) = Py (F).

We now apply Corollary 5.6 to choose a coherent subsheaf G; C ¢.L" such that G;|y, ~ F;. Now
the homomorphism

B: EPGi — p.L"
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defines
a: p* (@g& — L"
(cf. (I.5.11)) and « is surjective because on each V;,
¢ Gilvi — Ly

is surjective. By the universal mapping property of Py, L™ and « define a morphism:

Py (B G:)
N /

I claim this is an immersion. In fact, restrict the morphisms to ¢ ~!(V;). The functoriality of
Proj (cf. §I1.5, Remark h)) plus the homomorphism

Symm(Gilv,) <= Symm(€P G;1v,)
gives us an open set W; C Py (@ G;) and a “projection” morphism:
W, c Py(G))
Py (Gi)
It is not hard to verify that (¢~ (V;)) C W;, and that the following diagram commutes:

X Py (D G;)

U @]
res

e (Vi) —— Winm V)
|

Py, (Gilv;)
lz

Py, (F3)

Since 1); is an immersion, so is res (cf. Proposition 11.3.14), and since this holds for all i, it
follows that v is an immersion. O

A final result explains further why relatively ample is the relative version of the concept
ample.

THEOREM 5.10. Let f: X — Y be of finite type with X, Y noetherian. Let L be relatively
ample on X with respect to f, and M ample on'Y. Then £ & f*MP* is ample on X for all k
sufficiently large.

PRrROOF. The first step is to fix a coherent sheaf 7 on X and to show that for all ny sufficiently
large, there exists no such that
F@ LMo ffM™
is generated by global sections. This goes as follows: because M is ample, Y can be covered
by affine open sets Y;;, with s; € I'(Y, M™1) for suitable m; by Lemma 5.7. Then L|;
is ample by Theorem 5.4. Thus F ® £"1|f_1(ysz_) is generated by sections t;1,...,t;n if ny is
sufficiently large. But by Lemma 4.1, for large my all the sections

may
s; 1
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ny

n2

Ficure III.1

extend from X, to X as sections of F @ L™ ® f*(M™1™2), Let ny = mima. Then this collection
of global sections generates

FL"®Q fr(M™).

There remains to “rearrange the order of the quantifiers”, i.e., to pick an upper bound of
ny/n1 independent of F. The simplest way to do this is to consider the set:

S ={(n1,n2) | LM @ f*(M"?) is generated by global sections}.

Note that:

(a) S is a semi-group;

(b) S D (0) x (no + N) for some ng because M is ample on Y (N is the set of positive
integers);

(c) there exists n{, such that if ny > n|, then

(n1,n2) € S for some no.

For this last part, apply Step I with 7 = Ox.
A little juggling will convince you that such an S must satisfy

S D {(n1,n2) | na > kon1 > no}

for suitable ko, ng (see Figure III.1). Now take any k& > ko (strictly greater). Then I claim
L ® f*MP* is ample. In fact, for any F,

F LM ® ffM™
is generated by its sections for some ni, ne. Then so is
F® LM @ f*M ™2 if (n],nh) € S.

But (n,nk) — (n1,n2) € S if n > 0, so we are OK. This concludes the proof of the theorem. [
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6. Invertible sheaves via cocycles, divisors, line bundles

There is a natural correspondence between the four objects occurring in the title of this
section. We have already met the invertible sheaves. We shall define the other three and
establish this correspondence. We then relate these to Weil divisors.

Basic to all the constructions is the following definition. Let X be a scheme. We define the
subsheaf of units O% of Ox to be the sheaf such that for any open U we have

O%(U) = Ox(U)* = units in Ox(U)
={f € Ox(U) such that f(x) # 0 for all z € U}.

1-cocycles of units. Let X be a scheme and let £ be an invertible sheaf of Ox-modules
or as we also say, an invertible sheaf over X. Let {U;} = U be an open covering such that the
restriction L[y, is isomorphic to Ox |y, for each i. Thus we have isomorphisms

¢i: Llu, — Ox|u;.-
It follows that
pij = 0o ©; " Oxlwinu,) — Oxlwnuy)

is an automorphism, which is O x-linear, and so is given by multiplication with a unit in Ox (U;N
U;)*. We may therefore identify ¢;; with such a unit. The family of such units {¢;;} satisfies
the condition

PijPik = Pik-
A family of units satisfying this condition is called a 1-cocycle. The group of these is denoted
ZYU, O%). By a coboundary we mean a cocycle which can be written in the form f; fj_l, where
fi € Ox(U;)*. These form a subgroup of Z'(U,O%) written BY(U,O%). The factor group
ZYU,0%) /B U, 0%) is called H' (U, O%). If U is a refinement of U, i.e., for each U] € U,
there is a U; € U such that U/ C Uj, then there is a natural homomorphism

HY U, 0%) — H' U, 0%),
(for details, see §VII.1). The direct limit taken over all open coverings U is called the first Cech
cohomology group HY(X, O%).
Suppose

f:L—M
is an isomorphism of invertible sheaves. We can find a covering U by open sets such that on
each U; of U, £ and M are free. Then f is represented by an isomorphism

fi OX|U¢ — OX‘Ui

which can be identified with an element of Ox (U;)*. We then see that the cocycles ¢;; and cpgj
associated to £ and M with respect to this covering differ by multiplication by f; fj_l. This
yields a homomorphism (cf. Definition 1.2)

Pic(X) — HY(X,0%).
PROPOSITION 6.1. This map Pic(X) — HY(X,0%) is an isomorphism.

PRrOOF. The map is injective, for if two cocycles associated with £, M give the same element
in H'(X, O%), then the quotient of these cocycles is a coboundary which can be used to define
an isomorphism between the invertible sheaves. Conversely, given a cocycle ¢;; € Z LU, O%) it
constitutes glueing data in the sense of §1.5 and there exists a unique sheaf £ which corresponds
to this glueing data. O
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Cartier divisors. Let X be a scheme. Let U = Spec(A) be an open affine subset of X. Let
S be the multiplicative subset of elements of A which are not zero-divisors, and let K(U) = S~1A
be the localization of A with this subset. We call K (U), also denoted by K (A), the total quotient
ring of A. If A has no divisors of 0, then K (A) is the usual quotient field.

The association U — K (U) defines a presheaf, whose associated sheaf is the sheaf of total
quotient rings of Ox, and is denoted by Kx. If X is integral, then all the rings Ox (U) for affine
open U can be identified as subrings of the same quotient field K and Kx is the constant sheaf
with global sections K. (K = R(X), the function field of X, in the notation of Proposition
11.2.5.)

We now consider pairs (U, f) consisting of an open set U and an element f € K*(U), where
K*(U) is the group of invertible elements of IC(U). We say that two such pairs (U, f) and (V, g)
are compatible if fg~1 € O(UNV)*, that is, fg~! is a unit in the sheaf of rings over UNV. Let
{(Ui, fi)} be a family of compatible pairs such that the open sets U; cover X. Two such families
are called compatible if each pair from one is compatible with all the pairs from the other. A
compatibility class of such covering families is a Cartier divisor D. As usual, we can say that
a Cartier divisor is a maximal family of compatible pairs, covering X. If f € K*(U) and (U, f)
belongs to the compatibility class, then we say that the divisor is represented by f over U, and
we write D]y = (f). We also say that f =0 is a local equation for D over U.

This amounts to saying that a Cartier divisor is a global section of the sheaf K% /O%. We
can define the support of a Cartier divisor D, and denote by Supp(D), the set of points = such
that if D is represented by (U, f) on an open neighborhood of z, then f & OX. It is easy to see
that the support of D is closed.

A Cartier divisor is called principal if there exists an element f € I'(X, K*) such that for
every open set U, the pair (U, f) represents the divisor. We write (f) for this principal divisor.

Let D, FE be Cartier divisors. Then there exists a unique Cartier divisor D 4+ E having
the following property. If (U, f) represents D and (U, g) represents E, then (U, fg) represents
D + E. This is immediate, and one then sees that Cartier divisors form a group Div(X) having
the principal divisors as subgroup. The group is written additively, so —D is represented by
(U, f~1). We can take f~! since f € K*(U) by definition.

We introduce a partial ordering in the group of divisors. We say that a divisor D is effective
if for every representative (U, f) of the divisor, the function f is a morphism on U, that is,
f € Ox(U). The set of effective divisors is closed under addition. We write D > 0 if D is
effective, and D > F if D — F is effective. Note: although sometimes one also calls D positive,
there are other positive cones which can be introduced in the group of divisors, such as the
ample cone. The word “positive” is usually reserved for these other cones.

REMARK. It may be that the function f is not on Ox(U) but is integral over Ox (U). Thus
the function f may be finite over a point, without being a morphism. If X is integral, and all
the local rings O, for z € X are integrally closed, then this cannot happen. See below, where
we discuss divisors in this context. In this case, the support of D turns out to be the union
of the codimension one subschemes where the representative function f has a zero or a pole.
This difference in behavior is one of the main differences between Cartier divisors and the other
divisors discussed below.

Let D be an effective Cartier divisor. If (U, f) is a representative of D, then f generates a
principal ideal in Ox (U), and this ideal does not depend on the choice of f. In this way we can
define a sheaf of ideals, denoted by Zp. It defines a closed subscheme, which is often identified
with D.
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Two Cartier divisors D, E are called linearly equivalent, and we write D ~ E, if there exists
f eI'(X,K%) such that

D=E+(f)

In other words, D — E is principal. We define the group of divisor classes
DivCl(X) = Div(X) /K% (X)

to be the factor group of Cartier divisors mod principal divisors.

To each Cartier divisor D we shall now associate an invertible sheaf Ox (D) = O(D) as
follows. If {(Uj, f;)} is a covering family of pairs representing D, then there is a unique subsheaf
L of x such that

L(Ui) = O£

This subsheaf is denoted by O(D). Since f; is a unit in Kx (U;), it follows that L(U;) is free of
rank one over O(Uj;), so O(D) is invertible. Zp = Ox(—D) if D is effective.

PROPOSITION 6.2. The association
D — O(D)

is an isomorphism between Cartier divisors and invertible subsheaves of Kx (under the tensor
product).
It induces an injective homomorphism on the classes

0 — DivCl(X) — Pic(X),

where Pic(X) is the group of isomorphism classes of invertible sheaves. In other words, D ~ E
if and only if O(D) = O(E). If X is an integral scheme, then this homomorphism is surjective,
so we have a natural isomorphism

DivCl(X) =~ Pic(X).

PRrROOF. The fact that the map D — O(D) is homomorphic is immediate from the def-
initions. From an invertible subsheaf of x we can define a Cartier divisor by the inverse
construction that we used to get O(D) from D. That is, D is represented by f on U if and only
if O(D) is free with basis f~! over U. If D ~ E, say D = E + (f), then multiplication by f
induces an isomorphism from O(D) to O(E). Conversely suppose O(D) is isomorphic to O(E).
Then O(D — E) is isomorphic to O = Ox, so we must prove that if O(D) ~ O then D = 0.
But the image of the global section 1 € K*(X) then represents D as a principal divisor.

Finally, suppose X integral. We must show that every invertible sheaf is isomorphic to O(D)
for some divisor D. Let

vi: Lly, — Oly,

be an isomorphism and let ¢;; = ¢; o cpj_l € O(U; N U;)* be the associated cocycle. We have
seen already that this constitutes glueing data to define an invertible sheaf. But now we may
view all rings O(U;) or O(U; NUj) as contained in the quotient field K of X since X is integral.
We fix an index j, and define the divisor D by the covering {U;}, and the local equation ¢;;. In
other words, the family of pairs (U;, ;) (with j fixed) is a compatible family, defining a Cartier
divisor D. Then it is immediately verified that O(D) is isomorphic to £. This concludes the
proof. O
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Line bundles. Let L — X be a scheme over X. Let A! be the affine line. We shall say
that L is a line bundle over X if one is given an open affine covering {U;} of X and over each
U; an isomorphism of schemes

fi: Ly, — U; x Al
over U; such that the automorphism
fio f;li (U;N Uj) x Al — (UiN Uj) x Al

over U; N Uj is given by an O(U; N Uj)-linear map. Such a map is then represented by a unit
vij € OU; NUj)*, and such units satisfy the cocycle condition. Consequently, there is an
invertible sheaf £ corresponding to this cocycle.

One defines an isomorphism of line bundles over X in the obvious way, so that they are
linear on the affine line when given local representations as above.

PROPOSITION 6.3. The above association of a cocycle to a line bundle over X induces a bi-
jection between isomorphism classes of line bundles over X and H'(X, O%). If L is an invertible
sheaf corresponding to the cocycle, then we have an isomorphism

L ~ Specy (Symm™(L)).
PROOF. Left to the reader. O

Weil divisors. The objects that we have called Cartier divisors are rather different from
the divisors that we defined in Part I [87, §1C]. In good cases we can bring these closer together.
The problem is: for which integral domain R can we describe the structure of K*/R* more
simply?

DEFINITION 6.4. A (not necessarily integral) scheme X is called normal if all its local rings
O, x are integral domains, integrally closed in their quotient field (integrally closed, for short);
factorial if all its local rings O, x are unique factorization domains (UFD).

In particular, note that:

X factorial =— X normal

(all UFD’s are integrally closed,

see Zariski-Samuel [119, vol. I, Chapter V, §3, p. 261])
X normal = X reduced.

Now the fundamental structure theorem for integrally closed ring states:

THEOREM 6.5 (Krull’s Structure Theorem). Let R be a noetherian integral domain. Then

a) V(non-zero) minimal prime ideal p C R,
R integrally closed <= Ry 1s a discrete valuation ring,

b) R= mp (non-zero) minimal RP
(cf. Zariski-Samuel [119, vol. I, Chapter V, §6]; Bourbaki [27, Chapter 7]).

COROLLARY 6.6. Assume a noetherian domain R to be integrally closed. Let
S = set of (non-zero) minimal prime ideals of R
ZY(R) = free abelian group generated by S.

IfpesS
orde — valuation on K* defined by the valuation ring Ry
P77 de, if T Ry = mazimal ideal, f = 7% .y, u e Ry |
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Then the homomorphism:
ord: K*/R* — ZY(R)
giwen by ord(f) = > _g(ordy f) - p is injective. ord is surjective if and only if R is a UFD.
PrOOF. Everything is a straightforward consequence of Theorem 6.5 except for the last
assertion. This follows from the well known characterization of UFD’s among all noetherian

domains—that the (non-zero) minimal prime ideals should be principal, i.e., that Image(ord) >
the cycle p (cf. Zariski-Samuel [119, vol. I, Chapter IV, §14, p. 238]). O

COROLLARY 6.7. Assume X is a normal irreducible noetherian scheme. Let

S = set of maximal closed irreducible subsets Z ; X

ZY(X) = free abelian group generated by S.

ZY(X) is called the group of Weil divisors on X. If Z € S, let

valuation on R(X) defined by the valuation ring
ordy = , , .
0. x, z = generic point of Z

Then there is a well-defined homomorphism:
ord: Div(X) — Z}(X)

giwen byord(D) = Y s(ordz(f.))-Z (where f, = local equation of D near the generic point z € Z),
and it is injective. ord is surjective if and only if X is factorial.

PrOOF. Straightforward. O

REMARK. Let X be a normal irreducible noetherian scheme with the function field R(X),
and let D be a Cartier divisor on X. Then for f € R(X)*, one has (f) + D > 0 if and only if
feT(X,0x(D)). Thus the set of effective Cartier divisors linearly equivalent to D is controlled
by the space I'(X, Ox (D)) of global sections of the invertible sheaf Ox (D).

Exercise

For some of the notions and terminology in the following, the reader is referred
to Part 1 [87].

(1) A quasi-coherent Ox-module F is said to be locally free of rank r if each point z € X
has a neighborhood U such that there is an isomorphism

(Ox|0)®" = Flu

(cf, Definition 1.5.3). As a generalization of Proposition 6.1, show that such an F may
be explicitly described in terms of H'(X,GL,(Ox)). As a generalization of Proposition
6.3, show that the isomorphism classes of vector bundles over X and those of locally
free Ox-modules are in one-to-one correspondence: Given a locally free Ox-module F
of rank r, let F = Hom(F,Ox) be the dual Ox-module. Let

V(F) = Specy (D Symm™(F)),

n=0

and let 7w: V(F) — X be the projection. 7: V(F) — X is the vector bundle of rank r
over X, and F is the sheaf of germs of sections of 7.
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(2) Prove that the Segre embedding (cf. Example 1.8.11 and Proposition 11.1.2)
G- PZI X7 P%z SN P%ln2+n1+n2

corresponds in Theorem 2.2 to the invertible sheaf O[P;'Zl (1)®z Opzz (1) and the surjective
homomorphism

(OIPJZH )Ga(nﬁ_l) ®z (OIPJZQ )®(n2+1) — OIPJZH (1) ®z Opgg (1)
obtained as the tensor product over Z of the canonical surjective homomorphisms
(Opgl)®(nl+l) — Opm (1)
(Opgz )@(n2+1) — Opgz (1)

(3) Let X be of finite type over R. Prove that if £1, Lo are very ample (resp. ample)
invertible sheaves on X, then £1 ® L9 is very ample (resp. ample). Referred to in the
proof of Theorem VIIL.5.5.

(4) Let k be a field and consider P}.

a) All maximal irreducible subsets of P} are of the form V(f), f € k[Xo,...,X,]
homogeneous and irreducible.

b) All effective Cartier divisors D on P}, considered via (a) above as subschemes of
P}, are equal to V(f), some homogeneous f € k[Xo, ..., X,].

c) Two effective divisors D; = V(f1) and Dy = V(f2) are linearly equivalent if and
only if deg fi = deg f2; hence the set of all effective divisors D given by subschemes
V(f), deg f = d, is a complete linear system; the canonical map

k[Xo, ..., Xn]a — T(Py, Opr(d))

is an isomorphism and Pic(P) = Z, with Opy (1) being a generator.

d) If o: P} — P} is an automorphism over k, then o*(Opy (1)) = Opr(1). Using the
induced action on I'(Py, Opr (1)), show that o is induced by the linear change of
homogeneous coordinates A € GLy41(k).

(5) Work over a field k. Let T C P? be the “triangle” defined by xoz1r2 = 0, a closed
subscheme. Let f: P2\ T — P2\ T be the isomorphism defined in projective coordinates

by
1 1 1
(xog:xp:a9) > | —:—:— |.
rg I1 X2

Let Z be the Zariski closure of the graph of f in P? X Spec(k) P2, a closed subscheme of
P2 X Spec(k) P2, Let p1: Z — P2 be the projection to the first factor of P2 X Spec(k) P2,
thought of as the source of the birational map f. Relate p1: Z — P? to a suitable blow
up of P2
(6) Work over a base field k. Let y be a k-point of P2, and let f: Y — P? be the blow up
of P? with center y. Let E be the exceptional divisor for Y — P2. Let L be a line on
P? passing through y, and let L be the strict transform of L in Y. Let h and e be the
class of f*Op2(1) and Oy (E) in Pic(Y'), respectively.
(i) Show h,e form a Z-basis of the Picard group of Y, with (h-h) =1, (h-e) =0,
(e-e)=—1.
(ii) Prove that an element ah — be in Pic(Y') with a,b € Z is the class of an effective
divisor if and only if a > b > 0.
(iii) Prove that an element ah — be in Pic(Y') is the class of an ample invertible Oy-
module if and only if a > b > 0.
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(iv) Let F := f*Op2(2) @Oy (—E). Show that the linear system |['(Y, F)| is canonically
isomorphic to the linear system of quadrics on P? passing through v, and defines
an embedding t7: Y < P* of Y as a surface of degree 3 in P4.

(v) Show that the linear pencil |T'(Y, f*Op2(1) @ Oy (—F)| is base point free, and de-
fines a fibration g: Y — P

(vi) Let Y; := Projp: (Symm*(Op1 @ Op1(1))), and let g: Y1 — P! be the structure
morphism for Projp: (Symm*(Op:r @ Op1(1))). Show that (g: Y — P!, f*Op2(1))
is isomorphic to (g1: Y1 — PL,0O(1)), where the last term O(1) is the universal
invertible quotient Oy-module of g} (Op1 & Op1(1)) on Y;.

(vii) Which ones among ample invertible Oy-modules are very ample?

(7) Work over a base field k. Let X be a smooth quadric in P3, 2y a k-rational point of X,
and g: X — — > P2 be the projection from zg to a plane disjoint from x(, a rational
map which is regular on X \ {z¢}.

(i) Show that g does not extend to a morphism on X.

(i)

(iii) Determine all P'’s contracted by g.

(iv) Let a: B — X be the blow up of X at xg. Show that the birational map g induces

a morphism 3: B — P2,

(v) Let y1 and 72 be the images in P? of the two lines in X contracted under g. Show
that B is isomorphic to the blow up of P? at y; and ys.

Show that g is a birational map.

(vi) Show that the birational map ¢—':P? - -+ X is given by the linear system of

conics on P? passing through y; and .
(vii) Show that X is not isomorphic to the blow up of P? centered at a closed point.
(8) (Continuation of the previous exercise) Let E be the exception divisor for a.. Let I Uly
be the intersection of X with its tangent plane T}, X at xg, and let E, E5 be the strict
transforms of Iy, la, respectively. Then the total transform on B of [; is F; + E (as
a divisor), ¢ = 1,2. We saw that E; and E» are the two exceptional divisors for the
morphism 8 with B(E;) = y; for i = 1,2. Let h, hy, he be the classes of 8*Op2(1),
a*O(ly), a*O(lz) in Pic(B), respectively. Similarly, denote by e, e;, es the classes of
Op(E), Op(E1) and Op(Es), respectively. So we have 6 elements h, e, e2, hi, ha, €
in Pic(B).
(i) Show that E is the strict transform on B of the line 712 on P2.
(ii) Show that h, e;, ea form a Z-basis of Pic(B), and so do hq, ha, e. These two bases
are related by

€] = hl—e h1 = h—€2
€y = hQ—e hg = h—61
h = hi+hy—e e = h—e —ey

A third Z-basis is {e, e, €2}, and we have
hi=e +e, ho=e +e, h=e +e+te.

The classes e, e, es, h, h1, hy are all effective.
(iii) Verify that the intersection numbers for the elements h1, ho, h, €, e1, e2 are given
by
e-e=ey-ep =e€y-e9=—1,
h'elzh'€2:h1-€1:hg'egzhl'ezhg-ezhl'hl:hz'h2:€1-€2:0,

e1re=er-e=h-h=h-hi=h-hgy=hy1-ha=h1-ea=hg-e1=h-e=1.
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(iii) Show that ae + biej + baes is the class of an effective divisor if and only if a, by, be
are non-negative integers.
Hint: If ae+bieq +boes is the class of an effective divisor D which does not contain
E, El, EQ, then (D . E) > 0, (D . E,L) > 0.

(iv) Deduce that an invertible Og-module 8*Op2(a)@Op(b1 E1+baE2) with a, by, by € Z
is ample if and only if b1 > 0, by > 0 and a — by — bs > 0.

(v) Which among these ample divisors on Op are very ample?

Let k be a field. Let X = Bl (P"), the blow up of P" at a k-rational point y € P",

n>2 Let N=(n+1)(n+2)/2—2. Let ¢': P* — — 5 PN be the rational map defined

by the linear system of quadrics on P" passing through y.

(i) Show that the rational map ¢’ extends to a morphism g: X — PV, which is a

closed immersion.

(ii) Show that ¢*Opn (1) is isomorphic to f*(Opn(2))(—F), where f: X — P" is the
blow up, and E is the exceptional divisor above y.

(iii) Determine h%(X, £L®™), where L is the ample invertible sheaf f*(Opn(2))(—E) on

X.
(iv) Conclude from (iii) that deg(g(X)) = 2" — 1, i.e., g(X) is a subvariety of PV of
degree 2™ — 1.
Let f: Y — P" be the blow up of a linear subspace L = P"2inP*, n>2. Let ECY
be the exceptional divisor for f. Let ¢': P" — — -+ Pl be the linear projection with

center L, a rational map from P" to PL.
(i) Show that the rational map ¢’ extends to a morphism g: Y — P!
(ii) Let Y7 := Projp1(Symm*((’)§1(n_1) ® Op1(1))), let g1: Y1 — P! be the structure
morphism, denote by £ the universal invertible quotient Oy,-module on Y. Show
that the pairs

Y L Pl fFOpa(1)) and (V7 25 P L)

are isomorphic.
(iii) Show that E is identified with the closed subscheme Projpl(Symm*(OIfl(n_l)))
under the isomorphism in (ii). In particular £ = L x P!,
(iv) Show that £ ® Op is isomorphic to pjOr(1), where pr: E — L is the natural
projection.
(v) Show that Ng/y = p;Or(1) @p5O0p1(—1), where N,y denotes the normal bundle
for E <Y, and po: Y 2 L x P! is the projection to P!.
(vi) Show that F := £%2 @ Oy (—FE) is a very ample invertible sheaf on Y.
(vii) Determine the degrees of Y and E with respect to the very ample invertible sheaf
FonY.
Hint: Use (vi) to show that degz(E) =n — 1.
Work over a field k. Let H be a hyperplane in P*, n > 2. Let Z C H be a smooth
hypersurface in H of degree d, d > 2. Let f: X — P™ be the blow up of P" with
center Z, and let Y be the strict transform of H. By the universal property of blow
ups, the Ox-module J := f~17,- Oy, i.e., the ideal in Ox generated by the image of
the sheaf of ideals Z; C Opr for Z C P", is an invertible O x-module isomorphic to the
sheaf “Ox(1)” on X = Projpn(®n>0Z%). Show that Y is isomorphic to H under the
morphism f, and J ®o, Oy is isomorphic to f*Opn(—d) ®p, Oy.
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(12) Work over a field k. Let X be a smooth quadric in P"*!, n > 2. Let x be a k-point of

X,and let p: X — — > P be the linear projection from x. Let 7: B — X be the blow
up of X with center .
(i) Show that the birational map p: X — — - P* induces a morphism f: B — P".

(ii) Let C(z) be the intersection of X with the hyperplane T'(z) C P™ tangent to
X at x. Show that C(z) is a cone over a smooth conic @' in T(x). Moreover,
Q' is mapped isomorphically under the projection p to a smooth quadric @) in a
hyperplane of P™.

(iii) Show that f: B — P" factors through the blow up of Blg(P") of P" with center
@; the resulting morphism f;: B — Blg(P") is an isomorphism.

(iv) Prove the birational map p~!: P" — — + X corresponds to the linear system on
P™ consisting of all quadrics on P" passing through Q.

(13) (Converse to the previous problem) Let @ be a smooth conic in a hyperplane H C P".

Let L be the linear system on P™ consisting of all quadrics passing through Q. Let

7: Blg(P™) — P be the blow up with center @, and let E = 7~1(Q) be the exceptional

divisor in Blg(P").

(i) Show that the rational map corresponding to the linear system L is represented

by a morphism «: P"\ Q — P+,

(ii) Show that a(P" \ Q) is contained in a quadric X C P"+1,

(iii) Show that « extends to a morphism 3: Blg(P") — P*™! and 8*Opn (1) is isomor-
phic to 7*Op2(2)(—E).

(iv) Let D be the strict transform of the hyperplane H in Blg(P"™). Show that a(D)
is a point x € X.

(v) Prove that X is smooth, and the morphism §: Blg(P") — X identifies Blg(P")
as the blow up of X with center x.

(14) Let X = F(a1,...,a,) := Projp Symm* (Opi(ar) & -+ & O]P’l(an))' Assume for sim-

plicity that a1 < as < --- < a,. Let m: X — P! be the structure morphism, so that
X is a family of P"~!"s parametrized by P!. Denote by Ox (1) the universal invertible
quotient Ox-module of

7 (Op1(a1) @ -~ ® Opig,)) -
(i) For every local ring (R, m), let Sg be the set
{(to,tl;azl PXy ... @y) € R"2 | toR+t1R = R, $1R+~'-+1‘nR:R}
modulo the equivalence relation generated by

(to,t1;@1 i @o : .. i xy) ~ (to,t1;pxy t pxe : ...t puy) I E R
(to,t1;21 i@ st xp) ~  (Atg, A3 A%yt A" %xg 1.t A%y, A€ R,

Show that there is a functorial bijection between X (R) and the set Sg for every
local ring (R, m).

(ii) Show that the complete linear system |I'(X, Ox(1))] is base point free if a; > 0 for
alli=1,...,n.

(iii) Suppose that a; > 0 for all i. Show that the complete linear system |I'(X, Ox(1))]
defines an closed immersion ¢p(1): X < PN, where N = ay + -+ +a, +n — 1.
Moreover, under the morphism ¢p (1), every fibre of 7 is embedded into a linear
P?~1 in PV, and b0 (1)(X) is a subvariety of PN of degree ay + ...+ a,. (The
subvariety ¢ (1)(X) is called a rational scroll in PN.)
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(iv) Show that ¢(F(1,1)) is a smooth quadric surface in P3, ¢(F(2,1) is a smooth sur-
face of degree 3 in P4, ¢: F(0,1) — P? is the blow up of a point, and ¢: F(0,2) —
#(F(0,2)) C P3 is the resolution of singularities of the cone over a plane conic
curve in P2,

(v) Suppose that a1 < -+ < ay < b < a1 < -+ < an, b € Z. Show that the
base locus of the complete linear system |I'(X,Ox (1) ® 7*Op1(—b)| is the closed
subscheme

Projp: Symm* (Opi(ar) @ -+ @ Opl(am)) cX
corresponding to the obvious surjection

Symm* (O]}n (a1)®--- @ O]P’l(an)) — Symm” (OlPl (@) ®---@ O]P’l(am)) .






CHAPTER IV

Ground fields and base rings

1. Kronecker’s big picture
For all schemes X, there is a unique morphism:
m: X — SpecZ.

This follows from Theorem 1.3.7, since there is a unique homomorphism
7 Z — T'(Ox).

Categorically speaking, SpecZ is the final object in the category of schemes. SpecZ itself is
something like a line, but in which the variable runs not over constants in a fixed field but over
primes p. In fact Z is a principal ideal domain like k[X] and its prime ideals are (p) or p - Z,
p a prime number, and (0). (cf. Figure IV.1) The stalk of the structure sheaf at [(p)] is the
discrete valuation ring Zgy = {m/n | p { n} and at [(0)] is the field Q. SpecZ is reduced and
irreducible with “function field” R(SpecZ) = Q. The non-empty open sets of SpecZ are gotten
by throwing away finitely many primes p1,...,p,. If m =[] p;, then this is a distinguished open
set:

Spec(Z)m, with ring  Z,, = {% | a,n € Z} .

The residue fields are:
k([(p)]) = Z/pZ

i.e., each prime field occurs exactly once.
If X is an arbitrary scheme, then set-theoretically the morphism

m: X — SpecZ

is just the map
x —> [(chark(z))],

because if 7(z) = y, then we get

Z7]pZ
k(zx) <T)]k(y) =< or
’ Q
v - - -. / ------
(2)] (3)] [(5)] (7] [(11)] Tt e
point

[(0)]
Ficure IV.1. SpecZ
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FIGURE IV.2. A}

hence
chark(z) =p > 0= n(x) = [(p)]
chark(z) = 0 = =w(x) = [(0)].

Thus every scheme X is a kind of fibred object, made up out of separate schemes (possibly
empty),
Z]pZ
X Xgpecz Spec{ or

Q,

of each characteristic! For instance, we can “draw” a sort of picture of the scheme A%, showing
how it is the union of the affine lines A% I and A(b. The prime ideals in Z[X] are:
i) (0),
ii) principal prime ideals (f), where f is either a prime number p, or a Q-irreducible
integral polynomial written so that its coefficients have greatest common divisor 1,
iii) maximal ideals (p, f), p a prime and f a monic integral polynomial irreducible modulo
p.
The whole should be pictured as in Figure IV.2. (The picture is misleading in that A% Ipi for
any p has actually an infinite number of closed points: i.e., in addition to the maximal ideals
(p,X —a),0 <a<p-—1, with residue field Z/pZ, there will be lots of others (p, f(z)), deg f > 1,
with residue fields F,» = finite field with p" elements, n > 1.)
An important property of schemes of finite type over Z is:

ProPOSITION 1.1. Let X be of finite type over Z and let x € X. Then

[ is closed) <= [k(x) is finite].
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PROOF. Let m: X — SpecZ be the morphism. By Theorem 11.2.9 (Chevalley’s Nullstellen-
satz),

x closed = {m(x)} constructible = m(x) closed.

If 7(z) = [(p)], then & € X Xgpecz SpecZ/pZ — call this scheme X,. Then z is a closed point
of X, so by Corollary I1.2.11, z is an algebraic point, i.e., k(z) is algebraic over Z/pZ, so k(z)
is finite. Conversely, if k(z) is finite, let p be its characteristic. Then z € X, and by Corollary
I1.2.11, z is closed in X, and since X, is closed in X, x is closed in X. U

From the point of view of arithmetic, schemes of finite type over Z are the basic objects.
The classical problem in Diophantine equations is always to find all Z- or Q-valued points of
various schemes X (recall Definition 1.6.2). For instance, if f € Z[X, ..., X,], the solutions

f(al,...,an) =0
with a; in any ring R are just the R-valued points of the affine scheme
SpecZ[ X1, ..., X,]/(f)

(see Theorem 1.3.7). Because of its homogeneity, however, Fermat’s last theorem may also be
interpreted via the “plane curve”

V(XP+ X — X)) C P

and the conjecture! asserts that if n > 3, its only Q-valued points are the trivial ones, where
either Xg, X1, or X5 is 0. Moreover, it is for such schemes that a zeta-function can be introduced

formally:
1 —1
1.2 s) = 1—-— , # = cardinalit
points
rzeX

which one expands formally to the Dirichlet series

a
(x(s) = n%
(1.3) =
number of 0-cycles a = > n;x; on X,
Qa. =
" where n; > 0, x; € X closed and dega df > oni#k(x;) is n

This is known to converge if Res > 0 and is conjectured to be meromorphic in the whole
s-plane—cf. Serre’s talk [106] for a general introduction.
But these schemes also play a fundamental role for many geometric questions because of the
following simple but very significant observation:
Suppose X C Af (resp. X C P{) is a complex affine (resp. projective) variety. Let
its ideal be generated by polynomials (resp. homogeneous polynomials) fi, ..., fk.
Let R C C be a subring finitely generated over Z containing the coefficients of
the f;: Then fi,..., fi define Xo C A% (resp. Xo C P}%) such that
a) X = X Xgpec g SpecC
b) Xy is of finite type over R, hence is of finite type over Z.

More generally, we have:

1(Added in publication) The conjecture has since been settled affirmatively by Wiles [117].
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PROPOSITION 1.4. Let X be a scheme of finite type over C. Then there is a subring R C C,
finitely generated over Z and a scheme Xg of finite type over R such that

X = X0 Xspec r Spec C.
PRrROOF. Let {U;} be a finite affine open covering of X and write
Ui = Spec(C[Xl, ce 7Xni]/(fi,17 ceey fz,kz) = Spec Rz

For each 1, j, cover U; NU; by open subsets which are distinguished affines in U; and U; and let
each of these subsets define an isomorphism
Pij: (Ri)gi]’,z = (Rj)gji,l'
The fact that
(Ui)gyy 6 (9,0 C Ui VU5 N Ug € u(Ui)gikJ,,
means that l

1 N . N
(%) [gij,l : ¢z‘j,l(gjk,l’>} = Z Qijkir gikr,  suitable a’s in R;.
l//
Let R be generated by the coefficients of the fj;’s, the ¢g’s and a’s (lifted to C[X]) and of the
polynomials defining the ¢;;;’s. Define

Uio = Spec R[ X1, ..., Xy,]/I; = Spec R; o

where I; = Ker [R[X]| — C[X]/(fi1,---, fir,)], i.e., I; consists of the f;;’s plus enough other
polynomials to make R;q into a subring of R;. Clearly R; = R; o ®r C. Then g;;; is in the
subring R; o and ¢;;; restricts to an isomorphism (R;p)y,., = (Rj0)g;:,> hence ¢ defines:

(Uiao)gij,l — (Ujvo)gji,l :

Let Ui%) = U;(Uip)g,;, and glue Ui%) to U}fg by these ¢’s: the fact that ¢;;; = ¢;; on overlaps is
guaranteed by the fact that R; o C R;. Moreover the identity (x) still holds because we smartly
put the coefficients of the a’s in R, hence points of U;o which are being glued to points of
Uj,o which in turn are being glued to points of Uy o are being directly glued to points of Uy o;
Moreover the direct and indirect glueing maps again agree because R; o C R;. Thus an X( can
be constructed by glueing all the U;o’s and clearly X = X Xgpec g Spec C. U

The idea of Kroneckerian geometry is that when you have X = X Xgpec r Spec C, then (a)
classical geometric properties of X over C may influence Diophantine problems on Xy, and (b)
Diophantine properties of Xg, even for instance the characteristic p fibres of X, may influence
the geometry on X. In order to go back and forth in this way between schemes over C, Z
and finite fields, one must make use of all possible homomorphisms and intermediate rings that
nature gives us. These “God-given” natural rings fo/r\m a diagram as in Figure IV.3 (with various

Galois groups acting too), where the completion @, of the algebraic closure @, of the p-adic

number field @, is known to be algebraically closed, i;, is the completion of the integral closure
i; in Q, of the ring of p-adic integers Z,, the field of algebraic numbers Q is the algebraic
closure of the rational number field Q, and Z/pZ is the algebraic closure of Z/pZ: Thus given
any X — SpecZ, say of finite type, one gets a big diagram of schemes as in Figure IV.4 (where
we have written X for X x Spec R, and R for the algebraic closure or integral closure of R, or

completions thereof.)
In order to use the diagram (1.6) effectively, there are two component situations that must
first be studied in detail:
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non-canonical isomorphism —

(1.5) Cc-—-——=-="=-"=---= Q,
! \@(//’

R U Qp U
Q/ U Z
U Zp/ \» W
\9 (/
Z Z/pZ

FiGure IV.3. The diagram formed by “God-given” natural rings

non-canonical isomorphism

FiGurE IV.4. The big diagram of schemes

1.7. Given
k a field
k = algebraic closure of k
X of finite type over k
consider:

X—X

| ]

Spec% — Speck

where X = X X Spec k Spec k. Compare X and X.

1.8. Given
R a valuation ring
K its quotient field
k its residue field
X of finite type over R
consider:

X X Xo

L1 ]

Spec K —— Spec R +—— Speck

where X, = X Xgpec R Spec K, Xo = X Xgpec g Speck. Compare Xg and X,,.
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We take these situations up in §§2-3 and §34—6 separately. In §VIIL.5b we will give an
illustration of how the big picture is used. The idea will also be used in the proof of Belyi’s
three point theorem (Theorem 1X.2.1).

