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Foreword

[from DM] I gave an introductory course in algebraic geometry many times during the 60’s

and 70’s while I was teaching at Harvard. Initially notes to the course were mimeographed and

bound and sold by the Harvard math department with a red cover. These old notes were picked

up by Springer and are now sold as the “Red Book of Varieites and Schemes”. However, every

time I taught the course, the content changed and grew. I had aimed to eventually publish more

polished notes in three volumes. Volume I, dealing with varieites over the complex numbers

appeared in 1976 and roughly 2/3rds of a first draft for volume II was written down at about

the same time. This draft covered the material in the Red Book in more depth and added

some advanced topics to give it weight. Volume III was intended to be an introduction to

moduli problems but this was never started as my interests shifted to other fields in the 80’s.

To my surprise, however, some students did read the draft for volume II and felt it made some

contribution to the growing literature of multiple introductions to algebraic geometry.

[from [TO] I had the good fortune of first getting acquainted with schemes and functorial

approaches in algebraic geometry when the first author gave a series of introductory lectures

in Tokyo in spring, 1963. Throughout my graduate study at Harvard from October, 1964

through June, 1967, I had many chances to learn further from the first author as my Ph.D.

thesis advisor. It is a great honor and privilege to have this opportunity of sharing with as

many people as possible the excitement and joy in learning algebraic geometry through the first

author’s fascinating style.

The Herculean task of preparing the manuscript for publication, improving and fixing it

in multiple ways and adding some half a dozen new sections and results is due to the efforts

of the second author. Both authors want to thank those who have assisted in this draft that

we are posting on the Web, especially Ching-Li Chai, Vikraman Balaji, Frans Oort, Fernando

Quadros Gouvêa, Dinesh, Amnon Neeman and Akihiko Yukie. A number of extra sections

were added to make the book better. Thanks are due to John Tate for the new proof of

the Riemann-Roch theorem, Carlos Simpson for the proof of Belyi’s three point theorem and

Shigefumi Mori for the proofs of some results of his. The exercises are those found originally

in the manuscript plus further exercises kindly provided by Ching-Li Chai who gave a graduate

course in algebraic geometry at the University of Pennsylvania using a preliminary version of

this book. No systematic attempt was made to produce further exercises.

Special thanks are due to Ching-Li Chai for providing valuable suggestions during the prepa-

ration of the manuscript.
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CHAPTER I

Schemes and sheaves: definitions

1. Spec(R)

For any commutative ring R, we seek to represent R as a ring of continuous functions on

some topological space. This leads us naturally to Spec(R):

Definition 1.1. Spec(R) = the set of prime ideals p ⊂ R (here R itself is not considered as

a prime ideal, but {0}, if prime is OK). If p is a prime ideal, to avoid confusion we denote the

corresponding point of Spec(R) by [p].

Definition 1.2. For all x ∈ Spec(R), if x = [p], let

k(x) = the quotient field of the integral domain R/p.

For all f ∈ R, define the value f(x) of f at x as the image of f via the canonical maps

R↠ R/p→ k(x).

In this way, we have defined a set Spec(R) and associated to each f ∈ R a function on

Spec(R) — with values unfortunately in fields that vary from point to point. The next step is

to introduce a topology in Spec(R):

Definition 1.3. For every subset S ⊂ R, let
V (S) = {x ∈ Spec(R) | f(x) = 0 for all f ∈ S}

= {[p] | p a prime ideal and p ⊇ S}.

It is easy to verify that V has the properties:

a) If a = the ideal generated by S, then V (S) = V (a),

b) S1 ⊇ S2 =⇒ V (S1) ⊆ V (S2),

c) V (S) = ∅ ⇐⇒ [1 is in the ideal generated by S].

Proof. ⇐= is clear; conversely, if a = the ideal generated by S and 1 /∈ a, then

a ⊂ m, some maximal ideal m. Then m is prime and [m] ∈ V (S). □

d)

V (
∪
α

Sα) =
∩
α

V (Sα) for any family of subsets Sα

V (
∑
α

aα) =
∩
α

V (aα) for any family of ideals aα.

e) V (a1 ∩ a2) = V (a1) ∪ V (a2).

Proof. The inclusion ⊇ follows from (b). To prove “⊆”, say p ⊃ a1∩a2 but p ⊉ a1
and p ⊉ a2. Then ∃fi ∈ ai \ p, hence f1 · f2 ∈ a1 ∩ a2 and f1 · f2 /∈ p since p is prime.

This is a contradiction. □

f) V (a) = V (
√
a).

1



2 I. SCHEMES AND SHEAVES: DEFINITIONS

Because of (d) and (e), we can take the sets V (a) to be the closed sets of a topology on

Spec(R), known as the Zariski topology.

Definition 1.4. For f ∈ R

Spec(R)f = {x ∈ Spec(R) | f(x) ̸= 0}
= Spec(R) \ V (f).

Since V (f) is closed, Spec(R)f is open: we call these the distinguished open subsets of

Spec(R).

Note that the distinguished open sets form a basis of the topology closed under finite inter-

sections. In fact, every open set U is of the form Spec(R) \ V (S), hence

U = SpecR \ V (S)

= SpecR \
∩
f∈S

V (f)

=
∪
f∈S

(
SpecR \ V (f)

)
=
∪
f∈S

Spec(R)f

and
n∩
i=1

(
SpecR

)
fi
=
(
SpecR

)
f1···fn .

Definition 1.5. If S ⊂ SpecR is any subset, let

I(S) = {f ∈ R | f(x) = 0, all x ∈ S}.

We get a Nullstellensatz-like correspondence between subsets of R and of SpecR given by

the operations V and I (cf. Part I [87, §1A, (1.5)], Zariski-Samuel [119, vol. II, Chapter VII,

§3, Theorem 14] and Bourbaki [27, Chapter V, §3.3, Proposition 2]):

Proposition 1.6.

(a) If a is any ideal in R, then I(V (a)) =
√
a.

(b) V and I set up isomorphisms inverse to each other between the set of ideals a with

a =
√
a, and the set of Zariski-closed subsets of SpecR.

Proof. In fact,

f ∈ I(V (a))⇐⇒ f ∈ p for every p with [p] ∈ V (a)

⇐⇒ f ∈ p for every p ⊇ a

so

I(V (a)) =
∩
p⊇a

p

=
√
a

(cf. Zariski-Samuel [119, vol. I, p. 151, Note II] or Atiyah-MacDonald [20, p. 9]).

(b) is then a straightforward verification. □



1. Spec(R) 3

The points of Spec(R) need not be closed : In fact,

{[p]} = smallest set V (S), containing [p], i.e., S ⊆ p

= V (S), with S the largest subset of p

= V (p),

hence:

[p′] ∈ closure of {[p]} ⇐⇒ p′ ⊇ p.

Thus [p] is closed if and only if p is a maximal ideal. At the other extreme, if R is an integral

domain then (0) is a prime ideal contained in every other prime ideal, so the closure of [(0)] is

the whole space Spec(R). Such a point is called a generic point of Spec(R).

Definition 1.7. If X is a topological space, a closed subset S is irreducible if S is not the

union of two properly smaller closed subsets S1, S2 ⫋ S. A point x in a closed subset S is called

a generic point of S if S = {x}, and will be written ηS .

It is obvious that the closed sets {x} are irreducible. For Spec(R), we have the converse:

Proposition 1.8. If S ⊂ Spec(R) is an irreducible closed subset, then S has a unique

generic point ηS.

Proof. I claim S irreducible =⇒ I(S) prime. In fact, if f · g ∈ I(S), then for all x ∈ S,
f(x) · g(x) = 0 in k(x), hence f(x) = 0 or g(x) = 0. Therefore

S = [S ∩ V (f)] ∪ [S ∩ V (g)].

Since S is irreducible, S equals one of these: say S = S ∩ V (f). Then f ≡ 0 on S, hence

f ∈ I(S). Thus I(S) is prime and

S = V (I(S))

= closure of [I(S)].

As for uniqueness, if [p1], [p2] were two generic points of S, then [p1] ∈ V (p2) and [p2] ∈ V (p1),

hence p1 ⊆ p2 ⊆ p1. □

Proposition 1.9. Let S be a subset of R. ThenSpec(R) = ∪
f∈S

Spec(R)f

⇐⇒
1 ∈∑

f∈S
f ·R, the ideal generated by S

 .
Proof. In fact,

SpecR \
∪
f∈S

Spec(R)f = V

∑
f∈S

f ·R


so apply (c) in Definition 1.3. □

Notice that 1 ∈
∑

f∈S f · R if and only if there is a finite set f1, . . . , fn ∈ S and elements

g1, . . . , gn ∈ R such that

1 =
∑

gi · fi.
This equation is the algebraic analog of the partitions of unity which are so useful in differential

geometry.

Corollary 1.10. SpecR is quasi-compact1, i.e., every open covering has a finite subcover-

ing.

1“compact” in the non-Hausdorff space.
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Proof. Because distinguished open sets form a basis, it suffices to check that every covering

by distinguished opens has a finite subcover. Because of Proposition 1.9, this follows from the

fact that 1 ∈∑
f∈S

f ·R

 =⇒

[
1 ∈

n∑
1=1

fi ·R, some finite set f1, . . . , fn ∈ S

]
.

□

When R is noetherian, even more holds:

Definition 1.11. If X is a topological space, the following properties are equivalent:

i) the closed sets satisfy the descending chain condition,

ii) the open sets satisfy the ascending chain condition,

iii) every open set U is quasi-compact.

A space with these properties is called a noetherian topological space.

Because of property (b) of V in Definition 1.3, if R is a noetherian ring, then Spec(R) is a

noetherian space and every open is quasi-compact!

The next big step is to “enlarge” the ring R into a whole sheaf of rings on SpecR, written

OSpecR

and called the structure sheaf of SpecR. For background on sheaves, cf. Appendix to this

chapter. To simplify notation, let X = SpecR. We want to define rings

OX(U)

for every open set U ⊂ X. We do this first for distinguished open sets Xf . Then by Proposition

7 of the Appendix, there is a canonical way to define OX(U) for general open sets. The first

point is a generalization of Proposition 1.9:

Lemma 1.12.[
Xf ⊂

n∪
i=1

Xgi

]
⇐⇒

[
∃m ≥ 1, ai ∈ R such that fm =

∑
aigi

]
.

Proof. The assertion on the left is equivalent to:

gi([p]) = 0 all i =⇒ f([p]) = 0, for all primes p,

which is the same as

f ∈ I
(
V
(∑

giR
))

=
√∑

giR,

which is the assertion on the right. □

We want to define

OX(Xf ) = Rf

= localization of ring R with respect to multiplicative system

{1, f, f2, . . .}; or ring of fractions a/fn, a ∈ R, n ∈ Z.

In view of Lemma 1.12, if Xf ⊂ Xg, then f
m = a · g for some m ≥ 1, a ∈ R, hence there is a

canonical map

Rg −→ Rf .

(Explicitly, this is the map b/gn 7→ ban/(ag)n = ban/fnm.) In particular, if Xf = Xg, there are

canonical maps Rf → Rg and Rg → Rf which are inverse to each other, so we can identify Rf
and Rg. Therefore it is possible to define OX(Xf ) to be Rf . Furthermore, whenever Xf ⊂ Xg,
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we take the canonical map Rg → Rf to be the restriction map. Whenever Xk ⊂ Xg ⊂ Xf , we

get a commutative diagram of canonical maps:

Rf //

##GGGGGG Rk

Rg

;;wwwwww

Thus we have defined a presheaf OX on the distinguished open sets. We now verify the sheaf

axioms:

Key lemma 1.13. Assume Xf =
∪N
i=1Xgi. Then

a) if b/fk ∈ Rf maps to 0 in each localization Rgi, then b/f
k = 0,

b) if bi/g
ki
i ∈ Rgi is a set of elements such that bi/g

ki
i = bj/g

kj
j in Rgigj , then ∃ b/fk ∈ Rf

which maps to bi/g
ki
i for each i.

Proof. The hypothesis implies that

fm =
∑

aigi

for some m ≥ 1 and ai ∈ R. Raising this to a high power, one sees that for all n, there exists

an m′ and a′i such that

fm
′
=
∑

a′ig
n
i

too. To prove (a), if b/fk = 0 in Rgi , then g
n
i · b = 0 for all i, if n is large enough. But then

fm
′ · b =

∑
a′i(g

n
i b) = 0

hence b/fk = 0 in Rf . To prove (b), note that bi/g
ki
i = bj/g

kj
j in Rgigj means:

(gigj)
mijg

kj
j bi = (gigj)

mijgkii bj

for some mij ≥ 1. If M = maxmij +max ki, then

bi

gkii
=

call this b′i︷ ︸︸ ︷
big

M−ki
i

gMi
in Rgi ,

and

gMj · b′i = (g
M−kj
j gM−ki

i ) · gkjj bi

= (g
M−kj
j gM−ki

i ) · gkii bj , since M − ki and M − kj are ≥ mij

= gMi · b′j .

Now choose k and a′i so that fk =
∑
a′ig

M
i . Let b =

∑
a′jb

′
j . Then I claim b/fk equals b′i/g

M
i in

Rgi . In fact,

gMi b =
∑
j

gMi a
′
jb

′
j

=
∑
j

gMj a
′
jb

′
i

= fk · b′i.

□
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This means that OX is a sheaf on distinguished open sets, hence by Proposition 7 of the

Appendix it extends to a sheaf on all open sets of X. Its stalks can be easily computed:

if x = [p] ∈ SpecR, then

Ox,X =
def

lim−−−−→
open U
x∈U

OX(U)

= lim−−−−−−−−−−→
dist. open Xf

f(x)̸=0

OX(Xf )

= lim−−−−→
f∈R\p

Rf

= Rp

where Rp as usual is the ring of fractions a/f , a ∈ R, f ∈ R \ p.
Now Rp is a local ring, with maximal ideal p ·Rp, and residue field:

Rp/(p ·Rp) = (quotient field of R/p) = k(x).

Thus the stalks of our structure sheaf are local rings and the evaluation of functions f ∈ R

defined above is just the map:

R = OX(X) −→ Ox,X −→ residue field k(x).

In particular, the evaluation of functions at x extends to all f ∈ OX(U), for any open neighbor-

hood U of x. Knowing the stalks of OX we get the following explicit description of OX on all

open U ⊂ X:

OX(U) =

(sp) ∈
∏
[p]∈U

Rp

∣∣∣∣∣∣
U is covered by distinguished

open Xfi , and ∃si ∈ Rfi
inducing sp whenever fi /∈ p

 .

The pairs (SpecR,OSpecR) are called affine schemes. We give a name to one of the most

important ones:

AnR =
(
SpecR[X1, . . . , Xn],OSpecR[X1,...,Xn]

)
= affine n-space over R.

2. M̃

An important aspect of the construction which defines the structure sheaf OX is that it

generalizes to a construction which associates a sheaf M̃ on Spec(R) to every R-module M . To

every distinguished open set Xf , we assign the localized module:

Mf =
def


set of symbols m/fn, m ∈M , n ∈ Z,
modulo the identification m1/f

n1 = m2/f
n2

iff fn2+k ·m1 = fn1+k ·m2, some k ∈ Z


=M ⊗R Rf .

We check (1) that if Xf ⊂ Xg, then there is a natural map Mg →Mf , (2) that

lim−−−−→
[p]∈Xf

Mf =Mp
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where

Mp =
def


set of symbols m/g, m ∈M , g ∈ R \ p,
modulo the identification m1/g1 = m2/g2
iff hg2m1 = hg1m2, some h ∈ R \ p


=M ⊗R Rp,

and (3) that Xf 7→ Mf is a “sheaf on the distinguished open sets”, i.e., satisfies Key lemma

1.13. (The proofs are word-for-word the same as the construction of OX .) We can then extend

the map Xf 7→Mf to a sheaf U 7→ M̃(U) such that M̃(Xf ) =Mf as before. Explicitly:

M̃(U) =

s ∈ ∏
[p]∈U

Mp

∣∣∣∣∣∣ “s given locally by elements of Mf ’s”

 .

The sheaf M̃ that we get is a sheaf of groups. But more than this, it is a sheaf of OX -modules

in the sense of:

Definition 2.1. Let X be a topological space and OX a sheaf of rings on X. Then a sheaf

F of OX -modules on X is a sheaf F of abelian groups plus an OX(U)-module structure on F(U)

for all open sets U such that if U ⊂ V , then resV,U : F(V )→ F(U) is a module homomorphism

with respect to the ring homomorphism resV,U : OX(V )→ OX(U).

In fact check that the restriction of the natural map∏
[p]∈U

Rp ×
∏
[p]∈U

Mp −→
∏
[p]∈U

Mp

maps OX(U)× M̃(U) into M̃(U), etc.

Moreover, the map M 7→ M̃ is a functor : given any R-homomorphism of R-modules:

φ : M −→ N

induces by localization:

φf : Mf −→ Nf , ∀f ∈ R
hence

φ : M̃(U) −→ Ñ(U), ∀ distinguished opens U.

This extends uniquely to a map of sheaves:

φ̃ : M̃ −→ Ñ ,

which is clearly a homomorphism of these sheaves as OX -modules.

Proposition 2.2. Let M , N be R-modules. Then the two maps

HomR(M,N) //
HomOX

(M̃, Ñ)oo

φ � // φ̃[
ψ(X), the map

on global sections

]
ψ�oo

are inverse to each other, hence are isomorphisms.

Proof. Immediate. □

Corollary 2.3. The category of R-modules is equivalent to the category of OX-modules of

the form M̃ .
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This result enables us to translate much of the theory of R-modules into the theory of sheaves

on SpecR, and brings various geometric ideas into the theory of modules. (See for instance,

Bourbaki [27, Chapter IV].)

But there are even stronger categorical relations between R-modules M and the sheaves M̃ :

in fact, both the category of R-modules M and the category of sheaves of abelian groups on X

are abelian, i.e., kernels and cokernels with the usual properties exist in both these categories

(cf. Appendix to this chapter). In particular one can define exact sequences, etc. The fact is

that ˜ preserves these operations too:

Proposition 2.4. Let f : M → N be a homomorphism of R-modules and let K = Ker(f),

C = Coker(f). Taking ˜’s, we get maps of sheaves:

K̃ −→ M̃
f̃−→ Ñ −→ C̃.

Then

(a) K̃ = Ker(f̃), i.e., K̃(U) = Ker[M̃(U)→ Ñ(U)] for all U .

(b) C̃ = Coker(f̃): by definition this means C̃ is the sheafification of U → Ñ(U)/f̃(M̃(U));

but in our case, we get the stronger assertion:

C̃(Xa) = Coker
(
M̃(Xa)→ Ñ(Xa)

)
, all distinguished opens Xa.

Proof. Since 0→ K →M → N → C → 0 is exact, for all a ∈ R the localized sequence:

0→ Ka →Ma → Na → Ca → 0

is exact (cf. Bourbaki [27, Chapter II, §2.4]; Atiyah-MacDonald [20, p. 39]). Therefore

0→ K̃(Xa)→ M̃(Xa)→ Ñ(Xa)→ C̃(Xa)→ 0

is exact for all a. It follows that K̃ and Ker(f̃) are isomorphic on distinguished open sets,

hence are isomorphic for all U (cf. Proposition 7 of the Appendix). Moreover it follows that

the presheaf Ñ(U)/f̃(M̃(U)) is already a sheaf on the distinguished open sets Xa, with values

C̃(Xa); there is only one sheaf on all open sets U extending this, and this sheaf is on the one

hand [ sheafification of U → Ñ(U)/f̃(M̃(U))] or Coker(f̃), (see the Appendix) and on the other

hand it is C̃. □
Corollary 2.5. A sequence

M −→ N −→ P

of R-modules is exact if and only if the sequence

M̃ −→ Ñ −→ P̃

of sheaves is exact.

Moreover in both the category of R-modules and of sheaves of OX -modules there is an

internal Hom: namely if M , N are R-modules, HomR(M,N) has again the structure of an R-

module; and if F , G are sheaves of OX -modules, there is a sheaf of OX -modules HomOX
(F ,G)

whose global sections are HomOX
(F ,G) (cf. Appendix to this chapter). In some cases Proposition

2.2 can be strengthened:

Proposition 2.6. Let M , N be R-modules, and assume M is finitely presented, i.e., ∃ an

exact sequence:

Rp −→ Rq −→M −→ 0.

Then

HomOX
(M̃, Ñ) ∼= HomR(M,N )̃ .
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Proof. There is a natural map on all distinguished opens Xf :

HomR(M,N)˜(Xf ) = HomR(M,N)⊗R Rf
→ HomRf

(Mf , Nf )

∼= HomAs sheaves of
OXf

-modules

on Xf

(M̃ |Xf
, Ñ |Xf

), by Proposition 2.2

= HomOX
(M̃, Ñ)(Xf ).

When M is finitely presented, one checks that the arrow on the second line is an isomorphism

using:

0 −→ HomR(M,N) −→ HomR(R
q, N) −→ HomR(R

p, N)

hence

0 // HomR(M,N)⊗R Rf //

��

HomR(R
q, N)⊗R Rf //

≈
��

HomR(R
p, N)⊗R Rf

≈
��

0 // HomRf
(Mf , Nf ) // HomRf

(Rqf , Nf ) // HomRf
(Rpf , Nf )

□

Finally, we will need at one point later that ˜ commutes with direct sums, even infinite

ones (Proposition-Definition 5.1):

Proposition 2.7. If {Mα}α∈S is any collection of R-modules, then∑̃
α∈S

Mα =
∑
α∈S

M̃α.

Proof. Since each open set Xf is quasi-compact,(∑
M̃α

)
(Xf ) =

∑(
M̃α(Xf )

)
cf. remark at the end of Appendix

=
∑

(Mα)f

=

(∑
α

Mα

)
f

=
∑

Mα(Xf ).

Therefore these sheaves agree on all open sets. □

3. Schemes

We now proceed to the main definition:

Definition 3.1. An affine scheme is a topological space X, plus a sheaf of rings OX on

X isomorphic to (SpecR,OSpecR) for some ring R. A scheme is a topological space X, plus a

sheaf of rings OX on X such that there exists an open covering {Uα} of X for which each pair

(Uα,OX |Uα) is an affine scheme.

Schemes in general have some of the peculiar topological properties of SpecR. For instance:

Proposition 3.2. Every irreducible closed subset S of a scheme X is the closure of a unique

point ηS ∈ S, called its generic point.

Proof. Reduce to the affine case, using: U open, x ∈ U , x ∈ {y} =⇒ y ∈ U . □
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Proposition 3.3. If (X,OX) is a scheme, and U ⊂ X is an open subset, then (U,OX |U )
is a scheme.

Proof. If {Uα} is an affine open covering of X, it suffices to show that U ∩Uα is a scheme

for all α. But if Uα = Spec(Rα), then U ∩ Uα, like any open subset of Spec(Rα) can be covered

by smaller open subsets of the form Spec(Rα)fβ , fβ ∈ Rα. Therefore we are reduced to proving:

Lemma 3.4. For all rings R and f ∈ R,(
(SpecR)f ,OSpecR|(SpecR)f

)
∼=
(
Spec(Rf ),OSpec(Rf )

)
,

hence (SpecR)f is itself an affine scheme.

Proof of Lemma 3.4. Let i : R→ Rf be the canonical map. Then if p is a prime ideal of

R, such that f /∈ p, i(p)·Rf is a prime ideal of Rf ; and if p is a prime ideal of Rf , i
−1(p) is a prime

ideal of R not containing f . These maps set up a bijection between Spec(R)f and Spec(Rf ) (cf.

Zariski-Samuel [119, vol. I, p. 223]). This is a homeomorphism since the distinguished open sets

Spec(R)fg ⊂ Spec(R)f

and

Spec(Rf )g ⊂ Spec(Rf )

correspond to each other. But the sections of the structure sheaves OSpec(R) and OSpec(Rf )

on these two open sets are both isomorphic to Rfg. Therefore, these rings of sections can be

naturally identified with each other and this sets up an isomorphism of (i) the restriction of

OSpec(R) to Spec(R)f , and (ii) OSpec(Rf ) compatible with the homeomorphism of underlying

spaces. □

□

Since all schemes are locally isomorphic to a Spec(R), it follows from §1 that the stalks Ox,X
of OX are local rings. As in §1, define k(x) to be the residue field Ox,X/mx,X where mx,X =

maximal ideal, and for all f ∈ Γ(U,OX) and x ∈ U , define f(x) = image of f in k(x). We can

now make the set of schemes into the objects of a category:

Definition 3.5. If (X,OX) and (Y,OY ) are two schemes, a morphism from X to Y is a

continuous map

f : X −→ Y

plus a collection of homomorphisms:

Γ(V,OY )
f∗V−→ Γ(f−1(V ),OX)

for every open set V ⊂ Y 2, such that

a) whenever V1 ⊂ V2 are two open sets in Y , then the diagram:

Γ(V2,OY )
f∗V2

//

res

��

Γ(f−1(V2),OX)

res

��

Γ(V1,OY )
f∗V1

// Γ(f−1(V1),OX)

commutes, and

2Equivalently, a homomorphism of sheaves

OY −→ f∗OX

in the notation introduced at the end of the Appendix to this chapter.
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b) because of (a), then f∗V ’s pass in the limit to homomorphisms on the stalks:

f∗x : Oy,Y −→ Ox,X
for all x ∈ X and y = f(x); then we require that f∗x be a local homomorphism, i.e., if a ∈
my,Y = the maximal ideal of Oy,Y , then f∗x(a) ∈ mx,X = the maximal ideal of Ox,X .
Equivalently, if a(y) = 0, then f∗x(a)(x) = 0.

To explain this rather elaborate definition, we must contrast the situation among schemes

with the situation with differentiable or analytic manifolds. In the case of differentiable or

analytic manifolds X, X also carries a “structure sheaf” OX , i.e.,

OX(U) =

{
ring of real-valued differentiable or

complex-valued analytic functions on U

}
.

Moreover, to define a differentiable or analytic map from X to Y , one can ask for a continuous

map f : X → Y with the extra property that:

for all open V ⊂ Y and all a ∈ OY (V ), the compositie function a◦f on f−1(V )

should be in OX(f−1(V )).

Then we get a homomorphism:

Γ(V,OY ) −→ Γ(f−1(V ),OX)
a 7−→ a ◦ f

automatically from the map f on the topological spaces. Note that this homomorphism does

have properties (a) and (b) of our definition. (a) is obvious. To check (b), note that the stalks

Ox,X of the structure sheaf are the rings of germs of differentiable or analytic functions at the

point x ∈ X. Moreover, mx,X is the ideal of germs a such that a(x) = 0, and

Ox,X ∼= mx,X ⊕ R · 1x (differentiable case)

Ox,X ∼= mx,X ⊕ C · 1x (anallytic case)

where 1x represents the germ at x of the constant function a ≡ 1 (i.e., every germ a equals

a(x) · 1x + b, where b(x) = 0). Then given a differentiable or analytic map f : X → Y , the

induced map on stalks f∗x : Oy,Y → Ox,X is just the map on germs a 7−→ a ◦ f , hence
a ∈ my,Y ⇐⇒ a(y) = 0

⇐⇒ a ◦ f(x) = 0

⇐⇒ f∗xa ∈ mx,X .

The new feature in the case of schemes is that the structure sheaf OX is not equal to a sheaf of

functions fromX to any field k: it is a sheaf of rings, possibly with nilpotent elements, and whose

“values” a(x) lie in different fields k(x) as x varies. Therefore the continuous map f : X → Y

does not induce a map f∗ : OY → OX automatically. However property (b) does imply that f∗

is compatible with “evaluation” of the elements a ∈ OY (U), i.e., the homomorphism f∗x induces

one on the residue fields:

k(y) = Oy,Y /my,Y
f∗x modulo maximal ideals−−−−−−−−−−−−−−−−→ Ox,X/mx,X = k(x).

Note that it is injective, (like all maps of fields), and that using it (b) can be strengthened to:

(b′) For all V ⊂ Y , and x ∈ f−1(V ), let y = f(x) and identify k(y) with its image in k(x)
by the above map. Then

f∗(a)(x) = a(y)

for all a ∈ Γ(V,OY ).
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Given two morphisms X
f−→ Y and Y

g−→ Z, we can define their composition g◦f : X −→ Z

in an obvious way. This gives us the category of schemes. Also very useful are the related

categories of “schemes over S”.

Definition 3.6. Fix a scheme S, sometimes referred to as the base scheme. Then a scheme

over S, written X/S, is a scheme X plus a morphism pX : X → S. If S = Spec(R), we call this

simply a scheme over R or X/R. If X/S and Y/S are two schemes over S, an S-morphism from

X/S to Y/S is a morphism f : X → Y such that the diagram

X
f

//

pX
��

@@@@@@@ Y

pY
���������

S

commutes.

The following theorem is absolutely crucial in tying together these basic concepts:

Theorem 3.7. Let X be a scheme and let R be a ring. To every morphism f : X → Spec(R),

associate the homomorphism:

R ∼= Γ
(
Spec(R),OSpec(R)

) f∗−→ Γ(X,OX).

Then this induces a bijection between Hom(X, Spec(R)) in the category of schemes and Hom(R,Γ(X,OX))
in the category of rings.

Proof. For all f ’s, let Af : R → Γ(X,OX) denote the induced homomorphism. We first

show that f is determined by Af . We must begin by showing how the map of point sets

X → Spec(R) is determined by Af . Suppose x ∈ X. The crucial fact we need is that since

p = {a ∈ R | a([p]) = 0}, a point of Spec(R) is determined by the ideal of elements of R

vanishing at it. Thus f(x) is determined if we know {a ∈ R | a(f(x)) = 0}. But this equals

{a ∈ R | f∗x(a)(x) = 0}, and f∗x(a) is obtained by restricting Af (a) to Ox,X . Therefore

f(x) = [{a ∈ R | (Afa)(x) = 0}] .

Next we must show that the maps f∗U are determined by Af for all open sets U ⊂ Spec(R).

Since f∗ is a map of sheaves, it is enough to show this for a basis of open sets (in fact, if U =
∪
Uα

and s ∈ Γ(U,OSpec(R)), then f∗U (s) is determined by its restrictions to the sets f−1(Uα), and

these equal f∗Uα
(resU,Uα s)). Now let Y = Spec(R) and consider f∗ for the distinguished open

set Yb. It makes the diagram

Γ(f−1(Yb),OX) Γ(Yb,OY ) = Rb
f∗Yb

oo

Γ(X,OX)

res

OO

Γ(Y,OY ) = R

res

OO

Af
oo

commutative. Since these are ring homomorphisms, the map on the ring of fractions Rb is

determined by that on R: thus Af determines everything.

Finally any homomorphism A : R→ Γ(X,OX) comes from some morphism f . To prove this,

we first reduce to the case when X is affine. Cover X by open affine sets Xα. Then A induces

homomorphisms

Aα : R −→ Γ(X,OX)
res−→ Γ(Xα,OXα).
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Assuming the result in the affine case, there is a morphism fα : Xα → Spec(R) such that

Aα = Afα . On Xα ∩Xβ, fα and fβ agree because the homomorphisms

Γ(Xα,OX)
res

%%KKKKKKKKKK

R

Aα

::uuuuuuuuuu

Aβ
$$IIIIIIIIII Γ(Xα ∩Xβ,OX)

Γ(Xβ,OX)
res

99ssssssssss

agree and we know that the morphism is determined by the homomorphism. Hence the fα patch

together to a morphism f : X → Spec(R), and one checks that Af is exactly A.

Now let A : R→ B be a homomorphism. We want a morphism

f : Spec(B)→ Spec(R).

Following our earlier comments, we have no choice in defining f : for all points [p] ∈ Spec(B),

f([p]) = [A−1(p)].

This is continuous since for all ideals a ⊆ R, f−1(V (a)) = V (A(a)·B). Moreover if U = Spec(R)a,

then f−1(U) = Spec(B)A(a), so for f∗U we need a map Ra → BA(a). We take the localization of

A. These maps are then compatible with restriction, i.e.,

Ra //

��

BA(a)

��

Rab // BA(a)·A(b)

commutes. Hence they determine a sheaf map (in fact, if U =
∪
Uα, Uα distinguished, and

s ∈ Γ(U,OSpec(R)) then the elements f∗Uα
(resU,Uα s) patch together to give an element f∗U (s) in

Γ(f−1(U),OSpec(B))). From our definition of f , it follows easily that f∗ on O[A−1p] takes the

maximal ideal m[A−1p] into m[p]. □

Corollary 3.8. The category of affine schemes is equivalent to the category of commutative

rings with unit, with arrows reversed.

Corollary 3.9. If X is a scheme and R is a ring, to make X into a scheme over R is

the same thing as making the sheaf of rings OX into a sheaf of R-algebras. In particular, there

is a unique morphism of every scheme to SpecZ: “SpecZ is a final object in the category of

schemes”!

Another point of view on schemes over a given ring A is to ask: what is the “raw data” needed

to define a scheme X over SpecA? It turns out that such an X can be given by a collection of

polynomials with coefficients in A and under suitable finiteness conditions (see Definition II.2.6)

this is the most effective way to construct a scheme. In fact, first cover X by affine open sets

Uα (possibly an infinite set) and let Uα = SpecRα. Then each Rα is an A-algebra. Represent

Rα as a quotient of a polynomial ring:

Rα = A[. . . , X
(α)
β , . . .]/(. . . , f (α)γ , . . .)

where the f
(α)
γ are polynomials in the variables X

(α)
β . The scheme X results from glueing a whole

lot of isomorphic localizations (Uα1)gα1α2ν
and (Uα2)hα1α2ν

, and these isomorphisms result from
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A-algebra isomorphisms:

A

. . . , Xα1
β , . . . ,

1

gα1α2ν(X
(α1)
β )

/ (. . . , f (α1)
γ , . . .)

∼= A

. . . , Xα2
β , . . . ,

1

hα1α2ν(X
(α2)
β )

/ (. . . , f (α2)
γ , . . .)

given by

X
(α2)
β2

=
ϕα1α2νβ2(. . . , X

(α1)
β , . . .)

(gα1α2ν)
Nα1α2νβ2

X
(α1)
β1

=
ψα1α2νβ1(. . . , X

(α2)
β , . . .)

(hα1α2ν)
Mα1α2νβ1

.

Thus the collection of polynomials f , g, h, ϕ and ψ with coefficients in A explicitly describes

X. In reasonable cases, this collection is finite and gives the most effective way of “writing out”

the scheme X.

It is much harder to describe explicitly the set of morphisms from SpecR to X than it is to

describe the morphisms from X to SpecR. In one case this can be done however:

Proposition 3.10. Let R be a local ring with maximal ideal M . Let X be a scheme. To

every morphism f : SpecR→ X associate the point x = f([M ]) and the homomorphism

f∗x : Ox,X −→ O[M ],SpecR = R.

Then this induces a bijection between Hom(SpecR,X) and the set of pairs (x, ϕ), where x ∈ X
and ϕ : Ox,X → R is a local homomorphism.

(Proof left to the reader.)

This applies for instance to the case R = K a field, in which case SpecK consists in only

one point [M ] = [(0)]. A useful example is:

Corollary 3.11. For every x ∈ X, there is a canonical homomorphism

ix : Spec k(x) −→ X

defined by requiring that Image(ix) = x, and that

i∗x : Ox,X → O[(0)],Spec k(x) = k(x)

be the canonial map. For every field k, every morphism

f : Spec k −→ X

factors uniquely:

Spec k
g−→ Speck(x) ix−→ X

where x = Image(f) and g is induced by an inclusion k(x)→ k.
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4. Products

There is one exceedingly important and very elementary existence theorem in the category

of schemes. This asserts that arbitrary fibre products exist:

Recall that if morphisms:

X

r ��
;;;; Y

s������

S

are given, a fibre product is a commutative diagram

X ×S Yp1

zzttttt p2

$$IIIII

X

r %%JJJJJJ Y

szztttttt

S

with the obvious universal property: i.e., given any commutative diagram

Zq1
~~}}} q2

  
@@@

X

r   
AAA Y

s~~~~~

S

there is a unique morphism t : Z → X ×S Y such that q1 = p1 ◦ t, q2 = p2 ◦ t. The fibre product

is unique up to canonical isomorphism. When S is the final object SpecZ in the category of

schemes, we drop the S and write X × Y for the product.

Theorem 4.1. If A and B are C-algebras, let the diagram of affine schemes

Spec(A⊗C B)

uullllll
))SSSSSS

Spec(A)

))RRRRRR
Spec(B)

uullllll

Spec(C)

be defined by the canonical homomorphisms C → A, C → B, A → A ⊗C B (a 7→ a ⊗ 1),

B → A ⊗C B (b 7→ 1 ⊗ b). This makes Spec(A ⊗C B) a fibre product of Spec(A) and Spec(B)

over Spec(C).

Theorem 4.2. Given any morphisms r : X → S, s : Y → S, a fibre product exists.

Proof of Theorem 4.1. It is well known that in the diagram (of solid arrows):

A

##HHHHHHHHH

**UUUUUUUUUU

C

??��������

��
???????? A⊗C B // D

B

;;vvvvvvvvv

44iiiiiiiiii

the tensor product has the universal mapping property indicated by dotted arrows, i.e., is the

“direct sum” in the category of commutative C-algebras, or the “fibre sum” in the category of

commutative rings. Dually, this means that Spec(A⊗C B) is the fibre product in the category
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of affine schemes. But if T is an arbitrary scheme, then by Theorem 3.7, every morphism of T

into any affine scheme Spec(E) factors uniquely through Spec(Γ(T,OT )):

T //

''NNNNNNNN Spec(E)

Spec(Γ(T,OT ))

66llll

Using this, it follows immediately that Spec(A⊗C B) is the fibre product in the category of all

schemes. □

Theorem 4.1 implies for instance that:

AnR ∼= AnZ × SpecR.

Proof of Theorem 4.2. There are two approaches to this. The first is a patching argu-

ment that seems quite straightforward and “mechanical”, but whose details are really remarkably

difficult. The second involves the direct construction of X×S Y as a local ringed space and then

the verification that locally it is indeed the same product as that given by Theorem 4.1. We will

sketch both. For the first, the main point to notice is this: suppose

X ×S Y
p1

zzttttt p2

$$IIIII

X

r %%JJJJJJ Y

szztttttt

S

is some fibre product and suppose that X◦ ⊂ X, Y◦ ⊂ Y and S◦ ⊂ S are open subsets. Assume

that r(X◦) ⊂ S◦ and s(Y◦) ⊂ S◦. Then the open subset

p−1
1 (X◦) ∩ p−1

2 (Y◦) ⊂ X ×S Y

is always the fibre product of X◦ and Y◦ over S◦. This being so, it is clear how we must set

about constructing a fibre product: first cover S by open affines:

Spec(Ck) =Wk ⊂ S.

Next, cover r−1(Wk) and s
−1(Wk) by open affines:

Spec(Ak,i) = Uk,i ⊂ X,
Spec(Bk,j) = Vk,j ⊂ Y.

Then the affine schemes:

Spec(Ak,i ⊗Ck
Bk,j) = Φk,i,j

must make an open affine covering of X ×S Y if it exists at all. To patch together Φk,i,j and

Φk′,i′,j′ , let p1, p2, and p
′
1, p

′
2 stand for the canonical projections of Φk,i,j and Φk′,i′,j′ onto its

factors. Then one must next check that the open subsets:

p−1
1 (Uk,i ∩ Uk′,i′) ∩ p−1

2 (Vk,j ∩ Vk′,j′) ⊂ Φk,i,j

and

(p′1)
−1(Uk′,i′ ∩ Uk,i) ∩ (p′2)

−1(Vk′,j′ ∩ Vk,j) ⊂ Φk′,i′,j′

are both fibre products of Uk,i ∩ Uk′,i′ and Vk,j ∩ Vk′,j′ over S. Hence they are canonically

isomorphic and can be patched. Then you have to check that everything is consistent at triple

overlaps. Finally you have to check the universal mapping property. All this is in some sense

obvious but remarkably confusing unless one takes a sufficiently categorial point of view. For

details, cf. EGA [1, Chapter I, pp. 106–107].
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The second proof involves explicitly constructingX×SY as a local ringed space. To motivate

the construction note that if z ∈ X ×S Y lies over x ∈ X, y ∈ Y and s ∈ S, then the residue

fields of the four points lie in a diagram:

k(z)

k(x)
- 

p∗1 ;;wwww

k(y)
1 Q

p∗2ccGGGG

k(s)
1 Q

r∗

ccGGGG - 

s∗

;;wwww

From Theorem 4.1, one sees that the local rings of X ×S Y are generated by tensor product of

the local rings of X and Y and this implies that in the above diagram k(z) is the quotient field

of its subring k(x) · k(y), i.e., k(z) is a compositum of k(x) and k(y) over k(s). We may reverse

these conclusions and use them as a basis of a definition of X ×S Y ;

i) As a point set, X ×S Y is the set of 5-tuples (x, y, L, α, β) where

x ∈ X, y ∈ Y,

lie over the same point s ∈ S and

L = a field extension of k(s)
α, β are homomorphisms:

L

k(x)
, �
α

::uuuuu
k(y)

2 R
βddHHHHH

k(s)
1 Q

r∗

ccGGGG - 

s∗

;;wwww

such that

L = quotient field of k(x) · k(y).

Two such points are equal if the points x, y onX and Y are equal and the corresponding

diagrams of fields are isomorphic.

ii) As a topological space, a basis of open sets is given by the distinguished open sets

U(V,W, {fl}, {gl})

where

V ⊂ X is affine open

W ⊂ Y is affine open

fl ∈ OX(V )

gl ∈ OY (W )

U = {(x, y, L, α, β) | x ∈ V, y ∈W,∑
l

α(fl) · β(gl) ̸= 0 (this sum taken in L)}.

iii) The structure sheaf OX×SY is defined as a certain sheaf of maps from open sets in

X ×S Y to: ⨿
x,y,L,α,β

O(x,y,L,α,β)
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where

O(x,y,L,α,β) =

[
localization of Ox,X ⊗Os,S

Oy,Y
at p = Ker(Ox ⊗Os Oy −−−→

α⊗β
L)

]
(i.e., the elements of the sheaf will map points (x, y, L, α, β) ∈ X ×S Y to elements of

the corresponding ring O(x,y,L,α,β).) The sheaf is defined to be those maps which locally

are given by expressions ∑
fl ⊗ gl∑
f ′l ⊗ g′l

fl, f
′
l ∈ OX(V )

gl, g
′
l ∈ OY (W )

on open sets U(V,W, {f ′l}, {g′l}).

This certainly gives us a local ringed space, but it must be proven to be a scheme and to be the

fibre product. We will not give details. For the first, one notes that the construction is local on

X and Y and hence it suffices to prove that if X = SpecR′, Y = SpecS′ and S = SpecA, then

the local ringed space X ×S Y constructed above is simply Spec(R′ ⊗A S′). The first step then

is to verify:

Lemma 4.3. The set of prime ideals of R⊗A S is in one-to-one correspondence with the set

of 5-tuples (pR, pS , L, α, β) where pR ⊂ R and pS ⊂ S are prime ideals with the same inverse

image pA ⊂ A and (L,α, β) is a compositum of the quotient fields of R/pR, S/pS over A/pA.

The proof is straightforward.

Corollary 4.4 (of proof). As a point set, X ×S Y is the set of pairs of points x ∈ X,

y ∈ Y lying over the same point of S, plus a choice of compositum of their residue fields up to

isomorphisms:

L

k(x)
, �
α

::uuuuu
k(y)

2 R
βddHHHHH

k(s)
1 Q

r∗

ccGGGG - 

s∗

;;wwww

□

Summarizing the above proof, we can give in a special case the following “explicit” idea of

what fibre product means: Suppose we are in the situation

X

r ##HHHHH Spec(B)

sxxppppp

Spec(A)

and that X =
∪
Uα, Uα affine. Then each Uα is SpecRα and via r∗,

Rα = A[. . . , X
(α)
β , . . .]/(. . . , f (α)γ , . . .)

as in §3, where the f
(α)
γ are polynomials in the variables X

(α)
β . Represent the glueing between

the Uα’s by a set of polynomials gα1,α2,ν , hα1,α2,ν , ϕα1,α2,ν,β2 and ψα1,α2,ν,β1 as in §3 again. Let
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s correspond to a homomorphism σ : A → B. If f is a polynomial over A, let σf denote the

polynomial over B gotten by applying σ to its coefficients. Then

X ×SpecA SpecB ∼=
∪
α

Uα ×SpecA SpecB

∼=
∪
α

Spec
[(
A[. . . , X

(α)
β , . . .]/(. . . , f (α)γ , . . .)

)
⊗A B

]
∼=
∪
α

Spec
[
B[. . . , X

(α)
β , . . .]/(. . . , σf (α)γ , . . .)

]
.

In other words, the new scheme X ×SpecA SpecB is gotten by glueing corresponding affines,

each defined by the new equations in the same variables gotten by pushing their coefficients

from A to B via σ. Moreover, it is easy to see that the identification on (Uα ×SpecA SpecB) ∩
(Uβ ×SpecA SpecB) is gotten by glueing the distinguished opens σgα1,α2,ν ̸= 0 and σhα1,α2,ν ̸= 0

by isomorphisms given by the polynomials σϕ and σψ. Or we may simply say that the collection

of polynomials σf , σg, σh, σϕ, σψ with coefficients in B explicitly describes X ×SpecA SpecB by

the same recipe used for X.

We can illustrate this further by a very important special case of fibre products: suppose

f : X → Y is any morphism and y ∈ Y . Consider the fibre product:

X ×Y Spec k(y) //

��

X

f

��

Speck(y)
iY

// Y

Definition 4.5. Denote X ×Y Spec k(y) by f−1(y) and call it the fibre of f over y.

To describe f−1(y) explicitly, let U ⊂ Y be an affine neighborhood of y, let U = Spec(R),

and y = [p]. It is immediate that the fibre product X ×Y U is just the open subscheme f−1(U)

of X, and by associativity of fibre products, f−1(y) ∼= f−1(U)×U Speck(y). Now let f−1(U) be

covered by affines:

Vα = Spec(Sα)

Sα ∼= R[. . . , X
(α)
β , . . .]/(. . . , f (α)γ , . . .).

Then f−1(y) is covered by affines

Vα ∩ f−1(y) = Spec(Sα ⊗R k(y))

= Spec
[
k(y)[. . . , X(α)

β , . . .]/(. . . , f
(α)
γ , . . .)

]
(f = polynomial gotten from f via coefficient homomorphism R → k(y)). Notice that the

underlying topological space of f−1(y) is just the subspace f−1(y) of X. In fact via the ring

homomorphism

Sα
ϕ−→ (Sα/pSα)(R/p\(0))

∼= Sα ⊗R k(y)
the usual maps

q � // ϕ(q) · (Sα/pSα)(R/p\(0))

ϕ−1(q) q�oo

set up a bijection between all the prime ideals of (Sα/pSα)(R/p\(0)) and the prime ideals q ⊂ Sα
such that q ∩ R = p, and it is easily seen to preserve the topology. This justifies the notation

f−1(y).
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5. Quasi-coherent sheaves

For background on kernels and cokernels in the category of sheaves of abelian groups, see the

Appendix to this chapter. If (X,OX) is a scheme, the sheaves of interest to us are the sheaves F
of OX -modules (Definition 2.1). These form an abelian category too, if we consider OX -linear
homomorphisms as the maps. (In fact, given α : F → G, the sheaf U 7→ Ker(α : F(U)→ G(U))

is again a sheaf of OX -modules; and the sheafification of U 7→ G(U)/αF(U) has a canonical

OX -module structure on it.) The most important of these sheaves are the quasi-coherent ones,

which are the ones locally isomorphic to the sheaves M̃ defined in §2:

Proposition-Definition 5.1. Let X be a scheme and F a sheaf of OX-modules. The

following are equivalent:

i) for all U ⊂ X, affine and open, F|U ∼= M̃ for some Γ(U,OX)-module M ,

ii) ∃ an affine open covering {Uα} of X such that F|Uα
∼= M̃α for some Γ(Uα,OX)-module

Mα,

iii) for all x ∈ X, there is a neighborhood U of x and an exact sequence of sheaves on U :

(OX |U )I → (OX |U )J → F|U → 0

(where the exponents I, J denote direct sums, possibly infinite).

If F has these properties, we call it quasi-coherent.

Proof. It is clear that (i) =⇒ (ii). Conversely, to prove (ii) =⇒ (i), notice first that if U is

an open affine set such that F|U ∼= M̃ for some Γ(U,OX)-module M , then for all f ∈ Γ(U,OX),
F|Uf

∼= M̃f . Therefore, starting with condition (ii), we deduce that there is a basis {Ui} for

the topology of X consisting of open affines such that F|Ui
∼= M̃i. Now if U is any open affine

set and R = Γ(U,OX), we can cover U by a finite number of these Ui’s. Furthermore, we can

cover each of these Ui’s by smaller open affines of the type Ug, g ∈ R. Since Ug = (Ui)g, F|Ug

is isomorphic to (̃Mi)g. In other words, we get a finite covering of U by affines Ugi such that

F|Ugi

∼= Ñi, Ni an Rgi-module.

For every open set V ⊂ U , the sequence

0 −→ Γ(V,F) −→
∏
i

Γ(V ∩ Ugi ,F) −→
∏
i,j

Γ(V ∩ Ugi ∩ Ugj ,F)

is exact. Define new sheaves F∗
i and F∗

i,j by:

Γ(V,F∗
i ) = Γ(V ∩ Ugi ,F)

Γ(V,F∗
i,j) = Γ(V ∩ Ugi ∩ Ugj ,F).

Then the sequence of sheaves:

0 −→ F −→
∏
i

F∗
i −→

∏
i,j

F∗
i,j

is exact, so to prove that F is of the form M̃ , it suffices to prove this for F∗
i and F∗

i,j . But if

M◦
i is Mi viewed as an R-module, then F∗

i
∼= M̃◦

i . In fact, for all distinguished open sets Ug,

Γ(Ug,F∗
i ) = Γ(Ug ∩ Ugi ,F)

= Γ((Ugi)g,F|Ugi
)

= (Mi)g

= Γ(Ug, M̃◦
i ).

The same argument works for the F∗
i,j ’s.
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[M ]
closed pt

[(0)]
generic pt

U2U1

Figure I.1. The Spectrum of a discrete valuation ring

Next, (ii) =⇒ (iii) because if F|Uα
∼= M̃α, write M̃α by generators and relations:

RIα −→ RJα −→Mα −→ 0

where Rα = Γ(Uα,OX). By Corollary 2.5

(̃RIα) −→ (̃RJα) −→ M̃α −→ 0

is exact. But R̃α ∼= OX |Uα since Uα is affine and ˜ commutes with direct sums (even infinite

ones by Proposition 2.7) so we get the required presentation of F|Uα .

Finally (iii) =⇒ (ii). Starting with (iii), we can pass to smaller neighborhoods so as to

obtain an affine open covering {Uα} of X in which presentations exist:

(OX |Uα)
I h

// (OX |Uα)
J // F|Uα

// 0

(RIα)̃ (RJα)̃ .

By Proposition 2.2, h is induced by an Rα-homomorphism k : RIα → RJα. Let Mα = Coker(k).

Then by Proposition 2.4, M̃α
∼= F|Uα . □

Corollary 5.2. If α : F → G is an OX-homomorphism of quasi-coherent sheaves, then

Ker(α) and Coker(α) are quasi-coherent.

Proof. Use characterization (i) of quasi-coherent and Proposition 2.4. □

We can illustrate the concept of quasi-coherent quite clearly on SpecR, R a discrete valu-

ation ring. R has only two prime ideals, (0) and M the maximal ideal. Thus SpecR has two

points, one in the closure of the other as in Figure I.1: and only two non-empty sets: U1 consist-

ing of [(0)] alone, and U2 consisting of the whole space. M is principal and if π is a generator,

then U1 is the distinguished open set (SpecR)π. Thus:

a) the structure sheaf is:

OSpecR(U2) = R,

OSpecR(U1) = R

[
1

π

]
= quotient field K of R

b) general sheaf of abelian groups is a pair of abelian groups

F(U1), F(U2) plus a homomorphism res : F(U2)→ F(U1),

c) general sheaf of OSpecR-modules is an R-module F(U2), a K-vector space F(U1) plus

an R-linear homomorphism res : F(U2)→ F(U1),
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d) quasi-coherence means that F = F̃(U2), i.e., res factors through an isomorphism:

F(U2) −→ F(U2)⊗R K
≈−→ F(U1).

The next definition gives the basic finiteness properties of quasi-coherent sheaves:

Definition 5.3. A quasi-coherent sheaf F is locally of finite type if every x ∈ X has a

neighborhood U in which there is a surjective OX -homomorphism:

(OX |U )n −→ F|U −→ 0

some n ≥ 1. F is locally of finite presentation, or coherent3 if every x ∈ X has a neighborhood

U in which there is an exact sequence:

(OX |U )m −→ (OX |U )n −→ F|U −→ 0.

F is locally free (of finite rank) if every x ∈ X has a neighborhood U in which there is an

isomorphism

(OX |U )n
≈−→ F|U .

The techniques used in the proof of Proposition 5.1 show easily that if U ⊂ X is affine and

open and F is locally of finite type (resp. coherent), then F|U = M̃ whereM is finitely generated

(resp. finitely presented) as module over Γ(U,OX).

Remark. (Added in publication) Although the notion of “locally of finite presentation”

coincides with that of “coherent” for X locally noetherian, the standard definition of the latter

is slightly different for general X. A quasi-coherent OX -module F is said to be coherent, if

• F is locally of finite type over OX , and
• for every affine open U ⊂ X and every OU -linear homomorphism h : (OU )n → F|U , the
kernel of h is of finite type.

Note that if X is covered by a finite number of affine opens Ui such that the above property

holds for each (Ui,F|Ui), then F is coherent.

Here are the basic properties of OX -modules that are locally of finite presentation or coher-

ent:

(1) If H is an OX -module that is locally of finite presentation, then for every OX -module

G and every x ∈ X, the natural map

(HomOX
(H,G))x −→ HomOX,x

(Hx,Gx)

is an isomorphism.

(2) If ϕ : F → G is an OX -linear homomorphism between coherent OX -modules, then

Ker(ϕ), Coker(ϕ), Image(ϕ) and Coimage(ϕ) are all coherent OX -modules.

(3) If 0 → F1 → F2 → F3 → 0 is a short exact sequence of quasi-coherent OX -modules

such that F1 and F3 are coherent, then F2 is coherent. (Actually, the statement

remains valid if we only assume F2 to be an OX -module instead of a quasi-coherent

OX -module.)

(4) If F and G are coherent OX -modules, then F ⊗OX
G and HomOX

(F ,G) are coherent

OX -modules.

(5) OX is a coherent OX -module if and only if X is locally noetherian.

3If X is locally noetherian, i.e., X is covered by SpecR’s with R noetherian (see §II.2), then it is immediate

that a quasi-coherent F locally of finite type is also coherent; and that sub- and quotient-sheaves of coherent F ’s

are automatically coherent. The notion of coherent will not be used except on noetherian X’s. (What about

§IV.4?)
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(6) If X is locally noetherian, then a quasi-coherent OX -module is coherent if and only if

it is locally of finite type over OX .
The proof is left to the reader.

Here is an unpleasant example: Let k be a field. For each integer n ≥ 1, let

Rn := k[x0, x1, . . . , xn]/(x
2
0, x0x1, x0x2, . . . , x0xn)

for variables x0, x1, . . . , xn. Let R :=
∏
n≥1Rn, and let u ∈ R be the element whose n-th

component is the image of x0 in Rn. Let X = SpecR, and let ϕ : OX → OX be the OX -linear
homomorphism given by the multiplication by u ∈ R. Then Ker(ϕ) is the quasi-coherent OX -
ideal associated to the ideal I :=

∏
n≥1 In of R, where In is the ideal of Rn generated by the

images of x0, x1, . . . , xn in Rn. It is easy to see that I is not a finitely generated ideal of R,

hence OX is not a coherent OX -module.

Definition 5.4. Let F be a quasi-coherent sheaf on a scheme X. Then for all x ∈ X, in

addition to the stalk of F at x, we get a vector space over k(x) the residue field:

F(x) = Fx ⊗ k(x)
rkxF = dimk(x)F(x).

A very important technique for quasi-coherent sheaves locally of finite type is Nakayama’s4

lemma:

Proposition 5.5 (Nakayama). Let F be a quasi-coherent sheaf locally of finite type on a

scheme X. Then

i) if x ∈ X and if the images of s1, . . . , sn ∈ Fx in F(x) span the vector space F(x), then
the si extend to a neighborhood of x on which they define a surjective homomorphism

(OX |U )n
(s1,...,sn)−−−−−−→ F|U −→ 0

on U . When this holds, we say that s1, . . . , sn generate F over U .

ii) if rkxF = 0, then x has a neighborhood U such that F|U = {0}.
iii) rk : x 7→ rkxF is upper semi-continuous, i.e., for all k ≥ 0, {x ∈ X | rkxF ≤ k} is

open.

iv) (Added in publication) (cf. Mumford [86, Souped-up version II, Chap. III, §2, p. 213])
Suppose X is noetherian and reduced. Then rk is locally constant if and only if F is

locally free.

Proof. (i) is the geometric form of the usual Nakayama lemma. Because of its importance,

we recall the proof. (i) reduces immediately to the affine case where it says this:

R any commutative ring, p a prime ideal, M an R-module, generated by

m1, . . . ,mk. If n1, . . . , nl ∈M satisfy

n1, . . . , nl generate Mp ⊗ k(p) over k(p)

then ∃f ∈ R \ p such that

n1, . . . , nl generate Mf over Rf .

4(Added in publication) According to Nakayama himself, this lemma should be attributed to Krull-Azumaya-

Nakayama, or, NAK.
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But the hypothesis gives us immediately:

aimi =

l∑
j=1

bijnj +

k∑
j=1

cijmj , 1 ≤ i ≤ k

for some ai ∈ R \ p, bij ∈ R, cij ∈ p. Solving these k equations for the mi by Cramer’s rule, we

get (
det
p,q

(apδpq − cpq)
)
·mi =

l∑
j=1

b′ijnj .

Let f be this determinant. Then f /∈ p and n1, . . . , nl generate Mf over Rf .

(ii) and (iii) are immediate consequences of (i). □

The following Corollary is often useful:

Corollary 5.6. Let X be a quasi-compact scheme, F a quasi-coherent sheaf of OX-modules

locally of finite type. Suppose that for each x ∈ X, there exists a finite number of global sections

of F which generate F(x). Then there exists a finite number of global sections of F that generate

F everywhere.

An important construction is the tensor product of quasi-coherent sheaves. The most general

setting for this is when we have

X ×S Yp1
yysssss p2

%%KKKKK

X

r &&LLLLLL Y

syyrrrrrr

S

F quasi-coherent on X

G quasi-coherent on Y .

Then we can construct a quasi-coherent sheaf F ⊗OS
G on X ×S Y analogously to our definition

and construction of X ×S Y itself—viz.5

Step I: characterize F⊗OS
G by a universal mapping property: consider all quisi-coherent6

sheaves of OX×SY -modules H plus collections of maps:

F(U)× G(V )→ H(p−1
1 U ∩ p−1

2 V )

(U ⊂ X and V ⊂ Y open) which are OX(U)-linear in the first variable and OY (V )-

linear in the second and which commute with restriction. F⊗OS
G is to be the universal

one.

Step II: Show that when X = SpecA, Y = SpecB, S = SpecC, F = M̃ , G = Ñ , then

(M ⊗C N )̃ on Spec(A⊗C B) has the required property.

Step III: “Glue” these local solutions (Mα⊗Cα Nα)̃ together to form a sheaf F ⊗OS
G.