Classical geometry was the study of varieties over C. But it did not exploit the fact that the
defining equations of a variety can have coefficients in a subfield of C. This possibility leads us
directly to the analysis of schemes over non-algebraically closed fields (1.7), and to the relation
between schemes over two different fields given by (1.8).

2. Galois theory and schemes

For this whole part, fix a field k and an algebraic closure k. We write Gal(k/k) for the Galois
group, and for each scheme X over k, we write X for X X Spec k OPeC k. First consider the action
of Gal(k/k) on k" by conjugation:

1. For o € Gal(k/k)
(a1,...,an) — (oay,...,oap), [

If we identify k" with the set of closed points of A%, then this map extends in fact to
an automorphism of A%:
2. Define opn : A% — A% by

(oan)*: K[ X1, ..., Xn] — E[X1,..., X4]

where
oan(Xi) = Xi ohn(a) =0 'a, ack.

In fact, for all prime ideals p C k[X71, ..., X,],

oan([p]) = [(03)"P)
and if p = (X1 — a1,..., X, — ay,), then since o}, (X; — 0a;) = X; — a;, we find
(ok.)"'p D (X1 —oaq,..., X, — 0ay); since (X1 — oay,..., X, — ca,) is maximal,
(oh)"Ip = (X1 —oar,..., Xy — oay). B
Note that opn is a k-morphism but not a k-morphism. For this reason, opn will
have, for instance, a graph in

A% XSpeck A% = Spec ((E@k %)[Xl,. ey Xp, Y1, ... ,Yn]) ,

but not in A% X Speck A% = A%”. Thus when k = C, o4» will not be a correspondence
nor will it act at all continuously in the classical topology (with the one exception
o = complex conjugation).

3. Now we may also define on as:

oan = lan X oy A} Xgpeck Speck — A} X Speck Speck

where 0,: Speck — Speck is defined by (0)*a = o~ la.

The third form clearly generalizes to all schemes of the form X:
DEFINITION 2.1. For every k-scheme X, define the conjugation action of Gal(k/k) on X to
be:
ox =1lx xo,: X = X, all o€ Gal(k/k).
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- — " g

(Rep k) /p1 (R @y k)/p2

k \k/ R/p

FiGure IV.5

Then oy is not a k-morphism, but rather fits into a diagram:

X —2> X
! ]

Speck SLLIN Spec k.

What this means is that if f € Ox(U) then 0% f € Ox(0x'U) has value at a point = € o,'U
given by:

(2.2) (% f)(@)=07": flox - 2),
i.e., set-theoretically, 0% is not “pull-back” on functions. This can be proven as follows:
f=flox-z)em, ,x=ox(f— flox -2)) em, ¥
— ohf—0l flox -z)€ m, %
= oxfl@)=0"" flox - 2).
I want next to analyze the relationship between X and X. The first point is that topologically
X is the quotient of X by the action of Gal(k/k).

THEOREM 2.3. Let X be a scheme of finite type over k, let
X=X X Spec k Spec k
and let p: X — X be the projection. Then

1) p is surjective and both open and closed (i.e., maps open (resp. closed) sets to open
(resp. closed) sets);

2) Va,y € X, p(z) = p(y) iff v = ox(y) for some o € Gal(k/k);

3) Vo € X, let Z = closure of {x}. Then p~'(z) = the set of generic points of the
components of p~1(Z). In particular, p~1(x) is finite.

PROOF. Since all these results are local on X, we may as well replace X by an open affine
subset U, and replace X by p~!'U. Therefore assume X = Spec R, X = Spec R®, k. First of all,
p is surjective by Corollary I.4.4. Secondly, p is closed because R ®y, k is integrally dependent on
R (cf. Proposition I1.6.5; this is an easy consequence of the Going-up theorem). Thirdly, let’s
prove (2). If p1,p2 C R ®; k are two prime ideals, we must show:

pL1NR=p2NR <= Jo € Gal(k/k), p1=(1r®0)po.

<= is obvious, so assume p;NR = poNR. Call this prime p. Let € be an algebraically closed field
containing R/p. Consider the solid arrows in Figure IV.5. It follows that there exist injective
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k-homomorphisms a1, as as indicated. Then aj(k) and as(k) both equal the algebraic closure
of k in €2, so for some o € Gal(k/k), as = a1 o o on k. But then if x; € R, y; € k:
Y i@y €pa =Y mi-az(y) =0in Q
<= Z x; - ai(o(y;)) =0 in Q

= Z$i®0' Yi) € p1,
o (1g ® 0)pa = p1. Fourthly, p is an open map. In fact, let U C X be open. Then

U= |J ox(U)

oceGal

is also open, and by (2), p(U) = p(U’) and U’ = p~1(p(U")). Therefore X \p(U) = p(X\U’) which
is closed since p is a closed map. Therefore p(U) is open. Finally, let z € X, Z = closure of {z}.
Choose w € p~!(x) and let W = closure of {w}. Since p is closed, p(W) is a closed subset of Z
containing x, so p(W) = Z. Therefore |, g, 0x (W) is Gal-invariant and maps onto Z, so by

(2):

U ox(W)=p 12
oeGal

Therefore every component of p~1Z equals o x (W) for some o, and since they are all conjugate,
the ox (W)’s are precisely the components of p~1Z. (3) now follows easily. O

Suppose now X is a k-variety. Is X necessarily a k-variety?

THEOREM 2.4. Let X be a k-variety and let X = X x; k.
i) Let
L ={z € R(X) | « separable algebraic over k}.

Then L is a finite algebraic extension of k. Let U C X be an open set such that the
elements of L extend to sections of Ox over U. Then the basic morphism from X to

Speck factors:

Speck
and taking fibre products with Spec k, we get:

C

>

U
7l

Spec L ®k k

f'\s‘ \
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Then
t
Leck=]]*
i=1
Spec L @y, k = disjoint union of t reduced closed points P, ..., P,

U = disjoint union of t irreducible pieces U; = f_l

(F)
X = union of t irreducible components X;, with X; = closure(Ui).
This induces an isomorphism of sets:
(Components of X) = Homy(L, k),

commuting with the action of the Galois group Gal(k/k).
ii) If y; = generic point of X;, then y; maps to the generic point of X and

I

t
[10, x =R(X) ek
=1

hence dim X; = dim X for all i, and:

X is reduced <= Oyi < has no nilpotents, for all i
<= R(X) is separable over k.

PROOF OF THEOREM 2.4, (i). Let L1 C L be a subfield which is finite algebraic over k.
Then L; ®y, k is a finite-dimensional separable k-algebra, hence by the usual Wedderburn theo-
rems,

t
L1 ®; = HE, where t = [Ll : ]{?]
=1

and Spec Ly @ k = {P,..., P} as asserted. Elements of a basis of L; extend to sections of Ox
over some open set U, and we get a diagram

Ul C

X
7l
(Pi,....P)}
~

Speck.

Therefore U is the disjoint union of open sets ?;1(3) Therefore X has at least t components,
i.e., components of the closure of ?1—1(3) in X. But X has only a finite number of components,
hence t is bounded above. Therefore L itself is finite over k. Now take Ly = L. The main step
consists in showing that ?_1(3-) is irreducible. In fact

—1 ~ _
[ (B) 2 U Xgpee 1o SPECK

projection on

= U XSpecL Speck, viaL — L®k __th factor | 70

so in effect this step amounts to checking the special case:

k separable algebraically closed in R(X) = X is irreducible.
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The rest of part (i) follows from two remarks: first, by Theorem 2.3, (3), each component of X
is the closure of a component of U; secondly, there is an isomorphism of sets commuting with
Gal:

{Maximal ideals of L ®j, k} = {Kernels of the various projections L ®j, k — k}
= Homg(L, k).

Now consider the special case. If X = U§:1 X, is reducible, we can find an affine open U C X
such that the sets p~1(U) N X; = U; are disjoint. Let U = Spec R, so that

t
HUZ- = Spec R @, k.
i=1

Let ¢; be the function which equals 1 on U; and 0 on the other Uj. Then €' = ¢; for all n and
€ € R® k. Write
6= Bij®vj, Py€Ry;eEk
J
Then if the characteristic is p > 0,

" p" p"
€ =€ —E »Bij ® Vij

and if n > 0, ’y%n € ks = separable closure of k. Thus if p > 0, we find ¢; € R ®; ks too.
Let L, be the ks-subalgebra of R ®j, k that the ¢; generate. The Galois group, acting on X,
permutes the X;; hence acting on R ®x k = I'(][U;, O), it permutes the ¢;. Therefore Ly is a
Gal-invariant subspace of R ®j ks. Now apply:

LEMMA 2.5. Let V be a k-vector space and let W' C V ®y, ks be a ks-subspace. Then

W'=W ®y ks for W' is invariant
some k-subspace W C V under Gal(ks/k) |-

PROOF OF LEMMA 2.5. “==" is obvious. To prove “<=", first note that any w € W’ has
only a finite number of conjugates w”, o € Gal(ks/k), hence > ks - w? is a finite-dimensional
Gal-invariant subspace of W’ containing w. Thus it suffices to prove “<—=”" when dim W’ < co.
Let {eq}tacs be a basis of V and let f1,..., f; be a basis of W’. Write f; = Y ¢ia€a, Cia € ks.
Since the f’s are independent, some ¢ x t-minor of the matrix (c;qo) is non-zero: say (¢ a;)1<i,j<t-
Then W’ has a unique basis f! of the form

fz/ = €qy + Z Cgﬁeﬂ'
BE{a1,...,cn}
Since Vo € Gal, W7 = W, it follows that (f;) = f;, hence (cj5)” = ¢}5, hence cj5 € k, hence
FleV.IEW = S kfl, then W' = W @y ks. 0

By the lemma, Ly = L' ®}, ks for some subspace L' C R. But L’ is clearly unique and since
forall a € L', a- Ly C Lg, therefore a- L' C L’. So L' is a subalgebra of R and hence of R(X)
of dimension ¢, separable over k because L, is separable over k;. Therefore L' = k and ¢t = 1.
This proves Theorem 2.4, (i). O

PROOF OF THEOREM 2.4, (ii). Let U = Spec R be any open affine in X so that p~1(U) =
Spec R® k. Since R C R(X), R®pk C R(X)®y k. Thus if X is not reduced, some ring R®y k
has nilpotents, hence R(X) ®; k must have nilpotent elements in it. On the other hand, if U
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is small enough as we saw above, p~'(U) = [[U;, where U; is irreducible, open and y; € Us;.
Therefore

t
Replacing R by Ry, U by Uy and U; by (U;) > and passing to the limit over f’s, this shows that

t
M ek=]] lm  Ox(@))=]]0,x
=1 distinguished i=1
open sets (U;)

In particular, if R(X) ®; k has nilpotents, so does one of the rings Oyi + and hence X is not
reduced. Now recall that the separability of R(X) over k means by definition that one of the

equivalent properties holds:
Let kP~ = perfect closure of k.

a) R(X) and kP~ are linearly disjoint over k.
b) R(X) ®, kP~ — R(X)P ™ is injective.
¢) R(X) and kP are linearly disjoint over k.
d) R(X) @ k¥ — R(X)P ' is injective.

(cf. Zariski-Samuel [119, vol. I, pp. 102-113]; or Lang [75, pp. 264-265]. A well-known theorem
of MacLane states that these are also equivalent to R(X) being separable algebraic over a purely
transcendental extension of k.)
Note that the kernel of R(X) ® kP
elements in R(X) ®; kP~ : because if a; € R(X), b; € kP
Zazb—OmR - :>Za bpn:OinR(X)

7
= O aeb) =) d"'W e1=0.

Now if N = ideal of nilpotents in R(X) ®y, k, then N is Gal-invariant, so by Lemma 2.5 applied
to k over kP, N = N, ®(kpfoo) k for some Ny C R(X) ®4 kP~ . Hence

—o0

— R(X)P™ ™ is precisely the ideal \/(0) of nilpotent
" then

N # (0) <= Ny # (0) <= Ker (R(X) op kP R(X)P"”) £ (0).
0

COROLLARY 2.6 (Zariski). If X is a k-variety, then X is a k-variety if and only if R(X) is
separable over k and k is algebraically closed in R(X).

COROLLARY 2.7. Let X be any scheme of finite type over k and let p: X — X be as before.
Then for any x € X, if L = {a € k(z) | a separable algebraic over k}, 3 an isomorphism of sets:

p 1z = Homy (L, k)
commuting with Gal(k/k), and the scheme-theoretic fibre is given by:
p~'e = Speck(z) @y k,

hence is reduced if and only if k(x) is separable over k.

Proor. If welet Z = m with reduced structure, then we can replace X by Z and so reduce
to the case X a k-variety, x = generic point. Corollary 2.7 then follows from Theorem 2.4. [
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COROLLARY 2.8. Let X be any scheme of finite type over k and let p: X — X be as before.
Let x € X be a closed or k-rational point. By k-coordinates near x, we mean: take an affine
neighborhood U of p(x), generators fi,..., fn of Ox(U), and then define a closed immersion:

pTU—— A%
N
X
by the functions fi,..., fn. Then
i) #(Galois orbits of x) = [k(p(x)) : ks
ii) The following are equivalent:
a) p~t({p(z)}) = the reduced closed subscheme {x},
b) p(z) is a k-rational point of X,
¢) In k-coordinates, x goes to a point in k™ C A%.
If these hold, we say that x is defined over k.
iii) If k is perfect, these are equivalent to
d) x is a fived point of the Galois action on X.

PROOF. (i) and the equivalence of (a) and (b) are restatements of Corollary 2.7 for closed
points; as for (c), note that the values of the “proper coordinates” at = are fi(x),..., fn(x) and
that k(p(z)) = k(fi1(x),..., fn(x)), hence (b) <= (c). (iii) is clear. O

In case k is perfect, Corollary 2.8 suggests that there are further ties between X and X:
THEOREM 2.9. Let k be a perfect field and p: X — X as before. Then
i) YU C X open,
Ox(U) = {f € Ox(p™'U) | o’ f = £, Vo € Gal(/k)} .
ii) V closed subschemes Y C X
Y is Gal-invariant <= 3 closed subschemesY C X withY =Y @ k

and if this holds, Y is unique, and one says that Y is defined over k.

iii) If v € X and H = {0 € Gal | ox(z) = z}, then k(p(x)) = k(z)".

iv) If Y is another scheme of finite type over k and Y =Y xy, k, then every k-morphism
f: X =Y that commutes with the Galois action (i.e., oy o f = foox, for all o € Gal)
is of the form f x 1 for a unique k-morphism f: X — Y, and one says that f s
defined over k.

PROOF OF (i). Let
FU)={feOx(p'U)|okf=1F foralo}.
Then F is easily seen to be a sheaf and whenever U is affine, say U = Spec R, then
FU)={f€eRerk|(lr®o)f=f, foral o}
= R, since k is perfect
= Ox(U).
Thus F = Ox. O
PROOF OF (ii). Suppose Y C X is Gal-invariant. Then for all open affine U = Spec R in X,
Y Np~'U is defined by an ideal @ C R®y k. Then @ is Gal-invariant so by Lemma 2.5, @ = a®; k

for some k-subspace a C R. Since aa C d for all « € R, it follows that aa C a and so a is an
ideal. It is easy to see that these ideals a define the unique Y C X such that Y =Y x, k. [
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strictly
complex
points

real
points —1

FIGURE IV.6. X = P}

PRrROOF OF (iii). As in Corollary 2.7 above, we can replace X by the closure of p(x) and so
reduce to the case where X is a variety with generic point p(z) and x = x; is one of the generic
points x1,...,z; of X. By Theorem 2.4, X is reduced and we have

Hk(%‘) = HR<Y1’) = R(X) @k k =k(p(z)) @k k.

i=1 i=1
Thus
k(p(z)) = {(x’l, N ARS Hk(%) | (2,...,2}) Gal—invariant}
=~ {z} € k(z1) | 2} is H-invariant} .
O
PROOF OF (iv). Left to the reader. O

Note that when Y = one point x, then {z} is defined over k as in Theorem 2.9 above if and
only if it is defined over k as in Corollary 2.8.

When k is not perfect, the theorem is false. One still says “Y is defined over k” if Y =
Y Xgpeck Spec k for some closed subscheme Y C X, and Y is still unique if it exists. But being
Gal-invariant is not strong enough to guarantee being defined over k. For instance, if Y is a
reduced Gal-invariant subscheme, one can try by setting Y’ = p(Y) with reduced structure.
Then Y =Y’ X Spec k Spec k will be a subscheme of X defined over k, with the same point set
asY and Y C Y’ but in general Y’ need not be reduced: i.e., the subset Y is defined over k but
the subscheme Y is not (cf. Example 4 below).

The theory can be illustrated with very pretty examples in the case:
k=R
k=C
Gal(k/k) = {id, *}, * = complex conjugation.
In this case, xx : X — X is continuous in the classical topology and can be readily visualized.

ExXAMPLE. 1. Let X = IP’]%Q, X = IP’}C. Ignoring the generic point, ]P’(lc looks like Figure IV.6.
Identifying conjugate points, ]P’IlR looks like Figure IV.7.

EXAMPLE. 2. Let X = P{ again. Then in fact there are exactly two real forms of Pf:
schemes X over R such that X xg C =2 X. One is ]P’IIR which was drawn in Example 1. The other



132 IV. GROUND FIELDS AND BASE RINGS

points with 1 points with
k(z) =R k(a:) =C
coming from coming from

maximal ideals maximal ideals
(X —a) (X?+aX +b)
with a2 < 4b

FIGURE IV.7. X =P}

conjugation takes points

to antipodal points

(0,1, —)
FIGURE IV.8. X = V(XZ + X? + X2) C P}

is represented by the conic:

X = V(X3 + X7+ X3) C P2.
Then X is the same conic over C and, projecting from any closed point z € X, we find as in
Part I [87] an isomorphism between X and PL. Since X has in fact no R-rational points at all
(V(ao, a1, az2), a3+a?+a3 > 0!) we cannot find a projection X — PL defined over R. The picture

is as in Figure IV.8, so X is homeomorphic in the classical topology to the real projective plane
S? /(antipodal map) and for all its closed points = € X, k(z) = C.

EXAMPLE. 3. Let X be the curve X7 = Xo(X2 — 1) in PZ. One can work out the picture
by thinking of X as a double covering of the Xy-line gotten by considering the two values
Xo(Xg —1). We leave the details to the reader. One finds the picture in Figure IV.9.

EXAMPLE. 4. To see how X may be reducible when X is irreducible, look at the affine curve
X2+ XE=0
in Ai. Then X is given by:
(Xo+1iX1)(Xo—iX7)=0

and the picture is as in Figure IV.10. If U = X \ {(0,0)}, then U is actually already a variety
over C via

X
p: U — SpecC, p*(a+ib):a+f1-b
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point at oo point at oo
points with k(z) = C

real points

Here —1 < Xp(x) <0
k(z) =R Here Xo(z) > 1
k(z) =R
FIGURE IV.9. X = V(X X, — Xo(X3 — X3)) C P%

FiGure IV.10. X = V(X2 + X?) C A%

and in fact,

(R0, X/ (X3 + XD) || 2R |5 X0, X5 / <<§;>+ 1>

= C[Xo, X5 ']

so U = AL\ {0}:
To go deeper into the theory of one-dimensional varieties over R, see Alling-Greenleaf [12].

To illustrate how X may be reduced and yet have hidden nilpotents, we must look in char-
acteristic p.

EXAMPLE. 5. Let k be an imperfect field, and consider the hypersurface X C P} defined by
a X+ +a,XP =0, a;€k.
In k, each a; will be a p-th power, say a; = v, so X cC IP’% is defined by
(boXo + -+ - + bpXy)?P = 0.

Thus X is a “p-fold hyperplane” and the function > b; X;/ X is nilpotent and non-zero. However,
provided that at least one ratio a;/a; ¢ kP, then > a;X? is irreducible over k, hence X is a k-
variety: Put another way, the hyperplane L : Y b, X; = 0 in ]P)% is “defined over k” as a set in
the sense that it is Gal-invariant, hence is set-theoretically p~!(p(L)) using p: IP’% — P} but it

is not “defined over k” as a subscheme of P? unless b;/b; = (a;/a;)"/? € k all i, ;.

Before leaving this subject, I would like to indicate briefly the main ideas of Descent theory
which arise when you pursue deeply the relations between X and X.
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If you look at Theorem 2.9, (ii) as expressing when a quasi-coherent sheaf of ideals
TcC O is defined over k, it is natural to generalize it to arbitrary quasi-coherent
sheaves of modules. The result is (assuming k perfect): given a quasi-coherent sheaf
F of Og-modules, plus an action of Gal(k/k) on F compatible with its action on O,
i.e., Vo € Gal, U C X isomorphisms

0’9_—2 F — ?(O')_(I(U))
such that
oc(a) - o(b) = o%(a-b), a€ Ox(U),b e F(U)

(1)} =0 @ or¥, o,7¢€ Gal

and commuting with restrictions, then there is one, and up to canonical isomorphism,
only one quasi-coherent F on X such that (i) F = F ®¢, O and (ii) the Gal-
action on F goes over via this isomorphism to the Gal-action o£(b® a) = b ® o%a on
F ®py Ox. More precisely, there is an equivalence of categories between the category
of pairs (F, JJU:) of quasi-coherent sheaves on X plus Gal-action and the category of
quasi-coherent F on X.

The whole set-up in fact generalizes to a much bigger class of morphisms than p: X —
X:

DEFINITION 2.10. Given a morphism f: X — Y, a quasi-coherent sheaf F on X is
flat? over Y if for every x € X, F, is a flat Of(@),y-module. f itself is flat if Ox is
flat. f is faithfully flat if f is flat and surjective.

Grothendieck has then proven that for any faithfully flat quasi-compact f: X — Y,

there is an equivalence of categories between:
a) the category of quasi-coherent sheaves G on Y,
b) the category of pairs (F,«), F a quasi-coherent sheaf on X and « being “descent
data”, i.e., an isomorphism on X xy X:
o piF =5 pyF

satisfying a suitable associativity condition on X xy X Xy X and restricting to

the identity on the diagonal A: X — X xy X.
In the special case f = p, k perfect, it turns out that descent data « is just another
way of describing Galois actions. A good reference is Grothendieck’s SGA1 [4, Exposé
VI3,
The final and most interesting step of all is the problem: given X over k, classify the set
of all possible X’s over k plus k-isomorphisms X X Spec k Speck = X, up to isomorphism
over k. Such an X is called a form of X over k and to find an X is called descending
X to k. If k is perfect, then (cf. Exercise below) it is easy to see that each form of X
over k is determined up to k-isomorphism by the Galois action {ox | o € Gal(k/k)} on
X that it induces. What is much harder, and is only true under restrictive hypotheses
(such as X affine or X quasi-projective with Gal also acting on its ample sheaf L, cf.
Chapter III) is that every action of Gal(k/k) is an effective descent data, i.e., comes
from a descended form X of X over k. For a discussion of these matters, cf. Serre [103,
Chapter V, §4, No. 20, pp. 102-104]. All sorts of beautiful results are known about
k-forms: for instance, there is a canonical bijection between the set of k-forms of IP)%

2We will discuss the meaning of this concept shortly: see §4.
3(Added in publication) See also FAG [3].
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and the set of central simple k-algebras of rank n? (cf. Serre [105, Chapter X, §6, p.
160]).

3. The frobenius morphism

The most remarkable example of the theory of Galois actions is the case:

k =TF,, the finite field with ¢ elements, ¢ = p”

E = U Fqn
n=1
Gal(k/k) = pro-finite cyclic group generated by the frobenius
f:k—k f(z)=2%

f is the only automorphism of a field that is given by a polynomial! This has amazing conse-
quences:

DEFINITION 3.1. If X is any scheme in prime characteristic p, i.e., p = 0 in Oy, define a
morphism
ox: X — X
by
a) set-theoretically, ¢ x = identity,
b) VU and Va € Ox(U), define ¢%a = a”.

DEFINITION 3.2. If X is a scheme of finite type over k = Fy, X = X Xgpeck Speck, then:

i) Note that f},: Speck — Speck (in the notation at the beginning of §2) is the automor-
phism (cZ)SpeCE)_”, hence the conjugation fx: X — X defined in Definition 2.1 above

1S
v

Ix x (d)SpecE)_ :
We write this now fiith: X — X
ii) Set-theoretically identical with this morphism will be a k-morphism called the geometric
frobenius

B = 6o (L x 0 )

= ¢VX X 1SpeCE: Y—)Y

In other words, there are two morphisms both giving the right conjugation map: an au-
tomorphism f&#ith which does not preserve scalars, and a k-morphism £5°" which however is
not an automorphism. For instance, look at the case X = A}. All morphisms A% — A% are

described by their actions on k[X7, ..., X,] and we find:

Al e — a
(faffth> { ‘ "1, an automorphism of k[X1,..., X,)]
a +— af
. q _ —
(fiiom)* { Xio—= X , a k-homomorphism of k[X,..., X,] into itself,
a — a

where a € k. This means that completely unlike other conjugations, the graph of fx = f)g(eom is
closed in X X Speck X. Corollary 2.8 gives us a very interesting expansion of the zeta-function

of X in terms of the number of certain points on X:
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For every v > 1, we say that a closed point x € X is defined over Fy if any of
the equivalent conditions hold:
i) In Fy-coordinates, x corresponds to a point of (Fgv)" C A%,
ii) k(p(x)) C Fgv (p: X — X is the projection in Theorem 2.3),
iii) f%(x) =z, i.e., = a fixed point of the morphism f¥.
(Apply Corollary 2.8 to k D Fpv and to X — (X xp, Fgv).) The set of all these points we call
X (Fgv). Then if
N, = #X(Fyp),
I claim that formally:

3.3.
Cx(s) =Zx(q7°),

az >
oX ( Ny-t”—1> dt
Zx

v=1

Zx(0) = 1.

where Zx (t) is given by

ProoF. If M, = number of x € X with k(x) = Fg, then each such point splits in X into v
distinct closed points which are in X (Fu) if v | p. Thus

N,=> v-M,.

vlp
By definition:
00 1 —M,
exto) =TT (1- )
v=1 q
so if we set -
Zx(t) = [ -
v=1
then (x(s) = Zx (¢~ *). Moreover
dZx = —ptv!
_— = d 1 Z - _My . : dt
7o = o Zx) = (M) T

1 o]
= EZVMV(t”—i—tQ”—i—t?’”—i—--‘)dt
v=1

1 [o.¢]
:EZNM-t“-dt.
pn=1

As an example, if X = AI’F‘q, then

hence

Therefore by (3.3)
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and

() =1]] (1_1713) = Co(s —n)

p p

if o(s) is Riemann’s zeta-function

From this, an easy consequence is:
PROPOSITION 3.4. For all schemes X of finite type over Z, Cx(s) converges if Re(s) > 0.

IDEA OF PROOF. First reduce to the case X affine and then by an affine embedding, reduce
to the case of A™ using the fact that the Dirichlet series (1.3) for (x has positive coefficients
majorized by those for (gn. U

If X is a scheme over a field F, again, a celebrated theorem of Dwork [36] states that Zx is
a rational function! If we then expand it in terms of its zeros and poles:

N

H(l - Ozz't)

Zx(t)="5——— @B €C
[T —sit)
=1

it follows immediately that

W7y & (A N ) »
“x [ N
Zx yz:l (’i:l ;

and hence:
M N
N,=) B/ =) o
i=1 i=1

It seems most astonishing that the numbers N, of rational points should be such an elementary
sequence! Even more remarkably, Deligne [34] has proven Weil’s conjecture that for every i,

’ai‘7 |ﬁz‘ € {1>q1/27q7q3/27 s ,qdimX}'

I would like to give one very simple application of the fact that the frobenius fx = f)g(eom has
a graph:

PROPOSITION 3.5. Let X be an Fy-variety such that X = IP%. Then X has at least one

Fy-rational point.*

PROOF. If X has not F,-rational points, then fx: X — X has no fixed points. Let I' C
X x7X be the graph of f§”". Then 'NA = ), A = diagonal. But now X x3 X IP% XE[F% and
via the Segre embedding this is isomorphic to a quadric in IP’%. In fact, if Xo, X7 (resp. Yo, Y1)
are homogeneous coordinates, then

. PLx. PL P2
s: PLxzPL — P3

4We will see in Corollary VIIL.1.8 that this implies X = P}, too. See Corollary V1.2.4 for a generalization of
Proposition 3.5 to P™ over finite fields.
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via
(Xo, X1) x (Yo,Y1) —— (XoYo, XoY1, X1Yp, XiV1).

I I I I
Zo  Zv  Zo  Zs

The image of s is the quadric Q = V(ZyZs—Z1Z>). But the point is that s(A) = QNV (Z1—Z2),
SO s maps ]P% Xz IP%\ A isomorphically onto an affine variety W = QN []P’%\ V(Z1 — Z3)]. So if
I'NA =0, we get a closed immersion

PL=T — W

of a complete variety in an affine one. But quite generally a morphism of a complete variety I
to an affine variety W must be a constant map. If not, choose any function a € I'(Ow ) which
is not constant on the image of I' and consider the composition

I — W A CPL
I' complete = image closed = image is one point or the whole IP%. Since a is not constant

on the image of ', the first is impossible and since oo ¢ image, the second is impossible. U

There are many other classes of varieties X which always have at least one rational point over
a finite field IF,: for instance, a theorem of Lang says that this is the case for any homogeneous
space: cf. Theorem VI.2.1 and Corollary VI.2.5.

4. Flatness and specialization

In this section I would like to study morphisms f: X — S of finite type by considering them
as families {f~!(s)} of schemes of finite type over fields, parametrized by the points s of a “base
space” S. In particular, the most important case in many applications and for many proofs is
when S = Spec R, R a valuation ring. Our main goal is to explain how the concept “f is flat”,
defined via commutative algebra (cf. Definition 2.10), means intuitively that the fibres f~1(s)
are varying “continuously”.

We recall that flatness of a module M over a ring R is usually defined by the exactness

property:
DEFINITION 4.1. M is a flat R-module if for all exact sequences
N1 — N2 — N3

of R-modules,
M ®r N1 — M ®r No — M ®gr N3

1s exact.

By a simple analysis it is then checked that this very general property is in fact implied by
the special cases where the exact sequence is taken to be

0—a—R

(a an ideal in R), in which case it reads:
For all ideals a C R,
a®pr M — M

18 injective.



4. FLATNESS AND SPECIALIZATION 139

For basic facts concerning flatness, we refer the reader to Bourbaki [27, Chapter 1]°. We list a
few of these facts that we will use frequently, with some indication of proofs:

PRrROPOSITION 4.2. If M is presented in an exact sequence
00— Ny — Ny —M—0
where Ny is flat over R (e.g., N2 is a free R-module), then M is flat over R if and only if
Ni/aN; — No/aNo
is injective for all ideals a C R.

This is seen by “chasing” the diagram:

0 Kernel?

1 b

Cl®RN1 4>N1 4>N1/CIN1 —0
! 1 !

00— a®r No —— Ny —— No/aNy —— 0

! ! -

Kernel? — a ®g M —— M —— M/aM —— 0

1 1 !
0 0 0

To link flatness of stalks of sheaves with flatness of the module of sections over an affine
open set, we need:

ProrosiTION 4.3. If M is a B-module and B is an A-algebra via i: A — B, then:
M is flat over A <= Vp prime ideals in A, M @4 Ay is Ap-flat.
<= Vp prime ideals in B, if po =i '(p), then M, is Ay, -flat.
< The Shean on Spec B is flat over Spec A (Definition 2.10).

PROPOSITION 4.4.
a) If M is an A-module and B is an A-algebra, then

M flat over A= M ®4 B flat over B.

5(Addcd in publication) It would be worthwhile to point out that for an R-module M, the following are
equivalent:
(i) M is flat over R.
(ii) (See, e.g., Bourbaki [27, Chap. I, §2.11, Corollary 1], Eisenbud [38, Corollary 6.5], Matsumura [78,
Thoerem 7.6] and Mumford [86, Chap. III, §10, p. 295].) For elements m1,...,m; € M and a1,...,a; €
R such that Zézlaimi =0, thereexist mj; e M (j=1,...,k)and by € R (i =1,...,5;5=1,...,k)
such that

k l
2 : l 2 :
mq; = bijm]- and bijai = 0.
j=1 i=1

(iii) For any R-homomorphism a: F — M from a free R-module F of finite rank and for any finitely gen-
erated R-submodule K C Ker(a), there exist a free R-module F’ of finite rank and R-homomorphisms
B: F — F" and v: F' — M such that @ = yo 8 and that K C Ker(f).

The equivalence of (i) and (ii) is an easy consequence of Bourbaki [27, Chap. I, §2.11, Lemma 10]. In (iii),
we may assume K to be generated by a single element. Then its equivalence to (ii) is obvious.

From this equivalence, we easily deduce that every flat R-module M is a (filtered) direct limit of free R-
modules of finite rank, a result due independently to V. E. Govorov (1965) and D. Lazard (1964). (cf. Eisenbud
[38, Theorem A6.6])
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b) If F is a quasi-coherent sheaf on X and we consider a fibre product diagram:

X xy Z 2 X
|,
zZ—"—y
then (cf. Definition 2.10)
F flat over Y = p*F flat over Z.

c) Especially
f flat = g flat.

PRrRoOPOSITION 4.5.

a) M flat over A = for all non-zero divisors a € A, M 5 M is injective.
b) If A is a principal ideal domain or valuation ring, the converse is true.

The point of (a) is that A -+ A injective implies M —+ M injective.

PROPOSITION 4.6.

a) If M is a B-module and B is an A-algebra, where A, B are noetherian and M is finitely
generated then

M flat over A= Vp C B, an associated primes of M,
p N A is an associated prime of A.

b) f: X — Y a morphism of noetherian schemes, F a coherent sheaf on X, then
F flat over Oy = f(Ass(F)) C Ass(Oy).
Especially, f flat, n € X a generic point implies f(n) € Y is a generic point.

In fact, if pg :=p N A ¢ Ass(A), then there exists an element a € pgAp, which is a non-zero
divisor. Then multiplication by a is injective in M, hence p ¢ Ass(M).

PROPOSITION 4.7. If F is a coherent sheaf on a scheme X, then
F flat over Ox <= F locally free.
PRrOOF. For each z € X, there is a neighborhood U of  and a presentation
03 -2 on Ly Fly — 0.

Factor this through:
0 —K—0y — Flg —0

We may assume that r is minimal, i.e., 5 induces an isomorphism
k(z)" 25 Fy/my Fo
By flatness of F, over O, x,
0— Ky/m, Ky — k(2)" — Fyp/myF, — 0

is exact. Therefore K, /m;K, = (0) and K is trivial in a neighborhood of = by Proposition 1.5.5
(Nakayama). O

Another important general result is that a large class of morphisms are at least flat over an
open dense subset of the image scheme:
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THEOREM 4.8 (Theorem of generic flatness). Let f: X — Y be a morphism of finite type
between two irreducible reduced noetherian schemes, with f(nx) = ny. Then there is a non-
empty open U C'Y such that res f: f~1U — U is flat and surjective.

PROOF. We can obviously replace Y by an affine open piece, and then covering X by affines
Vi,..., Vi, if res f: V; N f71U; — U; is flat, then res f: f~Y(OU;) — N U; is flat. So we may
assume X = Spec B, Y = Spec A, and we quote the very pretty lemma of Grothendieck. O

LEMMA 4.9 (SGA 1 [4, Exposé IV, Lemme 6.7, p. 102]). Let A be a noetherian integral
domain, B a finitely generated A-algebra, M a finitely generated B-module. Then there exists a
non-zero f € A such that My is a free (hence flat) Ay-module.

PROOF OF LEMMA 4.9. 6 Let K be the quotient field of A, so that B ®4 K is a finitely
generated K-algebra and M ® 4 K is a finitely generated module over it. Let n be the dimension
of the support of this module and argue by induction on n. If n < 0, i.e., M ®4 K = (0),
then taking a finite set of generators of M over B, one sees that there exists an f € A which
annihilates these generators, and hence M, so that My = (0) and we are through. Suppose
n > 0. One knows that the B-module M has a composition series whose successive quotients
are isomorphic to modules B/p;, p; C B prime ideals. Since an extension of free modules is
free, one is reduced to the case where M itself has the form B/p, or even is identical to B, B
being an integral domain. Applying Noether’s normalization lemma (Zariski-Samuel [119, vol.
2, Chapter VII, §7, Theorem 25, p. 200]) to the K-algebra B ® 4 K, one sees easily that there
exists a non-zero f € A such that By is integral over a subring A¢[ty,...,t,], where the ¢; are
indeterminates. Therefore one can already assume B integral over C' = A[ty,...,t,], so that it
is a finitely generated torsion-free C-module. If m is its rank, there exists therefore an exact
sequence of C-modules:

0—C"—B—M —0

where M’ is a torsion C-module. It follows that the dimension of the support of the C ® 4 K-
module M’ ®4 K is strictly less than the dimension n of C' ® 4 K. By induction, it follows that,
localizing by a suitable f € A, one can assume M’ is a free A-module. On the other hand C™
is a free A-module. Therefore B is a free A-module. O

In order to get at what I consider the intuitive content of “flat”, we need first a deeper fact:

PROPOSITION 4.10. Let A be a local ring with mazimal ideal m, and let B = A[Xq, ..., X,]p
where p N A =m. Let
K--5L--5M
be finitely generated free B-modules and B-homomorphisms such that vou = 0. If

K/mK — L/mL — M/mM

is exact, then
K—L—M

is exact and M/v(L) is flat over A.

PROOF. Express u and v by matrices of elements of B and let Ay be the subring of A
generated over Z by the coefficients of these polynomials. Let A1 = (A¢)mna,- Then A; is a
noetherian local ring and if By = A1[X1, ..., Xn]pna,[x], We may define a diagram

Ky 5 Ly 25 My

6Repr0duced verbatim.
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over By such that K — L — M arises from it by ®p, B or equivalently by ®4, A and then
localizing at p. Let my =mnN Ay, ky = A;/my, k = A/m. Then

Kl/lel — Ll/mlLl — Ml/mlMl

is exact because K/mK — L/mL — M/mM is exact and arises from it by ®g, k (i.e., a non-
exact sequence of kj-vector spaces remains non-exact after ®y, k). Now if we prove the lemma

for Ay, By, Ki, L1 and My, it follows for A, B, K, L and M. In fact M;/vi(L1) flat over A;
implies
M/v(L) = [(Mi/v1(L1)) ®4, Alg (S = multiplicative system A[X]\ p)

is flat over A; and from the exact sequences:

K, — L — v (L) —0

0 — vi(L1) — My — My /vi(Ly)) — 0
we deduce by ®4, A and by localizing with respect to S that
K — L— (vi(L1) ®4, A)g — 0
0 — (vi(L1) ®a, A)g — M — M/ (vi(L1) ®a, A)g — 0

are exact, (using again M;/v1(Ly) flat over Ay!), hence K — L — M is exact. This reduces
the lemma to the case A noetherian. In this case, we use the fact that B noetherian local with
m C maximal ideal of B implies

ﬁmn-P:(O)
n=1

for any finitely generated B-module P (cf. Zariski-Samuel [119, vol. I, Chapter IV, Appendix,
p. 253]). In particular

DL

m" - (L/u(K)) = (0)

Il
i

n

or

[e.9]
((m"L + u(K)) = u(K).
n=1
So if z € Ker(v) and = ¢ Image(u) we can find an n such that x € m"™ - L 4+ u(K), but
r¢m"t L4+ u(K). Let x = y+u(z),y € m™- L, z € K. The (u,v)-sequence induces by
®m"/m"*1 a new sequence:

mnK/mn+1K u—”> an/mn+1L * mnM/anrlM
(m"/m™") @, K/mK —— (m"/m" ™) @ L/mL —— (m"/m"*1) @, M/mM.
The bottom sequence is exact by hypothesis. On the other hand y maps to an element y €
m"L/m" L such that v,(7) = 0. Therefore € Imageu,, i.e., y € u(m"K) + m" 1L, hence

r € u(K) + m"'L — contradiction. This proves that the (u,v)-sequence is exact. Next, if
a C A is any ideal, the same argument applies to the sequence:

(%) K/a-K — L/a-L — M/a-M
of B/a - B-modules. Therefore all these sequences are exact. But from the exact sequences:

K—L— L/u(K) —0
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0— L/uw(K) — M — M/v(L) — 0,
we get in any case exact sequences:

K/a-K — L/a-L — (L/u(K))®4 A/a — 0

(%)
(L/u(K)) ®a Afa — M/a- M —s (M/v(L)) @4 Afa — 0

so the exactness of (x) implies that (xx) is exact with (0) on the left too, i.e., by Proposition 4.2
M/v(L) is flat over A. O

COROLLARY 4.11. Let A be a local ring with mazimal ideal m, and let B = A[Xq, ..., X,]p
where pNA=m. Let f1,..., fxr € B. Then

Y syzygies S5 G, f; =0 in B/mB,
B/(f1,..., fr) is a flat A-algebra <= | 3 syzygy 25:1 9ifi=01n B
with g; lifting g;.

PROOF. <= : Since B/mB is noetherian, the module of syzygies over B/mB is finitely
generated: let

> giufi=0, 1<I<N
be a basis, and lift these to syzygies
> giufi=0.

Define homomorphisms:
BN . B B
u(ay,...,an) = (Z 91,101, - - -, ng,lal)
v(ay,...,a) = Zaifi.
Then v o u = 0 and by construction
(B/mB)N % (B/mB)* % B/mB

is exact. Therefore B/v(B*¥) = B/(fi,..., fx) is A-flat by Proposition 4.10.
= : Define v as above and call its kernel Syz, the module of syzygies so that we get:

0 — Syz — B* % B — B/(f1,..., fx) — 0.
Split this into two sequences:
0— Syz — B¥ — (f1,..., fr) — 0
0— (fi,-.., fx) — B — B/(f1,..., fxr) — 0.
By the flatness of B/(fi,..., fx), these give:
Syz /m - Syz — (B/mB)* — (f1,..., fx) @3 B/mB — 0
0— (f1,...,fx) ®p B/mB — B/mB — B/(mB + (fi,..., fr)) — 0,

hence
Syz /m - Syz — (B/mB)* - B/mB — B/(mB + (f1,..., fr)) — 0
is exact. Since Kerv = syzygies in B/mB, this shows that all syzygies in B/mB lift to Syz. O

Putting it succinctly, flatness means that syzygies for the fibres lift to syzygies for the whole
scheme and hence restrict to syzygies for the other fibres: certainly a reasonable continuity
property.

The simplest case is when R is a valuation ring. We give this a name:
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DEFINITION 4.12. Let R be a valuation ring, and let n (resp. o) be the generic (resp. closed)
point of Spec R. Let f: X — Spec R be a flat morphism of finite type (by Proposition 4.5, this
means: Ox is a sheaf of torsion-free R-modules). Then we say that the closed fibre X, of f is
a specialization over R of the generic fibre X,.

Note that the flatness of f is equivalent to saying that X, is scheme-theoretically dense in
X (Proposition I1.3.11). In fact, if you start with any X of finite type over R, then define a
sheaf of ideals Z C Ox by:

Z(U) = Ker (Ox(U) — Ox, (UNXy)) .

Then as in Proposition I1.3.11 it follows easily that Z is quasi-coherent and for all U affine,
Z(U) is just the ideal of R-torsion elements in Ox (U). If Ox/Z is the structure sheaf of the
subscheme X C X, then

a) )?n =X,
b) X, is a specialization of X,,.
To give some examples of specializations, consider:

ExaMPLE. 1.) If X is reduced and irreducible, with its generic point over 7, then X, is
always a specialization of X,.

EXAMPLE. 2.) Denote by M the maximal ideal of R with the residue field k = R/M. The
quotient field of R is denoted by K. If f(Xi,...,X,) is a polynomial with coefficients in R and

f is the same polynomial mod M, i.e., with coefficients in k, then the affine scheme V' (f) C A}
is a specialization of V (f) C A% provided that f # 0. In fact, let X = V(f) C A% and note that
R[X1,...,X,]/(f) is torsion-free.

ExAMPLE. 3.) If X is anything of finite type over R, and Y, C X,, is any closed subscheme,
there is a unique closed subscheme Y C X with generic fibre Y,, such that Y, is a specialization
of ;). (Proof similar to discussion above.)

It can be quite fascinating to see how this “comes out”, i.e., given Y;,, guess what Y, will be:

EXAMPLE. 4.) In A%( with coordinates x, y, let Y}, be the union of the three distinct points
(0,0), (0,a), (ev,0), aeM, a#0.

Look at the ideal:
I = Ker (R[x,y] N K@K@K)

where ¢(f) = (£(0,0), f(0, ), f(a,0)). I is generated by
zy, w(z—a), yly—a),
hence reducing these mod M, we find
Y, = Specklz,y]/ (2%, zy, y°)
the origin with “multiplicity 3”. For other triples of points, what Y,’s can occur?
EXAMPLE. 5.) (Hironaka) Take two skew lines in A%
Iy defined by z =9y =0
lo defined by 2 =0, r =, (o€ M,a#0).
Let Y, = [ Ul. To find Yy, first compute:
I =Ker (R[z,y,z] — T'(O) ®T(O,)) .
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embedded component

Xy X,

Ficure IV.11. Specialization of two skew lines

One finds I = (zz,yz,z(x — ), y(x — ). Reducing mod M, we find
Xo = Speck[x, Y, Z]/(HZ’Z, Yz, xza xy)

Now

V(@ zy, 2z, y2) = (2,y2)
which is the ideal of the two lines I} = V(x,y) and I, = V(z, z) which are the limits of I; and Iy
individually. But since
(@®, 2y, 22,y2) = (2,y2) N (2,9, 2)*

it follows that X, has an embedded component where the two lines cross. The picture is as in
Figure IV.11.

5. Dimension of fibres of a morphism

We would like to prove some general results on the dimensions of the fibres of a morphism.
We begin with the case of a specialization:

THEOREM 5.1 (Dimension Theorem). Let R be a valuation ring with quotient field K, residue
field k = R/M, let S = Spec R, and let X be a reduced, irreducible scheme of finite type over S
with generic point over n. Then for every component W of X,:

dim X, = dim W
i.e., trdegy R(X) = trdeg;, R(W).

PRrOOF. First of all, we may as well replace X by an affine open subset meeting W and not
meeting any other components of X,. This reduces us to the case where X = Spec A and X, is
irreducible (hence v M - A prime).

Next, the inequality dim X, < dim X, is really simple: because if » = dim X,,, then there
exist t1,...,t, € A such that t;,...,¢. € A/v/M - A are independent transcendentals over k.
But if the ¢; are dependent over K, let

Z cat® =0

be a relation. Multiplying through by a suitable constant, since R is a valuation ring, we may
assume ¢, € R and not all ¢, are in M. Then > ¢,t" = 0in A/v/M - A is a non-trivial relation
over k.

To get started in the other inequality, we will use:
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LEMMA 5.2. Let k C K be any two fields and let X be a k-variety. Then if X XgpecpSpec K =
XiU---UXy,
dimX =dimX,;, 1<:i<t.

PrOOF OF LEMMA 5.2. If K is an algebraic extension of k, this follows from Theorem 2.4
by going up to k and down again. If K is purely transcendental over k, let K = k(... tq,...).
Then if A is any integral domain containing k& with quotient field L,

A®r K = (A]...,ta, ... localized with respect to K \ (0))

is another integral domain and it contains K and has quotient field L(...,tqs,...). It follows
that in this case X Xgpecr Spec K is reduced and irreducible and

R(X Xgpeck Spec K) = R(X) (..., tqa,...).

Therefore
dim (X Xgpeck Spec K) = trdegy ;. yR(X)(... tas. )
= trdeg;, R(X)
= dim X.
Putting the two cases together, we get the general result. O

LEMMA 5.3. Let R be any local integral domain (neither noetherian nor a valuation ring!),
S = Spec R, 1,0 € S as above. Let X be reduced and irreducible and let w: X — S be of finite
type. Assume m has a section 0: S — X. Then dim X, = 0 = dim X,, = 0.

PrOOF OF LEMMA 5.3. We can replace X by an affine neighborhood of o(0) and so reduce
to the case X = Spec A for simplicity. On the ring level, we get

hence
A=R®I, wherel =ZKerc".

Consider the sequence of subschemes
Y, =SpecA/I" C X

\ S./

If 21,..., 2z, generate A as a ring over R, let z; = a; + v;, a; € R, y; € I. Then y{'---y/m
with 0 < > r; < n generate A/I™ as a module over R. Being finitely generated over R at all, it
follows by Nakayama’s lemma that if z1,..., 2, € A/I" generate (A/I") @ (R/M) over R/M,
they generate A/I™ over R. Thus

(%) dimy(A/I") ®g k = (minimal number of generators of A/I")

Now given any O-dimensional scheme Z of finite type over a field L, then Z consists in a

finite set of points {P,..., P}, and the local rings Op, z are artinian. Then in fact Z =
Spec (H§:1 Op,, Z), hence is affine and a natural measure of its “size” is
degy Z = dim; I'(Oz).
def

In this language, (*) says degy(Yy)o > degy (Yr),. But (Y5,), C X, and X, is itself 0-dimensional,
S0
degy, X, > degy(Yn)o = deg(Yn)y-
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This bound shows that (Y,), = (Yn41)y, if n>> 0. On the other hand, (Y7,), is the subscheme of

X, consisting of the single point z = o(n) and defined by the ideal my X, Thus mj X, = m’x‘}ln

if n > 0 and since Oy x, is noetherian, this means m’, X, = (0) if n > 0. Thus Oy, x, is in fact
finite-dimensional over K, hence

dim X,, = trdeg; R(X,)
= trdegy Oy x,
=0.

LEMMA 5.4. Lemma 5.3 still holds even if a section doesn’t exist.

PROOF OF LEMMA 5.4. Choose z € X, let S" = Spec O, x, and consider

X xg 8
(]
g

where 0 = (i,1g/), i: Spec O x — X being the canonical inclusion. Let X’ be an irreducible
component of X xg 5" containing o(S’) with its reduced structure. Then

dim X, = 0 = dim X, = 0 by Lemma 5.2
= dim X{7 =0 by Lemma 5.3
= dim X,, = 0 by Lemma 5.2.

O

Going back to Theorem 5.1, we have now proven that dim X, = 0 <= dim X,, = 0. Sup-
pose instead that both dimensions are positive. Choose t € A such that t € A/VM - A is
transcendental over k and let

R' = (RJ[t] localized with respect to S = R[t] \ M - R[t]).
This is a new valuation ring with quotient field K (t) and residue field k(t) and 7 factors:

X =——— Spec A +—Spec As = X'

| |

=\ Spec R[t] +———Spec R’

J

Spec R

Since t is transcendental in both Ax and A/ M - A, 7 takes the generic points of both X, and
X, into the subset Spec R’ of Spec R][t], i.e., they lie in X’. Now As being merely a localization of
A, X' has the same stalks as X. Therefore R(X;) = R(X) and R(X,) = R(X,) and considering
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X' over S’ = Spec R':
dim X, = trdeg ) R(X)
= trdegr R(X) — 1
=dimX, -1
dim X, = trdegy;) R(X,)
= trdeg;, R(X,) — 1
= dim X, — 1.
Making an induction on min(dim X, dim X,), this last step completes the proof. O

The dimension theorem (Theorem 5.1) has lots of consequences: first of all it has the following
generalization to general morphisms of finite type:

COROLLARY 5.5. Let f: X — Y be a morphism of finite type between two irreducible reduced
schemes with f(generic point nx) = generic point ny. Then for all y € Y and all components
W of f~H(y):

dim W > trdegg(y) R(X) = dim L (ny).
If f is flat over'Y, equality holds.

PROOF. We may as well assume f~!(y) is irreducible as otherwise we can replace X by an
open subset to achieve this. Let w € f~!(y). Choose a valuation ring R:

Owx C RCR(X)
with
m,, x C maximal ideal M of R.

Now form the fibre product:
X+——X'

f l Jf !
Y +<—— Spec R.
Note that f’ has a section o: Spec R — X' induced by the canonical map Spec R — Spec O, x —
X (as in Lemma 5.4). Break up Xj into its irreducible components and let their closures in X'
with reduced structure be written X, ..., X One of these, say X(!) contains the image of

the section o:
X+—X > x@

v

Y < Spec R
Let 0, € Spec R be its closed and generic points: the various fibres are related by:
Xél) = component of X, X, = ftmy) X spec R(Y) Spec K
Xcgl) - Xc/)v X(/) = f_l(y) X Spec R(Y) Spec R/M

Then:
dim f~!(y) = dim(all components of X/), by Lemma 5.2

> dim(any component of X(V)
= dim Xél), by Theorem 5.1
= dim f~'(ny), by Lemma 5.2.
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Now if X is flat over Y, then X’ is flat over Spec R, hence
X' =xOy...uxm®

(otherwise, let U C X’ be an open affine disjoint from | J X® and if U = Spec A, then Spec(A®r
K)="U, =0, so A is a torsion R-module contradicting flatness). Therefore

X' =xMu...uxm
hence for at least one i, X(gi) = a component of X! and
dim £~ (y) = dim XV
= dim X,(f)
= dim f~ ! (ny).

Combining Corollary 5.5 and Theorem 4.8 (generic flatness), we get:

COROLLARY 5.6. Let f: X — Y be as in Corollary 5.5. Then there is an integer n and a
non-empty open U C'Y such that for all y € U and all components W of f~(y), dim W = n.

Combining these results and the methods of Part I [87, (3.16)], we deduce:

COROLLARY 5.7. Let f: X — Y be any morphism of finite type with Y noetherian. Then
the function

z +— max{dim W | W a component of f~*(f(z)) containing x}

1S upper semi-continuous.

Another consequence of Theorem 5.1 is that we generalize Part I [87, (3.14)] to varieties
over any ground field k:

COROLLARY 5.8. Let k be a field and X a k-variety. If t € I'(Ox) and
V(it)={z e X |tx)=0} & X,
then for every component W of V(t),
dim W = dim X — 1.
PROOF. Let t define a morphism:
T: X — A}

Then either T'(generic point) = generic point, or T'(generic point) = closed point a. In the
second case a # 0 and v(t) = () so there is nothing to prove. In the first case, R = O 41 is a
valuation ring and making a base change:

Xe—X
| |-
A}f +——— SpecR
we are in the situation of the dimension theorem. Now R(X) = R(X’), so
dim (X;7 over quotient field of R) = trdegy,) R(X)
= trdeg, R(X) — 1
=dimX -1
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while W is a component of 771(0), hence of 7=!(0) and satisfies:
dim(W over residue field of R) = trdeg;, R(W)
=dim W.
]
(Note that we have not used Krull’s principal ideal theorem (Zariski-Samuel [119, vol. I,
Chapter IV, §14, Theorem 29, p. 238]) in this proof.)
Up to this point, we have defined and discussed dimension only for varieties over various

fields. There is a natural concept of dimension for arbitrary schemes which by virtue of the
above corollary agrees with our definition for varieties:

DEFINITION 5.9. If X is a scheme, then

. largest integer n such that there exists a chain
dim X = ; . c c c
of irreducible closed subsets: () # Zy SO s - 5ZnCX
If Z C X is an irreducible closed set with generic point z, then
. largest integer n such that there exists a chain
codimy Z = ; . .
or of irreducible closed subsets: Z =205 21 G-+ S Z, C X

codimy z
From the definition, one sees immediately that VZ irreducible, closed:
dim Z 4 codimy Z < dim X.

But “<” can hold even for such spaces as Spec R, R local noetherian integral domain! This
pathology makes rather a mess of general dimension theory. The definition ties up with dimen-
sion in local ring theory as follows: if Z C X is closed and irreducible, and z € Z is its generic
point, then there is a bijection between closed irreducible Z’ O Z and prime ideals p C O, x.
Therefore:

codimy Z = Krull dim O, x

where the Krull dim of a local ring is the maximal length of a chain of prime ideals: cf. Zariski-
Samuel [119, vol. IT, p. 288], or Atiyah-MacDonald [20, Chapter 11]. Moreover, in this language,
Krull’s principal ideal theorem (Zariski-Samuel [119, vol. I, Chapter IV, §14, Theorem 29, p.
238]) states:
If X is noetherian reduced and irreducible, f € I'(Ox), f # 0, then for all components W
of VI(f),
codimx W =1,

which generalizes Corollary 5.8.

COROLLARY 5.10. Let k be a field and X a k-variety. Then the two definitions of dimension
agree. More precisely, for every maximal chain

0W#£20C2:G -G Zn=X

we have:
trdeg, R(Z;) =14, 0<i<n.
In particular, X is “catenary”, meaning that any two mazximal chains have the same length.

Therefore for all Z C X closed irreducible, with generic point z:

dim Z + codimyx Z = dim X
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or
trdegy k(z) + Krulldim O, x = dim X.

Proor. Note on the one hand that a minimal irreducible closed subset Zj is just a closed
point Zy = {20}, hence R(Zy) = k(z) is algebraic over k by Corollary I1.2.11. On the other
hand, a maximal proper closed irreducible subset Z ; X can be analyzed by Corollary 5.8. Let
U C X be an affine open set meeting Z and let f € Ox(U) be a function 0 on ZNU and 1 at
some closed point 2’ € U\ (UN Z). Then

ZNUCV(f) U,

hence ZNU Cc W S U, some component W of V(f), hence Z C W & X. By maximality of Z,
Z =W, hence
trdeg, R(Z) = trdeg;, R(W)
= trdeg, R(X) — 1, by Corollary 5.8.

These two observations prove Corollary 5.10. O

COROLLARY 5.11. Let R be a Dedekind domain with an infinite number of prime ideals and
quotient field K and let m: X — Spec R be a reduced and irreducible scheme of finite type over
R with 7(nx) = ng, the generic point of Spec R. Then every mazimal chain looks like:

V#2021 S Z, GV G G =X
where

a) Z, C mY(a) for some closed point a € Spec R and trdegy(q) R(Zi) =4, 0<i<r
b) m(Yr41) 3 nr and trdegi R(Yiy1) =14, r < i <n.

In particular n = trdegy R(X), X is catenary and
dim X =1+ trdegy R(X).

PRrROOF. This goes just like Corollary 5.10. By Chevalley’s Nullstellensatz (Theorem I1.2.9)
a closed point Zy = {zp} of X lies over a closed point a of Spec R and k(zg) is algebraic over
k(a). And maximal proper closed irreducible Z & X fall into two cases:
Case i): Z, # 0, so Z; & X, is a maximal closed irreducible subset and so trdegy R(Z) =
trdegy R(X) — 1;
Case ii): Z, =0, so Z C 7 !(a) in which case Z must be a component of 7~!(a). Then by the
Dimension Theorem (Theorem 5.1), trdegy,) R(Z) = trdegx R(X). O

An important link between flatness and dimension theory is given by:

PROPOSITION 5.12. Let f: X — Y be a flat morphism of noetherian schemes and let x € X,
y = f(x). Then:
i) Spec O, x — Spec O,y is surjective,
ii) codimx(x) > codimy (y).

Moreover if f is of finite type, then
iii) for all open sets U C X, f(U) is open in'Y .

The proof is straightforward using the fact that for all Z C Y
res f: fY(Z) — Z

is still flat, and applying Theorem I1.2.9 (Chevalley’s Nullstellensatz) and Proposition 4.6.
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6. Hensel’s lemma

The most important situation for specialization is when the base ring R is a complete discrete
valuation ring, such as Zj, or k[[t]]. One of the main reasons why this case is special is that Helsel’s
lemma holds. This “lemma” has many variants but we would like to put it as geometrically as
possible:

LEMMA 6.1. (Hensel’s lemma)”. Let R be a complete local noetherian ring, S = Spec R and
m: X — S a morphism of finite type. Suppose we have a decomposition of the closed fibre:

X, =Y, UZ,, Y,, Z, open, disjoint
Y, = {y} a single point

Then we can decompose the whole scheme X :

X=YUZ, Y, Z open disjoint
Y = Spec B, finite and integral over R

so that Y, = closed fibre of Y, Z, = closed fibre of Z.

PROOF. Let U C X be an affine open subset such that U N X, = {y}. Let U = Spec B, and
consider the ideal

o
N = m M"™ . B, where M = maximal ideal of R.

n=1

Now O, x is a localization By of B and since M - B, C p - By, by Krull’s theorem (cf. Zariski-
Samuel [119, vol. I, Chapter IV, §7, p. 216)):

o0 oo
N-Byc [\ M" - Byc () (0By)" = (0).
n=1 n=1
Therefore, 3f € B\ p such that f- N = (0). Now replace B by its localization By and U by
Uy. Using this smaller neighborhood of Y, we can assume (72 ; M" - B = (0). Now recall the
algebraic fact:

If B is a module over a complete local ring (R, M) such that:
a) 2y M" - B = (0)
b) B/M - B is finite-dimensional over R/M,
then B is a finitely generated R-module (Zariski-Samuel [119, vol. II, Chapter
VIII, §3, Theorem 7, p. 259]).
Since Spec B/M - B = U, = Y, consists in one point, dimg/; B/MB < +o0c and (a) and (b)
hold. Therefore B is integrally dependent on R, and by Proposition 11.6.5, resw: U — S is a
proper morphism. It follows that the inclusion i:

N
S

is proper, hence U = Image(i) is closed in X. Therefore if we set Y = U, Z = X \ U, we have
the required decomposition. O

"The lemma is also true whenever Y, is proper over S: cf. EGA [1, Chapter III].
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Note that in fact, since B is integrally dependent on R, all its maximal ideals contract to
M C R; since Spec B has only one point, namely y, over the closed point [M] € Spec R, this
means that B has only one maximal ideal, i.e., B is local. Therefore:

B=0,x.

COROLLARY 6.2 (Classical Helsel’s lemma). Let R be a complete local noetherian ring with
maximal ideal M and residue field k = R/M. Let f(T) be a monic polynomial over R and let f
be the reduced polynomial over k. Factor f:

N n
f=11Is
i=1

where g; are distinct, irreducible and monic. Then f factors:

f=11#
i=1

with f; = g.*.

PrOOF. Apply Hensel’s Lemma 6.1 to X = Spec R[T]/(f(T)).
Then X, consists in n points [(g;)] € Af, hence X decomposes into n disjoint pieces:

X:O&
i=1
X; = Spec R[T]/q;
(Xi)o = Spec k[T1]/(g;")-

If d; = deg(g}"), then 1,7, ...,T%~1 generate the R-module (R[T]/a;) @r k = k[T]/(g}"), hence
by Nakayama’s lemma, they generate R[T]/a;. Therefore T% ¢ E?":_ll RT7 in R[T]/a;, or a;
contains a monic polynomial f; of degree d;. Then

a) f; € (¢;"), and since both are monic of the same degree, f; = g},
b) [] fi is everywhere zero on X, so [[ fi € (f), and since both are monic of the same

degree, [ fi = f

It follows easily that a; = (f;) too, so that the decomposition of X into components and of f
into factors are really equivalent! O

COROLLARY 6.3. Let R, M, k, S = Spec R be as before. Then for all finite separable field
extension k C L, there is a unique flat morphism 7: X1, — S of finite type® such that

(%) (X1L)o is reduced and consists in one point x
k(z) = L, X1, connected.

In fact for all p: Z — S of finite type and o where:

Z, = one point z, Z connected

()

a: L < k(2) is k-homomorphism,

there exists a unique S-morphism
f: Z — XL
such that f(z) =z and f*: k(xz) — k(2) is equal to c.

8In fact, w: X1, — S is étale in the sense to be defined in §V.3.
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PROOF. To construct Xy, write L = k[X]/(f(X)), lift f to a polynomial f of the same
degree over R and set X = Spec R[X]/(f(X)). We prove next that any X flat over S with
property (*) has the universal property of Corollary 6.3 for all p: Z — S satisfying (*x*). This
will prove, in particular, that any two such Xp’s are canonically isomorphic.

Consider

P2 X L Xg Z — 7.

a induces a section @ of py over {z}.

Spec L x g Speck(z)—— X xg Z

(Spec a,l)T J{

Speck(z) = {z}—— Z.
By Hensel’s Lemma 6.1, Z = Spec R', R’ a finite local R-algebra, hence Hensel’s Lemma 6.1
applies with S replaced by Z too: e.g., to ps. It follows:
X1 X Z =W UW, (disjoint)
Wi Npyt(z) = Imagea
Wi = Spec R”, R a finite local R’-algebra.

But ps is flat so R” is flat over R’, hence free (since R’ is local and R” is a finite R'-module).
By assumption

(Xr), = SpecL,
so py () = Spec(L ® k(2)).
Now L separable over k implies that L ®jk(z) is a separable k(z)-algebra — in particular it has
no nilpotents. Thus:
py () N W7 =2 Speck(z)
hence R @ k(z) 2 k(z) and R” @ k(z) has one generator. Therefore R” is free over R’ with
one generator, i.e., W1 =2 Z. This means that o extends uniquely to a section o of ps:

X1 Xg Z
/;>/”WJ30
Speck(z)—— Z '
and f = p1 o o has the required properties. O

COROLLARY 6.4. Let R be a complete discrete valuation ring, S = SpecR, m: X — S a
morphism of finite type with X reduced and irreducible. Then:

Xy = one point = X, = zero or one point.

This corollary allows us to define a very important map, the specialization map (to be used
in §V.3):
DEFINITION 6.5. Let X be of finite type over R: Let
Max(X,) = set of closed points of X,
Max(X,) = set of closed points of X,.

Let
Max(X,)° = set of x € Max(Xj,) such that z is not closed in X.
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Max P N Max P

FIGURE IV.12. Specialization map for }P’}%

Let
sp: Max(X,)? — Max(X,)
be the map
T — @ N X,

(apply Corollary 6.4 to {z} with reduced structure; hence #({z} N X,) = 0 or 1). Note that
)

if X is proper over S, then Max(X,) = Max(X,)° since 7({z}) must be closed in S, hence
{z} N X, #0.

The spaces Max(X;,)° are the building blocks for the theory of “rigid analytic spaces” over
K — cf. Tate [112].

EXAMPLE. X = AL. Then
Max(Ak) = set of conjugacy classes of algebraic elements over K
Max(Ak)° = those algebraic elements which are integral over R
MaX(A}C) = set of conjugacy classes of algebraic elements over k

and sp is the map:

if 2" + a1z '+ -+ a, = 0 is the irreducible equation for z, then sp x is a root
of the equation 2" + @2 ' +-- -+ @, =0, @ = (a; mod M).
More succinctly, R defines an absolute value
on K making X into a complete topological field, via
lu-7"| =c", (some fixed c € R, ¢ > 1
all w € R*, m = generator of M).
Then this absolute value extends to K and Max(AL)° is the unit disc:
{z up to conjugacy | |z| < 1}.

On the other hand, if X = P}, then Max(P}) consists in {co} plus Max(A}). And now
since ]P’}% is proper over S, sp is defined on the whole set Max(]P’}(). It extends the above sp on
Max(A}-)°, and carries oo as well as the whole set

Max(Ak) \ Max(Ak)° = {z up to conjugacy | |z| > 1}
to oo in Max(P}). It looks like Figure IV.12
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PROPOSITION 6.6. The map
sp: Max(X,)® — Max(X,)
18 surjective.
The proof goes by induction on dim X,. If X, = 0, use Hensel’s Lemma 6.1. If x € Max(X,)
and dim X, > 1, choose f € m, x with f # 0 on any component of X,,. Consider the subscheme

V(f) in a suitable neighborhood of z and apply Krull’s principal ideal theorem (Zariski-Samuel
[119, vol. I, Chapter IV, §14, Theorem 29, p. 238]). We leave the details to the reader.

Exercise—Addition needed

(1) If k is perfect, show that each k-form of X is determined up to k-isomorphism by the
Galois action {ox | 0 € Gal(k/k)} on X that it induces.

(2) In the situation of the previous problem, show that the k-forms of X over k up to
k-isomorphism are in one-to-one correspondence with an appropriately defined set

HY (Gal(k/k), Autz(X))

of “I-group cohomology classes” of the Galois group Gal(k/k) with respect to its natural
action on the group Autz(X) of k-automorphisms of X.



CHAPTER V

Singular vs. non-singular

1. Regularity

The purpose of this section is to translate some well-known commutative algebra into the
language of schemes — as general references, see Zariski-Samuel [119, vol. I, Chapter IV and
vol. II, Chapter VIII] and Atiyah-MacDonald [20, Chapter 11]. Consider:

a
b

= local ring
= its maximal ideal

) O
) m
) k=0/m
) m
) &

)

o,

, a vector space over k

m2
e ) @22, m"/m"*1 a graded k-algebra generated over k by m/m?.

LEMMA 1.1 (Easy lemma). If (°2, m™ = (0), then gr(O) integral domain = O integral
domain.

PROOF. If not, say 2,y € O, zy =0,  # 0, y # 0. Then z € m' \ m'*!, y € m!" \ m"+! for
some [, I; let T € m'/m*!, 5 € m! /m"*! be their images. Then Z -7 = 0. O
f) Krull dim O = length n of the longest chain of prime ideals:
po;m ;Ct"';cépnzm
g) If O is noetherian, then recall that

dim O = least n such that 3x1,...,2, €m, m=/(21,...,2,)
OR = degree of Hilbert-Samuel polynomial P defined by
P(n) =1(O/m™), n>0. (I denotes the length.)

DEFINITION 1.2. Note that by (g)!, dimg m/m? > dim O. Then O is regular if it is noetherian
and equivalently,
gr(O) = symmetric algebra generated by m/m?
OR
dimy, m/m? = dim O.
Note that
O regular = O integral domain

by the Easy Lemma 1.1.

DEFINITION 1.3. Let X be a scheme, x € X. Then

mg /m = Zariski-cotangent space at x, denoted T, x
ef

Hom(m, /m2, k(z)) = Zariski-tangent space at x, denoted T x.
€:

LSince if Z1,...,T, € mspan m/m? over k, then by Nakayama’s lemma, they generate m as an ideal, hence
dim O < n.

157
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e

Ficure V.1. Disembodied tangent vector

Note that we can embed T}, x as the set of k(x)-rational points in an affine space over k(z):

T,x = Spec(Symm*(m; /m3)) = A

non-canonically

if n = dimy(,) m, /m2 and Symm* = symmetric algebra.
In some cases, the tangent space at a point x € X has a pretty functorial definition: Suppose
X is a scheme over a field k and x is a k-rational point. Then

set of all morphisms 7 such that
Spec kle]/(€2) ——— X

Tx,X = ~
Speck

commutes and Image 7 = {x}

In fact, by Proposition 1.3.10, the set of such 7 is isomorphic to the set of local k-algebra
homomorphisms:

7 Opx — kle]/(€%).
Then 7*(m, x) C k- € and 7* (mi’X) = (0). Since O, x is a local k-algebra with residue field k:
Om,X/m:ZU,X =k mx,X/mgzg,X7
hence 7* is given by a k-linear map
resT": mzx/mix — k€

and any such map defines a 7*. But the set of such maps is T}, x. Because of this result, one
often visualizes Spec k[e]/(¢?) as a sort of disembodied tangent vector as in Figure V.1.

Given a morphism f: X — Y, let x € X and y = f(x). Then f induces maps on the Zariski
tangent and cotangent spaces:

i) f*: Oyy — Oy x induces a homomorphism of k(z)-vector spaces:
dfy: (my,Y/mz,Y) Si(y) k(T) — Mg x /M7 x
ii) Dualizing, this gives a morphism
dfz: Tox — Tyy Qpyk()

(where " on ® comes in only in case myy/ mz y is infinite dimesional! — in which
case T,y has a natural linear topology, and one must complete T, y ®y(,) k(z), etc.)

DEFINITION 1.4. The tangent cone to X at z is TC, x = Spec(gr(O,, x)). Since gr(Og x)
is a quotient of the symmetric algebra Symm(m,/m?2), we get a closed immersion:

TCx’X C Tx,x.

DEFINITION 1.5. x is a regular point of X if O, x is aregular local ring, i.e., if TC, x = T, x.
X is regular if it is locally noetherian and all its points are regular.
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We will see in §4 below that a complex projective variety X is regular at a point « if and only
if it is non-singular at x as defined in Part I [87, Chapter I]. Thus the concept of regularity can
be viewed as a generalization to arbitrary schemes of the concept of non-singularity (but n.b.
the remarks in §4 below on Sard’s lemma and the examples). Many of the concepts introduced
in Part I [87] for non-singular varieties go over to general regular schemes. For instance, a basic
theorem in commutative algebra is that a regular local ring is a UFD (cf. Zariski-Samuel [119,
vol. II, Appendix 7]; or Kaplansky [64, §4-2]). As we saw in §II1.6, this means that we have a
classical theory of divisors on a regular scheme, i.e.,

X regular =

{ Group of Cartier divisors } ~ { Group of cycles formed from irreducible }

Div(X) on X ~ | codimension one closed subsets

More generally, it is on a regular scheme X that there is a good intersection theory of cycles
whatever their codimension. Recall that a closed irreducible subset Z C X is said to have
codimension r if the local ring O,, x at its generic point 7z has Krull dimension 7: hence if
z € Z is any point, the prime ideal

p(Z) CO.x

defining Z has height r (i.e., since, by definition, height(p(Z)) = length of greatest chain of
prime ideals:

=p(Z),

0)CpoSp S-S
= 0,,x).- Then another basic theorem in

which equals the Krull dimension of (O, x)(z)
commutative algebra is:

1.6.

If O is a regular local ring, p1,p2 C O are
prime ideals, and p’ is a minimal prime ideal
Algebraic form containing p1 + po, then

height(p’) < height(p;) + height(p2)

(Serre [101, p. V-18]).

Geometrically, this means:

1.7.

If X is a reqular scheme, and Z1,Zy C X are
irreducible closed subsets, then for every
component W of Z1 N Zy:

codim W < codim Z; + codim Zs.

Geometric form

Moreover, when equality holds, there is a natural concept of the intersection multiplicity
of Z; and Zy along W: see Serre [101, Chapter V|. This is defined using the functors Tor;
and allows one to define an associative, commutative, distributive product between cycles which
intersect properly (i.e., with no components of too high dimension). (See also §VIL.5.) There
is, however, one big difficulty in this theory. One of the key methods used in Part I [87] in our
discussion of intersections in the classical case of X over SpecC is the “reduction to the diagonal
A”: instead of intersecting Z1, Z2 in X, we formed the intersection of Z1 Xgpecc Z2 and A in
X Xgpecc X, and used the fact that A is a local complete intersection in X Xgpecc X. This
reduction works equally well for a regular variety X over any algebraically closed field k, and
can be extended to all equi-characteristic X, but fails for regular schemes like A7 with mixed
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characteristic local rings (residue field of characteristic p, quotient field of characteristic 0). The
problem is that the product

2
A7" = Aj Xspecz A7

has dimension 2n 4 1 which is less than 2(dim A7) = 2n 4 2: for instance, at the point P € A7
where X; = --- = X,, = 0 over [p] € SpecZ, the cotangent space to A7 has a basis

dXq,...,dX,, dp.
And at the point (P, P) € A2, if we let X; and Y; be coordinates in the two factors,
dXq,...,dX,,dYy,...,dY,, dp

is a basis of the cotangent space. Thus it is not like a product in the arithmetic direction. One
finds, e.g., that Z;, Zy C A7 may intersect properly, while Z1 Xgpecz Z2, A C A%” don’t; that
Z1, Z3 may be regular while Z7 Xgpecz Z2 is not. Nonetheless, Serre managed to show that
intersection theory works except for one property: it is still unknown whether the intersection
multiplicity i(Zy, Zo; W) is always positive!?

For intersection theory on non-singular varieties of arbitrary characteristic, see Samuel [95].
A basic fact from commutative algebra that makes it work is the following:

PRrROPOSITION 1.8. Let R be a regular local ring of dimension r, with mazimal ideal m,
residue field k and quotient field K. Let M be a finitely generated R-module. Then there is a
Hilbert-Samuel polynomial P(t) of degree at most r such that

P(n)=1(M/m"M) ifn>0. (I denotes the length.)

Let

t'r
P(t) = e— + lower terms.
r!

Then
e =dimg (M @ K).

Proof left to the reader.

2. Kahler differential

Again we begin with algebra: let B be an A-algebra:

2(Added in publication) Let P and @ be prime ideals in a regular local ring such that R/(P + Q) has finite
length (hence dim(R/P) + dim(R/Q) < dim(R)). Serre defined the intersection number to be

[e3)

X(R/R,R/Q) := ) (1) lengthy Tor;'(R/P, R/Q),

i=0
and conjectured

e (non-negativity) x(R/P,R/Q) > 0,

e (positivity) x(R/P, R/Q) > 0 if and only if dim(R/P) + dim(R/Q) = dim(R).
Serre proved the assertions when R contains a field (equi-characteristic case) using reduction to the diagonal. For
the mixed characteristic case, the vanishing (the “only if” part of the positivity conjecture) was proved in 1985

by Roberts [93] and independently by Gillet-Soulé [41]. The non-negativity conjecture was proved by O. Gabber
in the middle of 1990’s. The positivity conjecture in the mixed characteristic case is still open.
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2.1.
Qp/a d:ffree B-module on elements db, for all b € B,

modulo the relations:
d(b1 + bg) = dby + dby
d(bibe) = by - dbg + by - dby,
d(a) =0, foralla € A.
In other words, the map
d: B— Qp/a
is an A-derivation and (£2p/4,d) is universal — i.e., for all B-module M and all maps

D:B— M

such that
D(b1 + b2) = Dby + Dby

D(biby) = by - Dby + by - Dby
Da=0, all a € A,
there is a unique B-module homomrophism ¢: Qg4 — M such that D = ¢ o d.
PropPOSITION 2.2. If
I =Ker(B®a B> b ®by—> bibs € B),
then 1/I? is a (B ® 4 B)/I-module, i.e., a B-module, and
QB/Agf/IZ (as B-module).

d goes over to the map
B——1

b——1b—-b® 1.