We omit the details. Notice that the stalks of F ⊗OS
G are given by:

If z ∈ X ×S Y has images x ∈ X, y ∈ Y and s ∈ S,

(F ⊗OS
G)z ∼=


localization of the Ox,X ⊗Os,S

Oy,Y -module

Fx ⊗Os,S
Gy with respect to the

prime ideal mx,X ⊗Oy,Y +Ox,X ⊗my,Y

 .

(Use the description of ⊗ in the affine case.) Two cases of this construction are most important:

5(Added in publication) F ⊠OS G is the accepted notation nowadays.
6In fact, F ⊗OS G is universal for non-quasi-coherent H’s too.
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i) X = Y = S: Given two quasi-coherent OX -modules F , G, we get a third one F ⊗OX
G

with stalks Fx ⊗Ox,X
Gx. On affines, it is given by:

M̃ ⊗SpecR Ñ ∼= (M ⊗R N )̃ .

ii) Y = S, F = OX : Given a morphism r : X → Y and a quasi-coherent OY -module G,
we get a quasi-coherent OX -module OX ⊗OY

G. This is usually written r∗(G) and has

stalks (r∗G)x = Ox,X ⊗Oy,Y
Gy (y = r(x)). If X and Y are affine, say X = Spec(R),

Y = Spec(S), then it is given by:

r∗(M̃) ∼= (M ⊗S R)̃ .

The general case can be reduced to these special cases by formula:

F ⊗OS
G ∼= p∗1F ⊗OX×SY

p∗2G.

Also iterating (i), we define F1 ⊗OX
· · · ⊗OX

Fk; symmetrizing or skew-symmetrizing, we get

Symmk F and
∧k F just like the operations SymmkM ,

∧kM on modules.

We list a series of properties of quasi-coherent sheaves whose proofs are straightforward

using the techniques already developed. These are just a sample from the long list to be found

in EGA [1].

5.7. If F is a quasi-coherent sheaf on X and I ⊂ OX is a quasi-coherent sheaf of ideals,

then the sheaf

I · F =
def

[
subsheaf of F generated by

the submodules I(U) · F(U)

]
is quasi-coherent and for U affine

I · F(U) = I(U) · F(U).

5.8. If F is quasi-coherent and U ⊂ V ⊂ X are two affines, then

F(U) ∼= F(V )⊗OX(V ) OX(U).

5.9. Let X be a scheme and let

U 7−→ F(U)

be a presheaf. Suppose that for all affine U and all f ∈ R = Γ(U,OX), the map

F(U)⊗R Rf −→ F(Uf )

is an isomorphism. Then the sheafification sh(F) of F is quasi-coherent and

sh(F)(U) ∼= F(U)

for all affine U .

5.10. If F is coherent and G is quasi-coherent, then HomOX
(F ,G) is quasi-coherent, with a

canonical homomorphism

F ⊗OX
HomOX

(F ,G)→ G.
(cf. Appendix to this chapter and Proposition 2.6.)

5.11. Let f : X → Y be a morphism of schemes, F a quasi-coherent sheaf on X and G a

quasi-coherent sheaf on Y . Then

HomOX
(f∗G,F) ∼= HomOY

(G, f∗F).

(See (ii) above for the definition of f∗G.)
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5.12. Let R be an S-algebra and let f : SpecR → SpecS be the corresponding morphism of

affine schemes. Let M be an R-module. Then M can be considered as an S-module too and we

can form M̃R, M̃S the corresponding sheaves on SpecR and SpecS. Then

f∗(M̃R) = M̃S .

(cf. Appendix to this chapter for the definition of f∗.)

6. The functor of points

We have had several indications that the underlying point set of a scheme is peculiar from

a geometric point of view. Non-closed points are odd for one thing. Another peculiarity is that

the point set of a fibre product X ×S Y does not map injectively into the set-theoretic product

of X and Y . The explanation of these confusing facts is that there are really two concepts of

“point” in the language of schemes. To see this in its proper setting, look at some examples in

other categories:

Example. Let C = category of differentiable manifolds. Let z be the manifold with one

point. Then for any manifold X,

MorC(z, X) ∼= X as a point set.

Example. Let C = category of groups. Let z = Z. Then for any group G

MorC(z, G) ∼= G as a point set.

Example. Let C = category of rings with 1 (and homomorphisms f such that f(1) = 1).

Let z = Z[X]. Then for any ring R,

MorC(z, R) ∼= R as a point set.

This indicates that if C is any category, whose objects may not be point sets to begin with,

and z is an object, one can try to conceive of MorC(z, X) as the underlying set of points of the

object X. In fact:

X 7−→ MorC(z, X)

extends to a functor from the category C to the category (Sets), of sets. But, it is not satisfactory

to call MorC(z, X) the set of points of X unless this functor is faithful, i.e., unless a morphism

f from X1 to X2 is determined by the map of sets:

f̃ : MorC(z, X1) −→ MorC(z, X2).

Example. Let (Hot) be the category of CW-complexes, where

Mor(X,Y )

is the set of homotopy-classes of continuous maps from X to Y . If z = the 1 point complex,

then

Mor(Hot)(z, X) = π0(X), (the set of components of X)

and this does not give a faithful functor.

Example. Let C = category of schemes. Take for instance z to be the final object of the

category C: z = Spec(Z). Now
MorC(Spec(Z), X)

is absurdly small, and does not give a faithful functor.
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Grothendieck’s ingenious idea is to remedy this defect by considering (for arbitrary categories

C) not one z, but all z: attach to X the whole set:∪
z

MorC(z, X).

In a natural way, this always gives a faithful functor from the category C to the category (Sets).

Even more than that, the “extra structure” on the set
∪

zMorC(z, X) which characterizes the

object X, can be determined. It consists in:

i) the decomposition of
∪

zMorC(z, X) into subsets Sz = MorC(z, X), one for each z.

ii) the natural maps from one set Sz to another Sz′ , given for each morphism g : z′ → z in

the category.

Putting this formally, it comes out like this:

Attach to each X in C, the functor hX (contravariant, from C itself to (Sets)) via

(∗) hX(z) = MorC(z, X), z an object in C.
(∗∗) hX(g) = [induced map from MorC(z, X) to MorC(z

′, X)], g : z′ → z a morphism in C.
Now the functor hX is an object in a category too: viz.

Funct(C◦, (Sets)),

(where Funct stands for functors, C◦ stands for C with arrows reversed). It is also clear that if

g : X1 → X2 is a morphism in C, then one obtains a morphism of functors hg : hX1 → hX2 . All

this amounts to one big functor:

h : C −→ Funct(C◦, (Sets)).

Proposition 6.1. h is fully faithful, i.e., if X1, X2 are objects of C, then, under h,

MorC(X1, X2)
∼−→ MorFunct(hX1 , hX2).

Proof. Easy. □

The conclusion, heuristically, is that an object X of C can be identified with the functor hX ,

which is basically just a structured set.

Return to algebraic geometry! What we have said motivates I hope:

Definition 6.2. If X and K are schemes, a K-valued point of X is a morphism f : K → X;

if K = Spec(R), we call this an R-valued point of X. If X and K are schemes over a third

scheme S, i.e., we are given morphisms pX : X → S, pK : K → S, then f is a K-valued point

of X/S if pX ◦ f = pK ; if K = Spec(R), we call this an R-valued point of X/S. The set of all

R-valued points of a scheme X, or of X/S, is denoted X(R).

Proposition 3.10, translated into our new terminology states that if R is a local ring, there

is a bijection between the set of R-valued points of X and the set of pairs (x, ϕ), where x ∈ X
and ϕ : Ox,X → R is a local homomorphism. Corollary 3.11 states that for every point x ∈ X in

the usual sense, there is a canonical k(x)-valued point ix of X in our new sense. In particular,

suppose X is a scheme over Spec k for a field k: then there is a bijection{
set of k-valued points

of X/Spec k

}
∼=


set of points x ∈ X such that

the natural map k → k(x)
is surjective


given by associating ix to x. Points x ∈ X with k

≈−→ k(x) are called k-rational points of X.

K-valued points of a scheme are compatible with products. In fact, if K, X, Y are schemes

over S, then the set of K-valued points of (X ×S Y )/S is just the (set-theoretic) product of the
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set of K-valued points of X/S and the set of K-valued points of Y/S. This is the definition of

the fibre product.

The concept of an R-valued point generalizes the notion of a solution of a set of diophantine

equations in the ring R. In fact, let:

f1, . . . , fm ∈ Z[X1, . . . , Xn]

X = Spec(Z[X1, . . . , Xn]/(f1, . . . , fm)).

I claim an R-valued point of X is the “same thing” as an n-tuple a1, . . . , an ∈ R such that

f1(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0.

But in fact a morphism

Spec(R)
g−→ Spec(Z[X1, . . . , Xn]/(f1, . . . , fm))

is determined by the n-tuple ai = g∗(Xi), 1 ≤ i ≤ n, and those n-tuples that occur are exactly

those such that h 7→ h(a1, . . . , an) defines a homomorphism

R
g∗←− Z[X1, . . . , Xn]/(f1, . . . , fm),

i.e., solutions of f1, . . . , fm.

An interesting point is that a scheme is actually determined by the functor of its R-valued

points as well as by the larger functor of its K-valued points. To state this precisely, let X be a

scheme, and let h
(◦)
X be the covariant functor from the category (Rings) of commutative rings

with 1 to the category (Sets) defined by:

h
(◦)
X (R) = hX(Spec(R)) = Mor(Spec(R), X).

Regarding h
(◦)
X as a functor in X in a natural way, one has:

Proposition 6.3. For any two schemes X1, X2,

Mor(X1, X2)
∼−→ Mor(h

(◦)
X1
, h

(◦)
X2

).

Hence h(◦) is a fully faithful functor from the category of schemes to

Funct((Rings), (Sets)).

This result is more readily checked privately than proven formally, but it may be instructive

to sketch how a morphism F : h
(◦)
X1
→ h

(◦)
X2

will induce a morphism f : X1 → X2. One chooses an

affine open covering Ui ∼= Spec(Ai) of X1; let

Ii : Spec(Ai) ∼= Ui → X1

be the inclusion. Then Ii is an Ai-valued point of X1. Therefore F (Ii) = fi is an Ai-valued

point of X2, i.e., fi defines

Ui ∼= Spec(Ai)→ X2.

Modulo a verification that these fi patch together on Ui ∩Uj , these fi give the morphism f via

Ui
fi

//

∩

X2.

X1

f

=={{{{{{{{

Proposition 6.3 suggests a whole new approach to the foundations of the theory of schemes.

Instead of defining a scheme as a space X plus a sheaf of rings OX on X, why not define a

scheme as a covariant functor F from (Rings) to (Sets) which satisfies certain axioms strong
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enough to show that it is isomorphic to a functor h
(◦)
X for some scheme in the usual sense? More

precisely:

Definition 6.4. A covariant functor F : (Rings)→ (Sets) is a sheaf in the Zariski topology

if for all rings R and for all equations

1 =

n∑
i=1

figi,

then

a) the natural map F (R)→
∏n
i=1 F (Rfi) is injective

b) for all collections si ∈ F (Rfi) such that si and sj have the same image in F (Rfifj ),

there is an s ∈ F (R) mapping onto the si’s.

If F is a functor and ξ ∈ F (R), we get a morphism of functors:

ϕξ : hR −→ F

i.e., a set of maps

ϕξ,S : hR(S) =
def

Hom(R,S)→ F (S)

given by:

∀R α−→ S

ϕξ,S(α) = F (α)(ξ).

If a ⊂ R is an ideal, define the subfunctor

haR ⊂ hR

by

haR(S) =

{
set of all homomorphisms α : R→ S

such that α(a) · S = S

}
.

Definition 6.5. Let F : (Rings) → (Sets) be a functor. An element ξ ∈ F (R) is an open

subset if

a) ϕξ : hR → F is injective

b) for all rings S and all η ∈ F (S), consider the diagram:

hR
� �

ϕξ

// F

hS

ϕη

OO

Then there is an ideal a ⊂ S such that ϕ−1
η (hR) = subfunctor haS of hS .

Definition 6.6. A functor F : (Rings)→ (Sets) is a scheme functor if

a) it is a sheaf in the Zariski-topology,

b) there exist open subsets ξα ∈ F (Rα) such that for all fields k,

F (k) =
∪
α

ϕξαhRα(k).
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We leave it to the reader now to check that the scheme-functors F are precisely those given

by

F (R) = Mor(SpecR,X)

for some scheme X. This point of view is worked out in detail in Demazure-Gabriel [35].

It is moreover essential in a very important generalization of the concept of scheme which

arose as follows. One of the principal goals in Grothendieck’s work on schemes was to find a

characterization of scheme-functors by weak general properties that could often be checked in

practice and so lead to many existence theorems in algebraic geometry (like Brown’s theorem7 in

(Hot)). It seemed at first that this program would fail completely and that scheme-functors were

really quite special8;but then Artin discovered an extraordinary approximation theorem which

showed that there was a category of functors F only a “little” larger than the scheme-functors

which can indeed be characterized by weak general properties. Geometrically speaking, his

functors F are like spaces gotten by dividing affines by étale equivalence relations (cf. Chapter

V) and then glueing. He called these algebraic spaces (after algebraic functions, i.e., meromorphic

functions on C satisfying a polynomial equation; see Artin [16], [17], [18], [19], Knutson [71])9.

7. Relativization

The goal of this section is to extend the concept of Spec in a technical but very important

way. Instead of starting with a ring R and defining a scheme SpecR, we want to start with a

sheaf of rings R on an arbitrary scheme X and define a scheme over X, π : SpecX R→ X. More

precisely, R must be a quasi-coherent sheaf of OX -algebras. We may approach the definition of

SpecX R by a universal mapping property as follows:

Theorem-Definition 7.1. Let X be a scheme and let R be a quasi-coherent sheaf of OX-
algebras. Then there is a scheme over X:

π : SpecX R→ X

and an isomorphism of OX-algebras:

R ≈−→ π∗(OSpecX R)

uniquely characterized by the property:

For all morphisms

f : Y → X

plus homomorphisms of OX-algebras

α : R→ f∗(OY )

there is a unique factorization:

Y
g

//

f
��

???????? SpecX R

π
zzvvvvvvvvv

X

for which α is given by g∗:

R ≈−→ π∗(OSpecX R)
g∗−→ f∗(OY ).

7See Spanier [109, Chapter 7, §7].
8See for instance Hironaka [60] and Mumford [83, p. 83].
9(Added in publication) For more details and later developments see, §8 below and, e.g., FAG [3].
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The situation is remarkably similar to the construction of fibre products:

Firstly, if X is affine, then this existence theorem has an immediate solution:

SpecX R = Spec(R(X)).

The universal mapping property is just a rephrasing of Theorem 3.7 and (5.12).

Secondly, we can use the solution in the affine case to prove the general existence theorem

modulo a patching argument. In fact, let Uα be an affine open covering of X. Then the open

subset

π−1(Uα) ⊂ SpecX(R)
will have to be

SpecUα
(R|Uα)

(just restrict the universal mapping property to those morphisms f : Y → X which factor

through Uα). Therefore SpecX(R) must be the union of affine open pieces Spec(R(Uα)). To use

this observation as a construction for all α, β, we must identify the open subsets below:

Spec(R(Uα))

πα
((QQQQQQQQQQQ

π−1
α (Uα ∩ Uβ)

''OOOOOOO
⊃

??
∼

π−1
β (Uα ∩ Uβ)

wwooooooo
⊂ Spec(R(Uβ))

πβ
vvmmmmmmmmmmm

Uα ⊃ Uα ∩ Uβ Uβ⊂

Note that

πα,∗(OSpecR(Uα))
∼= R|Uα

by (5.12) hence

Γ(π−1
α (Uα ∩ Uβ),OSpecR(Uα))

∼= R(Uα ∩ Uβ).
Composing this with

R(Uβ) −→
res
R(Uα ∩ Uβ)

and using Theorem 3.7, we get a morphism

π−1
α (Uα ∩ Uβ)→ SpecR(Uβ)

that factors through π−1
β (Uα∩Uβ). Interchanging α and β, we see that we have an isomorphism.

Thirdly, we can also give a totally explicit construction of SpecX R as follows:

i) as a point set, SpecX R is the set of pairs (x, p), where x ∈ X and p ⊂ Rx is a prime

ideal such that if

i : Ox → Rx
is the given map, then

i−1(p) = mx

ii) as a topological space, we get a basis of open sets:

{U(V, f) | V ⊂ X open affine, f ∈ R(V )}

where

U(V, f) = {(x, p) | x ∈ V, f /∈ p}.
iii) the structure sheaf is a certain sheaf of functions from open sets in SpecX R to⨿

x,p

(Rx)p,

namely the functions which are locally given by f/f ′, f, f ′ ∈ R(V ), on U(V, f ′).

Corollary 7.2 (of proof). π has the property that for all affine open sets U ⊂ X, π−1(U)

is affine.
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In fact, we can formulate the situation as follows:

Proposition-Definition 7.3. Let f : Y → X be a morphism of schemes. Then the follow-

ing are equivalent:

i) for all affine open U ⊂ X, f−1(U) is affine,

ii) there is an affine open covering {Uα} of X such that f−1(Uα) is affine,

iii) there is a quasi-coherent OX-algebra R such that

Y ∼= SpecX(R).

Such an f is called an affine morphism.

Proof. (i) =⇒ (ii) is obvious.

(iii) =⇒ (i) has just been proven.

(ii) =⇒ (iii): let R = f∗OY . Note that if Vα = f−1(Uα) and fα is the restriction of f to

fα : Vα −→ Uα,

then f∗OVα is quasi-coherent by (5.10). But R|Uα = f∗OVα , so R is quasi-coherent. Now

compare Y and SpecX R. Using the isomorphism

f∗OY = R = π∗(OSpecX R)

the universal mapping property for SpecX R gives us a morphism ϕ

Y
ϕ

//

f
  

@@@@@@@@ SpecX R

π
zzuuuuuuuuu

X.

But f−1(Uα) is affine, so

f−1(Uα) ∼= SpecUα
(f∗OY |Uα)

∼= SpecUα
(R|Uα)

∼= π−1(Uα)

hence ϕ is an isomorphism. □

8. Defining schemes as functors

(Added in publication)

To illustrate the power of Grothendieck’s idea (cf. FGA [2]) referred to in §6, we show

examples of schemes defined as functors.

For any category C we defined in §6 a fully faithful functor

h : C −→ Funct(C◦, (Sets)).

Here is a result slightly more general than Proposition 6.1:

Proposition 8.1 (Yoneda’s lemma). For any X ∈ C and any F ∈ Funct(C◦, (Sets)), we

have a natural bijection

F (X)
∼−→ MorFunct(hX , F ).

The proof is again easy, and can be found in EGA [1, Chapter 0 revised, Proposition (1.1.4)].

From this we easily get the following:
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Proposition-Definition 8.2. F ∈ Funct(C◦, (Sets)) is said to be representable if it is

isomorphic to hX for some X ∈ C. This is the case if and only if there exists X ∈ C and

u ∈ F (X), called the universal element, such that

Mor(Z,X) ∋ φ 7−→ F (φ)(u) ∈ F (Z)

is a bijection for all Z ∈ C. The pair (X,u) is determined by F up to unique isomorphism.

Let us now fix a scheme S and restrict ourselves to the case

C = (Sch/S) = the category of schemes over S and S-morphisms.

For schemes X and Y over S, denote by HomS(X,Y ) the set of S-morphisms. (cf. Definition

3.6.)

A representable F ∈ Funct((Sch/S), (Sets)) thus defines a scheme over S.

Suppose F is represented by X. Then for any open covering {Ui}i∈I of Z, the sequence

F (Z) −→
∏
i∈I

F (Ui)
−→−→

∏
i,j∈I

F (Ui ∩ Uj)

is an exact sequence of sets, that is, for any (fi)i∈I ∈
∏
i∈I F (Ui) such that the images of fi

and fj in F (Ui ∩ Uj) coincide for all i, j ∈ I, there exists a unique f ∈ F (Z) whose image in

F (Ui) coincides with fi for all i ∈ I. This is because a morphism f ∈ F (Z) = HomS(Z,X) is

obtained uniquely by glueing morphisms fi ∈ F (Ui) = HomS(Ui, X) satisfying the compatibility

condition fi|Ui∩Uj = fj |Ui∩Uj for all i, j ∈ I. Another way of looking at this condition is that F

is a sheaf of sets (cf. Definition 3 in the Appendix below).

Actually, a representable functor satisfies a stronger necessary condition: it is a sheaf of sets

in the “faithfully flat quasi-compact topology”. (See §IV.2 for related topics. See also FAG [3].)

Example 8.3. Let X and Y be schemes over S. The functor

F (Z) = HomS(Z,X)×HomS(Z, Y )

= {(q1, q2) | q1 : Z → X, qs : Z → Y are S-morphisms},

with obvious maps F (f) : F (Z) → F (Z ′) for S-morphisms f : Z ′ → Z, is represented by the

fibre product X ×S Y by Theorem 4.2. The universal element is (p1, p2) ∈ F (X ×S Y ), where

p1 : X ×S Y → X and p2 : X ×S Y → Y are projections.

Example 8.4. The functor

F (Z) = Γ(Z,OZ), for Z ∈ (Sch/S)

F (f) = f∗ : Γ(Z,OZ)→ Γ(Z ′,OZ′), for f ∈ HomS(Z
′, Z)

is represented by the relatively affine S-scheme Ga,S := SpecS(OS [T ]) by Theorem-Definition

7.1, where OS [T ] is the polynomial algebra over OS in one variable T . The universal element is

T ∈ Γ(S,OS [T ]). This S-scheme Ga,S is a commutative group scheme over S in the sense to be

defined in §VI.1.

More generally, we have (cf. EGA [1, Chapter I, revised, Proposition (9.4.9)]):

Example 8.5. Let F be a quasi-coherent OS-module on S. Then the relatively affine S-

scheme

SpecS(Symm(F)),
where Symm(F) is the symmetric algebra of F over OS , represents the functor F defined as

follows: For any S-scheme φ : Z → S, denote by φ∗F = OZ ⊗OS
F the inverse image of F by

the morphism φ : Z → S (cf. §5).

F (Z) = HomOZ
(OZ ⊗OS

F ,OZ), for Z ∈ (Sch/S)
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with the obvious map

F (f) = f∗ : HomOZ
(FZ ,OZ)→ HomOZ′ (OZ′ ⊗OS

F ,OZ′) = HomOZ′ (f
∗(OZ ⊗OS

F), f∗OZ)

for f ∈ HomS(Z
′, Z). If we denote by π : X = SpecS(Symm(F))→ S the canonical projection,

then the universal element is π∗F → OX corresponding to the canonical injection F → π∗OX =

Symm(F). This S-scheme is a commutative group scheme over S in the sense defined in §VI.1.

Similarly to Example 8.4, we have:

Example 8.6. The functor

F (Z) = Γ(Z,OZ)∗, for Z ∈ (Sch/S)

F (f) = f∗ : Γ(Z,OZ)∗ → Γ(Z,OZ′)∗, for f ∈ HomS(Z
′, Z),

where the asterisk denotes the set of invertible elements, is represented by the relatively affine

S-scheme

Gm,S := SpecS(OS [T, T−1]).

The universal element is again T ∈ Γ(S,OS [T, T−1]). This S-scheme Gm,S is a commutative

group scheme over S in the sense to be defined in §VI.1.

More generally:

Example 8.7. Let n be a positive integer. The relatively affine S-scheme defined by

GLn,S = SpecS

(
OS
[
T11, . . . , Tnn,

1

det(T )

])
,

where T = (Tij) is the n× n-matrix with indeterminates Tij as entries, represents the functor

F (Z) = GLn(Γ(Z,OZ)), for Z ∈ (Sch/S),

the set of invertible n× n-matrices with entries in Γ(Z,OZ), with obvious maps corresponding

to S-morphisms. This S-scheme is a group scheme over S in the sense defined in §VI.1.

Even more generally, we have (cf. EGA [1, Chapter I, revised, Proposition (9.6.4)]):

Example 8.8. Let E be a locally free OS-module of finite rank (cf. Definition 5.3). The

functor F defined by

F (Z) = AutOZ
(OZ ⊗OS

E) for Z ∈ (Sch/S)

with obvious maps corresponding to S-morphisms is represented by a relatively affine S-scheme

GL(E). (cf. EGA [1, Chapter I, revised, Proposition (9.6.4)].) This S-scheme is a group scheme

over S in the sense defined in §VI.1. Example 8.7 is a special case with

GLn,S = GL(O⊕n
S ).

Example 8.9. Let F be a quasi-coherent OS-module, and r a positive integer. For each

S-scheme Z, exact sequences of OZ-modules

OZ ⊗OS
F −→ E −→ 0

OZ ⊗OS
F −→ E ′ −→ 0,

where E and E ′ are locally free OZ-modules of rank r, are said to be equivalent if there exists

an OZ-isomorphism α : E ∼−→ E ′ so that the following diagram is commutative:

OZ ⊗F // E //

α
��

0

OZ ⊗F // E ′ // 0.
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For each S-scheme Z, let

F (Z) = {OZ ⊗OS
F → E → 0 | exact with E locally free OZ-module of rank r}/ ∼

(∼ denotes the set of equivalence classes). For each S-morphism f : Z ′ → Z and an exact

sequence OZ ⊗OS
F → E → 0, the inverse image by f

OZ′ ⊗OS
F = f∗(OZ ⊗OS

F) −→ f∗E −→ 0

defines an element of F (Z ′), since the inverse image preserves surjective homomorphisms and

local freeness. Thus we have a functor F : (Sch/S)◦ → (Sets). This functor turns out to be

representable. The proof can be found in EGA [1, Chapter I, revised, Proposition (9.7.4)].

The S-scheme representing it is denoted by π : Grassr(F)→ S and is called the Grassmannian

scheme over S. The universal element is given by an exact sequence

π∗F −→ Q −→ 0

with a locally free OGrassr(F)-module Q of rank r called the universal quotient.

Locally freeOS-modules of rank one are called invertible OS-modules. (cf. Definition III.1.1.)

As a special case for r = 1 we have the following:

Example 8.10. Let F be a quasi-coherent OS-module. The functor

F (Z) = {OZ ⊗OS
F → L → 0 | exact with L invertible OZ-module}/ ∼

with the map F (f) : F (Z) → F (Z ′) defined by the inverse image by each f : Z ′ → Z is repre-

sented by an S-scheme

π : P(F) = ProjS(Symm(F)) −→ S

with the universal element given by the universal quotient invertible sheaf

π∗F −→ OP(F)(1) −→ 0.

(cf. Definition II.5.7, Theorem III.2.8.)

When S = Spec(k) with k an algebraically closed field, the set of k-rational points of the

Grassmann variety Grassr(k⊕n) over k parametrizes the r-dimenensional quotient spaces of k⊕n,

hence parametrizes (n − r)-dimensional subspaces of k⊕n that are the kernels of the quotient

maps. In particular the set of k-rational points of the (n−1)-dimensional projective space P(k⊕n)
parametrizes the one-dimensional quotient spaces of k⊕n hence (n − 1)-dimensional subspaces.

To have a functor in the general setting, however, it is crucial to take the quotient approach

instead of the subspace approach, since tensor product is not left exact.

S-morphisms between representable functors can be defined as morphisms of functors by

Proposition 6.1. Here are examples:

Example 8.11. Let F be a quasi-coherent OS-module. Then the Plücker S-morphism

Grassr(F) −→ P(
r∧
F)

is defined in terms of the functors they represent as follows: For any S-Scheme Z and

OZ ⊗OS
F −→ E −→ 0 exact with locally free OZ-module E of rank r,

the r-th exterior product gives rise to an exact sequence

OZ ⊗OS

r∧
F −→

r∧
E −→ 0,

with
∧r E an invertible OZ-module, hence a morphism Z → P(

∧r F). EGA [1, Chapter I,

revised, §9.8] shows that the Plücker S-morphism is a closed immersion (cf. Definition II.3.2).
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For quasi-coherent OS-modules F and F ′, the Segre S-morphism

P(F)×S P(F ′) −→ P(F ⊗OS
F ′)

is defined in terms of the functors they represent as follows: For any S-scheme Z and exact

sequences

OZ ⊗OS
F −→ L −→ 0 and OZ ⊗OS

F ′ −→ L′ −→ 0,

with invertible OZ-modules L and L′, the tensor product gives rise to an exact sequence

OZ ⊗OS
(F ⊗OS

F ′) −→ L⊗OZ
L′ −→ 0,

with L ⊗OZ
L′ an invertible OZ-module, hence a morphism Z → P(F ⊗OS

F ′). The Segre

S-morphism also turns out to be a closed immersion (cf. EGA [1, Chapter I, revised, §9.8]).

Some of the important properties of schemes and morphisms can be checked in terms of

the functors and morphisms of functors representing them: for instance, valuative criterion for

properness (cf. Proposition II.6.8) and criterion for smoothness (cf. Criterion V.4.10).

In some cases, the tangent space of a scheme over a field at a point can be defined in terms

of the funtor representing it (cf. §V.1).

Example 8.12. The Picard group Pic(X) of a scheme X is the set of isomorphism classes

of invertible OX -modules forming a commutative group under tensor product (cf. Definition

III.1.2). The inverse image by each morphism f : X ′ → X gives rise to a homomorphism

f∗ : Pic(X)→ Pic(X ′). The contravariant functor thus obtained is far from being representable.

Here is a better formulation: For each S-scheme X define a functor PicX/S : (Sch/S)
◦ → (Sets)

by

PicX/S(Z) = Coker[φ∗ : Pic(Z) −→ Pic(X ×S Z)], for each S-scheme φ : Z → S.

The inverse image by each S-morphism f : Z ′ → Z gives rise to the map f∗ : PicX/S(Z) →
PicX/S(Z

′). The representability of (modified versions of) the relative Picard functor PicX/S
has been one of the important issues in algebraic geometry. The reader is referred to FGA

[2] as well as Kleiman’s account on the interesting history (before and after FGA [2]) in FAG

[3, Chapter 9]. When representable, the S-scheme PicX/S representing it is called the relative

Picard scheme of X/S and the universal invertible sheaf on X ×S PicX/S is called the Poincaré

invertible sheaf. It is a commutative group scheme over S in the sense defined in §VI.1.

Example 8.13. Using the notion of flatness to be defined in Definition IV.2.10 and §IV.4,

the Hilbert functor for an S-scheme X, is defined by

HilbX/S(Z) = {Y ⊂ X ×S Z | closed subschemes flat over Z}

with the maps induced by the inverse image by S-morphisms.

Giving a closed subscheme Y ⊂ X×S Z is the same as giving a surjective homomomorphism

OX×SZ −→ OY −→ 0

of OX×SZ-modules. Thus the Hilbert functor is a special case of the more general functor defined

for a quasi-coherent OX -module E on an S-scheme X by

QuotE/X/S(Z) = {OX×SZ ⊗OX
E → F → 0 | with F flat over OZ}/ ∼

with the maps induced by the inverse image by S-morphisms.

The representability of HilbX/S and QuotE/X/S has been another major issues. See, for

instance, FGA [2] and Nitsure’s account in FAG [3, Chapters 5 and 7].
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There are many other important schemes that could be defined as functors such as AutS(X)

for an S-scheme, HomS(X,Y ) for S-schemes X and Y , moduli spaces, etc. introduced in FGA

[2]. For later purposes, we list here the basic representability theorem for HomS(X,Y ).

Let S be a scheme. For S-schemes X and Y , the functor

HomS(X,Y ) : (Sch/S)◦ −→ (Sets)

is defined as follows: For each S-scheme T ,

HomS(X,Y )(T ) = HomT (X ×S T, Y ×S T )

and for each S-morphism ϕ : T ′ → T ,

ϕ∗ : HomS(X,Y )(T ) −→ HomS(X,Y )(T ′)

sends f : X ×S T → Y ×S T to

ϕ∗(f) = (f ◦ p1, p2) : X ×S T ′ = (X ×S T )×T T ′ −→ (Y ×S T )×T T ′,

where p1 : (X ×S T )×T T ′ → X ×S T and p2 : (X ×S T )×T T ′ → T ′ are projections.

Theorem 8.14 (Grothendieck). (cf. FGA [2, exposé 221, p. 20], FAG [3, Theorem 5.23]) Let

S be a locally noetherian scheme. Let X be an S-scheme that is projective and flat over S, while

Y is an S-scheme that is quasi-projective over S. (For “projective” and “quasi-projective”, see

Definition II.5.8, while for “flat” see Definition IV.2.10 and §IV.4.) Then the functor

HomS(X,Y ) : (locally noetherian Sch/S)◦ −→ (Sets)

is representable. In other words, there exists a locally noetherian S-scheme HomS(X,Y ) and a

universal HomS(X,Y )-morphism

u : X ×S HomS(X,Y ) −→ Y ×S HomS(X,Y )

such that for any locally noetherian S-scheme T , and a T -morphism f : X ×S T → Y ×S T ,
there exists a unique S-morphism ϕ : T → HomS(X,Y ) such that f = ϕ∗(u).

Appendix: Theory of sheaves

Definition 1. Let X be a topological space. A presheaf F on X consists in:

a) for all open sets U ⊂ X, a set F(U),

b) whenever U ⊂ V ⊂ X, a map

resV,U : F(V ) −→ F(U)

called the restriction map,

such that

c) resU,U = identity

d) if U ⊂ V ⊂W , then resV,U ◦ resW,V = resW,U .

Definition 2. If F , G are presheaves on X, a map α : F → G is a set of maps

α(U) : F(U) −→ G(U)

one for each open U ⊂ X, such that for all U ⊂ V ⊂ X,

F(V )
α(V )

//

resV,U

��

G(V )

resV,U

��

F(U)
α(U)

// G(U)



38 I. SCHEMES AND SHEAVES: DEFINITIONS

commutes.

Definition 3. A presheaf F is a sheaf if for all open V ⊂ X and all open coverings {Uα}α∈S
of V the two properties hold:

a) if s1, s2 ∈ F(V ) and resV,Uα(s1) = resV,Uα(s2) in each set F(Uα), then s1 = s2.

b) if sα ∈ F(Uα) is a set of elements such that for all α, β ∈ S,

resUα,Uα∩Uβ
(sα) = resUβ ,Uα∩Uβ

(sβ) in F(Uα ∩ Uβ),

then there exists an s ∈ F(V ) such that resV,Uα(s) = sα for all α.

(Thus F(V ) can be reconstructed from the local values F(Uα), F(Uα ∩Uβ) of the sheaf.) If

F is a sheaf, we will sometimes write Γ(U,F) for F(U) and call it the set of sections of F over

U .

Definition 4. If F is a sheaf on X and x ∈ X, then with respect to the restriction maps,

one can form

Fx = lim−−−−−−−→
all open U
with x ∈ U

F(U).

Fx is called the stalk of F at x.

Thus Fx is the set of germs of sections of F at x— explicitly, Fx is the set of all s ∈ Γ(U,F),
for all neighborhoods U of x, modulo the equivalence relation:

s1 ∼ s2 if resU1,U1∩U2(s1) = resU2,U1∩U2(s2).

The usefulness of stalks is due to the proposition:

Proposition 5.

i) For all sheaves F and open sets U , if s1, s2 ∈ F(U), then s1 = s2 if and only if the

images of s1, s2 in Fx are equal for all x ∈ U .

ii) Let α : F → G be a map of sheaves. Then α(U) : F(U) → G(U) is injective for all U

(resp. bijective for all U), if and only if the induced map on stalks αx : Fx → Gx is

injective for all x ∈ X (resp. bijective for all x ∈ X).

(Proof left to the reader.)

Definition 6. A sheaf F is a sheaf of groups, rings, etc., if its values F(U) are groups,

rings, etc., and its restriction maps are homomorphisms.

A typical example of a sheaf is the following: Let X and Y be topological spaces and define,

for all open U ⊂ X:

F(U) = {continuous maps from U to Y }.
If Y = R, F is a sheaf of rings whose stalks Fx are the rings of germs of continuous real functions

at x.

In our applications to schemes, we encounter the situation where we are given a basis B =

{Uα} for the open sets of a topological space X, closed under intersection, and a “sheaf” only

on B, i.e., satisfying the properties in Definition 3 for open sets and coverings of B — call this

a B-sheaf. In such a situation, we have the facts:

Proposition 7. Every B-sheaf extends canonically to a sheaf on all open sets. If F and G
are two sheaves, every collection of maps

ϕ(Uα) : F(Uα)→ G(Uα) for all Uα ∈ B

commuting with restriction extends uniquely to a map ϕ : F → G of sheaves.
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Idea of Proof. Given F(Uα) for Uα ∈ B, define stalks

Fx = lim−−−−→
Uα∈B
x∈Uα

F(Uα)

as before. Then for all open U , set

F(U) =

(sx) ∈
∏
x∈U
Fx

∣∣∣∣∣∣
∃ a covering {Uαi} of U , Uαi ∈ B,

and si ∈ F(Uαi) such that

sx = res si whenever x ∈ Uαi

 .

□

If F is a presheaf, we can define several associated presheaves:

a) ∀U , ∀s1, s2 ∈ F(U), say

s1 ∼ s2 if ∃ a covering {Uα} of U such that

resU,Uα(s1) = resU,Uα(s2), for all α.

This is an equivalence relation, so we may set

F (a)(U) = F(U)/(the above equivalence relation ∼).

Then F (a) is a presheaf satisfying (a) in Definition 3 of sheaves.

b) ∀U , consider sets {Uα, sα} where {Uα} is a covering of U and sα ∈ F (a)(Uα) satisfy

resUα,Uα∩Uβ
(sα) = resUβ ,Uα∩Uβ

(sβ), all α, β.

Say

{Uα, sα} ∼ {Vα, tα} if resUα,Uα∩Vβ (sα) = resVβ ,Uα∩Vβ (tβ), all α, β.

Let

sh(F)(U) =

{
the set of sets {Uα, sα} modulo

the above equivalence relation

}
.

Then sh(F) is in fact a sheaf.

Definition 8. sh(F) is the sheafification of F .

It is trivial to check that the canonical map

F 7−→ sh(F)

is universal with respect to maps of F to sheaves, i.e., ∀F α−→ G, G a sheaf, ∃β : sh(F) → G
such that

sh(F)

β

��

F

77nnnnnn
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G
commutes. A useful connection between these concepts is:

Proposition 9. Let B be a basis of open sets and F a presheaf defined on all open sets,

but which is already a sheaf on B. Then the unique sheaf that extends the restriction to B of F
is the sheafification of the full F .

(Proof left to the reader)

The set of all sheaves of abelian groups on a fixed topological space X forms an abelian

category (cf., e.g., Bass [21, p. 21]). In fact
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a) the set of maps Hom(F ,G) from one sheaf F to another G is clearly an abelian group

because we can add two maps; and composition of maps is bilinear.

b) the 0-sheaf, 0(U) = {0} for all U , is a 0-object (i.e., Hom(0,F) = Hom(F , 0) = {0},
for all F),

c) sums exist, i.e., if F , G are two sheaves, define (F ⊕ G)(U) = F(U) ⊕ G(U). This

is a sheaf which is categorically both a sum and a product (i.e., Hom(H,F ⊕ G) =

Hom(H,F)⊕Hom(H,G) and Hom(F ⊕ G,H) = Hom(F ,H)⊕Hom(G,H)).
(This means we have an additive category.)

d) Kernels exist: if α : F → G is any homomorphism, define

Ker(α)(U) = {s ∈ F(U) | α(s) = 0 in G(U)}.

Then one checks immediately that Ker(α) is a sheaf and is a categorical kernel, i.e.,

Hom(H,Ker(α)) = {β ∈ Hom(H,F) | α ◦ β = 0}.

e) Cokernels exist: if α : F → G is any homomorphism, look first at the presheaf :

Pre-Coker(α)(U) = quotient of G(U) by α(F(U)).

This is not usually a sheaf, but set

Coker(α) = sheafification of Pre-Coker(α).

One checks that this is a categorical cokernel, i.e.,

Hom(Coker(α),H) = {β ∈ Hom(G,H) | β ◦ α = 0}.

f) Finally, the main axiom: given α : F → G, then

Ker(G → Cokerα) ∼= Coker(Kerα→ F).

Proof. By definition

Coker(Kerα→ F)
= sheafification of {U 7→ F(U)/Ker(α)(U)}
= sheafification of {U 7→ Image of F(U) in G(U)}.

Since the presheaf U 7→ αF(U) satisfies the first condition for a sheaf, and is

contained in a sheaf G, its sheafification is simply described as:

Coker(Kerα→ F)(U)

=

{
s ∈ G(U)

∣∣∣∣ ∃ a covering {Uα} of U
such that resU,Uα(s) ∈ αF(U)

}
.

But

Ker(G → Cokerα)(U)

= {s ∈ G(U) | s 7→ 0 in Coker(α)(U)}

=

s ∈ G(U)

∣∣∣∣∣∣
image of s in the presheaf

U 7→ G(U)/αF(U) is killed by

process (a) of sheafification


=

{
s ∈ G(U)

∣∣∣∣ ∃ a covering {Uα} of U such

that s 7→ 0 in G(Uα)/αF(Uα)

}
=

{
s ∈ G(U)

∣∣∣∣ ∃ a covering {Uα} of U such

that resU,Uα(s) ∈ αF(Uα)

}
.
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□

The essential twist in the theory of abelian sheaves is that if

0→ F → G → H → 0

is an exact sequence, then:

0 −→ F(U) −→ G(U) −→ H(U) is exact

but

G(U) −→ H(U) is not in general surjective.

In fact, to test the surjectivity of a sheaf homomorphism α : G → H, one must see whether the

presheaf U 7−→ H(U)/G(U) dies when it is sheafified, i.e.,

[α : G → H surjective]⇐⇒

 ∀s ∈ H(U), ∃ covering

{Uα} of U such that

resU,Uα(s) ∈ Image of G(Uα)

 .
As one easily checks, this is equivalent to the induced map on stalks Gx → Hx being surjective

for all x ∈ X.

The category of abelian sheaves also has infinite sums and products but one must be a little

careful: if {Fα}α∈S is any set of sheaves, then

U 7−→
∏
α∈S
Fα(U)

is again a sheaf, and it is categorically the product of the Fα’s but

U 7−→
∑
α∈S
Fα(U)

need not be a sheaf. It has property (a) but not always property (b), so we must define the

sheaf
∑
Fα to be its sheafification, i.e.,

∑
α∈S
Fα(U) =

s ∈ ∏
α∈S
Fα(U)

∣∣∣∣∣∣
∃ a covering {Uβ} of U such that

for all β, resU,Uβ
(s) has only a

finite number of non-zero components

 .

This
∑

α∈S Fα is a categorical sum. But note that if U is quasi-compact, i.e., all open coverings

have finite subcoverings, then clearly∑
α∈S
Fα(U) =

∑
α∈S

(Fα(U)) .

There are several more basic constructions that we will use:

a) given F , G abelian sheaves on X, we get a new abelian sheaf

Hom(F ,G) by

Hom(F ,G)(U) = {homomorphisms over U from F|U to G|U}.

b) given a continuous map f : X → Y of topological spaces and a sheaf F on X, we get a

sheaf f∗F on Y by

f∗F(U) = F(f−1(U)).

It is trivial to check that both of these are indeed sheaves.
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Exercise

(1) Let F be a presheaf of sets on a topological space X. Show that there is a sheaf aF on

X and a map α : F → aF of presheaves such that α induces a bijection

Homsheaves(aF ,G)
∼−→ Hompresheaves(F ,G)

for every sheaf of sets G on X. Here the first Hom means maps in the category of

sheaves, while the second Hom means maps in the category of presheaves.

Hint: Try to use a direct limit construction to force the sheaf property to hold. You

probably will need to apply the same procedure twice, because when applied for the

first time you are likely to get only a separated presheaf, i.e., for every open covering

Ui of an open U , the map G(U) →
∏
i G(Ui) is injective. Repeating the process, you

get the exactness of

G(U)→
∏
i

G(Ui) ⇒
∏
i,j

G(Ui ∩ Uj).

(2) Let f : X → Y be a continuous map of topological spaces.

(i) Show that the functor f∗ from the category of presheaves on X to the category of

presheaves on Y has a left adjoint f ♯.

Hint: Let F be a sheaf of sets on Y . For any open subset U ⊂ X, let

f ♯(U) = lim−→
U↪→f−1(V )

F(V ),

where the indexing set of the direct limit is the set of all open subsets V ⊂ Y such

that f(U) ⊂ V .

(ii) Show that the functor f∗ from the category of sheaves on X to the category of

sheaves on Y has a left adjoint f•.

Hint: Let f•F be the sheafification af ♯(F) of the presheaf f ♯(F).
(iii) When X = Spec(R), Y = Spec(S), f is given by a ring homomorphism from S

to R, and F = M̃ is the quasi-coherent OY -module attached to an S-module M ,

check thatOX⊗f•OY
f∗F is naturally isomorphic to the quasi-coherentOX -module

attached to R⊗S M .

(3) Let f : X → Y be a morphism of schemes, and let F be a quasi-coherent OY -module.

Verify that f∗F := OX ⊗f•OY
f•F is canonically isomorphic to the pull-back of quasi-

coherent modules explained after Corollary 5.6 and before (5.7). Similarly, suppose

that r : X → S and s : Y → S are S-schemes, and F (resp. G) is a quasi-coherent OX -
module (resp. OY -module). Verify that p∗1F ⊗OX×SY

p∗2G is canonically isomorphic to

the quasi-coherent OX×SY -module “OX ⊗OS
OY ” after Corollary 5.6 and before (5.7).

(4) Verify that for any commutative ring R with 1, the set of all R-valued points of GLn,Z
is in bijection with the set of all units of the algebra Mn(R) of n × n-matrices with

entries in R.

(5) Denote by AQ the ring of all Q-adèles, defined to be the subset of R×
∏
pQp, consisting

of all sequences (xi)i∈Σ, where the indexing set Σ consists of ∞ and the set of all

prime numbers, x∞ ∈ R, xp ∈ Qp for all p, and xp ∈ Zp for all but a finite number

of p’s. Describe explicitly the set of all AQ-points of Gm := Spec(Z[T, 1/T ]), GLn and

A1 \ {0, 1}.
(6) Give an example of a sheaf on Spec(Z[T ]) that is not quasi-coherent.
(7) Let X be a scheme. Do infinite products exists in the category of all quasi-coherent

OX -modules? Either give a proof or a counterexample.
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(8) Let k be a field. Are Spec(k[x, y, z]/(x2 − y2 − z4)) and Spec(k[x, y, z]/(x2 − y2 − z2))
isomorphic as k-schemes? Either give a proof or a counterexample.

(9) Let k be a field of characteristic p > 0. Let σ : Spec(k) → Spec(k) be the morphism

such that σ∗ is the Frobenius homomorphism u 7→ up for u ∈ k. For any k-scheme X,

denote by X(p) the fibre product X×Spec(k) (σ,Spec(k)). Give an example in which the

scheme X(p) is not isomorphic to X.

(10) Give an example of an additive category which is not an abelian category.

(11) (Weil’s retriction of scalars) Let T → S and X → T be schemes. The Weil restriction

RT/S(X) is the contravariant functor from the category of S-schemes to the category

of sets such that

RT/S(X)(Z) = HomT (T ×S Z,X)

for every S-scheme Z → S. If T = Spec(R) and S = Spec(A), one often shortens the

notation to RR/A(X). Prove that RC/R(Gm) ∼= Spec(R[x, y, (x2 + y2)−1]).

Note: Here is a more intrinsic way to think about the ring R[x, y, (x2+y2)−1]. Let B =

Symm∗(C∨) be the R-algebra of polynomial functions on C, where C∨ = HomR(C,R).
Let Tr and Nm be the elements in B corresponding to TrC/R and NmC/R, respectively.

Then the localization B[(Nm)−1] of B represents RC/R(Gm).

(12) (Continuation on the Weil restriction) Let A be a ring, and let R be finitely generated

A-algebra which is a projective A-module. Let R∨ = HomA(R,A) be the A-module

dual to R. Denote by δ the element of R ⊗A R∨ corresponding to the identity map

id ∈ EndA(R) under the natural isomorphism EndA(R) = R⊗A R∨.

(i) Let B be an R-algebra. For any f ∈ B and any u ∈ R∨, let u♭(f) ∈ R∨ ⊗A B be

the image of the element δ ⊗ f ∈ R⊗A R∨ ⊗A B under the map

u⊗ idR∨⊗B : R⊗A R∨ ⊗A B −→ R∨ ⊗A B.

For any f1, f2 ∈ B and any element u ∈ R∨, let u(f1, f2) be the image of (δ⊗f1)⊗
(δ ⊗ f2) under the composition of the following maps

(R⊗A R∨ ⊗A B)⊗A (R⊗A R∨
A ⊗B)

∼−→ (R⊗A R)⊗A (R∨ ⊗A B)⊗A (R∨ ⊗A B)
µ⊗can−→ R⊗A Symm2(R∨ ⊗A B)

u⊗id−→ Symm2(R∨ ⊗A B),

where the arrow µ ⊗ can is induced by the multiplication µ : R ⊗ R → R of R

and the natural surjection can: (R∨ ⊗A B) ⊗A (R∨ ⊗A B) → Symm2(R∨ ⊗A B).

Let F = Symm∗
A(R

∨ ⊗A B) be the symmetric algebra of the A-module R∨ ⊗A B.

Denote by RR/A(B) the quotient ring of F with respect to the ideal I generated

by all elements of the form

u(f1, f2)− u♭(f1 · f2), u ∈ R∨, f1, f2 ∈ B.

Show that Spec(RR/A(B)) represents RR/A Spec(B).

(ii) Show that for any R-scheme X, the functor RR/A(X) is representable in the cat-

egory of S-schemes.





CHAPTER II

Exploring the world of schemes

1. Classical varieties as schemes

Having now defined the category of schemes, we would like to see how the principal objects

of classical geometry—complex projective varieties—fit into the picture. In fact a variety is

essentially a very special kind of scheme and a regular correspondence between two varieties is

a morphism. I would like first to show very carefully how a variety is made into a scheme, and

secondly to analyze step by step what special properties these schemes have and how we can

characterize varieties among all schemes.

I want to change notation slightly to bring it in line with that of the last chapter and write

Pn(C) for complex projective n-space, the set of non-zero (n+1)-tuples (a0, . . . , an) of complex

numbers modulo (a0, . . . , an) ∼ (λa0, . . . , λan) for λ ∈ C∗. Let

X(C) ⊂ Pn(C)

be a complex projective variety, i.e., the set of zeroes of the homogeneous equations f ∈ p,

p ⊂ C[X0, . . . , Xn] being a homogeneous prime ideal. Next for every irreducible subvariety:

W (C) ⊂ X(C), dimW (C) ≥ 1

let ηW be a new point. Define X to be the union of X(C) and the set of these new points

{. . . , ηW , . . .}. This will be the underlying point set of a scheme with X(C) as its closed points

and the ηW ’s as the non-closed points. Extend the topology from X(C) to X as follows:

for all Zariski open U(C) ⊂ X(C),
let U = U(C) ∪ {ηW |W (C) ∩ U(C) ̸= ∅} .

One sees easily that the map U(C) 7→ U preserves arbitrary unions and finite intersections,

hence it defines a topology on X. Moreover, in this topology:

a) ∀x ∈ X(C), x ∈ {ηW } ⇐⇒ x ∈W (C)
b) ∀V (C) ⊂ X(C), ηV ∈ {ηW } ⇐⇒ V (C) ⊂W (C),

hence {ηW } is just W , i.e., ηW is a generic point of W . You can picture P2 for instance,

something like that in Figure II.1.

To put a sheaf on X, we can proceed in two ways:

Method (1). Recall that we have defined in Part I [87, Chapter 2], a function field C(X)

and for every x ∈ X(C), a local ring Ox,X with quotient field C(X). Now for every open set

U ⊂ X, define

OX(U) =
∩

x∈U(C)

Ox,X

and whenever U1 ⊂ U2, note that OX(U2) is a subring of OX(U1): let

resU2,U1 : OX(U2) −→ OX(U1)

be the inclusion map. In this way we obviously get a sheaf; in fact a subsheaf of the constant

sheaf with value C(X) on every U .

45
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ηC1

ηC2

ηP2

Figure II.1. P2

Method (2). Instead of working inside C(X), we can work inside the sheaf of functions

from the closed points of X to C:

CX(U) = {set of functions f : U(C) −→ C}

restriction now being just restriction of functions. Then define

OX(U) =



subset of CX(U) of functions f such that for every

x ∈ U(C), there is a neighborhood Ux of x in U and a

rational function a(x0, . . . , xn)/b(x0, . . . , xn), a and b

homogeneous of the same degree, such that

f(y0, . . . , yn) =
a(y0, . . . , yn)

b(y0, . . . , yn)
, b(y0, . . . , yn) ̸= 0

for every y ∈ Ux


.

This is clearly a subsheaf of CX . To see that we have found the same sheaf twice, call these

two sheaves OI
X , OII

X for a minute and observe that we have maps:

OI
X(U)

α−→←−
β
OII
X(U)

α(f) =

{
the function x 7→ f(x) (OK since f(x) is defined)

whenever f ∈ Ox,X

}

β(f) =



the element of C(X) represented by any of the

rational functions a(x0, . . . , xn)/b(x0, . . . , xn)

which equal f in a Zariski open subset of U .

(OK since if a/b and c/d have the same values in a

non-empty Zariski-open U ∩ V , then ad− bc ≡ 0

on X, hence a/b = c/d in C(X).)


From now on, we identify these two sheaves and consider the structure sheaf OX either as a

subsheaf of the constant sheaf C(X) or of CX , whichever is appropriate. The main point now is

that (X,OX) is indeed a scheme. To see this it is easiest first to note that we can make all the
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above definitions starting with a complex affine variety Y (C) ⊂ Cn instead of with a projective

variety. And moreover, just as X(C) ⊂ Pn(C) is covered by affine varieties

Yi(C) = X(C) \X(C) ∩ V (Xi)

so too the pair (X,OX) is locally isomorphic at every point to (Yi,OYi) for some i. Therefore it is

enough to show that (Yi,OYi) is a scheme. But if the affine Y (C) equals V (p), p ⊂ C[X1, . . . , Xn]

a prime ideal, then I claim:

(1.1) (Y,OY ) ∼= (SpecC[X1, . . . , Xn]/p,OSpecC[X]/p).

Proof. The prime ideals q ⊂ C[X1, . . . , Xn]/p are in one-to-one correspondence with the

prime ideals q:

p ⊂ q ⊂ C[X1, . . . , Xn],

and these are in one-to-one correspondence with the set of irreducible closed subsets of V (p),

i.e., to the points of Y (C) plus the positive dimensional subvarieties of Y (C). Therefore there

is a canonical bijection:

Y ∼= SpecC[X1, . . . , Xn]/p

via

ηV (q) ←→ [q] for q not maximal

Y (C) ∋ a←→ [(X1 − a1, . . . , Xn − an) mod p]

[Recall that the maximal ideals of C[X1, . . . , Xn]/p are the ideals I(a) of all functions vanishing

at a point a ∈ X(C), i.e., the ideals (X1 − a1, . . . , Xn − an)/p.] It is seen immediately that this

bijection is a homeomorphism. To identify the sheaves, note that for all f ∈ C[X1, . . . , Xn],

OY (Yf ) =
def

∩
a∈Yf (C)

Oa,Y

=
∩

a∈Y (C)
f(a)̸=0

(localization of C[X1, . . . , Xn]/p at

I(a)︷ ︸︸ ︷
(X1 − a1, . . . , Xn − an)/p)

while

OSpecC[X]/p(Yf ) =
def

localization (C[X1, . . . , Xn]/p)f .

These are both subrings of C(Y ), the quotient field of C[X1, . . . , Xn]/p. Now since f(a) ̸= 0 =⇒
f ∈ (C[X]/p) \ I(a), we see that

(C[X]/p)f ⊂
∩

a∈Y (C)
f(a)̸=0

(C[X]/p)I(a).

And if

g ∈
∩

a∈Y (C)
f(a)̸=0

(C[X]/p)I(a),

let

a = {h ∈ C[X]/p | gh ∈ C[X]/p} .
If f(a) ̸= 0, then ∃ga, ha ∈ C[X]/p and ha ̸∈ I(a) such that g = ga/ha, hence ha ∈ a. Thus a ̸∈
V (a). Since this holds for all a ∈ Y (C)f , we see that V (a) ⊂ V (f), hence by the Nullstellensatz
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(cf. Part I [87, §1A, (1.5)], Zariski-Samuel [119, vol. II, Chapter VII, §3, Theorem 14] and

Bourbaki [27, Chapter V, §3.3, Proposition 2]) fN ∈ a for some N ≥ 1. This means precisely

that g ∈ (C[X]/p)f . Thus the sheaves are the same too. □

To simplify terminology, we will now call the scheme X attached to X(C) a complex pro-

jective variety too. Next, if

X(C) ⊂ Pn(C)
Y (C) ⊂ Pn(C)

are two complex projective varieties and if

Z(C) ⊂ X(C)× Y (C)

is a regular correspondence from X to Y , we get a canonical morphism

fZ : X −→ Y.

In fact, as a map of sets, define the following.

If x ∈ X(C): fZ(x) = the unique y ∈ Y (C) such that (x, y) ∈ Z(C)

If W (C) ⊂ X(C): fZ(ηW ) =

{
ηV if dimV (C) ≥ 1

v if V (C) = {v}
where V (C) = p2 [(W (C)× Y (C)) ∩ Z(C)] .

One checks immediately that this map is continuous. To define the map backwards on sheaves,

proceed in either of two ways:

Method (1). Recall that Z defined a map Z∗ : C(Y )→ C(X) and the fact that Z is regular

implies that for all x ∈ X(C), if y = fZ(x), then

Z∗(Oy,Y ) ⊂ Ox,X .

Therefore, for every open set U ⊂ Y ,

Z∗(OY (U)) = Z∗

 ∩
y∈U(C)

Oy,Y


⊂

∩
x∈f−1

Z U(C)

Ox,X

= OX(f−1
Z U)

giving a map of sheaves.

Method (2). Define a map

f∗Z : CY (U) −→ CX(f−1
Z U)

by composition with fZ , i.e., if α : U(C)→ C is a function, then α◦fZ is a function f−1
Z U(C)→

C. One checks immediately using the regularity of Z that f∗Z maps functions α in the subring

OY (U) to functions α ◦ fZ ∈ OX(f−1
Z (U)).

There is one final point in this direction which we will just sketch. That is:

Proposition 1.2. Let X(C) ⊂ Pn(C) and Y (C) ⊂ Pm(C) be complex projective varieties.

Let Z(C) ⊂ Pnm+n+m(C) be their set-theoretic product, embedded by the Segre embedding as

third complex projective variety (cf. Part I [87, Chapter 2]). Then the scheme Z is canonically

isomorphic to the fibre product X ×Spec(C) Y of the schemes X and Y .
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Idea of proof. Let X0, . . . , Xn, Y0, . . . , Ym and Zij (0 ≤ i ≤ n, 0 ≤ j ≤ m) be homoge-

neous coordinates in Pn(C), Pm(C) and Pnm+n+m(C). Then by definition Z(C) is covered by

affine pieces Zi0j0 ̸= 0 which are set-theoretically the product of the affine Xi0 ̸= 0 in X(C) and
Yj0 ̸= 0 in Y (C). The Segre embedding is given in this piece by

Zij
Zi0j0

=
Xi

Xi0

· Yj
Yj0

so the affine ring of Z comes out:

C[. . . ,
Zij
Zi0j0

, . . .]/{functions 0 on Z(C)}

= C[. . . ,
Xi

Xi0

, . . . ,
Yj
Yj0

, . . .]/{functions 0 on X(C)× Y (C)}.