161

PROOF. I) check that b — b® 1 —1® b is an A-derivation from B to I/I?. Therefore it

extends to a B-module homomorphism Qp 4 — /1 2,

II) Define a ring £ = B @ Qp/4, where B acts on Q5,4 through the module action and
the product of two elements of Qp/4 is always 0. Define an A-bilinear map B x B — E by

(b1,b2) — (b1b2,b1db2). By the universal mapping property of @ , it factors
BxB-—Bo,B-5E

and it follows immediately that ¢(I) C Qp/4. Therefore #(I%) = (0) and ¢ gives ¢: I/I? —

Qp/a-
IIT) These maps are easily seen to be inverse to each other.

Some easy properties of {2 are:
2.3. If B and C are A-algebras, then:
Qpaac)/c = pa@aC.
24. If a C B is an ideal then there is a natural map
a/a? —— Qp/a ®@p (B/a)
G———da®1

and the cokernel is isomorphic to Q(p/q)/a-

O
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2.5. If B is an A-algebra and C is a B-algebra, then there is a natural exact sequence
QB/A ®p C — QC/A — QC/B — 0.

EXAMPLE. 1: Let A =k, B = k[X1,..., X,]. Then Qg4 is a free B-module with generators
dXy,...,dX,, and

n

Jg

dgzZaXi -dX;, allgeB.
=1

More generally, if
B = k[le"‘7Xn]/(f17”- 7fm)a
then Qp /4 is generated, as B-module, by dXj,...,dX,, but with relations:

— Of; _
$i=> gx X =0,

j=1
EXAMPLE. 2: What happens when A and B are fields, i.e., Qg = 7. The dual K-vector
space Homp (g, K) is precisely the vector space Dery (K, K) of k-derivations from K to K.
Then it is well known:
a) Dery(K, K) = (0) <= K/k is separable algebraic.
b) If {fa}acs is a transcendence basis of K over k and K is separable over k(... fa,...),
then a k-derivation D can have any values on the f, and is determined by its values

on the f,’s.
c) If characteristic k = p, then any k-derivation D kills k- KP. If p* = [K : k- K?] and we
write K = k:Kp(bi/p, e ;/p), (b; € k- KP), and a; = bg/p, then a k-derivation D can

have any values on the a; and is determined by its values on the a;’s.
We conclude:
a') Qg = (0) <= K/k is separable algebraic.
(More generally, if R is a finitely generated k-algebra, then it is not hard to show that
Qr/i = (0) <= R is a direct sum of separable algebraic field extensions.)

b') If K is finitely generated and separable over k, then Vfi,..., f, € K,

[ dfy,...,df, are } [ fi,..., fn are a separating transcendence }

a basis of Qg y, basis of K over k

¢’) If K is finitely generated over k and char(K) = pand p® = [K : k-KP|, then Vfi,..., fs €
K

Y

fi,..., fs are a p-basis of K over k, PN dft,...,dfs are a
ie, K=k -KP(f1,...,fs) basis of Qg /y, ’

It follows easily too that if f1,..., fs are a p-basis then Derys, . 1) (K, K) = (0), hence
K is separable algebraic over k(f1,..., fs). Thus

s > trdeg;, K

with equality if and only if K is separable over k.
For details here, cf. for example, Zariski-Samuel [119, vol. I, Chapter 2, §17].
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FicUurE V.2. Crossing lines

EXAMPLE. 3: Let A =k, B = k[X,Y]/(XY). Then by Example 1, dX and dY generate
Qg4 with the one relation XdY +YdX = 0.

Consider the element w = XdY = —YdX. Then Xw = Yw = 0, so the submodule M
generated by w is kw, a one-dimensional k-space. On the other hand, in /M we have XdY =
YdX =0,s0 Q/M = B-dX & B-dY. Note that B-dX = Qg /;, where Bx = B/(Y)) = k[X];
likewise, B-dY = Qp,_ ;. That is, the module of differentials on Spec B (which looks like that in
Figure V.2) is the module of differentials on the horizontal and vertical lines separately extended
by a torsion module. (One can even check that the extension is non-trivial, i.e., does not split.)

All this is easy to globalize. Let f: X — Y be any morphism. The closed immersion
A X — X xy X

“globalizes” the multiplication homomorphism §: B ® 4 B — B. Let Z be the quasi-coherent
Ox xy x-ideal defining the closed subscheme A(X). Then 7?2 is also a quasi-coherent O X xy X~
ideal and Z/Z? is a quasi-coherent Ox xy x-module. It is also a module over Ox, x/Z, which
is Op(x) extended by zero. As all its stalks off A(X) are 0, T/I? is actually a sheaf of
(A(X), Oa(x))-modules, quasi-coherent in virtue of the nearly tautologous:

LEMMA 2.6. If S C T are a scheme and a closed subscheme, and if F is an Og-module,
then F is a quasi-coherent Og-module on S if and only if F, extended by (0) on T'\ S, is a
quasi-coherent Op-module on T .

DEFINITION 2.7. 2x/y is the quasi-coherent O x-module obtained by carrying T /72 back to
X by the isomorphism A: X — A(X).

Clearly, for all U = Spec(B) C X and V' = Spec(A) C Y such that f(U) C V, the restriction
of Qx,y to U is just 2p/4. Therefore we have globalized our affine construction.
The following properties are easy to check:

2.8. The stalks of Qx/y are given by:

Qxv)e = (Qo, v j0,y)  (ify=f(@)).
2.9.
Qxxsy))y = Qx5 ®og Oy

2.10. If Z C X is a closed subscheme defined by the sheaf of ideals T C Ox, then 3 a
canonical map:

(*) T/1? — Qx)y ®ox Oz

ar—da®1

and the cokernel is isomorphic to 7,y .
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2.11. If X is of finite type over Y, then dx,y is finitely generated.

2.12. If F is a sheaf of Ox-modules, then
Homoy (2x )y, F) = {sheaf of derivations from Ox to F over Oy} .

(2.10) allows us to compare the Zariski-cotangent space at x € X and x/y. In fact, if you
let Z = {z} with reduced structure, and look at the stalks of (x) at z, you get the k(z)-linear
homomorphism:

m,/m2 —— (Qx/v)z o, v k(z)

a—————da®1
and the cokernel is
(Qz/v)e = Q)0 = Qo) uiy)-
Moreover m,, - O, is in the kernel since da = 0, Va € O,. Now in reasonably geometric cases

such as when X and Y are of finite type over an algebraically closed k, and x and y are closed
points, then k(z) = k(y) = k, 50 Qi) /k(y) = (0); and it turns out that the induced map

T*hffl(y) = mx/(mi + my, - Oz) — (QX/Y)z ®Oz ]k(x)

T

is injective too, i.e., the quasi-coherent sheaf {1x/y essentially results from glueing together the
separate vector spaces m;/(m2 +m, - O,) — which are nothing but the cotangent spaces to the
fibres f~!(y) at various points z.

To prove this and see what happens in nasty cases, first define:

DEFINITION 2.13 (Grothendieck). If K D k are two fields, let
Ti e = Ker(Qyz @k K — Qgz)
called the module of imperfection.
This is a K-vector space and its dual is
{space of derivations D: k — K} /{restrictions of derivations D: K — K}

which is well known to be 0 iff K is separable over k (cf. Zariski-Samuel [119, vol. I, Chapter
I1, §17, Theorem 42, p. 128]).

THEOREM 2.14. For all f: X - Y and all z € X, if y = f(x), there is a canonical 5-term
exact sequence:

0= T, xoo, , k) /) — Tk@)/k) — Ta 1) — Qxyy @0, x k(@) — Qo)) — 0,

where

k(y) .
T (0 x 0, , k) k() = KX (Qu«(w/z Du(y) k(#) — Lo, x®0, , k1))/Z D0s x k(w)> :

PROOF. By (2.9), none of the terms change if we make a base change:

X fHy)

7| |

Y +—— Speck(y).
Therefore we may assume Y = Speck, k =k(y) a field. But now (Q2x/y). = Qo, /& and note
that if R = O, x/m?2
Qo, x/k Ok(z) = Qg k()
(by (2.4) applied with a = m2). We are reduced to the really elementary:
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LEMMA. Let R be a local k-algebra, with mazimal ideal M, residue field K = R/M. Assume
M? = (0). There is a canonical exact sequence:
Trp — M — Qpjp, @r K — Qg — 0.
PROOF OF LEMMA. By (2.4) we have an exact sequence:
M -5 Qg @r K — Qg7 — 0.

Now by Cohen’s structure theorem (Zariski-Samuel [119, vol. II, Chapter VIII, §12, Theorem
27, p. 304]), as a ring (but not necessarily as k-algebra), R = K @ M. Using such a direct
sum decomposition, it follows that the projection of R onto M is a derivation of R into the
K = R/M-module M, hence it factors:

projection

R M

I

Qr/z ®@r K

It is easy to see that 8 o «a = 17 and this proves that « is injective! Now the homomorphism
k — R gives rise to an exact sequence /7 ® R — Qp/z — Qg — 0, hence to:

0
d
M

1
Qyz @k K —— Qpjz Or K —— Qg Ok K —— 0

1
85°90/

d
0

It follows from this diagram that there is a natural map from Ker (€27 @1 K — Qg/z), ie.,
Y g/, to M and that the image is Ker(M — Qg /;, ® K). This plus (2.4) proves the lemma. [J

O

COROLLARY 2.15. Ifk(x) is separable algebraic over k(y), then
mx/(mi +my - Oy) — Qx/y ®o, k(z)
is an isomorphism.

EXAMPLE. 4: A typical case where inseparability enters is:
Y = Speck, k imperfect and a € k\ kP
X =Al x = point corresponding to prime ideal (P —a) C klt]
i.e., # = point with coordinate a/?.
Then
k(z) = k(a'/?)
m,/m2 = (free rank one k(z)-module generated by t¥ — a)
Qx )y ®o, k(z) = (free rank one k(x)-module generated by dt)
and the map works out:

m,/m2 —— € Qx )y ®o, k()

P —ar—— L(tP —a)-dt =0
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hence is 0.

An interesting example of the global construction of 2 is given by the projective bundles
introduced in Chapter III:

ExXaMPLE. 5: Let S be a scheme and let £ be a locally free sheaf of Og-modules. Recall
that we constructed m: P(£) = P(€)s — S by P(E£) = Projg(Symm* &). Let K be the kernel of
the canonical homomorphism «:

0—K—71€% OP(S)(l) — 0.
Then I claim:

2.16.
Qpey /s = K(—1) = Homo, ¢, (Opg) (1), K).

We will prove this locally when S = Spec R is affine and £ is free, leaving to the reader to
check that the isomorphism is independent of the choice of basis hence globalizes. Assume

&= éOS‘ti'
=0

Let
U; = open subset P(E)q,
to tn
= SpecR|—,...,—]|.
pec |2, %

To avoid confusion, introduce an alias e; for ¢; in

7€ = D Ope
=0

leaving the #; to denote the induced global sections of Op(g)(1). Then

ale;) = t;, 0<i<n
and K = Ker(a) has a basis on Uj:
t.
ei—t—lej, 0<i<m,i#j.
J

Therefore K(—1) has a basis on Uj:
1 ®e —t;®e;

2 b
¢

U(ey/slv, = D O, -d (t) :
=0

Define 3: Q]P’(g)/S’U]- — K:<_1)’Uj by

(4(5)) -
f(5) ="

0<i<n,i#j

On the other hand

t; ®el t ®e]

Heuristically, if we expand

then f is given by the simple formula
ﬁ(dtl) = €;

which makes it clear why the definition of 5 is independent of the choice of basis.
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REMARK. (Added in publication) (cf. Example 1.8.9) For a locally free Og-module £ and a
positive integer r, let m: Grass"(£) — S be the Grassmannian scheme over S, whose Z-valued
points for each S-scheme Z are in one-to-one correspondence with the Oz-locally free quotients
Oz ®oy & =+ G — 0of rank r. Let a: 7€ — Q — 0 be the universal quotient with Q a locally
free Ograsst(e)-module of rank r. Let K = Ker(a) so that we have an exact sequence

0— K —71€-2%9—0.

Then generalizing the case » = 1 in (2.16) above, we have
QGrrassT((‘,')/S = HomOGrassr<g)/s (Qa IC)

3. Smooth morphisms

DEFINITION 3.1. First of all, the canonical morphism:

X =SpecR[X1,..., Xnir|/(f1y s [r)

7|

Y =SpecR

is called smooth of relative dimension n at a point x € X whenever the Jacobian matrix evaluated

Ofi
<8X] ((L’)) 1<i<lr

1<j<ntr

at x:

has maximal rank, i.e., . Secondly, an arbitrary morphism f: X — Y is smooth of relative
dimension n at a point x € X if there exist affine open neighborhoods U € X, V C Y of x and
y such that f(U) C V and 3 a diagram:

Uc¢ Spon Spec R[X1, ..., Xnir)/(f1s--oy fr)
ros fl immersion lg
Ve open Spec R

immersion
with g of above type, i.e., rk((0f;/0X;)(x)) = r. f is smooth of relative dimension n if this
holds for all x € X. f is étale if it is smooth of relative dimension 0.
REMARK. (Added in publication)

(1) The smoothness of f: X — Y at x € X does not depend on the choice of the presen-
tation

ofi
Spec(R[X1, ..., Xnir|/(f1,--, fr)) with 1k (3)]; (93)) =7

See, for instance, the proof of Proposition 3.6 below.
(2) Smooth morphisms are flat as will be shown in Proposition 3.19 below. An alternative

proof can be found in Mumford [86, Chap. III, §10, p. 305]. Theorem 3’ there states:
Let f: X — Y be a morphism of finite type. Then f is smooth of
relative dimension k if and only if f is flat and its geometric fibres are
disjoint unions of k-dimensional non-singular varieties.

This statement will be given in this book as Criterion 4.8 below. The proof of flatness

in Mumford [86, Chap. III, §10] successively uses the following ([86, Chap. III, §10, p.

297]):
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Let M be a B-module, and B an algebra over A. Let f € B have
the property that for all maximal ideals m C A, multiplication by f is
injective in M/mM. Then M flat over A implies M/fM flat over A.

This very concrete definition has lots of easy consequences:

PrOPOSITION 3.2. If f: X — Y 14s smooth at x € X, then it is smooth in a neighborhood U

of x.

PRrROOF. If in some affine U C X where f is presented as above, d is the r X r-minor of
(0fi/0X;) which is non-zero at x, then f is smooth in the distinguished open subset Us of
U. O

PROPOSITION 3.3. If f: X — Y is smooth of relative dimension n, then for allY' —'Y, the
canonical morphism
XxyY —Y'
is smooth of relative dimension n. In particular,
i) for ally €Y the fibre f~1(y) is smooth of relative dimension n over k(y),
ii) if Y = Speck, Y' = Speck, k an algebraic closure of k, then
X smooth over k = X = X X Speck Spec k smooth over k.
PROOF. Obvious. O

ProrosiTION 34. If f: X — Y and g: Y — Z are smooth morphisms at x € X and
y = f(x) €Y respectively, then go f: X — Z is smooth at x.

ProoF. Obvious. (]

PRrROPOSITION 3.5. A morphism f: X — Y is smooth of relative dimension n at x if and
only if it factors in a neighborhood U of x:

U—syxar Py
m/
X

where g is étale.

Proor. “if” follows from the last result. As for “only if”, it suffices to consider the case
X =Spec R[X1,..., Xnyrl/(f1, -, fr), Y = Spec R. Say det ((0fi/0Xn+;)),<; j<, # 0. Let the
homomorphism

R[Xl, . ,Xn] — R[Xl, .. .,XnJrr]/(fl, .. .,fT)
define g. Then g is étale near x and f =pjog. O

PropPOSITION 3.6. If f: X — Y is smooth of relative dimension n at x € X, then 3 a
neighborhood U of x such that Qx/y|uv = O%|v. Especially, if f is étale, then Qx/y | = (0).

ProOOF. It suffices to show that if S = R[X1,..., Xp4.]/(f1,..., fr) and 6 = det(0fi/0X;)1<i j<r,
then (Qg/r)®s S5 is a free Ss-module of rank n. But Qg is generated over S by dX1,...,d X,

with relations Z?i{(@fi/(?Xj)de =0, 1 <i<r. Writing these relations

" Of; = afi

dX; = —
ox; 57, 0%,

dX;
j=1
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and letting (&;;)1<ij<r € My(Ss) be the inverse of the matrix (0f;/0X;)i<i j<r, it follows that
in (Qs/r) ®s Ss,
T r+n Of
Xm:*ZAZ fli'ain‘dXﬁ 1<i<r
=1 j=r+1
and that these are the only relations among the dX;’s. Therefore dX,11,...,dX,+, are a free
basis of (2g/r) ®s Ss. O

DEFINITION 3.7. If f: X — Y is smooth, let © x/y = Home, (2x,y, Ox), called the relative
tangent sheaf of X over Y. Note that it is locally free and if x € X, y = f(z) and k(z) is separable
algebraic over k(y), then

(Ox/y)z @k(x) 2T, y-1(,), the Zariski-tangent space to the fibre.

Moreover, by (2.12), ©x/y is isomorphic to the sheaf Derp, (Ox, Ox) of derivations from Ox
to itself killing Oy-.

Note moreover that according to the proof of Proposition 3.6, X can be covered by affine
open sets U in which there are functions X, ..., X, such that:

1) any differential w € Qx/y(U) can be uniquely expanded
UJ:Zai-dXi, a; EOX(U),
i=1

2) any derivation D € ©x/y(U) can be uniquely expanded

= 0

(0/0X; dual to dX;).

When Y = SpecC, it is easy at this point to identify the sheaves {2x,c and ©x /¢ with the
sheaves of holomorphic differential forms and holomorphic vector fields on X with “polynomial
coefficients”; or alternatively, with the sheaves of polynomial sections of the cotangent vector
bundle and tangent vector bundle to X. We will discuss this in §VIII.3.

I would like to examine next the relationship between the local rings O, x and O,y when
there is smooth morphism f: X — Y with f(z) = y. When there is no residue field extension,
the completions of these rings are related in the simplest possible way:

PropoSITION 3.8. If f: X — Y is smooth of relative dimension n at x and if the natural
map:
k(y) = k(z), where y = f(x)

is an isomorphism, then the formal completions are related by:

~ ~

Oz x 2Oy y|lt,...,ta]].
PrOOF. The problem being local, we may assume

X = SpeCR[le ey Xn-i-r]/(fh (ERE f?“)
Y =Spec R, R local ring, y = closed point of Y,

Afi
with det ( (a:)) # 0.
an 1<i,j<r
Now if = [p], p C R[X1,..., Xntr], then we have inclusions:

k(y) = R/(RNp) C R[X1,..., Xnyr]/p Ck(2).
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Since all these are equal, Jay, ..., a1, € R such that X; —a; € p; more succinctly, x is the point
over y € Y where X1 = a;,..., Xptr = aptr. Then p D (pNR+ (X1 — a1, ..., Xpntr — Gnyr))
and in fact equality must hold because the ideal on the right is already maximal. Now we
may as well change coordinates replacing X; — a; by X; so that z is at the origin, i.e., p =
pNR+ (X1,...,Xpn4r). Now if Z =Y x A" we have

Ox,X g(/):E,Z/(fl) DRI fr)7
O,z =localization of O,y [X1, ..., X,4,] at the

maximal ideal myy + (X1,..., Xp4p),

hence
@x,X = Ax,Z/(fla-“afr)a
Oz = Oy y[[X1,. .., Xnirll.

Using the hypothesis that f is smooth at x, everything now follows (with R = @y,y[[Xl, oo Xl
Y = X,4i) from:

THEOREM 3.9 (Formal Implicit Function Theorem). Let R be a ring complete in the a-adic

topology for some ideal a C R. Suppose fi,...,fr € R[[Y1,...,Y.]] satisfy

a) fi(0) €a

b) det(0f;/0Y;)(0) € R*.
Then there are unique elements g; € a, 1 < i < r, such that

a) Y; — g; € ideal generated by f1,..., fr in R[[Y]]

b) fi(g1,...,9-) =0,1<i<r;
equivalently, (a) and (b) say that the following maps are well-defined isomorphisms inverse to
each other:

inclusion

R<— R[[Ylv s 7}/;“”/(.]017 .- wfr)'
substitution
h(Y)—h(g)
PRrOOF OF THEOREM 3.9. The matrix (0f;/0Y;)(0) is invertible in M, (R), so changing co-
ordinates by its inverse, we may assume

fi =a; +Y; + (terms of degree > 2 in Y'’s).
Then making induction on 7, it is enough to show 3g(Y1,...,Y,_1) so that:

canonical map

R[[Yh SRR }/7’—1]] -« R[[Yla s 7YTH/(fT)

substitution
of g for Y;

are well-defined inverse isomorphisms. Letting R’ = R[[Y1,...,Y,—1],d =a-R+(Y1,...,Y,_1),
we reduce the proof to the case r = 1! We then have merely the linear case of the Weierstrass
Preparation Theorem: f(0) € a, f/(0) = 1, then 3 a unit v € R[[Y]] and a € a such that
fY)=u(Y)- (Y —a). This is proven easily by successive approximations:
aj] = 0
Ap+1 = Qp — f(an)

a= lim a,.
n—oo
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One checks by induction that f(a,) € a”, hence f(a) = 0. Making the substitution Z =Y — a,
9(Z) = f(Y+a) has no constant terms, so g(Z) = Z-g(Z),so f(Y) = g(Y —a) = (Y —a)-g(Y —a).
Let u(Y) = g(Y — a). Since g(0) = f'(a) = f'(0) (mod a), u(0) € R*, hence u € R[[Y]]*. O

U

Unfortunately, there is no such simple structure theorem for (/Q\x X as @yyy—algebra in general.
If k(x) is separable algebraic over k(y), then one can still say something: let

O = the unique finite free @y,y—algebra with (5/my7y6 = k(x)

as defined in Corollary IV.6.3. Note that Spec@ is, in fact étale over Spec Oy y: if k(z) =
k(y)[T]/(f(T)) and f lifts f and has the same degree, then

0 = O,y [T)/(f(T))
and
(Image in O/m,yO of f’(T)) = F(T) 0

since k(x) is separable over k(y). Then it can be proven that

Orx 2 O[lth, ..., ta]].
If X is étale over Y, this follows directly from the universal property Corollary IV.6.3 of O. In
general, choose the lift f of f to have coefficients in O,y and replacing Y by a neighborhood of
Yy, we get a diagram:

X 21— Spec Ox[T]/(f(T)) = X’

T

Y «—— Spec Oy [T)/(f(T)) = Y’

There is one point y' € Y/ over y € Y and k(y') = k(z); then we get a point 2’ € X’ over z and
y' as the image of

Speck(z) — Spec (k(z) @k k(y)) — X xy V' = X,
Applying Proposition 3.8 to the smooth ¢’ and the étale ¢, we find:

OZNX = 01«17}(/ = Oy/’y/“tl, e ,th = O[[tl, e ,tn]].
At any point of a smooth morphism, there is a simple structure theorem for gr O, x as
gr O, y-algebra, hence for TCx , as a scheme over TCy:

PROPOSITION 3.10. If f: X — Y is smooth at x of relative dimension n and y = f(x), then
gr Oy is a polynomial ring in n variables over gr(Oy) ®k k(z) — more precisely, 3tq,...,t, €
m,/m2 such that

mY /my ! = @ @ (mé/méfl Rk(y) k(a:)) St

=0 (multi-mdices)
a, |a|l=r—1

Thus
TCX,:I) g TCy,Y XSpeck(y) Aﬁ(df)

PrROOF. There are two cases to consider: adding a new variable and dividing by a new
equation. The first is:

LEMMA 3.11. Let x € Y x A, let t be the variable in A' and let y = p1(z) € Y. Note that
Pt (y) = Aﬂlg(y). Fither:
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1) x is the generic point of Aﬂi(y) in which case my =m, - Oy, k(z) = k(y)(t) and

(myy /my ™) @y k() = my/mi

18 an isomorphism,
2) x is a closed point of Aﬂlg(y) in which case 3 a monic polynomial f(t) such that m, =

m, - O, + f - Oy, k(x) 2 k(y)[t]/(7), and

@ <(m§,/m§,+1) ®lk(y) k(m)) . {/ N m”/mV—H

=0
is an isomorphism (here fi = image of f in my/m2).
ProoF OoF LEMMA 3.11. In the first case,
O, = localization of O,[t] with respect to prime ideal m, - O,t].

Then m, is generated by m, - Oy[t], hence by m,, and:

mY /my = ( 7/ (my - Oy[t])wl) ®0ylt) Oa
o~ (( V/ml/"r].) ]k( )[ ]) Ro W] O,
s () 1 (K] S, 02
(m

1/
3/
I/
y

1

my ) @y k(y) ()

Taking v = 0, this shows that k(z) = k(y)(t) and putting this back in the general case, we get
what we want.
In the second case,

O, = localization of O,[t] with respect to maximal ideal p
where p = inverse image of principal ideal (f) C k(y)[t],
f monic and irreducible of some degree d.
Lift f to a monic f € Oy[t]. Then p = my - Oy[t]+ f- Oy[t], hence my =p-Op = my, - Oy + f- O,
Now since p is maximal, O, [t]/p*+t! =5 O,/m’*! for all v, hence p?/p*+! =5 mZ/mZ+l. On
the other hand, O,[t]/(f**!) is a free Oy-module with basis:

Loty 00t T L Y

In terms of this basis:

m d—1
m/ fl/+1 @ @my fm—l . tz”
=0 i=1
hence
v d-1 .
p? fprl e @@ (m /ml+1) St
=0 =0
Now k(x) = k(y)[t]/(f) = @1: k(z) - t*, so in this direct sum decomposition,

d—

,_.

( z+1) v=l g = ( y/mlH) Dy k() - vl

and (2) follows. O

s
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By induction, Proposition 3.10 follows for the case X =Y x A", f = p;. Now every smooth
morphism is locally of the form:

X =V(fi,.-.., fr) CY x A™" : call this scheme Z

p1
Y
Consider the homomorphism:
my 7/ (mi,z +my - Ox,Z) — Qz/y ®o, k(z).

QZ/Y is a free Oz-module with basis dX7,...,dX,+, and the canonical map takes:

n—+r
afi
2 )
fmodm2 , — z; ox,
]:

-dX;.

By smoothness, the images of the f; in {25/ ® k(z) are independent over k(z), hence the f; in

m, z/ (mg 7+ my - Oy Z) are independent over k(z). Proposition 3.10 now follows by induction

on r using:

LEMMA 3.12. Let O1 — O3 be a local homomorphism of local rings such that gr Os is a poly-
nomial ring in r variables over gr O1. Let f € my have non-zero image in mg/ (m% +my - 02).
Then

gr(Oa/f - O2) = gr(0s)/ f1-gr(O2)  (f1 = image of f in my/m3)

and is a polynomial ring in r — 1 variables over gr O;.

PROOF OF LEMMA 3.12. By induction, gr(Qy/f-O2) is the quotient of gr Qs by the leading
forms of all elements f - g of f-Oy. If g € mh\ ml2+1

hypothesis on f means that f; can be taken as one of the variables in the presentation of gr Oy as
+2
2

, its leading form g is in mb/m5™. The

a polynomial ring, hence f is a non-zero-divisor in gr Q. Therefore f1-g # 0, i.e., f-g ¢ m
and the leading form of f - g is equal to fi -g. Thus gr(Oy/f - O2) = (grO2)/f1 - gr O as
required. O

O
COROLLARY 3.13. If f: X = Y is smooth at x of relative dimension n and y = f(x), then
dfy: Tyy @k k(x) — T, x  is injective,
hence dfy: Ty x — T 7y(§>k(y)k(:c) is surjective.

COROLLARY 3.14. If f: X — Y is smooth at x and y = f(x) is a regular point of Y, then
x is a reqular point of X.

COROLLARY 3.15. If a K-variety X is smooth of relative dimension n over K at some point
x € X, then n =dim X.

PRrROOF. Apply Proposition 3.10 to the generic point n € X. O

COROLLARY 3.16. If f: X — Y is smooth of relative dimension n, then its fibres f~(y) are
reduced and all components are n-dimensional.

Proor. Combine Lemma 1.1, Proposition 3.3 and Corollary 3.14. (]
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COROLLARY 3.17. If f: X — Speck is smooth at x € X and we write:

O{L‘,X = k[Xla cee vXn+T]P/(f1a .- 'afT)

as usual, then the module of syzygies
T

D gifi=0,  gi€k[X],
=1

is generated by the trivial ones:
(fi) - fi+(=fi)-fi=0, 1<i<j<m

PROOF. Let B = k[X1,..., X,4]p and K = B/p - B. We have seen in the proof of Propo-
sition 3.10 that gr B is a graded polynomial ring over K in which f,,...,f, € pB/(pB)? are
independent linear elements. We apply:

LEMMA 3.18. Let A be any ring. Over A[Ty,...,T,], the module of syzygies
T
ZQiTi =0, gi € A[T]
i=1
is generated by the trivial ones:

(T;) - T, + (-T;) - T; = 0, 1<i<j<r

(Proof is a direct calculation which we leave to the reader.)
Therefore we know the syzygies in gr B! Now let Syz be the module of all syzygies:

0 — Syz— B" - B

U(ala ces 7a7‘) = Zazfz

and let Triv be the submodule of Syz generated by the “trivial” ones. Now

() »"(B"/ Triv) = (0)

v=1
SO
o0
Triv = () (0" B)" + Triv).
v=1

Therefore if Syz 2 Triv, we can find a syzygy (g1,...,9,) with g; € p” B such that for no trivial
syzygy (hi,...,h;) are all g; + h; € p**1B. Let g; = image of g; in p* B/p**1B. Then

Z g;fi =0

is a syzygy in gr B. By Lemma 3.18,

i-th J-th
place plaﬁe
G120 = > @0, fj o —Ffir..,0).
1<i<j<r
Lifting the @;; to B, this gives a contradiction. O

Combining Corollary 3.17 with Proposition IV.4.10 now shows (See Proposition VIL.5.7 for
a strengthening.):
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PROPOSITION 3.19. Let f: X — Y be a smooth morphism. Then f is flat and for every
rxeX, if

Orx = Oy (X1, Xogrlp/(f1o - fr)

as usual, then the module of syzygies:
T
Y gifi=0,  gi€O,y[X],
i=1

is generated by the trivial ones.
ProoF. Let A =0, y, B =0, y[X], and apply Proposition IV.4.10 to the sequence:
Brr-b/2 %, pr *y B
ulcoag, ) ==Y frra+ Y firam,..)
I<i i<l

v(ag,...,ap) = Zaifi.

By Corollary 3.17, it is exact after ®o, , k(y) so it is exact as it stands and Coker v is A-flat. [

In fact, it can be shown? that if f: X — Y is any morphism which can be expressed locally
as

Spec A[X1,..., X0y /(f1,..., fr) — Spec A

where all fibres have dimension n, then f has the two properties of Proposition 3.19, i.e., f is flat
and the syzygies among the f; are trivial. Such a morphism f is called a relative local complete
intersection. The property of the syzygies being generated by the trivial ones is an important
one in homological algebra; in particular when it holds, it implies that one can explicitly resolve
B/(f1,..., fr) as B-module, i.e., give all higher order syzygies as well: we will prove this later
— §VIL5.

An interesting link can be made between the concept of smoothness and the theory of
schemes over complete discrete valuation rings (§IV.6). In fact, let R be a complete discrete
valuation ring, S = Spec R, k = R/M, K = fraction field of R. Let

f: X—S
be a smooth morphism of relative dimension n. Consider the specialization:
sp: Max(X,)? — Max(X,)

introduced in §IV.6. Let x € X, be a k-rational point. Then the smoothness of f allows one to
construct analytic coordinates on X near x, so that

I

open n-dimensional polycylinder in A%
{x € Max(A%) | |pi(z)| < 1, all i}.

sp ' ()

1.e.

I

30ne need only generalize Corollary 3.17 and this follows from the Cohen-Macaulay property of k[ X1, ..., Xx]:
cf. Zariski-Samuel [119, vol. II, Appendix 6].
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4. Criteria for smoothness

In this section, we will present four important criteria for the smoothness of a morphism f.
The first concerns when a variety X over a field k£ is smooth over Spec k. But it holds equally
well for any reduced and irreducible scheme X of finite type over a regular scheme Y':

CRITERION 4.1. Let Y be a regular irreducible scheme and f: X — Y a morphism of finite
type. Assume X is reduced and irreducible and that f(nx) = ny. Let r = trdeggy)R(X).
Then Vx € X

a) dimy,) (Qy)y Qo, k(z)) >r
b) equality holds if and only if f is smooth at x in which case the relative dimension must
be v and Qx/y = O in a neighborhood of x.

PRrROOF. Let n € X be its generic point. Then

(Qx/v)n = QR /R(Y)-

This R(X)-vector space is dual to the vector space of R(Y')-derivations from R(X) into itself.
But by Example 2 in §2, the dimension of this space is > trdeggy)R(X). Now since f is of
finite type, Qx/y is a finitely generated Ox-module, hence by Proposition 1.5.5 (Nakayama),
Ve e X

dimy ) (Qx/y @ k(z)) > dimp(x)(Qx/y )y > trdegry) R(X) = 7.
Now if f is smooth at any = € X, it is smooth at 1 and then by Corollary 3.15 its relative
dimension must be 7, hence 2x/y = O near z, hence

Now assume conversely that r = dimy,, (Q x/y ® k(x)) To prove f is smooth at =, we
replace X and Y by affine neighborhoods of  and y, so we have:

X = SpecR[Xl,.. . ,Xn]/(fl,. . .,fl)
Y = Spec R.
Then

Qx/y

o @(’)X -dX; modulo relations Z 0 -dX; =0, 1<i<|
i=1 =1 0X;

hence

Qe x/v @k(z)

= @k(m) -dX; modulo relations Z O (x)-dX; =0, 1<i<]
et st 0X;

The matrix (0f;/0X;) is known as the Jacobian matrix for the above presentation of X. It
follows that

ofi
dimy () (Qx/y @ k(z)) =n —rk (a){,j (x)) .

Therefore in our case (0f;/0X;(x)) has rank n — r. Pick out f;,,..., fi,_, such that

Afi o
rk(an(x)>—n r
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and hence define _
X = SpecR[Xl, . 7Xn]/(fi17 .. 7fin7'r)'
Then we get a diagram
X—— X
N
f y !

and find that fv is smooth of relative dimension r at z. But then by Corollary 3.14, O_ ¢ is

a regular local ring. In particular it is an integral domain and X has a unique component X,
containing x. By Corollary 3.15 applied to the generic point of X,,

r = trdeggy) R(X,).

In other words, both O_ § and its quotient O, x = O, /(other f;’s) are integral domains of
the same transcendence (iegree over R(Y')! This is only pbssible if they are equal (cf. Part I [87,
Proposition (1.14)]). So O, x = O, %, hence X = X in a neighborhood of z and X is smooth
over Y at z. O

COROLLARY 4.2 (Jacobian Criterion for Smoothness). If in the situation of Criterion 4.1,
Y =SpecR, X = Spec R[X1,...,X,]/(f1,--., f1), then

f is smooth atx(z)rk((?ifj(m)) =n-—r.

COROLLARY 4.3. In the situation of Criterion 4.1,

R(X) is separable
] <= | (resp. separable algebraic)
over R(Y)

dz € X such that
f is smooth (resp. étale) at x

ProOOF. If f is smooth somewhere, it is smooth at 7; and the criterion at 7 is:
dim (vector space of R(Y')-derivations of R(X) to R(X)) = trdeggy) R(X).
By Example 2 in §2, this is equivalent to R(X) being separable over R(Y). O

COROLLARY 4.4. If f: X — Y is étale, then for all y €Y, the fibre f~1(y) is a finite set of
reduced points each of which is Spec K, K separable algebraic over k(y).

PRrOOF. Proposition 3.3 and Corollary 4.3. (]

COROLLARY 4.5. In the situation of Criterion 4.1 if v € X, y = f(x), then f is smooth over
Y at z if and only if the fibre f~1(y) is smooth of relative dimension r over Speck(y) at x (n.b.
one must assume the two r’s are the same, i.e., dim f~!(y) = trdegg(y) R(X) ).

A slightly more general version of Criterion 4.1 is sometimes useful:

CRITERION. 4.1% Let Y be a reqular irreducible scheme and let f: X — Y be a morphism
of finite type. Let
X=X1U---UX;

be the components of X and assume f(nx,) =ny, 1 <i <t. Let
r= 1211'121: (trdegR(Y) R(X@red)) .

Then for all x € X :

a) dimy,) Qx/y ®o, k(z) >
b) equality holds if and only if f is smooth of relative dimension r at x.
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In some cases, we can give a criterion for smoothness via Zariski-tangent spaces (as in the
theory of differential geometry):

CRITERION 4.6. Let f: X — Y be as in the previous criterion. Assume further that k(x) is
separable over k(y). Then

x 1s a reqular point of X and

' th at v <=
[ is smooth at x dfe: Tox — Tyy @) k(x) is surjective

PROOF. “ =" was proven in Corollaries 3.13 and 3.14. To go backwards, use the lemma:

LEMMA 4.7. Let X be a noetherian scheme and X' C X a closed subscheme. Suppose
z € X' is a point which is simultaneously reqular on both X and X' and suppose r = dim O, x —
dim O, x/. Then 3 a neighborhood U C X of x and fi,..., f, € Ox(U) such that the ideal sheaf
T C Ox defining X' is given by

T
Iy =) fi-Ox
i=1
and moreover fq,..., f, € my x/m2 - are independent over k(z).

PRrROOF OF LEMMA 4.7. We know O, x/ = O, x /Z,, hence
gr(Og x1) = gr(O,, x) /(ideal generated by leading forms of elements of 7).

Both “gr” are graded polynomial rings, the former in m + r variables, the latter in m variables
for some m. This is only possible if the ideal of leading forms is generated by r independent
linear forms fi,..., f,. Lift these to f1,-.., fl € I, hence to fi,..., fr € Z(U) for some open
UcCX. New Y fi- Oy x C I, so we get three rings:

Ovx 25 Oux/ S fi Osxt —2% O x/Te = Oy x.

These induces:

r(or) r(3)
ar(Op x) — 5 g1 (O xt) 3 fi - O x) — s g1(On x1).