To see that this is the tensor product of the affine rings of X and Y :(
C[. . . ,

Xi

Xi0

, . . .]/{functions 0 on X(C)}
)
⊗C

(
C[. . . ,

Yj
Yj0

, . . .]/{functions 0 on Y (C)}
)

one uses the ordinary Nullstellensatz (cf. Part I [87, §1A, (1.5)], Zariski-Samuel [119, vol. II,

Chapter VII, §3, Theorem 14] and Bourbaki [27, Chapter V, §3.3, Proposition 2]) plus:

Lemma 1.3. If R and S are k-algebras with no nilpotents, k a perfect field, then R⊗k S has

no nilpotent elements.

(cf. §IV.2 below.) □

Corollary 1.4. Let X(C), Y (C) be complex projective varieties. Then the set of regular

correspondences from X(C) to Y (C) and the set of C-morphisms from the scheme X to the

scheme Y are the same.

Idea of proof. Starting from f : X → Y , we get a morphism

f × 1Y : X ×Spec(C) Y −→ Y ×Spec(C) Y.

If ∆(C) ⊂ Y (C) × Y (C) is the diagonal, which is easily checked to be closed, define Γ =

(f × 1Y )
−1(∆), then Γ(C) is closed in X(C)× Y (C) and is the graph of res(f). Therefore Γ(C)

is a single-valued correspondence and a local computation shows that it is regular. □

2. The properties: reduced, irreducible and finite type

The goal of this section is to analyze some of the properties that make classical varieties

special in the category of schemes. We shall do two things:

a) Define for general schemes, and analyze the first consequences, of three basic properties

of classical varieties: being irreducible, reduced, and of finite type over a field k. A

scheme with these properties will be defined to be a variety over k.

b) Show that for reduced schemes X of finite type over any algebraically closed field k, the

structure sheaf OX can be considered as a sheaf of k-valued functions and a morphism

is determined by its map of points. Thus varieties over algebraically closed k’s form

a truly geometric category which is quite parallel to differentiable manifolds/analytic

spaces/classical varieties.

Property 1. A complex projective variety X is irreducible, or equivalently has a generic

point ηX .



50 II. EXPLORING THE WORLD OF SCHEMES

This is obvious from the definition. To put this property in its setting, we can prove that

every scheme has a unique irredundant decomposition into irreducible components. In fact:

Definition 2.1. A scheme X is locally noetherian if every x ∈ X has an affine neighborhood

U which is Spec(R), R noetherian. A scheme is noetherian if it is locally noetherian and quasi-

compact; or equivalently, if it has a finite covering by Spec’s of noetherian rings.

Proposition 2.2. Every scheme X has a unique decomposition

X =
∪
α

Zα, Zα irreducible closed, Zα ̸⊂ Zβ if α ̸= β.

If X is locally noetherian, this decomposition is locally finite. If X is noetherian, then the

decomposition is finite.

Proof. The general case is immediate, and the noetherian cases from the fact that in a

noetherian ring R,
√

(0) is a finite intersection of prime ideals. □

An important point concerning the definition of locally noetherian is:

Proposition 2.3. If X is locally noetherian, then for every affine open Spec(R) ⊂ X, R is

noetherian.

Without this proposition, “locally noetherian” would be an awkward artificial concept. This

proposition is the archetype of a large class of propositions that “justify” a definition by showing

that if some property is checked for a covering family of open affines, then it holds for all open

affines.

Proof of Proposition 2.3. Let Uα = Spec(Rα) be an open cover of X with Rα noether-

ian. Then Spec(R) is covered by distinguished open subsets of the Uα, and each of these is of

the form Spec((Rα)fα), i.e., Spec of another noetherian ring. But now when f ∈ R is such that:

Spec(Rf ) ⊂ Spec(Rα)fα

then

Spec(Rf ) ∼= Spec (((Rα)fα)res f ) , via res : R→ (Rα)fα ,

hence

Rf ∼= ((Rα)fα)res f
hence Rf is noetherian. Therefore we can cover Spec(R) by distinguished opens Spec(Rfi) with

Rfi noetherian. Since Spec(R) is quasi-compact, we can take this covering finite. This implies

that if aα is an ascending chain of ideals in R, aα ·Rfi is stationary for all i if α is large enough,

and then

aα+1 =

n∩
i=1

aα+1Rfi =

n∩
i=1

aαRfi = aα.

□

Property 2. A complex projective variety X is reduced, in the sense of:

Definition 2.4. A scheme X is reduced if all its local rings Ox,X have no non-zero nilpotent

elements.

It is easy to check that a ring R has non-zero nilpotents if and only if at least one of its

localizations Rp has nilpotents: therefore a scheme X is reduced if and only if it has an affine

covering Uα such that OX(Uα) has no non-zero nilpotents, or if and only if this holds for all

affine U ⊂ X. Moreover, it is obvious that a complex projective variety is reduced.
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Reduced and irreducible schemes in general begin to look a lot like classical varieties. In

fact:

Proposition 2.5. Let X be a reduced and irreducible scheme with generic point η. Then

the stalk Oη,X is a field which we will denote R(X), the function field of X. Then

i) for all affine open U ⊂ X, (resp. all points x ∈ X), OX(U) (resp. Ox,X) is an integral

domain with quotient field R(X),

ii) for all open U ⊂ X,

OX(U) =
∩
x∈X
Ox,X

(the intersection being taken inside R(X)) and if U1 ⊂ U2, then resU2,U1 : OX(U2) →
OX(U1) is the inclusion map between subrings of R(X).

Proof. If U = SpecR is an affine open of X and η = [p], p a prime ideal of R, then {η} ⊃ U
implies that p is contained in all prime ideals of R, hence p =

√
(0) in R. But R has no nilpotents

so p = (0), i.e., R is an integral domain. Moreover Oη,X = O[p],SpecR = Rp = quotient field of R.

Thus Oη,X =
def

R(X) is a field and is the common quotient field both of the affine rings R of X

and of all localizations RS of these such as the local rings Rq = O[q],X (q ⊂ R any prime ideal).

This proves (i). Now if U ⊂ X is any open set, consider

res : OX(U) −→ Oη,X = R(X).

For all s ∈ OX(U), s ̸= 0, there is an affine U ′ = SpecR′ ⊂ U such that resU,U ′(s) is not 0 in R′.

Since R′ ⊂ R(X), res(s) ∈ R(X) is not 0. Thus res is injective. Since it factors through Ox,X
for all x ∈ U , this shows that

OX(U) ⊂
∩
x∈U
Ox,X .

Conversely, if s ∈
∩
x∈X Ox,X , then there is an open covering {Uα} of U and sα ∈ OX(Uα)

mapping to s in R(X). Then sα− sβ ∈ OX(Uα ∩Uβ) goes to 0 in R(X), so it is 0. Since OX is

a sheaf, then sα’s patch together to an s ∈ OX(U). This proves (ii). □

Property 3. A complex projective variety X is a scheme of finite type over C, meaning:

Definition 2.6. A morphism f : X → Y is locally of finite type (resp. locally finitely

presented) if X has an affine covering {Uα} such that f(Uα) ⊂ Vα, Vα an affine of Y , and the

ring OX(Uα) is isomorphic to OY (Vα)[t1, . . . , tn]/a (resp. same with finitely generated a). f is

quasi-compact if there exists an affine covering {Vα} of Y such that each f−1(Vα) has a finite

affine covering; f is of finite type (resp. finitely presented) if it is locally of finite type (resp.

locally finitely presented) and quasi-compact.

It is clear that the canonical morphism of a complex projective variety to Spec(C) has all

these properties. As above with the concept of noetherian, these definitions should be “justified”

by checking:

Proposition 2.7. If f is locally of finite type, then for every pair of affine opens U ⊂ X,

V ⊂ Y such that f(U) ⊂ V , OX(U) is a finitely generated OY (V )-algebra; if f is quasi-compact,

then for every quasi-compact open subset S ⊂ Y , f−1(S) is quasi-compact. (Analogous results

hold for the concept “locally finitely presented”.)

Proof. The proof of the first assertion parallels that of Proposition 2.3. We are given Uα’s,

Vα’s with OX(Uα) finitely generated over OY (Vα). Using the fact that Rf ∼= R[x]/(1 − xf),
hence is finitely generated over R, we can replace Uα, Vα by distinguished opens to get new
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Uβ’s, Vβ’s such that OX(Uβ) is still finitely generated over OY (Vβ), but now Uβ ⊂ U , Vβ ⊂ V

and U =
∪
Uβ. Next make another reduction until Uγ (resp. Vγ) is a distinguished open in

U (resp. V ). Then since OX(Uγ) is finitely generated over OY (Vγ) and OY (Vγ) ∼= OY (V )fγ is

finitely generated over OY (V ), we may replace Vα by V . We come down to the purely algebraic

lemma:

S is an R-algebra

1 =

n∑
i=1

figi, fi, gi ∈ S

Sfi finitely generated over R

 =⇒ S finitely generated over R.

Proof. Take a finite set of elements xλ of S including the fi’s, gi’s and elements whose

images in Sfi plus 1/fi generate Sfi over R. These generate S, because if k ∈ S, then

k =
Pi(xλ)

fNi
in Sfi

Pi = polynomial over R.

Thus fN+M
i k = fMi Pi(xλ) in S. But

1 =
(∑

figi

)n(N+M)

=

n∑
i=1

Qi(f, g) · fN+M
i

hence

k =

n∑
i=1

Qi(f, g)f
M
i Pi(xλ).

□

We leave the proof of the second half of Proposition 2.7 to the reader. □

A morphism of finite type has good topological properties generalizing those we found in

Part I [87, (2.31)]. To state these, we must first define:

Definition 2.8. If X is a scheme, a constructible subset S ⊂ X is an element of the Boolean

algebra of subsets generated by the open sets: in other words,

S = S1 ∪ · · · ∪ St

where Si is locally closed, meaning it is an intersection of an open set and a closed subset.

Theorem 2.9 (Chevalley’s Nullstellensatz). Let f : X → Y be a morphism of finite type and

Y a noetherian scheme. Then for every constructible S ⊂ X, f(S) ⊂ Y is constructible.

Proof. First of all, we can reduce the theorem to the special case where X and Y are

affine: in fact there are finite affine covering {Ui} of X and {Vi} of Y such that f(Ui) ⊂ Vi. Let
fi = res f : Ui → Vi. Then for every S ⊂ X constructible, f(S) =

∪
fi(S ∩ Ui) so if fi(S ∩ Ui)

is constructible, so is f(S). Secondly if X = SpecR, Y = SpecS, we can reduce the theorem to

the case R = S[x]. In fact, if R = S[x1, . . . , xn], we can factor f :

X = SpecS[x1, . . . , xn]→ SpecS[x1, . . . , xn−1]→ · · ·
· · · → SpecS[x1]→ SpecS = Y.
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Now a basic fact is that every closed subset V (a) of an affine scheme Spec(R) is homeomor-

phic to the affine scheme Spec(R/a). In fact there is a bijection between the set of prime ideals

q ⊂ R/a and the set of prime ideals q ⊂ R such that q ⊃ a and this is readily seen to be a home-

omorphism (we will generalize this in §3). Also, since V (a) = V (
√
a), V (a) is homeomorphic to

the reduced scheme Spec(R/
√
a) too. We use this first to make a third reduction to the case

f : SpecS[X] −→ SpecS.

In fact, if R is generated over S by one element, then R ∼= S[X]/a and via the diagram:

SpecR

f ′ ""EEEEEEEE
∼= V (a) ⊂ S[X]

f~~||||||||

SpecS

the theorem for f implies the theorem for f ′. Fourthly, we make a so-called “noetherian in-

duction”: since the closed subsets V (a) ⊂ SpecS satisfy the descending chain condition, if the

theorem is false, there will be a minimal V (a) ⊂ Spec(S) such that

res f : f−1(V (a)) −→ V (a)

does not take constructibles to constructibles. Since f−1(V (a)) = V (a · S[X]), we can replace

SpecS by SpecS/a and SpecS[X] by Spec(S/a)[X] and reduce to the case:

(∗) for all constructible sets C ⊂ SpecS[X], if f(C) ⫋ Spec(S),

then f(C) is constructible.

Of course we can assume in this reduction that a =
√
a, so that the new S has no nilpotents.

SpecS in fact must be irreducible too: if not,

SpecS = Z1 ∪ Z2, Zi ⫋ SpecS, Zi closed.

Then if C ⊂ SpecS[X] is constructible, so are C∩f−1(Zi), hence by (∗) so are f(C∩f−1(Zi)) =

f(C)∩Zi; hence f(C) = (f(C)∩Z1)∪(f(C)∩Z2) is constructible. Thus S is an integral domain.

In view of (∗), it is clear that the whole theorem is finally reduced to:

Lemma 2.10. Let S be an integral domain and let η ∈ SpecS be its generic point. Let

C ⊂ SpecS[X] be an irreducible closed set and C0 ⊂ C an open subset. Consider the morphism:

f : SpecS[X] −→ SpecS.

Then there is a non-empty open set U ⊂ SpecS such that either U ⊂ f(C0) or U ∩ f(C0) = ∅.

Proof of Lemma 2.10. LetK be the quotient field of S. Note that f−1(η) ∼= SpecK[X] =

A1
K , which consists only of a generic point η∗ and its closed points. C ∩ f−1(η) is a closed

irreducible subset of f−1(η), hence there are three possibilities:

Case i) C ⊃ f−1(η), so C = SpecS[X],

Case ii) C ∩ f−1(η) = {ζ}, ζ a closed point of f−1(η), and

Case iii) C ∩ f−1(η) = ∅.
In case (i), C0 contains some distinguished open SpecS[X]g, where g = a0X

n+a1X
n−1+· · ·+an,

a0 ̸= 0. Let U = SpecSa0 . For all x ∈ SpecS, f−1(x) ∼= Spec k(x)[X] = A1
k(x) and:

C0 ∩ f−1(x) ⊃
{
y ∈ A1

k(x)

∣∣∣∣ g(y) ̸= 0, where g = a0X
n + · · ·+ an

and ai = image of ai in k(x)

}
.
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So if x ∈ U , a0 ̸= 0, hence g ̸≡ 0, hence the generic point of f−1(x) is in C0 ∩ f−1(x), hence

x ∈ f(C0). In case (ii), let C = V (p). Then

p ·K[X] = g ·K[X], g irreducible.

We may assume that g = a0X
n + · · ·+ an is in p, hence ai ∈ S. Then

V (g) ⊃ C ⊃ C0,

but all three sets intersect the generic fibre f−1(η) in only one point ζ. Thus V (g) \ C0 is a

constructible set disjoint from f−1(η). Let:

V (g) \ C0 =W1 ∪ · · · ∪Wt, Wi irreducible with generic points wi ̸∈ f−1(η).

Then f(Wi) ⊂ {f(wi)} and {f(wi)} is a closed proper subset of SpecS. Thus

f(V (q) \ C0) ⊂
t∪
i=1

{f(wi)} ⊂ some subset V (α) of SpecS

(α ∈ S, α ̸= 0). Now let U = SpecSa0α. Then if x ∈ U ,

α(x) ̸= 0 =⇒ f−1(x) ∩ C0 = f−1(x) ∩ V (g)

=
{
y ∈ A1

k(x)

∣∣∣ g(y) = 0
}
.

Since a0(x) ̸= 0, g ̸≡ 0, hence g has an irreducible factor g1 and the prime ideal g1 · k(x)[X]

defines a point of f−1(x) where g is zero. Thus x ∈ f(C0), which proves U ⊂ f(C0). In case

(iii), let ζ be the generic point of C. Then

f(C) ⊂ {f(ζ)}

hence U = SpecS \ {f(ζ)} is an open set disjoint from f(C0). □

□

Corollary 2.11. Let k be a field and X a scheme of finite type over k. If x ∈ X then

[x is closed]⇐⇒
[
x is an algebraic point

i.e., k(x) is an algebraic extension of k.

]
Proof. First assume x closed and let U = SpecR be an affine neighborhood of x. Then x

is closed in U and hence {x} is a constructible subset of U . Let R ∼= k[X1, . . . , Xn]/a. Each Xi

defines a morphism pi : U → A1
k by Theorem I.3.7. pi is clearly of finite type so by Theorem 2.9

pi(x) is a constructible point of A1
k. Now apply:

Lemma 2.12 (Euclid). For any field k, A1
k contains an infinite number of closed points.

Proof. A1
k = Spec k[X] and its closed points are of the form [(f)], f monic and irreducible.

If f1, . . . , fN is any finite set of such irreducible polynomials, then an irreducible factor g of∏N
i=1 fi + 1 cannot divide any of the fi, hence [(g)] ̸= [(fi)] for any i. □

It follows that the generic point of A1
k is not a constructible set! Thus k(pi(x)) is algebraic

over k. Since the residue field k(x) is generated over k by the values of the coordinates Xi, i.e.,

by the subfields k(pi(x)), k(x) is algebraic over k. Conversely, if x is algebraic but not closed,

let y ∈ {x}, y ̸= x. Let U = SpecR be an affine neighborhood of y. Then x ∈ U too, so x is

not closed in U . Let x = [p] and use the fact that if ξ is algebraic over k, then k[ξ] is already

a field. Since k(x) ⊃ R/p ⊃ k, all elements of R/p are algebraic over k, hence R/p is already a

field. Therefore p is maximal and x must be closed in U — contradiction. □

Corollary 2.13. Let k be a field and X a scheme of finite type over k. Then:
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[(X,Y )]

generic point [(0)]

Figure II.2. “Parody of P1
k”

a) If U ⊂ X is open, and x ∈ U , then x is closed in U if and only if x is closed in X.

b) For all closed subsets S ⊂ X, the closed points of S are dense in S.

c) If Max(X) is the set of closed points of X in its induced topology, then there is a natural

bijection beween X and the set of irreducible closed subsets of Max(X) (i.e., X can be

reconstructed from Max(X) as schemes were from classical varieties).

Proof. (a) is obvious by Corollary 2.11. To prove (b), we show that for every affine open

U ⊂ X, if U ∩ S ̸= ∅, then U ∩ S contains a point closed in X. But if U = SpecR, and

U ∩ S = V (p), then in the ring R, let m be a maximal ideal containing p. Then [m] is a closed

point of U in U ∩S. By (a), [m] is closed in X. Finally (c) is a formal consequence of (b) which

we leave to the reader. □

To illustrate what might go wrong here, contrast the situation with the case

X = Spec(O), O local noetherian, maximal ideal m.

If

U = X \ [m],

then U satisfies the descending chain condition for closed sets so it has lots of closed points.

But none of them can be closed in X, since [m] is the only closed point of X. Take the case

O = k[X,Y ](X,Y ): its prime ideals are m = (X,Y ), principal prime ideals f (with f irreducible)

and (0). In this case, U has only closed points and one generic point and is a kind of parody of

P1
k as in Figure II.2 (cf. §5 below).

We have now seen that any scheme of finite type over a field shares many properties with

classical projective varieties and when it is reduced and irreducible the resemblance is even

closer. We canonize this similarity with a very important definition:

Definition 2.14. Let k be a field. A variety X over k is a reduced and irreducible scheme

X plus a morphism p : X → Spec k making it of finite type over k. The dimension of X over k

is trdegkR(X).

We want to finish this section by showing that when k is algebraically closed, the situation

is even more classical.
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Proposition 2.15. Let k be an algebraically closed field and let X be a scheme of finite type

over k. Then:

a) For all x ∈ X

[x is closed]⇐⇒ [x is rational, i.e., k(x) ∼= k].

Let X(k) denote the set of such points.

b) Evaluation of functions define a homomorphism of sheaves:

OX −→ kX(k)

where

kX(k)(U) = ring of k-valued functions on U(k).

If X is reduced, this is injective.

Now let X and Y be two schemes of finite type over k and f : X → Y a k-morphism. Then:

c) f(X(k)) ⊂ Y (k).

d) If X is reduced, f is uniquely determined by the induced map X(k) → Y (k), hence by

its graph

{(x, f(x)) | x ∈ X(k)} ⊂ X(k)× Y (k).

Proof. (a) is just Corollary 2.11 in the case k algebraically closed. To check (b), let

U = SpecR be an affine. If f ∈ R is 0 at all closed points of U , then U \ V (f) has no closed

points in it, hence is empty. Thus

f ∈
∩

p prime of R

p =
√

(0)

and if X is reduced, f = 0. (c) follows immediately from (a) since for all x ∈ X, we get inclusions

of fields:

k(x) k(f(x))? _oo k.? _oo

As for (d), it follows immediately from the density of X(k) in X, plus (b). □

3. Closed subschemes and primary decompositions

The deeper properties of complex projective varieties come from the fact that they are closed

subschemes of projective space. To make this precise, in the next two sections we will discuss

two things—closed subschemes and a construction called Proj. At the same time that we make

the definitions necessary for characterizing complex projective varieties, we want to study the

more general classes of schemes that naturally arise.

Definition 3.1. Let X be a scheme. A closed subscheme (Y, I) consists in two things:

a) a closed subset Y ⊂ X
b) a sheaf of ideals I ⊂ OX such that

Ix ⫋ OX,x iff x ∈ Y

and such that Y , plus the sheaf of rings OX/I supported by Y is a scheme.

Definition 3.2. Let f : Y → X be a morphism of schemes. Then f is a closed immersion

if

a) f is an injective closed map,
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b) the induced homomorphisms

f∗y : OX,f(y) −→ OY,y
are surjective, for every y ∈ Y .

It is clear that

a) if you start from a closed subscheme (Y, I), then the morphism (Y,OX/I)→ (X,OX)
defined by the inclusion of Y in X and the surjection of OX to OX/I is a closed

immersion;

b) conversely if you start with a closed immersion f : Y → X, then the closed subset f(Y )

and the sheaf I:
I(U) = Ker

(
OX(U)→ OY (f−1U)

)
is a closed subscheme.

Thus these two concepts are essentially equivalent. A locally closed subscheme or simply

subscheme (resp. immersion) in general is defined to be a closed subscheme of an open set

U ⊂ X (resp. a morphism f such that f(Y ) ⊂ U open and res f : Y → U is a closed immersion).

The simplest example of a closed immersion is the morphism

f : Spec(R/a) −→ Spec(R)

where a is any ideal in R. In fact, as noted in the proof of Theorem 2.9 above, f maps Spec(R/a)

homeomorphically onto the closed subset V (a) of Spec(R). And if q ⊂ R/a is a prime ideal,

q = q/a, then the induced map on local rings is clearly surjective:

(R/a)q ∼= Rq/a ·Rq Rqoooo

OSpec(R/a),[q] OSpec(R),[q]

We will often say for short, “consider the closed subscheme Spec(R/a) of Spec(R)”. What

we want to check is that these are the only closed subschemes of SpecR.

We prove first:

Proposition 3.3. If (Y, I) is a closed subscheme of X, then I is a quasi-coherent sheaf of

OX-modules.

Proof. On the open set X \ Y , I ∼= OX so it is quasi-coherent. If x ∈ Y , we begin by

finding an affine neighborhood U ⊂ X of x such that U ∩Y is affine in Y . To find U , start with

any affine neighborhood U1 and let V1 ⊂ U1 ∩ Y be an affine neighborhood of x in Y . Then

choose some α ∈ Γ(U1,OX) such that α ≡ 0 on U1 ∩ Y \ V1, while α(x) ̸= 0. Let U = (U1)α.

Since U ∩Y = (U1∩Y )resα = (V1)resα, U ∩Y is affine in Y too. Next, suppose that U = SpecR,

U ∩Y = SpecS and let the inclusion of U ∩Y into U correspond to ϕ : R→ S. Let I = Ker(ϕ):

I claim then that

I|U ∼= Ĩ

hence I is quasi-coherent. But for all β ∈ Γ(U,OX),

Ĩ(Uβ) = Iβ
∼= Ker(Rβ → Sβ)

∼= Ker (OX(Uβ)→ OY (Y ∩ Uβ))
= I(Uβ)

hence Ĩ ∼= I|U . □
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Corollary 3.4. If (Y, I) is a closed subscheme of X, then for all affine open U ⊂ X,

U ∩ Y is affine in Y and if U = SpecR, then U ∩ Y ∼= Spec(R/a) for some ideal a ⊂ R, i.e.,

Y ∼= SpecX(OX/I).

Proof. Since I is quasi-coherent, I|U = ã for some ideal a ⊂ R. But then

OY |U = Coker (I|U → OX |U )

= Coker(ã→ R̃)

= R̃/a

hence

(Y,OY ) = (V (a), R̃/a) ∼= (Spec(R/a),OSpecR/a).

□

Corollary 3.5. Let f : Y → X be a morphism. Then f is a closed immersion if and only

if:

(∗) ∃ an affine covering {Ui} of X such that f−1(Ui) is affine

and Γ(Ui,OX)→ Γ(f−1(Ui),OY ) is surjective.

Proof. Immediate. □

We want to give some examples of closed subschemes and particularly of how one can have

many closed subschemes attached to the same underlying subset.

Example 3.6. Closed subschemes of Spec(k[t]), k algebraically closed. Since k[t] is a PID,

all non-zero ideals are of the form

a =

(
n∏
i=1

(t− ai)ri
)
.

The corresponding subscheme Y of A1
k = Spec(k[t]) is supported by the n points a1, . . . , an, and

at ai its structure sheaf is

Oai,Y = Oai,A1
k
/mri

i ,

where mi = mai,A1 = (t − ai). Y is the union of the ai’s “with multiplicity ri”. The real

significance of the multiplicity is that if you restrict a function f on A1
k to this subscheme, the

restriction can tell you not only the value f(ai) but the first (ri − 1)-derivatives:

dlf

dtl
(ai), l ≤ ri − 1.

In other words, Y contains the (ri − 1)st-order normal neighborhood of {ai} in A1
k.

Consider all possible subschemes supported by {0}. These are the subschemes

Yn = Spec (k[t]/(tn)) .

Y1 is just the point as a reduced scheme, but the rest are not reduced. Corresponding to the

fact that the defining ideals are included in each other:

(t) ⊃ (t2) ⊃ (t3) ⊃ · · · ⊃ (tn) ⊃ · · · ⊃ (0),

the various schemes are subschemes of each other:

Y1 ⊂ Y2 ⊂ Y3 ⊂ · · · ⊂ Yn ⊂ · · · ⊂ A1
k.
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A2
k

Y2

Y3

Yα,β

Figure II.3. 0-dimensional subschemes of A2
k

Example 3.7. Closed subschemes of Spec(k[x, y]), k algebraically closed. Every ideal a ⊂
k[x, y] is of the form:

(f) ∩Q
for some f ∈ k[x, y] and Q of finite codimension (to check this use noetherian decomposition

and the fact that prime ideals are either maximal or principal). Let Y = Spec(k[x, y]/a) be the

corresponding subscheme of A2
k. First, suppose a = (f). If f =

∏n
i=1 f

ri
i , with fi irreducible,

then the subscheme Y is the union of the irreducible curves fi = 0, “with multiplicity ri”. As

before, if g is a function on A2
k, then one can compute solely from the restriction of g to Y the

first ri − 1 normal derivatives of g to the curve fi = 0. Second, look at the case a of finite

codimension. Then

a = Q1 ∩ · · · ∩Qt
where

√
Qi is the maximal ideal (x − ai, y − bi). Therefore, the support of Y is the finite set

of points (ai, bi), and the stalk of Y at (ai, bi) is the finite dimensional algebra k[x, y]/Qi. For

simplicity, look at the case a = Q1,
√
Q1 = (x, y). The lattice of such ideals a is much more

complicated than in the one-dimensional case. Consider, for example, the ideals:

(x, y) ⊃ (αx+ βy, x2, xy, y2) ⊃ (x2, xy, y2) ⊃ (x2, y2) ⊃ (0).

These define subschemes:

{(0, 0) with reduced structure} ⊂ Yα,β ⊂ Y2 ⊂ Y3 ⊂ A2
k.

Since (αx+ βy, x2, xy, y2) ⊃ (αx+ βy), Yα,β is a subscheme of the reduced line ℓα,β defined by

αx + βy = 0: Yα,β is the point and one normal direction. But Y2 is not a subscheme of any

reduced line: it is the full double point and is invariant under rotations. Y3 is even bigger, is

not invariant under rotations, but still does not contain the second order neighborhood of (0, 0)

along any line. If g is a function on A2
k, g|Yα,β

determines one directional derivative of g at

(0, 0), g|Y2 determines both partial derivatives of g at (0, 0) and g|Y3 even determines the mixed

partial ∂2g
∂x∂y (0, 0) (cf. Figure II.3). As an example of the general case, look at a = (x2, xy).

Then a = (x) ∩ (x2, xy, y2). Since
√
a = (x), the support of Y is y-axis. The stalk Oz,Y has no

nilpotents in it except when z = (0, 0). This is an “embedded point”, and if a function g on A2
k

is cut down to Y , the restriction determines both partials of g at (0, 0), but only ∂
∂y at other

points (cf. Figure II.4):
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A2
k

x = 0

Y

Figure II.4. Subschemes of A2
k

Example 3.8. The theory of the primary decomposition of an ideal is an attempt to describe

more “geometrically” a general closed subscheme of SpecR, when R is noetherian. In fact, if

Z = SpecR/a ⊂ SpecR

is a closed subscheme, then the theory states that we can write:

a = q1 ∩ · · · ∩ qn

where qi is primary with pi =
√
qi prime. Then geometrically:

Z =scheme-theoretic union of (i.e., smallest closed

subscheme containing) W1, . . . ,Wn

where Wi =SpecR/qi

=set-theoretically V (pi), the closure of [pi]

but with some infinitesimal thickening.

The property which distinguishes the Wi’s is described as follows:

q is p-primary⇐⇒ p =
√
q and q = R ∩ q · (Rp)

⇐⇒ set-theoretically SpecR/q is V (p) and the map

Γ(OSpecR/q)→
(
the generic stalk OSpecR/q,[p]

)
is injective.

(In other words, a “function” f ∈ R is to have 0 restriction everywhere to SpecR/q if it restricts

to 0 at the generic point of SpecR/q.) The unfortunate thing about the primary decomposition

is that it is not unique: ifWi is an “embedded component”, i.e., set-theoreticallyWi ⫋Wj , then

the scheme structure on Wi is not unique. However the subsets Wi are uniquely determined

by Z. By far the clearest treatment of this is in Bourbaki [27, Chapter 4] who considers the

problem module-theoretically rather than ideal-theoretically. His theory globalizes immediately

to give:

Theorem 3.9. Let X be a noetherian scheme, F a coherent sheaf on X. Then there is a

finite set of points x1, . . . , xt ∈ X such that

i) ∀U ⊂ X, ∀s ∈ F(U), ∃I ⊂ {1, . . . , t} such that:

Supp(s) =
def
{x ∈ U | the image sx ∈ Fx is not 0} =

∪
i∈I
{xi} ∩ U

ii) if U is affine, then any subset of U of the form
∪
i∈I {xi} ∩ U occurs as the support of

some s ∈ F(U).
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These xi are called the associated points of F , or Ass(F).

Proof. Note that if U = SpecR, F|U = M̃ , s ∈M , and Ann(s) = {a ∈ R | as = 0}, then

sx ̸= 0 in Fx
where x = [p]

⇐⇒ s ̸7→ 0 in Mp

⇐⇒ ∀a ∈ R \ p, a · s ̸= 0

⇐⇒ Ann(s) ⊂ p

⇐⇒ x ∈ V (Ann(s))

so that Supp(s) = V (Ann(s)). It follows from the results in Bourbaki [27, Chapter 4, §1] that
in this case his set of points Ass(M) ⊂ SpecR has our two required properties1. Moreover, he

proves in [27, §1.3] that Ass(Mf ) = Ass(M)∩SpecRf : hence the finite subsets Ass(M) all come

from one set Ass(F) by Ass(M) = Ass(F) ∩ SpecR. □

Note that Ass(F) must include the generic points of Supp(F) but may also include in

addition embedded associated points.

Corollary 3.10. If Z ⊂ SpecR is a closed subscheme and

Z =W1 ∪ · · · ∪Wt

is a primary decomposition, then

Ass(OZ) = {w1, . . . , wt},

where wi = generic point of Wi.

Proof. Let Z = SpecR/a, Wi = SpecR/qi, so that a =
∩

qi. A primary decomposition is

assumed irredundant, i.e., ∀i,
qi ̸⊃

∩
j ̸=i

qj .

This means ∃f ∈
∩
j ̸=i qj \ qi, i.e., the “function” f is identically 0 on the subschemes Wj ,

j ̸= i, but it is not 0 at the generic point of Wi, i.e., in Owi,Wi . Therefore as a section of OZ ,
Supp(f) =Wi. On the other hand, we get natural maps:

R/a ↪→
t⊕
i=1

R/qi ↪→
t⊕
i=1

Rpi/qiRpi

hence

OZ ↪→
t⊕
i=1

OWi ↪→
t⊕
i=1

(constant sheaf on Wi with value Owi,Wi)

from which it follows readily that the support of any section of OZ is a union of variousWi’s. □

For instance, in the example R = k[x, y], a = (x2, xy),

(Supp in R/a)(y) = whole subset V (a)

(Supp in R/a)(x) = embedded pointV (x, y).

In order to globalize the theory of primary decompositions, or to analyze the uniqueness

properties that it has, the following result is very useful:

1In fact, if s ∈ M , then R/Ann(s) ↪→ M by multiplication by s, hence Ass(R/Ann(s)) ⊂ Ass(M); if

Supp(s) = S1 ∪ · · · ∪ Sk, Si irreducible and Si ̸⊂ Sj , then Si = V (pi), and pi are the minimal primes in

Supp(R/Ann(s)), hence by his [27, Chapter 4, §1, Proposition 7], are in Ass(R/Ann(s)). This gives our assertion

(i). Conversely, for all p ∈ Ass(M), there is an s ∈ M with Ann(s) = p, hence Supp(s) = V (p). Adding these, we

get our assertion (ii).
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Proposition 3.11. If X is locally noetherian2 and Y ⊂ X is a locally closed subscheme,

then there is a smallest closed subscheme Y ⊂ X containing Y as an open subscheme, called the

scheme-theoretic closure of Y . The ideal sheaf I defining Y is given by:

I(U) = Ker[OX(U) −→ OY (Y ∩ U)],

and the underlying point set of Y is the topological closure of Y . Y can be characterized as

the unique closed subscheme of X containing Y as an open subscheme such that Ass(OY ) =

Ass(OY ).

Proof. Everything is easy except the fact that I is quasi-coherent. To check this, it suffices

to show that if U = SpecR is an affine in X and Uf = SpecRf is a distinguished affine subset,

then:

Ker(R→ OY (Y ∩ U)) ·Rf = Ker(Rf → OY (Y ∩ Uf ))

because then K̃er(R → OY (Y ∩ U)) agrees with I on all Uf ’s, hence agrees with I on U .

Since “ ⊂ ” is obvious, we mush check that if a ∈ R and a/fn = 0 in OY (Y ∩ Uf ), then ∃m,

fm(a/fn) = 0 in OY (Y ∩U). Now U is noetherian so Y ∩U is quasi-compact, hence is covered

by a finite number of affines Vi. For each i,

a/fn = 0 in OY ((Vi)f ) =⇒ ∃mi, f
mi(a/fn) = 0 in OY (Vi)

and taking m = max(mi)

=⇒ ∃m, fm(a/fn) = 0 in OY (Y ∩ U).

□

Remark. (Added in publication) As noted in the footnote to Proposition 3.11, if f : X → Y

is a quasi-compact morphism of schemes (cf. Definition 4.9 below), then Ker (OY → f∗OX) is a
quasi-coherent sheaf of ideals of OY . This ideal defines a closed subscheme of Y , which is called

the scheme-theoretic closure of the image of f .

Here is a sketch of the proof: We may assume Y to be affine. Let {Ui | i ∈ I} be an open

affine cover of X indexed by a finite set I. Let ιi : Ui ↪→ X be the inclusion morphism. Applying

f∗ to the injection

OX −→
∏
i∈I

ιi∗ι
∗
iOX ,

we get an injection

f∗OX −→
∏
i∈I

(f ◦ ιi)∗OUi .

Hence

Ker(OY → f∗OX) = Ker

(
OY →

∏
i∈I

(f ◦ ιi)∗OUi

)
.

Note that
∏
i∈I(f ◦ ιi)∗OUi is a quasi-coherent OY -module since each Ui is affine, hence the

kernel of the above map is quasi-coherent.

We can apply Proposition 3.11 to globalize Example 3.8:

Theorem 3.12. Let X be a noetherian scheme, let Z be a subscheme and let Ass(OZ) =

{w1, . . . , wt}. Then there exist closed subschemes W1, . . . ,Wt ⊂ Z such that

2Actually all we need here is that the inclusion of Y in X is a quasi-compact morphism. (cf. Definition 4.9

below.)
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a) Wi is irreducible with generic point wi and for all open Ui ⊂Wi,

OWi(Ui) −→ Owi,Wi

is injective (i.e., Ass(OWi) = {wi}).
b) Z is the scheme-theoretic union of the Wi’s, i.e., set-theoretically Z = W1 ∪ · · · ∪Wt

and

OZ −→
t⊕
i=1

OWi

is surjective.

Proof. For each i, let Ui = SpecRi be an affine neighborhood of wi, let Z∩Ui = SpecRi/ai,

let wi = [pi] and let qi be a pi-primary component of ai. Let

Wi = scheme-theoretic closure of SpecRi/qi in X.

(a) and (b) are easily checked. □

Proposition 3.11 can also be used to strip off various associated points from a subscheme.

For instance, returning to Example 3.8:

SpecR ⊃ Z =W1 ∪ · · · ∪Wt, a primary decomposition,

and applying the proposition with X = SpecR, Y = Z∩U where U is an open subset of SpecR,

we get

Z ∩ U =
∪

i such that
Wi∩U ̸=∅

Wi,

and hence these unions of the Wi’s are schemes independent of the primary decomposition

chosen.

Two last results are often handy:

Proposition 3.13. Let X be a scheme and Z ⊂ X a closed subset. Then among all closed

subschemes of X with support Z, there is a unique one (Z,OX/I) which is reduced. It is a

subscheme of any other subscheme (Z,OX/I ′) with support Z, i.e., I ⊃ I ′.

Proof. In fact define I by

I(U) = {s ∈ OX(U) | s(x) = 0, ∀x ∈ U ∩ Z} .

The rest of the proof is left to the reader. □

Proposition 3.14. Let f : X → Y and g : Y → Z be two morphisms of schemes. If g ◦ f is

an immersion, then f is an immersion.

Proof. The morphism f is the composite of the graph Γf : X → X ×Z Y and the second

projection p2 : X ×Z Y → Y . We know that Γf is an immersion for every morphism f (cf.

Proposition 4.1 below), while p2 is an immersion since it is a base extension of the immersion

g ◦ f : X → Z. □

(Added in publication) The corresponding statement for closed immersions is false as was

pointed out by Chai. As an example, let Y = U1 ∪ U2 be “A1 with duplicated origin” as in

Example 4.4 below. Let X = U1 = Spec k[T1] and Z = Spec k[T ], with f the inclusion of U1 to

Y and with g : Y → Z the natural projection. Clearly, g ◦ f is a closed immersion (in fact an

isomorphism), but f is not a closed immersion, since U1 is not closed in Y .
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4. Separated schemes

In the theory of topological spaces, the concept of a Hausdorff space plays an important role.

Recall that a topological space X is called Hausdorff if for any two distinct points x, y ∈ X,

there are disjoint open sets U, V ⊂ X such that x ∈ U , y ∈ V . This very rarely holds in the

Zariski topology so it might seem as if the Hausdorff axiom has no relevance among schemes.

But if the product topology is given to the set-theoretic product X × X, then the Hausdorff

axiom for X is equivalent to the diagonal ∆ ⊂ X ×X being closed. In the category of schemes,

the product scheme X × X is neither set-theoretically nor topologically the simple Cartesian

product of X by itself so the closedness of the diagonal gives a way to interpret the Hausdorff

property for schemes. The most striking way to introduce this property is by proving a theorem

that asserts the equivalence of a large number of properties of X, one of them being that the

diagonal ∆ is closed in X ×X.

Before giving this theorem, we need some preliminaries. We first introduce the concept of

the graph of a morphism. Say we have an S-morphism f of two schemes X, Y over S, i.e., a

diagram:

X
f

//

p !!BBBB Y

q~~|||

S

Then f induces a section of the projection:

X ×S Y
p1

��

X

Γf

ZZ

defined by Γf = (1X , f). I claim that Γf is an immersion. In fact, choose affine coverings {Ui}
of X, {Vi} of Y and {Wi} of S such that f(Ui) ⊂ Vi and q(Vi) ⊂Wi. Then

Γ−1
f (Ui ×S Vi) = Ui

and if Ui = SpecRi, Vi = SpecSi, Wi = SpecTi, then

res Γf : Ui −→ Ui ×S Vi

corresponds to the ring map

Ri ⊗Ti Si −→ Ri

a⊗ b 7−→ a · f∗b

which is surjective. Therefore if U =
∪
i(Ui ×S Vi), then Γf factors

X ↪→
closed

immersion

U ⊂
open

subscheme

X ×S Y.

This proves:

Proposition 4.1. If X and Y are schemes over S and f : X → Y is an S-morphism, then

Γf = (1X , f) : X → X ×S Y is an immersion.

The simplest example of Γf arises when X = Y and f = 1X . Taking S = SpecZ, we get the
diagonal map

δ = (1X , 1X) : X −→ X ×X.
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U1

U2

P1

P2

T1 = 0

T2 = 0

Figure II.5. A1 with “duplicate origin”

We have proven that if {Ui} is an open cover of X, then δ is an isomorphism of X with a closed

subscheme δ(X) of U ⊂ X ×X, where

U =
∪
i

(Ui × Ui).

But is δ(X) closed in X ×X? This leads to:

Proposition 4.2. Let X be a scheme. The following properties are equivalent:

i) δ(X) is closed in X ×X.

ii) There is an open affine covering {Ui} of X such that for all i, j, Ui ∩ Uj is affine and

OX(Ui), OX(Uj) generate OX(Ui ∩ Uj).
iii) For all open affines U, V ⊂ X, U∩V is affine and OX(U), OX(V ) generate OX(U∩V ).

Proof. (i) =⇒ (iii): Given open affines U , V , note that U × V is an open affine subset of

X ×X such that OX×X(U × V ) is OX(U)⊗OX(V ). If δ(X) is closed in X ×X, δ is a closed

immersion. Therefore δ−1(U × V ) is affine and its ring is generated by OX×X(U × V ). But

δ−1(U × V ) = U ∩ V so this proves (iii).

(iii) =⇒ (ii) is obvious.

(ii) =⇒ (i): Note that if {Ui} is an open affine covering of X, then {Ui × Uj} is an open

affine covering of X × X. Since δ−1(Ui × Uj) = Ui ∩ Uj , (ii) is exactly the hypothesis (∗) of

Corollary 3.5. The corollary says that then δ is a closed immersion, hence (i) holds. □

Definition 4.3. X is a separated scheme if the equivalent properties of Proposition 4.2

hold.

Here’s the simplest example of a non-separated scheme X:

Example 4.4. Take X = U1 ∪ U2 where

U1 = Spec k[T1]

U2 = Spec k[T2]

and where U1 and U2 are identified along the open sets:

(U1)T1 = Spec k[T1, T
−1
1 ]

(U2)T2 = Spec k[T2, T
−1
2 ]

by the isomorphism

i : Spec k[T1, T
−1
1 ]

∼−→ Spec k[T2, T
−1
2 ]

i(T1) = T2.

This “looks” like Figure II.5, i.e., it is A1
k except that the origin occurs twice!

The same construction with the real line gives a simple non-Hausdorff one-dimensional man-

ifold. It is easy to see δ(X) is not closed in U1 × U2 or U2 × U1 because (P1, P2) ∈ U1 × U2 and

(P2, P1) ∈ U2 × U1 will be in its closure.
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Once a scheme is known to be separated, many other intuitively reasonable things follow.

For example:

Proposition 4.5. Let f : X → Y be a morphism and assume Y is separated. Then

Γf : X −→ X × Y

is a closed immersion. Hence for all U ⊂ X, V ⊂ Y affine, U ∩ f−1(V ) is affine and its ring is

generated by OX(U) and OY (V ).

Proof. Consider the diagram:

X
Γf

//

f

��

X × Y
(f×1Y )
��

Y
δY

// Y × Y

It is easy to see that this diagram makes X into the fibre product of Y and X × Y over Y × Y ,

so the proposition follows from the following useful result: □

Proposition 4.6. If X → S is a closed immersion and Y → S is any morphism, then

X ×S Y → Y is a closed immersion.

Proof. Follows from Corollary 3.5 and (using the definition of fibre product) the fact that

(A/I)⊗A B ∼= B/I ·B. □

Before giving another useful consequence of separation, recall from §I.6, that two morphisms

Spec k
f1−→−→
f2

X

are equal if and only if f1(Spec k) = f2(Spec k) — call this point x — and the induced maps

f∗1 : k(x) −→ k

f∗2 : k(x) −→ k

are equal. Now given two morphisms

Z
f1−→−→
f2

X

one can consider the “subset of Z where f1 = f2”: the way to define this is:

Eq(f1, f2) =

{
z ∈ Z

∣∣∣∣ f1(z) = f2(z) and the induced maps

f∗1 , f
∗
2 : k(f1(z))→ k(z) are equal

}
.

Using this concept, we have:

Proposition 4.7. Given two morphisms f1, f2 : Z → X where X is separated, Eq(f1, f2) is

a closed subset of Z.

Proof. f1 and f2 define

(f1, f2) : Z −→ X ×X
and it is straightforward to check that Eq(f1, f2) = (f1, f2)

−1(δ(X)). □

Looking at reduced and irreducible separated schemes, another useful perspective is that

such schemes are characterized by the set of their affine rings, i.e., the glueing need not be given

explicitly. The precise statement is this:
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Proposition 4.8. Let X and Y be two reduced and irreducible separated schemes with the

same function field K = R(X) = R(Y ). Suppose {Ui} and {Vi} are affine open coverings of X

and Y such that for all i, OX(Ui) = OY (Vi) as subrings of K. Then X ∼= Y .

Proof. Left to the reader. □

Another important consequence of separation is the quasi-coherence of direct images. More

precisely:

Definition 4.9. A morphism f : X → Y of schemes is quasi-compact if for all U ⊂ Y quasi-

compact, f−1U is quasi-compact. Equivalently, for all affine open U ⊂ Y , f−1U is covered by a

finite set of affine open subsets of X.

Proposition 4.10. Let f : X → Y be a quasi-compact morphism of separated schemes and

let F be a quasi-coherent sheaf on X. Then f∗F is quasi-coherent.

Proof. The assertion is local on Y so we may assume Y = SpecR. Let {Ui} be a finite

affine open cover of X and let fi : Ui → Y be the restriction of f to Ui. Since X is separated,

Ui ∩Uj is also affine. Let fij : Ui ∩Uj → Y be the restriction of f to Ui ∩Uj . Then consider the

homomorphisms:

0 −→ f∗F
α−→
∏
i

fi,∗F
β−→
∏
j,k

fjk,∗F

where α is just restriction and β is the difference of restrictions, i.e.,

β({si})jk = res(sj)− res(sk).

By the sheaf property of F and the definition of direct images, this sequence is exact! But fi
and fjk are affine morphisms by Proposition 4.5 and the products are finite so the second and

third sheaves are quasi-coherent by Lemma (I.5.12). Therefore f∗F is quasi-coherent. □

Remark. (Added in publication) A morphism f : X → Y of schemes is said to be separated

(resp. quasi-separated) if the diagonal morphism

∆X/Y : X −→ X ×Y X

is a closed immersion (resp. quasi-compact).

Proposition 4.10 above remains valid in the following form:

Let f : X → Y be a quasi-compact and quasi-separated morphism of schemes

and let F be a quasi-coherent sheaf on X. Then f∗F is quasi-coherent.

The proof is essentially the same.

From this point on a blancket assumption is made that all schemes are separated over

SpecZ, which implies that all morphisms are separated. Without this blancket assumption,

some adjustment may be needed in subsequent materials. For instance, in Lemma III,4.1 below,

(i) holds for any quasi-compact scheme X, but in (ii) one needs to assume that X is quasi-

separated over SpecZ.

(∗∗) In the rest of this book, we will always assume that all our

schemes are separated, hence all morphisms are separated. (∗∗)
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5. ProjR

The essential idea behind the construction of Pn can be neatly generalized. Let

R = R0 ⊕R1 ⊕R2 ⊕ · · ·

be any graded ring (i.e., Ri ·Rj ⊂ Ri+j), and let

R+ =

∞⊕
i=1

Ri

be the ideal of elements of positive degree. We define a scheme ProjR as follows:

(I) As a point set:

ProjR =

{
p ⊂ R

∣∣∣∣ p a homogeneous prime ideal

(i.e., p =
⊕∞

i=0 p ∩Ri) and p ̸⊃ R+

}
.

(II) As a topological space:

for all subsets S ⊂ R, let V (S) = {[p] ∈ ProjR | S ⊂ p}.

If a is the homogeneous ideal generated by the homogeneous parts of all f ∈ S, then

V (S) = V (a).

It follows easily that the V (S) are the closed sets of a topology and that the “distin-

guished open subsets”

(ProjR)f = {[p] ∈ ProjR | f ̸∈ p}, where f ∈ Rk, some k ≥ 1

form a basis of open sets.

[Problem for the reader: check that if f ∈ R0, then

{[p] ∈ ProjR | f ̸∈ p} =
∪
k≥1

∪
g∈Rk

(ProjR)fg.]

(III) The structure sheaf:

(∗) for all f ∈ Rk, k ≥ 1, let OProjR((ProjR)f ) = (Rf )0,

where (Rf )0 = degree 0 component of the localization Rf . This definition is justified

in a manner quite parallel to the construction of Spec, resting in this case however on:

Proposition 5.1. Let f , {gi}i∈S be homogeneous elements of R, with deg f > 0. Then[
(ProjR)f =

∪
i∈S

(ProjR)gi

]
⇐⇒

[
fn =

∑
aigi, some n ≥ 1, some ai ∈ R

]
.

Proof. The left hand side means

∀[p] ∈ ProjR, f ̸∈ p =⇒ ∃i such that gi ̸∈ p

which is equivalent to saying

f ∈
{∩

p

∣∣∣∣ p homogeneous prime ideal such that

p ⊃
∑
giR but p ̸⊃ R+

}
.

Since p ⊃ R+ implies f ∈ p, we can ignore the second restriction on p in the braces. and what

we need is:
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Lemma 5.2. If a ⊂ R is a homogeneous ideal, then
√
a =

∩
p homogeneous

p⊃a

p.

Proof of Lemma 5.2. Standard, i.e., if f ̸∈
√
a, choose a homogeneous ideal q ⊃ a maxi-

mal among those such that fn ̸∈ q, all n ≥ 1. Check that q is prime. □

□

Corollary 5.3. If deg f, deg g > 0, then

(ProjR)f ⊂ (ProjR)g =⇒ fn = a · g, some n, a

=⇒ ∃ canonical map (Rg)0 → (Rf )0.

Corollary 5.4. If deg gi > 0, ∀i ∈ S, then[
ProjR =

∪
i∈S

(ProjR)gi

]
⇐⇒

[
R+ =

√∑
giR.

]
We leave to the reader the details in checking that there is a unique sheaf OProjR satisfying

(∗) and with restriction maps coming from Corollary 5.3. The fact that we get a scheme in this

way is a consequence of:

Proposition 5.5. Let f ∈ Rk, k ≥ 1. Then there is a canonical isomorphism:

((ProjR)f , resOProjR) ∼=
(
Spec ((Rf )0) ,OSpec((Rf )0)

)
.

Proof. For all homogeneous primes p ⊂ R such that f ̸∈ p, let

p′ = {a/fn | a ∈ p ∩Rnk } = p ·Rf ∩ (Rf )0.

This is a prime ideal in (Rf )0. Conversely, if p
′ ⊂ (Rf )0 is prime, let

p =

∞⊕
n=0

{
a ∈ Rn

∣∣∣ ak/fn ∈ p′
}
.

It follows readily that there are inverse maps which set up the set-theoretic isomorphism (ProjR)f ∼=
Spec(Rf )0. It is straightforward to check that it is a homeomorphism and that the two structure

sheaves are canonically isomorphic on corresponding distinguished open sets. □

Moreover, just as with Spec, the construction of the structure sheaf carries over to modules

too. In this case, for every graded R-moduleM , we can define a quasi-coherent sheaf of OProj(R)-

modules M̃ by the requirement:

M̃ ((ProjR)f ) = (Mf )0.

We give next a list of fairly straightforward properties of the operations Proj and of ˜:

a) The homomorphisms R0 → (Rf )0 for all f ∈ Rk, all k ≥ 1 induce a morphism

Proj(R) −→ Spec(R0).

b) If R is a finitely generated R0-algebra, then Proj(R) is of finite type over Spec(R0).

c) If S0 is an R0-algebra, then

Proj(R⊗R0 S0)
∼= Proj(R)×SpecR0 SpecS0.

d) If d ≥ 1 and R⟨d⟩ =
⊕∞

k=0Rdk, then ProjR ∼= ProjR⟨d⟩.
[Check that for all f ∈ Rk, k ≥ 1, the rings (Rf )0 and (R⟨d⟩fd)0 are canonically

isomorphic; this induces isomorphisms (ProjR)f ∼= (ProjR⟨d⟩)fd ,. . . .]
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e) Because of (c), it is possible to globalize Proj just as Spec was globalized in §I.7. If X
is a scheme, and

R0 ⊕R1 ⊕R2 ⊕ · · ·

is a quasi-coherent graded sheaf of OX -algebras where each Ri is quasi-coherent, then
one can construct a scheme over X:

π : ProjX(
⊕
Ri) −→ X

as follows: for all U ⊂ X open affine, take the scheme Proj(
⊕
Ri(U)), which lies over

SpecOX(U), i.e., U . For any two open affines U1, U2 ⊂ X construct an isomorphism

ϕ12:

Proj(
⊕
Ri(U))

π1
// U1

π−1
1 (U1 ∩ U2)

ϕ12 ≈

��

**UUUUUUU

∪

U1 ∩ U2

∪

∩π−1
2 (U1 ∩ U2)

44iiiiiii

∩

Proj(
⊕
Ri(U2))

π2
// U2

by covering U1 ∩ U2 by open affine U3, and noting that:

π−1
1 (U3) ∼= Proj

(⊕
Ri(U1)⊗OX(U1) OX(U3)

)
∼= Proj

(⊕
Ri(U3)

)
∼= Proj

(⊕
Ri(U2)⊗OX(U2) OX(U3)

)
∼= π−1

2 (U3).

f) If a ⊂ R is a homogeneous ideal, then there is a canonical closed immersion:

ProjR/a ↪→ ProjR.

A somewhat harder result is the converse in the case when R is finitely generated over

R0: that every closed subscheme Z of ProjR is isomorphic to ProjR/a for some a. The

proof uses the remark that if f1, f2, g ∈ Rn and g/f1 vanishes on Z ∩ (ProjR)f1 then

for some k, gfk1 /f
k+1
2 vanishes on Z ∩ (ProjR)f2 .

g) ProjR is separated.

Proof. Use Criterion (ii) of Proposition 4.2, applying it to a covering of ProjR

by distinguished affines. □

h) The map taking R to ProjR is not a functor but it does have a partial functoriality.

To be precise, let R and R′ be two graded rings and let

ϕ : R −→ R′

be a homomorphism such that for some d > 0,

ϕ(Rn) ⊂ R′
nd, all n.
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(Usually d = 1 but this isn’t necessary.) Let

R+ =
∑
n>0

Rn

a = ϕ(R+) ·R′.

Then ϕ induces a natural map:

f : ProjR′ \ V (a) −→ ProjR.

In fact,

ProjR′ \ V (a) =
∪
n≥1

∪
a∈Rn

(ProjR′)ϕa.

Define the restriction of f to (ProjR′)ϕa to be the morphism from (ProjR′)ϕa to

(ProjR)a induced by the ring homomorphism

ϕ : (Ra)0 −→ (R′
ϕa)0

ϕ

(
b

al

)
=

ϕ(b)

ϕ(a)l
, b ∈ Rnl.

It is easy to check that these morphisms agree on intersections hence glue together to

the morphism f .

i) If R and R′ are two graded rings with the same degree 0 piece: R0 = R′
0, then

ProjR×SpecR0 ProjR
′ = ProjR′′

where

R′′ =

∞⊕
n=0

Rn ⊗R0 R
′
n.

Proof. This follows easily from noting that for all f ∈ Rn, f ′ ∈ R′
n,

(Rf )0 ⊗R0 (R
′
f ′)0
∼= (R′′

f⊗f ′)0

hence

(ProjR)f ×SpecR0 (ProjR
′)f ′ ∼= (ProjR′′)f⊗f ′

and glueing. □

j) M 7−→ M̃ is an exact functor; more precisely ∀ϕ : M → N preserving degrees, we get

an OProjR-homomorphism ϕ̃ : M̃ → Ñ and if

0 −→M
ϕ−→ N

ψ−→ P −→ 0

is a sequence with ψ ◦ ϕ = 0 and such that

0 −→Mk −→ Nk −→ Pk −→ 0

is exact if k ≫ 0, then

0 −→ M̃ −→ Ñ −→ P̃ −→ 0

is exact.

k) There is a natural map:

M0 −→ Γ(ProjR, M̃)

given by

m 7−→ element m/1 ∈ (Mf )0 = M̃((ProjR)f ).
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There is a natural relationship between Spec and Proj which generalizes the fact that or-

dinary complex projective space Pn is the quotient of Cn+1 \ (0) by homotheties. If R is any

graded ring, let

R+ =
∑
n>0

Rn.

Then there is a canonical morphism

π : SpecR \ V (R+) −→ ProjR.

In fact, for all n ≥ 1, a ∈ Rn, the restriction of π to (SpecR)a will be the morphism

(SpecR)a //

≀
(ProjR)a

≀

SpecRa Spec(Ra)0

given by the inclusion of (Ra)0 in Rn.

The most important Proj is:

Definition 5.6. PnR = ProjR[X0, . . . , Xn].

Note that since X0, . . . , Xn generate the ideal of elements of positive degree, this Proj is

covered by the distinguished affines (ProjR[X0, . . . , Xn])Xi , i.e., by the n+ 1 copies of AnR:

Ui = SpecR

[
X0

Xi
, . . . ,

Xn

Xi

]
, 0 ≤ i ≤ n

glued in the usual way. Moreover if R =
⊕∞

i=0Ri is any graded ring generated over R0 by ele-

ments of R1 and with R1 finitely generated as R0-module, then R is a quotient of R0[X0, . . . , Xn]

for some n: just choose generators a0, . . . , an of R1 and define

R0[X0, . . . , Xn] −→ R

by Xi 7−→ ai.

Therefore by (f), ProjR is a closed subscheme of PnR0
.

More generally, let X be any scheme and let F be a finitely generated quasi-coherent sheaf

of OX -modules. Then we can construct symmetric powers Symmn(F) by

Symmn(F)(U) = Symmn(F(U)), all affine open U

and hence a quasi-coherent graded OX -algebra:

Symm∗F = OX ⊕ (F)⊕ (Symm2F)⊕ (Symm3F)⊕ · · · .

Definition 5.7. PX(F) = ProjX(Symm∗F).

Note that by (f) above, if R is any quasi-coherent graded OX -algebra with

R0 = OX
R1 finitely generated

Rn generated by R1, n ≥ 2,

then we get a surjection

Symm∗R1 ↠ R
hence a closed immersion

ProjX(R) ↪→ PX(R1).