But by construction, Ker(gr(8) ogr(a)) C Ker(gr(a)), so gr(53) is an isomorphism. Then f is an
isomorphism too, hence Z,, = ) f; - O, x. Now because X is noetherian, the two sheaves Z|¢s
and Y f; - Ox|y are both finitely generated and have the same stalks at : hence they are equal
in some open U’ C U. O

Now whenever f: X — Y is a morphism of finite type, Y is noetherian, z € X is a regular
point and y = f(x) € Y is a regular point, factor f locally:

X:V(fl,.. fl — Y xA"=Z

\/

and note that Oy x = O, z/(f1,..., fi) where O, x and O, 7 are both regular. It follows from
Lemma 4.7 that in some neighborhood of 2, X = V(f1,..., fs) where fy,..., fs € mx,z/miz
are independent. Now df, surjective means dually that

(my/m2) O (y) k() mg x /m2

|| ~

ez [ (2, + S0, T k()
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is injective. This implies that fq,..., f, are also independent in m, 7/ (mgzC z+my, - O 7). Since
k(z) is separable over k(Y'), Ty (s /k(y) = (0), hence

mg z/(m2 7 +my - Orz) — Qz/y Qo, k()
is injective by Theorem 2.14. Therefore finally dfy,...,dfs € Qz/y ®0, k(x) are independent,
which is precisely the condition that V' (fi,..., fs) is smooth over Y at z. O

The most important case for these results is when Y = Speck, X a k-variety. There are
then in fact two natural notions of “non-singularity” for a point x € X.
a) x a regular point,
b) X — Speck smooth at z.

Our results show that they almost coincide! In fact:
x a regular point <= z a smooth point, by Corollary 3.14
and if k(x) is separable over k, then:
x a regular point <= x a smooth point, by Criterion 4.6.

But by the Jacobian Criterion 4.2, if k = algebraic closure of k, and X = X X Spec k Speck and
7 € X lies over x, then
x smooth on X <= T smooth on X.

Putting this together:
x regular on X <= x smooth on X
<= 7 smooth on X
<= 7 regular on X.

The pathological situation where these are not all equivalent occurs only over an imperfect field
k and is quite interesting. It stems from the geometric fact that over an algebraically closed
ground field in characteristic p, Sard’s lemma fails abysmally:

ExaMPLE. Let k be an algebraically closed field of characteristic p # 0. There exist mor-
phisms f: A7* — A7 such that every fibre f~!(x) (2 closed point) is singular.
a) f: Al — Al given by f(a) = a”. Then if b € A} is a closed point and b = aP, the
scheme-theoretic fibre is:
f7H(b) = Speck[X]/(XP — b)
= Spec k[X]/(X — a)P
>~ Spec k[X']/(X'P), (if X' =X —a)
none of which are reduced. Similarly, the differential
dfi Ta,Al — Tap7A1
is everywhere 0 and f is nowhere étale.
b) f: A? — Al given by f(a,b) = a®> — bP. Then if d € A} is a closed point and d = c?,
the scheme-theoretic fibre is:
F71(d) = Spec k[X, Y]/(X? = Y7 — d)
= Speck[X,Y]/(X? — (Y +¢)P)
>~ Speck[X,Y']/(X2-Y'"), Y =Y +ec

Thus the fibre f~!(d) is again a k-variety, in fact a plane curve, but with a singularity
at X =Y’ =0 as in Figure V.3:
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1f

Py Y Al

Ficure V.3. Every fibre is singular.

c¢) Now if ¢ is the coordinate on A}, then R(A}) = k(t): a non-perfect field of characteristic
p. Consider the generic fibre f~1(n) of the previous example. It is a 1-dimensional k(t)-
variety equal to:

A2 X 51 Spec k(t) = Spec k[X, Y] @y k(t)
— Speck()[X, Y]/(X2 — ¥P — 1)

i.e., it is the plane curve X2 = YP+t. But now t ¢ k(¢)P, so this curve is not isomorphic
over k(t) to X? = (Y')P. In fact, k[X,Y] ®yp k(t) is a localization of k[X,Y], so the
local rings of f~!(n) are all local rings of A? too, hence they are all regular, i.e., f~!(n)
is a regular scheme! But the Jacobian matrix of the defining equations of this curve is:

d
X
0
Yy
so all 1 x 1-minors vanish at the point x = V(X,Y? +t) € f~1(n). Thus f~!(n) is not
smooth over k(t) at x.

(X2 -YP —t)=2X

(X2 -YP—1t)=0

The third and fourth criteria for smoothness are more general and do not assume that the
base scheme Y is regular.

CRITERION 4.8. Consider a finitely presented morphism f: X — Y. Take a point v € X
and let y = f(x). Then

f is flat at x and the fibre

; th at © <
f is smooth at x f~Yy) is smooth over k(y) at x.

PROOF. = was proven in Propositions 3.3 and 3.19. To prove the converse, we may
assume Y = Spec A, X = Spec A[X1,...,X,]/(f1,-.., fr). Then let x = [p], where p is a prime
ideal in A[X7,...,X,] and let ¢ = pN A and k = (quotient field of A/q) = k(y). Note that the
fibre f~1(y) equals

Speck[X1, ..., Xnl/(f1s-- s fr)-
If s is the dimension of f~!(y) at x, it follows that

rk (5)"; @;)) =n—s.
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Thus n — s < r and renumbering, we may assume that:

of;
lgi%%tn—s <8X] (CC)) 7é 0

Consider the diagram:

X =SpecA[X]/(f1,...,fr) C SpecA[X]/(f1,- ) fn-s) =X’
ﬁat“ /@h at )
Spec A

Then the fibres: f~1(y) C (f')~!(y) over y are both smooth of dimension s at x, hence they are
equal in a neighborhood of z. I claim that in fact X and X’ are equal in a neighborhood of z,
hence f is smooth at z. To prove this, it suffices to show

(flu" . 7f7") : A[X]P = (fl)' . 'afn—s) : A[X]P
or, by Nakayama’s lemma, to show
(fla"‘vfr)'A[X]P _
(flv"wfn—s)'A[X]P Aqk_(O)

But consider the exact sequence

0 —s (fla”'va)'A[X]P _ A[X]P _ A[X]P 0.

(fla'”vfn—S)‘A[X]P (flv'”vfn—s)‘A[X]P (flﬂ”’va)'A[X]P

NH NH

O%X/ O:B,X
The last ring is flat over A, so
(f17 s 7f7”) ) A[X]p
0 ®a, k—
<f17~--afn—s)'A[X]p !
A[X], A[X],
— ®a, k ®a, k —0
(firs frms) - A[X] 7 (fro fr) - AIX]p 0
~|| ~||
O (1) Ou.=1(w)
is exact. But O, (p1y-1y) =, O,.f-1(y), S0 the module on the left is (0). O

COROLLARY 4.9. Let f: X — Y be a finitely presented morphism. Then for all x € X,
y = f(z),
f is flat at z, the fibre f~1(y) is reduced

s €tale at x <=
J is élale at 2 at © and k(x) is separable algebraic over k(y).

The last criterion is a very elegant idea due to Grothendieck. It is an infinitesimal criterion
involving A-valued points of X and Y when A is an artin local ring. We want to consider a
lifting for such point described by the diagram:

Spec A/I L}{ X

n Y- lf

Spec A T Y
1
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This means that we have an A-valued point ¢ of Y and a lifting 1y of the induced (A/TI)-valued
point (I is any ideal in A). Then the problem is to lift ¢; to an A-valued point ¢ of X extending
1g. The criterion states:

CRITERION 4.10. Let f: X — Y be any morphism of finite type where Y is a noetherian
scheme. Then f is smooth if and only if:

For all artin local rings A, ideals I C A, and all A-valued points ¢1 of Y and
(A/I)-valued points 1y of X such that:

f o1y = restriction of ¢1 to Spec A/I
there is an A-valued point ¥y of X such that

fot1r=¢

1o = restriction of Y to Spec A/I.

(See diagram.)

f: X — Y satisfying the lifting property in Criterion 4.10 is said to be formally smooth in
EGA [1, Chapter IV, §17]. This criterion plays crucial roles in deformation theory (cf. §VIIL5).

PROOF. Suppose first that f is smooth and g, ¢1 are given. Look at the induced morphism

fi:
X1 =X Xy Spec A

,[pl
il
SpecA/I ¢ Spec A
which is smooth by Proposition 3.3. Then vy defines a section 1, of fi over the subscheme
Spec A/I of the base which we must extend to a section of f; over the whole of Spec A. Let

y € Spec A be its point and let € X be the image of ¢,. Then k(z) = k(y), so by Proposition
3.8

~

Oz x, 2 Allt1, ..., t]].
If the section vy is given by
(o)"(t:i) = a; € A/
choose a; € A over @;. Then define a section ¢} of f; by
(1)*(t:) = ai.
Now suppose f satisfies the lifting criterion. Choose x € X. We will verify the definition of
smoothness directly, i.e., find a local presentation of f near z as

Spec R[Th, ..., T,/ (f1,..., fi) — SpecR
where det(0f;/0X;) # 0. To start, let f be presented locally by
Spec R[Th,...,T,]/I — Spec R

and let

r= dimk(m) (QX/Y & k(l‘)) .
We may replace X by Spec R[T1,...,T,]/I and Y by Spec R if we wish. Since Qx/y @ k(=) is
generated by dT1,...,dT, with relations df =0, f € I, we can choose fi,..., fn—r € I such that

Qx/y @ k(z) = (@ k(z) de)/ (df1,...,dfn—r)
i=1
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and in particular

Ofi
det <8Tj (x)) # 0.
This allows us to factor f locally through a smooth morphism:

X— X, = SpeCR[Tl,. --aTn]/(fl’---yfn—r)

f}l//

where f; is smooth at z and
(4.11) QXl/Y ® lk(x) — QX/Y & ]k({L')
is an isomorphism.

We now apply the lifting property to the artin local rings A, = O, x,/ m; v, and the ideals
I,=ILnN m"}(ll +m} y , where Iy is the image of I under

R[Tl, N ,Tn] — R[Tl, N ,Tn]/(fla .. .,fnfr).

We want to define by induction on v morphisms r,,:
Spec Ow,X/m;,X(ﬁ X

n PP Jf

Spec Oy x, /my; x, —— X3 —>f Y
1

which extend each other. Given r,, r, plus the canonical map

Spec Oy x, /(11 + m;fxll) = Spec Ox,X/ij;(l — X
induce a map

Spec Oq x, /(I Ny x, +myly) — X.

(This is because Oy, x, /(I NmY  + m;'&}l) can be identified with the subring of (O, x, /(11 +
mg;(ll)) ® Oy x, /mgVCX1 of pairs both members of which have the same image in O, x,/(I1 +
m; x,)-) Apply the lifting property to find r,,41. Now the whole family {r, } defines a morphism
r:

Spec 63:,)(1

ey
X \X1
Y
which is in effect a retraction of a formal neighborhood of X in X; onto X, all over Y. Ring-
theoretically, this means

~ ~

Orx, =20, x ©J
and where the R-algebra structure of @ac x, is given by the R-algebra structure of @x x. It
follows that
Qx, v © Opx 2 (Qx)y © Op x) @ (J/J2).
But, then applying (4.11), we find
(J/J?) @ k(z) = (0),

hence by Nakayama’s lemma, J = (0). Thus @x,X1 = @%X, hence Oy x, = Oy x and X = X
in a neighborhood of z. O
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5. Normality

Recall that in §III.6 we defined a scheme X to be normal if its local rings O, x are integral
domains integrally closed in their quotient field. In particular, if X = Spec R is affine and
integral, then

X is normal <= R, integrally closed in R(X), Vp
<= R integrally closed in R(X)

(using the facts (i) that a localization of an integrally closed domain is integrally closed and (ii)
R = ﬂp R,.) An important fact is that regular schemes are normal. This can be proven either
using the fact that regular local rings are UFD’s (cf. Zariski-Samuel [119, vol. I, Appendix 7];
or Kaplansky [64, §4-2]) and that all UFD’s are integrally closed (Zariski-Samuel [119, vol. I, p.
261]); or one can argue directly that for a noetherian local ring O, gr O integrally closed =
O integrally closed (Zariski-Samuel [119, vol. II, p. 250]). As we saw in §II1.6, normality for
noetherian rings is really the union of two distinct properties, each interesting in its own right.
We wish to globalize this. First we must find how to express globally the condition:

R= N Ry.
p non-zero minimal prime
(Added in publication) We use the following terminology: A point z of a locally noetherian
scheme X is not an embedded point if the natural map O, x — I'(Spec(O, x) \ {z}) is injective.
Equivalently, = is an embedded point of X if dim(O,, x) > 1 and « is an associated point of O, x.

PROPOSITION-DEFINITION 5.1. Let X be a noetherian scheme with no embedded components
and let x € X be a point of codimension at least 2. Say n1,...,n, are the generic points of the
components of X containing x. The following are equivalent:

a) V neighborhoods U of z, and f € Ox (U\ ({z}n U)), there is a neighborhood U' C U
of © such that f extends to f' € Ox(U’).
a’)
Om,X = m Oy,X

yeX with

16@
Ay

(all these rings being subrings of the total quotient ring @;_; Oy, x ).

b) Vf € my x with f(n;) # 0 all i, x is not an embedded point of the subscheme V(f)
defined near x.

b') 3f € my x with f(n;) # 0 all i, and x not an embedded point of V(f).

Points with these properties we call proper points; others are called improper®. If all points are
proper, X 1is said to have Property S2.

PROOF. It is easy to see (a) <= (a’), and (b) = (b') is obvious. To see (b') = (a), take
gEOX(U\(mﬂU)>, U affine

and let f € m, x be such t@ V(f) has no embedded components. Then the distinguished open
set Ug of U is inside U \ ({z} NU), hence we can write:
g=a/f", g €0xU).

4This is not standard terminology; it is suggested by an old Italian usage: cf. Semple-Roth [98, Chapter 13,
§6.4].
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We now prove by induction on [ that g,/f' € O, x, starting with [ = 0 where we know it, and
ending at | = m where it proves that g € O, x, hence g € Ox(U’) some U’ C U. Namely, if
I <m,and h = g1/f' € O, x, consider the function h induced by h on V(f) in a neighborhood
of z. Since h = fm~t. g, it follows that h = 0 on V(f)\ ({z} NV (f)), i.e., Supph C {z} NV (f).
Since z is not an embedded component of V(f), h = 0 at z too, i.e., g1 /fT' =h/f € Oz x.

To see (a') = (b), suppose f € m, x, f(n;) # 0 and suppose g € O, x restricts to a
function g on V(f) whose support is contained in {z} NV (f). Then for all y € X with y € {z},
r#y,gis 0in Oyy (), i.e., g € f- Oy x. Then

g/f € ﬂ Oy,X :Oiﬂ,Xa
yeX

1‘6@
TFy
hence g = 0. O

CRITERION 5.2 (Basic criterion for normality (Krull-Serre)). Let X be a reduced noetherian
scheme. Then

a) Vo € X of codimension 1, X is reqular at x

X is normal < { b) X has Property S2.

In particular (a) and (b) imply that the components of X are disjoint.

ProOOF. If X is affine and irreducible, say X = Spec R, then Property S2, in form (a’),
implies immediately:

Vp prime ideal in R : Ry, = m R,.
¢ non-zero minimal prime

acp

Since

the criterion reduces to Krull’s result (Theorem II1.6.5). Everything in the criterion being local,
it remains to prove (a) + (b) = all components of X are disjoint. Let

S ={z € X |z is in at least two components of X},

and let  be some generic point of S. Then O, x is not a domain so by (a), codimz > 2. Then
consider the function e which is 1 on one of the components through x, 0 on all the others.

Clearly
(& E ﬂ Oy’X, € ¢ OZI‘,X
yeX
re{y}
TF#Y
which contradicts S2. Thus S = 0. O

Here is an example of how this criterion is used:

PROPOSITION 5.3. Assume X is a regular irreducible scheme and Y ; X s a reduced and
irreducible codimension 1 subscheme. Then'Y has Property S2.
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PROOF. Let y € Y be a point of codimension > 2 and let f € Oy x be a local equation for
Y. Take any g € my v \ (fOy x Umz’X). Let g be the image of g in O, y, let Z be the subscheme
of X defined by g = 0 near y, and let f be the image of f in Oy,z. Then

y is a proper point of Y <= {y} not embedded component of V(g) C Y
<= {y} not embedded component of V(f,g) C X

<= {y} not embedded component of V(f) C Z
<= y is a proper point of Z.

But Oy 7z = Oy x/g- Oy x is regular (since g ¢ m; ), hence Z is normal at y hence every point
is proper. ]

COROLLARY 5.4. If X is regular, irreducible, Y G X is reduced irreducible of codimension
1, then if Y itself is reqular at all points of codimension 1, Y is normal.

Another application of the basic criterion is:

PROPOSITION 5.5. Let f: Y — X be a smooth morphism, where X is a normal noetherian
scheme. Then'Y is normal (and locally noetherian).

PRrROOF. As X is the disjoint union of its components, we can replace X by one of these and
so assume X irreducible with generic point 7. Note that since O, x = the field R(X), the local
rings of any y € f~1(n) on the fibre f~!(n) and on Y are the same.

a) Y is reduced: in fact f flat implies

f(Ass(Oy)) C Ass(Ox) = {n}.
For for all y € Ass(Oy),
Oyy = Oy -1y

is an integral domain, since f~1(n) is smooth over Spec R(X), hence is regular.
b) If y € Y has codimension < 1, then by Corollary 1V.5.10, f(y) has codimension 0 or
1, hence X is regular at f(y). Since f is smooth, Y is regular at y by Corollary 3.14.
c) If y € Y has codimension > 1, we seek some g € O,y with g(y) = 0, g # 0 on any
component of Y through y, and such that V(g) has no embedded components through
y. There are two cases:

Cl)
fly)=n =0,y = (’)y7f_1(,7) regular, hence normal

=any g € myy, g # 0 has this property
by the Basic Criterion 5.2.

c2) f(y) = z has codimension > 1 in X. But then since X is normal, there is a
g € I'(Uz, Ox), U, some neighborhood of z, such that g(x) = 0, g(n) # 0 and
V(g) has no embedded components. Then f*(g) € I'(f~U,, Oy) is not zero at
any generic points of Y while f*(¢)(y) = 0. Moreover,

V(f*(9)) = V(g) xx Y,
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so V(f*(g)) is smooth over V(g). We get:
y € Ass(Oy(s+(g))) = f(y) € Ass(Oy(y))
= f(y) = generic point of V(g)
=—codimension of f(y) is 1
=X regular at f(y)
=0,y regular, hence normal
=V (f"(g)) has no embedded

components through y.

O
In particular this shows that a smooth scheme over a normal scheme is locally irreducible
and if one looks back at the proof of Criterion 4.1 for smoothness, one sees that it now extends

verbatim to the case where the image scheme is merely assumed normal, i.e., (as generalized in
Criterion 4.17):

CRITERION 5.6. Let X be an irreducible normal noetherian scheme and f: Y — X a mor-
phism of finite type. Assume all components Y; of Y dominate X and let

7 = min trdegg x) R(Y] red)-
ThenVy € Y
a) dimy,) Qy/x ®o, k(y) >
b) equality holds if and only if f is smooth aty of relative dimension r.

ExaMPLE. The simplest way to get non-normal schemes is to start with any old scheme and
“collapse” the tangent space at a point or “identify” two distinct points. To be precise, let

X = SpecR
be a k-variety.
a) If 2 = [m] is a k-rational point, so that R = k 4+ m, consider
Xo = Spec(k + m?).
The natural morphism:
T X — Xy
is easily seen to be bijective, but if f € m\ m?, the f is integrally dependent on k +m?,
but ¢ k+m2. So Xy is not normal.
b) If x; = [m;], i = 1,2 are two k-rational points, let
Ro={f e R| f(z1) = f(x2)}
=k+ mp Nmy
Xy = Spec Ry.
The natural morphism
T X — Xy

is bijective except that z1, xo have the same image. Moreover, if f € R, then f satisfies
the equation:

(X = f(z))(X = f(22)) = a, where a = (f — f(21))(f — f(2)) € Ro.
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So Xj is not normal. Moreover, one can check that Qx/x, = (0) but 7 is not étale in
this case so this morphism illustrates the fact that Criterion 4.1 does not extend to
non-normal Y’s.

One of the major reasons why normal varieties play a big role in algebraic geometry is that
all varieties can be “normalized”, i.e., there is a canonical process modifying them only slightly
leading to a normal variety. If there were a similar easy canonical process leading from a general
variety to a regular one, life would be much simpler!

PROPOSITION-DEFINITION 5.7. Let X be a reduced and irreducible scheme. Let L D R(X)
be a finite algebraic extension. Then there is a unique quasi-coherent sheaf of Ox-algebra:

Ox C A C constant sheaf L
such that for all affine U:
A(U) = integral closure of Ox(U) in L.

We set
X1, =Specx(A)
d:fum'on of affines Spec A(U),

as U runs over affines in X,

and call this the normalization of X in L. In particular, if L = R(X), we call this the normal-
ization of X. X is normal and irreducible with function field L.

To see that this works, use (I.5.9), and check that if U = Spec R is an affine in X and Uy is
a distinguished open set, then A(Uy) = A(U) ®g Ry. This is obvious.

Note for instance that in the two examples above, normalization just undoes the clutching
or identification: X is the normalization of Xj.

Sadly, normalization is seriously flawed as a tool by the very unfortunate fact that even
for some of the nicest schemes X you could imagine — e.g., regular affine and 1-dimensional
— there are cases where X, is not of finite type over X. This situation has been intensively
studied, above all by Nagata (cf. his book [89] and Matsumura [78, Chapter 12]). We have no
space to describe the rather beautiful pathology that he revealed and the way he “explained”
it. Suffices it to recall that:

5.8.

e X noetherian normal L separable over R(X) = X, of finite type over X.
o X itself of finite type over a field = X, of finite type over X

(cf. Zariski-Samuel [119, vol. I, Chapter V, §4] ).
o X idtself of finite type over Z = X1, of finite type over X

(cf. Nagata [89, (37.5)]).

We conclude with a few miscellaneous remarks on normalization. The schemes Proj R can
be readily normalized by taking the integral closure of R:

PROPOSITION 5.9. Let R = @, Rn be a graded integral domain with Ry # (0) and let

Ky = field of elements f/g, f,g € Ry, for somen, g #0
= R(Proj R).
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Then if t = any fized element of Ry, the quotient field of R is isomorphic to Ko(t). Let Ly O Ky
be a finite algebraic extension and let

S = integral closure of R in Lo(t).
Then S is graded and Proj S is the normalization of Proj R in Lg.
PrROOF. Left to the reader. (]
An interesting relation between normalization and associated points is given by:
PropPOSITION 5.10. Let X be a reduced and irreducible noetherian scheme and let
X — X, X = Specy (A)

be its normalization. Assume m is of finite type hence A is coherent. Then for all y € X of
codimension at least 2:

y s an improper point <= y € Ass(A/Ox).

The proof is easy using the fact that every point of X is proper.
One case in which normalization does make a scheme regular is when its dimension is one.
This can be used to prove:

PRrROPOSITION 5.11. Let k be a field, K D k a finitely generated extension of transcendence
degree 1. Then there is one and (up to isomorphism) only one reqular complete k-variety X with
function field K, and it is projective over k.

PRrROOF. Let R’ C K be a finitely generated k-algebra with quotient field K, let X° =
Spec R and embed X in A7 for some n using generators of RO, Let X0 be the closure of X°
in P} and write it as Proj R’. Let R” be the integral closure of R’ in its quotient field. Then
by Proposition 5.9, X” = Proj R” is normal. Since it has dimension 1, it is regular and has
the properties required. Uniqueness is easy using Proposition 11.4.8, and the fact that the local
rings of the closed points of X” are valuation rings, hence mazimal proper subrings of K. [

6. Zariski’s Main Theorem

A second major reason why normality is important is that Zariski’s Main Theorem holds for
general normal schemes. To understand this in its natural context, first consider the classical
case: k = C, X a k-variety, and x is a closed point of X. Then we have the following two sets
of properties:

N1) X formally normal at z, i.e., @%X an integrally closed domain.

N2) X analytically normal at x, i.e., Oy x an, the ring of germs of holomorphic functions at

x, is an integrally closed domain.

N3) X normal at x.

N4) Zariski’s Main Theorem holds at x, i.e., Vf: Z — X, f birational and of finite type

with f~!(x) finite, then 3U C X Zariski-open with z € U and

res f: f7IU — U
an isomorphism.
Ul) X formally unibranch at x, i.e., Spec <6zx> irreducible.
U2) X analytically unibranch at x, i.e., Spec (O x an) irreducible, or equivalently, the germ
of analytic space defined by X at x is irreducible.

U3) X wunibranch at x, i.e., if X’ = normalization of X in R(X), m: X’ — X the canonical
morphism, then 77! (x) = one point.
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X topologically unibranch at z. (Recall that in Part I [87, (3.9)], an irreducible algebraic
variety X over C was defined to be topologically unibranch at a point z € X (C) if for
every closed subvariety Y ; X and every open subset V 3 z in the classical topology,
there exists a classical open neighborhood U 3 z contained in V' such that U\ (UNY (C))
is connected in the classical topology.)

The Connectedness Theorem holds at z, i.e.,Vf: Z — X, f proper, Z integral, f(nz) =
nx and U C X Zariski-open dense with f~!(y) connected for all y € U, then f~!(z)
is connected too.

6.1. I claim:

i) all properties N are equivalent,
ii) all properties U are equivalent,
iii) N=U.

Modulo two steps for which we refer the reader to Zariski-Samuel [119] and Gunning-Rossi
[54], this is proven as follows:

N1 <= N2 <= N3: We have inclusions:

Oa:,X C Ox,X,an C O:D,X

and
Oz,X,an N R(X) = O%X

~ < total quotient

O, x N . =0
& X ring of Oy x an > @, X,an

(This follows from the fact that if f,g € O, O noetherian local, then f|g in O iff f|g in
O: cf. Part I [87, §1D].) Therefore the implications

~

O, x integrally closed domain = O, x an integrally closed domain

= 0, x integrally closed domain
are obvious. The fact:
O, x integrally closed domain = @x x integrally closed domain

is a deep Theorem of Zariski (cf. Zariski-Samuel [119, vol. IT, p. 320]). He proved this for
all points x on k-varieties X, for all perfect fields k. It was later generalized by Nagata to
schemes X of finite type over any field k or over Z (cf. Nagata [89, (37.5)]). Although
this step appears quite deep, note that if we strengthen the hypothesis and assume
O, x actually regular, then since regularity is a property of gr(O, x) and gr(Og x) =
gr(@% x), it follows very simply that @x x is also regular, hence is an integrally closed
domain!

N1 = Ul: Obvious.
Ul = U2: Obvious because

O:E,X,an/\/@ - 62,X/\/@7

so if the latter is a domain, so is the former.

U2 = U4: See Gunning-Rossi [54, p. 115].
U4 = U5: This was proven in Part I [87, (3.24)] for projective morphisms f. The proof

generalizes to any proper f.
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(Added in publication) The proof uses a basic fact that the proper morphism

f+Z — X induces a topological proper map fc: Z(C) — X (C), that is, the

inverse image of any compact subset of X (C) is compact, hence the image of

any closed subset of Z(C) is closed.
Suppose that f~1(x) were the disjoint union of two non-empty closed subvarieties Y;
and Y. Then there exist disjoint classical open subsets W7 O Y1(C) and Wy D Y3(C)
in Z(C). Let

Vo := X(C)\ f(Z(C) \ (W1 UWy)),

an open neighborhood of z. Since X is topologically unibranch at z, there exists a
classical open neighborhood V of z in Vj such that V N U(C) is connected (with U in
the statement of U5). Since V' C Vj, we get

FHU@) V) C FHV) C WU W,

Since each fibre f~1(y) is connected for y € U(C) NV and f is surjective, we deduce
that

U@ nv clUC)nV)\FZC\NW)U[UEC)NV)\ f(Z(C)\ Wa)],

and the right hand side is a disjoint union of two open subsets of the connected open
subset U(C) NV in the classical topology. Hence one of the two open subsets is equal
to U(C) NV, say

U@ NV f(Z(C)\ W) =U(C)nV.
This implies that f(W3;) NU(C) = (), or equivalently, Wi C f~1(X \ U)(C). This is
impossible because f~!(X \ U) is a proper subvariety of the irreducible variety Z and
W is an open subset of Z(C).

U5 = U3: Let 7: X’ — X be the normalization of X in R(X). 7 is of finite type by
(5.8), hence it is proper by Proposition I1.6.5. 7 is birational, hence an isomorphism
over some non-empty U C X. Therefore U5 applies to m and 7 !(z) is connected.
But since X’ = Spec A, A coherent, 771 (x) = Spec(A,/m; - A;) and A, /m, - A, is
finite-dimensional over C; thus 7~!(z) is a finite set too, hence it consists in one point.

U3 = Ul: Let O;’X be the integral closure of O, x in R(X): it is a local ring and a

finite O, x-module. By flatness of (/Q\QX over O, x, we find
Oux C Oy x ®0, x Oxx

and by finiteness of O, ,
O;yX R0, x (/Q\x,X 2 completion @\/z,X of (9;;7)( in its mg-adic topology.

By N3 = N1, EQ\’:C x is a domain, so therefore @w x is a domain and Ul is proven.

N3 = N4: (Zariski’s Main Theorem) We use the fact already proven that N3 = N1 =
Ul = U5 and prove N3+ U5 = N4. This is quite easy using Chow’s lemma (Theorem
11.6.3). Let f: Z — X be a birational morphism of finite type with f~!(x) finite. Then
we can find a diagram:

C 77C mn
A open 7! P* x X

gl dense
A

f
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where g is proper and birational, Z’ = closure of Z’ in P" x X with reduced structure.
Now if we write f~1(x) = {y1,...,y:}, then since f is of finite type, each y; is open in
f~Y(z) and proper over C. Then if Y; = g~ !(y;), each Y; is open in (f o g)~!(x) and
proper over C. Let h = restriction of ps to Z’. Then (f o g)~!(z) is open in h~1(z),
hence each Y; is open in h~!(z). But being proper over C, Y; must also be closed in
hY(z):
hHe) =YiUu---uY,u (R (2) \ (fog) H(x))

is a decomposition of ~~!(z) into open and closed pieces. So the Connectedness The-
orem implies t = 1 and = ¢ h(Z’\ Z'). But h is proper so h(Z’\ Z') is closed in X.
Replacing X by X \ h(Z’\ Z’), we can therefore assume Z’ = 7/, i.e., Z' is proper over
X. It follows that Z is proper over X, and f~!(z) = one point y.

Next replacing X by a smaller neighborhood U of x and Z by f~}(U), we can
assume Z and X are affine: to see this, let V be any affine neighborhood of y. Since
f is proper, f(Z \ V) is closed. Let U be an affine neighborhood of z contained in
X\ f(Z\V). Then f~Y(U) C V and f~1(U) is affine by Proposition II.4.5.

Now if X = Spec R, Z = Spec R[x1,...,z,], where z; € R(X), consider the mor-
phism [z;]: Z — A} C P{. This induces

([xz}7f> Z— ]P)(%j X Spec(C) X

which is proper since f is proper. Let I'; be its image. Then T'; is closed and (oo, z) ¢ T';.
Therefore there is some expression:

p(t) =amt™ + a1t -+ ag
a; € Oy x
t = coordinate on P&
p(t)=0on T}
t™"p(t) # 0 at (oo, x).

Thus a,, ¢ m, x, and z;, as an element of R(X), satisfies g(x;) = 0. In other words, ; is
integrally dependent on O, x. So x; € Oy x, hence x; € Ox (U;) for some neighborhood
U; of x. It follows that f is an isomorphism over Uy N--- N U,.

N4 = N3: Let 7: X’ — X be the normalization of X in R(X) and apply Zariski’s Main

Theorem with f = 7.

REMARK. (Added in publication) (Chai) It is easy to give an example of a complex algebraic

variety X and a point € X that is unibranch but not normal: Take X = Spec R with
R = C+t2CJt], and let = correspond to the quotient of R by the maximal ideal t?C[t] of R. The
normalization of R is the polynomial ring C[t], and A! — X is a homeomorphism.

Now consider the same situation for general integral noetherian® schemes. N2, U2 and U4

do not make sense, but N1, N3, N4, U1, U3 and U5 do.

We need modify Ub however to read:
U5) The Connectedness Theorem holds at x, i.e., Vf: Z — X, f proper, Z integral, f(nz) =

nx and the geometric generic fibre of f connected (i.e., if @ = an algebraic closure of
R(X), then via the canonical

i: Spec) — X,

Z x x Spec ) should be connected), then f~!(z) is connected too.

®N3 = N4 is proved even for non-noetherian X in EGA [1, Chapter IV, (8.12.10)].
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REMARK. (Added in publication) (Chai) In the statement of U5, one cannot strengthen the
conclusion to “f~1(x) is geometrically connected”. Here is an example: Let Z = Spec C[t], the
affine line over C. Let R + ¢C[t] be the ring of all polynomials ¢(t) € C[t] such that ¢g(0) € R.
We have an isomorphism

a: Rlu,v]/(u? +v?) =5 R, urrt, v /=1t

Let X = Spec R. It is easy to see that C[t] is the integral closure of R in the fraction field C(¢)
of R, f: Z — X is a homeomorphism, and f is an isomorphism outside the closed point x :=
Spec(R/tC[t]) = SpecR. However, f~!(x) = Spec C, which is connected, but not geometrically
connected over z = SpecR.

6.2. Then Zariski (for k-varieties) and Grothendieck (in general) have shown:

Nl=——=N3<——N4

|

Ul =— U3 < {5

but Nagata [89, Appendix Al] has given counterexamples to N3 = N1, U3 = Ul.

(Note that we do have these implications when X is excellent. Examples of excellent rings
are fields, Z, complete local rings and Dedekind domains of generic characteristic 0. Finitely
generated algebras over excellent rings are excellent. )

To prove these implications, first note that N1 = Ul and N3 = U3 are obvious; that
N1 = N3 is proven just as above. Moreover, N4 =—> N3 and U5 = U3 are proven as above,
except that since the normalization 7: X’ — X may not be of finite type, N4 and U5 should be
applied to partial normalizations, i.e., Spec Rlay, ..., a,] — Spec R, a; integrally dependent on
R. Moreger, N3+ U5 = N4 is proven as above. Therefore it remains to prove Ul = U3 and
U3 = Ub5.

Ul = U3: This is an application of Hensel’s lemma (Lemma IV.6.1). If 7—!(z) has
more than one point, it is easy to see that we can find an element a € R(X) integrally
dependent on O, x such that already in the morphism:

7: Spec Oy x[a] — Spec Oy x
7~1(z) consists in more than one point. Consider the three rings:
Oz x C Oy x[a] C R(X).
Tensoring with @w x, we get:

Oz,X C @z,X ®Oz7x OZ,X[O’] C 6$,X ®Oz,X R(X)
Dividing all three rings by their nilpotents, we get

xX/\ﬁC< 2.X ®0, x Oz xla )/\/7C< Oz x @ R(X )/\ﬁ

By U1, @I,X/\ /(0) is a domain, and since R(X) is a localization of O, x, (@xx ® R(X)) /+/(0)

is a localization of (5%)(/\/@, ie.,
(6%)( ® R(X)) /\/@ C quotient field of @mx/\/@

This implies that (C’)z x @O0y x[a ) /4/(0) is a domain hence Spec(@m x ® Oy x[a]) is
irreducible. Now look at

T Spec(@x,X ® Oy x|a]) — Spec @x“X.
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But since 77 !(closed point) = 7~ !(z), which has more than one point, by Hensel’s

~

lemma (Lemma IV.6.1), Spec(O; x ® O, xla]) is not irreducible!

U3 = Us: (i.e., Unibranch implies the Connectedness Theorem.) We follow Zariski’s
idea (cf. Zariski [118]) and deduce this as an application of the fundamental theorem
of “holomorphic functions” (cf. [118, Chapter VIII]. See also “GFGA” in §VIIL.2.):

6.3 (Fundamental theorem of “holomorphic functions”). Vf: Z — X proper, X
noetherian, then f.Ogz is a coherent sheaf of Ox-algebras and for all x € X

Bm(£.07)e/m% - (£.07)s = limT (7 (2), O7/m’ - O7) .

To apply this to the situation of [/JT’), suppose f~1(x) = Wy UWa, W; open disjoint.
Then define idempotents:

e, € F(f_l(az),(’)z/m;j . Oz)
e, =0on Wy, e, =1on Ws.

These define an element € in the limit: approximating this with an element e €
(f«Oz)z mod my - (f.Oz)s, it follows that e = 0 on Wi, e = 1 on Wy. Let e extend to
a section of f,Oz in an affine neighborhood U = Spec R of x.

Next, for all open U C X,

f:0z(U) = T(f7H(U), 0z2) CT(F 7 (1x), Op-1(zy)-

The generic fibre f~!(nx) of f is a complete variety over the field R(X), hence

L=T(f"(x), Op-1())

is a field, finite and algebraic over R(X). Applying the theory of §IV.2, f~1(nx) is also
a variety over L and passing to the algebraic closure R(X) of R(X), we find that the

geometric scheme:

FT(nx) = f'(nx) Xspecr(x) SPec R(X) — Spec R(X)

in fact lies over Spec(L ®g(x) R(X)). All points of the latter are conjugate, so

J~1(nx) maps onto Spec(L ®g(x)R(X)). By assumption f~!(nx) is connected, hence

Spec(L ®gr(x) R(X)) consists in one point, hence L is purely inseparable over R(X).
So we may assume LP' C R(X). In particular e € R(X).

Since f,Oz(U) is a finite R-module, P is integrally dependent on R too. Let R’
be the integral closure of R in R(X) and we can factor the restriction of f to f~(U)
via the function e?':

Z o> flu Spec R/
\ 9/
f res f Spec ReP']
']
X o U Spec R

Since e” takes on values 0 and 1 on f~!(z), it follows that (f')~!(z) consists in at
least two points! But R’ integral over R[epl] so g is surjective by the going-up theorem
(Zariski-Samuel [119, vol. I, Chapter V, §2, Theorem 3, p. 257]).
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An elementary proof that N1 => N4 can be given along the lines of the proof that U1 = U3.
We sketch this: Given f: Z — X as in N4, form the diagram:

7 (Spec@LX) Xx 4 =27

fl Il
X +— Spec@x,x =X’

Decompose Z’ via Hensel’s lemma (Lemma IV.6.1). Then it follows that Z/_ ; has a component
Z" which projects by a finite birational morphism to X’. This means that Z’ = Spec R, where
R’ is a local domain finite over the normal local domain O, x and is contained in the fraction

~

field of O, x. It follows that Z” 5 X’. Hence f’ has a section. Using

~

O%X N R(X) = Ox,Xa
it follows easily that f is a local isomorphism.

REMARK. (Added in publication) (Chai) A local ring R is said to be unibranch if Ryeq is
an integral domain whose integral closure in its fraction field is a local ring. If in addition the
residue field of the integral closure of R..q is a purely inseparable extension of the residue field
of R, then we say that R is geometrically unibranch. A scheme X is said to be unibranch or
geometrically unibranch at a point z if so is the local ring O, x.

Consider the following properties for a pair (X, z), where X is a noetherian integral scheme.

GU3) X is geometrically unibranch at .

GUb5) (Strong form of Zariski’s Connectedness Theorem) For every proper morphism f: Z —
X with Z integral and f(nz) = nx, if the generic fiber of f is geometrically connected,
then f~!(z) is geometrically connected, too.

Then we have the following implications.

N3 GU3 U3
N4 GU5 <= U5

There is yet another statement that Grothendieck calls “Zariski’s Main Theorem” which
generalizes the statement we have used so far. This is the result:

THEOREM 6.4 (Zariski-Grothendieck “Main Theorem”). Let X be any quasi-compact scheme
and suppose
f+Z—X

is a morphism of finite type with finite fibres. Then there exists a factorization of f:
Z(—i> Specy A —— X

where i is an open immersion and A is a quasi-coherent sheaf of Ox -algebras such that for all
affine U C X, A(U) is finitely generated and integral over Ox (U).

The proof can be found in EGA: (in [1, Chapter III, (4.4.3)] for X noetherian f quasi-
projective; in [1, Chapter IV, (8.12.6)] for f of finite presentation; in [1, Chapter IV, (18.12.13)]
in the general case!) We will not use this result in this book. Theorem 6.4 has the following
important corollaries which we will prove and use (for X noetherian):

COROLLARY 6.5. Let f: Z — X be a morphism. Then the following are quivalent:
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a) f is proper with finite fibres,

b) f is finite (Definition 11.6.6), i.e., the sheaf A = f.Oyz is quasi-coherent, for allU C X
affine A(U) is finitely generated as algebra and integral over Ox(U), and the natural
morphism Z — Specy (A) is an isomorphism.

PROOF USING THEOREM 6.4. (b) = (a) is elementary: use Proposition I1.6.5. As for
(a) = (b), everything is local over X so we may assume X = Spec R. Then by Theorem 6.4 f
factors:

Z“—— Spec B —— Spec R.

Since Z is proper over Spec R, the image of Z in SpecB is closed as well as open, hence
Z = Spec B/a for some ideal a. Then f,Oz = B/a = Spec f,Oz. O

COROLLARY 6.6 (Characterization of normalizations). Let X be an integral scheme, Z a
normal, integral scheme and f: Z — X a proper surjective morphism with finite fibres. Then

R(Z) is a finite algebraic extension of R(X) and Z is isomorphic to the normalization of X in
R(Z).

PrOOF. Straightforward. O

COROLLARY 6.7. Let X be a normal noetherian scheme, f: Z — X a proper étale morphism
with Z connected. Then Z is isomorphic to the normalization of X in some finite separable field
extension L D R(X).

ProoF. This reduces to Corollary 6.6 because of Proposition 5.5. O

INDEPENDENT PROOF OF COROLLARY 6.5 WHEN X IS NOETHERIAN. Assume f: Z — X
given, proper with finite fibres. Let A = f,Oz. Then by the fundamental theorem of “holo-
morphic functions” (6.3), A is an Ox-module of finite type, hence A(U) is finitely generated
as algebra and integral over Ox(U) for all affine U. Let Y = Specy.A so that we have a
factorization:

7" Ly
AN
X

Note that Y is noetherian, h is proper with finite fibres and now h,0Oz; = Oy. We claim
that under these hypotheses, h is an isomorphism, which will prove Corollary 6.5. First of
all, h is surjective: in fact h proper implies h(Z) closed and if h(Z) & Y, then h.Oz would
be annihilated by some power of the ideal of h(Z), hence would not be isomorphic to Oy.
Secondly, h is injective: if h~!(y) consisted in more than one point, we argue as in the proof
that U3 = U5 and find a non-trivial idempotent in

@(h*OZ)y/mZ - (heOz)y.

v

But since h.Oz = Oy, this is just the completion @yy which is a local ring. The only idempotent
in local rings are 0 and 1 so this is a contradiction. Thus & is bijective and closed, hence it is a
homeomorphism. Since h.Oz = Oy, h even sets up an isomorphism of the ringed space (Z, Oy)
with (Y, Oy), i.e., Z 2 Y as schemes. O
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(7.2)
Spec O,y +——Spec <6y,Y/N : 6y,Y>
~l
SpeC(Oy/,y/) @) YQ/
Y Y xx Spec R Spec(Oy yr @R K)U - - -
7l | LT _——

X <— Spec @x,X +—Spec @x,X/N =R Y xxSpecK

™~ — ] T

Spec R(X) = {nX} Spec K fil (77X) XSpec R(X) Spec K

FiGUurE V .4

7. Multiplicities following Weil

We can generalize to the case of schemes the concept of multiplicity of a point for a finite
morphism introduced for complex varieties by topological means in Part I [87, (3.12), (4.19)]:

DEFINITION 7.1 (& la Weil). Let X be a noetherian integral scheme, z € X a formally
unibranch point. Let f: Y — X be a morphism of finite type and let y be an isolated point of
f71(z). Then we define mult,(f) as follows: Let R = 6:}0,)(/\/@3 By assumption this is an
integral domain. Let K = quotient field of R. Form the fibre product:

Y Y’

1] !

X < SpecR

Let ¢ € Y’ be the unique point over y. By Hensel’s lemma (Lemma IV.6.1):
Y =Y/ UY] (disjoint)
Y{ = Spec O, y/, being finite over Spec R.
Define
multy f=dimg (Oy/,y/ KRR K) .

If we write down all the schemes that this interesting definition suggests, we get the diagram
in Figure V.4 which needs to be pondered (we let N = /(0) in O, x): This shows that to get
mult, f, we take the generic fibre of f, extend it to the bigger ground field K D R(X), split this
K-scheme into two disjoint pieces in some sense by specializing from 7x to x, and then measure

the size of one of these pieces!
A few comments on this definition:

7.3. [k(y) : k(z)]s divides mult, f, hence we write
multy (f) = k(y) : k(z)]s - multz(f).

PROOF. Let L C k(y) be the subfield of elements separable over k(z) and let O be the finite
étale extension of O, x with residue field L, as in Corollary IV.6.3 (see also §3 of the present
chapter). Then by Corollary IV.6.3, O, y+ is an O-algebra, hence if K is the quotient field of



198 V. SINGULAR VS. NON-SINGULAR

0, Oy vy’ @r K is a vector space over K. Therefore [K : K]| mult, f. But

[K : K] = rank of O as free (/9\30 x-module
= [L : k(x)]
= [k(y) : k(z)ls-

7.4. multy f > 1 if and only if Y has a component Y1 through y dominating X (i.e., ny, —
nx)-

Proor. If Y has no such component, there will be some non-zero a € O, x such that
ffa =01in Oyy. Therefore f*a = 0in Oy ys and Oy y @r K = (0). To prove the converse,
use generic flatness (Theorem IV.4.8): there is a non-zero a € O, x such that the localization
(Oy.y)a is flat over (O x)q. Making the base change, it follows that Y7 is flat over Spec R over
the open set R,. But then

mult, f =0 = Oy y' ®r Rq = (0)
—ad=0in0O .y for some [
—a'=01in Oy y/N-O yv (see diagram in Figure V.4)
=—ad" =0in Oy7y for some m
—ad" =0in Oy
=—> no component of Y through y dominates X.
O

7.5. Assume X is formally normal at x and that all associated points of Y lie over nx. Then
multy f = 1 if and only if f is étale at y.

PROOF. If f is étale, then f is flat, hence Y{ — Spec R is flat, hence O, y- is a free R-module
of some rank n. But on the one hand,

n =dimg Oy yr @r K = mult, f
and on the other hand:
n = dimk(x) Oy’,Y’ ®@rk(x) = dimk(x) Oy,ffl(a:)'

But f~!(z) is zero-dimensional and reduced at y because f is étale, hence O, s-11,) = k(y),
hence n = [k(y) : k(z)]. But f étale also implies k(y) separable over k(z), so multy f = 1.
Conversely, if mult, f = 1, then using the notation of the proof of (7.3), Oy y» @ K = K.
Now O is étale over @x x which we have assumed is an integrally closed domain. Therefore @}
is an integrally closed domain. But if a = {a € Oy y'|a-b=0forsomebec R, b# O} then

Oy .y’ /ais an O- algebra, integrally dependent on O and contained in O vy Qp K = K. Thus

Oy yr/a= O. Using generic flatness of f as in (7.4), we find a € O, x such that (O, y-), is flat
l

over R,. Since this means (O, y'), is torsion-free as R,-module, a, = (0) or a' - a = (0), some
[. But now by hypothesis a # 0 at any associated point of Y so

Oyy — Oyy
is injective. Since Y X x Spec R is flat over Y,

a
Oyl7Y, Oy/7Y/
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is injective too. Therefore a = (0), and Oy y+ = O. Therefore

(QY/X)Z/ ®Oy,Y k(y) = (QYl// Spec R) ®Oy/’y/ k(y)
L

1

(QSpec (5/ Spec R) ®(5
= (0)

so Y is étale over X at y by Criterion 4.17. O

The most famous result about multiplicities is the formula n = ) e;f; (cf. Zariski-Samuel
[119, vol. I, p. 287]). In our language, the result is:

THEOREM 7.6. Let f: Y — X be a finite surjective morphism between integral schemes, and
assume X formally irreducible at x. Then if f~1(x) = {y1,...,y}:

R(Y) : R(X)] = Y mult;(f) - k(y) : k(2)].
=1

Proor. This follows immediately from the big diagram in Figure V.4: in fact,

t
Y xx SpecR = U Y/ (disjoint)
i=1

where Y has one closed point y; lying over y; € Y. Then
t
Spec(R(Y) @r(x) K) = ' (nx) Xspeer(x) SPec K = |_J Spec(Oy y7 ©r K),
i=1

hence

Therefore

t
= Zdim}( (Oy«fryil QR K)

i=1

t
= multy, f.
i=1

Exercise—Modifications needed

For some of the notions and terminology in the following, the reader is referred
to Part 1 [87].

(1) When z is a regular point of X, use ‘Exercise 1, §4A ‘ with R = (5%)( to prove that

mult, (f) = e(mgy x - Oyy; Oy y).

Use this to give a second proof of the equality of the “results” of Part I and Part II in
case X is non-singular at x.
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In the definition of mult,(f), say X is any intermediate integral scheme:

X +— x +— SpecR

nx 15 1[(0)]
such that the decomposition of Y” is induced by a decomposition already over X:
Y xx X =Y, UYa.
Let 7 = image of 3/ in 171, T = image of 2’ in X and K = R()?) Then show
mult, f = dimz (O~~ ®o, 5 I?) .

YY1 X

Now if X is of finite type over C, take
X = Spec Oy x an-

Using the fact that Oy yan is a finite O, x an-module, show that ¥ x x X as above
decomposes and that 171 = Spec Oy y,an. Deduce that the multiplicity of (7.1) is equal
to the multiplicity of Part I [87, (4.19)].

Referred to in §VIIL.3 (Kummer theory) Let X be a noetherian scheme with 1/n,( €
I'(Ox), ¢ = primitive n-th root of unity, and consider pairs (7, ¢):

vy e
d
X
7 étale and proper, m = wo ¢, ¢" = 1y and for all geometric points:
A: Speck — X, k algebraically closed,
we assume
Y X x Speck = n points permuted cyclically by ¢ x 1.

We call this an n-cyclic étaleN covering of X. Prove that 3 an invertible sheaf £ on X
and an isomorphism «: £" — Ox such that
Y = Specy A
A=0x oL L@ - @ L
with multiplication
; ; Lt 1+j3<n
Lk — { Litimn i—l—; > n via a.

Hint: Write Y = Specy A (cf. Proposition-Definition 1.7.3) and show that A decom-
poses into eigensheaves under the action of ¢*:

n—1
A=PL, ¢@)=¢" -z, zeLl,(U).
v=0

Use the fact: flat 4 finite presentation over a local ring = free to deduce that the
L, are locally free. Then show by computing geometric fibres that rk £, = 1 and
multiplication induces an isomorphism £; ® L; = Liyjor Litj_n. Show conversely
that for any £, a;, we obtain an n-cyclic étale covering Y. Deduce that if X is a complete
variety over an algebraically closed field k, then:

{Set of n-cyclic étale coverings} = {\ € Pic(X) | nA = 0}.
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(See Theorem VIII.4.2 for the case n = chark.)
(cf. Remark at the end of §2) For simplicity, let S = Spec(k) with a field k. For a finite
dimensional k-vector space E, consider the Grassmannian scheme Grass”(E) over k.
Let

0 — K — Ograss"(m) @k B~ Q — 0

be the universal exact sequence on Grass"(E). A k-rational point x € Grass"(E)
corresponds to an exact sequence of k-vector spaces

0 — K(x) — F — Q(z) — 0,

where IC(z) and Q(x) are the fibres at x of IC and Q, respectively. Using the description
of the tangent space in terms of k[e]/(¢?) in §1, show

Ty Grass™ () = Homy (K(z), Q(z)),
hence

Ty Grass () = Homy(Q(z), K(z)).
(The tensor product £™ of a line bundle £ is denoted £® here, to avoid confusion
with the direct sum £%".) Let X be a noetherian integral scheme, £ an invertible

Ox-module, and f € T'(X,L®") a global section of L% n > 2. Let B C X be the
Cartier divisor defined by f, so that f defines an isomorphism £®" = Ox(B). Let

L := Spec (@mzo £®(*m)) N X, thought of as the total space of the line bundle

over X whose sheaf of germs of sections is £. Denote by T the tautological global
section of 7*L, corresponding to the canonical element

1el(X, % VeL)c Prx,comer)=T(L7L).
m>0
The cyclic covering of order n of X attached to the triple (X, L, f) is by definition the
divisor Y C L of the section T" — 7*f € T(L,7*L®"). Let 7: Y — X be the finite
locally free morphism induced by 7. Let By C Y be the Cartier divisor in Y attached
to the Ty € I'(Y,7n*L), the image in in I'(Y, 7*L) of the tautological section of 7*L.
(i) Show that m,Oy is isomorphic to @ogmgn_lﬁ‘@(_m) as an Ox-module.
(ii) If n is invertible in Oy, then 7: 77 1(Y \ By) — X \ B is finite étale.
(iii) Verify that Bj is the inverse image of B in Y, and we have a natural isomorphism
7L = Oy (By). Consequently 7*Ox (B) = Oy (B1)®™.

(iv) Suppose that n is invertible in Ox and X is smooth over a scheme S. Then the
canonical sheaf Ky/g := €y g for Y//S is isomorphic to 7 (ICX/S ® £®(”*1)).
Work over an algebraically closed field k of characteristic # 2. Let B C P? be a smooth
conic curve defined by a homogeneous quadratic polynomial f(z,y,z2). Let m: Y — P?
be the double cover of P? attached to the triple (P2, Op2(1), f), a smooth projective

surface.

(i) Show that £ := 7*Op2(1) is an ample invertible Oy-module. Moreover the com-

plete linear system |['(Y, £)| is base point free.

(ii) Show that the canonical sheaf Ky := Q% is isomorphic to £&72, and (Ky)? = 8.

(iii) If [ is a line in P? meeting B at two distinct points, then 7~ 1(I) is a smooth curve
in Y and deg(L|-1(;y) = 2.

(iv) If I is a tangent line to B, then 7—({) is the union l; Uls of two smooth curves in
Y meeting transversally at a point. Moreover deg(ﬁ\lz_) =1fori=1,2.

(v) Show that B is isomorphic to P! x P!L.
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Show that dimT(Y,£) = 4, dimT['(Y, £%?) = 9, and dim Symm?(I'(Y, £)) = 10.
Conclude that the image of the morphism ¢,: Y — P3 defined by the complete
linear system |['(Y, £)| is contained in a quadric hypersurface in P3.

Show that ¢, is a closed embedding.

(7) Work over a field k of characteristic # 2. Let B C P? be a smooth curve defined
by a homogeneous polynomial f(z,y,z) of degree 4. Let 7: Y — P2 be the double
cover of P2 attached to the triple (P?, Op2(2), f), a smooth projective surface. Denote
by Bj the ramification locus of 7 in Y. We know by construction that 7 induces

an isomorphism B; —+ B. Moreover the anticanonical sheaf K{‘?*l is ample and
isomorphic to 7*Opz2(1); denote it by L. (Note: It is known that Y is a Del Pezzo
surface of degree 2, i.e., Y Xgpeck Spec k8 is isomorphic to the blow up of P? whose

center is the union of 7 distinct points of P2, no three of which lie on one line and no

six of which line on one conic.)

(i)

Suppose that [ is a line in P? intersecting B transversally at 4 distinct points, i.e.,
[ is not a tangent line to B. Let D; = 7~ 1(I) be the inverse image of [ in Y. Show
that Dy is a smooth curve, degp(Ky) = —2, (D) =2, and D is a curve of genus
1.

Show that the inverse image of any line in P? tangent to B is a singular divisor in
Y. Here the inverse image of a line [ in Y means Spec(Oy /7n*Z - Oy), where T is
the ideal of Op2 which defines the line [.

Suppose that [ is line in P? that is tangent to B at a point g, and [ intersects
B transversally at two points x1 # xo different from xg. Let Dy = ﬂ_l(l) be the
inverse image of [ in Y, and yg, y1, y2 the three points of Dy above zg, x; and
T2, respectively. Show that Ds is an irreducible divisor on Y with (D3)? = 2,
(Ky - D3)y = —2. The curve Dy is smooth at y; and y2, and has an ordinary
double point at yg. Moreover D> is a rational curve.

Suppose that [ is a line in P? that intersects B at a point x¢ with multiplicity 3.
Let D3 = m—!(I) be the inverse image of [ in Y. Show that D3 is an irreducible
rational curve with a cusp, with (D3)? =2, (Ky - D3)y = —2.

Suppose that [ is a line in P? that is tangent to B at two distinct points z; and xs.
Assume moreover that every element of k has a square root. Show that the inverse
image of [ in Y is a union of two smooth curves C; and Cs meeting transversally
at the two points y1, yo above x; and xs, respectively, and the map 7 induces an
isomorphism C; — [ for i = 1,2. We have degg,(£) = ((C1 + Ca) - Ci)y = 1,
degci (ICy) = —1, (Cﬂ%; = —1, (Cl . Cg)y = 2.

Hint: Here is a sample calculation. After a linear change of variables, we may
assume that the equation of the tangent line is y = 0, and the affine equation of
the plane curve B is of the form f(x,y) = yg(x,y) + a(z — b1)?(x — by)?, with
g(z,y) € klx,y], a,b1,by € k, a # 0, by # by, where (x,y) = (b;,0) corresponds to
the point z;. Then over the affine open in question, the inverse image of [ in Y is
Spec (klu, z]/(v® — a(z — b1)?(z — b2)?)).

Suppose that [ is a line in P? that intersects B at a point zq with multiplicity 4.
Show that the inverse image of [ in Y is a union of two smooth rational curves
C1 and Cy on Y meeting at the point yg above xg with multiplicity 2. We have
degc, (£) = ((C1 + Ca) - Cy)y = 1, deg, (Ky) = —1, (Co)y = 1, (C1 - Ca)y =2,

same as in (v).
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Work over a field k of characteristic # 2. Let B C P? be a smooth curve defined by a

homogeneous polynomial f(z,y, 2) of degree 6. Let 7: Y — P2 be the double cover of

P2 attached to the triple (P2, Op2(2), f), a smooth projective surface. Denote by B the

ramification locus of 7 in Y. We know by construction that 7 induces an isomorphism

By — B. Moreover the anticanonical sheaf Ky is trivial. Let £ := 7*Op2(1), an

ample invertible Oy-module of degree 2.

(i) Show that H°(Y,Oy) = (0). (Note: The polarized surface (Y, L) is a K3 surface

of degree 2.)

(ii) Let [ be a line in P2, and let C' := Y xp2 [ be the scheme theoretic inverse image
of [ in Y. Show that if [ intersects B transversally at 6 distinct points, then C' is
a smooth curve of genus 2, and the ramification locus in [ of the projection C' — I
isiNB.

(iii) Notation as in (ii). Discuss all possibilities of the configuration of C, including the
following.

(a) If [ is tangent to B at zp and intersects B at four distinct points x1, xa,
x3, 14 different from zg, then C is irreducible, (C')? = 2, C has an ordinary
double point at the point yo above xg, and the normalization C of Cis a
smooth curve of genus 1. (Write down the j-invariant of C in terms of the
cross ratio of the four points x1, z2, x3, T4 on [.)

(b) If [ is tangent to B at two distinct points z; and x9, and | meets B at two
distinct points x3, x4 other than x; and x9, then C' has two ordinary double
points at the two points y1, yo above x1, x2, and the normalization of C is
a smooth curve of genus 0.

(c) If I is tangent to B at three distinct points z1, x2, z3, then C is the disjoint
union of two smooth rational curves F1, Fo meeting transversally at the three
points y1, y2, y3 above z1, x2, r3, with (E1)? = (E3)? = -2, (B1 - Es) = 3.

(A degenerate case of (c) is: [ meets B at xo with multiplicity four. and at x;
with multiplicity two; then E; meets Fo with multiplicity 2 at y9. A degenerate
case of (a) is: | meets B at zp with multiplicity three and also at three other
distinct points x1, xa, x3; then C' has a cusp at the point yy above xg, and the
normalization of C' is a smooth curve of genus 1.)

(iv) Show that there are only a finite number of complete smooth curves of genus 0 on
the surface Y.

A double siz in P3 is a pair of sextuples of disjoint lines (I1,...,ls), (m1,...,mg) such

that [; Nm; = 0 for all ¢ and [; meets m; at a point if ¢ # j. Find a double six on the

Fermat cubic. (Find the number of all double six’s if you feel adventurous.)

Find all lines on the Fermat cubic surface in P3.

Let X = G(2,4) be the Grassmanina of lines in P3. Let S — X be the tautological

rank two subbundle of the trivial rank four vector bundle on X, and let SV be the dual

of S. Let £ := Symm3(SV) be the third symmetric product of SV, a rank four vector

bundle on X. We want to compute the Chern number ¢4(€), i.e., the pairing of ¢4(&)

with the fundamental class of X. This number is the “expected number of lines” on a

generic cubic surface in P3, because any cubic form f(zg, 21, T2, z3) defines a section s ¥

of £, and the zero locus of this section corresponds to lines in the cubic surface defined

by f(l’o, T1,X2, .%'3).

First we express ¢4(€) in terms of ¢1(SY) and c3(SY). This is an exercise in symmetric

functions in two variables, i.e., we will get a formula for ¢4(Symm?® F) for every rank
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two vector bundle F. Apply the splitting principle: assume that F = £ & L5. Then

c(Symm® F) = (14 3c1(£1)) - (14 2¢1(L1) + 2(L2)) x

X(1+c1(L1) 4+ 2c2(L2)) - (1 + 3e1(L2))
and we get
ca(Symm?® F) = 9¢1(L£1)ea(L2) - (2¢1(L£1) + ca(L2)) - (e1(L1) 4 2¢2(L2)
= 9¢o(F)? + 18¢1 (F)%ca(F)
from the identity
Ot1to(2ty + to)(t1 4 2t2) = I(t1te)? + 18t1ta(ty + t2)2.
Applying the general identity to F = SV, we get
cs(E) = 9¢2(SY)2 + 18¢1(SV) %2 (SY).

To evaluate the Chern number c4(€), first recall that
01(5\/) = 01,0, 02(3v) = 01,1,

where 01 and 01,1 are Schbert cycles on X; see Griffiths-Harris [44]. The rest is an
exercise in the Schubert calculus for G(2,4). There are four Schubert cycles whose di-
mensions are between 1 and 3: 01, 02,0, 01,1, 02,1, of dimensions 3, 2, 2, 1, respectively.
Their products are given by

01,0010 =020+ 011, 010 020 =021, 010 01,1 =021,
020-020=1, o010-021=1, o11-011=1, o209-011=0.
So we get
VA2
CQ(S ) =01,1°01,1 = 1,
V2 V
c1(8V)*ca(SY) =010 010011 =1

and
c1(E) = 9¢2(8Y)? +18¢1(SV)%ca(SY) = 9 + 18 = 27.



CHAPTER VI
Group schemes and applications

1. Group schemes

DEFINITION 1.1. Let f: G — S be an S-scheme. Then G is a group scheme over S if we are
given three S-morphisms:

p: Gxg G— G (“multiplication”)
1 G—G (“inverse”)
e:S—G (“identity”)
such that the following diagrams commute:

a) (“associativity”)

1G»GX,SVG
GXS(GXSG)

K

| G

(GxsG)xs G xig /
G Xg G

b) (“left and right identity laws”)

1g xe
GxgS——GxsG
~|l
G

e \M*G
- o

SxsG—Gxs G
exlg

c) (“left and right inverse laws”)

1Gv><L
GxsG———GxsG

T T
A\ ix1g /

GxgG@ ————GExgG g

G

To relate this to the usual idea of a group, let p: T"— S be any scheme over S and consider
Homg(T, G), the set of T-valued points of G over S! Then:

a’) via u, get a law of composition in Homg(T, G):
Vf,g9 € Homg(T, G), define f - g to be the composition:

Y9 axsa G
(this is associative by virtue of (a)),

b’) via €, get a distinguished element € o p € Homg (T, G) which is a two-sided identity for
this law of composition by virtue of (b),

205
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') via ¢, get a map f + f~1 of Homg(T,G), f~ = vo f, which is a two-sided inverse for
this law of composition by virtue of (c).

Summarizing, (u, €, ) make Homg(T', G) into an ordinary group for every T" over S: For instance,
if S = Speck, then the set of k-rational points of G is a group, and if k is algebraically closed
and G is of finite type over k, this means that the set of closed points of G is a group. If you
think about it, this is really what one should expect: for instance suppose you want to consider
A} as a group via vector addition. If A} = Speck[X1, ..., X,], then for any two k-valued points
P’, P” their sum is defined by:

XZ(P/ + P”) = XZ(P/) -+ XZ‘(P”);
thus if u(P’, P") = P’ + P”, then the pull-back of the function X; is computed via:
1 (X;) = X (u(P', P"))
= Xi(P') + Xi(P")
= (Xjop1)(P', P") + (X; 0 p2)(P', P)
= (P1X; + p5.X;) (P, P").

Thus the law of composition:

AZ X Spec k AZ - Az
Il I
Speck[pi X1, ..., 01 Xn, 05X, ..., p5X5] Speck[ X1, ..., X,]

is defined by p*X; = piX; +p5X;. Similarly, define ¢ and € via t*X; = —X; and €*X; = 0. Now if
n € A} is the generic point, then to try to add 7 to itself, one would choose a point ¢ € A} x A}
such that p1(¢) = p2(¢) = n and define n + 1 to be ©(¢). But, taking n = 1 for instance, then
one could take

generic point of A}f X A]{;
(=4 or
generic point of line pi X = —p5X + a, (a € k).

In the first case, one sees that p(¢) = generic point of A}, and in the second case, u(¢) =
(the point X = a)! The moral is that 7 + 7 is not well-defined.
Another standard group scheme is: define

1
GL,,=S kX1, ... Xpn] | ———
kP < = ] [det(Xv:j)D

pr(Xig) = > pi Xk - ps X

k=1
€' (Xij) = 0ij
b
det(Xi/j/) ’

*(Xy5) = (=1)" . ((4,4)-th minor of (X;))
More elegantly, all the group schemes GL,, ;, (resp. A}}) over various base schemes Speck are
“induced” from one single group scheme GL,, 7 (resp. A7) over SpecZ. One checks readily that
if f: G — S is a group scheme over S, and p: T — S is any morphism, then ps: G xgT — T
is a group scheme over T in a canonical way. And one can define “universal” general linear and
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affine group scheme by:

1
GL,7 =S Z1X11,...,X _—
o = opee ( — ] [det(Xz'j)D
7 = SpecZ[ X1, ..., X,
w*, €, 0" given by the same formulae as before.
(Added in publication)
In terms of the way we defined S-schemes as representable functors (Sch/S)° — (Sets) in
1.8, we can formulate group schemes over S as follows:
Denote by (Groups) the category consisting of groups and homomorphisms of groups. Then
group schemes GG over S are exactly those S-schemes such that the functors hg they represent

are group functors, that is, factor through the functor (Groups) — (Sets) (that sends a group
to its underlying set and a homomorphism to the underlying map)

ha: (Sch/S)° — (Groups) — (Sets).
Here are some examples:

ExXAMPLE 1.2. (cf. Example 1.8.4) G, 5 = Specg(Og[T]) is a commutative group scheme
over S with the additive group

HomS(Z, Ga,S) = F(Z, Oz) for Z € (SCh/S)

and with an obvious homomorphism f*: I'(Z, 0z) — I'(Z’, O4) for every S-morphism f: Z' —
Z.

More generally, we have:

ExXAMPLE 1.3. (cf. Example 1.8.5) Let F be a quasi-coherent Og-module on S. Then the
relatively affine S-scheme
Specg(Symm(F)),

where Symm(F) is the symmetric algebra of F over Og, represents the additive group functor
G defined as follows:

G(Z) =Homp,(Oz ®p4 F,Oz) for Z € (Sch/S)
with the obvious homomorphism
G(f) = f* : Homo,(Fz,0z) = Homo,, (Oz ®og F,Oz) = Homo,, (f*(Oz ®og F), f*Oz)
for f € Homg(Z', Z).
Similarly to Example 1.2, we have:

EXAMPLE 1.4. (cf. Example 1.8.6) G,, s = Specg(Og[T,T7']) is a commutative group
scheme over S with the multiplicative group

Homg(Z, Gy 5) =T1(Z,02)* for Z € (Sch/S),
where the asterisk denotes the set of invertible elements, with the obvious homomorphism
17 T(Z,02)" »T(2,02)"
for each f € Homg(Z', Z).

More generally:
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EXAMPLE 1.5. (cf. Example 1.8.7) Let n be a positive integer.
1
GLy,s = Specg <OS {Tn, ooy I, M]) ;
where T" = (Tj;) is the n x n-matrix with indeterminates 7Tj; as entries, is a relatively affine
S-group scheme representing the multiplicative group functor

HomS(Z, GLn,S) = GLn(F(Z, Oz)), for Z € (SCh/S),

the set of invertible n x n-matrices with entries in I'(Z,Oz), with obvious homomorphisms
corresponding to S-morphisms. Clearly, G, s = GL1 g.

Even more generally, we have (cf. EGA [1, Chapter I, revised, Proposition (9.6.4)]):

EXAMPLE 1.6. (cf. Example 1.8.8) Let £ be a locally free Og-module of finite rank (cf.
Definition 5.3). The multiplicative group functor G' defined by

G(Z) = Autp, (07 ®o, €) for Z € (Sch/S)

with obvious homomorphisms corresponding to S-morphisms is represented by a relatively affine
group S-scheme GL(E). Example 1.5 is a special case with

GL,,s = GL(O%"™).

ExaMpPLE 1.7. For a positive integer n and a scheme S, the “multiplicative group of n-th
roots of unity” p, g is the multiplicative group scheme over S defined by

pns(Z2) ={C€T(Z,02)" [ (" =1}, VZ € (Sch/S)

with obvious homomorphisms corresponding to S-morphisms Z’ — Z. It is represented by the
S-scheme

fin,s = Specg(Oslt]/(t" — 1)).

ExaMPLE 1.8. Let S be a scheme of prime characteristic p (that is, p = 0 in Og, e.g.,
S = Spec(k) for a field k of characteristic p > 0). «, g is an additive group scheme over S
defined by

ap5(Z)={£€l(Z,0z) | & =0}, VZ € (Sch/S)
with obvious homomorphisms corresponding to S-morphisms Z’ — Z. It is represented by the
S-scheme
ap,s = Specg(Os[t]/(t7)).

For v > 2, we can define oy g similarly.

ExaMpPLE 1.9. The relative Picard functor in Example 1.8.12 is the commutative group
functor
Picx/g: (Sch/S)® — (Groups)
defined by
Picy,s(Z) = Coker[p™: Pic(Z) — Pic(X xg Z)] for each S-scheme ¢: Z — S

and the homomorphism f*: Picx,4(Z) — Picx/g(Z’) induced by the inverse image by each
S-morphism f: Z' — Z. The “sheafified” version of the relative Picard functor Picx/s when
representable thus gives rise to a commutative group scheme over S called the relative Picard
scheme of X/S. The reader is again referred to FGA [2, exposés 232, 236] as well as Kleiman’s
account on the interesting history (before and after FGA [2]) in FAG [3, Chapter 9]. See also
Bosch, Liitkebohmert and Raynaud [26] and Mumford [84]. It is not hard to see that

Lie(Picy,;) = H' (X, Ox)
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in the sense to be defined in Proposition-Definition 1.12 below.
Murre [88] gave a general criterion for the representability of commutative group functors
over S = Spec(k) with a field k.

EXAMPLE 1.10. (FGA [2, exposés 195, 221]) Let X be a scheme over S. The automorphism
functor of X/S is the multiplicative group functor G: (Sch/S)° — (Groups) defined by

G(Z) = Autyz(X xg Z), for Z e (Sch/S)

and an obvious homomorphism G(Z) — G(Z') induced by the base extension by each S-
morphism f: Z' — Z.

If it is representable, then the S-scheme representing it is denoted Autg(X) and called the
automorphism group scheme of X/S. It is not hard to see that over a field k,

Lie(Aut; (X)) = H°(X,Ox) = the tangent space of Auty(X) at idy

in the sense to be defined in Proposition-Definition 1.12.
For instance, if X = P%, then Autg(P%) = PGLy41,s (cf. Mumford [83, Chapter 0, §5,
p.20]), where

P% = Projg(Og[Xo, ..., Xn]) =P% x S, PGLys1.g = PGLyyyz xS

PGL,+1 = PGL;, 117 open subset of Proj(Z[Aqo, ..., Ann]) with det(A4;;) # 0.

Matsumura-Oort [79] gave a general criterion for the representability of group functors over
S = Spec(k) with a field k, generalizing the commutative case dealt with by Murre [88].

THEOREM 1.11 (Cartier [28]). Any group scheme G of finite type over a field k of charac-
teristic 0 is smooth, hence, in particular, reduced.

PROOF. We reproduce the proof in [85, Chapter III, §11, Theorem, p.101]. Denote by e € G
the image of the identity morphism e: Spec(k) — G. Obviously e is a k-rational point, that is,
k(e) = k. For simplicity, we denote

0= Oe,Gy m=meq.

By what we saw in §V.4, it suffices to show that O is a regular local ring, since the argument works
for the base extension G' Xgpeck Spec k to the algebraic closure k, and the translation by Spec(k)-
valued points of G' are isomorphisms sending e to the other closed points of G Xgpec Spec k.
Choose 21, ...,T, € m so that their images form a k-basis of m/m2. Thus we obtain a con-
tinuous surjective k-algebra homomorphism from the formal power series ring to the completion

of O:
k[t ..t — O,  alt) = .
As we show immediately after this proof (cf. Proposition-Definition 1.12), the map
Der(O) — Homy,(m/m? k) = T, ¢

sending a local vector field D € Deri(O) at e to the tangent vector of G at e sending f € m to
(Df)(e) is surjective. Hence we can choose D1, ..., D, € Dery(O) such that

Di(xj) = dij-
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The D;’s obviously induce derivations of the completion O so that we get the Taylor expansion
map (k is of characteristic 0!)

B: 0 — k[[t1, ..., tn]]

Fs Z (DTI'”Dan)(e)tTl---t;’L”,

W vl
v; >0
which is a continuous k-algebra homomorphism. f is surjective since 3(x;) = t; mod (t1,...,t,)>.
Consequently, 8 o « is a surjective k-algebra homomorphism of k[[t1, ..., t,]] onto itself, hence

is an automorphism. Thus « is injective as well so that
a: k[[t1,...,t)]] — O,
and O is regular, hence so is O. (]

In general, let G be a scheme over a field k, and e a k-rational point of G. Denote by
Dery(Og) the space of global k-derivations of Og into itself, that is, the space of wvector fields
on G.

Introduce the k-algebra of “dual numbers”
A = E[0]/(6?) = k @ ko.

Then the vector fields D € Dery(Og) are in one-to-one correspondence with the A-algebra
automorphisms

]_N):OG®1€A;>OG®1€A

inducing the identity automorphism modulo § by
D(a+b6) = a+ ((Da) +b)s,  a,be Og.

Likewise, the tangent vectors t € Dery(O, g, k) of G at e are in one-to-one correspondence with
the A-algebra homomorphisms
t: Oe,g QA — A

inducing the canonical surjection O, ¢ — k mod m, ¢ by

t(a+bd) = ale) + (t(a) + b(e))d, a,b e O q.

PROPOSITION-DEFINITION 1.12. Let G be a group scheme over a field k. A wvector field
D € Derg(O¢) is said to be left invariant if

O —2—— 0q

| |+

1®rD
Ocx,c —— Ogx,a

is a commutative diagram. The k-vector space Lie(G) of left invariant vector fields on G is called
the Lie algebra of G. We have a natural isomorphism of k-vector spaces

Lie(G) AN Teg,

where e € G is the image of the identity morphism e: Spec(k) — G.



1. GROUP SCHEMES 211

PRrOOF. Let
D: Og®p A = O @i A

be the the A-algebra automorphism corresponding to a vector field D € Derg(Og). Then the
left invariance of D is equivalent to the commutativity of the following diagram

G % G x5 Spec A — P @ %) G x 1 Spec A

(*) quA‘/ ‘/MXIA

G X SpecA ————— G X, SpecA,
D

where we use the same symbol D for the (Spec A)-automorphism G xj Spec A —— G x}, Spec A
induced by D: Og @1 A — Og @y, A, ete.
If we denote

D' = proD: G xzSpec A 25 G x Spec A 2L G,
then the commutativity of the diagram (x) is equivalent to
D'z -y,l)=xz-D'(y,l), Va,y € G(Z), Vile (SpecA)(Z) (Z-valued points)
for any k-scheme Z, or equivalently,
D'(z,1) =z - D'(¢,1), Ve € G(Z), Ve (SpecA)(Z)

for any k-scheme Z. If we denote

t=p oDo (e,15): Spec A — G X}, Spec A 2Ny X Spec A 25 G,
then D is the right multiplication by ¢ € G(SpecA). Thus the A-valued points t of G are in

one-to-one correspondence with the automorphisms D of G x; Spec A over Spec A such that the
diagram (x) commutes by the correspondence

ploﬁo(e,lA):z

Thus the left invariant vector fields D € Dery(O¢) are in one-to-one correspondence with the
tangent vectors
t e Derk(Oeyg, k‘) = Te,G-
i

REMARK. When S = Spec(k) with a field k of characteristic p > 0, the additive group
scheme

apr,s = Spec(k[t] /("))
is not reduced with only one point! If n is divisible by p, the “multiplicative group of roots of
unity” p, g is not reduced either. Indeed, if n = p” x n’ with n’ not divisible by p, then

in,s = Spec(k[t]/(t" — 1)) = Spec(k[t]/(t" — 1)"").
DEFINITION 1.13. An S-morphism f: H — G is a homomorphism of group schemes over S
if the map
f(Z): HZ) — G(Z), VZ € (Sch/S)
is a group homomorphism. The kernel Ker(f) is then defined as the group functor

Ker(f)(Z) =Ker(f(Z): H(Z) — G(2)), VZ € (Sch/S)

with obvious homomorphisms corresponding to S-morphisms 2’/ — Z.
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Obviously, Ker(f) is a group scheme over S represented by the fibre product
Ker(f) — S

Ll

HTG,

where €g is the identity morphism for G.