This motivates:

Definition 5.8. Let f : X → Y be a morphism of schemes.
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a) f is projective if X ∼= ProjY (
⊕
Ri), some quasi-coherent graded OY -algebra

⊕
Ri but

such that R0 = OY , R1 finitely generated as OY -module and R1, multiplied by itself

n times generates Rn, n ≥ 2. Equivalently ∃ a diagram:

X
� �

closed
immersion

//

f $$IIIIII PY (F)

xxqqqqqqq

Y

where F is quasi-coherent, finitely generated.

b) f is quasi-projective3 if ∃ a diagram:

X
� �

open
//

f $$JJJJJJ X ′

f ′yytttttt

Y

where f ′ is projective.

Note that if Y = SpecR, say, then

f projective⇐⇒ X is a closed subscheme of PnR, some n

f quasi-projective⇐⇒ X is a subscheme of PnR, some n.

We can now make the final link between classical geometry and the theory of schemes:

when R = C it is clear that PnR becomes the scheme that we associated earlier to the classical

variety Pn(C). Moreover the reduced and irreducible closed subschemes of PnC are precisely the

schemes Proj(C[X0, . . . , Xn]/p), which are the schemes that we associated earlier to the classical

varieties V (p) ⊂ Pn(C). In short, “complex projective varieties” as in Part I [87] define “complex

projective varieties” in the sense of Definition 5.8, and, up to isomorphism, they all arise in this

way.

Note too that for PnR, the realization of PnR ×SpecR PmR as a Proj in (i) above is identical to

the Segre embedding studied in Part I [87]. In fact, the construction of (i) shows:

PnR ×SpecR PmR = ProjR[X0, . . . , Xn]×SpecR ProjR[Y0, . . . , Ym]

∼= Proj

[
subring of R[X]⊗R R[Y ] generated by

polynomials of degrees (k, k), some k

]
∼= Proj

[
subring of R[X0, . . . , Xn, Y0, . . . , Ym]

generated by elements XiYj

]
.

Let Uij , 0 ≤ i ≤ n, 0 ≤ j ≤ m, be new indeterminates. Then for some homogeneous prime ideal

p ⊂ R[U ],

R[U00, . . . , Unm]/p ∼=
[
subring of R[X0, . . . , Ym]

generated by elements XiYj

]
via Uij 7−→ XiYj .

Thus PnR ×SpecR PmR is isomorphic to a closed subscheme of Pnm+n+m
R . This is clearly the Segre

embedding from a new angle:

The really important property of Proj is that the fundamental theorem of elimination theory

(Part I [87, Chapter 2]) can be generalized to it.

3Grothendieck’s definition agrees with this only when Y is quasi-compact. I made the above definition only

to avoid complications and have no idea which works better over non-quasi-compact bases.
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Theorem 5.9 (Elimination theory for Proj). If R is a finitely generated R0-algebra, then

the map

π : ProjR −→ SpecR0

is closed.

Proof. Every closed subset of ProjR is isomorphic to V (a) for some homogeneous ideal

a ⊂ R+. But V (a) ∼= ProjR/a, so to show that π(V (a)) is closed in SpecR0, we may as well

replace R by R/a to start with and reduce the theorem to simply showing that Imageπ is closed.

Also, we may reduce the theorem to the case when R is generated over R0 by elements of degree

1. This follows because of ProjR ∼= ProjR⟨d⟩ and the amusing exercise:

Lemma 5.10. Let R be a graded ring, finitely generated over R0. Then for some d, R⟨d⟩ is
generated over R0 by R⟨d⟩1 = Rd.

(Proof left to the reader).

After these reductions, take p0 ⊂ R0 a prime ideal. Then

[p0] ̸∈ Imageπ ⇐⇒
[
̸ ∃ homogeneous prime p ⊂ R such

that p ∩R0 = p0, p ̸⊃ R+

]
.

Let R′ = R⊗R0 (R0)p0 . Then homogeneous primes p in R such that p∩R0 = p0 are in one-to-one

correspondence with homogeneous primes p′ in R′ such that p′ ⊃ p0 ·R′. Therefore

[p0] ̸∈ Imageπ ⇐⇒
[
̸ ∃ homogeneous prime p′ ⊂ R′ such

that p′ ⊃ p0 ·R′ and p′ ̸⊃ R′
+

]
⇐⇒

√
p0 ·R′ ⊃ R′

+

⇐⇒ ∃n, p0 ·R′ ⊃ (R′
+)

n (since R+ is a finitely generated ideal)

⇐⇒ ∃n, p0 ·R′
n ⊃ R′

n (since R+ is generated by R1)

⇐⇒

 ∃n, R′
n = (0)

(by Nakayama’s lemma since R′
n

is a finitely generated R′-module)

 .
Now for any finitely generated R0-module M ,

Mp0 = (0) =⇒Mf = (0), some f ∈ R0 \ p0,

hence

{[p0] ∈ SpecR0 |Mp0 = (0)}

is the maximal open set of SpecR0 on which M̃ is trivial, i.e.,

Supp M̃ = {[p0] ∈ SpecR0 |Mp0 ̸= (0)}

and this is a closed set. What we have proven is:

[p0] ∈ Imageπ ⇐⇒ ∀n, Rn ⊗R0 (R0)p0 ̸= (0)

⇐⇒ [p0] ∈
∞∩
n=1

Supp R̃n.

Thus Imageπ is closed. □
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6. Proper morphisms

Theorem 5.9 motivates one of the main non-trivial definitions in scheme-theory:

Definition 6.1. Let f : X → Y be a morphism of schemes. Then f is proper4 if

a) f is of finite type,

b) for all Y ′ → Y , the canonical map

X ×Y Y ′ −→ Y ′

is closed.

When Y = Spec k, X is complete over k if f : X → Spec(k) is proper.

Since “proper” is defined by such an elementary requirement, it is easy to deduce several

general properties:

Suppose we are given X
f−→ Y

g−→ Z. Then

i) f , g proper =⇒ g ◦ f proper

ii) g ◦ f proper =⇒ f proper

iii)

g ◦ f proper

f surjective

g of finite type

 =⇒ g proper

iv) Proper morphisms are “maximal” in the following sense: given

X

f
��

////// ⊂ X ′

f ′
��������

Y

where X is open and dense in X ′,

f proper =⇒ X = X ′.

For instance, take (ii) which is perhaps subtler. One notes that f can be gotten as a composition:

X
� � (1,f) // X ×Z Y

p1

��

p2
// Y

g

��

X
g◦f

// Z

where (1, f) is a closed immersion.

Using the concept proper, the Elimination Theorem (Theorem 5.9) now reads:

Corollary 6.2. A projective morphism f : X → Y is proper.

Proof. Note that f : X → Y is closed if there exists an open cover {Ui} of Y such that

f−1Ui → Ui is closed. Therefore Corollary 6.2 follows from Theorem 5.9, the definition of ProjY
and Property (c) of Proj. □

4(Added in publication) According to the standard definition, a morphism f : X → Y is proper if it is

separated, (a) of finite type and (b) universally closed. Here both X and Y are assumed to be separated over Z
by the convention at the end of §4. Hence f is automatically separated.
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On the other hand, “projective” is the kind of explicit constructive property that gives one

a very powerful hold on such morphisms, whereas “proper” is just an abstraction of the main

qualitative property that projective morphisms possess. Now there exist varieties over k that

are complete but not projective—even non-singular complex varieties—so proper is certainly

weaker than projective. But what makes proper a workable concept is that it is not too much

weaker than projective because of the following:

Theorem 6.3 (“Chow’s lemma”). Let f : X → Y be a morphism of finite type between

noetherian schemes. Then there exists

a) a surjective projective morphism π : X ′ → X, “birational” in the sense that there is an

open set U such that:

π−1(U)

isomorphism ≈

��

⊂
dense X ′

π

��

U ⊂
dense X,

b) a factorization of f ◦ π:

X f

&&MMMMMMM

X ′

π
88pppppp

i &&MMMMM Y

Pn × Y
p2

88rrrrrr

where i is an immersion, so that f ◦ π is quasi-projective.

If f is proper, then i is a closed immersion, so we have π and f ◦ π projective, i.e., f is a

“factor” of projective morphisms!

Proof. We do this in several steps:

Step (I). ∃ a finite affine covering {Ui} of X such that
∩
Ui is dense in X.

Proof. Let X = X1 ∪ · · · ∪ Xt be the components of X and let {Vi} be any finite affine

covering of X. For all s, 1 ≤ s ≤ t, let X◦
s be an affine open subset of Xs such that

a) X◦
s ∩Xr = ∅ if r ̸= s

b) X◦
s ⊂ Vi whenever Xs ∩ Vi ̸= ∅.

Then define Ui to be the union of Vi and those X◦
s such that Vi ∩Xs = ∅. Since Vi and all these

X◦
s are disjoint, Ui is affine too. Moreover

∩
Ui ⊃

∪
X◦
s , hence is dense in X. □

Step (II). For each i, res f : Ui → Y can be factored

Ui ↪→
Ii

Aνi × Y −→
p2

Y

where Ii is a closed immersion.

Proof. Let {Vj} be an affine covering of Y . Then Ui ∩ f−1(Vj) is affine and its ring is

generated by OX(Ui) ⊗ OY (Vj). Let f1, . . . , fνi ∈ OX(Ui) be enough elements to generate the

affine rings of Ui ∩ f−1(Vj) over OY (Vj) for all j. Define Ii,1 : Ui → Aνi by I∗i,1(Xk) = fk and

define Ii = (Ii,1, res f). One sees easily that Ii is a closed immersion. □

Step (III). Consider the immersions:

I ′i : Ui ↪→ Pνi × Y
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gotten by composing Ii with the usual inclusion of Aνi in Pνi . Let Ui be the scheme-theoretic

closure:

Ui ⊂
open
dense

Ui −→
closed

immersion

Pνi × Y.

Let U =
∩N
i=1 Ui. Consider the immersion:

U ↪→ Pν1 × · · · × PνN × Y

given by (I ′1, . . . , I
′
N ) and the inclusion of U in each Ui. Let U be the scheme-theoretic closure

of the image here. Via the Segre embedding, we get:

U
� �

open
dense

//

f

%%LLLLLLLLLLLLLLLL U
� �

closed
immersion

//

��

Pn × Y

p2

wwppppppppppppppppp

Y

Note that by projecting Pν1 × · · · × PνN on its i-th factor, we get morphisms:

U
� �

open
dense

// U

pi
��

∩

Ui
� �

open
dense

// Ui

Define X ′ to be the open subscheme of U which is the union of the open subschemes p−1
i (Ui).

Finally, define π : X ′ → X by:

X ′ π
//____ X

∪ ∪

p−1
i Ui

pi
// Ui

Note that this is OK because on the open set U ⊂
∩
p−1
i Ui, all these morphisms pi equal the

inclusion morphism U ↪→ X, and hence pi = pj on p
−1
i Ui∩p−1

j Uj since U is scheme-theoretically

dense in p−1
i Ui ∩ p−1

j Uj .

Step (IV). π : X ′ → X is projective. In fact note that pi : U → Ui is the restriction of

the projection Pν1 × · · · × Pνn × Y → Pνi × Y to U , hence it is projective, hence it is proper.

Therefore res pi : p
−1
i (Ui)→ Ui is proper. We are now in the abstract situation:

Lemma 6.4. If π : X → Y is a morphism, Ui ⊂ X, Vi ⊂ Y open dense sets covering X and

Y such that π(Ui) ⊂ Vi, resπ : Ui → Vi proper, then π
−1(Vi) = Ui and π is proper.

(Proof left to the reader.)

But now consider the morphism

j : X ′ −→ Pn ×X

induced by a) X ′ ⊂ U ↪→ Pn × Y p1−→ Pn and b) π : X ′ → X. It is an immersion since the

composite X ′ j−→ Pn ×X 1×f−−→ Pn × Y is an immersion. Since π : X ′ → X is proper, j is proper

too, hence j(X ′) is closed, hence j is a closed immersion. Thus π is projective. Finally, if f is

proper too, then f ◦ π : X ′ → Y is proper, hence the immersion X ′ → Pn × Y is proper, hence

it is a closed immersion, hence f ◦ π is projective. □
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Interestingly, when this result first appeared in the context of varieties, it was considered

quite clear and straightforward. It is one example of an idea which got much harder when

transported to the language of schemes.

Proper morphisms arise in another common situation besides Proj:

Proposition 6.5. Let ϕ : A→ B be a homomorphism of rings where B is a finite A-module

(equivalently, B is a finitely generated A-algebra and B is integrally dependent on A). Then the

induced morphism f

f : SpecB −→ SpecA

is proper.

Proof. This is simply the “going-up” theorem (Zariski-Samuel [119, vol. I, Chapter V, §2,
Theorem 3]). It suffices to show f is closed. Let Z = V (a) ⊂ SpecB be a closed set. I claim

f(Z) = V (ϕ−1(a)).

We must show that if p is a prime ideal:

ϕ−1(a) ⊂ p ⊂ A,

then there is a prime ideal q:

a ⊂ q ⊂ B, ϕ−1(q) = p.

Apply the going-up theorem to p/ϕ−1(a) and the inclusion:

A/ϕ−1(a) ⊂ B/a.

□

One globalizes this situation via a definition:

Definition 6.6. A morphism f : X → Y is called finite if X ∼= SpecY R where R is a

quasi-coherent sheaf of OY -algebras which is finitely generated as OY -modules.

Corollary 6.7. A finite morphism is proper.

There is a very important criterion for properness known as the “valuative criterion”:

Proposition 6.8. Let f : X → Y be a morphism of finite type. Then f is proper if and only

if the “valuative criterion” holds:

For all valuation rings R, with quotient field K, every K-valued point α of X

extends to an R-valued point if the K-valued point f ◦ α of Y extends, i.e.,

given the solid arrows:

SpecK
α

//
� _

i
��

X

f

��

SpecR //

;;x
x

x
x

x
Y

the dotted arrow exists.

Proof. It’s obvious that the criterion is necessary: just make the base change by the

extended morphism β : SpecR→ Y :

X ′ = X ×Y SpecR

f ′

��

// X

f

��

SpecK

α′=(α,i)

66mmmmmm
� � // SpecR

β
// Y
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Then α defines a morphism α′ = (α, i) from SpecK to X ×Y SpecR, i.e., a section of f ′ over

SpecK. Let z ∈ X ×Y SpecR be the image of α′ and let Z = {z}. Then if f is proper:

f ′(Z) = f ′(Z) = {f ′(z)} = SpecR.

Let w ∈ Z lie over the closed point of SpecR. Then we get homomorphisms

Ow,Z
K kα∗

xxqqqqqqqq

K ⊃ R

(f ′)∗
OO

Since R is a valuation ring and (f ′)∗ is a local homomorphism, this can only hold if R = Ow,Z (a

valuation ring is a maximal subring of its quotient field with respect to local homomorphisms:

Zariski-Samuel [119, vol. II, Chapter VI, §2]). Then

SpecOw,Z −→ Z

defines the required extension:

SpecR −→ Z ⊂ X ′ −→ X

of α.

The converse is only a bit harder. Assume f satisfies the criterion. Then so does p2 : X ×Y
Y ′ → Y ′ after every base change Y ′ → Y , so replacing f by p2, it suffices to check that f itself

is closed. Everything is local over Y so we may also assume Y is affine: say Y = SpecS. Since f

is of finite type, X is the union of finitely many affines Xα: say Xα = SpecRα. Now let Z ⊂ X
be closed. Then

Z =
∪
α

(Z ∩Xα)

so if f(Z ∩Xα) is closed for every α, so is f(Z). We can therefore also replace Z by Z ∩Xα for

some α, i.e., we can assume Z ∩Xα dense in Z for some α. There are two steps:

a) for every irreducible component W of f(Z), the generic point ηW equals f(z), some

z ∈ Z,
b) for every z ∈ Z and y ∈ {f(z)}, there is a point x ∈ {z} such that f(x) = y.

Together, these prove that f(Z) is closed.

Proof of (a). The affine morphism

Z ∩Xα −→ f(Z) = f(Z ∩Xα)

corresponds to an injective ring homomorphism

Rα/bα S/a? _
f∗

oo

between rings without nilpotents. ηW corresponds to a minimal prime ideal p ⊂ S/a. Localizing
with respect to M = ((S/a) \ p), we still get an injection (res f)∗ in the diagram

(Rα/bα)M (S/a)M? _
(res f)∗

oo

Rα/bα

j

OO

S/a? _

f∗
oo

OO

(Zariski-Samuel [119, vol. I, Chapter IV, §9] and Bourbaki [27, Chapter II, §2.4, Theorem 1]).

But (S/a)M is the field k(ηW ), so if q ⊂ (Rα/bα)M is any prime ideal, ((res f)∗)−1(q) = (0).

Then j−1(q) defines a point z = [j−1(q)] ∈ Z ∩Xα such that f(z) = ηW . □
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Proof of (b). In the notation of (b), let W = {f(z)}. Then we have a diagram of rings

Oy,W ↪→ its quotient field k(f(z)) ⊂ k(z).

We use the fundamental valuation existence theorem (Zariski-Samuel [119, vol. II, Chapter VI,

Theorem 5]) which states that there is a valuation ring R ⊂ k(z) with quotient field K = k(z)
such that Oy,W → R is a local homomorphism. This gives us maps:

SpecK //
� _

��

{z}

res f

��

⊂ X

f

��

SpecR // W ⊂ Y

By the criterion, a lifting SpecR → X exists, and this must factor through {z} (since SpecK

is dense in SpecR). Then x, the image under this lifting of the closed point of SpecR, is the

required point of {z}. □

□

An amusing exercise that shows one way the definition of properness can be used is:

Proposition 6.9. Let k be a field and let X be a scheme proper over Spec k. Then the

algebra Γ(X,OX) is integrally dependent on k.

Proof. Let a ∈ Γ(X,OX). Define a morphism

fa : X −→ A1
k

by the homomorphism

k[T ] −→ Γ(X,OX)
T 7−→ a.

Let i : A1
k ↪→ P1

k be the inclusion. Consider the diagram

X
i◦fa

//

π1 &&MMMMMM P1
k

π2xxqqqqqq

Spec k

where π1, π2 are the canonical maps. Since π1 is proper, so is i ◦ fa (cf. remarks following

Definition 6.1). Therefore the image of i◦fa is closed. But∞ ̸∈ Image(i◦fa), so the image must

be a proper subscheme of A1
k. Since k[T ] is a principal ideal domain, the image is contained in

V (p), some monic polynomial p(T ). Therefore the function

p(a) ∈ Γ(X,OX)

is everywhere zero on X. On each affine, such a function is nilpotent (an element in every prime

ideal of a ring is nilpotent) and X is covered by a finite number of affines. Thus

p(a)N = 0

some N ≥ 1, and a is integral over k. □

Corollary 6.10. Let k be an algebraically closed field and let X be a complete k-variety.

Then Γ(X,OX) = k.

The following result, given in a slightly stronger form in EGA [1, Chapter III, §3.1], will be
needed in the proof of Snapper’s theorem (Theorem VII.11.1) in the proper but non-projective

case.
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Definition 6.11. Let K be an abelian category, and denote by Ob(K) the set of its objects.

A subset K′ ⊂ Ob(K) is said to be exact if 0 ∈ K′ and if the following is satisfied: In an exact

sequence 0→ A′ → A→ A′′ → 0 in K, if two among A, A′ and A′′ belong to K′, then the third

belongs to K′.

Theorem 6.12 (“Lemma of dévissage”). Let K be the abelian category of coherent OX-
modules on a noetherian scheme X, and K′ ⊂ Ob(K) an exact subset. We have K′ = Ob(K),

if for any closed irreducible subset Y ⊂ X with generic point y there exists G ∈ K′ with support

Y such that Gy is a one-dimensional k(y)-vector space.

Proof. For simplicity, a closed subset Y ⊂ X is said to have property P(Y ) if any S ∈
Ob(K) with Supp(S) ⊂ Y satisfies S ∈ K′.

We need to show that X has property P(X).

By noetherian induction, it suffices to show that a closed subset Y ⊂ X has property P(Y )

if any closed subset Y ′ ⫋ Y has property P(Y ′).

Thus we now show F ∈ Ob(K) satisfies F ∈ K′ if Supp(F) ⊂ Y . Endow Y with the unique

structure of closed reduced subscheme of X with the ideal sheaf J . Since J ⊃ Ann(F), there
exists n > 0 such that J nF = (0). Looking at successive quotients in the filtration

F ⊃ JF ⊃ J 2F ⊃ · · · ⊃ J n−1F ⊃ J nF = (0),

we may assume n = 1, that is, JF = (0), in view of the exactness of K′. Let j : Y → X be the

closed immersion so that F = j∗j
∗F .

Suppose Y is reducible and Y = Y ′ ∪ Y ′′ with closed reduced subschemes Y ′, Y ′′ ⫋ Y . Let

J ′ and J ′′ be the ideal sheaves of OX defining Y ′ and Y ′′, respectively, so that J = J ′ ∩ J ′′.

Let F ′ = F ⊗ (OX/J ′) and F ′′ = F ⊗ (OX/J ′′), both of which belong to K′ by assumption.

Regarding the canonical OX -homomorphism

u : F −→ F ′ ⊕F ′′,

we have F ′ ⊕ F ′′ ∈ K′ by exactness, while Ker(u),Coker(u) ∈ K′ by assumption, since the

induced homomorphism of the stalks at each z /∈ Y ′ ∩ Y ′′ is obviously bijective. Hence we have

F ∈ K′ by exactness.

It remains to deal with the case Y irreducible. Endowing Y with the unique integral scheme

structure, let y be the generic point of Y . Since Oy,Y = k(y) and j∗F is OY -coherent, Fy =

(j∗F)y is a k(y)-vector space of finite dimension m, say. By assumption there exists G ∈ K′

with Supp(G) = Y and dimk(y) Gy = 1. Hence there is a k(y)-isomorphism (Gy)⊕m → Fy
which extends to an OY -isomorphism in a neighborhood W in X of y. Let H be the graph in

(G⊕m ⊕ F)|W of the OY |W -isomorphism G⊕m|W → F|W . The projections from H to G⊕m|W
and F|W are isomorphisms. Hence there exists a coherent OX -submodule H0 ⊂ G⊕m ⊕F such

that H0|W = H and that H0|X\Y = (0), since Supp(G), Supp(F) ⊂ Y . The projections from H0

to G⊕m and F are homomorphisms of OX -modules which are isomorphisms on W and X \ Y .

Thus their kernels and cokernels have support in Y \ (Y ∩W ) ⫋ Y , hence belong to K′. Since

G ∈ K′, we thus have H0 ∈ K′, hence F ∈ K′. □

Exercise

(1) Let f : X → Y be a finite morphism. If the fibre f−1(y) over one point y ∈ Y is

isomorphic to Spec k(y), show that res f : f−1(U)→ U is a closed immersion for some

neighborhood U of y.



82 II. EXPLORING THE WORLD OF SCHEMES

(2) (Referred to in the proof of Lang’s Theorem VI.2.1.) Let f : X → Y be a morphism of

finite type with Y noetherian such that f−1(y) is finite for all y ∈ Y . Show that ∃ an

open dense U ⊂ Y such that

res f : f−1(U) −→ U

is finite.

(3) (Complement to Proposition 3.11) Let f : X → Y be a quasi-compact morphism of

schemes. Show that I := Ker(OY → f∗OX) is a quasi-coherent sheaf of ideals of OX .
(The closed subscheme of X defined by I is called the scheme-theoretic closure of the

image of X in Y .)

(4) Let f : X → Y be a quasi-compact and quasi-separated morphism of schemes, and let

F be a quasi-coherent OX -module. Show that f∗F is a quasi-coherent OY -module.

(Recall as in Remark at the end of §4 that f is defined to be quasi-separated if the

diagonal morphism ∆X/Y : X → X ×Y X is quasi-compact.)

(5) Give an example of a scheme X with two affine open subsets U and V such that U ∩V
is not affine.



CHAPTER III

Elementary global study of ProjR

1. Intertible sheaves and twists

Definition 1.1. Let X be a scheme. A sheaf L of OX -modules is called invertible if L is

locally free of rank one. This means that each point has an open neighborhood U such that

L|U ≈ OX |U ;

or equivalently, there exists an open covering {Uα} of X such that for each α,

L|Uα ≈ OX |Uα .

The reason why invertible sheaves are called invertible is that their isomorphism classes form

a group under the tensor product over OX for multiplication, as we shall now see.

(a) If L, L′ are invertible, so is L ⊗ L′.

Proof. For each point we can find an open neighborhood U such that both L, L′
are isomorphic to OX when restricted to U , so L⊗L′ is isomorphic to OX ⊗OX = OX
when restricted to U . □

(b) It is clear that L⊗OX ≈ L ≈ OX ⊗L, so OX is a unit element for the multiplication,

up to isomorphism.

(c) Let L∨ = Hom(L,OX). Then L∨ is invertible.

Proof. Restricting to a suitable open set U we may assume that L ≈ OX , in which

case

Hom(L,OX) ≈ Hom(OX ,OX) ≈ OX .

□

(d) The natural map

L ⊗Hom(L,OX) −→ OX
is an isomorphism.

Proof. Again restricting to an appropriate open set U , we are reduced to proving

the statement when L = OX , in which case the assertion is immediate. □

Thus L∨ = Hom(L,OX), which is call the dual sheaf, is an inverse for L up to isomorphism.

This proves that isomorphism classes of invertible sheaves over OX form a group.

We also have the property:

(e) Let f : X → Y be a morphism and L an invertible sheaf on Y . Then f∗L is an invertible

sheaf on X.

Definition 1.2. Let X be a scheme. We let Pic(X), the Picard group, be the group of all

isomorphism classes of invertible sheaves.

83
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Invertible sheaves and Proj are closely related because under a certain hypothesis, ProjR

carries a canonical invertible sheaf, known as OProjR(1).

Let R be a graded ring,

R =
⊕
n≥0

Rn.

Then R is an algebra over R0. The hypothesis that allows us to define OProjR(1) is that R is

generated by R1 over R0, that is

R = R0[R1]

(cf. Proposition II.5.1). We shall make this hypothesis throughout this section.

Example 1.3. The most basic ring of this type is obtained as in Definition II.5.6 as follows.

Let A be any commutative ring, and let

R = A[T0, . . . , Tr]

be the polynomial ring in r + 1 variables. Then R0 = A, and Rn consists of the homogeneous

polynomials of degree n with coefficients in A. Furthermore R1 is the free module over A, with

basis T0, . . . , Tr.

For simplicity, we abbreviate

P = ProjR.

To define OP(1), start with any graded module M . Then for all integer d ∈ Z we may define

the d-twist M(d) of M , which is the module M but with the new grading

M(d)n =Md+n.

Then we define

OP(1) = R̃(1)

where the ˜ is the projective ˜. If f ∈ R is a homogeneous element, we abbreviate the open

subset

(ProjR)f = Pf or Uf .

Proposition 1.4. The sheaf OP(1) is invertible on ProjR. In fact: Given f ∈ R1, the

multiplication by f

mf : R −→ R(1)

is a graded homomorphism of degree 0, whose induced sheaf homomorphism

m̃f : R̃ = OP −→ R̃(1) = OP(1)

restricts to an isomorphism on Uf . Let φf = m̃f . For f, g ∈ R1, the sheaf map φ−1
f ◦ φg is

multiplication by g/f on Uf ∩ Ug.

Proof. By definition

OP(1)|Uf
= ˜(R(1)f )0,

and we have an isomorphism

multiplication by f : Rf −→ R(1)f .

This induces an isomorphism on the parts of degree 0, whence taking the affine ˜, it induces

the isomorphism

OP|Uf
−→ OP(1)|Uf

.

In fact, the module associated with OP(1) on Uf is just given by

(Rf )0 · f,
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and is consequently free of rank 1 over the affine coordinate ring of Spec(Rf )0. Since R is

generated by R1, the Uf ’s cover ProjR, and this shows that OP(1) is invertible. □

Proposition 1.5. Let M be a graded R-module. Then the isomorphism

M ⊗R R(1) −→M(1)

induces an isomorphism

M̃ ⊗OP OP(1) −→ M̃(1).

Proof. Let f ∈ R1. On Pf the isomorphism of graded modules induces the corresponding

isomorphism of (Rf )0-modules

(Mf )0 ⊗ (R(1)f )0 −→ (M(1)f )0,

where the tensor product is taken over (Rf )0. Taking the affine tilde yields the desired sheaf

isomorphism. □

Definition 1.6. For every integer d we define

OP(d) = R̃(d),

and for any sheaf F of OP-modules, we define

F(d) = F ⊗OP OP(d).

Proposition 1.7.

(i) For d,m ∈ Z we have F(d+m) ≈ F(d)⊗OP(m).

(ii) For d positive,

OP(d) ≈ OP(1)⊗ · · · ⊗ OP(1) (product taken d times).

(iii) For d ∈ Z the natural pairing

OP(d)⊗OP(−d) −→ OP

identifies OP(−d) with the dual sheaf OP(d)
∨.

(iv) For a graded module M , we have M̃(d) ≈ M̃(d).

Proof. The first assertion follows from the formula

˜(M ⊗R N) ≈ M̃ ⊗OP Ñ

for any two graded R-modules M and N , because R is generated by R1. Indeed, for f ∈ R1 we

have

(M ⊗R N)f =Mf ⊗Rf
Nf .

The other assertions are immediate. □

The collection of sheaves M̃(d) attached to M allows us to interpret globally each graded

piece of the module M . In fact, for each d, we get a canonical homomorphism (cf. §II.5)

Md =M(d)0 −→ Γ(P, M̃(d))
≈−→ Γ(P, M̃(d)).

For any sheaf F of OP-modules, we define

Γ∗(F) =
⊕
m∈Z

Γ(P,F(m)).

Then we obtain a canonical homomorphism

M −→ Γ∗(M̃).
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In particular, when M = R, we get a ring homomorphism

R −→
∞⊕
d=0

Γ(P,OP(d)) = Γ∗(R̃) = Γ∗(OP),

where multiplication on the right hand side is defined by the tensor product.

We also note that Γ∗(F) is a graded R-module as follows. We have the inclusion of Rd in

Γ(P, R̃(d)), and the product of Rd on Γ(P,FP(m)) is induced by the tensor product

Γ(P,OP(d))⊗ Γ(P,F(m)) −→ Γ(P,F(m+ d)).

It is not always the case that there is an isomorphism

Γ∗(OP) ≈ R,

so for some positive integer d, it may happen that the module of sections Γ(P,OP(d)) is larger

than Rd. We now give an example when these are equal.

Proposition 1.8. Let A be a ring and R = A[T0, . . . , Tr], r ≥ 1. Let P = ProjR = PrA.
Then for all integers d ∈ Z we have

Rd ≈ Γ(P,OP(d)) so R ≈ Γ∗(OP).

Proof. For i = 0, . . . , r let Ui = UTi , so Ui is the usual affine open subscheme of ProjR,

complement of the hyperplanes Ti = 0. A section s ∈ Γ(P,OP(n)) is the same as a family of

sections si ∈ OP(n)(Ui) for all i, such that si = sj on Ui ∩ Uj for all i, j. But a section in

OP(n)(Ui) is simply an element

si =
fi(T )

T
k(i)
i

where k(i) is an integer and fi(T ) is a homogeneous polynomial of degree k(i)+n. The restriction

to Ui ∩ Uj is the image of that element in the localization RTiTj . Since the elements T0, . . . , Tr
are not zero-divisors in R, the natural maps

R −→ RTi and RTi −→ RTiTj

are injective, and all such localized rings can be viewed as subrings of RT0···Tr . Hence Γ∗(OP) is

the intersection
∩
RTi taken inside RT0···Tr . Any homogeneous element of RT0···Tr can be written

in the form

f(T0, . . . , Tr)T
k(0)
0 · · ·T k(r)r

where f(T0, . . . , Tr) is a homogeneous polynomial not divisible by any Ti (i = 0, . . . , r) and

k(0), . . . , k(r) ∈ Z. Such an element lies in RTi if and only if k(j) ≥ 0 for all j ̸= i. Hence the

intersection of all the RTi for i = 0, . . . , r is equal to R. This proves the proposition. □

The proposition both proves a result and gives an example of the previous constructions. In

particular, we see that the elements T0, . . . , Tr form a basis of R1 over A, and can be viewed as

a basis of the A-module of sections Γ(PrA,OP(1)).

Next we look at the functoriality of twists with respect to graded ring homomorphisms. As

in §II.5 we let R′ be a graded ring which we now assume generated by R′
1 over R′

0. Let

φ : R −→ R′

be a graded homomorphism of degree 0. Let V be the subset of ProjR′ consisting of those

primes p′ such that p′ ̸⊃ φ(R+). Then we saw that V is open in ProjR′, and that the inverse

image map on prime ideals

f : V −→ ProjR = P
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defines a morphism of schemes.

Proposition 1.9. Let P′ = ProjR′. Then

f∗OP(d) = OP′(d)|V and f∗(OP′(d)|V ) = (f∗OV )(d).

Proof. These assertions about the twists hold more generally for any graded R-moduleM ,

because

f∗(M̃) ≈ ˜(M ⊗R R′)|V
and for any graded R′-module N , we have

f∗(Ñ |V ) ≈ (̃NR),

where NR is N viewed as R-module via φ. The proof is routine and left to the reader. □

To conclude this section we note that everything we have said extends to the global Proj

without change. Instead of ProjR, we can consider ProjX R where R is a quasi-coherent graded

sheaf of OX -algebras. We need to make the hypothesis that Rn is generated by R1 over R0,

i.e., the multiplication map

Symmn
R0
R1 −→ Rn

is surjective. Let P = ProjX R. Then ifM is a quasi-coherent graded sheaf of R-modules, we

defineM(d) by

M(d)n =Md+n.

Then let

OP(d) = R̃(d)

and for every quasi-coherent F on P, let

F(d) = F ⊗OP OP(d).

As before, OP(1) is invertible, with powers OP(d) and

M̃(d) = (M̃)(d).

The extension of the definition of Γ∗(F) to the global case is:

πgr∗ F =
⊕
m∈Z

π∗F(m)

where π is the projection of ProjX R to X. This is quasi-coherent provided that R1 is finitely

generated as R0-modules, since this implies that π is quasi-compact, hence Proposition II.4.10

applies. As above, we have a natural graded homomorphism

M−→ πgr∗ (M̃).

Finally Proposition 1.8 globalizes immediately to:

Proposition 1.10. Let E be a locally free sheaf of OX-module and consider P(E) = ProjX(Symm∗ E).
Then the natural homomorphism

Symmd E −→ π∗OP(E)(d)

is an isomorphism. In particular, Symm∗ E ≈ πgr∗ OP(E).



88 III. ELEMENTARY GLOBAL STUDY OF ProjR

2. The functor of ProjR

Throughout this section we let R be a graded ring, generated by R1 over

R0. We let S = Spec(R0), P = ProjR and let π : P → S be the canonical

projection.

An important example of a graded ring R as above is SymmR0
(R1), namely the symmetric

algebra, but we shall meet other cases, so we do not restrict our attention to this special case.

We are interested in schemes X over S, and in morphisms of X into ProjR over S:

X
f

//

p
��

7777777 P = ProjR

π
{{xxxxxxxxx

S

In the simplest case, P = PrR0
and f becomes a morphism of X into projective space.

Given such a morphism f : X → P, we can take the inverse image f∗OP(1), which is an

invertible sheaf on X. By the general formalism of inverse images of sheaves, this induces a

natural map on global sections

f∗ : Γ(P,OP(1)) −→ Γ(X, f∗OP(1)),

and in light of the natural map R1 → Γ(P,OP(1)) induces a homomorphism

φf = φ : R1 −→ Γ(X, f∗OP(1)).

Thus to each morphism f : X → P we have associated a pair (L, φ) consisting of an invertible

sheaf L (in this case f∗OP(1)) and a homomorphism

φ : R1 −→ Γ(X,L).

To describe an additional important property of this homomorphism, we need a definition.

Definition 2.1. Let F be a coherent sheaf of OX -modules. Let {si} be a family of sections.

We say that this family generates F if any one of the following conditions is satisfied:

(1) For every point x ∈ X the family of images {(si)x} generates Fx as an Ox-module, or

equivalently (by Nakayama’s lemma Proposition I.5.5) Fx/mxFx.
(2) For each point x ∈ X there exists some open neighborhood U of x such that the sections

{si|U} generate F(U) over OX(U).

Note that by Proposition 1.4, if g ∈ R1, then over the open set (ProjR)g of P = ProjR

the section g ∈ Γ(P,OP(1)) generates the sheaf OP(1). Since these open sets cover the scheme

P, it follows that the collection of global sections R1 of OP(1) generates OP(1) everywhere (see

Nakayama’s lemma Proposition I.5.5), or equivalently that

π∗R1 −→ OP(1)

is surjective.

From the definition of the inverse image f∗, which is locally given by the tensor product, it

follows that the inverse image f∗R1 generates f∗OP(1).

Thus finally, to each morphism f : X → ProjR we have associated a pair (L, φ) consisting
of an invertible sheaf L on X and a homomorphism

φ : R1 −→ Γ(X,L)

such that φ(R1) generates L, or equivalently, the homomorphism

f∗R1 −→ L
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is surjective.

Theorem 2.2. Let P = ProjR. Assume that R = SymmR0
(R1). Let S = Spec(R0). Let

p : X → S be a scheme over S and let (L, φ) be a pair consisting of an invertible sheaf L on X

and a homomorphism

φ : R1 −→ Γ(X,L)
which generates L. Then there exists a unique pair (f, ψ) consisting of a morphism f : X →
ProjR over S and a homomorphism ψ : f∗OP(1)→ L making the following diagram commuta-

tive:

R1
φ

//

��

Γ(X,L)

Γ(P,OP(1))
f∗

// Γ(X, f∗OP(1))

Γ(ψ)

OO

Furthermore, the homomorphism ψ is an isomorphism.

Before giving the proof, we make some comments. An important special case occurs when R1

is a free module of finite rank r+1 over R0. Then P = PrR0
. The R0-module R1 then has a basis

T0, . . . , Tr. Let s0, . . . , sr be sections of L which generate L. There is a unique homomorphism

φ : R1 → Γ(X,L) such that φ(Ti) = si. The theorem asserts that there is a unique morphism

f : X → PrR0
such that f∗OP(1) is isomorphic to L, and the sections si correspond to f∗Ti

under this isomorphism. This is the formulation of the theorem in terms of the homogeneous

coordinates T0, . . . , Tr.

The proof of Theorem 2.2 will require some lemmas. We first consider the uniqueness, and

for this the hypothesis that R = SymmR0
(R1) will not be used.

Let s be a section of an invertible sheaf L over the scheme X. Let sx be the value of the

section in Lx, and let mx be the maximal ideal of Ox. Then sx generates Lx if and only if

sx ̸∈ mxLx.

Lemma 2.3. Let L be an invertible sheaf on the scheme X. Let s ∈ Γ(X,L) be a global

section of L. Then the set of points x ∈ X such that sx generates Lx is an open set which we

denote by Xs. Multiplication by s, that is,

ms : OX |U −→ L|U

is an isomorphism on this open set.

Proof. We may suppose that X = Spec(A), and L = OX since the conclusions of the

lemma are local. Then s ∈ A. The first assertion is then obvious from the definition of Spec(A).

As to the second, s is a unit in As so multiplication by s induces an isomorphism on the sheaf

on the open subset Spec(As). This proves the lemma. (No big deal.) □

To show uniqueness, we suppose given the pair

f : X −→ ProjR and φ : R1 −→ Γ(X,L),

and investigate the extent to which f is determined by φ. Note that for all a ∈ R1 the map f

restricts to a morphism

Xφ(a) = f−1((ProjR)a) −→ (ProjR)a

and

(ProjR)a = Spec(Ra)0.
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If b ∈ R1, then the map φ sends b, a to φ(b), φ(a) respectively, and so

f∗ :
b

a
7−→ φ(b)

φ(a)
= m−1

a (φ(b)).

But the set of elements b/a with b ∈ R1 generates (Ra)0. Consequently the ring homomorphism

(Ra)0 −→ Γ(Xφ(a),OX)

is uniquely determined by φ. This proves the uniqueness.

Next we wish to show existence.

Lemma 2.4. Let R be a graded ring generated by R1 over R0. Let a ∈ R1. Then there is a

unique (not graded) ring homomorphism

R/(a− 1)
≈−→ (Ra)0

such that for b ∈ R1 we have

b 7−→ b

a

Proof of Lemma 2.4. The map b 7→ b/a defines an additive homomorphism of R1 into

(Ra)0. Consequently, this additive map extends uniquely to a ring homomorphism

h : R −→ (Ra)0,

because of the assumption R = SymmR0
(R1), and a − 1 is in the kernel. Since a becomes

invertible under the map R→ R/(a− 1), we can factor h as follows:

R −→ Ra −→ R/(a− 1) −→ (Ra)0.

The first map is the natural map of R into the localization of R by a. Since R1 generates R,

any element of the homogeneous component Rn can be written as a sum of elements in the form

b1 · · · bn for some bi ∈ R1, so an element of (Ra)0 is a sum of elements of the form

b1 · · · bn
an

=

(
b1
a

)
· · ·
(
bn
a

)
.

Since (Ra)0 is contained in Ra, it follows that the composite map

(Ra)0
inclusion−−−−−→ Ra −→ R/(a− 1) −→ (Ra)0

is the identity. Furthermore given an element in R/(a − 1) represented by a product b1 · · · bn
with bi ∈ R1, it is the image of an element in (Ra)0 since a ≡ 1 mod (a− 1). Hence the map

(Ra)0 −→ R/(a− 1)

is an isomorphism. This concludes the proof of Lemma 2.4. □

We revert to the existence part of Theorem 2.2. Given the data (L, φ) we wish to construct

the morphism

f : X −→ ProjR.

For each a ∈ R1 we let Xφ(a) be the open set of points x ∈ X such that φ(a)(x) ̸= 0 (we are

using Lemma 2.3). Since φ(R1) generates L, it follows that the sets Xφ(a) cover X for a ∈ R1.

On the other hand,

ProjR =
∪
a∈R1

Spec(Ra)0.

It will suffice to construct for each a ∈ R1 a morphism

Xφ(a) −→ Spec(Ra)0 ⊂ ProjR
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such that this family is compatible on the intersections of the open sets Xφ(a). The construction

is done for the corresponding rings of global sections. By restriction from X to Xφ(a) the map

φ gives rise to a map

φa : R1 −→ Γ(Xφ(a),L).

Composing with the multiplication m−1
a as in Lemma 2.3, we obtain a homomorphism R1 →

Γ(Xφ(a),OX) as in the following triangle:

R1
//

%%KKKKKKKKK Γ(Xφ(a),L)

m−1
avvnnnnnnnnn

Γ(Xφ(a),OX)

But m−1
a sends φ(a) to the section represented by 1. By the assumption that R = SymmR0

(R1),

the additive R0-homomorphism

R1 −→ Γ(Xφ(a),OX)

induces a ring homomorphism

ψa : R/(a− 1) = (Ra)0 −→ Γ(Xφ(a),OX).

This is the homomorphism of global sections that we wanted. Then ψa induces a morphism

fa : Xφ(a) −→ Spec(Ra)0.

We now leave to the reader the verification that these morphisms are compatible on the inter-

sections of two open subschemes Xφ(a) ∩Xφ(b). From the construction, it is also easy to verify

that the morphism

f : X −→ ProjR

obtained by glueing the morphisms fa together has the property that

f∗OP(1) = L,

and that the original map φ is induced by f∗. This proves the existence.

Finally, the fact that ψ is an isomorphism results from the following lemma.

Lemma 2.5. Let ψ : L′ → L be a surjective homomorphism of invertible sheaves. Then ψ is

an isomorphism.

Proof. The proof is immediate and will be left to the reader. □

We used the assumption that R = SymmR0
(R1) only once in the proof. In important

applications, like those in the next section, we deal with a ring R which is not SymmR0
(R1),

and so we give another stronger version of the result with a weaker, but slightly more complicated

hypothesis.

The symmetric algebra had the property that a module homomorphism on R1 induces a

ring homomorphism on R. We need a property similar to this one. We have the graded ring

Γ∗(L) =
⊕
n≥0

Γ(X,Ln),

where Ln = L⊗n is the tensor product of L with itself n times. The R0-homomorphism φ : R1 →
Γ(L) induces a graded algebra homomorphism

Symm(φ) : SymmR0
(R1) −→ Γ∗(L).
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We say that Symm(φ) factors through R if there is a commutative diagram of graded algebras

SymmR0
(R1) //

&&MMMMMMMM
Γ∗(L)

R

<<yyyyyy

so for each n we have a commutative diagram:

Symmn
R0

(R1)
Symmn(φ)

//

&&MMMMMMMM
Γ(Ln)

Rn

;;xxxxxx

Theorem 2.6. Theorem 2.2 is valid without change except that instead of assuming R =

SymmR0
(R1) we need only assume that Symm(φ) factors through R.

Proof. The proof is the same, since the hypothesis that Symm(φ) factors through R can

be used instead of R = SymmR0
(R1). □

Corollary 2.7. Let E be a locally free sheaf on the scheme X. Then sections s : X →
PX(E) = ProjX(SymmOX

(E)) are in bijection with surjective homomorphisms

E −→ L −→ 0

of E onto invertible sheaves over X.

Proof. Take X = S in Theorem 2.2. □

Let R be a quasi-coherent graded sheaf of OX -algebras, and let P = ProjX R. We have a

canonical homomorphism

R1 −→ π∗OP(1)

or equivalently (cf. Lemma (I.5.11))

π∗R1 −→ OP(1)

which is surjective. This leads to the following generalization of Theorem 2.2:

Theorem 2.8. Let p : Z → X be a scheme over X and let L be an invertible sheaf on Z.

Let

h : p∗R1 −→ L
be a surjective homomorphism. Assume in addition that R = SymmR0

(R1) or that Symm(h)

factors through R. Then there exists a unique pair (f, ψ) consisting of a morphism

f : Z −→ ProjX(R) = P

over X and a homomorphism

ψ : f∗OP(1) −→ L
making the following diagram commutative:

f∗π∗(R1) = p∗(R1)
f∗(canonical)

//

h ))SSSSSSSSSSS
f∗OP(1)

ψxxqqqqqqq

L

In other words, h : p∗(R1)→ L is obtained from π∗(R1)→ OP(1) by applying f∗ and composing

with ψ. Furthermore, this homomorphism ψ is an isomorphism.
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3. Blow ups

This section provides examples for Proj of some graded rings, in one of the major contexts

of algebraic geometry.

Throughout this section, we let X be a scheme.

Let I be a quasi-coherent sheaf of ideals of OX . We may then form the sheaf of graded

algebras

R =
⊕
n≥0

In

where by definition I0 = OX . Then R satisfies the hypotheses stated at the beginning of §2,
so the results of §2 apply to such R. The sheaf of ideals I defines a closed subscheme Y whose

structure sheaf is

OY = OX/I.
We define the blow up of X along Y , or with respect to I, to be:

BlY (X) = ProjX R.

Let

π : BlY (X) −→ X

be the structural morphism.

Let

f : X ′ −→ X

be a morphism. Let I be a sheaf of ideals of OX . Then we have homomorphism

f∗I −→ f∗OX = OX′

(cf. §I.5). We let

f−1(I)OX′ or also IOX′

to be the image of this homomorphism. Then IOX′ is a quasi-coherent sheaf of ideals of OX′ .

Theorem 3.1. Let X ′ = BlY (X) be the blow up of X along Y , where Y is the closed

subscheme defined by a sheaf of ideals I, and let π : X ′ → X be the structural morphism.

i) The morphism π gives an isomorphism

X ′ \ π−1(Y )
≈−→ X \ Y.

ii) The inverse image sheaf IOX′ is invertible, and in fact

IOX′ = OX′(1).

Proof. The first assertion is immediate since I = OX on the complement of Y by definition.

So if we put U = X \ Y , then

π−1(U) = ProjU OU [T ] = U.

For (ii), we note that for any affine open set V in X, the sheaf OX′(1) on Proj(R(V )) is the

sheaf associated to the graded R(V )-module

R(V )(1) =
⊕
n≥0

In+1(V ).

But this is equal to the ideal IR(V ) generated by I(V ) in R(V ). This proves (ii), and the

concludes the proof of the theorem. □
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Theorem 3.2 (Universality of Blow-ups). Let

π : BlY (X) −→ X

be the blow up of a sheaf of ideals I in X. Let

f : Z −→ X

be a morphism such that IOZ is an invertible sheaf of ideals on Z. Then there exists a unique

morphism f1 : Z → BlY (X) such that the following diagram is commutative.

Z
f1

//

f   AAAAA BlY (X)

πyytttttt

X

Proof. To construct f1 we use Theorem 2.8, taking L = IOZ and h to be the natural map

h : f∗R1 = f∗I −→ IOZ = L.

Note that Symm(h) factors through
⊕
Ln.

To see that f1 is unique, take a sufficiently small affine open piece Spec(R) of Z in which

IOZ is (̃aR), a ∈ I. Then a is a non-zero divisor in R by hypothesis. Now Spec(Ra) lies over

X \ Y , over which π is an isomorphism:

Spec(Ra)

%%LLLLLLL
BlY (X) \ π−1(Y )

π
≈

vvnnnnnnnnn

X \ Y

Therefore f1 is unique on Spec(Ra). But since a is not a zero-divisor, any morphism on Spec(Ra)

has at most one extension to Spec(R). This is because R → Ra is injective and hence a

homomorphism S → R is determined by the composition S → Ra. This concludes the proof. □

Theorem 3.3. Let Y ′ be the restriction of BlY (X) to Y , or in other words

Y ′ = Y ×X BlY (X).

Then Y ′ = ProjY grI(OX) where grI(OX) =
⊕

n≥0 In/In+1. In other words we have the

following commutative diagram:

ProjY grI(OX) = Y ′ //

��

BlY (X) = ProjX(
⊕
In)

��

Y // X

Proof. Let R =
⊕

n≥0 In as before. Then IR =
⊕

n≥0 In+1, where In+1 is the n-th

graded component, and is a homogeneous ideal sheaf of R. The restriction to Y is given by the

graded ring homomorphism

R −→ R/IR,
which induces the restriction of ProjX(R) to Y . Hence this restriction is equal to ProjY (R/IR),
viewing R/IR as an OX/I = OY -sheaf of graded algebras. But

R/IR =
⊕
n≥0

In/In+1.

This proves the theorem. □
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In general, nothing much more can be said about the sheaf

grI(OX) =
⊕
n≥0

In/In+1.

However, under some conditions, this sheaf is the symmetric algebra of I/I2. Assume that A

is a noetherian ring and I an ideal of A. We say that a sequence of elements (a1, . . . , ar) is a

regular sequence in I if a1 is not a divisor of 0, and if ai+1 is not a divizor of 0 in I/(a1, . . . , ai)

for all i ≥ 1.

Lemma 3.4. Assume that I is generated by a regular sequence of length r. Then there is a

natural isomorphism

SymmA/I(I/I
2) ≈

⊕
n≥0

In/In+1

and I/I2 is free of dimension r over A/I.

Proof. See Matsumura [78, Chapter 6]. □

Now suppose X is a noetherian scheme and I is a sheaf of ideals as before, defining the

subscheme Y . We say that Y is a local complete intersection in X of codimension r if each point

y ∈ Y has an affine open neighborhood Spec(A) in X, such that if I is the ideal corresponding

to I over Spec(A), then I is generated by a regular sequence of length r. The elementary

commutative algebra of regular sequences shows that if this condition is true over Spec(A), then

it is true over Spec(Af ) for any element f ∈ A. Lemma 3.4 then globalizes to an isomorphism

SymmY (I/I2) ≈ grI(OX) =
⊕
n≥0

In/In+1.

Furthermore I/I2 is locally free of rank r over OY . Therefore we may rephrase Theorem 3.3 as

follows:

Theorem 3.5. Suppose that Y is a local complete intersection of codimension r in X, and

is defined by the sheaf of ideals I. Let Y ′ be the restriction of BlY (X) to Y . Then we have a

commutative diagram:

Y ′ = PY (I/I2) //

��

BlY (X)

��

Y // X

In particular, if y is a closed local complete intersection point, then

Py(I/I2) = Prk
where k is the residue class field of the point. Thus the fibre of the blow up of such a point is a

projective space.

We shall now apply blow ups to resolve indeterminacies of rational maps.

Let X be a noetherian scheme and let L be an invertible sheaf on X. Let s0, . . . , sr be global

sections of L. By Lemma 2.3, the set of points x ∈ X such that (s0)x, . . . , (sr)x generate Lx is

an open set Us, and these sections generate L over Us. Here s denotes the r-tuple

s = (s0, . . . , sr).

Then s defines a morphism

fs : Us −→ PrX
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of Us into projective r-space over X, in line with Theorem 2.2 and the remarks following it. We

shall now define a closed subscheme of X whose support is the complement of Us, and we shall

define a canonical blow up (depending on the given sections) so that the morphism fs extends

to a morphism of this blow up.

Let s0, . . . , sr be sections of L. We shall define an associated sheaf of ideals Is as follows.

Let U be an open affine set where L is free, and so

L|U ≈ OX |U .

Under this isomorphism, the sections become sections of OX over U . We let IU be the sheaf of

ideals generated by these sections over U . If U = Spec(A), then the sections can be identified

with elements of A, and the ideal corresponding to this sheaf is the ideal (s0, . . . , sr) generated

by these elements. It is immediately verified that this ideal is independent of the trivialization

of L|U , and that the sheaf IU agrees with the similarly defined sheaf L|V on the intersection

U ∩ V of two affine open sets U and V . This is the sheaf of ideals which we call Is, determined

by or associated with the family of sections s.

Since X is assumed noetherian, Is is a coherent sheaf of ideals, or in other words, it is locally

finitely generated.

Us is the open subset of X which is the complement of the support of OX/Is. Thus Is
defines a closed subscheme Y , and Us is the complement of Y . We view Us as a scheme, whose

structure sheaf is OX |Us .

Proposition 3.6. Let s = (s0, . . . , sr) be sections of an invertible sheaf L over X as above.

Let I = Is be the associated sheaf of ideals, defining the subscheme Y , and let π : X ′ → X be

the blow up of X along Y . Then the sections π∗s0, . . . , π
∗sr generate an invertible subsheaf of

π∗L, and thus define a morphism

fπ∗s : X
′ −→ PrX ,

such that the following diagram is commutative:

π−1(Us)
fπ∗s

//

OO

isomorphism

��

PrX

Us
fs

// PrUs

inclusion

OO

Proof. By Theorem 3.1 we know that IOX is invertible, and the sections π∗s0, . . . , π
∗sr

generate this subsheaf of π∗L.
Thus the assertion of the proposition is immediate. □

In this manner, we have a globally defined morphism on the blow up X ′ which “coincides”

with fs on the open set Us.

4. Quasi-coherent sheaves on ProjR

Throughout this section we let R be a graded ring, generated by R1 over R0.

We let P = ProjR. We assume moreover that R1 is a finitely generated R0-

module, hence P is quasi-compact.

The purpose of this section is to classify quasi-coherent sheaves in terms of graded modules

on projective schemes in a manner analogous to the classification of quasi-coherent sheaves in

terms of ordinary modules over affine schemes. We start with a lemma.
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Let L be an invertible sheaf on a scheme X. Let f ∈ Γ(X,L) be a section. We let:

Xf = set of points x such that f(x) ̸= 0.

We recall that f(x) is the value of f in Lx/mxLx, as distinguished from fx ∈ Lx.

Lemma 4.1. Let L be an invertible sheaf on the scheme X. Let F be a quasi-coherent sheaf

on X. Assume X is quasi-compact.

i) Let s ∈ Γ(X,F) be a section whose restriction to Xf is 0. Then for some n > 0 we

have fns = 0, where fns ∈ Γ(Ln ⊗F) ≈ Γ(F ⊗ Ln).
ii) Suppose X has a finite covering by open affine subsets Uj such that L|Uj is free for each

j. Let t ∈ Γ(Xf ,F) be a section over Xf . Then there exists n > 0 such that the section

fnt ∈ Γ(Xf ,F ⊗ Ln) extends to a global section of F ⊗ Ln over X.

Proof. There is a covering of X by affine open sets on which L is free, and since X is

assumed quasi-compact, we can take this covering to be finite. Hence it suffices to prove that if

U = Spec(A) is affine open such that L|U is free, then there is some n > 0 such that fns = 0 on

U . But F|U = M̃ with some A-module M by Proposition-Definition I.5.1. Then we can view s

as an element ofM , and f as an element of A under an isomorphism L|U ≈ OX |U . By definition

of the localization, the fact that the restriction of s to Xf is 0 means that s is 0 in Mf , and so

there is some n such that fns = 0. This has an intrinsic meaning in Ln ⊗ F , independently of

the choice of trivialization of L over U , whence (i) follows.

For (ii), let t ∈ Γ(Xf ,F). We can cover X by a finite number of affine open Ui = Spec(Ai)

such that L|Ui is free. On each Ui there is an Ai-moduleMi such that F|Ui = M̃i. The restriction

of t to Xf ∩ Ui = (Ui)f is in (Mi)fi , where fi = f |Ui can be viewed as an element of Ai since

L|Ui is free of rank one. By definition of the localization, for each i there is an integer n and a

section ti ∈ Γ(Ui,F) such that the restriction of ti to (Ui)fi is equal to f
nt (that is fn ⊗ t) over

(Ui)fi . Since we are dealing with a finite number of such open sets, we can select n large to work

for all i. On Ui ∩Uj the two sections ti and tj are defined, and are equal to fnt when restricted

to Xf ∩Ui ∩Uj . By the first part of the lemma, there is an integer m such that fm(ti − tj) = 0

on Ui∩Uj for all i, j, again using the fact that there is only a finite number of pairs (i, j). Then

the section fmti ∈ Γ(Ui,Lm ⊗ F) define a global section of Lm ⊗ F , whose restriction to Xf is

fn+mt. This concludes the proof of the lemma. □

We turn to the application in the case of sheaves over P = Proj(R). The sheaf L of Lemma

4.1 will be OP(1).

Let M be a graded module over R. Then M̃ is a sheaf on P. Suppose that N is a graded

module such that Nd =Md for all d ≥ d0. Then

M̃ = Ñ .

This is easily seen, because for f ∈ R1, we know that P is covered by the affine open sets Pf .
Then any section of M̃ over Pf can be written in the form x/fn for some x ∈ Mn, but we can

also write such an element in the form
x

fn
=

fmx

fm+n

so we can use only homogeneous elements of arbitrarily high degree. Hence changing a finite

number of graded components in M does not affect Mf , nor M̃ .

IfM is finitely generated, it is therefore natural to say thatM is quasi-equal to N ifMd = Nd

for all d sufficiently large. Quasi-equality is an equivalence relation. Two graded homomorphisms

f, g : M −→ N
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are called quasi-equal if fd = gd for all d sufficiently large. (fd, gd : Md → Nd are the restrictions

of f , g.) More generally, we define:

Homqe(M,N) = lim−→
n

Hom(M≥n, N≥n),

where M≥n denotes the submodule of M of components of degree ≥ n. This defines a category

which we call the category of graded modules modulo quasi-equality, and denote by GrModqe(R).

The association

M 7−→ M̃ (projective tilde)

is a functor from this category to the category of quasi-coherent sheaves on P.
Our object is now to drive toward Theorem 4.8, which states that under suitable finiteness

assumptions, this functor establishes an equivalence of categories. Some of the arguments do

not use all the assumptions, so we proceed stepwise. The first thing to show is that every

quasi-coherent sheaf is some M̃ . Let F be quasi-coherent over P. Then in §1 we had defined

Γ∗(F) =
⊕
n∈Z

Γ(P,F(n)).