ExamMpLE 1.14. If G is a commutative group scheme over S with the group law written
additively, the morphism nidg for any positive integer n defined by

G(Z)5 € nidg(§) =nE=E+---+E€G(Z),  VZ € (Sch/S)
n times

is obviously a homomorphism of group schemes over S. Very often we denote ,G = Ker(nidg).
For example

Hn,S = nGm,S .
There is an important homomorphism peculiar to characteristic p > 0.

DEFINITION 1.15. Let S be a scheme of prime characteristic p (that is, p = 0 in Og, e.g.,
S = Spec(k) with a field k of characteristic p > 0). As in Definition IV.3.1 denote by

¢ps: S — S

the morphism that is set-theoretically the identity map while ¢%(a) = a® for all open U C S
and for all a € I'(U, Og). For any S-group scheme 7: G — S, we have a commutative diagram

ote:

Q

m K

nN+——Q

—
—

O p—

9

¢s

hence a morphism, called the Frobenius morphism,
F:G— GP =GW/9 .= (8, ¢g) x5 G,

where (S, ¢g) denotes the S-scheme ¢g: S — S. By the commutativity of the diagrams involving
@’s, F' is easily seen to be a homomorphism of group schemes over S, and is called the Frobenius
homomorphism.

We define the iterated Frobenius homomorphism

V-G — aq®) = q®/s)
similarly.

ExXAMPLE 1.16. We have

ap s = Ker(F: G, 5 — G((I%)

For the following result, we restrict ourselves to the affine case S = Spec(k) with a commu-
tative ring k with 1 for simplicity.

THEOREM 1.17 (Cartier duality). Let G = Spec(A) be a commutative finite locally free group
scheme over a commutative ring k with 1. Then the group functor

~

G: (k-algebras) — (Groups)
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defined for every k-algebra R by
é(R) = HomR—groupscheme(GRa Gm,R)a
with GR := G Xgpec(k) SPeC(R), Gy, r := Gy X Spec(R)
and an obvious homomorphism @(Rl) — @(Rg) for every k-algebra homomorphism Ry — Ra,
is represented by a commutative finite locally free k-group scheme Spec(A’) with
A= Homk-module(Aa k)

endowed with an appropriate commutative co-commutative Hopf algebra structure over k. There
s a canonical isomorphism

Qn

G =

G is called the Cartier dual of G.

PROOF. Since G = Spec(A) is a commutative finite locally free group scheme over k, the
k-algebra A is a projective k-module of finite rank endowed with the following k-linear maps

(unity) itk— A
(multiplication) m: A A— A
(inverse) T:A— A
(co-unity) e: A=k

(co-multiplication) pu: A — A®; A

satisfying the axioms for a commutative co-commutative Hopf algebra over k.
Let A" := Homy_module(4, k). Dualizing the structure maps for A, we get k-linear maps

(unity) i' k— A
(multiplication) m: A, Al — A
(inverse) ' Al — A
(co-unity) €: A=k

(co-multiplication) p': A" — A’ @ A’
making A’ a commutative co-commutative Hopf algebra over k. Here ¢’ is the transpose of €, m/
is the transpose of u, 7/ is the transpose of 7, €' is the transpose of 7 and p’ is the transpose of
m.

Let G = Spec(A’) be the commutative finite locally free group scheme attached to A’.

For every commutative k-algebra R, we use a subscript R to denote the base-changed objects
like Ap := A®y R, A, = A ®; R = Homp_module(Ar, R) and for morphisms like p/: Ay —
Ay @r Ay, € Ay — R.

The set of R-valued points

G(R) = Homk-alg(A; R) — Homk’-module(Aa R) = HomR-module(ARa R) = AIR
of GG is identified with the set of all $ € A, satisfying the following properties (i) and (ii):

() Ha($) = @ b € Ay @R A
(ii) €x(¢) =1€ R.
(ii') ¢ € (AR)".
Note that (i) says that the R-linear map ¢: Ap — R corresponding to $ € Ay respects mul-
tiplication, while (ii) says that ¢ oir = idg. So (i) and (ii) say that ¢ is a homomorphism of
k-algebras.
On the other hand, the set

I—IOInR—groupscheme(é X Spec(k) SpeC(R)7 Gm x SpeC(R))
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of all R-homomorphisms of R-group schemes from G X Spec(k) Spec(R) to Gy, x Spec(R) is nat-
urally identified with the set of all elements ¢ € A, satisfying the conditions (i) and (ii’).

LEMMA 1.18. Suppose that ¢ € Al, satisfies (i). Then (ii) and (ii') are equivalent. In other
words, one has a natural bijection

G(R) < Homy, groupscheme(G: Gum o) (R).
PROOF OF LEMMA. (ii')==(ii). Applying the identity
(€r ® €R) o g = €g
(corresponding to 1 -1 =1 in AR) to &5\ , we get
€p(0)* = er(d)

Hence e’R(qg) = 1 because e}_—i(qAS) is a unit in A, by (it’). ~

(il)==(il"). Applying the identity (for the inverse in G := Spec(A4%))

mp o (ly @TR) ot = iR o€y

to ¢, we get & - Té(&) =1in A%. So ¢ is a unit in Al O

Applying the above lemma to @, we see that the commutative k-group functor

Homy,_groupscheme (G5 G i)

is representable, and naturally identified with G = Spec(A’) (as schemes at this point). One can
reformulate this as a morphism

cang: G Xgpee(k) G — Gk

obtained from the above lemma applied to the tautological element ngﬁ = id4 € G(A) when
R = A. This morphism corresponds to the k-algebra homomorphism
kKT, T7Y — Ay A,

which sends T' to the “diagonal element” 6 € A ®; A’ that corresponds to id4. Since § also
corresponds to id 4/, the canonical morphism cang is naturally identified with cang. Moreover,
the lemma tells us that

(1) Pra(d) =6@adc A A @p A, 4(0)=i(1)€e A and 0§ -74(5) =1.
The same argument (because § also corresponds to the tautological element in G(A’)) gives
(1‘) HA’((S) =0Qu 0 €EARL ARy A,, €A/(5) :Z',(l) S A/, and 5-TA/(5) =1.

Note that § ® 4 0 is the product of p12(d) and p13(d) in A®y A’ @k A’, and § ® 4/ § is the product
of p13(d) and po3(d) in A ®y A®y A’. The formulas (1) and (f) give the multiplicative inverse of
d in A®y, A, namely, 7/4(0) = 74/(6). More importantly they also show that the canonical map

can: G X Spec(k) é — Gm,k
is bi-multiplicative. O
EXAMPLE 1.19. Let H be an abstract commutative finite group. Write &k for the set of all
k-valued functions on H, and let k[H] be the group algebra of H over k. The delta functions

Sn at h € H form a k-basis of k¥, and we have &, - , = d(x,y)d, for all z,y € H, where §(z,y)
denotes Kronecker’s symbol. The co-multiplication, co-unit and inverse in k¥ are given by

W by Y 6®by, 66,00, Tl 0,
z,yeH, x-y=h
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The group algebra k[H| is best thought of as the convolution algebra of all k-valued measures
on H, where the basis element [h] corresponding to an element h € H is “evaluation at h”. The
co-multiplication, co-unit and inverse are given by

W [z] = [z] @ [2], €:[z] — 1, 7'z~ [—2].
Some samples of the equalities in (1) and (I) are:

Hek[H] (Z%@M) = Z5y®52®[y+z]

rxeH y,2€H

= | gelal -<1®Zéz®1®[4>

yeH z€H

in K @y, k# @y, k[H],

€pr (Z 6z ® [x]) =) 6 =i (1)

zeH xeH
in k¥, and
(Z‘SI@[‘”])' Y| = ) My @z —yl
xeH yeH z,yeH
= (Z 5:;;) ® [0] = ipr g (1)
in k' @y, k[H).

When H = Z/nZ we have Spec(k[Z/nZ]) = Spec(k[T]/(T™ — 1)) = pn, x Spec(k).

EXAMPLE 1.20. Let p be a prime number, k D F, a field, and G = o, = «, X Spec(k) =
Spec(k[X]/(XP)). Let x € A = k[X]/(XP) be the image of X in A. The co-multiplication and
co-unity are determined by

pr—rl+leos and e:x— 0.
Let Y0, Y1, - - -, Yp—1 € A’ = Homy_module (4, k) be the basis dual to {1,z,22,...,2P~}. Then we

have

:U’/:yi'_) Z ya@yi—av yizl‘yla Vizoulu"'vp_]-a yp:(]
0<a<i

Then x — y; establishes an isomorphism A = A’ of Hopf-algebras. The diagonal element

p—1
5:in®y,~ € Ay A
=0
is equal to
2’ ® yp @y

exp(r®@y1) =1+z@y + = Ep(zy),

o T TR o)
where E,(T') is the truncated exponential
T? TPt
E,T)=14+T+ —+ -+ —— € k[T].
»(T) T+ 5+ +(p—1)!€[]

In other words, the formula (z,y) — E(zy) gives an auto-duality pairing

ag X op — Gy
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which identifies o, with its own Cartier dual.

EXAMPLE 1.21. Let k D F,, be a field of characteristic p. Let
apn = Ker (F”: Gy — Gg{’p) = Spec(k[X]/(X?")).

We have short exact sequences

jn,n+m ,8n+m,m
0 — apn ——— Qpnim ——— apm — 0

for positive integers m, n, where j, n4m is the natural inclusion and 4, m is induced by the
Frobenius homomorphism F™.

Write A := k[X]/(XP") and let z be the image of X in A. Let yo, 1, ..., Ypm—1 be the k-basis
in A’ := Homy_module( A, k) dual to the k-basis 1,x,22,..., 27"~ of A. The co-multiplication on
A is given by

prr—rel+1 .
The co-multiplication, unity and co-unity on A’ are given by
TR Zya@)yi,a, i=0,1,....,p" — 1; i’ 1+ yo, €:yi—=0, Vi>D0.
0<a<s

It is straightforward to deduce from p(z) =2 ® 1 + 1 ® x that
yi=2u2,97 =3lys,. . yf = (- D! g1, =0,
Similarly we have
Yo =jl yjpe and yha =0, Ya=0,1,...,n—1, Vj=0,1,...,p— L.

More generally, for every positive integer ¢« with 0 <4 < p™ — 1, written in p-adic expansion in
the form i = Zogagn—ljapaa

Ja
ypa

Yi = Yjo+jip+-tin_1pn~! = H ]
Ja:

0<a<n—1
So A’ is isomorphic to
k(Zo, Z1, ..., Zna))(Z8,20, 28, ..., ZF )
as k-algebras, such that y,« corresponds to the image of Z, for a = 0,1,...,n—1. The diagonal

element
p"—1
b= a'@yc Ay A 2KX, 2o, 20,..., L)/ (XP", 28, 28, ... 2P _))
=0
can be written in terms of the truncated exponential E,(T) = 1+ T +T?2/2!+---+T?71/(p—1)!
as the image of the polynomial

n—1
0(X,2) =06(X, 20,21, ..., Zn-1) = || BEo(X" - Za)
a=0
in k[X,Zo, Z1, ..., Zn))(XP", 28,27, ..., ZE_}). The group law of the Cartier dual a.—1 of
ayn is completely determined by the polynomial §(X, Z) as follows: Using Zy, Z1,...,Z,—1 as
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the coordinates on @,.—1, the sum of two points in a,» with coordinates z = (2o, 21, . . ., Zn—1)
and w = (wp, w1, ..., w,—1) is the point with coordinates ®(z,w), where
o(Z, W)
= (o(Z, W),...,Pn-1(Z,W))

€ (k[Z07Zh-~-;anlaWOaWh"'7Wn71]/(zg7 W()’"WWT};—I))

pl’

is determined by the equation

nol n—1 n—1
1 B (X7 ®u(2,W)) = [[ By (X" - Za) - [] By (X7 - W)
a=0 a—1 ol
in kX, 20, 21,y Znet, Wo, Wiy oo, W]/ (X7, 25, 2y 1, Wy .., W] _). Notice that

Ey(XZ+XW) = E,XZ)-E,(XW) (mod (X?, 2P, WP)),
but
Ep(X(Zo+Wo) + XP(Z1+ W) 2 Ep(XZo+ XPZy) - Ep(XWy + XPW7)
(mod (X¥°, 28, ZP, WP, WP)).

So the usual “exponential rule” does not hold for the truncated exponential when applied to
rings like k[ X, Zy, Z1, WO,WI]/(XPQ, z8,Z0 WE Wh).

The Cartier dual of the homomorphism B,4m m: Qyn+m — opm induced by F™: x +— zP",

P
the n-th power of the Frobenius, corresponds to the homomorphism
ﬁ;ﬁm’m: kYo, .. Yopm—al/(Y Y1) — Yo, Y]/ (Y, Y )

of Hopf algebras such that
@'H_m’m: Yo,..., Y1~ 0; ﬂ;H_m,m: Ynia—Y, a=0,..m-—1.
Similarly, the natural immersion jp j4m: apn < Qyn+m corresponds to the homomorphism
j;erm: kYo, ..., Y l/(YE, ...,V ) — kYo, .. Yagm—1)/ (VY Y )

of Hopf algebras which sends each Y, to Y, for all a = 0,1,...,n — 1. Using the maps j,’m’mz,
one easily sees that for each positive integer a with 0 < a < n, the a-th component ®,(Z, W) of
the group law comes from a unique polynomial in Fy,[Zo, ..., Z,, Wy, ..., W,] independent of n
whose degree in each variable is < p — 1. For instance

Zo Wi
)

These formulas could most easily be understood in terms of Witt vectors. (See, for instance,
Mumford [84, Lecture 26 by G. Bergman)].)

Qo(Z, W) =Zo+ Wy,  ®1(Z, W)= Z1+W1+Z

EXAMPLE 1.22. An S-group scheme 7: X — S is called an abelian scheme if 7 is smooth
and proper with connected geometric fibres. X turns out to be commutative (at lease when S
is noetherian). (cf. Mumford [83, Corollary 6.6, p.117])

When S = Spec(k) with a field k, an abelian scheme X over S is called an abelian variety
over k. Thus X is a geometrically connected group scheme proper and smooth over k. In this
case, the commutativity is shown in two different ways in Mumford [85, pp.41 and 44]. X is
also shown to be divisible, that is, nidx is surjective for any positive integer n.

When k = C, the set X(C) of C-valued points of an abelian variety X over C turns out to
be a complex torus.
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EXAMPLE 1.23. An algebraic group G is a smooth group scheme of finite type over a field k.
An algebraic group G over k is affine if and only if it can be realized as a linear group, that is,
as a closed subgroup of a general linear group GLj, j.

DEFINITION 1.24. Suppose ¢: H — G is a homomorphism of S-group schemes. A pair
(G/H,r) of an S-scheme G/H and an S-morphism 7: G — G/H is said to be the quotient of
G by H, if it is universal for all pairs (Y, f) of an S-scheme Y and an S-morphism f: G — Y
such that the following diagram commutes:

o(1
G xsH pgo(lgxsd) a
pll lf
Y,
G T )

that is, there exists a unique S-morphism f’': G/H — Y such that f = f'ox. If H is a normal
S-subgroup scheme of G with ¢ the canonical monomorphism so that H(Z) is a normal subgroup
of G(Z) for any Z € (Sch/S), then G/H inherits a unique structure of S-group scheme such
that 7: G — G/H is an S-homomorphism with Ker(w) = H. In this case G/H is called the
quotient group scheme.

We certainly need conditions for the existence of G/H.

e FGA [2, exposé 212, Corollaries 7.3 and 7.4] shows the existence in the case where S
is the spectrum of an artinian ring (in particular, a field): Suppose G is of finite type
and flat over S and that H is an S-subgroup scheme of G with H flat over S. Then
G/H exists with 7: G — G/H flat and surjective. Moreover, the quotient is shown to
commute with base changes S” — S.

e Demazure-Gabriel [35, Chapter III, §3] and SGA3 [6, exposés VI5 and VIg] deal with
the quotient in terms of the “sheafification” of the contravariant functor

(Sch/S) > Z — G(Z)/H(Z) € (Sets).

e (cf. Borel [24, Chapter II, Theorem 6.8]) If G is an algebraic group over a field k and H
is a closed algebraic subgroup over k, then G/H exists (Weil 1955 and Rosenlicht 1956)
and is a smooth quasi-projective (cf. Definition 11.5.8) algebraic variety over k (Chow
1957). See Raynaud [92] for the corresponding results in the case of more general base
schemes S.

More generally, an action G xg X — X of a group scheme G over S on an S-scheme X will
be defined in Definition 2.3 below.

ExampLE 1.25. PGLy41 = GLy+1 /Gy, where G,,, C GLy, 41 is the normal subgroup scheme
of “invertible scalar matrices”.

We just mention the following basic results:

THEOREM 1.26 (Chevally 1953). (See Rosenlicht [94, Theorem 16] and Chevalley [29].A
“modern” proof can be found in Conrad [33].) A connected algebraic group G over a perfect
field k has a closed connected affine normal subgroup L such that G/L is an abelian variety.
Such L is unique and contains all other closed connected affine subgroups of G.

THEOREM 1.27 (Chevalley). (cf. Demazure-Gabriel [35, Chapter 111, §3.5], SGA3 [6, VI,
Theorem 11.17, p.408] and Humphreys [49]) If G is an affine algebraic group and H is a closed
normal algebraic subgroup, then G/H is an affine algebraic group.
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Borel subgroups (cf. Borel [24]) of affine algebraic groups play crucial roles in the classifica-
tion of semi-simple affine algebraic groups. Basic references are Chevalley [31], SGA3 [6] and
Demazure-Gabriel [35].

2. Lang’s theorems over finite fields

We can combine the geometric frobenius morphism (Definition IV.3.2) with ideas of smooth-
ness to give a very pretty result due to Lang [76].

THEOREM 2.1 (Lang). Let k =F,, k = an algebraic closure of k.

a) Let G be a connected reduced group scheme of finite type over Speck and let G =
G Xspeck Speck. Then G will be reqular (smooth over E) and irreducible.
b) Let

fo= 5" G G

be the geometric frobenius morphism (cf. Definition 1IV.3.2). Define a k-morphism
: G — G on closed points by

z— Y(z) =z - fg(x)™!
and in general by the composition:

~ A~ — (gx(efe))
)G = G xg; G ——

G XSpeck G-5aG.
Then v is finite étale and surjective.
c) Moreover the group G(k) of k-rational points of G is finite and if we let each a € G(k)
act on G by right translation R, then
1) Va € G(k), ¥ o Ry = 1
2) Vz,y € G, ¥(z) =¢(y) <= Ja € G(k) such that z = R,(y).

PROOF. According to Theorem IV.2.4, G is reduced because [F, is perfect. Therefore the set
of regular (smooth over k) points U C G is dense (cf. Jacobian criterion in Corollary V.4.2). But
if z,y € G are any two closed points, right translation by ! -y is an automorphism of G taking
ztoy. Soif x € U, then y € U too. Therefore U contains every closed point, hence U = G. But
then the components of G are disjoint. Now the identity point e = Image(e) is a k-rational point
of G, hence it is Gal(k/k)-invariant. Therefore the component G, of G' containing e as well as
G\ G, are Gal-invariant open sets. By Theorem IV.2.3, this implies that G is disconnected too,
unless G = G,. This proves (a).

Next note that f;: G — G is a homomorphism of k-group schemes, i.e.,

commutes. This is because if you write G = G X Spec k Speck, then pu equals /' x 1z where
1 G Xgpeck G — G is multiplication for G; but by definition fg = ¢f, x 13 (if ¢ = p”) and for
any morphism ¢g: X — Y in characteristic p, ¢x o g = g o ¢x (cf. Definition IV.3.1). Then for



220 VI. GROUP SCHEMES AND APPLICATIONS

all closed points x € G, a € G(k)
¥ o Ralz) = Yz - 0)
=z-a-fg(x-a)
=x-a-fgla)™ ! fo(z)™?
—z-a-a ' fg(x)!

= ¥(x)

-1

and for all closed points z,y € G:

U(x) =v(y) = folo) ™ =y foly) ™!
=y e=1aly) - fol@)

=y r=1fey 1)

=y !z is Gal(k/k)-invariant

=yl r=acGk)

<= x = Rqy(y) for some a € G(k).
But now for any scheme X of finite type over k, X (k) is finite. The last result shows that the
two closed subsets of G X Speck G, namely

U (Graph of R,) and the fibre product: G xgG
acG(k) SN

—
G G
w\é/¢

have the same closed points. Therefore these sets are equal.! This proves (c).
Now we come to the main point — (b). We prove first that v is étale using Criterion V.4.6:
Vo € G closed, dip,: T G Tw( e is an isomorphism. We use:

LEMMA 2.2. If X is a scheme over k =F, and X=X X Spec k Speck, then the k-morphism
fx = 5" X — X induces the zero map

f%: Qx5 — Qx5
PROOFioF LEMMA 2.2. We may as well assume X affine, say = Spec R. Then X =
Spec(R ®y, k) and fy is induced by the homomorphism
Rerk — Ry k
Zai ® b; —> Za? Q b;.
Therefore
i (4> @b)) = d(> ol @)

= da)) @b+ Y al @ db;
=0.

By Chapter V, this means that for all closed points of x € G,
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is zero. To compute dip,: T, 7 — Tw(x),@ use the identification of T} & with the set of k[6]-
valued points ¢t: Speck[d] — G of G with Image(t) = {x}, where k[d] is the k-algebra of dual
numbers (cf. §1 and §V.1). In terms of this identification, if t € T, & then dy, (t) is nothing but
1 ot. Hence using the group law in the set of k[6]-valued points of G:

dipe(t) =t - £ (£) 7.
But if Oy is the 0 tangent vector at y, i.e.,
Spec k[6] — Speck —> G with image v,
then Lemma 2.2 showed that fx(t) = Og(,), hence
dipe(t) =t Oy ()1, Vt e Ty x.

The map ¢ — t - Og, () is then an inverse to di, so di, is an isomorphism.
Next, 1 is surjective. In fact for all closed points @ € G we can introduce a new morphism
Y@ given on closed points by:

zp(“)(:r) =z-a- fX(a:)*l.

The same argument given for 1 also shows that 1(®) is étale. Therefore 1(® is flat (cf. Corollary
V.4.9) and by Proposition IV.5.12 Image(t)(*)) is open. Therefore

Tmage(1) N Image(y(@)) # 0,
i.e., 3 closed points by, by € G such that
by -fx (b))t =by-a-fx (b))~

Then one calculates immediately that ¢(by ' - by) = a.

Finally 9 is finite: by Exercise (2) in Chapter II (possibly moved to another location?), 3 a
non-empty open U C G such that rest): ¢»~'U — U is finite. But if L, is left translation by a,
then for all closed points a € G, consider the commutative diagram:

_ La _
G————q
wl (0
> LaoBygy-1 >~
G ~ G

It follows that res is finite from L, (1 ~'U) to La(Rg(q)-1(U)) too. Since G is covered by the
open sets L, (v ~1U), 9 is everywhere finite. O

For example, applied to A,lg, the theorem gives the Artin-Schreier homomorphism:
¢ Af — Az
b(a) =z —a
Kery =F, C A%
On G,,(k) = GL1(k), v is the homomorphism

vla) = o
Kery = F; C Gy, (k) = GL1(k),
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while on GLz(k), ¢ is given by:

" a b _(a b ' a? b? !
c d \e d c? d?
1 ad? — bc?  —ab? + ba?
(ad —bc)e \ cd? —dc? —cb? + dal

Lang invented this theorem because of its remarkable application to homogeneous spaces for G
over k. We need another definition to explain this:

DEFINITION 2.3. Let f: G — S plus (p,¢€,¢) be a group scheme and let p: X — S be any
scheme over S. Then an action of G on X is an S-morphism:

0:Gxg X — X
such that the following diagrams commute:
a) (“associativity”)

(GXSG)XS‘XLLX>GX5X

g
: i
Gxs(GxgX)——Gxg X 7
lgxo
b) (“identity acts by identity”)
S XSX ﬂ) G ><5X

A

X—X

NH

COROLLARY 2.4. Let G be a connected reduced group scheme of finite type over k =y and
let X be a scheme of finite type over k on which G acts via . Let ¥ be a set of subschemes of
X=X X Spec k Speck such that:

a) VZ € %, a € G closed, o(a,Z) € %, and V21,75 € ¥, Ja € G closed such that
o(a)(Z1) = Z»'

b) if f?gith: X — X is the frobenius automorphism (cf. Definition IV.3.2), then ¥Z € %,
farith(7) e 3.

Then ¥ contains at least one subscheme Z of the form Z' Xgpeck Speck, Z' a subscheme of X.
PROOF. Start with any Z € ¥ and combine (a) and (b) to write
fF0(7) = 0(a)(Z), a € G closed.
By Lang’s theorem (Theorem 2.1),
a ' =b-fg(b)"t, be G closed.
Now on closed points, £5°™ = farith 5o we deduce
£ (2) = o (£27) (0 (571 (2)),
L5 (a) is short for the automorphism of X:

X = Speck Xgpor X P T xgpp X -2 X.
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hence since o is defined over k:
B (o(b7)(2)) = (B0 (1 (2)
= a(b‘l)(Z ).

Therefore o(b~1)(Z) € ¥ and is invariant under Gal(k/k). So by Theorem IV.2.9, o(b=1)(Z) =
Z" Xspeck Spec k for some subscheme Z’ of X. O

COROLLARY 2.5. Let G, X be as above over k = F,. Assume the group of closed points of
G acts transitively on the set of closed points of X. Then X (k) # 0.

ProOOF. Apply Corollary 2.4 with ¥ = the closed points of X. U

If X is a smooth quadric hypersurface in P?, or a smooth cubic curve in Pi with k =F,, it
can be shown that such a G always exists, hence X has a k-rational point! For some conics in
IP’%, the next corollary tells us more:

COROLLARY 2.6. Let Y be a scheme of finite type over k = F, such that
Y = }P’% over k.

Then
Y =Py over k.

Proor. Take the X in Corollary 2.4 to be Y Xgpecr P. Let X be the set of graphs of
k-isomorphisms from P2 to Y. Let G = GLy41 and let G act on X by acting trivially on YV
and acting in the usual fashion on P} (one should check that this action is a morphism). Recall
that every k-automorphism of P2 is induced by the action of some g € GL,,+1(k) = the closed
points of G (cf. Example 1.10): this shows that the closed points of G act transitively on X. It
follows that the graph I'; of some f: IP’% =Y is defined over k, hence f = f' x 15, where f is
a k-isomorphism of P} and Y. O

REMARK. See Proposition IV.3.5 and Corollary VIII.1.8 for P! over finite fields.

Exercise—Addition needed

(1) Let k be a field, and V' a finite dimensional vector space over k. Let p: GL,, — GL(V)
be a k-linear rational representation of GL, on V, i.e., the homomorphism p is a k-
morphism of group schemes over k. Suppose that v € V is a vector fixed by the
subgroup B of all upper-triangular elements in GL,,. Prove that v is fixed by GLj,.
Hint: The quotient variety GL,, /B is proper over k.






CHAPTER VII

The cohomology of coherent sheaves

1. Basic Cech cohomology
We begin with the general set-up.

(i) X any topological space

U = {Uq}acs an open covering of X
F a presheaf of abelian groups on X.

Define:
(ii)
C(U, F) = group of i-cochains with values in F
= ] FWsn:-—NU).

ap;...,a; €S
We will write an i-cochain s = {s(ao, ..., q;)}, i.e.,
s(ao, ..., ;) = the component of s in F(Uy, N -+ Uy,)-
(iii) 6: CY(U,F) — C*HHU, F) by
i+1
ds(ag,...,ait1) =Y (1) ress(ap, ..., 05, ..., qip1),
j=0
where res is the restriction map

f(Uaﬁ-"ﬁUavﬂ'“ﬁUaiH) —>]—"(Ua0ﬂ--'Uai+1)

and means “omit”. For i = 0, 1,2, this comes out as

s(o) — s(ag) if s € CY

ds(ap, a1, an) = s(ag, ae) — s(ap, a2) + s(ap, ) if s € ct

ds(ag, )

ds(ap, a1, an, a3) = s(a, ag, as) — s(ag, ag, ag) + s(ap, a1, a3) — s(ag, a1, ) if s € C?.
One checks very easily that the composition §2:
ciu, F) -2 o, Fy X 02U, F)

is 0. Hence we define:

225
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s(oBo,0P;) defined here

ref s(Bo, B1) defined here
Ficure VII.1

(iv)
Z\U,F) = Ker [5: C'(U,F) — CH U, F)]
= group of i-cocycles,
B'(U,F) =Image [0: C" (U, F) — C'(U,F)]
= group of i-coboundaries
H'U,F)=Z"U,F)/B"U,F)
= i-th Cech-cohomology group with respect to .
For ¢ = 0,1, this comes out:
HO(U, F) =group of maps o — s(a) € F(Uy,) such that
s(a1) = s(ap) in F(Ugy NUq,)
1(X, F) if F is a sheaf.
HY(U, F) =group of cochains s(ag, ;) such that
s(ap, a2) = s(ap, a1) + s(ag, ag)
modulo the cochains of the form
s(ap, a1) = t(ag) — t(ay).

Next suppose U = {Uq}o and V = {V3}ger are two open coverings and that V is a refinement
of, i.e., for all Vg € V, V3 C U, for some o € S. Fixing amap o: T'— S such that Vg C Uy g),
define

(v) the refinement homomorphism
vefy v H'U,F) — H'(V,F)
by the homomorphism on ¢-cochains:

refg{,V(S)(Bm s 75@) = res S(O'Bo, s O-Bz)

(using res: F(Usp, N -+ NUyp,) = F(Vp, N -+ N V) and checking that 6 o reff; ), =
ref7; |, 04, so that ref on cochains induces a map ref on cohomology groups.) (cf. Figure
VIIL1)
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Now one might fear that the refinement map depends on the choice of o: T — S, but here we
encounter the first of a series of nice identities that make cohomology so elegant — although
“ref” on cochains depends on o, “ref” on cohomology does not.

(vi) Suppose o,7: T — S satisfy Vg C U,3 N U,3. Then
a) for all 1-cocycles s for the covering U,

ref7; , s(ao, 1) = s(oap,001)
= s(oag, Tan) — s(oaq, Tan)
= {s(ocap, Ta) + s(Tap, Ta1) } — s(oar, Taq)
= s(tag, Ta1) + s(oag, Tag) — s(oag, Tag)
= reff;  s(ao, 1) + s(oap, Tap) — s(oar, Ta)
i.e., the two ref’s differ by the coboundary ¢, where

t(a) =ress(oa, Ta) € F(Vy).

More generally, one checks easily that

b) if s € Z'(U, F), then

ref7; ), s —reff; ), s = 0t

where
i—1
t(ao, ey ai—l) = Z(—l)JS(O'Oé(), e, 00, TOG, .. ,Tai_l).
7=0

For general presheaves F and topological spaces X, one finally passes to the limit via ref over
finer and finer coverings and defines:

(vii) !
H'(X,F) = lim H'(U, F).
u

Here are three important variants of the standard Cech complex. The first is called the
alternating cochains:

C. (U, F) = group of i-cochains s as above such that:
a) s(ag,...,an) =0if a; = o for some i # j
b)  s(aro,...,am) =sgn(m) - s(ap,...,q,) for all permutations .

For ¢« = 1, one sees that every 1-cocycle is automatically alternating; but for ¢ > 1, this is no
longer so. One checks immediately that 6(C?,) C C’;fgl, hence we can form the cohomology of
the complex (C;,0). By another beautiful identity, it turns out that the cohomology of the

subcomplex C;, and the full complex C* are exactly the same!

‘ The following proof was modified in publication. ‘
For the proof Serre [99, §3, No. 20, Prop. 2] refers to Eilenberg-Steenrod [37, Chap. VI, §5
and Thm. 6.10] in constructing an endomorphism ' = (%h;) of the cochain complex C* = C*(U, F)

(hence h;6 = §%h;_1 for all i), which is a retract from C* to the subcomplex Cy (ie., 'h, restricts
to the identity on C';,) together with a homomorphism

;. O — O, i=0,1,...
IThis group, the Cech cohomology, is often written H*(X,F) to distinguish it from the “derived functor”

cohomology. In most cases they are however canonically isomorphic and as we will not define the latter, we will
not use the ~
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such that
id — th@' = tk}é + (5%@;1, i1=0,..., with tk'fl =0,

hence h induces the inverse to the canonical homomorphism
H*(complex Cty,) — H'(complex C").

th; and %; are the “transpose” of h; and k; for the chain complex K. built out of the set S of
open sets U,: For all ¢ > 0, let K; be the free abelian group generated by the ordered sequences
(g, ...,qa;) of elements in S with Uy, N --- N Uy, # 0. The boundary map 0: K11 — Kj; is
defined by

i+1
a(a()a s 7ai+1) = Z(_l)](a()a s 75‘;7 B aiJrl)‘
j=0

Endowing S with a total order, define an endomorphism h;: K; — K; by
hi(ao, e ,Odi) =0
if ag, ..., q; are not distinct, while

hi(ao, - -, ;) = sgn(o)hi(ag(); - - - Ao(i))

if ap, ..., q; are distinct and o is the permutation of {0, 1,...,i} such that Ag(0) < Qg(r) <+ <
Qg (4)-

It is easy to show that dh; = h;_10 for all ¢ > 1 so that h = (h;) is an endomorphism of the
chain complex K,. Moreover, the “transpose” ‘h;: C* — C* obviously induces the identity map
on C%, C C* and has the property %;(C?) = C¥,.

Eilenberg-Steenrod [37, Chap. VI, §5] constructs a homotopy

k‘iZKi—>KZ'+1, iZO,l,...
such that
id — h; = 0k; + k;_10, i=0,1,... withk_1=0
as follows: Let
ko = 0.
Fori > 1, let
k’i(ao, e ,ai) = \Ijao ((ld — hi)(ao, . ,Oéi) — ki_la(ao, N ,ai)),

where ¥, is defined as follows: For [ < i — 1 and (fo,...,0) € K; with {fo,...,01} C
{ag,...,q;},
oo (Bos - -+ B1) = (@0, Bos - - -, Bi) € K41
Clearly, we have
a4 (Bo,- -+ 81) = (Bo, -+ B1) = ¥aod(Bo, - - -, Bi)-
We now show

(*) id — h; = Ok; + k;—10
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by induction on ¢ > 0. Note that k_; = ko = 0 and (x) holds for ¢ = 0. For i > 1,
Oki(ag, ..., ;)
= 8\I/a0((id — hi)(ag,...,q;) — ki—10(ag, . . ., ai))
= (id = hi)(o, ..., ;) — ki—10(ag, - . ., @)
T, (8((id — hi)(ao, - .., a5) — ki—18(, . . ,ai)))
= (id—hi)(ao, ..., ;) — ki—10(ag, . - ., ;)
W, ((id ~ hi_1)d(ag, .. ., ;) — Oki_10(ag, - . -, ai)>
= (id - hi)(ao, ..., ;) — ki—10(ap, . .., @;),
since
0ki—10 = ((id — hj—1) — k;—20) 0
by the induction hypothesis.
Here is the explicit formula for ¢ = 1:
(g, 1) if ag = ay
(id — h1)(ap, 1) = ¢ 0 if ap < oy
(a0, 1) + (a1,00)  if ap > an,
hence
ki(ao, 1) = Yy, ((id — h1) (a0, 1) — 0)
(v, g, 1) if ag = g
=< 0 if ag < g

(a0, g, 1) + (ao, a1, ap) if ag > .

Consequently, %;: C? — C! sends s € C? to ks € C! with

s(ao,ao,al) if g =
(k18)(ap, 1) = ¢ 0 if g < ap
s(ap, g, a1) + s(ao, a1, ap) if ag > .

The second variant is local cohomology. Suppose ¥ C X is a closed subset and that the
covering U = {Uy }acs has the property:

X\Y = U U, for a subset Sy C S.
a€Sp

Consider the subgroups:
Cs, (U, F)={s € C'U,F)|s(ag,...,a;) =0if ag,...,0o; € So}.

One checks that (5(0@0) - Cf;gl, hence one can define Hé‘o (U, F) = cohomology of complex
(C%,,6). Passing to a limit with refinements (V, To refines U, Sp if Ip: T" — S such that
Vs C Uy and p(Tp) C Sp), one gets Hy (X, F) much as above.

The third variation on the same theme is the hypercohomology of a complex of presheaves:

Fro0— FO Doy g1y ot g g

(i.e., diy10d; =0, for all 7). If U = {Uy }acs is an open covering, we get a double complex

CcY=cu,F)
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where

81: CY — O ig the Cech coboundary

8g: C9 — C™F1 ig given by applying d; to the cochain.
Then 6109 = §201 and if we set

o — Z O

i+j=n
and use d = 6;+(—1)%y: O — C(+1) a5 differential, then d> = 0. This is called the associated
“total complex”. Define

H"™ (U, F*) = n-th cohomology group of complex (C), d).

Passing to a limit with refinements, one gets H" (X, F*). This variant is very important in the
De Rham theory (cf. §VIIL.3 below).