Proposition 4.2. Let F be a quasi-coherent sheaf over P. Let M = Γ∗(F). Then F ≈ M̃ .

Proof. Let f ∈ R1. We want to establish an isomorphism

(Mf )0
≈−→ F(Pf ).

The left hand side is the module of sections of M̃ over Pf . The compatibility as f varies will be

obvious from the definition, and this isomorphism will give the desired isomorphism of M̃ with

F . Multiplication by f gives a homomorphism

F(n) f−→ F(n+ 1)

whence a corresponding homomorphism on global sections. There is a natural isomorphism

(Mf )0 ≈ lim−→
n

(Mn, f) ≈ lim−→
n

(ΓF(n), f)

where the right hand side is the direct limit of the system:

M0
f−→M1

f−→M2
f−→ · · · f−→Mn

f−→ · · ·

Indeed, an element of (Mf )0 can be represented as a quotient x/fn with x ∈ ΓF(n). There is

an equality
x

fn
=

y

fm

with y ∈ ΓF(m) if and only if there is some power fd such that

fd+mx = fd+ny.

This means precisely that an element of (Mf )0 corresponds to an element of the direct limit as

stated.

On the other hand, let O = OP. We have an isomorphism

O|Pf

fn−→
≈
O(n)|Pf

and since F(n) = F ⊗O(n) by definition, we get an isomorphism

F|Pf

fn−→
≈
F(n)|Pf

.
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Now we look at the directed system and commutative diagrams:

ΓF(n) res
// F(n)(Pf ) F(Pf )≈

fn
oo

fn−1

≈

wwoooooooooooo

ΓF(n− 1)

f

OO

res
// F(n− 1)(Pf )

f

OO

The top row gives a homomorphism

f−n ◦ res : ΓF(n) −→ F(Pf ).

The commutativity of the square and triangle induces a homomorphism on the direct limit

(Mf )0 ≈ lim−→
n

(ΓF(n), f) −→ F(Pf ).

The first part of Lemma 4.1 shows that this map is injective. Using the quasi-compactness of

P, the second part shows that this map is surjective, whence the desired isomorphism. We leave

to the reader the verification of the compatibility condition as f varies in R1, to conclude the

proof. □

Theorem 4.3 (Serre). Let F be a finitely generated quasi-coherent sheaf on P. Then there

is some n0 such that for all n ≥ n0, the sheaf F(n) is generated by a finite number of global

sections.

Proof. Let f0, . . . , fr generate R1 over R0, and let Pi = Pfi . For each i there is a finitely

generated module Mi over O(Pi) such that F|Pi = M̃i. For each i, let sij be a finite number

of sections in Mi generating Mi over O(Pi). By Lemma 4.1 there is an integer n such that for

all i, j the sections fni sij extend to global sections of F(n). But for fixed i, the global sections

fni sij (j variable) generate Mi over O(Pi) since fni is invertible over O(Pi). Since the open sets

Pi (i = 0, . . . , r) cover P, this concludes the proof. □

Proposition 4.4. Let F be a finitely generated quasi-coherent sheaf on P. Then there is a

finitely generated R-submodule N of Γ∗F such that F = Ñ .

Proof. As in Proposition 4.2, let M = Γ∗F , so M̃ = F . By Theorem 4.3, there exists n

such that F(n) is generated by global sections in Γ(P,F(n)). Let N be the R-submodule of M

generated by this finite number of global sections. The inclusion N ↪→ M induces an injective

homomorphism of sheaves

0 −→ Ñ −→ M̃ = F
whence an injective homomorphism obtained by twisting n times

0 −→ Ñ(n) −→ M̃(n) = F(n).

This homomorphism is an isomorphism because F(n) is generated by the global sections in N .

Twisting back by −n we get the isomorphism Ñ ≈ F , thereby concluding the proof. □

We have now achieved part of our objective to relate quasi-equal graded modules with

coherent sheaves. We proceed to the inverse construction, and we consider the morphisms.

Proposition 4.5. Assume that M is a finitely presented graded module over R. Let N be

a graded module. Then we have an isomorphism

lim−→
n

Hom(M≥n, N≥n)
≈−→ Hom(M̃, Ñ).
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Proof. Consider a finite presentation

Rp −→ Rq −→M −→ 0.

In such a presentation, the homomorphism are not of degree 0, and we rewrite it in the form

F −→ E −→M −→ 0

where each of F , E is a direct sum of free graded module of type R(d) with d ∈ Z. We then

obtain an exact and commutative diagram

0 // Hom(M̃, Ñ) // Hom(Ẽ, Ñ) // Hom(F̃ , Ñ)

0 // lim−→
n

Hom(M≥n, N≥n) //

OO

lim−→
n

Hom(E≥n, N≥n) //

OO

lim−→
n

Hom(F≥n, N≥n).

OO

It will suffice to prove that the two vertical arrows on the right are isomorphisms. In light of

the direct sum structure of E and F , it suffices to prove that

lim−→
n

Hom(R(d)≥n, N≥n) −→ Hom(R̃(d), Ñ)

is an isomorphism, and twisting by −d, it suffices to prove that

lim−→
n

Hom(R≥n, N≥n) −→ Hom(R̃, Ñ)

is an isomorphism for any graded module N . But R̃ = OP and thus

Hom(R̃, Ñ) = Hom(OP, Ñ) = ΓÑ .

Thus it suffices to prove the following lemma.

Lemma 4.6. Let N be a graded R-module. Then we have an isomorphism

lim−→
n

Hom(R≥n, N≥n)
∼−→ ΓÑ .

Proof of Lemma 4.6. Corresponding to a finite set of generators of R1 over R0, we have

a graded surjective homomorphism

R0[T0, . . . , Tr] −→ R0[R1] = R −→ 0,

which makes P = ProjR into a closed subscheme of PrA where A = R0. We can view the module

N as graded module over PrA, and the sheaves are sheaves over PrA. We also view R as graded

module over the polynomial ring A[T0, . . . , Tr]. The relation to be proved is then concerned with

objects on PrA.
In this notation, the arrow in the lemma is given as follows: For a homomorphism

α : A[T0, . . . , Tr]≥n → N≥n

of gradedA[T0, . . . , Tr]-modules, the global section of Ñ corresponding to α is given by α(T I)/(T I),

where I = (i0, . . . , ir) is an (r+1)-tuple of nonnegative integers with |I| := i0+ · · ·+ ir ≥ n and

T I := T i00 · · ·T irr . In other words, the restriction of this section to the affine open subset (PrA)T I

is α(T I)/T I , an element of degree 0 in the localization NT I .

We have to prove the surjectivity and injectivity of the arrow. For surjectivity, let x ∈ ΓÑ .

Let Pi be the complement of the hyperplane Ti = 0 as usual. Then

resPi(x) =
xi
Tni
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with n sufficiently large and some xi ∈ Nn. Increasing n further, we may assume that

Tni xj = Tnj xi

because xi/T
n
i = xj/T

n
j in NTiTj for all i, j. Therefore there exists a homomorphism of the ideal

(Tn0 , . . . , T
n
r ) into N ,

φ : (Tn0 , . . . , T
n
r ) −→ N

sending Tni 7→ xi for each i, and this homomorphism maps on x by the arrow

Hom(R≥m, N≥m) −→ ΓÑ ,

for m sufficiently large, because R≥m ⊂ (Tn0 , . . . , T
n
r ) for m large compared to n. In fact, the

ideals (Tn0 , . . . , T
n
r ) are cofinal with the modules R≥m as m, n tend to infinity. This shows that

the map

lim−→
n

Hom(R≥n, N≥n) −→ ΓÑ

is surjective. The injectivity is proved in the same way. This concludes the proof of the lemma,

and also the proof of Proposition 4.5. □

□

The proof of the next proposition relies on the following:

Fact. Let F be a coherent sheaf on P = ProjR with R0 noetherian. Then Γ∗F is a finitely

presented R-module.

The proof of this fact will be given as a consequence of theorems in cohomology, by descend-

ing induction, and is therefore postponed to Chapter VII (cf. Theorem VII.6.1, which is the

fundamental theorem of Serre [99], and its proof.)

Proposition 4.7. Let M be a finitely presented graded module over R with R0 noetherian.

Then the natural map

M −→ Γ∗M̃

is an isomorphism modulo quasi-equality.

Proof. By Proposition 4.2 we have an isomorphism

φ : (̃Γ∗M̃)
≈−→ M̃,

so by Proposition 4.5, and the “Fact” above:

φ ∈ Hom((̃Γ∗M̃), M̃) ≈ lim−→
n

Hom((Γ∗M̃)≥n,M≥n).

Therefore φ comes from a homomorphism

hn : (Γ∗M̃)≥n −→M≥n

for n sufficiently large since M is finitely presented over R, that is φ = h̃n. But since φ is an

isomorphism, it follows from applying Proposition 4.5 to φ−1 that hn has to be an isomorphism

for n large. This concludes the proof. □

We can now put together Propositions 4.2 and 4.7 to obtain the goal of this section.
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Theorem 4.8. If R0 is noetherian, then the association

M 7−→ M̃

is an equivalence of categories between finitely presented graded modules over R modulo quasi-

equality and coherent sheaves on P. The inverse functor is given by

F 7−→ Γ∗F .

This theorem now allows us to handle sheaves like graded modules over R. For example we

have the immediate application:

Corollary 4.9. Let F be a coherent sheaf on ProjR with R0 noetherian. Then there exists

a presentation

E −→ F −→ 0

where E is a finite direct sum of sheaves OP(d) with d ∈ Z.

Proof. The corresponding assertion is true for graded modules, represented as quotients

of finite direct sums of modules R(d) with d ∈ Z. Taking the tilde gives the result for coherent

sheaves. □

5. Ample invertible sheaves

There will be two notions of ampleness, one absolute and the other relative. We start with

the absolute notion. For simplicity, we develop the theory only in the notherian case.

Definition 5.1. Let X be a noetherian scheme. An invertible sheaf L on X is called ample

if for all coherent sheaves F on X there exists n0 such that F ⊗ Ln is generated by its global

sections if n ≥ n0.

Example. Serre’s Theorem 4.3 gives the fundamental example of an ample L, namely OP(1)

where P = ProjR with R noetherian.

It is obvious that if L is ample, then Lm is ample for any positive integer m. It is convenient

to have a converse version of this fact.

Lemma 5.2. If Lm is ample for some positive integer m, then L is ample.

Proof. Let F be a coherent sheaf on X. Then F ⊗Lmn is generated by global sections for

all n ≥ n0. Furthermore, for each i = 0, . . . ,m− 1 the sheaf

F ⊗ Li ⊗ Lmn

is generated by global sections for n ≥ ni. We let N be the maximum of n0, . . . , nm−1. Then

F ⊗ Ln is generated by global sections for n ≥ N , thus proving the lemma. □

Definition 5.3. Let φ : X → Y be a morphism of finite type over a noetherian base Y . Let

L be an invertible sheaf on X. We say that L is relatively very ample with respect to φ, or φ-

relatively very ample, if there exists a coherent sheaf F on Y and an immersion (not necessarily

closed)

ι : X −→ PY (F)
over Y , i.e., making the following diagram commutative

X
ι

//

φ
��

???????? PY (F)

π
||xxxxxxxxx

Y
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such that L = ι∗OP(1). We say that L is relatively ample if for some n ≥ 1, L⊗n is relatively

very ample.

The definition is adjusted to be able to deal with a wide assortment of base scheme Y .

However, when Y = Spec(A) is affine, then it turns out that one can replace PY (F) by PrA for

some r, as in the following theorem. Observe that in the affine case, we have

PrA = PY (F) with F = O⊕(r+1)
Y .

Theorem 5.4. Let X be a scheme of finite type over a noetherian ring A and let L be

an invertible sheaf on X. Then L is ample if and only if L is relatively ample over Spec(A).

Moreover, when this holds the immersion ι : X → PA(F) such that L = ι∗OP(1) can be taken

into projective space PrA.

Remark. Serre’s cohomological criterion for ampleness will be given in Theorem VII.8.2.

Proof. Suppose that there is an immersion ι : X → PrA. The only problem to show that L
is ample is that X need not be closed in PrA, because if X is closed then we can apply Theorem

4.3. The next result is designed to take care of this problem.

Proposition 5.5. Let F be a quasi-coherent sheaf on a noetherian scheme X. Let U be an

open subscheme of X, and let GU be a coherent subsheaf of F|U . Then there exists a coherent

subsheaf G of F on X such that

G|U = GU .

Proof. Consider all pairs (G,W ) consisting of an open subscheme W of X and a coherent

subsheaf G of F|W extending (GU , U). Such pairs are partially ordered by inclusion of W ’s and

are in fact inductively ordered because the notion of a coherent sheaf is local, so the usual union

over a totally ordered subfamily gives a pair dominating every element of the family. By Zorn’s

lemma, there exists a maximal element, say (G,W ). We reduce the proposition to the affine

case as follows. If W ̸= X, then there is an affine open subscheme V = Spec(A) in X such that

V ̸⊂ W . Then W ∩ V is an open subscheme of V , and if we have the proposition in the affine

case, then we extend G from W ∩ V to V , thus extending G to a larger subscheme than W ,

contradicting the maximality.

We now prove the proposition when X is affine. In that case, we note that the coherent

subsheaves of GU satisfy the ascending chain condition. We let G1 be a maximal coherent

subsheaf which admits a coherent extension G which is a subsheaf of F . We want to prove that

G1 = GU . If G1 ̸= GU then there exists an affine open Xf ⊂ U and a section s ∈ GU (Xf ) such

that s ̸∈ G1(Xf ). By Lemma 4.1 (ii), there exists n such that fns extends to a section s′ ∈ F(X)

and the restriction of s′ to U is in F(U). By Lemma 4.1 (i) there exists a still higher power fm

such that

fm(s′|U ) = 0 in (F/G)(U).

Then G1 + fms′OX is a coherent subsheaf of F which is bigger than G1, contradiction. This

concludes the proof of the proposition. □

Corollary 5.6. Let X be a noetherian scheme. Let U be an open subscheme, and let G be

a coherent sheaf on U . Then G has a coherent extension to X, and this coherent extension may

be taken as a subsheaf of ι∗G, where ι : U → X is the open immersion.

Proof. By Proposition II.4.10 we know that ι∗G is quasi-coherent, and so we can apply

Proposition 5.5 to finish the proof. □
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We can now finish one implication in Theorem 5.4. Assuming that we have the projective

immersion ι : X → PrA, we consider the closure X and apply Theorem 4.3 to an extension F
of a coherent sheaf F on X. Then F ⊗ OX(n) is generated by global sections for n ≥ n0, and

the restrictions of these sections to F generate F , thus concluding the proof of one half of the

theorem.

To prove the converse, we need a lemma.

Lemma 5.7. Let L be an ample sheaf on a noetherian scheme X. Then there exists an open

affine covering of X by subschemes defined by the property s(x) ̸= 0, for some global section s

of Ln, some n.

Proof. Given a point x ∈ X, there is an open affine neighborhood U of x such that L|U is

free. Let Y = X \U be the complement of U , with the reduced scheme structure, so that Y is a

closed subscheme, defined by a sheaf of ideals IY , which is coherent on X. There exists n such

that IY ⊗ Ln is generated by global sections, and in particular, there is a section s of IY ⊗ Ln
such that s(x) ̸= 0, or equivalently, sx ̸∈ mx(IY ⊗ Ln)x. Since Ln is free, we can view IY ⊗ Ln
as a subsheaf of Ln. Then by Lemma 2.3 the set Xs of points z such that s(z) ̸= 0 is open and

is contained in U because s(y) ∈ myLny for y ∈ Y . The section s restricted to U can be viewed

as an element of Ln(U), and since L, so Ln, are free over U , it follows that s corresponds to a

section f of OU and that Xs = Uf so Xs is affine. □

Thus we have proved that for each point x ∈ X there is an affine open neighborhood Xs

defined by a global section s of Ln(x) such that s(x) ̸= 0. Since X is quasi-compact, we can cover

X by a finite number of such affine open sets, and we let m to be the least common multiple of

the finite number of exponents n(x).

Since we wish to prove that Ln is very ample for sufficiently large n, we may now replace L
by Lm without loss of generality. We are then in the situation when we have a finite number of

global sections s1, . . . , sr of L which generate L, such that Xsi is affine for all i, and such that

the open sets Xsi cover X. We abbreviate Xsi by Xi.

Let Bi be the affine algebra of Xi over A. By assumption X is of finite type over A, so Bi
is finitely generated as A-algebra, say by elements bij . By Lemma 4.1 there exists an integer

N such that for all i, j the section sNi bij extends to a global section tij of LN . The family of

sections sNi , tij for all i, j generates LN since already the sections sN1 , . . . , s
N
r generate LN , and

hence they define a morphism

ψ : X −→ PMA
for some integer M . It will now suffice to prove that ψ is a closed immersion. Let Ti, Tij be the

homogeneous coordinates of PMA , and put P = PMA for simplicity. If Pi is the complement of the

hyperplane Ti = 0 then Xi = ψ−1(Pi). The morphism induces a morphism

ψi : Xi −→ Pi
which corresponds to a homomorphism of the corresponding affine algebras

A[zk, zkj ] −→ Bi,

where zk, zkj are the affine coordinates: zk = Tk/Ti and zkj = Tkj/Ti. We see that zij maps on

tij/s
N
i = bij so the affine algebra homomorphism is surjective. This means that ψi is a closed

immersion of Xi in Pi. Since X is covered by the finite number of affine open sets X1, . . . , Xr

it follows by Corollary II.3.5 that ψ itself is a closed immersion. This concludes the proof of

Theorem 5.4. □

Next we want to investigate the analogous situation when the base Y is not affine.
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Proposition 5.8. Let U be open in X and L ample on X. Then L|U is ample on U .

Proof. By Corollary 5.6, a coherent sheaf F on U has an extension to a coherent sheaf on

X. Global sections which generate this extension restrict to sections of F on U which generate

F on U , so the proposition is immediate. □

Now comes the globalized version of Theorem 5.4.

Theorem 5.9. Let φ : X → Y be of finite type with X, Y noetherian. The following condi-

tions are equivalent.

i) There exists a positive integer n such that Ln is relatively very ample for φ.

ii) There exists an open affine covering {Vi} of Y such that L|φ−1Vi is ample for all i.

iii) For all affine open subsets V of Y the restriction L|φ−1V is ample.

Proof. The implication (iii) =⇒ (ii) is trivial and (i) implies (iii) follows immediately

from Theorem 5.4.

We must show that (ii) implies (i). We have done this when the base Y is affine in Theorem

5.4, and we must globalize the construction. When Y is affine, we could take the immersion of

X into a projective space, but now we must use PY (F) with some sheaf F which need not be

locally free.

Applying Theorem 5.4 to L|φ−1Vi , we get coherent sheaves Fi on Vi and immersions ψi

φ−1(Vi)
ψi

//

resφ
##GGGGGGGGG

PVi(Fi)

{{xxxxxxxxx

Vi

satisfying ψ∗
i (O(1)) ≈ Lni |φ−1Vi . We first make two reductions. First of all, we may assume the

ni are equal because if n = l.c.m(ni) and mi = n/ni then

PVi(Fi) = ProjVi (Symm(Fi))

≈ ProjVi

(⊕
k

Symmmik(Fi)

)
= ProjVi (Symm(Symmmi(Fi)) /Ii) for some ideal Ii

⊂ PVi (Symmmi(Fi)) .

Replacing Fi by Symmmi(Fi), we find ψ∗
i (O(1)) ≈ Ln|φ−1Vi for the new ψi.

Secondly, ψi gives us the canonical surjective homomorphisms

αi : (resφ)
∗(Fi) ↠ Ln|φ−1Vi

hence

βi : Fi −→ (resφ)∗(Ln|φ−1Vi) (cf. (I.5.11)).

We may assume that βi is injective. In fact, let F ′
i be the image of Fi in (resφ)∗(Ln|φ−1Vi).

Then F ′
i is still coherent because (resφ)∗(Ln|φ−1Vi) is quasi-coherent (cf. Proposition II.4.10),

and the morphism ψi factors

φ−1(Vi)→ PVi(F ′
i) ↪→ PVi(Fi).

We now apply Corollary 5.6 to choose a coherent subsheaf Gi ⊂ φ∗Ln such that Gi|Vi ≈ Fi. Now

the homomorphism

β :
⊕
Gi −→ φ∗Ln
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defines

α : φ∗
(⊕

Gi
)
−→ Ln

(cf. (I.5.11)) and α is surjective because on each Vi,

φ∗Gi|Vi −→ Ln|Vi
is surjective. By the universal mapping property of PY , Ln and α define a morphism:

X
ψ

/ /

φ
��

???????? PY (
⊕
Gi)

π
zzuuuuuuuuuu

Y

I claim this is an immersion. In fact, restrict the morphisms to φ−1(Vi). The functoriality of

Proj (cf. §II.5, Remark h)) plus the homomorphism

Symm(Gi|Vi) ↪→ Symm(
⊕
Gj |Vi)

gives us an open set Wi ⊂ PY (
⊕
Gj) and a “projection” morphism:

Wi

��

⊂ PY (
⊕
Gj)

PY (Gi)

It is not hard to verify that ψ(φ−1(Vi)) ⊂Wi, and that the following diagram commutes:

X
ψ

//

∪

PY (
⊕
Gj)

∪

φ−1(Vi)
resφ

//

ψi

##HHHHHHHHHHHHHHHH
Wi ∩ π−1(Vi)

��

PVi(Gi|Vi)
≈
��

PVi(Fi)

Since ψi is an immersion, so is resψ (cf. Proposition II.3.14), and since this holds for all i, it

follows that ψ is an immersion. □

A final result explains further why relatively ample is the relative version of the concept

ample.

Theorem 5.10. Let f : X → Y be of finite type with X, Y noetherian. Let L be relatively

ample on X with respect to f , and M ample on Y . Then L ⊗ f∗Mk is ample on X for all k

sufficiently large.

Proof. The first step is to fix a coherent sheaf F onX and to show that for all n1 sufficiently

large, there exists n2 such that

F ⊗ Ln1 ⊗ f∗Mn2

is generated by global sections. This goes as follows: because M is ample, Y can be covered

by affine open sets Ysi , with si ∈ Γ(Y,Mm1) for suitable m1 by Lemma 5.7. Then L|f−1(Ysi )

is ample by Theorem 5.4. Thus F ⊗ Ln1 |f−1(Ysi )
is generated by sections ti1, . . . , tiN if n1 is

sufficiently large. But by Lemma 4.1, for large m2 all the sections

sm2
i tij
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n2

n1

Figure III.1

extend from Xsi to X as sections of F⊗Ln1⊗f∗(Mm1m2). Let n2 = m1m2. Then this collection

of global sections generates

F ⊗ Ln1 ⊗ f∗(Mn2).

There remains to “rearrange the order of the quantifiers”, i.e., to pick an upper bound of

n2/n1 independent of F . The simplest way to do this is to consider the set:

S = {(n1, n2) | Ln1 ⊗ f∗(Mn2) is generated by global sections}.

Note that:

(a) S is a semi-group;

(b) S ⊃ (0) × (n0 + N) for some n0 because M is ample on Y (N is the set of positive

integers);

(c) there exists n′0 such that if n1 ≥ n′0 then

(n1, n2) ∈ S for some n2.

For this last part, apply Step I with F = OX .
A little juggling will convince you that such an S must satisfy

S ⊃ {(n1, n2) | n2 ≥ k0n1 ≥ n0}

for suitable k0, n0 (see Figure III.1). Now take any k > k0 (strictly greater). Then I claim

L ⊗ f∗Mk is ample. In fact, for any F ,

F ⊗ Ln1 ⊗ f∗Mn2

is generated by its sections for some n1, n2. Then so is

F ⊗ Ln1+n′
1 ⊗ f∗Mn2+n′

2 if (n′1, n
′
2) ∈ S.

But (n, nk)− (n1, n2) ∈ S if n≫ 0, so we are OK. This concludes the proof of the theorem. □
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6. Invertible sheaves via cocycles, divisors, line bundles

There is a natural correspondence between the four objects occurring in the title of this

section. We have already met the invertible sheaves. We shall define the other three and

establish this correspondence. We then relate these to Weil divisors.

Basic to all the constructions is the following definition. Let X be a scheme. We define the

subsheaf of units O∗
X of OX to be the sheaf such that for any open U we have

O∗
X(U) = OX(U)∗ = units in OX(U)

= {f ∈ OX(U) such that f(x) ̸= 0 for all x ∈ U}.

1-cocycles of units. Let X be a scheme and let L be an invertible sheaf of OX -modules

or as we also say, an invertible sheaf over X. Let {Ui} = U be an open covering such that the

restriction L|Ui is isomorphic to OX |Ui for each i. Thus we have isomorphisms

φi : L|Ui −→ OX |Ui .

It follows that

φij = φi ◦ φ−1
j : OX |(Ui∩Uj) −→ OX |(Ui∩Uj)

is an automorphism, which is OX -linear, and so is given by multiplication with a unit in OX(Ui∩
Uj)

∗. We may therefore identify φij with such a unit. The family of such units {φij} satisfies
the condition

φijφjk = φik.

A family of units satisfying this condition is called a 1-cocycle. The group of these is denoted

Z1(U ,O∗
X). By a coboundary we mean a cocycle which can be written in the form fif

−1
j , where

fi ∈ OX(Ui)∗. These form a subgroup of Z1(U ,O∗
X) written B1(U ,O∗

X). The factor group

Z1(U ,O∗
X)/B

1(U ,O∗
X) is called H1(U ,O∗

X). If U ′ is a refinement of U , i.e., for each U ′
i ∈ U ′,

there is a Uj ∈ U such that U ′
i ⊂ Uj , then there is a natural homomorphism

H1(U ,O∗
X) −→ H1(U ′,O∗

X),

(for details, see §VII.1). The direct limit taken over all open coverings U is called the first Čech

cohomology group H1(X,O∗
X).

Suppose

f : L −→M
is an isomorphism of invertible sheaves. We can find a covering U by open sets such that on

each Ui of U , L andM are free. Then f is represented by an isomorphism

fi : OX |Ui −→ OX |Ui

which can be identified with an element of OX(Ui)∗. We then see that the cocycles φij and φ
′
ij

associated to L and M with respect to this covering differ by multiplication by fif
−1
j . This

yields a homomorphism (cf. Definition 1.2)

Pic(X) −→ H1(X,O∗
X).

Proposition 6.1. This map Pic(X)→ H1(X,O∗
X) is an isomorphism.

Proof. The map is injective, for if two cocycles associated with L,M give the same element

in H1(X,O∗
X), then the quotient of these cocycles is a coboundary which can be used to define

an isomorphism between the invertible sheaves. Conversely, given a cocycle φij ∈ Z1(U ,O∗
X) it

constitutes glueing data in the sense of §I.5 and there exists a unique sheaf L which corresponds

to this glueing data. □
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Cartier divisors. Let X be a scheme. Let U = Spec(A) be an open affine subset of X. Let

S be the multiplicative subset of elements of A which are not zero-divisors, and letK(U) = S−1A

be the localization of A with this subset. We call K(U), also denoted by K(A), the total quotient

ring of A. If A has no divisors of 0, then K(A) is the usual quotient field.

The association U 7→ K(U) defines a presheaf, whose associated sheaf is the sheaf of total

quotient rings of OX , and is denoted by KX . If X is integral, then all the rings OX(U) for affine

open U can be identified as subrings of the same quotient field K and KX is the constant sheaf

with global sections K. (K = R(X), the function field of X, in the notation of Proposition

II.2.5.)

We now consider pairs (U, f) consisting of an open set U and an element f ∈ K∗(U), where

K∗(U) is the group of invertible elements of K(U). We say that two such pairs (U, f) and (V, g)

are compatible if fg−1 ∈ O(U ∩V )∗, that is, fg−1 is a unit in the sheaf of rings over U ∩V . Let

{(Ui, fi)} be a family of compatible pairs such that the open sets Ui cover X. Two such families

are called compatible if each pair from one is compatible with all the pairs from the other. A

compatibility class of such covering families is a Cartier divisor D. As usual, we can say that

a Cartier divisor is a maximal family of compatible pairs, covering X. If f ∈ K∗(U) and (U, f)

belongs to the compatibility class, then we say that the divisor is represented by f over U , and

we write D|U = (f). We also say that f = 0 is a local equation for D over U .

This amounts to saying that a Cartier divisor is a global section of the sheaf K∗
X/O∗

X . We

can define the support of a Cartier divisor D, and denote by Supp(D), the set of points x such

that if D is represented by (U, f) on an open neighborhood of x, then f ̸∈ O∗
x. It is easy to see

that the support of D is closed.

A Cartier divisor is called principal if there exists an element f ∈ Γ(X,K∗) such that for

every open set U , the pair (U, f) represents the divisor. We write (f) for this principal divisor.

Let D, E be Cartier divisors. Then there exists a unique Cartier divisor D + E having

the following property. If (U, f) represents D and (U, g) represents E, then (U, fg) represents

D+E. This is immediate, and one then sees that Cartier divisors form a group Div(X) having

the principal divisors as subgroup. The group is written additively, so −D is represented by

(U, f−1). We can take f−1 since f ∈ K∗(U) by definition.

We introduce a partial ordering in the group of divisors. We say that a divisor D is effective

if for every representative (U, f) of the divisor, the function f is a morphism on U , that is,

f ∈ OX(U). The set of effective divisors is closed under addition. We write D ≥ 0 if D is

effective, and D ≥ E if D − E is effective. Note: although sometimes one also calls D positive,

there are other positive cones which can be introduced in the group of divisors, such as the

ample cone. The word “positive” is usually reserved for these other cones.

Remark. It may be that the function f is not on OX(U) but is integral over OX(U). Thus

the function f may be finite over a point, without being a morphism. If X is integral, and all

the local rings Ox for x ∈ X are integrally closed, then this cannot happen. See below, where

we discuss divisors in this context. In this case, the support of D turns out to be the union

of the codimension one subschemes where the representative function f has a zero or a pole.

This difference in behavior is one of the main differences between Cartier divisors and the other

divisors discussed below.

Let D be an effective Cartier divisor. If (U, f) is a representative of D, then f generates a

principal ideal in OX(U), and this ideal does not depend on the choice of f . In this way we can

define a sheaf of ideals, denoted by ID. It defines a closed subscheme, which is often identified

with D.
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Two Cartier divisors D, E are called linearly equivalent, and we write D ∼ E, if there exists

f ∈ Γ(X,K∗
X) such that

D = E + (f).

In other words, D − E is principal. We define the group of divisor classes

DivCl(X) = Div(X)/K∗
X(X)

to be the factor group of Cartier divisors mod principal divisors.

To each Cartier divisor D we shall now associate an invertible sheaf OX(D) = O(D) as

follows. If {(Ui, fi)} is a covering family of pairs representing D, then there is a unique subsheaf

L of KX such that

L(Ui) = O(Ui)f−1
i .

This subsheaf is denoted by O(D). Since fi is a unit in KX(Ui), it follows that L(Ui) is free of

rank one over O(Ui), so O(D) is invertible. ID = OX(−D) if D is effective.

Proposition 6.2. The association

D 7−→ O(D)

is an isomorphism between Cartier divisors and invertible subsheaves of KX (under the tensor

product).

It induces an injective homomorphism on the classes

0 −→ DivCl(X) −→ Pic(X),

where Pic(X) is the group of isomorphism classes of invertible sheaves. In other words, D ∼ E
if and only if O(D) ≈ O(E). If X is an integral scheme, then this homomorphism is surjective,

so we have a natural isomorphism

DivCl(X) ≈ Pic(X).

Proof. The fact that the map D 7→ O(D) is homomorphic is immediate from the def-

initions. From an invertible subsheaf of KX we can define a Cartier divisor by the inverse

construction that we used to get O(D) from D. That is, D is represented by f on U if and only

if O(D) is free with basis f−1 over U . If D ∼ E, say D = E + (f), then multiplication by f

induces an isomorphism from O(D) to O(E). Conversely suppose O(D) is isomorphic to O(E).

Then O(D − E) is isomorphic to O = OX , so we must prove that if O(D) ≈ O then D = 0.

But the image of the global section 1 ∈ K∗(X) then represents D as a principal divisor.

Finally, suppose X integral. We must show that every invertible sheaf is isomorphic to O(D)

for some divisor D. Let

φi : L|Ui −→ O|Ui

be an isomorphism and let φij = φi ◦ φ−1
j ∈ O(Ui ∩ Uj)∗ be the associated cocycle. We have

seen already that this constitutes glueing data to define an invertible sheaf. But now we may

view all rings O(Ui) or O(Ui ∩Uj) as contained in the quotient field K of X since X is integral.

We fix an index j, and define the divisor D by the covering {Ui}, and the local equation φij . In

other words, the family of pairs (Ui, φij) (with j fixed) is a compatible family, defining a Cartier

divisor D. Then it is immediately verified that O(D) is isomorphic to L. This concludes the

proof. □
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Line bundles. Let L → X be a scheme over X. Let A1 be the affine line. We shall say

that L is a line bundle over X if one is given an open affine covering {Ui} of X and over each

Ui an isomorphism of schemes

fi : L|Ui −→ Ui × A1

over Ui such that the automorphism

fi ◦ f−1
j : (Ui ∩ Uj)× A1 −→ (Ui ∩ Uj)× A1

over Ui ∩ Uj is given by an O(Ui ∩ Uj)-linear map. Such a map is then represented by a unit

φij ∈ O(Ui ∩ Uj)∗, and such units satisfy the cocycle condition. Consequently, there is an

invertible sheaf L corresponding to this cocycle.

One defines an isomorphism of line bundles over X in the obvious way, so that they are

linear on the affine line when given local representations as above.

Proposition 6.3. The above association of a cocycle to a line bundle over X induces a bi-

jection between isomorphism classes of line bundles over X and H1(X,O∗
X). If L is an invertible

sheaf corresponding to the cocycle, then we have an isomorphism

L ≈ SpecX(Symm∗(L)).

Proof. Left to the reader. □

Weil divisors. The objects that we have called Cartier divisors are rather different from

the divisors that we defined in Part I [87, §1C]. In good cases we can bring these closer together.

The problem is: for which integral domain R can we describe the structure of K∗/R∗ more

simply?

Definition 6.4. A (not necessarily integral) scheme X is called normal if all its local rings

Ox,X are integral domains, integrally closed in their quotient field (integrally closed, for short);

factorial if all its local rings Ox,X are unique factorization domains (UFD).

In particular, note that:

X factorial =⇒ X normal

(all UFD’s are integrally closed,

see Zariski-Samuel [119, vol. I, Chapter V, §3, p. 261])
X normal =⇒ X reduced.

Now the fundamental structure theorem for integrally closed ring states:

Theorem 6.5 (Krull’s Structure Theorem). Let R be a noetherian integral domain. Then

R integrally closed⇐⇒


a) ∀(non-zero) minimal prime ideal p ⊂ R,

Rp is a discrete valuation ring,

b) R =
∩

p (non-zero) minimalRp

(cf. Zariski-Samuel [119, vol. I, Chapter V, §6]; Bourbaki [27, Chapter 7]).

Corollary 6.6. Assume a noetherian domain R to be integrally closed. Let

S = set of (non-zero) minimal prime ideals of R

Z1(R) = free abelian group generated by S.

If p ∈ S

ordp =

{
valuation on K∗ defined by the valuation ring Rp

i.e., if π ·Rp = maximal ideal, f = πordp f · u, u ∈ R∗
p

}
.
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Then the homomorphism:

ord: K∗/R∗ −→ Z1(R)

given by ord(f) =
∑

S(ordp f) · p is injective. ord is surjective if and only if R is a UFD.

Proof. Everything is a straightforward consequence of Theorem 6.5 except for the last

assertion. This follows from the well known characterization of UFD’s among all noetherian

domains—that the (non-zero) minimal prime ideals should be principal, i.e., that Image(ord) ∋
the cycle p (cf. Zariski-Samuel [119, vol. I, Chapter IV, §14, p. 238]). □

Corollary 6.7. Assume X is a normal irreducible noetherian scheme. Let

S = set of maximal closed irreducible subsets Z ⫋ X

Z1(X) = free abelian group generated by S.

Z1(X) is called the group of Weil divisors on X. If Z ∈ S, let

ordZ =

{
valuation on R(X) defined by the valuation ring

Oz,X , z = generic point of Z

}
.

Then there is a well-defined homomorphism:

ord: Div(X) −→ Z1(X)

given by ord(D) =
∑

S(ordZ(fz))·Z (where fz = local equation of D near the generic point z ∈ Z),
and it is injective. ord is surjective if and only if X is factorial.

Proof. Straightforward. □

Remark. Let X be a normal irreducible noetherian scheme with the function field R(X),

and let D be a Cartier divisor on X. Then for f ∈ R(X)∗, one has (f) +D ≥ 0 if and only if

f ∈ Γ(X,OX(D)). Thus the set of effective Cartier divisors linearly equivalent to D is controlled

by the space Γ(X,OX(D)) of global sections of the invertible sheaf OX(D).

Exercise

For some of the notions and terminology in the following, the reader is referred

to Part I [87].

(1) A quasi-coherent OX -module F is said to be locally free of rank r if each point x ∈ X
has a neighborhood U such that there is an isomorphism

(OX |U )⊕r
≈−→ F|U

(cf, Definition I.5.3). As a generalization of Proposition 6.1, show that such an F may

be explicitly described in terms of H1(X,GLr(OX)). As a generalization of Proposition

6.3, show that the isomorphism classes of vector bundles over X and those of locally

free OX -modules are in one-to-one correspondence: Given a locally free OX -module F
of rank r, let F̌ = Hom(F ,OX) be the dual OX -module. Let

V(F) = SpecX(

∞⊕
n=0

Symmn(F̌)),

and let π : V(F)→ X be the projection. π : V(F)→ X is the vector bundle of rank r

over X, and F is the sheaf of germs of sections of π.
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(2) Prove that the Segre embedding (cf. Example I.8.11 and Proposition II.1.2)

i : Pn1
Z ×Z Pn2

Z ↪→ Pn1n2+n1+n2
Z

corresponds in Theorem 2.2 to the invertible sheafOPn1
Z
(1)⊗ZOPn2

Z
(1) and the surjective

homomorphism

(OPn1
Z
)⊕(n1+1) ⊗Z (OPn2

Z
)⊕(n2+1) −→ OPn1

Z
(1)⊗Z OPn2

Z
(1)

obtained as the tensor product over Z of the canonical surjective homomorphisms

(OPn1
Z
)⊕(n1+1) −→ OPn1

Z
(1)

(OPn2
Z
)⊕(n2+1) −→ OPn2

Z
(1).

(3) Let X be of finite type over R. Prove that if L1, L2 are very ample (resp. ample)

invertible sheaves on X, then L1 ⊗ L2 is very ample (resp. ample). Referred to in the

proof of Theorem VIII.5.5.

(4) Let k be a field and consider Pnk .
a) All maximal irreducible subsets of Pnk are of the form V (f), f ∈ k[X0, . . . , Xn]

homogeneous and irreducible.

b) All effective Cartier divisors D on Pnk , considered via (a) above as subschemes of

Pnk , are equal to V (f), some homogeneous f ∈ k[X0, . . . , Xn].

c) Two effective divisors D1 = V (f1) and D2 = V (f2) are linearly equivalent if and

only if deg f1 = deg f2; hence the set of all effective divisors D given by subschemes

V (f), deg f = d, is a complete linear system; the canonical map

k[X0, . . . , Xn]d −→ Γ(Pnk ,OPn
k
(d))

is an isomorphism and Pic(Pnk) ∼= Z, with OPn
k
(1) being a generator.

d) If σ : Pnk → Pnk is an automorphism over k, then σ∗(OPn
k
(1)) ∼= OPn

k
(1). Using the

induced action on Γ(Pnk ,OPn
k
(1)), show that σ is induced by the linear change of

homogeneous coordinates A ∈ GLn+1(k).

(5) Work over a field k. Let T ⊂ P2 be the “triangle” defined by x0x1x2 = 0, a closed

subscheme. Let f : P2\T → P2\T be the isomorphism defined in projective coordinates

by

(x0 : x1 : x2) 7→
(

1

x0
:
1

x1
:
1

x2

)
.

Let Z be the Zariski closure of the graph of f in P2 ×Spec(k) P2, a closed subscheme of

P2 ×Spec(k) P2. Let p1 : Z → P2 be the projection to the first factor of P2 ×Spec(k) P2,

thought of as the source of the birational map f . Relate p1 : Z → P2 to a suitable blow

up of P2.

(6) Work over a base field k. Let y be a k-point of P2, and let f : Y → P2 be the blow up

of P2 with center y. Let E be the exceptional divisor for Y → P2. Let L be a line on

P2 passing through y, and let L̃ be the strict transform of L in Y . Let h and e be the

class of f∗OP2(1) and OY (E) in Pic(Y ), respectively.

(i) Show h, e form a Z-basis of the Picard group of Y , with (h · h) = 1, (h · e) = 0,

(e · e) = −1.
(ii) Prove that an element ah − be in Pic(Y ) with a, b ∈ Z is the class of an effective

divisor if and only if a ≥ b ≥ 0.

(iii) Prove that an element ah − be in Pic(Y ) is the class of an ample invertible OY -
module if and only if a > b > 0.
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(iv) Let F := f∗OP2(2)⊗OY (−E). Show that the linear system |Γ(Y,F)| is canonically
isomorphic to the linear system of quadrics on P2 passing through y, and defines

an embedding ιF : Y ↪→ P4 of Y as a surface of degree 3 in P4.

(v) Show that the linear pencil |Γ(Y, f∗OP2(1)⊗OY (−E)| is base point free, and de-

fines a fibration g : Y → P1.

(vi) Let Y1 := ProjP1(Symm∗(OP1 ⊕ OP1(1))), and let g : Y1 → P1 be the structure

morphism for ProjP1(Symm∗(OP1 ⊕ OP1(1))). Show that (g : Y → P1, f∗OP2(1))

is isomorphic to (g1 : Y1 → P1,O(1)), where the last term O(1) is the universal

invertible quotient OY -module of g∗1(OP1 ⊕OP1(1)) on Y1.

(vii) Which ones among ample invertible OY -modules are very ample?

(7) Work over a base field k. Let X be a smooth quadric in P3, x0 a k-rational point of X,

and g : X //___ P2 be the projection from x0 to a plane disjoint from x0, a rational

map which is regular on X \ {x0}.
(i) Show that g does not extend to a morphism on X.

(ii) Show that g is a birational map.

(iii) Determine all P1’s contracted by g.

(iv) Let α : B → X be the blow up of X at x0. Show that the birational map g induces

a morphism β : B → P2.

(v) Let y1 and y2 be the images in P2 of the two lines in X contracted under g. Show

that B is isomorphic to the blow up of P2 at y1 and y2.

(vi) Show that the birational map g−1 : P2 //___ X is given by the linear system of

conics on P2 passing through y1 and y2.

(vii) Show that X is not isomorphic to the blow up of P2 centered at a closed point.

(8) (Continuation of the previous exercise) Let E be the exception divisor for α. Let l1∪ l2
be the intersection of X with its tangent plane Tx0X at x0, and let E1, E2 be the strict

transforms of l1, l2, respectively. Then the total transform on B of li is Ei + E (as

a divisor), i = 1, 2. We saw that E1 and E2 are the two exceptional divisors for the

morphism β with β(Ei) = yi for i = 1, 2. Let h, h1, h2 be the classes of β∗OP2(1),

α∗O(l1), α∗O(l2) in Pic(B), respectively. Similarly, denote by e, e1, e2 the classes of

OB(E), OB(E1) and OB(E2), respectively. So we have 6 elements h, e1, e2, h1, h2, e

in Pic(B).

(i) Show that E is the strict transform on B of the line y1 y2 on P2.

(ii) Show that h, e1, e2 form a Z-basis of Pic(B), and so do h1, h2, e. These two bases

are related by
e1 = h1 − e
e2 = h2 − e
h = h1 + h2 − e


h1 = h− e2
h2 = h− e1
e = h− e1 − e2

A third Z-basis is {e, e1, e2}, and we have

h1 = e1 + e, h2 = e1 + e, h = e1 + e2 + e.

The classes e, e1, e2, h, h1, h2 are all effective.

(iii) Verify that the intersection numbers for the elements h1, h2, h, e, e1, e2 are given

by

e · e = e1 · e1 = e2 · e2 = −1,

h · e1 = h · e2 = h1 · e1 = h2 · e2 = h1 · e = h2 · e = h1 · h1 = h2 · h2 = e1 · e2 = 0,

e1 · e = e1 · e = h · h = h · h1 = h · h2 = h1 · h2 = h1 · e2 = h2 · e1 = h · e = 1.
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(iii) Show that ae+ b1e1+ b2e2 is the class of an effective divisor if and only if a, b1, b2
are non-negative integers.

Hint: If ae+b1e1+b2e2 is the class of an effective divisor D which does not contain

E, E1, E2, then (D · E) ≥ 0, (D · Ei) ≥ 0.

(iv) Deduce that an invertibleOB-module β∗OP2(a)⊗OB(b1E1+b2E2) with a, b1, b2 ∈ Z
is ample if and only if b1 > 0, b2 > 0 and a− b1 − b2 > 0.

(v) Which among these ample divisors on OB are very ample?

(9) Let k be a field. Let X = Bly(Pn), the blow up of Pn at a k-rational point y ∈ Pn,
n ≥ 2. Let N = (n+1)(n+2)/2−2. Let g′ : Pn //___ PN be the rational map defined

by the linear system of quadrics on Pn passing through y.

(i) Show that the rational map g′ extends to a morphism g : X → PN , which is a

closed immersion.

(ii) Show that g∗OPN (1) is isomorphic to f∗(OPn(2))(−E), where f : X → Pn is the

blow up, and E is the exceptional divisor above y.

(iii) Determine h0(X,L⊗m), where L is the ample invertible sheaf f∗(OPn(2))(−E) on

X.

(iv) Conclude from (iii) that deg(g(X)) = 2n − 1, i.e., g(X) is a subvariety of PN of

degree 2n − 1.

(10) Let f : Y → Pn be the blow up of a linear subspace L ∼= Pn−2 in Pn, n ≥ 2. Let E ⊂ Y
be the exceptional divisor for f . Let g′ : Pn //___ P1 be the linear projection with

center L, a rational map from Pn to P1.

(i) Show that the rational map g′ extends to a morphism g : Y → P1.

(ii) Let Y1 := ProjP1(Symm∗(O⊕(n−1)
P1 ⊕ OP1(1))), let g1 : Y1 → P1 be the structure

morphism, denote by L the universal invertible quotient OY1-module on Y . Show

that the pairs

(Y
g−→ P1, f∗OPn(1)) and (Y1

g1−→ P1,L)

are isomorphic.

(iii) Show that E is identified with the closed subscheme ProjP1(Symm∗(O⊕(n−1)
P1 ))

under the isomorphism in (ii). In particular E ∼= L× P1.

(iv) Show that L ⊗ OE is isomorphic to p∗LOL(1), where pL : E → L is the natural

projection.

(v) Show that NE/Y ∼= p∗LOL(1)⊗p∗2OP1(−1), where NE/Y denotes the normal bundle

for E ↪→ Y , and p2 : Y ∼= L× P1 is the projection to P1.

(vi) Show that F := L⊗2 ⊗OY (−E) is a very ample invertible sheaf on Y .

(vii) Determine the degrees of Y and E with respect to the very ample invertible sheaf

F on Y .

Hint: Use (vi) to show that degF (E) = n− 1.

(11) Work over a field k. Let H be a hyperplane in Pn, n ≥ 2. Let Z ⊂ H be a smooth

hypersurface in H of degree d, d ≥ 2. Let f : X → Pn be the blow up of Pn with

center Z, and let Y be the strict transform of H. By the universal property of blow

ups, the OX -module J := f−1IZ · OX , i.e., the ideal in OX generated by the image of

the sheaf of ideals IZ ⊂ OPn for Z ⊂ Pn, is an invertible OX -module isomorphic to the

sheaf “OX(1)” on X = ProjPn(⊕n≥0InZ). Show that Y is isomorphic to H under the

morphism f , and J ⊗OX
OY is isomorphic to f∗OPn(−d)⊗OX

OY .
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(12) Work over a field k. Let X be a smooth quadric in Pn+1, n ≥ 2. Let x be a k-point of

X, and let p : X //___ Pn be the linear projection from x. Let π : B → X be the blow

up of X with center x.

(i) Show that the birational map p : X //___ Pn induces a morphism f : B → Pn.
(ii) Let C(x) be the intersection of X with the hyperplane T (x) ⊂ Pn tangent to

X at x. Show that C(x) is a cone over a smooth conic Q′ in T (x). Moreover,

Q′ is mapped isomorphically under the projection p to a smooth quadric Q in a

hyperplane of Pn.
(iii) Show that f : B → Pn factors through the blow up of BlQ(Pn) of Pn with center

Q; the resulting morphism f1 : B → BlQ(Pn) is an isomorphism.

(iv) Prove the birational map p−1 : Pn //___ X corresponds to the linear system on

Pn consisting of all quadrics on Pn passing through Q.

(13) (Converse to the previous problem) Let Q be a smooth conic in a hyperplane H ⊂ Pn.
Let L be the linear system on Pn consisting of all quadrics passing through Q. Let

π : BlQ(Pn)→ Pn be the blow up with center Q, and let E = π−1(Q) be the exceptional

divisor in BlQ(Pn).
(i) Show that the rational map corresponding to the linear system L is represented

by a morphism α : Pn \Q→ Pn+1.

(ii) Show that α(Pn \Q) is contained in a quadric X ⊂ Pn+1.

(iii) Show that α extends to a morphism β : BlQ(Pn)→ Pn+1, and β∗OPn(1) is isomor-

phic to π∗OP2(2)(−E).

(iv) Let D be the strict transform of the hyperplane H in BlQ(Pn). Show that α(D)

is a point x ∈ X.

(v) Prove that X is smooth, and the morphism β : BlQ(Pn) → X identifies BlQ(Pn)
as the blow up of X with center x.

(14) Let X = F (a1, . . . , an) := ProjP1 Symm∗ (OP1(a1)⊕ · · · ⊕ OP1(an)

)
. Assume for sim-

plicity that a1 ≤ a2 ≤ · · · ≤ an. Let π : X → P1 be the structure morphism, so that

X is a family of Pn−1’s parametrized by P1. Denote by OX(1) the universal invertible

quotient OX -module of

π∗
(
OP1(a1)⊕ · · · ⊕ OP1(an)

)
.

(i) For every local ring (R,m), let SR be the set{
(t0, t1;x1 : x2 : . . . : xn) ∈ Rn+2 | t0R+ t1R = R, x1R+ · · ·+ xnR = R

}
modulo the equivalence relation generated by

(t0, t1;x1 : x2 : . . . : xn) ∼ (t0, t1;µx1 : µx2 : . . . : µxn) µ ∈ R∗

(t0, t1;x1 : x2 : . . . : xn) ∼ (λt0, λt1;λ
−a1x1 : λ

−a2x2 : . . . : λ
−anxn) λ ∈ R∗.

Show that there is a functorial bijection between X(R) and the set SR for every

local ring (R,m).

(ii) Show that the complete linear system |Γ(X,OX(1))| is base point free if ai ≥ 0 for

all i = 1, . . . , n.

(iii) Suppose that ai > 0 for all i. Show that the complete linear system |Γ(X,OX(1))|
defines an closed immersion ϕOX(1) : X ↪→ PN , where N = a1 + · · · + an + n − 1.

Moreover, under the morphism ϕOX(1), every fibre of π is embedded into a linear

Pn−1 in PN , and ϕOX(1)(X) is a subvariety of PN of degree a1 + . . . + an. (The

subvariety ϕOX(1)(X) is called a rational scroll in PN .)
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(iv) Show that ϕ(F (1, 1)) is a smooth quadric surface in P3, ϕ(F (2, 1) is a smooth sur-

face of degree 3 in P4, ϕ : F (0, 1)→ P2 is the blow up of a point, and ϕ : F (0, 2)→
ϕ(F (0, 2)) ⊂ P3 is the resolution of singularities of the cone over a plane conic

curve in P3.

(v) Suppose that a1 ≤ · · · ≤ am < b ≤ am+1 ≤ · · · ≤ an, b ∈ Z. Show that the

base locus of the complete linear system |Γ(X,OX(1)⊗ π∗OP1(−b)| is the closed

subscheme

ProjP1 Symm∗ (OP1(a1)⊕ · · · ⊕ OP1(am)

)
⊂ X

corresponding to the obvious surjection

Symm∗ (OP1(a1)⊕ · · · ⊕ OP1(an)

)
↠ Symm∗ (OP1(a1)⊕ · · · ⊕ OP1(am)

)
.





CHAPTER IV

Ground fields and base rings

1. Kronecker’s big picture

For all schemes X, there is a unique morphism:

π : X −→ SpecZ.

This follows from Theorem I.3.7, since there is a unique homomorphism

π∗ : Z −→ Γ(OX).

Categorically speaking, SpecZ is the final object in the category of schemes. SpecZ itself is

something like a line, but in which the variable runs not over constants in a fixed field but over

primes p. In fact Z is a principal ideal domain like k[X] and its prime ideals are (p) or p · Z,
p a prime number, and (0). (cf. Figure IV.1) The stalk of the structure sheaf at [(p)] is the

discrete valuation ring Z(p) = {m/n | p ∤ n} and at [(0)] is the field Q. SpecZ is reduced and

irreducible with “function field” R(SpecZ) = Q. The non-empty open sets of SpecZ are gotten

by throwing away finitely many primes p1, . . . , pn. If m =
∏
pi, then this is a distinguished open

set:

Spec(Z)m, with ring Zm =
{ a

mn
| a, n ∈ Z

}
.

The residue fields are:

k([(p)]) = Z/pZ
k([(0)]) = Q,

i.e., each prime field occurs exactly once.

If X is an arbitrary scheme, then set-theoretically the morphism

π : X −→ SpecZ

is just the map

x 7−→ [(chark(x))],

because if π(x) = y, then we get

k(x) k(y) =


Z/pZ
or

Q
? _

π∗
x

oo

[(2)] [(3)] [(5)] [(7)] [(11)]
generic
point

[(0)]

Figure IV.1. SpecZ

119



120 IV. GROUND FIELDS AND BASE RINGS

A1
Z/2Z A1

Z/3Z A1
Z/5Z A1

Z/7Z

A1
Q

[(2, x+ 1)]

[(2)]

[(2, x)]

[(3)] [(5)]

[(3, x+ 2)]

[(3, x+ 1)]

[(3, x)]

[(5, x+ 4)]

[(5, x+ 3)]

[(5, x+ 2)]

[(5, x+ 1)]

[(5, x)]
[(x)]

[(x2 + 1)]

[(0)]
generic
point

Figure IV.2. A1
Z

hence

char k(x) = p > 0 =⇒ π(x) = [(p)]

chark(x) = 0 =⇒ π(x) = [(0)].

Thus every scheme X is a kind of fibred object, made up out of separate schemes (possibly

empty),

X ×SpecZ Spec


Z/pZ
or

Q,

of each characteristic! For instance, we can “draw” a sort of picture of the scheme A1
Z, showing

how it is the union of the affine lines A1
Z/pZ and A1

Q. The prime ideals in Z[X] are:

i) (0),

ii) principal prime ideals (f), where f is either a prime number p, or a Q-irreducible

integral polynomial written so that its coefficients have greatest common divisor 1,

iii) maximal ideals (p, f), p a prime and f a monic integral polynomial irreducible modulo

p.

The whole should be pictured as in Figure IV.2. (The picture is misleading in that A1
Z/pZ for

any p has actually an infinite number of closed points: i.e., in addition to the maximal ideals

(p,X−a), 0 ≤ a ≤ p−1, with residue field Z/pZ, there will be lots of others (p, f(x)), deg f > 1,

with residue fields Fpn = finite field with pn elements, n > 1.)

An important property of schemes of finite type over Z is:

Proposition 1.1. Let X be of finite type over Z and let x ∈ X. Then

[x is closed]⇐⇒ [k(x) is finite].
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Proof. Let π : X → SpecZ be the morphism. By Theorem II.2.9 (Chevalley’s Nullstellen-

satz),

x closed =⇒ {π(x)} constructible =⇒ π(x) closed.

If π(x) = [(p)], then x ∈ X ×SpecZ SpecZ/pZ — call this scheme Xp. Then x is a closed point

of Xp, so by Corollary II.2.11, x is an algebraic point, i.e., k(x) is algebraic over Z/pZ, so k(x)
is finite. Conversely, if k(x) is finite, let p be its characteristic. Then x ∈ Xp and by Corollary

II.2.11, x is closed in Xp and since Xp is closed in X, x is closed in X. □

From the point of view of arithmetic, schemes of finite type over Z are the basic objects.

The classical problem in Diophantine equations is always to find all Z- or Q-valued points of

various schemes X (recall Definition I.6.2). For instance, if f ∈ Z[X1, . . . , Xn], the solutions

f(a1, . . . , an) = 0

with ai in any ring R are just the R-valued points of the affine scheme

SpecZ[X1, . . . , Xn]/(f)

(see Theorem I.3.7). Because of its homogeneity, however, Fermat’s last theorem may also be

interpreted via the “plane curve”

V (Xn
1 +Xn

2 −Xn
0 ) ⊂ P2

Z

and the conjecture1 asserts that if n ≥ 3, its only Q-valued points are the trivial ones, where

either X0, X1, or X2 is 0. Moreover, it is for such schemes that a zeta-function can be introduced

formally:

(1.2) ζX(s) =
∏

closed
points
x∈X

(
1− 1

(#k(x))s

)−1

, # = cardinality

which one expands formally to the Dirichlet series

ζX(s) =

∞∑
n=1

an
ns

an =

{
number of 0-cycles a =

∑
nixi on X,

where ni > 0, xi ∈ X closed and deg a
def
=
∑
ni#k(xi) is n

}
.

(1.3)

This is known to converge if Re s ≫ 0 and is conjectured to be meromorphic in the whole

s-plane—cf. Serre’s talk [106] for a general introduction.

But these schemes also play a fundamental role for many geometric questions because of the

following simple but very significant observation:

SupposeX ⊂ AnC (resp.X ⊂ PnC) is a complex affine (resp. projective) variety. Let

its ideal be generated by polynomials (resp. homogeneous polynomials) f1, . . . , fk.

Let R ⊂ C be a subring finitely generated over Z containing the coefficients of

the fi: Then f1, . . . , fk define X0 ⊂ AnR (resp. X0 ⊂ PnR) such that

a) X ∼= X0 ×SpecR SpecC
b) X0 is of finite type over R, hence is of finite type over Z.

More generally, we have:

1(Added in publication) The conjecture has since been settled affirmatively by Wiles [117].
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Proposition 1.4. Let X be a scheme of finite type over C. Then there is a subring R ⊂ C,
finitely generated over Z and a scheme X0 of finite type over R such that

X ∼= X0 ×SpecR SpecC.

Proof. Let {Ui} be a finite affine open covering of X and write

Ui = SpecC[X1, . . . , Xni ]/(fi,1, . . . , fi,ki) = SpecRi.

For each i, j, cover Ui ∩Uj by open subsets which are distinguished affines in Ui and Uj and let

each of these subsets define an isomorphism

ϕij,l : (Ri)gij,l
≈−→ (Rj)gji,l .

The fact that

(Ui)gij,l·ϕ−1
ij,l(gjk,l′ )

⊂ Ui ∩ Uj ∩ Uk ⊂
∪
l′′

(Ui)gik,l′′

means that

(∗)
[
gij,l · ϕ−1

ij,l(gjk,l′)
]N

=
∑
l′′

aijkll′l′′gikl′′ , suitable a’s in Ri.

Let R be generated by the coefficients of the fij ’s, the g’s and a’s (lifted to C[X]) and of the

polynomials defining the ϕij,l’s. Define

Ui,0 = SpecR[X1, . . . , Xni ]/Ii = SpecRi,0

where Ii = Ker [R[X]→ C[X]/(fi,1, . . . , fi,ki)], i.e., Ii consists of the fij ’s plus enough other

polynomials to make Ri,0 into a subring of Ri. Clearly Ri ∼= Ri,0 ⊗R C. Then gij,l is in the

subring Ri,0 and ϕij,l restricts to an isomorphism (Ri,0)gij,l
≈−→ (Rj,0)gji,l , hence ϕ defines:

(Ui,0)gij,l
≈−→ (Uj,0)gji,l .

Let U
(j)
i,0 =

∪
l(Ui,0)gij,l and glue U

(j)
i,0 to U

(i)
j,0 by these ϕ’s: the fact that ϕij,l = ϕij,l′ on overlaps is

guaranteed by the fact that Ri,0 ⊂ Ri. Moreover the identity (∗) still holds because we smartly

put the coefficients of the a’s in R, hence points of Ui,0 which are being glued to points of

Uj,0 which in turn are being glued to points of Uk,0 are being directly glued to points of Uk,0;

Moreover the direct and indirect glueing maps again agree because Ri,0 ⊂ Ri. Thus an X0 can

be constructed by glueing all the Ui,0’s and clearly X ∼= X0 ×SpecR SpecC. □

The idea of Kroneckerian geometry is that when you have X ∼= X0 ×SpecR SpecC, then (a)

classical geometric properties of X over C may influence Diophantine problems on X0, and (b)

Diophantine properties of X0, even for instance the characteristic p fibres of X0, may influence

the geometry on X. In order to go back and forth in this way between schemes over C, Z
and finite fields, one must make use of all possible homomorphisms and intermediate rings that

nature gives us. These “God-given” natural rings form a diagram as in Figure IV.3 (with various

Galois groups acting too), where the completion Q̂p of the algebraic closure Qp of the p-adic

number field Qp is known to be algebraically closed,
̂̃Zp is the completion of the integral closure

Z̃p in Qp of the ring of p-adic integers Zp, the field of algebraic numbers Q is the algebraic

closure of the rational number field Q, and Z/pZ is the algebraic closure of Z/pZ: Thus given

any X → SpecZ, say of finite type, one gets a big diagram of schemes as in Figure IV.4 (where

we have written XR for X × SpecR, and R for the algebraic closure or integral closure of R, or

completions thereof.)

In order to use the diagram (1.6) effectively, there are two component situations that must

first be studied in detail:
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(1.5) C
non-canonical isomorphism _____________ Q̂p

∪ Q
4 T

ggNNNNNNN % �

33fffffffffffffffff

R ∪ Qp

- 


<<xxxxxxxxx
∪

Q4
T

ffNNNNNNN * 

77ooooooo ∪ ̂̃Zp

)) ))RRRRRRRR

∪ Zp
)) ))SSSSSS

) 	

66mmmmmmmm
Z/pZ

Z
) 	

66nnnnnnn Z/pZ
' �

44jjjjjj

Figure IV.3. The diagram formed by “God-given” natural rings

(1.6) XC
non-canonical isomorphism ______________

((QQQQQQ

��

XQp

rreeeeeeeeeeeeeeeeee

zzvvvvvvvv

��

XQ

��

XR
((RRRRRR XQp

uullllll

��

XQ

��

XZp

uukkkkkkk

XZp

uulllllll
XZ/pZ

iiTTTTTTT

ttjjjjjj

XZ XZ/pZ

iiTTTTTT

Figure IV.4. The big diagram of schemes

1.7. Given 
k a field

k = algebraic closure of k

X of finite type over k

consider:

X //

��

X

��

Spec k // Spec k

where X = X ×Spec k Spec k. Compare X and X.

1.8. Given 
R a valuation ring

K its quotient field

k its residue field

X of finite type over R

consider:

Xη //

��

X

��

X0
oo

��

SpecK // SpecR Spec koo

where Xη = X ×SpecR SpecK, X0 = X ×SpecR Spec k. Compare X0 and Xη.
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We take these situations up in §§2–3 and §§4–6 separately. In §VIII.5 we will give an

illustration of how the big picture is used. The idea will also be used in the proof of Belyi’s

three point theorem (Theorem IX.2.1).

Classical geometry was the study of varieties over C. But it did not exploit the fact that the

defining equations of a variety can have coefficients in a subfield of C. This possibility leads us

directly to the analysis of schemes over non-algebraically closed fields (1.7), and to the relation

between schemes over two different fields given by (1.8).

2. Galois theory and schemes

For this whole part, fix a field k and an algebraic closure k. We write Gal(k/k) for the Galois

group, and for each scheme X over k, we write X for X ×Spec k Spec k. First consider the action

of Gal(k/k) on k
n
by conjugation:

1. For σ ∈ Gal(k/k)

(a1, . . . , an) 7−→ (σa1, . . . , σan), k
n −→ k

n
.

If we identify k
n
with the set of closed points of An

k
, then this map extends in fact to

an automorphism of An
k
:

2. Define σAn : An
k
→ An

k
by

(σAn)∗ : k[X1, . . . , Xn] −→ k[X1, . . . , Xn]

where

σ∗An(Xi) = Xi, σ∗An(a) = σ−1a, a ∈ k.

In fact, for all prime ideals p ⊂ k[X1, . . . , Xn],

σAn([p]) = [(σ∗An)−1p]

and if p = (X1 − a1, . . . , Xn − an), then since σ∗An(Xi − σai) = Xi − ai, we find

(σ∗An)−1p ⊃ (X1 − σa1, . . . , Xn − σan); since (X1 − σa1, . . . , Xn − σan) is maximal,

(σ∗An)−1p = (X1 − σa1, . . . , Xn − σan).
Note that σAn is a k-morphism but not a k-morphism. For this reason, σAn will

have, for instance, a graph in

An
k
×Spec k Ank = Spec

(
(k ⊗k k)[X1, . . . , Xn, Y1, . . . , Yn]

)
,

but not in An
k
×Spec k A

n
k
= A2n

k
. Thus when k = C, σAn will not be a correspondence

nor will it act at all continuously in the classical topology (with the one exception

σ = complex conjugation).

3. Now we may also define σAn as:

σAn = 1An
k
× σk : Ank ×Spec k Spec k −→ Ank ×Spec k Spec k

where σk : Spec k → Spec k is defined by (σk)
∗a = σ−1a.

The third form clearly generalizes to all schemes of the form X:

Definition 2.1. For every k-scheme X, define the conjugation action of Gal(k/k) on X to

be:

σX = 1X × σk : X → X, all σ ∈ Gal(k/k).
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Ω

(R⊗k k)/p1
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22eeeeeeeeeeeeee
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Figure IV.5

Then σX is not a k-morphism, but rather fits into a diagram:

X
σX

//

��

X
��

Spec k
σk

// Spec k.

What this means is that if f ∈ OX(U) then σ∗Xf ∈ OX(σ
−1
X U) has value at a point x ∈ σ−1

X U

given by:

(2.2) (σ∗Xf)(x) = σ−1 · f(σX · x),

i.e., set-theoretically, σ∗X is not “pull-back” on functions. This can be proven as follows:

f − f(σX · x) ∈ mσXx,X
=⇒ σ∗X(f − f(σX · x)) ∈ mx,X

=⇒ σ∗Xf − σ−1 · f(σX · x) ∈ mx,X

=⇒ σ∗Xf(x) = σ−1 · f(σX · x).

I want next to analyze the relationship betweenX andX. The first point is that topologically

X is the quotient of X by the action of Gal(k/k).

Theorem 2.3. Let X be a scheme of finite type over k, let

X = X ×Spec k Spec k

and let p : X → X be the projection. Then

1) p is surjective and both open and closed (i.e., maps open (resp. closed) sets to open

(resp. closed) sets);

2) ∀x, y ∈ X, p(x) = p(y) iff x = σX(y) for some σ ∈ Gal(k/k);

3) ∀x ∈ X, let Z = closure of {x}. Then p−1(x) = the set of generic points of the

components of p−1(Z). In particular, p−1(x) is finite.

Proof. Since all these results are local on X, we may as well replace X by an open affine

subset U , and replace X by p−1U . Therefore assume X = SpecR, X = SpecR⊗k k. First of all,
p is surjective by Corollary I.4.4. Secondly, p is closed because R⊗k k is integrally dependent on

R (cf. Proposition II.6.5; this is an easy consequence of the Going-up theorem). Thirdly, let’s

prove (2). If p1, p2 ⊂ R⊗k k are two prime ideals, we must show:

p1 ∩R = p2 ∩R⇐⇒ ∃σ ∈ Gal(k/k), p1 = (1R ⊗ σ)p2.

⇐= is obvious, so assume p1∩R = p2∩R. Call this prime p. Let Ω be an algebraically closed field

containing R/p. Consider the solid arrows in Figure IV.5. It follows that there exist injective
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k-homomorphisms α1, α2 as indicated. Then α1(k) and α2(k) both equal the algebraic closure

of k in Ω, so for some σ ∈ Gal(k/k), α2 = α1 ◦ σ on k. But then if xi ∈ R, yi ∈ k:∑
xi ⊗ yi ∈ p2 ⇐⇒

∑
xi · α2(yi) = 0 in Ω

⇐⇒
∑

xi · α1(σ(yi)) = 0 in Ω

⇐⇒
∑

xi ⊗ σ(yi) ∈ p1,

so (1R ⊗ σ)p2 = p1. Fourthly, p is an open map. In fact, let U ⊂ X be open. Then

U ′ =
∪

σ∈Gal

σX(U)

is also open, and by (2), p(U) = p(U ′) and U ′ = p−1(p(U ′)). ThereforeX\p(U) = p(X\U ′) which

is closed since p is a closed map. Therefore p(U) is open. Finally, let x ∈ X, Z = closure of {x}.
Choose w ∈ p−1(x) and let W = closure of {w}. Since p is closed, p(W ) is a closed subset of Z

containing x, so p(W ) = Z. Therefore
∪
σ∈Gal σX(W ) is Gal-invariant and maps onto Z, so by

(2): ∪
σ∈Gal

σX(W ) = p−1Z.

Therefore every component of p−1Z equals σX(W ) for some σ, and since they are all conjugate,

the σX(W )’s are precisely the components of p−1Z. (3) now follows easily. □

Suppose now X is a k-variety. Is X necessarily a k-variety?

Theorem 2.4. Let X be a k-variety and let X = X ×k k.

i) Let

L = {x ∈ R(X) | x separable algebraic over k}.

Then L is a finite algebraic extension of k. Let U ⊂ X be an open set such that the

elements of L extend to sections of OX over U . Then the basic morphism from X to

Spec k factors:

U
f
��

⊂ X

��

SpecL

&&MMMMMM

Spec k

and taking fibre products with Spec k, we get:

U

f
��

⊂ X

��

SpecL⊗k k

''PPPPPPP

Spec k.



2. GALOIS THEORY AND SCHEMES 127

Then

L⊗k k ∼=
t∏
i=1

k

SpecL⊗k k = disjoint union of t reduced closed points P1, . . . , Pt

U = disjoint union of t irreducible pieces U i = f
−1

(Pi)

X = union of t irreducible components Xi, with Xi = closure(U i).

This induces an isomorphism of sets:

(Components of X) ∼= Homk(L, k),

commuting with the action of the Galois group Gal(k/k).

ii) If yi = generic point of Xi, then yi maps to the generic point of X and

t∏
i=1

Oyi,X
∼= R(X)⊗k k

hence dimXi = dimX for all i, and:

X is reduced⇐⇒ Oyi,X has no nilpotents, for all i

⇐⇒ R(X) is separable over k.

Proof of Theorem 2.4, (i). Let L1 ⊂ L be a subfield which is finite algebraic over k.

Then L1 ⊗k k is a finite-dimensional separable k-algebra, hence by the usual Wedderburn theo-

rems,

L1 ⊗k k ∼=
t∏
i=1

k, where t = [L1 : k]

and SpecL1⊗k k = {P1, . . . , Pt} as asserted. Elements of a basis of L1 extend to sections of OX
over some open set U1, and we get a diagram

U1

f1 ��

⊂ X

��

{P1, . . . , Pt}

''PPPPPPP

Spec k.

Therefore U1 is the disjoint union of open sets f
−1
1 (Pi). Therefore X has at least t components,

i.e., components of the closure of f
−1
1 (Pi) in X. But X has only a finite number of components,

hence t is bounded above. Therefore L itself is finite over k. Now take L1 = L. The main step

consists in showing that f
−1

(Pi) is irreducible. In fact

f
−1

(Pi) ∼= U ×SpecL⊗kk
Spec k

∼= U ×SpecL Spec k, via L→ L⊗k k
projection on
i-th factor−−−−−−−−→ k

so in effect this step amounts to checking the special case:

k separable algebraically closed in R(X) =⇒ X is irreducible.
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The rest of part (i) follows from two remarks: first, by Theorem 2.3, (3), each component of X

is the closure of a component of U ; secondly, there is an isomorphism of sets commuting with

Gal:

{Maximal ideals of L⊗k k} ∼= {Kernels of the various projections L⊗k k → k}
∼= Homk(L, k).

Now consider the special case. If X =
∪t
i=1Xi is reducible, we can find an affine open U ⊂ X

such that the sets p−1(U) ∩Xi = U i are disjoint. Let U = SpecR, so that

t⨿
i=1

U i = SpecR⊗k k.

Let ϵi be the function which equals 1 on U i and 0 on the other U j . Then ϵni = ϵi for all n and

ϵi ∈ R⊗k k. Write

ϵi =
∑
j

βij ⊗ γij , βij ∈ R, γij ∈ k.

Then if the characteristic is p > 0,

ϵi = ϵp
n

i =
∑

βp
n

ij ⊗ γ
pn

ij

and if n ≫ 0, γp
n

ij ∈ ks = separable closure of k. Thus if p > 0, we find ϵi ∈ R ⊗k ks too.

Let Ls be the ks-subalgebra of R ⊗k k that the ϵi generate. The Galois group, acting on X,

permutes the Xi; hence acting on R⊗k k = Γ(
⨿
U i,OX), it permutes the ϵi. Therefore Ls is a

Gal-invariant subspace of R⊗k ks. Now apply:

Lemma 2.5. Let V be a k-vector space and let W ′ ⊂ V ⊗k ks be a ks-subspace. Then[
W ′ =W ⊗k ks for

some k-subspace W ⊂ V

]
⇐⇒

[
W ′ is invariant

under Gal(ks/k)

]
.

Proof of Lemma 2.5. “=⇒” is obvious. To prove “⇐=”, first note that any w ∈ W ′ has

only a finite number of conjugates wσ, σ ∈ Gal(ks/k), hence
∑

σ ks · wσ is a finite-dimensional

Gal-invariant subspace of W ′ containing w. Thus it suffices to prove “⇐=” when dimW ′ <∞.

Let {eα}α∈S be a basis of V and let f1, . . . , ft be a basis of W ′. Write fi =
∑
ciαeα, ciα ∈ ks.

Since the f ’s are independent, some t× t-minor of the matrix (ciα) is non-zero: say (ci,αj )1≤i,j≤t.

Then W ′ has a unique basis f ′i of the form

f ′i = eαi +
∑

β/∈{α1,...,αt}

c′iβeβ.

Since ∀σ ∈ Gal, W ′σ = W ′, it follows that (f ′i)
σ = f ′i , hence (c′iβ)

σ = c′iβ, hence c
′
iβ ∈ k, hence

f ′i ∈ V . If W =
∑
kf ′i , then W

′ =W ⊗k ks. □

By the lemma, Ls = L′ ⊗k ks for some subspace L′ ⊂ R. But L′ is clearly unique and since

for all a ∈ L′, a · Ls ⊂ Ls, therefore a · L′ ⊂ L′. So L′ is a subalgebra of R and hence of R(X)

of dimension t, separable over k because Ls is separable over ks. Therefore L′ = k and t = 1.

This proves Theorem 2.4, (i). □

Proof of Theorem 2.4, (ii). Let U = SpecR be any open affine in X so that p−1(U) =

SpecR⊗k k. Since R ⊂ R(X), R⊗k k ⊂ R(X)⊗k k. Thus if X is not reduced, some ring R⊗k k
has nilpotents, hence R(X) ⊗k k must have nilpotent elements in it. On the other hand, if U
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is small enough as we saw above, p−1(U) =
⨿
U i, where U i is irreducible, open and yi ∈ U i.

Therefore

R⊗k k =

t∏
i=1

OX(U i).

Replacing R by Rf , U by Uf and U i by (U i)f , and passing to the limit over f ’s, this shows that

R(X)⊗k k ∼=
t∏
i=1

lim−→
distinguished

open sets (U i)f

OX((U i)f ) =
t∏
i=1

Oyi,X .

In particular, if R(X) ⊗k k has nilpotents, so does one of the rings Oyi,X and hence X is not

reduced. Now recall that the separability of R(X) over k means by definition that one of the

equivalent properties holds:

Let kp
−∞

= perfect closure of k.

a) R(X) and kp
−∞

are linearly disjoint over k.

b) R(X)⊗k kp
−∞ −→ R(X)p

−∞
is injective.

c) R(X) and kp
−1

are linearly disjoint over k.

d) R(X)⊗k kp
−1 −→ R(X)p

−1
is injective.

(cf. Zariski-Samuel [119, vol. I, pp. 102–113]; or Lang [75, pp. 264–265]. A well-known theorem

of MacLane states that these are also equivalent to R(X) being separable algebraic over a purely

transcendental extension of k.)

Note that the kernel of R(X)⊗k kp
−∞ −→ R(X)p

−∞
is precisely the ideal

√
(0) of nilpotent

elements in R(X)⊗k kp
−∞

: because if ai ∈ R(X), bi ∈ kp
−n

, then∑
aibi = 0 in R(X)p

−∞
=⇒

∑
ap

n

i b
pn

i = 0 in R(X)

=⇒ (
∑

ai ⊗ bi)p
n
=
∑

ap
n

i b
pn

i ⊗ 1 = 0.

Now if N = ideal of nilpotents in R(X)⊗k k, then N is Gal-invariant, so by Lemma 2.5 applied

to k over kp
−∞

, N = N0 ⊗(kp−∞ )
k for some N0 ⊂ R(X)⊗k kp

−∞
. Hence

N ̸= (0)⇐⇒ N0 ̸= (0)⇐⇒ Ker
(
R(X)⊗k kp

−∞ → R(X)p
−∞
)
̸= (0).

□

Corollary 2.6 (Zariski). If X is a k-variety, then X is a k-variety if and only if R(X) is

separable over k and k is algebraically closed in R(X).

Corollary 2.7. Let X be any scheme of finite type over k and let p : X → X be as before.

Then for any x ∈ X, if L = {a ∈ k(x) | a separable algebraic over k}, ∃ an isomorphism of sets:

p−1x ∼= Homk(L, k)

commuting with Gal(k/k), and the scheme-theoretic fibre is given by:

p−1x ∼= Spec k(x)⊗k k,

hence is reduced if and only if k(x) is separable over k.

Proof. If we let Z = {x} with reduced structure, then we can replace X by Z and so reduce

to the case X a k-variety, x = generic point. Corollary 2.7 then follows from Theorem 2.4. □
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Corollary 2.8. Let X be any scheme of finite type over k and let p : X → X be as before.

Let x ∈ X be a closed or k-rational point. By k-coordinates near x, we mean: take an affine

neighborhood U of p(x), generators f1, . . . , fn of OX(U), and then define a closed immersion:

p−1U //

∩

An
k

X

by the functions f1, . . . , fn. Then

i) #(Galois orbits of x) = [k(p(x)) : k]s
ii) The following are equivalent:

a) p−1({p(x)}) = the reduced closed subscheme {x},
b) p(x) is a k-rational point of X,

c) In k-coordinates, x goes to a point in kn ⊂ An
k
.

If these hold, we say that x is defined over k.

iii) If k is perfect, these are equivalent to

d) x is a fixed point of the Galois action on X.

Proof. (i) and the equivalence of (a) and (b) are restatements of Corollary 2.7 for closed

points; as for (c), note that the values of the “proper coordinates” at x are f1(x), . . . , fn(x) and

that k(p(x)) = k(f1(x), . . . , fn(x)), hence (b)⇐⇒ (c). (iii) is clear. □

In case k is perfect, Corollary 2.8 suggests that there are further ties between X and X:

Theorem 2.9. Let k be a perfect field and p : X → X as before. Then

i) ∀U ⊂ X open,

OX(U) =
{
f ∈ OX(p

−1U) | σ∗Xf = f, ∀σ ∈ Gal(k/k)
}
.

ii) ∀ closed subschemes Y ⊂ X

Y is Gal-invariant⇐⇒ ∃ closed subschemes Y ⊂ X with Y = Y ⊗k k

and if this holds, Y is unique, and one says that Y is defined over k.

iii) If x ∈ X and H = {σ ∈ Gal | σX(x) = x}, then k(p(x)) = k(x)H .
iv) If Y is another scheme of finite type over k and Y = Y ×k k, then every k-morphism

f : X → Y that commutes with the Galois action (i.e., σY ◦f = f ◦σX , for all σ ∈ Gal)

is of the form f × 1k for a unique k-morphism f : X → Y , and one says that f is

defined over k.

Proof of (i). Let

F(U) =
{
f ∈ OX(p

−1U) | σ∗Xf = f, for all σ
}
.

Then F is easily seen to be a sheaf and whenever U is affine, say U = SpecR, then

F(U) =
{
f ∈ R⊗k k | (1R ⊗ σ)f = f, for all σ

}
= R, since k is perfect

= OX(U).

Thus F ∼= OX . □

Proof of (ii). Suppose Y ⊂ X is Gal-invariant. Then for all open affine U = SpecR in X,

Y ∩p−1U is defined by an ideal a ⊂ R⊗k k. Then a is Gal-invariant so by Lemma 2.5, a = a⊗k k
for some k-subspace a ⊂ R. Since aa ⊂ a for all a ∈ R, it follows that aa ⊂ a and so a is an

ideal. It is easy to see that these ideals a define the unique Y ⊂ X such that Y = Y ×k k. □
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−i

1

−1

conjugation

+i

0 ∞

real
strictly
complex
points

points

Figure IV.6. X = P1
C

Proof of (iii). As in Corollary 2.7 above, we can replace X by the closure of p(x) and so

reduce to the case where X is a variety with generic point p(x) and x = x1 is one of the generic

points x1, . . . , xt of X. By Theorem 2.4, X is reduced and we have

t∏
i=1

k(xi) =
t∏
i=1

R(Xi) ∼= R(X)⊗k k = k(p(x))⊗k k.

Thus

k(p(x)) ∼=
{
(x′1, . . . , x

′
t) ∈

∏
k(xi) | (x′1, . . . , x′t) Gal-invariant

}
∼=
{
x′1 ∈ k(x1) | x′1 is H-invariant

}
.

□

Proof of (iv). Left to the reader. □

Note that when Y = one point x, then {x} is defined over k as in Theorem 2.9 above if and

only if it is defined over k as in Corollary 2.8.

When k is not perfect, the theorem is false. One still says “Y is defined over k” if Y =

Y ×Spec k Spec k for some closed subscheme Y ⊂ X, and Y is still unique if it exists. But being

Gal-invariant is not strong enough to guarantee being defined over k. For instance, if Y is a

reduced Gal-invariant subscheme, one can try by setting Y ′ = p(Y ) with reduced structure.

Then Y
′
= Y ′ ×Spec k Spec k will be a subscheme of X defined over k, with the same point set

as Y and Y ⊂ Y ′
but in general Y

′
need not be reduced: i.e., the subset Y is defined over k but

the subscheme Y is not (cf. Example 4 below).

The theory can be illustrated with very pretty examples in the case:

k = R

k = C

Gal(k/k) = {id, ∗}, ∗ = complex conjugation.

In this case, ∗X : X → X is continuous in the classical topology and can be readily visualized.

Example. 1. Let X = P1
R, X = P1

C. Ignoring the generic point, P1
C looks like Figure IV.6.

Identifying conjugate points, P1
R looks like Figure IV.7.

Example. 2. Let X = P1
C again. Then in fact there are exactly two real forms of P1

C:

schemes X over R such that X×RC ∼= X. One is P1
R which was drawn in Example 1. The other
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∞0

1

−1

[(x2 + 1)]

points with

k(x) = R
coming from

maximal ideals
(X − a)

points with

k(x) = C
coming from

maximal ideals

(X2 + aX + b)

with a2 < 4b

Figure IV.7. X = P1
R

(0, 1, i)

(0, 1,−i)

(1, i, 0) (1,−i, 0)

(1, 0, i)

(1, 0,−i)

conjugation takes points

to antipodal points

Figure IV.8. X = V (X2
0 +X2

1 +X2
2 ) ⊂ P2

R

is represented by the conic:

X = V (X2
0 +X2

1 +X2
2 ) ⊂ P2

R.

Then X is the same conic over C and, projecting from any closed point x ∈ X, we find as in

Part I [87] an isomorphism between X and P1
C. Since X has in fact no R-rational points at all

(∀(a0, a1, a2), a20+a21+a22 > 0!) we cannot find a projection X → P1
C defined over R. The picture

is as in Figure IV.8, so X is homeomorphic in the classical topology to the real projective plane

S2/(antipodal map) and for all its closed points x ∈ X, k(x) = C.

Example. 3. Let X be the curve X2
1 = X0(X

2
0 − 1) in P2

R. One can work out the picture

by thinking of X as a double covering of the X0-line gotten by considering the two values

±
√
X0(X2

0 − 1). We leave the details to the reader. One finds the picture in Figure IV.9.

Example. 4. To see how X may be reducible when X is irreducible, look at the affine curve

X2
0 +X2

1 = 0

in A2
R. Then X is given by:

(X0 + iX1)(X0 − iX1) = 0

and the picture is as in Figure IV.10. If U = X \ {(0, 0)}, then U is actually already a variety

over C via

p : U −→ SpecC, p∗(a+ ib) = a+
X1

X0
· b
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conjugation

real points
real points

point at ∞

Here −1 ≤ X0(x) ≤ 0

Here X0(x) ≥ 1

point at ∞
points with k(x) = C

k(x) = R
k(x) = R

Figure IV.9. X = V (X2
1X2 −X0(X

2
0 −X2

2 )) ⊂ P2
R

Figure IV.10. X = V (X2
0 +X2

1 ) ⊂ A2
R

and in fact, (
R[X0, X1]/(X

2
0 +X2

1 )
) [ 1

X0

]
∼= R

[
X1

X0
, X0, X

−1
0

]/((
X1

X0

)2

+ 1

)
∼= C[X0, X

−1
0 ]

so U ∼= A1
C \ {0}:

To go deeper into the theory of one-dimensional varieties over R, see Alling-Greenleaf [12].

To illustrate how X may be reduced and yet have hidden nilpotents, we must look in char-

acteristic p.

Example. 5. Let k be an imperfect field, and consider the hypersurface X ⊂ Pnk defined by

a0X
p
0 + · · ·+ anX

p
n = 0, ai ∈ k.

In k, each ai will be a p-th power, say ai = bpi , so X ⊂ Pn
k
is defined by

(b0X0 + · · ·+ bnXn)
p = 0.

ThusX is a “p-fold hyperplane” and the function
∑
biXi/X0 is nilpotent and non-zero. However,

provided that at least one ratio ai/aj /∈ kp, then
∑
aiX

p
i is irreducible over k, hence X is a k-

variety: Put another way, the hyperplane L :
∑
biXi = 0 in Pn

k
is “defined over k” as a set in

the sense that it is Gal-invariant, hence is set-theoretically p−1(p(L)) using p : Pn
k
→ Pnk ; but it

is not “defined over k” as a subscheme of Pnk unless bi/bj = (ai/aj)
1/p ∈ k all i, j.

Before leaving this subject, I would like to indicate briefly the main ideas of Descent theory

which arise when you pursue deeply the relations between X and X.



134 IV. GROUND FIELDS AND BASE RINGS

(I.) If you look at Theorem 2.9, (ii) as expressing when a quasi-coherent sheaf of ideals

I ⊂ OX is defined over k, it is natural to generalize it to arbitrary quasi-coherent

sheaves of modules. The result is (assuming k perfect): given a quasi-coherent sheaf

F of OX -modules, plus an action of Gal(k/k) on F compatible with its action on OX ,
i.e., ∀σ ∈ Gal, U ⊂ X isomorphisms

σUF : F −→ F(σ−1
X (U))

such that

σ∗X(a) · σUF (b) = σUF (a · b), a ∈ OX(U), b ∈ F(U)

(στ)UF = σ
τ−1
X (U)

F ◦ τUF , σ, τ ∈ Gal

and commuting with restrictions, then there is one, and up to canonical isomorphism,

only one quasi-coherent F on X such that (i) F ∼= F ⊗OX
OX and (ii) the Gal-

action on F goes over via this isomorphism to the Gal-action σF (b⊗ a) = b⊗ σ∗Xa on

F ⊗OX
OX . More precisely, there is an equivalence of categories between the category

of pairs (F , σUF ) of quasi-coherent sheaves on X plus Gal-action and the category of

quasi-coherent F on X.

(II.) The whole set-up in fact generalizes to a much bigger class of morphisms than p : X →
X:

Definition 2.10. Given a morphism f : X → Y , a quasi-coherent sheaf F on X is

flat2 over Y if for every x ∈ X, Fx is a flat Of(x),Y -module. f itself is flat if OX is

flat. f is faithfully flat if f is flat and surjective.

Grothendieck has then proven that for any faithfully flat quasi-compact f : X → Y ,

there is an equivalence of categories between:

a) the category of quasi-coherent sheaves G on Y ,

b) the category of pairs (F , α), F a quasi-coherent sheaf on X and α being “descent

data”, i.e., an isomorphism on X ×Y X:

α : p∗1F
≈−→ p∗2F

satisfying a suitable associativity condition on X ×Y X ×Y X and restricting to

the identity on the diagonal ∆: X → X ×Y X.

In the special case f = p, k perfect, it turns out that descent data α is just another

way of describing Galois actions. A good reference is Grothendieck’s SGA1 [4, Exposé

VIII]3.

(III.) The final and most interesting step of all is the problem: given X over k, classify the set

of all possible X’s over k plus k-isomorphisms X×Spec k Spec k ∼= X, up to isomorphism

over k. Such an X is called a form of X over k and to find an X is called descending

X to k. If k is perfect, then (cf. Exercise below) it is easy to see that each form of X

over k is determined up to k-isomorphism by the Galois action {σX | σ ∈ Gal(k/k)} on
X that it induces. What is much harder, and is only true under restrictive hypotheses

(such as X affine or X quasi-projective with Gal also acting on its ample sheaf L, cf.

Chapter III) is that every action of Gal(k/k) is an effective descent data, i.e., comes

from a descended form X of X over k. For a discussion of these matters, cf. Serre [103,

Chapter V, §4, No. 20, pp. 102–104]. All sorts of beautiful results are known about

k-forms: for instance, there is a canonical bijection between the set of k-forms of Pn
k

2We will discuss the meaning of this concept shortly: see §4.
3(Added in publication) See also FAG [3].
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and the set of central simple k-algebras of rank n2 (cf. Serre [105, Chapter X, §6, p.
160]).

3. The frobenius morphism

The most remarkable example of the theory of Galois actions is the case:

k = Fq, the finite field with q elements, q = pν

k =

∞∪
n=1

Fqn

Gal(k/k) = pro-finite cyclic group generated by the frobenius

f : k → k, f(x) = xq.

f is the only automorphism of a field that is given by a polynomial! This has amazing conse-

quences:

Definition 3.1. If X is any scheme in prime characteristic p, i.e., p = 0 in OX , define a

morphism

ϕX : X −→ X

by

a) set-theoretically, ϕX = identity,

b) ∀U and ∀a ∈ OX(U), define ϕ∗Xa = ap.

Definition 3.2. If X is a scheme of finite type over k = Fq, X = X ×Spec k Spec k, then:

i) Note that fk : Spec k → Spec k (in the notation at the beginning of §2) is the automor-

phism (ϕSpec k)
−ν , hence the conjugation fX : X → X defined in Definition 2.1 above

is

1X × (ϕSpec k)
−ν .

We write this now farithX : X → X.

ii) Set-theoretically identical with this morphism will be a k-morphism called the geometric

frobenius

fgeomX = ϕν
X
◦ (1X × ϕ−νSpec k

)

= ϕνX × 1Spec k : X → X.

In other words, there are two morphisms both giving the right conjugation map: an au-

tomorphism farithX which does not preserve scalars, and a k-morphism fgeomX which however is

not an automorphism. For instance, look at the case X = Ank . All morphisms An
k
→ An

k
are

described by their actions on k[X1, . . . , Xn] and we find:

ϕ∗An

{
Xi 7−→ Xp

i

a 7−→ ap(
farithAn

)∗{ Xi 7−→ Xi

a 7−→ aq
−1 , an automorphism of k[X1, . . . , Xn]

(
fgeomAn

)∗{ Xi 7−→ Xq
i

a 7−→ a
, a k-homomorphism of k[X1, . . . , Xn] into itself,

where a ∈ k. This means that completely unlike other conjugations, the graph of fX = fgeomX is

closed in X ×Spec k X. Corollary 2.8 gives us a very interesting expansion of the zeta-function

of X in terms of the number of certain points on X:
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For every ν ≥ 1, we say that a closed point x ∈ X is defined over Fqν if any of

the equivalent conditions hold:

i) In Fq-coordinates, x corresponds to a point of (Fqν )n ⊂ An
k
,

ii) k(p(x)) ⊂ Fqν (p : X → X is the projection in Theorem 2.3),

iii) fνX(x) = x, i.e., x a fixed point of the morphism fνX .

(Apply Corollary 2.8 to k ⊃ Fqν and to X → (X ×Fq Fqν ).) The set of all these points we call

X(Fqν ). Then if

Nν = #X(Fqν ),
I claim that formally:

3.3.

ζX(s) = ZX(q
−s),

where ZX(t) is given by

dZX
ZX

=

( ∞∑
ν=1

Nν · tν−1

)
dt

ZX(0) = 1.

Proof. If Mν = number of x ∈ X with k(x) ∼= Fqν , then each such point splits in X into ν

distinct closed points which are in X(Fqµ) if ν | µ. Thus

Nµ =
∑
ν|µ

ν ·Mν .

By definition:

ζX(s) =

∞∏
ν=1

(
1− 1

qνs

)−Mν

so if we set

ZX(t) =

∞∏
ν=1

(1− tν)−Mν

then ζX(s) = ZX(q
−s). Moreover

dZX
ZX

= d(logZX) =
∞∑
ν=1

(−Mν) ·
−νtν−1

1− tν
· dt

=
1

t

∞∑
ν=1

νMν(t
ν + t2ν + t3ν + · · · )dt

=
1

t

∞∑
µ=1

Nµ · tµ · dt.

□

As an example, if X = AnFq
, then

Nν = #((Fqν )n) = qνn

hence

Z(
An
Fq

)(t) = 1

1− qnt
.

Therefore by (3.3)

ζ(
An
Fq

)(s) = 1

1− qn−s
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and

ζAn
Z
(s) =

∏
p

(
1

1− pn−s

)
= ζ0(s− n)

if ζ0(s) is Riemann’s zeta-function

ζ0(s) =
∏
p

(
1

1− p−1

)
=

∞∑
n=1

1

ns
.

From this, an easy consequence is:

Proposition 3.4. For all schemes X of finite type over Z, ζX(s) converges if Re(s)≫ 0.

Idea of proof. First reduce to the case X affine and then by an affine embedding, reduce

to the case of An using the fact that the Dirichlet series (1.3) for ζX has positive coefficients

majorized by those for ζAn . □

If X is a scheme over a field Fq again, a celebrated theorem of Dwork [36] states that ZX is

a rational function! If we then expand it in terms of its zeros and poles:

ZX(t) =

N∏
i=1

(1− αit)

M∏
i=1

(1− βit)

, αi, βi ∈ C

it follows immediately that

dZX
ZX

=

∞∑
ν=1

(
M∑
i=1

βνi −
N∑
i=1

ανi

)
tν−1dt

and hence:

Nν =

M∑
i=1

βνi −
N∑
i=1

ανi .

It seems most astonishing that the numbers Nν of rational points should be such an elementary

sequence! Even more remarkably, Deligne [34] has proven Weil’s conjecture that for every i,

|αi|, |βi| ∈ {1, q1/2, q, q3/2, . . . , qdimX}.

I would like to give one very simple application of the fact that the frobenius fX = fgeomX has

a graph:

Proposition 3.5. Let X be an Fq-variety such that X ∼= P1
k
. Then X has at least one

Fq-rational point.4

Proof. If X has not Fq-rational points, then fX : X → X has no fixed points. Let Γ ⊂
X×kX be the graph of fgeomX . Then Γ∩∆ = ∅, ∆ = diagonal. But now X×kX ∼= P1

k
×k P

1
k
and

via the Segre embedding this is isomorphic to a quadric in P3
k
. In fact, if X0, X1 (resp. Y0, Y1)

are homogeneous coordinates, then

s : P1
k
×k P

1
k
−→ P3

k

4We will see in Corollary VIII.1.8 that this implies X ∼= P1
k too. See Corollary VI.2.4 for a generalization of

Proposition 3.5 to Pn over finite fields.
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via

(X0, X1)× (Y0, Y1) // (X0Y0, X0Y1, X1Y0, X1Y1).

Z0 Z1 Z2 Z3

The image of s is the quadric Q = V (Z0Z3−Z1Z2). But the point is that s(∆) = Q∩V (Z1−Z2),

so s maps P1
k
×k P

1
k
\∆ isomorphically onto an affine variety W = Q ∩ [P3

k
\ V (Z1 − Z2)]. So if

Γ ∩∆ = ∅, we get a closed immersion

P1
k
∼= Γ −→W

of a complete variety in an affine one. But quite generally a morphism of a complete variety Γ

to an affine variety W must be a constant map. If not, choose any function a ∈ Γ(OW ) which

is not constant on the image of Γ and consider the composition

Γ −→W
a−→ A1

k
⊂ P1

k
.

Γ complete =⇒ image closed =⇒ image is one point or the whole P1
k
. Since a is not constant

on the image of Γ, the first is impossible and since ∞ /∈ image, the second is impossible. □

There are many other classes of varietiesX which always have at least one rational point over

a finite field Fq: for instance, a theorem of Lang says that this is the case for any homogeneous

space: cf. Theorem VI.2.1 and Corollary VI.2.5.

4. Flatness and specialization

In this section I would like to study morphisms f : X → S of finite type by considering them

as families {f−1(s)} of schemes of finite type over fields, parametrized by the points s of a “base

space” S. In particular, the most important case in many applications and for many proofs is

when S = SpecR, R a valuation ring. Our main goal is to explain how the concept “f is flat”,

defined via commutative algebra (cf. Definition 2.10), means intuitively that the fibres f−1(s)

are varying “continuously”.

We recall that flatness of a module M over a ring R is usually defined by the exactness

property:

Definition 4.1. M is a flat R-module if for all exact sequences

N1 −→ N2 −→ N3

of R-modules,

M ⊗R N1 −→M ⊗R N2 −→M ⊗R N3

is exact.

By a simple analysis it is then checked that this very general property is in fact implied by

the special cases where the exact sequence is taken to be

0 −→ a −→ R

(a an ideal in R), in which case it reads:

For all ideals a ⊂ R,
a⊗RM −→M

is injective.
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For basic facts concerning flatness, we refer the reader to Bourbaki [27, Chapter 1]5. We list a

few of these facts that we will use frequently, with some indication of proofs:

Proposition 4.2. If M is presented in an exact sequence

0 −→ N1 −→ N2 −→M −→ 0

where N2 is flat over R (e.g., N2 is a free R-module), then M is flat over R if and only if

N1/aN1 −→ N2/aN2

is injective for all ideals a ⊂ R.

This is seen by “chasing” the diagram:

0

��

Kernel?
��

a⊗R N1
//

��

N1
//

��

N1/aN1
//

��

0

0 // a⊗R N2
//

��

N2
//

��

N2/aN2
//

��

0

Kernel? // a⊗RM //

��

M //

��

M/aM //

��

0

0 0 0

To link flatness of stalks of sheaves with flatness of the module of sections over an affine

open set, we need:

Proposition 4.3. If M is a B-module and B is an A-algebra via i : A→ B, then:

M is flat over A⇐⇒ ∀p prime ideals in A, M ⊗A Ap is Ap-flat.

⇐⇒ ∀p prime ideals in B, if p0 = i−1(p), then Mp is Ap0-flat.

⇐⇒ The sheaf M̃ on SpecB is flat over SpecA (Definition 2.10).

Proposition 4.4.

a) If M is an A-module and B is an A-algebra, then

M flat over A =⇒M ⊗A B flat over B.

5(Added in publication) It would be worthwhile to point out that for an R-module M , the following are

equivalent:

(i) M is flat over R.

(ii) (See, e.g., Bourbaki [27, Chap. I, §2.11, Corollary 1], Eisenbud [38, Corollary 6.5], Matsumura [78,

Thoerem 7.6] and Mumford [86, Chap. III, §10, p. 295].) For elements m1, . . . ,ml ∈ M and a1, . . . , al ∈
R such that

∑l
i=1 aimi = 0, there exist m′

j ∈ M (j = 1, . . . , k) and bij ∈ R (i = 1, . . . , l; j = 1, . . . , k)

such that

mi =

k∑
j=1

bijm
′
j and

l∑
i=1

bijai = 0.

(iii) For any R-homomorphism α : F → M from a free R-module F of finite rank and for any finitely gen-

erated R-submodule K ⊂ Ker(α), there exist a free R-module F ′ of finite rank and R-homomorphisms

β : F → F ′ and γ : F ′ → M such that α = γ ◦ β and that K ⊂ Ker(β).

The equivalence of (i) and (ii) is an easy consequence of Bourbaki [27, Chap. I, §2.11, Lemma 10]. In (iii),

we may assume K to be generated by a single element. Then its equivalence to (ii) is obvious.

From this equivalence, we easily deduce that every flat R-module M is a (filtered) direct limit of free R-

modules of finite rank, a result due independently to V. E. Govorov (1965) and D. Lazard (1964). (cf. Eisenbud

[38, Theorem A6.6])
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b) If F is a quasi-coherent sheaf on X and we consider a fibre product diagram:

X ×Y Z
p

//

g

��

X

f

��

Z
q

// Y

then (cf. Definition 2.10)

F flat over Y =⇒ p∗F flat over Z.

c) Especially

f flat =⇒ g flat.

Proposition 4.5.

a) M flat over A =⇒ for all non-zero divisors a ∈ A, M a−→M is injective.

b) If A is a principal ideal domain or valuation ring, the converse is true.

The point of (a) is that A
a−→ A injective implies M

a−→M injective.

Proposition 4.6.

a) If M is a B-module and B is an A-algebra, where A, B are noetherian and M is finitely

generated then

M flat over A =⇒ ∀p ⊂ B, an associated primes of M,

p ∩A is an associated prime of A.

b) f : X → Y a morphism of noetherian schemes, F a coherent sheaf on X, then

F flat over OY =⇒ f(Ass(F)) ⊂ Ass(OY ).

Especially, f flat, η ∈ X a generic point implies f(η) ∈ Y is a generic point.

In fact, if p0 := p ∩A /∈ Ass(A), then there exists an element a ∈ p0Ap0 which is a non-zero

divisor. Then multiplication by a is injective in Mp, hence p /∈ Ass(M).

Proposition 4.7. If F is a coherent sheaf on a scheme X, then

F flat over OX ⇐⇒ F locally free.

Proof. For each x ∈ X, there is a neighborhood U of x and a presentation

OsU
α−→ OrU

β−→ F|U −→ 0.

Factor this through:

0 −→ K −→ OrU −→ F|U −→ 0

We may assume that r is minimal, i.e., β induces an isomorphism

k(x)r β−→ Fx/mxFx.

By flatness of Fx over Ox,X ,

0 −→ Kx/mxKx −→ k(x)r −→ Fx/mxFx −→ 0

is exact. Therefore Kx/mxKx = (0) and K is trivial in a neighborhood of x by Proposition I.5.5

(Nakayama). □

Another important general result is that a large class of morphisms are at least flat over an

open dense subset of the image scheme:
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Theorem 4.8 (Theorem of generic flatness). Let f : X → Y be a morphism of finite type

between two irreducible reduced noetherian schemes, with f(ηX) = ηY . Then there is a non-

empty open U ⊂ Y such that res f : f−1U → U is flat and surjective.

Proof. We can obviously replace Y by an affine open piece, and then covering X by affines

V1, . . . , Vk, if res f : Vi ∩ f−1Ui → Ui is flat, then res f : f−1(
∩
Ui) →

∩
Ui is flat. So we may

assume X = SpecB, Y = SpecA, and we quote the very pretty lemma of Grothendieck. □

Lemma 4.9 (SGA 1 [4, Exposé IV, Lemme 6.7, p. 102]). Let A be a noetherian integral

domain, B a finitely generated A-algebra, M a finitely generated B-module. Then there exists a

non-zero f ∈ A such that Mf is a free (hence flat) Af -module.

Proof of Lemma 4.9. 6 Let K be the quotient field of A, so that B ⊗A K is a finitely

generated K-algebra andM ⊗AK is a finitely generated module over it. Let n be the dimension

of the support of this module and argue by induction on n. If n < 0, i.e., M ⊗A K = (0),

then taking a finite set of generators of M over B, one sees that there exists an f ∈ A which

annihilates these generators, and hence M , so that Mf = (0) and we are through. Suppose

n ≥ 0. One knows that the B-module M has a composition series whose successive quotients

are isomorphic to modules B/pi, pi ⊂ B prime ideals. Since an extension of free modules is

free, one is reduced to the case where M itself has the form B/p, or even is identical to B, B

being an integral domain. Applying Noether’s normalization lemma (Zariski-Samuel [119, vol.

2, Chapter VII, §7, Theorem 25, p. 200]) to the K-algebra B ⊗A K, one sees easily that there

exists a non-zero f ∈ A such that Bf is integral over a subring Af [t1, . . . , tn], where the ti are

indeterminates. Therefore one can already assume B integral over C = A[t1, . . . , tn], so that it

is a finitely generated torsion-free C-module. If m is its rank, there exists therefore an exact

sequence of C-modules:

0 −→ Cm −→ B −→M ′ −→ 0

where M ′ is a torsion C-module. It follows that the dimension of the support of the C ⊗A K-

module M ′⊗AK is strictly less than the dimension n of C ⊗AK. By induction, it follows that,

localizing by a suitable f ∈ A, one can assume M ′ is a free A-module. On the other hand Cm

is a free A-module. Therefore B is a free A-module. □

In order to get at what I consider the intuitive content of “flat”, we need first a deeper fact:

Proposition 4.10. Let A be a local ring with maximal ideal m, and let B = A[X1, . . . , Xn]p
where p ∩A = m. Let

K
u−→ L

v−→M

be finitely generated free B-modules and B-homomorphisms such that v ◦ u = 0. If

K/mK −→ L/mL −→M/mM

is exact, then

K −→ L −→M

is exact and M/v(L) is flat over A.

Proof. Express u and v by matrices of elements of B and let A0 be the subring of A

generated over Z by the coefficients of these polynomials. Let A1 = (A0)m∩A0 . Then A1 is a

noetherian local ring and if B1 = A1[X1, . . . , Xn]p∩A1[X], we may define a diagram

K1
u1−→ L1

v1−→M1

6Reproduced verbatim.
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over B1 such that K → L → M arises from it by ⊗B1 B or equivalently by ⊗A1 A and then

localizing at p. Let m1 = m ∩A1, k1 = A1/m1, k = A/m. Then

K1/m1K1 −→ L1/m1L1 −→M1/m1M1

is exact because K/mK → L/mL → M/mM is exact and arises from it by ⊗k1 k (i.e., a non-

exact sequence of k1-vector spaces remains non-exact after ⊗k1 k). Now if we prove the lemma

for A1, B1, K1, L1 and M1, it follows for A, B, K, L and M . In fact M1/v1(L1) flat over A1

implies

M/v(L) ∼= [(M1/v1(L1))⊗A1 A]S (S = multiplicative system A[X] \ p)

is flat over A; and from the exact sequences:

K1 −→ L1 −→ v1(L1) −→ 0

0 −→ v1(L1) −→M1 −→M1/v1(L1) −→ 0

we deduce by ⊗A1 A and by localizing with respect to S that

K −→ L −→ (v1(L1)⊗A1 A)S −→ 0

0 −→ (v1(L1)⊗A1 A)S −→M −→M/ (v1(L1)⊗A1 A)S −→ 0

are exact, (using again M1/v1(L1) flat over A1!), hence K → L → M is exact. This reduces

the lemma to the case A noetherian. In this case, we use the fact that B noetherian local with

m ⊂ maximal ideal of B implies
∞∩
n=1

mn · P = (0)

for any finitely generated B-module P (cf. Zariski-Samuel [119, vol. I, Chapter IV, Appendix,

p. 253]). In particular

∞∩
n=1

mn · (L/u(K)) = (0)

or

∞∩
n=1

(mnL+ u(K)) = u(K).

So if x ∈ Ker(v) and x /∈ Image(u) we can find an n such that x ∈ mn · L + u(K), but

x /∈ mn+1 · L + u(K). Let x = y + u(z), y ∈ mn · L, z ∈ K. The (u, v)-sequence induces by

⊗mn/mn+1 a new sequence:

mnK/mn+1K
un

//

∼

mnL/mn+1L
vn

//

∼

mnM/mn+1M

∼

(mn/mn+1)⊗k K/mK // (mn/mn+1)⊗k L/mL // (mn/mn+1)⊗kM/mM.

The bottom sequence is exact by hypothesis. On the other hand y maps to an element y ∈
mnL/mn+1L such that vn(y) = 0. Therefore y ∈ Imageun, i.e., y ∈ u(mnK) + mn+1L, hence

x ∈ u(K) + mn+1L — contradiction. This proves that the (u, v)-sequence is exact. Next, if

a ⊂ A is any ideal, the same argument applies to the sequence:

(∗) K/a ·K −→ L/a · L −→M/a ·M

of B/a ·B-modules. Therefore all these sequences are exact. But from the exact sequences:

K −→ L −→ L/u(K) −→ 0



4. FLATNESS AND SPECIALIZATION 143

0 −→ L/u(K) −→M −→M/v(L) −→ 0,

we get in any case exact sequences:

(∗∗)
K/a ·K −→ L/a · L −→ (L/u(K))⊗A A/a −→ 0

(L/u(K))⊗A A/a −→M/a ·M −→ (M/v(L))⊗A A/a −→ 0

so the exactness of (∗) implies that (∗∗) is exact with (0) on the left too, i.e., by Proposition 4.2

M/v(L) is flat over A. □

Corollary 4.11. Let A be a local ring with maximal ideal m, and let B = A[X1, . . . , Xn]p
where p ∩A = m. Let f1, . . . , fk ∈ B. Then

B/(f1, . . . , fk) is a flat A-algebra⇐⇒

 ∀ syzygies
∑k

i=1 gif i = 0 in B/mB,

∃ syzygy
∑k

i=1 gifi = 0 in B

with gi lifting gi.


Proof. ⇐= : Since B/mB is noetherian, the module of syzygies over B/mB is finitely

generated: let ∑
gi,lf i = 0, 1 ≤ l ≤ N

be a basis, and lift these to syzygies ∑
gi,lfi = 0.

Define homomorphisms:

BN u−→ Bk v−→ B

u(a1, . . . , aN ) =
(∑

g1,lal, . . . ,
∑

gk,lal

)
v(a1, . . . , ak) =

∑
aifi.

Then v ◦ u = 0 and by construction

(B/mB)N
u−→ (B/mB)k

v−→ B/mB

is exact. Therefore B/v(Bk) = B/(f1, . . . , fk) is A-flat by Proposition 4.10.

=⇒ : Define v as above and call its kernel Syz, the module of syzygies so that we get:

0 −→ Syz −→ Bk v−→ B −→ B/(f1, . . . , fk) −→ 0.

Split this into two sequences:

0 −→ Syz −→ Bk −→ (f1, . . . , fk) −→ 0

0 −→ (f1, . . . , fk) −→ B −→ B/(f1, . . . , fk) −→ 0.

By the flatness of B/(f1, . . . , fk), these give:

Syz /m · Syz −→ (B/mB)k −→ (f1, . . . , fk)⊗B B/mB −→ 0

0 −→ (f1, . . . , fk)⊗B B/mB −→ B/mB −→ B/(mB + (f1, . . . , fk)) −→ 0,

hence

Syz /m · Syz −→ (B/mB)k
v−→ B/mB −→ B/(mB + (f1, . . . , fk)) −→ 0

is exact. Since Ker v = syzygies in B/mB, this shows that all syzygies in B/mB lift to Syz. □

Putting it succinctly, flatness means that syzygies for the fibres lift to syzygies for the whole

scheme and hence restrict to syzygies for the other fibres: certainly a reasonable continuity

property.

The simplest case is when R is a valuation ring. We give this a name:
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Definition 4.12. Let R be a valuation ring, and let η (resp. o) be the generic (resp. closed)

point of SpecR. Let f : X → SpecR be a flat morphism of finite type (by Proposition 4.5, this

means: OX is a sheaf of torsion-free R-modules). Then we say that the closed fibre Xo of f is

a specialization over R of the generic fibre Xη.

Note that the flatness of f is equivalent to saying that Xη is scheme-theoretically dense in

X (Proposition II.3.11). In fact, if you start with any X of finite type over R, then define a

sheaf of ideals I ⊂ OX by:

I(U) = Ker
(
OX(U) −→ OXη(U ∩Xη)

)
.

Then as in Proposition II.3.11 it follows easily that I is quasi-coherent and for all U affine,

I(U) is just the ideal of R-torsion elements in OX(U). If OX/I is the structure sheaf of the

subscheme X̃ ⊂ X, then

a) X̃η = Xη

b) X̃o is a specialization of Xη.

To give some examples of specializations, consider:

Example. 1.) If X is reduced and irreducible, with its generic point over η, then Xo is

always a specialization of Xη.

Example. 2.) Denote by M the maximal ideal of R with the residue field k = R/M . The

quotient field of R is denoted by K. If f(X1, . . . , Xn) is a polynomial with coefficients in R and

f is the same polynomial mod M , i.e., with coefficients in k, then the affine scheme V (f) ⊂ Ank
is a specialization of V (f) ⊂ AnK provided that f ̸≡ 0. In fact, let X = V (f) ⊂ AnR and note that

R[X1, . . . , Xn]/(f) is torsion-free.

Example. 3.) If X is anything of finite type over R, and Yη ⊂ Xη is any closed subscheme,

there is a unique closed subscheme Y ⊂ X with generic fibre Yη such that Yo is a specialization

of Yη. (Proof similar to discussion above.)

It can be quite fascinating to see how this “comes out”, i.e., given Yη, guess what Yo will be:

Example. 4.) In A2
K with coordinates x, y, let Yη be the union of the three distinct points

(0, 0), (0, α), (α, 0), α ∈M, α ̸= 0.

Look at the ideal:

I = Ker
(
R[x, y]

ϕ−→ K ⊕K ⊕K
)

where ϕ(f) = (f(0, 0), f(0, α), f(α, 0)). I is generated by

xy, x(x− α), y(y − α),

hence reducing these mod M , we find

Yo = Spec k[x, y]/(x2, xy, y2)

the origin with “multiplicity 3”. For other triples of points, what Yo’s can occur?

Example. 5.) (Hironaka) Take two skew lines in A3
K :

l1 defined by x = y = 0

l2 defined by z = 0, x = α, (α ∈M,α ̸= 0).

Let Yη = l1 ∪ l2. To find Yo, first compute:

I = Ker (R[x, y, z] −→ Γ(Ol1)⊕ Γ(Ol2)) .
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Xη Xo

l1

l2

l′1

l′2

embedded component

Figure IV.11. Specialization of two skew lines

One finds I = (xz, yz, x(x− α), y(x− α)). Reducing mod M , we find

Xo = Spec k[x, y, z]/(xz, yz, x2, xy).

Now √
(x2, xy, xz, yz) = (x, yz)

which is the ideal of the two lines l′1 = V (x, y) and l′2 = V (x, z) which are the limits of l1 and l2
individually. But since

(x2, xy, xz, yz) = (x, yz) ∩ (x, y, z)2

it follows that Xo has an embedded component where the two lines cross. The picture is as in

Figure IV.11.

5. Dimension of fibres of a morphism

We would like to prove some general results on the dimensions of the fibres of a morphism.

We begin with the case of a specialization:

Theorem 5.1 (Dimension Theorem). Let R be a valuation ring with quotient field K, residue

field k = R/M , let S = SpecR, and let X be a reduced, irreducible scheme of finite type over S

with generic point over η. Then for every component W of Xo:

dimXη = dimW

i.e., trdegK R(X) = trdegkR(W ).

Proof. First of all, we may as well replace X by an affine open subset meeting W and not

meeting any other components of Xo. This reduces us to the case where X = SpecA and Xo is

irreducible (hence
√
M ·A prime).

Next, the inequality dimXo ≤ dimXη is really simple: because if r = dimXo, then there

exist t1, . . . , tr ∈ A such that t1, . . . , tr ∈ A/
√
M ·A are independent transcendentals over k.

But if the ti are dependent over K, let ∑
cαt

α = 0

be a relation. Multiplying through by a suitable constant, since R is a valuation ring, we may

assume cα ∈ R and not all cα are in M . Then
∑
cαt

α
= 0 in A/

√
M ·A is a non-trivial relation

over k.

To get started in the other inequality, we will use:
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Lemma 5.2. Let k ⊂ K be any two fields and let X be a k-variety. Then if X×Spec kSpecK =

X1 ∪ · · · ∪Xt,

dimX = dimXi, 1 ≤ i ≤ t.

Proof of Lemma 5.2. If K is an algebraic extension of k, this follows from Theorem 2.4

by going up to k and down again. If K is purely transcendental over k, let K = k(. . . , tα, . . .).

Then if A is any integral domain containing k with quotient field L,

A⊗k K = (A[. . . , tα, . . .] localized with respect to K \ (0))

is another integral domain and it contains K and has quotient field L(. . . , tα, . . .). It follows

that in this case X ×Spec k SpecK is reduced and irreducible and

R(X ×Spec k SpecK) = R(X)(. . . , tα, . . .).

Therefore

dim (X ×Spec k SpecK) = trdegk(...,tα,...)R(X)(. . . , tα, . . .)

= trdegkR(X)

= dimX.

Putting the two cases together, we get the general result. □

Lemma 5.3. Let R be any local integral domain (neither noetherian nor a valuation ring!),

S = SpecR, η, o ∈ S as above. Let X be reduced and irreducible and let π : X → S be of finite

type. Assume π has a section σ : S → X. Then dimXo = 0 =⇒ dimXη = 0.

Proof of Lemma 5.3. We can replace X by an affine neighborhood of σ(o) and so reduce

to the case X = SpecA for simplicity. On the ring level, we get

R
π∗

// A
σ∗

tt

hence

A = R⊕ I, where I = Kerσ∗.

Consider the sequence of subschemes

Yn = SpecA/In

''OOOOOO
⊂ X

�����

S.

If x1, . . . , xm generate A as a ring over R, let xi = ai + yi, ai ∈ R, yi ∈ I. Then yr11 · · · yrmm
with 0 ≤

∑
ri < n generate A/In as a module over R. Being finitely generated over R at all, it

follows by Nakayama’s lemma that if z1, . . . , zn ∈ A/In generate (A/In)⊗R (R/M) over R/M ,

they generate A/In over R. Thus

(∗) dimk(A/I
n)⊗R k = (minimal number of generators of A/In)

≥ dimK(A/I
n)⊗R K.