The most important property of Cech cohomology is the long exact cohomology sequence.
Suppose

0—F — Fo—F3—0

is a short exact sequence of presheaves (which means that
0— FU)— F(U) — F3(U) — 0

is exact for every open U). Then for every covering U, we get a big diagram relating the cochain
complexes:

Lo

0— C U, F1) — CH U, Fp) — C7HU, F3) — 0

o o o

0— CY U, F1) — C' U, F) — C'(U, F3) — 0

o % %

0— CY (U, Fr) — CFY U, F) — CHHU, F3) — 0

S

with exact rows, i.e., a short exact sequence of complexes of abelian groups. By a standard
fact in homological algebra, this always leads to a long exact sequence relating the cohomology
groups of the three complexes. In this case, this gives:

0 — HOU,F1) —HOU, Fo) — HOU, Fs) 5 H' (U, Fy)
— H'U, Fo) — H' U, F3) -5 H* U, Fr) — -
Moreover, we may pass to the limit over refinements, getting:
0 — HO(X,Fy) —H(X, Fy) — H(X, F3) -2 HY(X, Fy)
— HY(X, Fy) — HY(X, Fs) = HX(X, F1) — - .

In almost all applications, we are only interested in the cohomology of sheaves and unfor-
tunately short exact sequences of sheaves are seldom exact as sequences of presheaves. Still, in
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reasonable cases the long exact cohomology sequence continues to hold. The problem can be
analyzed as follows: let

0 —F1 — Fo—F3—0
be a short exact sequence of sheaves. If we define a subpresheaf 75 C F3 by
F3(U) = Image [Fo(U) — F3(U)],
then
0—F —F,—F; —0

is an exact sequence of presheaves, hence we get a long exact sequence:
o HY(X, Fy) — HY(X, Fp) — HI(X,F}) > HTYX, F) — -

Now F3 is the sheafification of F3 so a long exact sequence for the cohomology of the sheaves
F; follows if we can prove the more general assertion:

for all presheaves F, the canonical maps
(%) HY(X,F) — H'(X,sh(F))

are isomorphisms.
Breaking up F — sh(F) into a diagram of presheaves:

0—K-—F———shF—C—0

=
0/ \O

(K = kernel, C = cokernel, 7' = image) and applying twice the long exact sequence for
presheaves, (k) follows from:

(xx) If F is a presheaf such that sh(F) = (0), then H'(X,F) = (0).

The standard case where (%) and hence (%) is satisfied is for paracompact Hausdorff spaces® X:
we will use this fact once in (3.11) below and §VIIL.3 in comparing classical and algebraic De
Rham cohomology for complex varieties. Schemes however are far from Hausdorff so we need to
take a different tack. In fact, suppose X is a scheme (separated as usual) and

0 —F1— Fo—F3—0
is a short exact sequence of quasi-coherent sheaves. Then in the above notations:
Fi(U) = F3(U), all affine U

K(U) =C(U) = (0), all affine U.

2The proof is as follows: We may compute H*(X,F) by locally finite coverings U so let U be one and let
se ! (U,F). A paracompact space is normal so one easily constructs a covering V with the same index set
such that V, C Uy, Va € I. Now for all z € X, the local finiteness of U shows that 3 neighborhood N, of x such
that
a) £ € Uagy N+ NUa;, = No CUqy N---NUy,; and resn, s(ao,...,a;) = 0. Shrinking N,, we can also
assume that N, meets only a finite set of U,’s hence there is a smaller neighborhood M, C N, of =
such that:
b) M, C some V, and if M, N Vg # 0, then M, C V. Let W = {My},ex. Then W refines V and it
follows immediately that refy y(s) =0 as a cochain.
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Now if U is any affine open covering of X, then X separated implies Uy, N --- N U,, affine for
all o, ..., qq, hence C*(U,K) = C*(U,C) = (0), hence H'(U,K) = H'(U,C) = (0). Since affine
coverings are cofinal among all coverings, H'(X,K) = H*(X,C) = (0), hence H (X, F}) =
Hi(X,F3) and we get a long exact sequence for the cohomology of the F;’s for much more
elementary reasons!

What are the functorial properties of cohomology groups? Here are three important kinds:

a) If f: X — Y is a continuous map of topological spaces, F (resp. G) a presheaf on X
(resp. Y), and a: G — F a homomorphism covering f, (i.e., a set of homomorphisms:

aU): GU) — F(fYU)), allopenUCY
commuting with restriction), then we get canonical maps:
(f,a)*: H(Y,G) — H'(X,F),  alli.
b) If we have two short exact sequences of presheaves and a commutative diagram:

0 F1 F2 F3 0

al el o«

0 G Ga gs » 0,

then the d’s in the long exact cohomology sequences give a commutative diagram:

Hi (X, F3) — HIVL(X, Fy)
Oésl lal

Hi(X,Gs) — HH(X,Gy),

(i.e., the H (X, F)’s together are a “cohomological J-functor”).
¢) If F and G are two presheaves of abelian groups, define a presheaf F®G by (FRG)(U) =
F(U)®@G(U). Then there is a bilinear map:

HY(X,F)x H(X,G) — HM(X,F® Q)
called cup product, and written U.

To construct the map in (a), take the obvious map of cocycles and check that it commutes
with d; (b) is a straightforward computation; as for (c), define U on couples by:

(sUt)(ao,...,aiyj) =ress(ag,...,0;) @rest(ag, ..., aqj)

and check that §(sUt) = dsUt+ (—1)’sUét. It is not hard to check that U is associative and
has a certain skew-commutativity property:

) If s; € H* (X, F;), i = 1,2,3, then in the group HF'**2+ks(X 7 @ F» @ F3) we have
(81 U 82) Usg =51 U (82 U 83).

") If Symm? F is the quotient presheaf of F ® F by the subsheaf of elements a ®b—b® a,
and s; € H" (X, F), i = 1,2, then in the group H*7*2(X, Symm? F) we have

s1Usy = (—1)k1k282 U s1.

The proofs are left to the reader.
The cohomology exact sequence leads to the method of computing cohomology by acyclic
resolutions: suppose a sheaf F is given and we construct a long exact sequence of sheaves

0—F —G — G — Gy — -+,

such that:
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a) H(X,Gy) = (0),i>1,k>0.
b) If Kx = Ker(Gg+1 — Gr+2) and Cr = cokernel as presheaf (Gy—1 — Gi) so that K =
sh(Cg), then assume

HY(X,C) = HY(X,K}), i>0, k>0.
Then H!(X,F) is isomorphic to the i-th cohomology group of the complex:
0— Go(X) — Gi1(X) — Go(X) —> -+~

To see this, use induction on i. We may split off the first part of our resolution like this:

i) 0 = F = Gop — Cyp — 0, exact as presheaves.
i) 0= Ko — G1 — G2 — G3 — -+ -, exact as sheaves.

So by the cohomology sequence of (i) and induction applied to the resolution (ii):
a)
HO(X, F) = Ker [H*(Go) — H°(Co)]
=~ Ker [H(Go) — H"(Ko)]
=~ Ker [H°(Go) — H"(G1)]

HY(X,F) = Coker [H°(Gy) — H"(Co)]
=~ Coker [HO Go) — HO(ICO)]
= Coker [H%(Gy) — Ker [H*(G1) — H(G2)]]
>~ [ (the complex H(G.)).

H'(X,F)= H™'(X,Co)
=~ H' (X, Ko)
>~ H'(the complex H(G.)), i>2.
If F is a sheaf, we have seen that H*(X, F) is just ['(X,F) or F(X). H'(X,F) also has a
simple interpretation in terms of “twisted structures” over X. Define
A principal F-sheaf

= a sheaf of sets G, plus an action of F on G
(i.e., F(U) acts on G(U) commuting with restriction)
such that 3 a covering {U,} of X where:
resy,, (G, as sheaf with F-action)
= resy,, (F, with F-action on itself by translation) .

Then if F is a sheaf:
() HYX,F) = {set of principal F-sheaves, modulo isomorphism}.

H' U, F) = {

subset of those principal F-sheaves which are trivial
on the open sets U, of the covering U ’

In fact:
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a) Given G, let ¢o: G|y, — Fly, be an F-isomorphism. Then on U, N Us, ¢q 0
¢§1: ]:]UQQUB — ]:|UQQUB is an JF-automorphism. If it carries the 0-section to
s(a, B) € F(Uy NUg), it will be the map & — x + s(a,3). One checks that s is
a 1-cocycle, hence it defines a cohomology class in H'(U,F), and by refinement in
HY(X,F).

b) Conversely, given o € H'(X, F), represent o by a 1-cocycle s(a, 3) for a covering {U,}.
Define a sheaf G, by

G, (V) = { collections of elements t, € F(V NU,) such that }

resty + s(a, B) =restg in F(VNU, NUp)
Intuitively, G, is obtained by “glueing” the sheaves F|y, together by translation by
s(a, 8) on Uy N Ug.
We leave it to the reader to check that G, is independent of the choice of s and that the
constructions (a) and (b) are inverse to each other. The same ideas exactly allow you to prove:
If Ox is a sheaf of rings on X and O% = subsheaf of units in Ox, then

HY(X,0%) = { set of sheaves of O x-modules, locally isomorphic }

to Ox itself, modulo isomorphism
(ct. §IIL.6)
and
If X is locally connected and (Z/nZ)x = sheafification of the constant presheaf
Z/nZ, then
set of covering spaces 7: Y — X with Z/nZ
HY(X,(Z/nZ)x) = { acting on Y, permuting freely and transitively
the points of each set 7~ 1(z), r € X

2. The case of schemes: Serre’s theorem

From now on, we assume that X is a scheme® and that F is a quasi-coherent sheaf. The
main result is this:

THEOREM 2.1 (Serre). Let U and V be two affine open coverings of X, with V refining U.
Then
resy,y: H' U, F) — H'(V,F)

is an isomorphism.

The proof consists in two steps. The first is a general criterion for res to be an isomorphism.
The second is an explicit computation for modules and distinguished affine coverings. The
general criterion is this:

PROPOSITION 2.2. Let X be any topological space, F a sheaf of abelian groups on X, and U
andV two open coverings of X. SupposeV refinesU. For every finite subset So = {ap,...,ap} C
S, let

Usy = Uay N+ NUq,
and let V]USO denote the covering of Us, induced by V. Assume:

H'(V|s,, Flus,) = (0), all Sp, i > 0.

30ur approach works only because all our schemes are separated. In the general case, Cech cohomology is not
good and either derived functors (via Grothendieck) or a Cech complex@Cech!modifiedmodified Cech complex
(via Lubkin or Verdier) must be used.
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Then refy y: H'(U, F) — H'(V, F) is an isomorphism for all i.

PROOF. The technique is to compare the two Cech cohomologies via a big double complexes:

cr= ] [l 7Wan--NUanVs0---N V).
00, ,0p €S B0y Bg €T

By ignoring either the a’s or the 8’s and taking ¢ in the ’s or a’s, we get two coboundary

maps:

§p: CP4 —s OPtLa

p+1

(518(0[0, <oy Op, ,30, v ,Bq) = Z(—l)js(ao, v ,aj, ey Ozp+1,50, v 7/8q)
j=0

and
§y: CP4 — OPatHL

q+1 ‘ R

525(0&0, s 7Oép750a s 7Bq+1) = Z(—l)]S(Oéo, SRR O‘pvﬂov s 7/8j7 s 7/8q+1)-
7=0

One checks immediately that these satisfy 02 = 83 = 0 and 6162 = d207. As in §1, we get a “total
complex” by setting:

cm — Z o

p+g=n
,9>0

and with d = §; + (—=1)Pdy: CW — C(+1) a5 differential. Here is the picture:

00,24)
d2
0,1 o 1,1
C C
s s [
51 51

02,0

CO’O 01,0
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c?= J] FWanVs NV NVs,)
a€esS
ﬁoﬁfﬁzeT

c'= [] FW0anVsNVa)

a€eS
Bo,B1ET

chl = H F(Uao NUay N Vg, N Vﬁl)

ag,x1 €S
Bo,B1ET

C0 = T[ F(U.NVp)

aesS
peT

C0= T[] FUsyNUsNVp)

ap,a1 €S8
BeT

C= [ FWanUs NVp).

ap,a1,a2€S
BET

We need to observe four things about this situation:

(A)

The columns of this double complex are just products of the Cech complexes for the
coverings V|USO for various Sy C S: in fact the p-th column CP* — CP! — ... is the
product of these complexes for all Sy with #5y = p+1. By assumption these complexes
have no cohomology beyond the first place, hence

the d2-cohomology of the columns

Ker [d3: CP9 —» Cp’qH] / Image [0 crat CcP]

is (0) for allp >0, all ¢ > 0.
The rows of this double complex are similarly products of the Cech complexes for the
coverings U ’VTo for various Ty C T'. Now Vp,, C some Vg C some U,, hence the covering
u |VT0 of Vr, includes among its open sets the whole space V7;,. For such silly coverings,
Cech cohomology always vanishes —

LEMMA 2.3. X a topological space, F a sheaf, and U an open covering of X such
that X € U. Then H'(U,F) = (0), i > 0.

PROOF OF LEMMA 2.3. Let X = U; € U. For all s € Z(U, F), define an (i — 1)-
cochain by:

tlag,...,ai—1) = s((, a0, ..., a—1)
[OK since Us NUqy N -+~ NUq;_, = Uay N---NUq,_,!] An easy calculation shows that
s = dt. O
Hence
the d1-cohomology of the rows is (0) at the (p,q)-th spot, for all p > 0,
q > 0.

Next there is a big diagram-chase —

LEMMA 2.4 (The easy lemma of the double complex). Let {CP4, 81,02}, q>0 be any
double complex (meaning (5% = (5% = 0 and 6169 = 6201 ). Assume that the d3-cohomology:

HJ" = Ker [65: CP1 — CPH1] /Tmage [62: CPI71 — O]
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is (0) for allp >0, ¢ > 0. Then there is an isomorphism:
(51-coh0mology of Hgo) = ((d = 81 + (—1)Pd2)-cohomology of total complez)
1.€.,

{z e CPY | b1z =dox =0} {x € X itjop O | do = O}
{012 | x € CP=LO with doz = 0} {dl‘ |z € iimp CW}

PrROOF OF LEMMA 2.4. We give the proof in detail for p = 2 in such a way that it
is clear how to set up the proof in general. Start with = (220, 21,1,Z02) € > Chi

such that dx =0, i.e.,

i+j=2

0120 = 0; d1w1,1 + 02220 = 0; 61202 — d2w1,1 = 05 dawg2 = 0.

0

[

5
T0,2 —— +y

[s

0
Tl —— +2
7
61
2,0 —— (
Now daxg2 =0 = w02 = 020, for some xg ;. Alter z by the coboundary d(0, —xz1):
we find
x o~ = (2h,2),,0) ( ~ means cohomologous).

But then da’ = 0 = &7}, = 0 = 27, = dax1 for some z19. Alter 2’ by the
coboundary d(z1,,0): we find

x ~a = (:1:’2'70, 0,0)

and dz” = 0 = 0124 ; and 62  are 0. Thus 25 ; defines an element of H} (the complex Hf;g’O).
This argument (generalized in the obvious way) shows that the map:

D (51—cohomology of H (7;2’0> — (d-cohomology of total complex)

is surjective. Now say x99 € C** satisfies 01220 = daw20 = 0. Say (220,0,0) = dz,
x = (r10,20,1) € Zi+j:1 C" . e,

T2,0 = 01271,0; —0221,0 + 01Z0,1 = 0; 270,17 = 0.

0
Js
61
0,1 — *y

Then d22091 = 0 = x0,1 = d220,0, for some . Alter x by the coboundary —dzg:
we find
x~x = (mg,o, 0)
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and dz’ = (120,0,0). Then daz} 4 = 0 and d127 = 20, i.e., 220 goes to 0 in the
d1-cohomology of H§2’0. This gives injectivity of ®. O

If we combine (A), (B) and (C), applied both to the rows and columns of our double complex,
we find isomorphisms:

HJ (total complex C)) = Hj: (the complex Ker d; in C’"O)
= Hy, (the complex Kerd; in CO") .

But
Ker (6: C™0 — ™) = [ FUan---NUa,) =C"U,F)
QQ,y...,0n €S
Ker ((51: con —>C1’n) = H F(VgN---NVp,)=C"(V,F),
607"'7Bn€T
so in fact

H? (total complex C<->> >~ {"(U, F)

It remains to check:

(D) The above isomorphism is the refinement map, i.e., if s(ap, ..., ay) is an n-cocycle for
U, then s € C™0 and reff; s € C%" are cohomologous in the total complex. In fact,
define t € C"~1) by setting its (I,n — 1 — [)-th component equal to:

tl(a07 s O, BOa s 76717171) = (_1)l I.eSS(O‘Oa s O, 0—607 R 70—/8717171)-
Thus a straightforward calculation shows that dt = (ref7; , s) — s.
This completes the proof of Proposition 2.2. O

Now return to the proof of Theorem 2.1 for quasi-coherent sheaves on schemes! The second
step in its proof is the following explicit calculation:

PROPOSITION 2.5. Let Spec R be an affine scheme, U = {Spec Ry, }ier a finite distinguished
affine covering and M a quasi-coherent sheaf on X. Then H*(U, M) = (0), all i > 0.

PRrROOF. Since M(Spec Ry) = My and (), j, Spec Ry, = Spec R([Ter ) the complex of Cech
relo
cochains reduces to:

HMfi — H M(fio'fil) — H M(fio'fil'fig) —r
iel Q0,01 €1 10,01,i2€1

Using the fact that the covering is finite, we can write a k-cochain:

; 3 Mig,...ig
m(io,...,0) = 7, Mig,..i, €M
( ) (flo . fzk)N 10 1k
with fixed denominator. Then
j ; st MMlig in,..ipt1 k+1 Mg, ig
((5m)(20,...,zk+1) = — _|_..._|_(_1) _ W0tk
(fllfzk)N (f10f12flk+1)N (fzonk)N

io MVin,eipgr — fi]:fmio,iz,mikﬂ +ot <_1)k+1 N Mig,....ik
(fio T fik+1)N

If dm = 0, then this expression is 0 in M(fio"'fik+1)’ hence

N’ N N k+1 N _
(fio " finyr)™ | fig Mirsemsingr — iy Migyinyeinsr T+ (1) fil, Mg, i | =0
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in M if N’ is sufficiently large. But rewriting the original cochain m with N replaced by N + N’,

we have
!

m(i07 e 7ik) = miow,i?\/—&-N” m’LO (flo ’ 'flk)N/ml(), Tk
(fio - fir) !
so that
N+N' N+N' k+1 ¢(N+N’ _ :
) fig U mi e — £ stz o H (GO =0 in M.
Now since
Spec R = USpec Ry, = U Spec R(f.]V+NI)’
it follows that 1 € (.. .,fZNJrN/, ...), l.e., we can write
N+N'
1= Zgi : fz *
el
for some g; € R. Now define a (k — 1)-cochain n by the formula:
n(ig, ..., lg—1) = 7
’ ’ (fZOflk 1)N+N
nzO: -t - Zgl ml 300 e--s0
lel
Then m = dn! In fact
k -~ .
; Mgy e ooy ljyeey Uk
(on)(ig, ..., 1 Z = -
Jry (fio e fip e fy ) NN
1 k
= ; JfNJrN/ am
(fio "’fik>N+N ]ZO ZEZI lzo,...lj, i
1 N+N/
— 7 g1 jf TTL
(fio"'f N-I—N IEZI gZO 1,i0,.. ,Z], ik
1 N N/
= ] \N+N’ Zglfz * m’/io,...,ik (by (*))
(Fia- Fi) NV 2

%07 Sk N+N’
(fzo flk N+N’ Zglf

lel
= m(io, ey Zk)

O

COROLLARY 2.6. Let X be an affine scheme, U any affine covering of X and M a quasi-
coherent sheaf on X. Then H'(U, M) = (0), i > 0.

PRrROOF. Since the distinguished affines form a basis for the topology of X, and X is quasi-
compact, we can find a finite distinguished affine covering V of X refining 4. Consider the
map

refyy: H'(U, M) — H'(V, M).
By Proposition 2.5, H/(V, M) = (0) all i > 0, and H'(V|yy ,M|y,) = (0) for all i > 0 and
for all finite intersections Ug, = Uy N -+ N Uy, (since each Vg NUsg, is a distinguished affine in
Us, too). Therefore by Proposition 2.2, refy;y is an isomorphism, hence H*(U, M) = (0) for all
t>0. O
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Theorem 2.1 now follows immediately from Proposition 2.2 and Corollary 2.6, in view of the
fact that since X is separated, each Ug, as a finite intersection of affines, is also affine as are the
open sets Vg N Ug, that cover it.

Theorem 2.1 implies:

COROLLARY 2.7. For all schemes X, quasi-coherent F and affine covering U, the natural
map:
H'U,F) — H'(X,F)

is an isomorphism.

The “easy lemma of the double complex” (Lemma 2.4) has lots of other applications in
homological algebra. We sketch one that we can use later on.
a) Let R be any commutative ring, let M M, M® be R-modules, choose free resolutions
F_(l) — M® and F_(z) — M@ ie., exact sequences

—FM PV s FY S D
—F® —FY . 5 F® LY M® 0

where all F j(i) are free R-modules. Look at the double complex C;; = Fl-(l) QR Fj(z),
0 <1, 7 with boundary maps

d(l): Ci,j — Cz'_lyj
d(2): Ciyj — Ci,j—l
induced by the d’s in the two resolutions. Then Lemma 2.4 shows that
H, (total complex C.,) = H,(complex F,(l) R M(2))
~ H, (complex MY @p F_(z)).
Note that the arrows here are reversed compared to the situation in the text. For
complexes in which d decreases the index, we take homology H,, instead of cohomology
H™. Tt is not hard to check that the above R-modules are independent of the resolutions
F_(l)7 F_(z). They are called Tor (MM, M®)). The construction could be globalized: if

X is a scheme, FN), F?) are quasi-coherent sheaves, then there are canonical quasi-
coherent sheaves Tor9x (FW), F2)) such that for all affine open U C X, if

U = Spec R
FO = M),
then
TorOx (FO, FO)|y = Tor2(M M| M)

I want to conclude this section with the classical explanation of the “meaning” of H!(X, Ox),
via so-called “Cousin data”. Let me digress to give a little history: in the 19th century Mittag-
Leffler proved that for any discrete set of points «; € C and any positive integer n;, there is a
meromorphic function f(z) with poles of order n; at «; and no others. Cousin generalized this to
meromorphic functions f(z1,...,z,) on C" in the following form: say {U;} is an open covering
of C" and f; is a meromorphic function on U; such that f; — f; is holomorphic on U; N U;. Then

there exists a meromorphic function f such that f — f; is holomorphic on U;. We can easily pose
an algebraic analog of this —

a) Let X be a reduced and irreducible scheme.
b) Let R(X) = function field of X.
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c) Cousin data consists in an open covering {Uy,}tacs of X plus f, € R(X) for each «
such that
fa — fg € F(Ua N UB,O)(), all o, 8.
d) The Cousin problem for this data is to find f € R(X) such that

f_fa EF(UOHOX)7 all «,

i.e., f and f, have the same “polar part” in U,.

For all Cousin data {fa}, let gog = fo — f3 € I'(Ua NUp, Ox). Then {gs} is a 1-cocycle in
Ox for the covering {U,} and by refinement, it defines an element of H'(X, Ox), which we call
ob({fa})(= the “obstruction”).

PROPOSITION 2.8. ob({fs}) = 0 iff the Cousin problem has a solution.

PrOOF. If ob({fa}) = 0, then there is a finer covering {V, }aer and hy € I'(V,, Ox) such
that if 0: T'— S is a refinement map, then

ha - h,@ =TresSgoa,cf = I'GS(fo-a - faﬂ)
(equality here being in the ring I'(V,, N V3, Ox)). But then in R(X),

ha - foa = hﬂ - foﬁa

i.e., foa — ha = F is independent of . Then F' has the same polar part as f,o in V,. And
for any x € U,, take B so that x € Vj too; then since fo — fop € Oy x, it follows that
F—fo=F—fs8)+ (fop— fa) € Og x, i.e., F has the same polar part as f, throughout Uy, so
F' solves the Cousin problem. Conversely, if such F' exists, let hy = fo — F; then ho — hg = gag
and ho € I'(Uq, Ox), i.e., {gap} = 6({ha}) is a 1-coboundary. O

3. Higher direct images and Leray’s spectral sequence

One of the main tools that is used over and over again in computing cohomology is the
higher direct image sheaf and the Leray spectral sequence. Let f: X — Y be a continuous map
of topological spaces and let F be a sheaf of abelian groups on X. For all ¢ > 0, consider the
presheaf on Y

a) Ur— HY(f~Y(U),F), YU CY open
b) if U C UQ, then

res: H'(f 1 (Uz), F) — H'(f1(U1), F)
is the canonical map.

DEFINITION 3.1. R!f,(F) = the sheafification of this presheaf, i.e., the universal sheaf which
receives homomorphisms:

HY(fY(U),F) — R'f.F(U), allU.

PROPOSITION 3.2. If X and Y are schemes, f: X — Y is quasi-compact and F is a quasi-
coherent Ox-module, then R'f.(F) is a quasi-coherent Oy -module. Moreover, if U is affine or
if i =0, then

H'(f~Y(U),F) — R'f(F)(U)

is an isomorphism.
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PROOF. In fact, by the sheaf axiom for F, it follows immediately that the presheaf U +—
HO(f~Y(U),F) = F(f~1(U)) is a sheaf on Y. Therefore H*(f~1(U),F) — Rf,.F(U) is an
isomorphism for all U. The rest of the proposition falls into the set-up of (1.5.9). As stated there,
it suffices to verify that if U is affine, R = T'(U,Ox) and g € R, then we get an isomorphism:

H'(f71(U),F) ®@r Ry = H'(f ' (U,), F).

But since f is quasi-compact, we may cover f~1(U) by a finite set of affines {V4,...,Vy} = V.
Then f~1(Uy) is covered by

{V) o) (W)} = Vg0
which is again an affine covering. Therefore
H(f7H(U),F) = H(C(V, F))
H'(f71(Uy), F) = H'(C' V10, F))-

The cochain complexes are:

Ci(]}j}‘): H }-(Vaom'”mvai)
1<ag,...,a; <N
Ci(v‘ffl(Ug)v-F) = H J:((Vao)f*gm"’m(vai)f*g)'

1<ag,...,a; <N

Since if S =T (Vo N---N V4, Ox):

]:((Vao)f*g n---nN (Vai)f*g) EF(Vag N NVa,) ®s Sfeg

ZF(VayN---NVy,) ®r Ry,
it follows that
C'Vlf-1w,), F) =2 C'(V,F) @r Ry
(since ® commutes with finite products). But now localizing commutes with kernels and
cokernels, so for any complex A* of R-modules, H(A') ®g Ry = H'(A* ®g Ry). Thus
H'(f~1(Uy), F) = H'(f~'(U), F) ®r Ry

as required. O

COROLLARY 3.3. If f: X — Y is an affine morphism (cf. Proposition-Definition 1.7.3) and
F a quasi-coherent Ox-module, then

R f.F =0, Vi > 0.

A natural question to ask now is whether the cohomology of F on X can be reconstructed
by taking the cohomology on Y of the higher direct images R’ f,F. The answer is: almost. The
relationship between them is a spectral sequence. These are the biggest monsters that occur in
homological algebra and have a tendency to strike terror into the heart of all eager students. 1
want to try to debunk their reputation of being so difficult?.

DEFINITION 3.4. A spectral sequence E5? = E™ consists in two pieces of data’:

4(Added in publication) Fancier notions of “derived categories and derived functors” have since become
indispensable not only in algebraic geometry but also in analysis, mathematical physics, etc. Among accessible
references are: Hartshorne [55], Kashiwara-Schapira [65], [66] and Gelfand-Manin [40].

53ometimes one also has a spectral sequence that “begins” with an ET?. Then the first differential is
dy?: EY —s Ef“’q

and if you set EE9 = (Ker d®?)/(Image d®~"9), you get a spectral sequence as above.
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R
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N
dz ~

FiGure VII.2
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(A) A doubly infinite collection of abelian groups EY?, (p,q € Z, p,q > 0) called the initial
terms plus filtrations on each EY?, which we write like this:

B = 7875 2815 78 5 . 5 BY S B S BY = (0),

also, let

plus a set of homomorphisms d? that allow us to determine inductively

zr1 = () z¢
T

By =B,
T

from the previous ones ZF?, BF:

(cf. Figure VIIL.2).

. p+r,q—r+1 +r,g—r+1
drd: 7P —s EP /BPHTa

The d’s should have the properties

i) BP? c Ker(d), ZPT™17"+ 5 Image(d??) so that d induces a map

Pq | RPY p+r.g—r+1 ; pp+r,g—r+1
VA /BT — 7 /B,, .

This sub-quotient of E5? is called EF?.
ii) d* = 0; more precisely, the composite

Dq Dq p+r,g—r+1 p+r,qg—r+1 p+2r,q—2r+2 p+2r,q—2r+2
Zr /Br —>Zr /Br _>Zr /Br

1s 0.

iil) ZP, = Ker(dP?); Bfi;’qfrﬂ = Image(d??). This implies that E

mology of the complex formed by the EF?’s and the d,’s!
(B) The so-called “abutment”: a simply infinite collection of abelian groups E™ plus a
filtration on each E™ whose successive quotients are precisely the groups E%" 7 =

2B | BT

E" = FO(ETL) 5 Fl(En) 5 TR 5 Fn(En) S5 FnJrl(En) — (0)

~Ey"

>l ~p7°

Pq
Br—i—l

1 is the coho-

To illustrate what is going on here, look at the terms of lowest total degree. One sees easily
that one gets the following exact sequences:

a) EY0 =~ pO,
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b) 0 — EM0 — Bl — gt 2, g20 _, B2,
c¢) For all n, one gets “edge homomorphisms”

and
n 0,n O,n |
E" — E)' — Ey
i.e.,
E'I’L
07n /
E,

n,0
E2

THEOREM 3.5. 8 Given any quasi-compact morphism f: X — Y and quasi-coherent sheaf F
on X, there is a canonical spectral sequence, called Leray’s spectral sequence, with initial terms

B = HP(Y, RUf,F)
and abutment E" = H"(X,F).

PROOF. Choose open affine coverings U = {Uq }qes of Y and V = {V3}ger of X and consider
the double complex introduced in §2 for the two coverings f~!(U) and V of X:

cr= ] I 7' Uspn-- 0 f e, nVs NN V3.
@g,...,ap€S Bo,....,04€T
Note that all the open sets here are affine because of Proposition 11.4.5.

Now the g-th row of our double complex is the product over all By, ..., 3, € T of the Cech
complex C*(f~YU)N Vg N---N Vs,, F), ie., the Cech complex for an affine open covering of
an affine Vg N---N Vs, . Therefore all the rows are exact except at their first terms where their
cohomology is [, 5 F(Vg,N---NVp,), Le., C4(V, F). Hence by the easy lemma of the double
complex (Lemma 2.4),

1)
H"(total complex) = H"(C*(V,F))
~ ["(X, F).

But on the other hand, the p-th column of our double complex is the product over all v, ..., o €
S of the Cech complex C*(V N f~1(Upy N -+ N Uy,),F). The cohomology of this complex at
the g-th spot is HI(f 1 (Uae N - NUa,), F) which is also the same as RIf, F(Uay N -+ N Ug,).
Therefore:

2) [vertical d2-cohomology of p-th column at (p,q)] =[],  a,es BU«F(UagN:--NUq,).
But now the horizontal maps d;: CP4 — CPT14 induce maps from the [§2-cohomology
at (p,q)-th spot] — [da-cohomology at (p + 1, ¢)-th spot] and we see easily that

~

3) [g-th row of vertical cohomology groups] ~ Cech complex C*(U, R1f,F). There-

as complex

fore finally:
4) [horizontal d;-cohomology at (p, q) of vertical do-cohomology group| = HP(Y, R?f,F)!

Theorem 3.5 is now reduced to:

6Theorem 3.5 also holds for continuous maps of paracompact Hausdorff spaces and arbitrary sheaves F, but
we will not use this.
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LEMMA 3.6 (The hard lemma of the double complex). Let (CP4,61,02) be any double com-
plex. Make no assumption on the §o-cohomology, but consider instead its d1-cohomology:

ED? = HY (HL(C™)).

Then there is a spectral sequence starting at EY? and abutting at the cohomology of the total
complex. Alternatively, one can “start” this spectral sequence at

EP = H:SJQ (CP*) = (cohomology in vertical direction)

with di being the maps induced by 81 on 82-cohomology’. Also, since the rows and columns of a
double complex play symmetric roles, one gets as a consequence a second spectral sequence with

B = HY, (H}, (C))
or
EV? = H{ (C*?) = (cohomology in horizontal direction),
abutting also to the cohomology of the total complex.
A hard-nosed detailed proof of this is not very long but quite unreadable. I think the reader
will find it easier if I sketch the idea of the proof far enough so that he/she can work out for

himself/herself as many details as he/she wants. To begin with, we may describe EY? rather
more explicitly as:

{x € CP9 | §x = 0 and 012 = doy, some y € CPTLI~11
52(Cp,q—1> + (51{%‘ € Cr—1la ’ dox = 0}

The idea is — how hard is it to “extend” the do-cocycle z to a whole d-cocycle in the total
complex: more precisely, to a set of elements

Pq _
By =

y € cprlat Soy1 = 12
Yy € CPT2472 doy2 = 011
etc. etc.

so that d(z £y; £y2 £ ---) = 0 (the signs being mechanically chosen here taking into account
that d = §; + (—1)Pd2). See Figure VII.3.

Define Z& to be the subgroup of E5? for which such a sequence of y;’s exist; define Z5? to
be the set of z’s such that such y; and yo exist; define Z}? to be the set of z’s such that such
Y1, y2 and y3 exist; etc.

On the other hand, a Jo-cocycle x may be a d-coboundary in various ways — let

wy € P14,y € CP=24-1 }

B?? = image in E2? of ¢ x € CP4
3 & 2 51w1 =, 52’(01 = 5111)2, 5271)2 =0

Bi? = image in E5? of {x e cPi

w1, wo as above, w3 € CP~3472 }
hwy =z, dowy = d1wa, dows = w3, dawz =0

etc.

(cf. Figure VII.4)

"More precisely, to construct the spectral sequence, one doesn’t need both gradings on € C?? and both
differentials; it is enough to have one grading (the grading by total degree), one filtration (Fi = @p>k C??) and

the total differential: for details cf. MacLane [77, Chapter 11, §§3 and 6].
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0
5
QI 5.
T —s 21
621 N
Y1 —— 29
5QI .
Y2 —
d,x!
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/
51 /
Yr—1 —— Zr—1 /
/
5] 5.
Yr—1 +—(7)
Ficure VII.3
0

U2
w2 —— U1
o1
[
W] ——
01

FiGgure VII.4

As for &&1. zP1 Ef+r’q_r+l/B,’3+T’q_r+l, suppose x € CP4 defines an element of Z, i.e.,
Jy; € optba=t gy € OPtr=1a L guch that Sayip1 = 61yi, @ < r — 1; Sy; = d1z. Define

dY(z) = S1yr-1.

This is an element of CP+74~ "+ killed by §; and &2, hence it defines an element of E¥ +rg-rtl /BY +ra-rtl
At this point there are quite a few points to verify — that d,. is well-defined so long as the im-

age is taken modulo B, and that d, has the three properties of the definition. These are all
mechanical and we omit them.
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Figure VII.5

Finally, define the filtration on the cohomology of the total complex:
Kerdin ., CP1
d (Zp+q:n—1 Cpg)

which can be represented by a d-cocycle

F¥(E™) =those elements of

with components z,, € C*?, x,, =0if p <k

(cf. Figure VIL.5). The whole point of these definitions, which is now reasonable I hope, is the
isomorphism:

FPE"/FPTIE" = zPn—p /| pPn—p,
The details are again omitted. O

An important remark is that the edge homomorphisms in the Leray spectral sequence:

a) H™(Y, f.F) = Ey° — E" = H*(X, F)

b) H"(X,F) = E" — Ey" = HO(Y, R"f..F)
are just the maps induced by the functorial properties of cohomology (i.e., the set of maps
fF(U) — F(f~1(U)) means that there is a map of sheaves “f,F — F with respect to f” in an
obvious sense and this gives (a); and the maps H*(X, F) — H"(f~'U,F) — R"f.F(U) for all
U give (b)). This comes out if V is a refinement of f~1(/) by the calculation used in the proof
of Theorem 3.5.

PROPOSITION 3.7. Let F be a quasi-coherent Ox-module. If f: X — Y is an affine mor-
phism (cf. Proposition-Definition 1.7.3), then

HP(X,F) — HP(Y, . F),  Vp.
PROOF. Leray’s spectral sequence (Theorem 3.5) and Corollary 3.3. (]

COROLLARY 3.8. Let F be a quasi-coherent Ox-module. If i: X — Y is a closed immersion
of schemes (cf. Definition 3.1), then

HP (X, F) = HP(Y,i.F), Vp.

REMARK. If X is identified with its image i(X) in Y, i,F is nothing but the quasi-coherent
Oy-module obtained as the extension of the Ox-module F by (0) outside X.
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A second important application of the hard lemma (Lemma 3.6) is to hypercohomology and
in particular to De Rham cohomology (cf. §VIIL.3 below). Let F* be any complex of sheaves on
a topological space X. Then if ¢/ is an open covering, H" (U, F*) is by definition the cohomology
of the total complex of the double complex C%(U, FP), hence we get two spectral sequences
abutting to it. The first is gotten by taking vertical cohomology (with respect to the superscript

q):
EY=HYU,FP) = E" =H"(U,F)
(with @}? the map induced on cohomology by d: F? — FPT1).
Passing to the limit over finer coverings, we get:
(3.9) EY = HY(X,FP) = E" = H"(X, F").

The second is gotten by taking horizontal cohomology (with respect to p) and then vertical
cohomology. To express this conveniently, define presheaves Hb.e(F*) by

Ker(FP(U Frliu
HE(F)(U) = er( (_1) — )
Image(FP~1(U) — Fr(U))
The sheafification of these presheaves are just:
1
H(F) = Ker(FP t) FPth
Image(FP~1 — FP)

but Hbye will not generally be a sheaf already. The horizontal cohomology of the double complex
CUU,FP) is just C9(U, Hbre) and the vertical cohomology of this is HI(U, Hbye), hence we get
the second spectral sequence:

BN = HP (U, HE,o(F)) = B = H'(U, F).

pre

Passing to the limit over U, this gives:

(3.10) EN = HP(X,HY (F)) = E" = H"(X, F").

pre

In good cases, e.g., X paracompact Hausdorff (cf. §1), the cohomology of a presheaf is the
cohomology of its sheafification, so we get finally:

(3.11) B = HP(X, HU(F)) = E" = H*(X, F).

4. Computing cohomology (1): Push F into a huge acyclic sheaf

Although the apparatus of cohomology of quasi-coherent sheaves may seem at first acquain-
tace rather formidable, it should always be remembered that it is really only fancy linear algebra.
In many specific cases, it is no great problem to compute it. To stress the flexibility of the tools
available for computing cohomology, we present in a fugal style four calculations each using a
different method.

A standard approach for coho