Now given any 0-dimensional scheme Z of finite type over a field L, then Z consists in a

finite set of points {P1, . . . , Pt}, and the local rings OPi,Z are artinian. Then in fact Z ∼=
Spec

(∏t
i=1OPi,Z

)
, hence is affine and a natural measure of its “size” is

degL Z =
def

dimL Γ(OZ).

In this language, (∗) says degk(Yn)o ≥ degK(Yn)η. But (Yn)o ⊂ Xo andXo is itself 0-dimensional,

so

degkXo ≥ degk(Yn)o ≥ degK(Yn)η.
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This bound shows that (Yn)η = (Yn+1)η if n≫ 0. On the other hand, (Yn)η is the subscheme of

Xη consisting of the single point x = σ(η) and defined by the ideal mn
x,Xη

. Thus mn
x,Xη

= mn+1
x,Xη

if n≫ 0 and since Ox,Xη is noetherian, this means mn
x,Xη

= (0) if n≫ 0. Thus Ox,Xη is in fact

finite-dimensional over K, hence

dimXη = trdegK R(Xη)

= trdegK Ox,Xη

= 0.

□

Lemma 5.4. Lemma 5.3 still holds even if a section doesn’t exist.

Proof of Lemma 5.4. Choose x ∈ Xo, let S
′ = SpecOx,X , and consider

X ×S S′

��

S′

σ

DD

where σ = (i, 1S′), i : SpecOx,X → X being the canonical inclusion. Let X ′ be an irreducible

component of X ×S S′ containing σ(S′) with its reduced structure. Then

dimXo = 0 =⇒ dimX ′
o = 0 by Lemma 5.2

=⇒ dimX ′
η = 0 by Lemma 5.3

=⇒ dimXη = 0 by Lemma 5.2.

□

Going back to Theorem 5.1, we have now proven that dimXo = 0 ⇐⇒ dimXη = 0. Sup-

pose instead that both dimensions are positive. Choose t ∈ A such that t ∈ A/
√
M ·A is

transcendental over k and let

R′ = (R[t] localized with respect to S = R[t] \M ·R[t]) .

This is a new valuation ring with quotient field K(t) and residue field k(t) and π factors:

X

π

��
55555555555555555 SpecA

��

SpecAS = X ′? _oo

π′

��

SpecR[t]

��

SpecR′? _oo

SpecR

Since t is transcendental in both AK and A/
√
M ·A, π takes the generic points of both Xo and

Xη into the subset SpecR′ of SpecR[t], i.e., they lie in X ′. Now AS being merely a localization of

A, X ′ has the same stalks as X. Therefore R(X ′
η) = R(X) and R(X ′

o) = R(Xo) and considering
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X ′ over S′ = SpecR′:

dimX ′
η = trdegK(t)R(X)

= trdegK R(X)− 1

= dimXη − 1

dimX ′
o = trdegk(t)R(Xo)

= trdegkR(Xo)− 1

= dimXo − 1.

Making an induction on min(dimXη, dimXo), this last step completes the proof. □

The dimension theorem (Theorem 5.1) has lots of consequences: first of all it has the following

generalization to general morphisms of finite type:

Corollary 5.5. Let f : X → Y be a morphism of finite type between two irreducible reduced

schemes with f(generic point ηX) = generic point ηY . Then for all y ∈ Y and all components

W of f−1(y):

dimW ≥ trdegR(Y )R(X) = dim f−1(ηY ).

If f is flat over Y , equality holds.

Proof. We may as well assume f−1(y) is irreducible as otherwise we can replace X by an

open subset to achieve this. Let w ∈ f−1(y). Choose a valuation ring R:

Ow,X ⊂ R ⊂ R(X)

with

mw,X ⊂ maximal ideal M of R.

Now form the fibre product:

X

f

��

X ′oo

f ′

��

Y SpecR.oo

Note that f ′ has a section σ : SpecR→ X ′ induced by the canonical map SpecR→ SpecOw,X →
X (as in Lemma 5.4). Break up X ′

η into its irreducible components and let their closures in X ′

with reduced structure be written X(1), . . . , X(n). One of these, say X(1) contains the image of

the section σ:

X

f

��

X ′oo

f ′

��

⊃ X(1)

Y SpecRoo

σ

>>||||||||

Let o, η ∈ SpecR be its closed and generic points: the various fibres are related by:

X(1)
η = component of X ′

η, X ′
η = f−1(ηY )×SpecR(Y ) SpecK

X(1)
o ⊂ X ′

o, X ′
o = f−1(y)×SpecR(Y ) SpecR/M.

Then:

dim f−1(y) = dim(all components of X ′
o), by Lemma 5.2

≥ dim(any component of X(1)
o )

= dimX(1)
η , by Theorem 5.1

= dim f−1(ηY ), by Lemma 5.2.
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Now if X is flat over Y , then X ′ is flat over SpecR, hence

X ′ = X(1) ∪ · · · ∪X(n)

(otherwise, let U ⊂ X ′ be an open affine disjoint from
∪
X(i) and if U = SpecA, then Spec(A⊗R

K) = Uη = ∅, so A is a torsion R-module contradicting flatness). Therefore

X ′
o = X(1)

o ∪ · · · ∪X(n)
o

hence for at least one i, X
(i)
o = a component of X ′

o and

dim f−1(y) = dimX(i)
o

= dimX(i)
η

= dim f−1(ηY ).

□

Combining Corollary 5.5 and Theorem 4.8 (generic flatness), we get:

Corollary 5.6. Let f : X → Y be as in Corollary 5.5. Then there is an integer n and a

non-empty open U ⊂ Y such that for all y ∈ U and all components W of f−1(y), dimW = n.

Combining these results and the methods of Part I [87, (3.16)], we deduce:

Corollary 5.7. Let f : X → Y be any morphism of finite type with Y noetherian. Then

the function

x 7−→ max{dimW |W a component of f−1(f(x)) containing x}

is upper semi-continuous.

Another consequence of Theorem 5.1 is that we generalize Part I [87, (3.14)] to varieties

over any ground field k:

Corollary 5.8. Let k be a field and X a k-variety. If t ∈ Γ(OX) and

V (t) = {x ∈ X | t(x) = 0} ⫋ X,

then for every component W of V (t),

dimW = dimX − 1.

Proof. Let t define a morphism:

T : X −→ A1
k.

Then either T (generic point) = generic point, or T (generic point) = closed point a. In the

second case a ̸= 0 and v(t) = ∅ so there is nothing to prove. In the first case, R = O0,A1 is a

valuation ring and making a base change:

X

T
��

X ′oo

π

��

A1
k SpecRoo

we are in the situation of the dimension theorem. Now R(X) = R(X ′), so

dim
(
X ′
η over quotient field of R

)
= trdegk(t)R(X)

= trdegkR(X)− 1

= dimX − 1



150 IV. GROUND FIELDS AND BASE RINGS

while W is a component of T−1(0), hence of π−1(0) and satisfies:

dim(W over residue field of R) = trdegkR(W )

= dimW.

□

(Note that we have not used Krull’s principal ideal theorem (Zariski-Samuel [119, vol. I,

Chapter IV, §14, Theorem 29, p. 238]) in this proof.)

Up to this point, we have defined and discussed dimension only for varieties over various

fields. There is a natural concept of dimension for arbitrary schemes which by virtue of the

above corollary agrees with our definition for varieties:

Definition 5.9. If X is a scheme, then

dimX =

{
largest integer n such that there exists a chain

of irreducible closed subsets: ∅ ̸= Z0 ⫋ Z1 ⫋ · · · ⫋ Zn ⊂ X.

}
If Z ⊂ X is an irreducible closed set with generic point z, then

codimX Z

or

codimX z

=

{
largest integer n such that there exists a chain

of irreducible closed subsets: Z = Z0 ⫋ Z1 ⫋ · · · ⫋ Zn ⊂ X

}
.

From the definition, one sees immediately that ∀Z irreducible, closed:

dimZ + codimX Z ≤ dimX.

But “<” can hold even for such spaces as SpecR, R local noetherian integral domain! This

pathology makes rather a mess of general dimension theory. The definition ties up with dimen-

sion in local ring theory as follows: if Z ⊂ X is closed and irreducible, and z ∈ Z is its generic

point, then there is a bijection between closed irreducible Z ′ ⊃ Z and prime ideals p ⊂ Oz,X .
Therefore:

codimX Z = Krull dimOz,X
where the Krull dim of a local ring is the maximal length of a chain of prime ideals: cf. Zariski-

Samuel [119, vol. II, p. 288], or Atiyah-MacDonald [20, Chapter 11]. Moreover, in this language,

Krull’s principal ideal theorem (Zariski-Samuel [119, vol. I, Chapter IV, §14, Theorem 29, p.

238]) states:

If X is noetherian reduced and irreducible, f ∈ Γ(OX), f ̸= 0, then for all components W

of V (f),

codimXW = 1,

which generalizes Corollary 5.8.

Corollary 5.10. Let k be a field and X a k-variety. Then the two definitions of dimension

agree. More precisely, for every maximal chain

∅ ̸= Z0 ⫋ Z1 ⫋ · · · ⫋ Zn = X

we have:

trdegkR(Zi) = i, 0 ≤ i ≤ n.
In particular, X is “catenary”, meaning that any two maximal chains have the same length.

Therefore for all Z ⊂ X closed irreducible, with generic point z:

dimZ + codimX Z = dimX
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or

trdegk k(z) + Krull dimOz,X = dimX.

Proof. Note on the one hand that a minimal irreducible closed subset Z0 is just a closed

point Z0 = {z0}, hence R(Z0) = k(z0) is algebraic over k by Corollary II.2.11. On the other

hand, a maximal proper closed irreducible subset Z ⫋ X can be analyzed by Corollary 5.8. Let

U ⊂ X be an affine open set meeting Z and let f ∈ OX(U) be a function 0 on Z ∩ U and 1 at

some closed point z′ ∈ U \ (U ∩ Z). Then

Z ∩ U ⊂ V (f) ⫋ U,

hence Z ∩ U ⊂ W ⫋ U , some component W of V (f), hence Z ⊂ W ⫋ X. By maximality of Z,

Z =W , hence

trdegkR(Z) = trdegkR(W )

= trdegkR(X)− 1, by Corollary 5.8.

These two observations prove Corollary 5.10. □

Corollary 5.11. Let R be a Dedekind domain with an infinite number of prime ideals and

quotient field K and let π : X → SpecR be a reduced and irreducible scheme of finite type over

R with π(ηX) = ηR, the generic point of SpecR. Then every maximal chain looks like:

∅ ̸= Z0 ⫋ Z1 ⫋ · · · ⫋ Zr ⫋ Yr+1 ⫋ · · · ⫋ Yn+1 = X

where

a) Zr ⊂ π−1(a) for some closed point a ∈ SpecR and trdegk(a)R(Zi) = i, 0 ≤ i ≤ r
b) π(Yr+1) ∋ ηR and trdegK R(Yi+1) = i, r ≤ i ≤ n.

In particular n = trdegK R(X), X is catenary and

dimX = 1 + trdegK R(X).

Proof. This goes just like Corollary 5.10. By Chevalley’s Nullstellensatz (Theorem II.2.9)

a closed point Z0 = {z0} of X lies over a closed point a of SpecR and k(z0) is algebraic over

k(a). And maximal proper closed irreducible Z ⫋ X fall into two cases:

Case i): Zη ̸= ∅, so Zη ⫋ Xη is a maximal closed irreducible subset and so trdegK R(Z) =

trdegK R(X)− 1;

Case ii): Zη = ∅, so Z ⊂ π−1(a) in which case Z must be a component of π−1(a). Then by the

Dimension Theorem (Theorem 5.1), trdegk(a)R(Z) = trdegK R(X). □

An important link between flatness and dimension theory is given by:

Proposition 5.12. Let f : X → Y be a flat morphism of noetherian schemes and let x ∈ X,

y = f(x). Then:

i) SpecOx,X → SpecOy,Y is surjective,

ii) codimX(x) ≥ codimY (y).

Moreover if f is of finite type, then

iii) for all open sets U ⊂ X, f(U) is open in Y .

The proof is straightforward using the fact that for all Z ⊂ Y

res f : f−1(Z) −→ Z

is still flat, and applying Theorem II.2.9 (Chevalley’s Nullstellensatz) and Proposition 4.6.
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6. Hensel’s lemma

The most important situation for specialization is when the base ring R is a complete discrete

valuation ring, such as Zp or k[[t]]. One of the main reasons why this case is special is that Helsel’s

lemma holds. This “lemma” has many variants but we would like to put it as geometrically as

possible:

Lemma 6.1. (Hensel’s lemma)7. Let R be a complete local noetherian ring, S = SpecR and

π : X → S a morphism of finite type. Suppose we have a decomposition of the closed fibre:

Xo = Yo ∪ Zo, Yo, Zo open, disjoint

Yo = {y} a single point

Then we can decompose the whole scheme X:

X = Y ∪ Z, Y , Z open disjoint

Y = SpecB, finite and integral over R

so that Yo = closed fibre of Y , Zo = closed fibre of Z.

Proof. Let U ⊂ X be an affine open subset such that U ∩Xo = {y}. Let U = SpecB, and

consider the ideal

N =
∞∩
n=1

Mn ·B, where M = maximal ideal of R.

Now Oy,X is a localization Bp of B and since M · Bp ⊂ p · Bp, by Krull’s theorem (cf. Zariski-

Samuel [119, vol. I, Chapter IV, §7, p. 216]):

N ·Bp ⊂
∞∩
n=1

Mn ·Bp ⊂
∞∩
n=1

(pBp)
n = (0).

Therefore, ∃f ∈ B \ p such that f · N = (0). Now replace B by its localization Bf and U by

Uf . Using this smaller neighborhood of Y , we can assume
∩∞
n=1M

n · B = (0). Now recall the

algebraic fact:

If B is a module over a complete local ring (R,M) such that:

a)
∩∞
n=1M

n ·B = (0)

b) B/M ·B is finite-dimensional over R/M ,

then B is a finitely generated R-module (Zariski-Samuel [119, vol. II, Chapter

VIII, §3, Theorem 7, p. 259]).

Since SpecB/M · B = Uo = Yo consists in one point, dimR/M B/MB < +∞ and (a) and (b)

hold. Therefore B is integrally dependent on R, and by Proposition II.6.5, resπ : U → S is a

proper morphism. It follows that the inclusion i:

U
  

BBB
� �

i
// X

π}}||||

S

is proper, hence U = Image(i) is closed in X. Therefore if we set Y = U , Z = X \ U , we have

the required decomposition. □

7The lemma is also true whenever Yo is proper over S: cf. EGA [1, Chapter III].
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Note that in fact, since B is integrally dependent on R, all its maximal ideals contract to

M ⊂ R; since SpecB has only one point, namely y, over the closed point [M ] ∈ SpecR, this

means that B has only one maximal ideal, i.e., B is local. Therefore:

B = Oy,X .

Corollary 6.2 (Classical Helsel’s lemma). Let R be a complete local noetherian ring with

maximal ideal M and residue field k = R/M . Let f(T ) be a monic polynomial over R and let f

be the reduced polynomial over k. Factor f :

f =
n∏
i=1

grii

where gi are distinct, irreducible and monic. Then f factors:

f =
n∏
i=1

fi

with f i = grii .

Proof. Apply Hensel’s Lemma 6.1 to X = SpecR[T ]/(f(T )).

Then Xo consists in n points [(gi)] ∈ A1
k, hence X decomposes into n disjoint pieces:

X =
n∪
i=1

Xi

Xi = SpecR[T ]/ai

(Xi)o = Spec k[T ]/(grii ).

If di = deg(grii ), then 1, T, . . . , T di−1 generate the R-module (R[T ]/ai)⊗R k ∼= k[T ]/(grii ), hence

by Nakayama’s lemma, they generate R[T ]/ai. Therefore T di ∈
∑di−1

j=1 RT j in R[T ]/ai, or ai
contains a monic polynomial fi of degree di. Then

a) f i ∈ (grii ), and since both are monic of the same degree, f i = grii ,

b)
∏
fi is everywhere zero on X, so

∏
fi ∈ (f), and since both are monic of the same

degree,
∏
fi = f .

It follows easily that ai = (fi) too, so that the decomposition of X into components and of f

into factors are really equivalent! □

Corollary 6.3. Let R, M , k, S = SpecR be as before. Then for all finite separable field

extension k ⊂ L, there is a unique flat morphism π : XL → S of finite type8 such that

(∗) (XL)o is reduced and consists in one point x

k(x) = L, XL connected.

In fact for all p : Z → S of finite type and α where:

(∗∗) Zo = one point z, Z connected

α : L ↪→ k(z) is k-homomorphism,

there exists a unique S-morphism

f : Z −→ XL

such that f(z) = x and f∗ : k(x)→ k(z) is equal to α.

8In fact, π : XL → S is étale in the sense to be defined in §V.3.
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Proof. To construct XL, write L = k[X]/(f(X)), lift f to a polynomial f of the same

degree over R and set XL = SpecR[X]/(f(X)). We prove next that any XL flat over S with

property (∗) has the universal property of Corollary 6.3 for all p : Z → S satisfying (∗∗). This

will prove, in particular, that any two such XL’s are canonically isomorphic.

Consider

p2 : XL ×S Z −→ Z.

α induces a section σ of p2 over {z}.

SpecL×S Spec k(z) � � // XL ×S Z

��

Spec k(z) = {z} � � //

(Specα,1)

OO

Z.

By Hensel’s Lemma 6.1, Z = SpecR′, R′ a finite local R-algebra, hence Hensel’s Lemma 6.1

applies with S replaced by Z too: e.g., to p2. It follows:

XL ×S Z =W1 ∪W2 (disjoint)

W1 ∩ p−1
2 (z) = Imageσ

W1 = SpecR′′, R′′ a finite local R′-algebra.

But p2 is flat so R′′ is flat over R′, hence free (since R′ is local and R′′ is a finite R′-module).

By assumption

(XL)o = SpecL,

so p−1
2 (z) = Spec(L⊗k k(z)).

Now L separable over k implies that L⊗k k(z) is a separable k(z)-algebra — in particular it has

no nilpotents. Thus:

p−1
2 (z) ∩W1

∼= Spec k(z)
hence R′′ ⊗R′ k(z) ∼= k(z) and R′′ ⊗R′ k(z) has one generator. Therefore R′′ is free over R′ with

one generator, i.e., W1
∼= Z. This means that σ extends uniquely to a section σ of p2:

XL ×S Z
p2

��

Spec k(z)

σ
88qqqqqqqqqq

� � // Z

σ

ZZ

and f = p1 ◦ σ has the required properties. □

Corollary 6.4. Let R be a complete discrete valuation ring, S = SpecR, π : X → S a

morphism of finite type with X reduced and irreducible. Then:

Xη = one point =⇒ Xo = zero or one point.

This corollary allows us to define a very important map, the specialization map (to be used

in §V.3):

Definition 6.5. Let X be of finite type over R: Let

Max(Xη) = set of closed points of Xη

Max(Xo) = set of closed points of Xo.

Let

Max(Xη)
◦ = set of x ∈ Max(Xη) such that x is not closed in X.
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MaxP1
K MaxP1

k
sp−→

|α| < 1

∞

0

∞

k∗

|α| = 1

|α| > 1

Figure IV.12. Specialization map for P1
R

Let

sp: Max(Xη)
◦ −→ Max(Xo)

be the map

x 7−→ {x} ∩Xo

(apply Corollary 6.4 to {x} with reduced structure; hence #({x} ∩ Xo) = 0 or 1). Note that

if X is proper over S, then Max(Xη) = Max(Xη)
◦ since π({x}) must be closed in S, hence

{x} ∩Xo ̸= ∅.
The spaces Max(Xη)

◦ are the building blocks for the theory of “rigid analytic spaces” over

K — cf. Tate [112].

Example. X = A1
R. Then

Max(A1
K) = set of conjugacy classes of algebraic elements over K

Max(A1
K)

◦ = those algebraic elements which are integral over R

Max(A1
k) = set of conjugacy classes of algebraic elements over k

and sp is the map:

if xn+ a1x
n−1 + · · ·+ an = 0 is the irreducible equation for x, then spx is a root

of the equation xn + a1x
n−1 + · · ·+ an = 0, ai = (ai modM).

More succinctly, R defines an absolute value

x 7−→ |x|

on K making X into a complete topological field, via

|u · πn| = c−n, (some fixed c ∈ R, c > 1

all u ∈ R∗, π = generator of M).

Then this absolute value extends to K and Max(A1
K)

◦ is the unit disc:

{x up to conjugacy | |x| ≤ 1}.

On the other hand, if X = P1
R, then Max(P1

K) consists in {∞} plus Max(A1
K). And now

since P1
R is proper over S, sp is defined on the whole set Max(P1

K). It extends the above sp on

Max(A1
K)◦, and carries ∞ as well as the whole set

Max(A1
K) \Max(A1

K)◦ = {x up to conjugacy | |x| > 1}

to ∞ in Max(P1
k). It looks like Figure IV.12
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Proposition 6.6. The map

sp: Max(Xη)
◦ −→ Max(Xo)

is surjective.

The proof goes by induction on dimXo. If Xo = 0, use Hensel’s Lemma 6.1. If x ∈ Max(Xo)

and dimXo ≥ 1, choose f ∈ mx,X with f ̸≡ 0 on any component of Xo. Consider the subscheme

V (f) in a suitable neighborhood of x and apply Krull’s principal ideal theorem (Zariski-Samuel

[119, vol. I, Chapter IV, §14, Theorem 29, p. 238]). We leave the details to the reader.

Exercise—Addition needed

(1) If k is perfect, show that each k-form of X is determined up to k-isomorphism by the

Galois action {σX | σ ∈ Gal(k/k)} on X that it induces.

(2) In the situation of the previous problem, show that the k-forms of X over k up to

k-isomorphism are in one-to-one correspondence with an appropriately defined set

H1(Gal(k/k),Autk(X))

of “1-group cohomology classes” of the Galois group Gal(k/k) with respect to its natural

action on the group Autk(X) of k-automorphisms of X.



CHAPTER V

Singular vs. non-singular

1. Regularity

The purpose of this section is to translate some well-known commutative algebra into the

language of schemes — as general references, see Zariski-Samuel [119, vol. I, Chapter IV and

vol. II, Chapter VIII] and Atiyah-MacDonald [20, Chapter 11]. Consider:

a) O = local ring

b) m = its maximal ideal

c) k = O/m
d) m/m2, a vector space over k

e) gr(O) =
⊕∞

n=1m
n/mn+1, a graded k-algebra generated over k by m/m2.

Lemma 1.1 (Easy lemma). If
∩∞
n=1m

n = (0), then gr(O) integral domain =⇒ O integral

domain.

Proof. If not, say x, y ∈ O, xy = 0, x ̸= 0, y ̸= 0. Then x ∈ ml \ ml+1, y ∈ ml′ \ ml′+1 for

some l, l′; let x ∈ ml/ml+1, y ∈ ml′/ml′+1 be their images. Then x · y = 0. □

f) Krull dimO = length n of the longest chain of prime ideals:

p0 ⫋ p1 ⫋ · · · ⫋ pn = m

g) If O is noetherian, then recall that

dimO = least n such that ∃x1, . . . , xn ∈ m, m =
√

(x1, . . . , xn)

OR = degree of Hilbert-Samuel polynomial P defined by

P (n) = l(O/mn), n≫ 0. (l denotes the length.)

Definition 1.2. Note that by (g)1, dimk m/m
2 ≥ dimO. ThenO is regular if it is noetherian

and equivalently,

gr(O) = symmetric algebra generated by m/m2

OR

dimk m/m
2 = dimO.

Note that

O regular =⇒ O integral domain

by the Easy Lemma 1.1.

Definition 1.3. Let X be a scheme, x ∈ X. Then

mx/m
2
x =

def
Zariski-cotangent space at x, denoted T ∗

x,X

Hom(mx/m
2
x, k(x)) =

def
Zariski-tangent space at x, denoted Tx,X .

1Since if x1, . . . , xn ∈ m span m/m2 over k, then by Nakayama’s lemma, they generate m as an ideal, hence

dimO ≤ n.

157
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Figure V.1. Disembodied tangent vector

Note that we can embed Tx,X as the set of k(x)-rational points in an affine space over k(x):

Tx,X = Spec(Symm∗(mx/m
2
x))

∼=
non-canonically

Ank(x)

if n = dimk(x)mx/m
2
x and Symm∗ = symmetric algebra.

In some cases, the tangent space at a point x ∈ X has a pretty functorial definition: Suppose

X is a scheme over a field k and x is a k-rational point. Then

Tx,X ∼=



set of all morphisms τ such that

Spec k[ϵ]/(ϵ2)
τ

//

((RRRR
X

{{xxxx

Spec k

commutes and Image τ = {x}


.

In fact, by Proposition I.3.10, the set of such τ is isomorphic to the set of local k-algebra

homomorphisms:

τ∗ : Ox,X −→ k[ϵ]/(ϵ2).

Then τ∗(mx,X) ⊂ k · ϵ and τ∗(m2
x,X) = (0). Since Ox,X is a local k-algebra with residue field k:

Ox,X/m2
x,X
∼= k ⊕mx,X/m

2
x,X ,

hence τ∗ is given by a k-linear map

res τ∗ : mx,X/m
2
x,X −→ k · ϵ

and any such map defines a τ∗. But the set of such maps is Tx,X . Because of this result, one

often visualizes Spec k[ϵ]/(ϵ2) as a sort of disembodied tangent vector as in Figure V.1.

Given a morphism f : X → Y , let x ∈ X and y = f(x). Then f induces maps on the Zariski

tangent and cotangent spaces:

i) f∗ : Oy,Y → Ox,X induces a homomorphism of k(x)-vector spaces:

df∗x :
(
my,Y /m

2
y,Y

)
⊗k(y) k(x) −→ mx,X/m

2
x,X

ii) Dualizing, this gives a morphism

dfx : Tx,X −→ Ty,Y ⊗̂k(y)k(x)

(where ̂ on ⊗ comes in only in case my,Y /m
2
y,Y is infinite dimesional! — in which

case Ty,Y has a natural linear topology, and one must complete Ty,Y ⊗k(y) k(x), etc.)

Definition 1.4. The tangent cone to X at x is TCx,X = Spec(gr(Ox,X)). Since gr(Ox,X)
is a quotient of the symmetric algebra Symm(mx/m

2
x), we get a closed immersion:

TCx,X ⊂ Tx,X .

Definition 1.5. x is a regular point ofX ifOx,X is a regular local ring, i.e., ifTCx,X = Tx,X .

X is regular if it is locally noetherian and all its points are regular.
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We will see in §4 below that a complex projective variety X is regular at a point x if and only

if it is non-singular at x as defined in Part I [87, Chapter I]. Thus the concept of regularity can

be viewed as a generalization to arbitrary schemes of the concept of non-singularity (but n.b.

the remarks in §4 below on Sard’s lemma and the examples). Many of the concepts introduced

in Part I [87] for non-singular varieties go over to general regular schemes. For instance, a basic

theorem in commutative algebra is that a regular local ring is a UFD (cf. Zariski-Samuel [119,

vol. II, Appendix 7]; or Kaplansky [64, §4-2]). As we saw in §III.6, this means that we have a

classical theory of divisors on a regular scheme, i.e.,

X regular =⇒{
Group of Cartier divisors

Div(X) on X

}
∼=
{

Group of cycles formed from irreducible

codimension one closed subsets

}
.

More generally, it is on a regular scheme X that there is a good intersection theory of cycles

whatever their codimension. Recall that a closed irreducible subset Z ⊂ X is said to have

codimension r if the local ring OηZ ,X at its generic point ηZ has Krull dimension r: hence if

z ∈ Z is any point, the prime ideal

p(Z) ⊂ Oz,X
defining Z has height r (i.e., since, by definition, height(p(Z)) = length of greatest chain of

prime ideals:

(0) ⊂ p0 ⫋ p1 ⫋ · · · ⫋ ph = p(Z),

which equals the Krull dimension of (Oz,X)p(Z) ∼= OηZ ,X). Then another basic theorem in

commutative algebra is:

1.6.

Algebraic form

∣∣∣∣∣∣∣∣∣∣∣

If O is a regular local ring, p1, p2 ⊂ O are

prime ideals, and p′ is a minimal prime ideal

containing p1 + p2, then

height(p′) ≤ height(p1) + height(p2)

(Serre [101, p. V-18]).

Geometrically, this means:

1.7.

Geometric form

∣∣∣∣∣∣∣∣
If X is a regular scheme, and Z1, Z2 ⊂ X are

irreducible closed subsets, then for every

component W of Z1 ∩ Z2:

codimW ≤ codimZ1 + codimZ2.

Moreover, when equality holds, there is a natural concept of the intersection multiplicity

of Z1 and Z2 along W : see Serre [101, Chapter V]. This is defined using the functors Tori
and allows one to define an associative, commutative, distributive product between cycles which

intersect properly (i.e., with no components of too high dimension). (See also §VII.5.) There

is, however, one big difficulty in this theory. One of the key methods used in Part I [87] in our

discussion of intersections in the classical case of X over SpecC is the “reduction to the diagonal

∆”: instead of intersecting Z1, Z2 in X, we formed the intersection of Z1 ×SpecC Z2 and ∆ in

X ×SpecC X, and used the fact that ∆ is a local complete intersection in X ×SpecC X. This

reduction works equally well for a regular variety X over any algebraically closed field k, and

can be extended to all equi-characteristic X, but fails for regular schemes like AnZ with mixed
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characteristic local rings (residue field of characteristic p, quotient field of characteristic 0). The

problem is that the product

A2n
Z = AnZ ×SpecZ AnZ

has dimension 2n+ 1 which is less than 2(dimAnZ) = 2n+ 2: for instance, at the point P ∈ AnZ
where X1 = · · · = Xn = 0 over [p] ∈ SpecZ, the cotangent space to AnZ has a basis

dX1, . . . , dXn, dp.

And at the point (P, P ) ∈ A2n
Z , if we let Xi and Yi be coordinates in the two factors,

dX1, . . . , dXn, dY1, . . . , dYn, dp

is a basis of the cotangent space. Thus it is not like a product in the arithmetic direction. One

finds, e.g., that Z1, Z2 ⊂ AnZ may intersect properly, while Z1 ×SpecZ Z2, ∆ ⊂ A2n
Z don’t; that

Z1, Z2 may be regular while Z1 ×SpecZ Z2 is not. Nonetheless, Serre managed to show that

intersection theory works except for one property: it is still unknown whether the intersection

multiplicity i(Z1, Z2;W ) is always positive!2

For intersection theory on non-singular varieties of arbitrary characteristic, see Samuel [95].

A basic fact from commutative algebra that makes it work is the following:

Proposition 1.8. Let R be a regular local ring of dimension r, with maximal ideal m,

residue field k and quotient field K. Let M be a finitely generated R-module. Then there is a

Hilbert-Samuel polynomial P (t) of degree at most r such that

P (n) = l(M/mnM) if n≫ 0. (l denotes the length.)

Let

P (t) = e
tr

r!
+ lower terms.

Then

e = dimK(M ⊗R K).

Proof left to the reader.

2. Kähler differential

Again we begin with algebra: let B be an A-algebra:

2(Added in publication) Let P and Q be prime ideals in a regular local ring such that R/(P +Q) has finite

length (hence dim(R/P ) + dim(R/Q) ≤ dim(R)). Serre defined the intersection number to be

χ(R/R,R/Q) :=

∞∑
i=0

(−1)i lengthR TorRi (R/P,R/Q),

and conjectured

• (non-negativity) χ(R/P,R/Q) ≥ 0,

• (positivity) χ(R/P,R/Q) > 0 if and only if dim(R/P ) + dim(R/Q) = dim(R).

Serre proved the assertions when R contains a field (equi-characteristic case) using reduction to the diagonal. For

the mixed characteristic case, the vanishing (the “only if” part of the positivity conjecture) was proved in 1985

by Roberts [93] and independently by Gillet-Soulé [41]. The non-negativity conjecture was proved by O. Gabber

in the middle of 1990’s. The positivity conjecture in the mixed characteristic case is still open.
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2.1.

ΩB/A =
def

free B-module on elements db, for all b ∈ B,

modulo the relations:

d(b1 + b2) = db1 + db2

d(b1b2) = b1 · db2 + b2 · db1,
d(a) = 0, for all a ∈ A.

In other words, the map

d : B −→ ΩB/A

is an A-derivation and (ΩB/A, d) is universal — i.e., for all B-module M and all maps

D : B −→M

such that

D(b1 + b2) = Db1 +Db2

D(b1b2) = b1 ·Db2 + b2 ·Db1
Da = 0, all a ∈ A,

there is a unique B-module homomrophism ϕ : ΩB/A →M such that D = ϕ ◦ d.

Proposition 2.2. If

I = Ker(B ⊗A B ∋ b1 ⊗ b2 7−→ b1b2 ∈ B),

then I/I2 is a (B ⊗A B)/I-module, i.e., a B-module, and

ΩB/A ∼= I/I2 (as B-module).

d goes over to the map

B // I

b
� // 1⊗ b− b⊗ 1.

Proof. I) check that b 7→ b ⊗ 1 − 1 ⊗ b is an A-derivation from B to I/I2. Therefore it

extends to a B-module homomorphism ΩB/A → I/I2.

II) Define a ring E = B ⊕ ΩB/A, where B acts on ΩB/A through the module action and

the product of two elements of ΩB/A is always 0. Define an A-bilinear map B × B → E by

(b1, b2) 7→ (b1b2, b1db2). By the universal mapping property of ⊗ , it factors

B ×B −→ B ⊗A B
ϕ−→ E

and it follows immediately that ϕ(I) ⊂ ΩB/A. Therefore ϕ(I2) = (0) and ϕ gives ϕ : I/I2 →
ΩB/A.

III) These maps are easily seen to be inverse to each other. □

Some easy properties of Ω are:

2.3. If B and C are A-algebras, then:

Ω(B⊗AC)/C
∼= ΩB/A ⊗A C.

2.4. If a ⊂ B is an ideal then there is a natural map

a/a2 // ΩB/A ⊗B (B/a)

a � // da⊗ 1

and the cokernel is isomorphic to Ω(B/a)/A.
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2.5. If B is an A-algebra and C is a B-algebra, then there is a natural exact sequence

ΩB/A ⊗B C −→ ΩC/A −→ ΩC/B −→ 0.

Example. 1: Let A = k, B = k[X1, . . . , Xn]. Then ΩB/A is a free B-module with generators

dX1, . . . , dXn, and

dg =

n∑
i=1

∂g

∂Xi
· dXi, all g ∈ B.

More generally, if

B = k[X1, . . . , Xn]/(f1, . . . , fm),

then ΩB/A is generated, as B-module, by dX1, . . . , dXn, but with relations:

dfi =

n∑
j=1

∂fi
∂Xj

· dXj = 0.

Example. 2: What happens when A and B are fields, i.e., ΩK/k = ?. The dual K-vector

space HomK(ΩK/k,K) is precisely the vector space Derk(K,K) of k-derivations from K to K.

Then it is well known:

a) Derk(K,K) = (0)⇐⇒ K/k is separable algebraic.

b) If {fα}α∈S is a transcendence basis of K over k and K is separable over k(. . . , fα, . . .),

then a k-derivation D can have any values on the fα and is determined by its values

on the fα’s.

c) If characteristic k = p, then any k-derivation D kills k ·Kp. If ps = [K : k ·Kp] and we

write K = kKp(b
1/p
1 , . . . , b

1/p
s ), (bi ∈ k ·Kp), and ai = b

1/p
i , then a k-derivation D can

have any values on the ai and is determined by its values on the ai’s.

We conclude:

a′) ΩK/k = (0)⇐⇒ K/k is separable algebraic.

(More generally, if R is a finitely generated k-algebra, then it is not hard to show that

ΩR/k = (0)⇐⇒ R is a direct sum of separable algebraic field extensions.)

b′) If K is finitely generated and separable over k, then ∀f1, . . . , fn ∈ K,[
df1, . . . , dfn are

a basis of ΩK/k

]
⇐⇒

[
f1, . . . , fn are a separating transcendence

basis of K over k

]
.

c′) IfK is finitely generated over k and char(K) = p and ps = [K : k·Kp], then ∀f1, . . . , fs ∈
K, [

f1, . . . , fs are a p-basis of K over k,

i.e., K = k ·Kp(f1, . . . , fs)

]
⇐⇒

[
df1, . . . , dfs are a

basis of ΩK/k

]
.

It follows easily too that if f1, . . . , fs are a p-basis then Derk(f1,...,fs)(K,K) = (0), hence

K is separable algebraic over k(f1, . . . , fs). Thus

s ≥ trdegkK

with equality if and only if K is separable over k.

For details here, cf. for example, Zariski-Samuel [119, vol. I, Chapter 2, §17].
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Figure V.2. Crossing lines

Example. 3: Let A = k, B = k[X,Y ]/(XY ). Then by Example 1, dX and dY generate

ΩB/A with the one relation XdY + Y dX = 0.

Consider the element ω = XdY = −Y dX. Then Xω = Y ω = 0, so the submodule M

generated by ω is kω, a one-dimensional k-space. On the other hand, in Ω/M we have XdY =

Y dX = 0, so Ω/M ∼= B · dX ⊕B · dY . Note that B · dX ∼= ΩBX/k, where BX = B/(Y ) ∼= k[X];

likewise, B ·dY ∼= ΩBY /k. That is, the module of differentials on SpecB (which looks like that in

Figure V.2) is the module of differentials on the horizontal and vertical lines separately extended

by a torsion module. (One can even check that the extension is non-trivial, i.e., does not split.)

All this is easy to globalize. Let f : X → Y be any morphism. The closed immersion

∆: X −→ X ×Y X

“globalizes” the multiplication homomorphism δ : B ⊗A B → B. Let I be the quasi-coherent

OX×YX -ideal defining the closed subscheme ∆(X). Then I2 is also a quasi-coherent OX×YX -

ideal and I/I2 is a quasi-coherent OX×YX -module. It is also a module over OX×YX/I, which
is O∆(X) extended by zero. As all its stalks off ∆(X) are 0, I/I2 is actually a sheaf of

(∆(X),O∆(X))-modules, quasi-coherent in virtue of the nearly tautologous:

Lemma 2.6. If S ⊂ T are a scheme and a closed subscheme, and if F is an OS-module,

then F is a quasi-coherent OS-module on S if and only if F , extended by (0) on T \ S, is a

quasi-coherent OT -module on T .

Definition 2.7. ΩX/Y is the quasi-coherent OX -module obtained by carrying I/I2 back to

X by the isomorphism ∆: X
∼−→ ∆(X).

Clearly, for all U = Spec(B) ⊂ X and V = Spec(A) ⊂ Y such that f(U) ⊂ V , the restriction

of ΩX/Y to U is just Ω̃B/A. Therefore we have globalized our affine construction.

The following properties are easy to check:

2.8. The stalks of ΩX/Y are given by:

(ΩX/Y )x = (ΩOx,X/Oy,Y
)̃ (if y = f(x)).

2.9.

Ω(X×SY )/Y
∼= ΩX/S ⊗OS

OY .

2.10. If Z ⊂ X is a closed subscheme defined by the sheaf of ideals I ⊂ OX , then ∃ a

canonical map:

(∗) I/I2 // ΩX/Y ⊗OX
OZ

a � // da⊗ 1

and the cokernel is isomorphic to ΩZ/Y .
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2.11. If X is of finite type over Y , then ΩX/Y is finitely generated.

2.12. If F is a sheaf of OX-modules, then

HomOX
(ΩX/Y ,F) ∼= {sheaf of derivations from OX to F over OY } .

(2.10) allows us to compare the Zariski-cotangent space at x ∈ X and ΩX/Y . In fact, if you

let Z = {x} with reduced structure, and look at the stalks of (∗) at x, you get the k(x)-linear
homomorphism:

mx/m
2
x

// (ΩX/Y )x ⊗Ox,X
k(x)

a � // da⊗ 1

and the cokernel is

(ΩZ/Y )x ∼= Ωk(x)/Oy,Y
∼= Ωk(x)/k(y).

Moreover my · Ox is in the kernel since da = 0, ∀a ∈ Oy. Now in reasonably geometric cases

such as when X and Y are of finite type over an algebraically closed k, and x and y are closed

points, then k(x) = k(y) = k, so Ωk(x)/k(y) = (0); and it turns out that the induced map

T ∗
x,f−1(y)

∼= mx/(m
2
x +my · Ox) −→ (ΩX/Y )x ⊗Ox k(x)

is injective too, i.e., the quasi-coherent sheaf ΩX/Y essentially results from glueing together the

separate vector spaces mx/(m
2
x +my · Ox) — which are nothing but the cotangent spaces to the

fibres f−1(y) at various points x.

To prove this and see what happens in nasty cases, first define:

Definition 2.13 (Grothendieck). If K ⊃ k are two fields, let

ΥK/k = Ker(Ωk/Z ⊗k K −→ ΩK/Z)

called the module of imperfection.

This is a K-vector space and its dual is

{space of derivations D : k → K}/{restrictions of derivations D : K → K}

which is well known to be 0 iff K is separable over k (cf. Zariski-Samuel [119, vol. I, Chapter

II, §17, Theorem 42, p. 128]).

Theorem 2.14. For all f : X → Y and all x ∈ X, if y = f(x), there is a canonical 5-term

exact sequence:

0 −→ Υ
k(x)
(Ox,X⊗Oy,Y

k(y))/k(y) −→ Υk(x)/k(y) −→ T ∗
x,f−1(y) −→ ΩX/Y⊗Ox,X

k(x) −→ Ωk(x)/k(y) −→ 0,

where

Υ
k(y)
(Ox,X⊗Oy,Y

k(y))/k(y) := Ker
(
Ωk(y)/Z ⊗k(y) k(x) −→ Ω(Ox,X⊗Oy,Y

k(y))/Z ⊗Ox,X
k(x)

)
.

Proof. By (2.9), none of the terms change if we make a base change:

X

f
��

f−1(y)oo

��

Y Spec k(y).oo

Therefore we may assume Y = Spec k, k = k(y) a field. But now (ΩX/Y )x = ΩOx,X/k and note

that if R = Ox,X/m2
x

ΩOx,X/k ⊗ k(x) ∼= ΩR/k ⊗ k(x)
(by (2.4) applied with a = m2

x). We are reduced to the really elementary:
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Lemma. Let R be a local k-algebra, with maximal ideal M , residue field K = R/M . Assume

M2 = (0). There is a canonical exact sequence:

ΥK/k −→M −→ ΩR/k ⊗R K −→ ΩK/k −→ 0.

Proof of Lemma. By (2.4) we have an exact sequence:

M
α−→ ΩR/Z ⊗R K −→ ΩK/Z −→ 0.

Now by Cohen’s structure theorem (Zariski-Samuel [119, vol. II, Chapter VIII, §12, Theorem
27, p. 304]), as a ring (but not necessarily as k-algebra), R ∼= K ⊕M . Using such a direct

sum decomposition, it follows that the projection of R onto M is a derivation of R into the

K = R/M -module M , hence it factors:

R
projection

//

d ''OOOOOOOOO M

ΩR/Z ⊗R K
β

77nnnnnnnn

It is easy to see that β ◦ α = 1M and this proves that α is injective! Now the homomorphism

k → R gives rise to an exact sequence Ωk/Z ⊗k R→ ΩR/Z → ΩR/k → 0, hence to:

0
��

M
��

Ωk/Z ⊗k K // ΩR/Z ⊗R K //

��

ΩR/k ⊗k K // 0

ΩK/Z

��

0

It follows from this diagram that there is a natural map from Ker(Ωk/Z ⊗k K → ΩK/Z), i.e.,

ΥK/k, to M and that the image is Ker(M → ΩR/k⊗kK). This plus (2.4) proves the lemma. □

□

Corollary 2.15. If k(x) is separable algebraic over k(y), then

mx/(m
2
x +my · Ox) −→ ΩX/Y ⊗Ox k(x)

is an isomorphism.

Example. 4: A typical case where inseparability enters is:

Y = Spec k, k imperfect and a ∈ k \ kp
X = A1

k, x = point corresponding to prime ideal (tp − a) ⊂ k[t]
i.e., x = point with coordinate a1/p.

Then

k(x) = k(a1/p)

mx/m
2
x = (free rank one k(x)-module generated by tp − a)

ΩX/Y ⊗Ox k(x) = (free rank one k(x)-module generated by dt)

and the map works out:

mx/m
2
x

// ∈ ΩX/Y ⊗Ox k(x)

tp − a � // d
dt(t

p − a) · dt = 0
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hence is 0.

An interesting example of the global construction of Ω is given by the projective bundles

introduced in Chapter III:

Example. 5: Let S be a scheme and let E be a locally free sheaf of OS-modules. Recall

that we constructed π : P(E) = P(E)S → S by P(E) = ProjS(Symm� E). Let K be the kernel of

the canonical homomorphism α:

0 −→ K −→ π∗E α−→ OP(E)(1) −→ 0.

Then I claim:

2.16.

ΩP(E)/S ∼= K(−1) = HomOP(E)
(OP(E)(1),K).

We will prove this locally when S = SpecR is affine and E is free, leaving to the reader to

check that the isomorphism is independent of the choice of basis hence globalizes. Assume

E =

n⊕
i=0

OS · ti.

Let

Ui = open subset P(E)ti

∼= SpecR

[
t0
ti
, . . . ,

tn
ti

]
.

To avoid confusion, introduce an alias ei for ti in

π∗E =

n⊕
i=0

OP(E) · ei

leaving the ti to denote the induced global sections of OP(E)(1). Then

α(ei) = ti, 0 ≤ i ≤ n

and K = Ker(α) has a basis on Uj :

ei −
ti
tj
ej , 0 ≤ i ≤ n, i ̸= j.

Therefore K(−1) has a basis on Uj :

tj ⊗ ei − ti ⊗ ej
t2j

, 0 ≤ i ≤ n, i ̸= j.

On the other hand

ΩP(E)/S |Uj =
n⊕
i=0

OUj · d
(
ti
tj

)
.

Define β : ΩP(E)/S |Uj → K(−1)|Uj by

β

(
d

(
ti
tj

))
=
tj ⊗ ei − ti ⊗ ej

t2j
.

Heuristically, if we expand

d

(
ti
tj

)
=
tjdti − tidtj

t2j
then β is given by the simple formula

β(dti) = ei

which makes it clear why the definition of β is independent of the choice of basis.
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Remark. (Added in publication) (cf. Example I.8.9) For a locally free OS-module E and a

positive integer r, let π : Grassr(E) → S be the Grassmannian scheme over S, whose Z-valued

points for each S-scheme Z are in one-to-one correspondence with the OZ-locally free quotients

OZ ⊗OS
E → G → 0 of rank r. Let α : π∗E → Q → 0 be the universal quotient with Q a locally

free OGrassr(E)-module of rank r. Let K = Ker(α) so that we have an exact sequence

0 −→ K −→ π∗E α−→ Q −→ 0.

Then generalizing the case r = 1 in (2.16) above, we have

ΩGrassr(E)/S = HomOGrassr(E)/S
(Q,K).

3. Smooth morphisms

Definition 3.1. First of all, the canonical morphism:

X = SpecR[X1, . . . , Xn+r]/(f1, . . . , fr)

f
��

Y = SpecR

is called smooth of relative dimension n at a point x ∈ X whenever the Jacobian matrix evaluated

at x: (
∂fi
∂Xj

(x)

)
1≤i≤r

1≤j≤n+r

has maximal rank, i.e., r. Secondly, an arbitrary morphism f : X → Y is smooth of relative

dimension n at a point x ∈ X if there exist affine open neighborhoods U ⊂ X, V ⊂ Y of x and

y such that f(U) ⊂ V and ∃ a diagram:

U
� �

open
immersion

//

res f

��

SpecR[X1, . . . , Xn+r]/(f1, . . . , fr)

g

��

V
� �

open
immersion

// SpecR

with g of above type, i.e., rk((∂fi/∂Xj)(x)) = r. f is smooth of relative dimension n if this

holds for all x ∈ X. f is étale if it is smooth of relative dimension 0.

Remark. (Added in publication)

(1) The smoothness of f : X → Y at x ∈ X does not depend on the choice of the presen-

tation

Spec(R[X1, . . . , Xn+r]/(f1, . . . , fr)) with rk

(
∂fi
∂Xj

(x)

)
= r.

See, for instance, the proof of Proposition 3.6 below.

(2) Smooth morphisms are flat as will be shown in Proposition 3.19 below. An alternative

proof can be found in Mumford [86, Chap. III, §10, p. 305]. Theorem 3′ there states:

Let f : X → Y be a morphism of finite type. Then f is smooth of

relative dimension k if and only if f is flat and its geometric fibres are

disjoint unions of k-dimensional non-singular varieties.

This statement will be given in this book as Criterion 4.8 below. The proof of flatness

in Mumford [86, Chap. III, §10] successively uses the following ([86, Chap. III, §10, p.
297]):
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Let M be a B-module, and B an algebra over A. Let f ∈ B have

the property that for all maximal ideals m ⊂ A, multiplication by f is

injective in M/mM . Then M flat over A implies M/fM flat over A.

This very concrete definition has lots of easy consequences:

Proposition 3.2. If f : X → Y is smooth at x ∈ X, then it is smooth in a neighborhood U

of x.

Proof. If in some affine U ⊂ X where f is presented as above, δ is the r × r-minor of

(∂fi/∂Xj) which is non-zero at x, then f is smooth in the distinguished open subset Uδ of

U . □

Proposition 3.3. If f : X → Y is smooth of relative dimension n, then for all Y ′ → Y , the

canonical morphism

X ×Y Y ′ −→ Y ′

is smooth of relative dimension n. In particular,

i) for all y ∈ Y the fibre f−1(y) is smooth of relative dimension n over k(y),
ii) if Y = Spec k, Y ′ = Spec k, k an algebraic closure of k, then

X smooth over k =⇒ X = X ×Spec k Spec k smooth over k.

Proof. Obvious. □

Proposition 3.4. If f : X → Y and g : Y → Z are smooth morphisms at x ∈ X and

y = f(x) ∈ Y respectively, then g ◦ f : X → Z is smooth at x.

Proof. Obvious. □

Proposition 3.5. A morphism f : X → Y is smooth of relative dimension n at x if and

only if it factors in a neighborhood U of x:

U
g

//

∩
Y × An

p1
// Y

X
f

33hhhhhhhhhhhhhhhhhhh

where g is étale.

Proof. “if” follows from the last result. As for “only if”, it suffices to consider the case

X = SpecR[X1, . . . , Xn+r]/(f1, . . . , fr), Y = SpecR. Say det ((∂fi/∂Xn+j))1≤i,j≤r ̸= 0. Let the

homomorphism

R[X1, . . . , Xn] −→ R[X1, . . . , Xn+r]/(f1, . . . , fr)

define g. Then g is étale near x and f = p1 ◦ g. □

Proposition 3.6. If f : X → Y is smooth of relative dimension n at x ∈ X, then ∃ a

neighborhood U of x such that ΩX/Y |U = OnX |U . Especially, if f is étale, then ΩX/Y |U = (0).

Proof. It suffices to show that if S = R[X1, . . . , Xn+r]/(f1, . . . , fr) and δ = det(∂fi/∂Xj)1≤i,j≤r,

then (ΩS/R)⊗SSδ is a free Sδ-module of rank n. But ΩS/R is generated over S by dX1, . . . , dXn+r

with relations
∑n+r

j=1 (∂fi/∂Xj)dXj = 0, 1 ≤ i ≤ r. Writing these relations

r∑
j=1

∂fi
∂Xj

dXj = −
n+r∑
j=r+1

∂fi
∂Xj

dXj
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and letting (ξij)1≤i,j≤r ∈ Mr(Sδ) be the inverse of the matrix (∂fi/∂Xj)1≤i,j≤r, it follows that

in (ΩS/R)⊗S Sδ,

dXl = −
r∑
i=1

r+n∑
j=r+1

ξli ·
∂fi
∂Xj

· dXj , 1 ≤ l ≤ r

and that these are the only relations among the dXi’s. Therefore dXr+1, . . . , dXr+n are a free

basis of (ΩS/R)⊗S Sδ. □

Definition 3.7. If f : X → Y is smooth, let ΘX/Y = HomOX
(ΩX/Y ,OX), called the relative

tangent sheaf ofX over Y . Note that it is locally free and if x ∈ X, y = f(x) and k(x) is separable
algebraic over k(y), then

(ΘX/Y )x ⊗ k(x) ∼= Tx,f−1(y), the Zariski-tangent space to the fibre.

Moreover, by (2.12), ΘX/Y is isomorphic to the sheaf DerOY
(OX ,OX) of derivations from OX

to itself killing OY .

Note moreover that according to the proof of Proposition 3.6, X can be covered by affine

open sets U in which there are functions X1, . . . , Xn such that:

1) any differential ω ∈ ΩX/Y (U) can be uniquely expanded

ω =
n∑
i=1

ai · dXi, ai ∈ OX(U),

2) any derivation D ∈ ΘX/Y (U) can be uniquely expanded

D =

n∑
i=1

ai ·
∂

∂Xi
, ai ∈ OX(U)

(∂/∂Xi dual to dXi).

When Y = SpecC, it is easy at this point to identify the sheaves ΩX/C and ΘX/C with the

sheaves of holomorphic differential forms and holomorphic vector fields on X with “polynomial

coefficients”; or alternatively, with the sheaves of polynomial sections of the cotangent vector

bundle and tangent vector bundle to X. We will discuss this in §VIII.3.

I would like to examine next the relationship between the local rings Ox,X and Oy,Y when

there is smooth morphism f : X → Y with f(x) = y. When there is no residue field extension,

the completions of these rings are related in the simplest possible way:

Proposition 3.8. If f : X → Y is smooth of relative dimension n at x and if the natural

map:

k(y) ≈−→ k(x), where y = f(x)

is an isomorphism, then the formal completions are related by:

Ôx,X ∼= Ôy,Y [[t1, . . . , tn]].

Proof. The problem being local, we may assume

X =SpecR[X1, . . . , Xn+r]/(f1, . . . , fr)

Y =SpecR, R local ring, y = closed point of Y,

with det

(
∂fi
∂Xj

(x)

)
1≤i,j≤r

̸= 0.

Now if x = [p], p ⊂ R[X1, . . . , Xn+r], then we have inclusions:

k(y) = R/(R ∩ p) ⊂ R[X1, . . . , Xn+r]/p ⊂ k(x).
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Since all these are equal, ∃a1, . . . , an+r ∈ R such that Xi−ai ∈ p; more succinctly, x is the point

over y ∈ Y where X1 = ai, . . . , Xn+r = an+r. Then p ⊃ (p ∩R+ (X1 − a1, . . . , Xn+r − an+r))
and in fact equality must hold because the ideal on the right is already maximal. Now we

may as well change coordinates replacing Xi − ai by Xi so that x is at the origin, i.e., p =

p ∩R+ (X1, . . . , Xn+r). Now if Z = Y × An+r, we have

Ox,X ∼=Ox,Z/(f1, . . . , fr),
Ox,Z =localization of Oy,Y [X1, . . . , Xn+r] at the

maximal ideal my,Y + (X1, . . . , Xn+r),

hence

Ôx,X ∼= Ôx,Z/(f1, . . . , fr),

Ôx,Z ∼= Ôy,Y [[X1, . . . , Xn+r]].

Using the hypothesis that f is smooth at x, everything now follows (with R = Ôy,Y [[X1, . . . , Xn]],

Yi = Xn+i) from:

Theorem 3.9 (Formal Implicit Function Theorem). Let R be a ring complete in the a-adic

topology for some ideal a ⊂ R. Suppose f1, . . . , fr ∈ R[[Y1, . . . , Yr]] satisfy
a) fi(0) ∈ a

b) det(∂fi/∂Yj)(0) ∈ R∗.

Then there are unique elements gi ∈ a, 1 ≤ i ≤ r, such that

a) Yi − gi ∈ ideal generated by f1, . . . , fr in R[[Y ]]

b) fi(g1, . . . , gr) = 0, 1 ≤ i ≤ r;
equivalently, (a) and (b) say that the following maps are well-defined isomorphisms inverse to

each other:

R
inclusion

//
R[[Y1, . . . , Yr]]/(f1, . . . , fr).

substitution
h(Y )7→h(g)

oo

Proof of Theorem 3.9. The matrix (∂fi/∂Yj)(0) is invertible in Mr(R), so changing co-

ordinates by its inverse, we may assume

fi = ai + Yi + (terms of degree ≥ 2 in Y ’s).

Then making induction on r, it is enough to show ∃g(Y1, . . . , Yr−1) so that:

R[[Y1, . . . , Yr−1]]
canonical map

//
R[[Y1, . . . , Yr]]/(fr)

substitution
of g for Yr

oo

are well-defined inverse isomorphisms. Letting R′ = R[[Y1, . . . , Yr−1]], a
′ = a ·R+(Y1, . . . , Yr−1),

we reduce the proof to the case r = 1! We then have merely the linear case of the Weierstrass

Preparation Theorem: f(0) ∈ a, f ′(0) = 1, then ∃ a unit u ∈ R[[Y ]] and a ∈ a such that

f(Y ) = u(Y ) · (Y − a). This is proven easily by successive approximations:

a1 = 0

an+1 = an − f(an)
a = lim

n→∞
an.
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One checks by induction that f(an) ∈ an, hence f(a) = 0. Making the substitution Z = Y − a,
g(Z) = f(Y +a) has no constant terms, so g(Z) = Z ·g̃(Z), so f(Y ) = g(Y −a) = (Y −a)·g̃(Y −a).
Let u(Y ) = g̃(Y − a). Since g̃(0) = f ′(a) ≡ f ′(0) (mod a), u(0) ∈ R∗, hence u ∈ R[[Y ]]∗. □

□

Unfortunately, there is no such simple structure theorem for Ôx,X as Ôy,Y -algebra in general.

If k(x) is separable algebraic over k(y), then one can still say something: let

Õ = the unique finite free Ôy,Y -algebra with Õ/my,Y Õ ∼= k(x)

as defined in Corollary IV.6.3. Note that Spec Õ is, in fact étale over SpecOy,Y : if k(x) ∼=
k(y)[T ]/(f(T )) and f lifts f and has the same degree, then

Õ ∼= Ôy,Y [T ]/(f(T ))

and (
Image in Õ/my,Y Õ of f ′(T )

)
= f ′(T ) ̸≡ 0

since k(x) is separable over k(y). Then it can be proven that

Ôx,X ∼= Õ[[t1, . . . , tn]].

If X is étale over Y , this follows directly from the universal property Corollary IV.6.3 of Õ. In
general, choose the lift f of f to have coefficients in Oy,Y and replacing Y by a neighborhood of

y, we get a diagram:

X

φ

��

SpecOX [T ]/(f(T )) = X ′q
oo

φ′

��

Y SpecOY [T ]/(f(T )) = Y ′
p

oo

There is one point y′ ∈ Y ′ over y ∈ Y and k(y′) ∼= k(x); then we get a point x′ ∈ X ′ over x and

y′ as the image of

Spec k(x) −→ Spec
(
k(x)⊗k(y) k(y′)

)
−→ X ×Y Y ′ = X ′.

Applying Proposition 3.8 to the smooth φ′ and the étale q, we find:

Ôx,X ∼= Ôx′,X′ ∼= Ôy′,Y ′ [[t1, . . . , tn]] ∼= Õ[[t1, . . . , tn]].

At any point of a smooth morphism, there is a simple structure theorem for grOx,X as

grOy,Y -algebra, hence for TCX,x as a scheme over TCY,y:

Proposition 3.10. If f : X → Y is smooth at x of relative dimension n and y = f(x), then

grOx is a polynomial ring in n variables over gr(Oy) ⊗k k(x) — more precisely, ∃t1, . . . , tn ∈
mx/m

2
x such that

mν
x/m

ν+1
x
∼=

ν⊕
l=0

⊕
(multi-indices
α, |α|=ν−l )

(
ml
y/m

l+1
y ⊗k(y) k(x)

)
· tα

Thus

TCX,x
∼= TCy,Y ×Spec k(y) Ank(x).

Proof. There are two cases to consider: adding a new variable and dividing by a new

equation. The first is:

Lemma 3.11. Let x ∈ Y × A1, let t be the variable in A1 and let y = p1(x) ∈ Y . Note that

p−1
1 (y) ∼= A1

k(y). Either:
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1) x is the generic point of A1
k(y) in which case mx = my · Ox, k(x) ∼= k(y)(t) and

(mν
y/m

ν+1
y )⊗k(y) k(x)

≈−→ mν
x/m

ν+1
x

is an isomorphism,

2) x is a closed point of A1
k(y) in which case ∃ a monic polynomial f(t) such that mx =

my · Ox + f · Ox, k(x) ∼= k(y)[t]/(f), and
ν⊕
l=0

(
(ml

y/m
l+1
y )⊗k(y) k(x)

)
· fν−l1

≈−→ mν
x/m

ν+1
x

is an isomorphism (here f1 = image of f in mx/m
2
x).

Proof of Lemma 3.11. In the first case,

Ox = localization of Oy[t] with respect to prime ideal my · Oy[t].

Then mx is generated by my · Oy[t], hence by my, and:

mν
x/m

ν+1
x
∼=
(
(my · Oy[t])ν / (my · Oy[t])ν+1

)
⊗Oy[t] Ox

∼=
((
mν
y/m

ν+1
y

)
⊗k(y) k(y)[t]

)
⊗Oy[t] Ox

∼=
(
mν
y/m

ν+1
y

)
⊗k(y)

(
k(y)[t]⊗Oy[t] Ox

)
∼=
(
mν
y/m

ν+1
y

)
⊗k(y) k(y)(t)

Taking ν = 0, this shows that k(x) ∼= k(y)(t) and putting this back in the general case, we get

what we want.

In the second case,

Ox = localization of Oy[t] with respect to maximal ideal p

where p = inverse image of principal ideal (f) ⊂ k(y)[t],
f monic and irreducible of some degree d.

Lift f to a monic f ∈ Oy[t]. Then p = my ·Oy[t]+f ·Oy[t], hence mx = p ·Ox = my ·Ox+f ·Ox.
Now since p is maximal, Oy[t]/pν+1 ≈−→ Ox/mν+1

x for all ν, hence pν/pν+1 ≈−→ mν
x/m

ν+1
x . On

the other hand, Oy[t]/(fν+1) is a free Oy-module with basis:

1, t, . . . , td−1, f, ft, . . . , ftd−1, . . . , fν , fνt, . . . , fνtd−1.

In terms of this basis:

pm/(fν+1) =

m⊕
l=0

d−1⊕
i=1

ml
y · fm−l · ti,

hence

pν/pν+1 ∼=
ν⊕
l=0

d−1⊕
i=0

(
ml
y/m

l+1
y

)
· fν−l1 · ti.

Now k(x) ∼= k(y)[t]/(f) =
⊕d−1

i=0 k(x) · ti, so in this direct sum decomposition,

d−1⊕
i=0

(
ml
y/m

l+1
y

)
· fν−l1 · ti =

(
ml
y/m

l+1
y

)
⊗k(y) k(x) · fν−l1

and (2) follows. □
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By induction, Proposition 3.10 follows for the case X = Y ×An, f = p1. Now every smooth

morphism is locally of the form:

X = V (f1, . . . , fr)

##FFFFFFFFF
⊂ Y × An+r

p1
���������

: call this scheme Z

Y

Consider the homomorphism:

mx,Z/
(
m2
x,Z +my · Ox,Z

)
−→ ΩZ/Y ⊗OZ

k(x).

ΩZ/Y is a free OZ-module with basis dX1, . . . , dXn+r and the canonical map takes:

f mod m2
x,Z −→

n+r∑
j=1

∂fi
∂Xj

· dXj .

By smoothness, the images of the fi in ΩZ/Y ⊗ k(x) are independent over k(x), hence the fi in

mx,Z/
(
m2
x,Z +my · Ox,Z

)
are independent over k(x). Proposition 3.10 now follows by induction

on r using:

Lemma 3.12. Let O1 → O2 be a local homomorphism of local rings such that grO2 is a poly-

nomial ring in r variables over grO1. Let f ∈ m2 have non-zero image in m2/
(
m2

2 +mx · O2

)
.

Then

gr(O2/f · O2) ∼= gr(O2)/f1 · gr(O2) (f1 = image of f in m2/m
2
2)

and is a polynomial ring in r − 1 variables over grO1.

Proof of Lemma 3.12. By induction, gr(O2/f ·O2) is the quotient of grO2 by the leading

forms of all elements f · g of f · O2. If g ∈ ml
2 \ m

l+1
2 , its leading form g is in ml

2/m
l+1
2 . The

hypothesis on f means that f1 can be taken as one of the variables in the presentation of grO2 as

a polynomial ring, hence f1 is a non-zero-divisor in grO2. Therefore f1 · g ̸= 0, i.e., f · g /∈ ml+2
2

and the leading form of f · g is equal to f1 · g. Thus gr(O2/f · O2) ∼= (grO2)/f1 · grO2 as

required. □

□

Corollary 3.13. If f : X → Y is smooth at x of relative dimension n and y = f(x), then

df∗x : T
∗
y,Y ⊗k(y) k(x) −→ T ∗

x,X is injective,

hence dfx : Tx,X → Ty,Y ⊗̂k(y)k(x) is surjective.

Corollary 3.14. If f : X → Y is smooth at x and y = f(x) is a regular point of Y , then

x is a regular point of X.

Corollary 3.15. If a K-variety X is smooth of relative dimension n over K at some point

x ∈ X, then n = dimX.

Proof. Apply Proposition 3.10 to the generic point η ∈ X. □

Corollary 3.16. If f : X → Y is smooth of relative dimension n, then its fibres f−1(y) are

reduced and all components are n-dimensional.

Proof. Combine Lemma 1.1, Proposition 3.3 and Corollary 3.14. □
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Corollary 3.17. If f : X → Spec k is smooth at x ∈ X and we write:

Ox,X = k[X1, . . . , Xn+r]p/(f1, . . . , fr)

as usual, then the module of syzygies

r∑
i=1

gifi = 0, gi ∈ k[X]p

is generated by the trivial ones:

(fj) · fi + (−fi) · fj = 0, 1 ≤ i < j ≤ r.

Proof. Let B = k[X1, . . . , Xn+r]p and K = B/p · B. We have seen in the proof of Propo-

sition 3.10 that grB is a graded polynomial ring over K in which f1, . . . , f r ∈ pB/(pB)2 are

independent linear elements. We apply:

Lemma 3.18. Let A be any ring. Over A[T1, . . . , Tr], the module of syzygies

r∑
i=1

giTi = 0, gi ∈ A[T ]

is generated by the trivial ones:

(Tj) · Ti + (−Ti) · Tj = 0, 1 ≤ i < j ≤ r.

(Proof is a direct calculation which we leave to the reader.)

Therefore we know the syzygies in grB! Now let Syz be the module of all syzygies:

0 −→ Syz −→ Br v−→ B

v(a1, . . . , ar) =
∑

aifi

and let Triv be the submodule of Syz generated by the “trivial” ones. Now

∞∩
ν=1

pν(Br/Triv) = (0)

so

Triv =
∞∩
ν=1

((pνB)r +Triv) .

Therefore if Syz ⫌ Triv, we can find a syzygy (g1, . . . , gr) with gi ∈ pνB such that for no trivial

syzygy (h1, . . . , hr) are all gi + hi ∈ pν+1B. Let gi = image of gi in pνB/pν+1B. Then∑
gif i = 0

is a syzygy in grB. By Lemma 3.18,

(g1, . . . , gr) =
∑

1≤i<j≤r
aij(0, . . . ,

i-th
place

f j , . . . ,

j-th
place

−f i, . . . , 0).

Lifting the aij to B, this gives a contradiction. □

Combining Corollary 3.17 with Proposition IV.4.10 now shows (See Proposition VII.5.7 for

a strengthening.):
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Proposition 3.19. Let f : X → Y be a smooth morphism. Then f is flat and for every

x ∈ X, if

Ox,X = Oy,Y [X1, . . . , Xn+r]p/(f1, . . . , fr)

as usual, then the module of syzygies:

r∑
i=1

gifi = 0, gi ∈ Oy,Y [X]p

is generated by the trivial ones.

Proof. Let A = Oy,Y , B = Oy,Y [X]p and apply Proposition IV.4.10 to the sequence:

Br(r−1)/2 u−→ Br v−→ B

u(. . . , aij , . . .) = (. . . ,−
∑
l<i

fl · ali +
∑
i<l

fl · ail, . . .)

v(a1, . . . , ar) =
∑

aifi.

By Corollary 3.17, it is exact after ⊗Oy,Y
k(y) so it is exact as it stands and Coker v is A-flat. □

In fact, it can be shown3 that if f : X → Y is any morphism which can be expressed locally

as

SpecA[X1, . . . , Xn+r]/(f1, . . . , fr) −→ SpecA

where all fibres have dimension n, then f has the two properties of Proposition 3.19, i.e., f is flat

and the syzygies among the fi are trivial. Such a morphism f is called a relative local complete

intersection. The property of the syzygies being generated by the trivial ones is an important

one in homological algebra; in particular when it holds, it implies that one can explicitly resolve

B/(f1, . . . , fr) as B-module, i.e., give all higher order syzygies as well: we will prove this later

— §VII.5.
An interesting link can be made between the concept of smoothness and the theory of

schemes over complete discrete valuation rings (§IV.6). In fact, let R be a complete discrete

valuation ring, S = SpecR, k = R/M , K = fraction field of R. Let

f : X −→ S

be a smooth morphism of relative dimension n. Consider the specialization:

sp: Max(Xη)
◦ −→ Max(Xo)

introduced in §IV.6. Let x ∈ Xo be a k-rational point. Then the smoothness of f allows one to

construct analytic coordinates on X near x, so that

sp−1(x) ∼= open n-dimensional polycylinder in AnK
i.e. ∼= {x ∈ Max(AnK) | |pi(x)| < 1, all i} .

3One need only generalize Corollary 3.17 and this follows from the Cohen-Macaulay property of k[X1, . . . , Xn]:

cf. Zariski-Samuel [119, vol. II, Appendix 6].
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4. Criteria for smoothness

In this section, we will present four important criteria for the smoothness of a morphism f .

The first concerns when a variety X over a field k is smooth over Spec k. But it holds equally

well for any reduced and irreducible scheme X of finite type over a regular scheme Y :

Criterion 4.1. Let Y be a regular irreducible scheme and f : X → Y a morphism of finite

type. Assume X is reduced and irreducible and that f(ηX) = ηY . Let r = trdegR(Y )R(X).

Then ∀x ∈ X
a) dimk(x)

(
ΩX/Y ⊗Ox k(x)

)
≥ r

b) equality holds if and only if f is smooth at x in which case the relative dimension must

be r and ΩX/Y ∼= OrX in a neighborhood of x.

Proof. Let η ∈ X be its generic point. Then

(ΩX/Y )η ∼= ΩR(X)/R(Y ).

This R(X)-vector space is dual to the vector space of R(Y )-derivations from R(X) into itself.

But by Example 2 in §2, the dimension of this space is ≥ trdegR(Y )R(X). Now since f is of

finite type, ΩX/Y is a finitely generated OX -module, hence by Proposition I.5.5 (Nakayama),

∀x ∈ X
dimk(x)

(
ΩX/Y ⊗ k(x)

)
≥ dimR(X)(ΩX/Y )η ≥ trdegR(Y )R(X) = r.

Now if f is smooth at any x ∈ X, it is smooth at η and then by Corollary 3.15 its relative

dimension must be r, hence ΩX/Y ∼= OrX near x, hence

dimk(x)
(
ΩX/Y ⊗ k(x)

)
= r.

Now assume conversely that r = dimk(x)
(
ΩX/Y ⊗ k(x)

)
. To prove f is smooth at x, we

replace X and Y by affine neighborhoods of x and y, so we have:

X = SpecR[X1, . . . , Xn]/(f1, . . . , fl)

Y = SpecR.

Then

ΩX/Y

∼=
n⊕
i=1

OX · dXi

/modulo relations
n∑
j=1

∂fi
∂Xj

· dXj = 0, 1 ≤ i ≤ l


hence

Ωx,X/Y ⊗ k(x)

∼=
n⊕
i=1

k(x) · dXi

/modulo relations

n∑
j=1

∂fi
∂Xj

(x) · dXj = 0, 1 ≤ i ≤ l

 .

The matrix (∂fi/∂Xj) is known as the Jacobian matrix for the above presentation of X. It

follows that

dimk(x)
(
ΩX/Y ⊗ k(x)

)
= n− rk

(
∂fi
∂Xj

(x)

)
.

Therefore in our case (∂fi/∂Xj(x)) has rank n− r. Pick out fi1 , . . . , fin−r such that

rk

(
∂fil
∂Xj

(x)

)
= n− r
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and hence define

X̃ = SpecR[X1, . . . , Xn]/(fi1 , . . . , fin−r).

Then we get a diagram

X

f   
AAAA

� � // X̃

f̃
~~}}}}

Y

and find that f̃ is smooth of relative dimension r at x. But then by Corollary 3.14, O
x,X̃

is

a regular local ring. In particular it is an integral domain and X̃ has a unique component X̃◦
containing x. By Corollary 3.15 applied to the generic point of X̃◦,

r = trdegR(Y )R(X̃◦).

In other words, both O
x,X̃

and its quotient Ox,X = O
x,X̃

/(other fi’s) are integral domains of

the same transcendence degree over R(Y )! This is only possible if they are equal (cf. Part I [87,

Proposition (1.14)]). So Ox,X = O
x,X̃

, hence X = X̃ in a neighborhood of x and X is smooth

over Y at x. □

Corollary 4.2 (Jacobian Criterion for Smoothness). If in the situation of Criterion 4.1,

Y = SpecR, X = SpecR[X1, . . . , Xn]/(f1, . . . , fl), then

f is smooth at x⇐⇒ rk

(
∂fi
∂Xj

(x)

)
= n− r.

Corollary 4.3. In the situation of Criterion 4.1,[
∃x ∈ X such that

f is smooth (resp. étale) at x

]
⇐⇒

 R(X) is separable

(resp. separable algebraic)

over R(Y )

 .
Proof. If f is smooth somewhere, it is smooth at η; and the criterion at η is:

dim (vector space of R(Y )-derivations of R(X) to R(X)) = trdegR(Y )R(X).

By Example 2 in §2, this is equivalent to R(X) being separable over R(Y ). □

Corollary 4.4. If f : X → Y is étale, then for all y ∈ Y , the fibre f−1(y) is a finite set of

reduced points each of which is SpecK, K separable algebraic over k(y).

Proof. Proposition 3.3 and Corollary 4.3. □

Corollary 4.5. In the situation of Criterion 4.1 if x ∈ X, y = f(x), then f is smooth over

Y at x if and only if the fibre f−1(y) is smooth of relative dimension r over Spec k(y) at x (n.b.

one must assume the two r’s are the same, i.e., dim f−1(y) = trdegR(Y )R(X)).

A slightly more general version of Criterion 4.1 is sometimes useful:

Criterion. 4.1+ Let Y be a regular irreducible scheme and let f : X → Y be a morphism

of finite type. Let

X = X1 ∪ · · · ∪Xt

be the components of X and assume f(ηXi) = ηY , 1 ≤ i ≤ t. Let

r = min
1≤i≤t

(
trdegR(Y )R(Xi,red)

)
.

Then for all x ∈ X:

a) dimk(x)ΩX/Y ⊗Ox k(x) ≥ r
b) equality holds if and only if f is smooth of relative dimension r at x.
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In some cases, we can give a criterion for smoothness via Zariski-tangent spaces (as in the

theory of differential geometry):

Criterion 4.6. Let f : X → Y be as in the previous criterion. Assume further that k(x) is
separable over k(y). Then

f is smooth at x⇐⇒
[
x is a regular point of X and

dfx : Tx,X → Ty,Y ⊗k(y) k(x) is surjective

]
.

Proof. “ =⇒ ” was proven in Corollaries 3.13 and 3.14. To go backwards, use the lemma:

Lemma 4.7. Let X be a noetherian scheme and X ′ ⊂ X a closed subscheme. Suppose

x ∈ X ′ is a point which is simultaneously regular on both X and X ′ and suppose r = dimOx,X−
dimOx,X′. Then ∃ a neighborhood U ⊂ X of x and f1, . . . , fr ∈ OX(U) such that the ideal sheaf

I ⊂ OX defining X ′ is given by

I|U =

r∑
i=1

fi · OX

and moreover f1, . . . , f r ∈ mx,X/m
2
x,X are independent over k(x).

Proof of Lemma 4.7. We know Ox,X′ ∼= Ox,X/Ix, hence

gr(Ox,X′) ∼= gr(Ox,X) /(ideal generated by leading forms of elements of Ix) .

Both “gr” are graded polynomial rings, the former in m+ r variables, the latter in m variables

for some m. This is only possible if the ideal of leading forms is generated by r independent

linear forms f1, . . . , f r. Lift these to f ′1, . . . , f
′
r ∈ Ix, hence to f1, . . . , fr ∈ I(U) for some open

U ⊂ X. New
∑
fi · Ox,X ⊂ Ix so we get three rings:

Ox,X α
// // Ox,X/

∑
fi · Ox,X

β
// // Ox,X/Ix = Ox,X′ .

These induces:

gr(Ox,X)
gr(α)

// // gr (Ox,X/
∑
fi · Ox,X)

gr(β)
// // gr(Ox,X′).

But by construction, Ker(gr(β) ◦ gr(α)) ⊂ Ker(gr(α)), so gr(β) is an isomorphism. Then β is an

isomorphism too, hence Ix =
∑
fi · Ox,X . Now because X is noetherian, the two sheaves I|U

and
∑
fi ·OX |U are both finitely generated and have the same stalks at x: hence they are equal

in some open U ′ ⊂ U . □

Now whenever f : X → Y is a morphism of finite type, Y is noetherian, x ∈ X is a regular

point and y = f(x) ∈ Y is a regular point, factor f locally:

X = V (f1, . . . , fl)

f ''PPPPPPPPP
� � // Y × An = Z

p1xxrrrrrrrr

Y

and note that Ox,X ∼= Ox,Z/(f1, . . . , fl) where Ox,X and Ox,Z are both regular. It follows from

Lemma 4.7 that in some neighborhood of x, X = V (f1, . . . , fs) where f1, . . . , f s ∈ mx,Z/m
2
x,Z

are independent. Now dfx surjective means dually that

(my/m
2
y)⊗k(y) k(x) // mx,X/m

2
x,X

∼

mx,Z

/(
m2
x,Z +

∑s
i=1 f i · k(x)

)
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is injective. This implies that f1, . . . , f s are also independent in mx,Z/(m
2
x,Z +my · Ox,Z). Since

k(x) is separable over k(Y ), Υk(x)/k(y) = (0), hence

mx,Z/(m
2
x,Z +my · Ox,Z) −→ ΩZ/Y ⊗OZ

k(x)

is injective by Theorem 2.14. Therefore finally df1, . . . , dfs ∈ ΩZ/Y ⊗OZ
k(x) are independent,

which is precisely the condition that V (f1, . . . , fs) is smooth over Y at x. □

The most important case for these results is when Y = Spec k, X a k-variety. There are

then in fact two natural notions of “non-singularity” for a point x ∈ X.

a) x a regular point,

b) X → Spec k smooth at x.

Our results show that they almost coincide! In fact:

x a regular point⇐= x a smooth point, by Corollary 3.14

and if k(x) is separable over k, then:

x a regular point⇐⇒ x a smooth point, by Criterion 4.6.

But by the Jacobian Criterion 4.2, if k = algebraic closure of k, and X = X ×Spec k Spec k and

x ∈ X lies over x, then

x smooth on X ⇐⇒ x smooth on X.

Putting this together:

x regular on X ⇐= x smooth on X

⇐⇒ x smooth on X

⇐⇒ x regular on X.

The pathological situation where these are not all equivalent occurs only over an imperfect field

k and is quite interesting. It stems from the geometric fact that over an algebraically closed

ground field in characteristic p, Sard’s lemma fails abysmally:

Example. Let k be an algebraically closed field of characteristic p ̸= 0. There exist mor-

phisms f : Amk → Ank such that every fibre f−1(x) (x closed point) is singular.

a) f : A1
k → A1

k given by f(a) = ap. Then if b ∈ A1
k is a closed point and b = ap, the

scheme-theoretic fibre is:

f−1(b) = Spec k[X]/(Xp − b)
= Spec k[X]/(X − a)p

∼= Spec k[X ′]/(X ′p), (if X ′ = X − a)
none of which are reduced. Similarly, the differential

df : Ta,A1 −→ Tap,A1

is everywhere 0 and f is nowhere étale.

b) f : A2
k → A1

k given by f(a, b) = a2 − bp. Then if d ∈ A1
k is a closed point and d = cp,

the scheme-theoretic fibre is:

f−1(d) = Spec k[X,Y ]/(X2 − Y p − d)

= Spec k[X,Y ]/(X2 − (Y + c)p)

∼= Spec k[X,Y ′]/(X2 − Y ′p), if Y ′ = Y + c.

Thus the fibre f−1(d) is again a k-variety, in fact a plane curve, but with a singularity

at X = Y ′ = 0 as in Figure V.3:
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A1

A2

f

Figure V.3. Every fibre is singular.

c) Now if t is the coordinate on A1
k, thenR(A1

k) = k(t): a non-perfect field of characteristic

p. Consider the generic fibre f−1(η) of the previous example. It is a 1-dimensional k(t)-

variety equal to:

A2
k ×A1

k
Spec k(t) = Spec k[X,Y ]⊗k[t] k(t)

= Spec k(t)[X,Y ]/(X2 − Y p − t),

i.e., it is the plane curve X2 = Y p+t. But now t /∈ k(t)p, so this curve is not isomorphic

over k(t) to X2 = (Y ′)p. In fact, k[X,Y ] ⊗k[t] k(t) is a localization of k[X,Y ], so the

local rings of f−1(η) are all local rings of A2
k too, hence they are all regular, i.e., f−1(η)

is a regular scheme! But the Jacobian matrix of the defining equations of this curve is:

∂

∂X
(X2 − Y p − t) = 2X

∂

∂Y
(X2 − Y p − t) = 0

so all 1× 1-minors vanish at the point x = V (X,Y p + t) ∈ f−1(η). Thus f−1(η) is not

smooth over k(t) at x.

The third and fourth criteria for smoothness are more general and do not assume that the

base scheme Y is regular.

Criterion 4.8. Consider a finitely presented morphism f : X → Y . Take a point x ∈ X
and let y = f(x). Then

f is smooth at x⇐⇒
[
f is flat at x and the fibre

f−1(y) is smooth over k(y) at x.

]
Proof. =⇒ was proven in Propositions 3.3 and 3.19. To prove the converse, we may

assume Y = SpecA, X = SpecA[X1, . . . , Xn]/(f1, . . . , fr). Then let x = [p], where p is a prime

ideal in A[X1, . . . , Xn] and let q = p ∩ A and k = (quotient field of A/q) ∼= k(y). Note that the

fibre f−1(y) equals

Spec k[X1, . . . , Xn]/(f1, . . . , f r).

If s is the dimension of f−1(y) at x, it follows that

rk

(
∂f i
∂Xj

(x)

)
= n− s.
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Thus n− s ≤ r and renumbering, we may assume that:

det
1≤i,j≤n−s

(
∂f i
∂Xj

(x)

)
̸= 0.

Consider the diagram:

X = SpecA[X]/(f1, . . . , fr)

f(flat at x)
''NNNNNNNNNNN
⊂ SpecA[X]/(f1, . . . , fn−s) = X ′

f ′ (smooth at x)
wwnnnnnnnnnnn

SpecA

Then the fibres: f−1(y) ⊂ (f ′)−1(y) over y are both smooth of dimension s at x, hence they are

equal in a neighborhood of x. I claim that in fact X and X ′ are equal in a neighborhood of x,

hence f is smooth at x. To prove this, it suffices to show

(f1, . . . , fr) ·A[X]p = (f1, . . . , fn−s) ·A[X]p

or, by Nakayama’s lemma, to show

(f1, . . . , fr) ·A[X]p
(f1, . . . , fn−s) ·A[X]p

⊗Aq k = (0).

But consider the exact sequence

0 //
(f1, . . . , fr) ·A[X]p

(f1, . . . , fn−s) ·A[X]p
//

A[X]p
(f1, . . . , fn−s) ·A[X]p

//
A[X]p

(f1, . . . , fr) ·A[X]p
// 0.

Ox,X′

∼

Ox,X
∼

The last ring is flat over A, so

0 //
(f1, . . . , fr) ·A[X]p

(f1, . . . , fn−s) ·A[X]p
⊗Aq k

//
A[X]p

(f1, . . . , fn−s) ·A[X]p
⊗Aq k //

A[X]p
(f1, . . . , fr) ·A[X]p

⊗Aq k // 0

Ox,(f ′)−1(y)

∼

Ox,f−1(y)

∼

is exact. But Ox,(f ′)−1(y)
≈−→ Ox,f−1(y), so the module on the left is (0). □

Corollary 4.9. Let f : X → Y be a finitely presented morphism. Then for all x ∈ X,

y = f(x),

f is étale at x⇐⇒
[
f is flat at x, the fibre f−1(y) is reduced

at x and k(x) is separable algebraic over k(y).

]
The last criterion is a very elegant idea due to Grothendieck. It is an infinitesimal criterion

involving A-valued points of X and Y when A is an artin local ring. We want to consider a

lifting for such point described by the diagram:

SpecA/I

∩

ψ0
// X

f

��

SpecA
ϕ1

//

ψ1

66nnnnnnn
Y
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This means that we have an A-valued point ϕ1 of Y and a lifting ψ0 of the induced (A/I)-valued

point (I is any ideal in A). Then the problem is to lift ϕ1 to an A-valued point ψ1 of X extending

ψ0. The criterion states:

Criterion 4.10. Let f : X → Y be any morphism of finite type where Y is a noetherian

scheme. Then f is smooth if and only if:

For all artin local rings A, ideals I ⊂ A, and all A-valued points ϕ1 of Y and

(A/I)-valued points ψ0 of X such that:

f ◦ ψ0 = restriction of ϕ1 to SpecA/I

there is an A-valued point ψ1 of X such that

f ◦ ψ1 = ϕ1

ψ0 = restriction of ψ1 to SpecA/I.

(See diagram.)

f : X → Y satisfying the lifting property in Criterion 4.10 is said to be formally smooth in

EGA [1, Chapter IV, §17]. This criterion plays crucial roles in deformation theory (cf. §VIII.5).

Proof. Suppose first that f is smooth and ψ0, ϕ1 are given. Look at the induced morphism

f1:

X1 = X ×Y SpecA

f1
��

SpecA/I ⊂

ψ′
0

77oooooooooooo
SpecA

which is smooth by Proposition 3.3. Then ψ0 defines a section ψ′
0 of f1 over the subscheme

SpecA/I of the base which we must extend to a section of f1 over the whole of SpecA. Let

y ∈ SpecA be its point and let x ∈ X1 be the image of ψ′
0. Then k(x) = k(y), so by Proposition

3.8

Ôx,X1
∼= A[[t1, . . . , tn]].

If the section ψ′
0 is given by

(ψ′
0)

∗(ti) = ai ∈ A/I,
choose ai ∈ A over ai. Then define a section ψ′

i of f1 by

(ψ′
1)

∗(ti) = ai.

Now suppose f satisfies the lifting criterion. Choose x ∈ X. We will verify the definition of

smoothness directly, i.e., find a local presentation of f near x as

SpecR[T1, . . . , Tn]/(f1, . . . , fl) −→ SpecR

where det(∂fi/∂Xj) ̸= 0. To start, let f be presented locally by

SpecR[T1, . . . , Tn]/I −→ SpecR

and let

r = dimk(x)
(
ΩX/Y ⊗ k(x)

)
.

We may replace X by SpecR[T1, . . . , Tn]/I and Y by SpecR if we wish. Since ΩX/Y ⊗ k(x) is
generated by dT1, . . . , dTn with relations df = 0, f ∈ I, we can choose f1, . . . , fn−r ∈ I such that

ΩX/Y ⊗ k(x) ∼=

(
n⊕
i=1

k(x) · dTi

)/
⟨df1, . . . , dfn−r⟩
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and in particular

det

(
∂fi
∂Tj

(x)

)
̸= 0.

This allows us to factor f locally through a smooth morphism:

X

f

��

� � // X1 = SpecR[T1, . . . , Tn]/(f1, . . . , fn−r)

f1
uujjjjjjjjjjjjjjjjjj

Y

where f1 is smooth at x and

(4.11) ΩX1/Y ⊗ k(x) −→ ΩX/Y ⊗ k(x)

is an isomorphism.

We now apply the lifting property to the artin local rings Aν = Ox,X1/m
ν
x,X1

and the ideals

Iν = I1 ∩mν−1
x,X1

+mν
x,X1

, where I1 is the image of I under

R[T1, . . . , Tn]→ R[T1, . . . , Tn]/(f1, . . . , fn−r).

We want to define by induction on ν morphisms rν :

SpecOx,X/mν
x,X

� � //

∩

X

f

��

SpecOx,X1/m
ν
x,X1

rν

44jjjjjjjjj
� � // X1

f1

// Y

which extend each other. Given rν , rν plus the canonical map

SpecOx,X1/(I1 +mν+1
x,X1

) = SpecOx,X/mν+1
x,X ↪→ X

induce a map

SpecOx,X1/(I1 ∩mν
x,X1

+mν+1
x,X1

) −→ X.

(This is because Ox,X1/(I1 ∩mν
x,X1

+mν+1
x,X1

) can be identified with the subring of (Ox,X1/(I1 +

mν+1
x,X1

)) ⊕ Ox,X1/m
ν
x,X1

of pairs both members of which have the same image in Ox,X1/(I1 +

mν
x,X1

).) Apply the lifting property to find rν+1. Now the whole family {rν} defines a morphism

r:

Spec Ôx,X1

r

xxqqqqqqqq
∩

X

''OOOOOOOOOO
� � // X1

��

Y

which is in effect a retraction of a formal neighborhood of X in X1 onto X, all over Y . Ring-

theoretically, this means

Ôx,X1
∼= Ôx,X ⊕ J

and where the R-algebra structure of Ôx,X1 is given by the R-algebra structure of Ôx,X . It

follows that

ΩX1/Y ⊗ Ôx,X ∼= (ΩX/Y ⊗ Ôx,X)⊕ (J/J2).

But, then applying (4.11), we find

(J/J2)⊗ k(x) = (0),

hence by Nakayama’s lemma, J = (0). Thus Ôx,X1
∼= Ôx,X , hence Ox,X1

∼= Ox,X and X ∼= X1

in a neighborhood of x. □
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5. Normality

Recall that in §III.6 we defined a scheme X to be normal if its local rings Ox,X are integral

domains integrally closed in their quotient field. In particular, if X = SpecR is affine and

integral, then

X is normal⇐⇒ Rp integrally closed in R(X), ∀p
⇐⇒ R integrally closed in R(X)

(using the facts (i) that a localization of an integrally closed domain is integrally closed and (ii)

R =
∩

pRp.) An important fact is that regular schemes are normal. This can be proven either

using the fact that regular local rings are UFD’s (cf. Zariski-Samuel [119, vol. II, Appendix 7];

or Kaplansky [64, §4-2]) and that all UFD’s are integrally closed (Zariski-Samuel [119, vol. I, p.

261]); or one can argue directly that for a noetherian local ring O, grO integrally closed =⇒
O integrally closed (Zariski-Samuel [119, vol. II, p. 250]). As we saw in §III.6, normality for

noetherian rings is really the union of two distinct properties, each interesting in its own right.

We wish to globalize this. First we must find how to express globally the condition:

R =
∩

p non-zero minimal prime

Rp.

(Added in publication) We use the following terminology: A point x of a locally noetherian

scheme X is not an embedded point if the natural map Ox,X → Γ(Spec(Ox,X) \ {x}) is injective.
Equivalently, x is an embedded point of X if dim(Ox,X) ≥ 1 and x is an associated point of Ox,X .

Proposition-Definition 5.1. Let X be a noetherian scheme with no embedded components

and let x ∈ X be a point of codimension at least 2. Say η1, . . . , ηn are the generic points of the

components of X containing x. The following are equivalent:

a) ∀ neighborhoods U of x, and f ∈ OX
(
U \ ({x} ∩ U)

)
, there is a neighborhood U ′ ⊂ U

of x such that f extends to f ′ ∈ OX(U ′).

a′)

Ox,X =
∩

y∈X with

x∈{y}
x ̸=y

Oy,X

(all these rings being subrings of the total quotient ring
⊕n

i=1Oηi,X).
b) ∀f ∈ mx,X with f(ηi) ̸= 0 all i, x is not an embedded point of the subscheme V (f)

defined near x.

b′) ∃f ∈ mx,X with f(ηi) ̸= 0 all i, and x not an embedded point of V (f).

Points with these properties we call proper points; others are called improper4. If all points are

proper, X is said to have Property S2.

Proof. It is easy to see (a)⇐⇒ (a′), and (b) =⇒ (b′) is obvious. To see (b′) =⇒ (a), take

g ∈ OX
(
U \ ({x} ∩ U)

)
, U affine

and let f ∈ mx,X be such that V (f) has no embedded components. Then the distinguished open

set Uf of U is inside U \ ({x} ∩ U), hence we can write:

g = g1/f
m, g1 ∈ OX(U).

4This is not standard terminology; it is suggested by an old Italian usage: cf. Semple-Roth [98, Chapter 13,

§6.4].
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We now prove by induction on l that g1/f
l ∈ Ox,X , starting with l = 0 where we know it, and

ending at l = m where it proves that g ∈ Ox,X , hence g ∈ OX(U ′) some U ′ ⊂ U . Namely, if

l < m, and h = g1/f
l ∈ Ox,X , consider the function h induced by h on V (f) in a neighborhood

of x. Since h = fm−l · g, it follows that h = 0 on V (f) \ ({x}∩V (f)), i.e., Supph ⊂ {x}∩V (f).

Since x is not an embedded component of V (f), h = 0 at x too, i.e., g1/f
l+1 = h/f ∈ Ox,X .

To see (a′) =⇒ (b), suppose f ∈ mx,X , f(ηi) ̸= 0 and suppose g ∈ Ox,X restricts to a

function g on V (f) whose support is contained in {x} ∩ V (f). Then for all y ∈ X with y ∈ {x},
x ̸= y, g is 0 in Oy,V (f), i.e., g ∈ f · Oy,X . Then

g/f ∈
∩
y∈X
x∈{y}
x ̸=y

Oy,X = Ox,X ,

hence g = 0. □

Criterion 5.2 (Basic criterion for normality (Krull-Serre)). Let X be a reduced noetherian

scheme. Then

X is normal⇐⇒
{

a) ∀x ∈ X of codimension 1, X is regular at x

b) X has Property S2.

In particular (a) and (b) imply that the components of X are disjoint.

Proof. If X is affine and irreducible, say X = SpecR, then Property S2, in form (a′),

implies immediately:

∀p prime ideal in R : Rp =
∩

q non-zero minimal prime
q⊂p

Rq.

Since

R =
∩
all p

Rp,

the criterion reduces to Krull’s result (Theorem III.6.5). Everything in the criterion being local,

it remains to prove (a) + (b) =⇒ all components of X are disjoint. Let

S = {x ∈ X | x is in at least two components of X},

and let x be some generic point of S. Then Ox,X is not a domain so by (a), codimx ≥ 2. Then

consider the function e which is 1 on one of the components through x, 0 on all the others.

Clearly

e ∈
∩
y∈X
x∈{y}
x ̸=y

Oy,X , e /∈ Ox,X

which contradicts S2. Thus S = ∅. □

Here is an example of how this criterion is used:

Proposition 5.3. Assume X is a regular irreducible scheme and Y ⫋ X is a reduced and

irreducible codimension 1 subscheme. Then Y has Property S2.
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Proof. Let y ∈ Y be a point of codimension ≥ 2 and let f ∈ Oy,X be a local equation for

Y . Take any g ∈ my,Y \ (fOy,X ∪m2
y,X). Let g be the image of g in Oy,Y , let Z be the subscheme

of X defined by g = 0 near y, and let f be the image of f in Oy,Z . Then

y is a proper point of Y ⇐⇒ {y} not embedded component of V (g) ⊂ Y
⇐⇒ {y} not embedded component of V (f, g) ⊂ X

⇐⇒ {y} not embedded component of V (f) ⊂ Z
⇐⇒ y is a proper point of Z.

But Oy,Z = Oy,X/g · Oy,X is regular (since g /∈ m2
y,X), hence Z is normal at y hence every point

is proper. □

Corollary 5.4. If X is regular, irreducible, Y ⫋ X is reduced irreducible of codimension

1, then if Y itself is regular at all points of codimension 1, Y is normal.

Another application of the basic criterion is:

Proposition 5.5. Let f : Y → X be a smooth morphism, where X is a normal noetherian

scheme. Then Y is normal (and locally noetherian).

Proof. As X is the disjoint union of its components, we can replace X by one of these and

so assume X irreducible with generic point η. Note that since Oη,X = the field R(X), the local

rings of any y ∈ f−1(η) on the fibre f−1(η) and on Y are the same.

a) Y is reduced: in fact f flat implies

f(Ass(OY )) ⊂ Ass(OX) = {η}.

For for all y ∈ Ass(OY ),

Oy,Y = Oy,f−1(η)

is an integral domain, since f−1(η) is smooth over SpecR(X), hence is regular.

b) If y ∈ Y has codimension ≤ 1, then by Corollary IV.5.10, f(y) has codimension 0 or

1, hence X is regular at f(y). Since f is smooth, Y is regular at y by Corollary 3.14.

c) If y ∈ Y has codimension > 1, we seek some g ∈ Oy,Y with g(y) = 0, g ̸≡ 0 on any

component of Y through y, and such that V (g) has no embedded components through

y. There are two cases:

c1)

f(y) = η =⇒Oy,Y = Oy,f−1(η) regular, hence normal

=⇒any g ∈ my,Y , g ̸= 0 has this property

by the Basic Criterion 5.2.

c2) f(y) = x has codimension ≥ 1 in X. But then since X is normal, there is a

g ∈ Γ(Ux,OX), Ux some neighborhood of x, such that g(x) = 0, g(η) ̸= 0 and

V (g) has no embedded components. Then f∗(g) ∈ Γ(f−1Ux,OY ) is not zero at

any generic points of Y while f∗(g)(y) = 0. Moreover,

V (f∗(g)) ∼= V (g)×X Y,
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so V (f∗(g)) is smooth over V (g). We get:

y ∈ Ass(OV (f∗(g))) =⇒f(y) ∈ Ass(OV (g))

=⇒f(y) = generic point of V (g)

=⇒codimension of f(y) is 1

=⇒X regular at f(y)

=⇒Oy,Y regular, hence normal

=⇒V (f∗(g)) has no embedded

components through y.

□

In particular this shows that a smooth scheme over a normal scheme is locally irreducible

and if one looks back at the proof of Criterion 4.1 for smoothness, one sees that it now extends

verbatim to the case where the image scheme is merely assumed normal, i.e., (as generalized in

Criterion 4.1+):

Criterion 5.6. Let X be an irreducible normal noetherian scheme and f : Y → X a mor-

phism of finite type. Assume all components Yi of Y dominate X and let

r = min trdegR(X)R(Yi,red).

Then ∀y ∈ Y
a) dimk(y)ΩY/X ⊗Ox k(y) ≥ r
b) equality holds if and only if f is smooth at y of relative dimension r.

Example. The simplest way to get non-normal schemes is to start with any old scheme and

“collapse” the tangent space at a point or “identify” two distinct points. To be precise, let

X = SpecR

be a k-variety.

a) If x = [m] is a k-rational point, so that R ∼= k +m, consider

X0 = Spec(k +m2).

The natural morphism:

π : X −→ X0

is easily seen to be bijective, but if f ∈ m \m2, the f is integrally dependent on k+m2,

but /∈ k +m2. So X0 is not normal.

b) If xi = [mi], i = 1, 2 are two k-rational points, let

R0 = {f ∈ R | f(x1) = f(x2)}
= k +m1 ∩m2

X0 = SpecR0.

The natural morphism

π : X −→ X0

is bijective except that x1, x2 have the same image. Moreover, if f ∈ R, then f satisfies

the equation:

(X − f(x1))(X − f(x2)) = a, where a = (f − f(x1))(f − f(x2)) ∈ R0.
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So X0 is not normal. Moreover, one can check that ΩX/X0
= (0) but π is not étale in

this case so this morphism illustrates the fact that Criterion 4.1+ does not extend to

non-normal Y ’s.

One of the major reasons why normal varieties play a big role in algebraic geometry is that

all varieties can be “normalized”, i.e., there is a canonical process modifying them only slightly

leading to a normal variety. If there were a similar easy canonical process leading from a general

variety to a regular one, life would be much simpler!

Proposition-Definition 5.7. Let X be a reduced and irreducible scheme. Let L ⊃ R(X)

be a finite algebraic extension. Then there is a unique quasi-coherent sheaf of OX-algebra:

OX ⊂ A ⊂ constant sheaf L

such that for all affine U :

A(U) = integral closure of OX(U) in L.

We set

XL =SpecX(A)
=
def

union of affines SpecA(U),

as U runs over affines in X,

and call this the normalization of X in L. In particular, if L = R(X), we call this the normal-

ization of X. XL is normal and irreducible with function field L.

To see that this works, use (I.5.9), and check that if U = SpecR is an affine in X and Uf is

a distinguished open set, then A(Uf ) = A(U)⊗R Rf . This is obvious.
Note for instance that in the two examples above, normalization just undoes the clutching

or identification: X is the normalization of X0.

Sadly, normalization is seriously flawed as a tool by the very unfortunate fact that even

for some of the nicest schemes X you could imagine — e.g., regular affine and 1-dimensional

— there are cases where XL is not of finite type over X. This situation has been intensively

studied, above all by Nagata (cf. his book [89] and Matsumura [78, Chapter 12]). We have no

space to describe the rather beautiful pathology that he revealed and the way he “explained”

it. Suffices it to recall that:

5.8.

• X noetherian normal L separable over R(X) =⇒ XL of finite type over X.

• X itself of finite type over a field =⇒ XL of finite type over X

(cf. Zariski-Samuel [119, vol. I, Chapter V, §4]).
• X itself of finite type over Z =⇒ XL of finite type over X

(cf. Nagata [89, (37.5)]).

We conclude with a few miscellaneous remarks on normalization. The schemes ProjR can

be readily normalized by taking the integral closure of R:

Proposition 5.9. Let R =
⊕∞

n=0Rn be a graded integral domain with R1 ̸= (0) and let

K0 = field of elements f/g, f, g ∈ Rn for some n, g ̸= 0

= R(ProjR).
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Then if t = any fixed element of R1, the quotient field of R is isomorphic to K0(t). Let L0 ⊃ K0

be a finite algebraic extension and let

S = integral closure of R in L0(t).

Then S is graded and ProjS is the normalization of ProjR in L0.

Proof. Left to the reader. □

An interesting relation between normalization and associated points is given by:

Proposition 5.10. Let X be a reduced and irreducible noetherian scheme and let

π : X̃ −→ X, X̃ = SpecX(A)

be its normalization. Assume π is of finite type hence A is coherent. Then for all y ∈ X of

codimension at least 2:

y is an improper point⇐⇒ y ∈ Ass(A/OX).

The proof is easy using the fact that every point of X̃ is proper.

One case in which normalization does make a scheme regular is when its dimension is one.

This can be used to prove:

Proposition 5.11. Let k be a field, K ⊃ k a finitely generated extension of transcendence

degree 1. Then there is one and (up to isomorphism) only one regular complete k-variety X with

function field K, and it is projective over k.

Proof. Let R0 ⊂ K be a finitely generated k-algebra with quotient field K, let X0 =

SpecR0 and embed X0 in Ank for some n using generators of R0. Let X0 be the closure of X0

in Pnk and write it as ProjR′. Let R′′ be the integral closure of R′ in its quotient field. Then

by Proposition 5.9, X ′′ = ProjR′′ is normal. Since it has dimension 1, it is regular and has

the properties required. Uniqueness is easy using Proposition II.4.8, and the fact that the local

rings of the closed points of X ′′ are valuation rings, hence maximal proper subrings of K. □

6. Zariski’s Main Theorem

A second major reason why normality is important is that Zariski’s Main Theorem holds for

general normal schemes. To understand this in its natural context, first consider the classical

case: k = C, X a k-variety, and x is a closed point of X. Then we have the following two sets

of properties:

N1) X formally normal at x, i.e., Ôx,X an integrally closed domain.

N2) X analytically normal at x, i.e., Ox,X,an, the ring of germs of holomorphic functions at

x, is an integrally closed domain.

N3) X normal at x.

N4) Zariski’s Main Theorem holds at x, i.e., ∀f : Z → X, f birational and of finite type

with f−1(x) finite, then ∃U ⊂ X Zariski-open with x ∈ U and

res f : f−1U −→ U

an isomorphism.

U1) X formally unibranch at x, i.e., Spec
(
Ôx,X

)
irreducible.

U2) X analytically unibranch at x, i.e., Spec (Ox,X,an) irreducible, or equivalently, the germ
of analytic space defined by X at x is irreducible.

U3) X unibranch at x, i.e., if X ′ = normalization of X in R(X), π : X ′ → X the canonical

morphism, then π−1(x) = one point.
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U4) X topologically unibranch at x. (Recall that in Part I [87, (3.9)], an irreducible algebraic

variety X over C was defined to be topologically unibranch at a point x ∈ X(C) if for
every closed subvariety Y ⫋ X and every open subset V ∋ x in the classical topology,

there exists a classical open neighborhood U ∋ x contained in V such that U\(U∩Y (C))
is connected in the classical topology.)

U5) The Connectedness Theorem holds at x, i.e., ∀f : Z → X, f proper, Z integral, f(ηZ) =

ηX and ∃U ⊂ X Zariski-open dense with f−1(y) connected for all y ∈ U , then f−1(x)

is connected too.

6.1. I claim:

i) all properties N are equivalent,

ii) all properties U are equivalent,

iii) N =⇒ U.

Modulo two steps for which we refer the reader to Zariski-Samuel [119] and Gunning-Rossi

[54], this is proven as follows:

N1⇐⇒ N2⇐⇒ N3: We have inclusions:

Ox,X ⊂ Ox,X,an ⊂ Ôx,X

and

Ox,X,an ∩R(X) = Ox,X

Ôx,X ∩
(

total quotient

ring of Ox,X,an

)
= Ox,X,an

(This follows from the fact that if f, g ∈ O, O noetherian local, then f |g in O iff f |g in

Ô: cf. Part I [87, §1D].) Therefore the implications

Ôx,X integrally closed domain =⇒ Ox,X,an integrally closed domain

=⇒ Ox,X integrally closed domain

are obvious. The fact:

Ox,X integrally closed domain =⇒ Ôx,X integrally closed domain

is a deep Theorem of Zariski (cf. Zariski-Samuel [119, vol. II, p. 320]). He proved this for

all points x on k-varietiesX, for all perfect fields k. It was later generalized by Nagata to

schemes X of finite type over any field k or over Z (cf. Nagata [89, (37.5)]). Although

this step appears quite deep, note that if we strengthen the hypothesis and assume

Ox,X actually regular, then since regularity is a property of gr(Ox,X) and gr(Ox,X) ∼=
gr(Ôx,X), it follows very simply that Ôx,X is also regular, hence is an integrally closed

domain!

N1 =⇒ U1: Obvious.

U1 =⇒ U2: Obvious because

Ox,X,an/
√
(0) ⊂ Ôx,X/

√
(0),

so if the latter is a domain, so is the former.

U2 =⇒ U4: See Gunning-Rossi [54, p. 115].

U4 =⇒ U5: This was proven in Part I [87, (3.24)] for projective morphisms f . The proof

generalizes to any proper f .
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(Added in publication) The proof uses a basic fact that the proper morphism

f : Z → X induces a topological proper map fC : Z(C) → X(C), that is, the

inverse image of any compact subset of X(C) is compact, hence the image of

any closed subset of Z(C) is closed.
Suppose that f−1(x) were the disjoint union of two non-empty closed subvarieties Y1
and Y2. Then there exist disjoint classical open subsets W1 ⊃ Y1(C) and W2 ⊃ Y2(C)
in Z(C). Let

V0 := X(C) \ f(Z(C) \ (W1 ∪W2)),

an open neighborhood of x. Since X is topologically unibranch at x, there exists a

classical open neighborhood V of x in V0 such that V ∩ U(C) is connected (with U in

the statement of U5). Since V ⊂ V0, we get

f−1(U(C) ∩ V ) ⊂ f−1(V ) ⊂W1 ∪W2.

Since each fibre f−1(y) is connected for y ∈ U(C) ∩ V and f is surjective, we deduce

that

U(C) ∩ V ⊂ [(U(C) ∩ V ) \ f(Z(C) \W1)] ∪ [(U(C) ∩ V ) \ f(Z(C) \W2)],

and the right hand side is a disjoint union of two open subsets of the connected open

subset U(C) ∩ V in the classical topology. Hence one of the two open subsets is equal

to U(C) ∩ V , say

(U(C) ∩ V ) \ f(Z(C) \W1) = U(C) ∩ V.

This implies that f(W1) ∩ U(C) = ∅, or equivalently, W1 ⊂ f−1(X \ U)(C). This is

impossible because f−1(X \ U) is a proper subvariety of the irreducible variety Z and

W1 is an open subset of Z(C).
U5 =⇒ U3: Let π : X ′ → X be the normalization of X in R(X). π is of finite type by

(5.8), hence it is proper by Proposition II.6.5. π is birational, hence an isomorphism

over some non-empty U ⊂ X. Therefore U5 applies to π and π−1(x) is connected.

But since X ′ = SpecA, A coherent, π−1(x) = Spec(Ax/mx · Ax) and Ax/mx · Ax is

finite-dimensional over C; thus π−1(x) is a finite set too, hence it consists in one point.

U3 =⇒ U1: Let O′
x,X be the integral closure of Ox,X in R(X): it is a local ring and a

finite Ox,X -module. By flatness of Ôx,X over Ox,X , we find

Ôx,X ⊂ O′
x,X ⊗Ox,X

Ôx,X
and by finiteness of O′

x,X ,

O′
x,X ⊗Ox,X

Ôx,X ∼= completion Ô′
x,X of O′

x,X in its mx-adic topology.

By N3 =⇒ N1, Ô′
x,X is a domain, so therefore Ôx,X is a domain and U1 is proven.

N3 =⇒ N4: (Zariski’s Main Theorem) We use the fact already proven that N3 =⇒ N1 =⇒
U1 =⇒ U5 and prove N3+U5 =⇒ N4. This is quite easy using Chow’s lemma (Theorem

II.6.3). Let f : Z → X be a birational morphism of finite type with f−1(x) finite. Then

we can find a diagram:

Z ′

g
��

� �

open
dense

// Z ′ �
�

// Pn ×X

p2

yyrrrrrrrrrrrrrrrrrrrrrr

Z

f
��

X
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where g is proper and birational, Z ′ = closure of Z ′ in Pn×X with reduced structure.

Now if we write f−1(x) = {y1, . . . , yt}, then since f is of finite type, each yi is open in

f−1(x) and proper over C. Then if Yi = g−1(yi), each Yi is open in (f ◦ g)−1(x) and

proper over C. Let h = restriction of p2 to Z ′. Then (f ◦ g)−1(x) is open in h−1(x),

hence each Yi is open in h−1(x). But being proper over C, Yi must also be closed in

h−1(x):

h−1(x) = Y1 ∪ · · · ∪ Yt ∪
(
h−1(x) \ (f ◦ g)−1(x)

)
is a decomposition of h−1(x) into open and closed pieces. So the Connectedness The-

orem implies t = 1 and x /∈ h(Z ′ \ Z ′). But h is proper so h(Z ′ \ Z ′) is closed in X.

Replacing X by X \h(Z ′ \Z ′), we can therefore assume Z ′ = Z ′, i.e., Z ′ is proper over

X. It follows that Z is proper over X, and f−1(x) = one point y.

Next replacing X by a smaller neighborhood U of x and Z by f−1(U), we can

assume Z and X are affine: to see this, let V be any affine neighborhood of y. Since

f is proper, f(Z \ V ) is closed. Let U be an affine neighborhood of x contained in

X \ f(Z \ V ). Then f−1(U) ⊂ V and f−1(U) is affine by Proposition II.4.5.

Now if X = SpecR, Z = SpecR[x1, . . . , xn], where xi ∈ R(X), consider the mor-

phism [xi] : Z → A1
C ⊂ P1

C. This induces

([xi], f) : Z −→ P1
C ×Spec(C) X

which is proper since f is proper. Let Γi be its image. Then Γi is closed and (∞, x) /∈ Γi.

Therefore there is some expression:

p(t) =amt
m + am−1t

m−1 + · · ·+ a0

ai ∈ Ox,X
t = coordinate on P1

C

p(t) ≡ 0 on Γi

t−mp(t) ̸= 0 at (∞, x).

Thus am /∈ mx,X , and xi, as an element ofR(X), satisfies g(xi) = 0. In other words, xi is

integrally dependent on Ox,X . So xi ∈ Ox,X , hence xi ∈ OX(Ui) for some neighborhood

Ui of x. It follows that f is an isomorphism over U1 ∩ · · · ∩ Un.
N4 =⇒ N3: Let π : X ′ → X be the normalization of X in R(X) and apply Zariski’s Main

Theorem with f = π.

Remark. (Added in publication) (Chai) It is easy to give an example of a complex algebraic

variety X and a point x ∈ X that is unibranch but not normal: Take X = SpecR with

R = C+ t2C[t], and let x correspond to the quotient of R by the maximal ideal t2C[t] of R. The
normalization of R is the polynomial ring C[t], and A1 → X is a homeomorphism.

Now consider the same situation for general integral noetherian5 schemes. N2, U2 and U4

do not make sense, but N1, N3, N4, U1, U3 and U5 do.

We need modify U5 however to read:

Ũ5) The Connectedness Theorem holds at x, i.e., ∀f : Z → X, f proper, Z integral, f(ηZ) =

ηX and the geometric generic fibre of f connected (i.e., if Ω = an algebraic closure of

R(X), then via the canonical

i : SpecΩ −→ X,

Z ×X SpecΩ should be connected), then f−1(x) is connected too.

5N3 =⇒ N4 is proved even for non-noetherian X in EGA [1, Chapter IV, (8.12.10)].
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Remark. (Added in publication) (Chai) In the statement of Ũ5, one cannot strengthen the

conclusion to “f−1(x) is geometrically connected”. Here is an example: Let Z = SpecC[t], the
affine line over C. Let R + tC[t] be the ring of all polynomials g(t) ∈ C[t] such that g(0) ∈ R.
We have an isomorphism

α : R[u, v]/(u2 + v2)
∼−→ R, u 7→ t, v 7→

√
−1t.

Let X = SpecR. It is easy to see that C[t] is the integral closure of R in the fraction field C(t)
of R, f : Z → X is a homeomorphism, and f is an isomorphism outside the closed point x :=

Spec(R/tC[t]) ∼= SpecR. However, f−1(x) ∼= SpecC, which is connected, but not geometrically

connected over x ∼= SpecR.

6.2. Then Zariski (for k-varieties) and Grothendieck (in general) have shown:

N1 +3

��

N3 ks +3

��

N4

U1 +3 U3 ks +3
Ũ5

but Nagata [89, Appendix A1] has given counterexamples to N3 =⇒ N1, U3 =⇒ U1.

(Note that we do have these implications when X is excellent. Examples of excellent rings

are fields, Z, complete local rings and Dedekind domains of generic characteristic 0. Finitely

generated algebras over excellent rings are excellent.)

To prove these implications, first note that N1 =⇒ U1 and N3 =⇒ U3 are obvious; that

N1 =⇒ N3 is proven just as above. Moreover, N4 =⇒ N3 and Ũ5 =⇒ U3 are proven as above,

except that since the normalization π : X ′ → X may not be of finite type, N4 and Ũ5 should be

applied to partial normalizations, i.e., SpecR[a1, . . . , an] → SpecR, ai integrally dependent on

R. Moreover, N3+Ũ5 =⇒ N4 is proven as above. Therefore it remains to prove U1 =⇒ U3 and

U3 =⇒ Ũ5.

U1 =⇒ U3: This is an application of Hensel’s lemma (Lemma IV.6.1). If π−1(x) has

more than one point, it is easy to see that we can find an element a ∈ R(X) integrally

dependent on Ox,X such that already in the morphism:

π̃ : SpecOx,X [a] −→ SpecOx,X
π−1(x) consists in more than one point. Consider the three rings:

Ox,X ⊂ Ox,X [a] ⊂ R(X).

Tensoring with Ôx,X , we get:

Ôx,X ⊂ Ôx,X ⊗Ox,X
Ox,X [a] ⊂ Ôx,X ⊗Ox,X

R(X).

Dividing all three rings by their nilpotents, we get

Ôx,X/
√
(0) ⊂

(
Ôx,X ⊗Ox,X

Ox,X [a]
)
/
√

(0) ⊂
(
Ôx,X ⊗R(X)

)
/
√

(0).

By U1, Ôx,X/
√

(0) is a domain, and sinceR(X) is a localization ofOx,X ,
(
Ôx,X ⊗R(X)

)
/
√

(0)

is a localization of Ôx,X/
√
(0), i.e.,(

Ôx,X ⊗R(X)
)
/
√

(0) ⊂ quotient field of Ôx,X/
√

(0).

This implies that
(
Ôx,X ⊗Ox,X [a]

)
/
√

(0) is a domain hence Spec(Ôx,X ⊗Ox,X [a]) is
irreducible. Now look at

π̂ : Spec(Ôx,X ⊗Ox,X [a]) −→ Spec Ôx,X .
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But since π̂−1(closed point) ∼= π̃−1(x), which has more than one point, by Hensel’s

lemma (Lemma IV.6.1), Spec(Ôx,X ⊗Ox,X [a]) is not irreducible!
U3 =⇒ Ũ5: (i.e., Unibranch implies the Connectedness Theorem.) We follow Zariski’s

idea (cf. Zariski [118]) and deduce this as an application of the fundamental theorem

of “holomorphic functions” (cf. [118, Chapter VIII]. See also “GFGA” in §VIII.2.):

6.3 (Fundamental theorem of “holomorphic functions”). ∀f : Z → X proper, X

noetherian, then f∗OZ is a coherent sheaf of OX-algebras and for all x ∈ X

lim←−
ν

(f∗OZ)x/mν
x · (f∗OZ)x ∼= lim←−

ν

Γ
(
f−1(x),OZ/mν

x · OZ
)
.

To apply this to the situation of Ũ5, suppose f−1(x) =W1 ∪W2, Wi open disjoint.

Then define idempotents:

eν ∈ Γ(f−1(x),OZ/mν
x · OZ)

eν = 0 on W1, eν = 1 on W2.

These define an element ê in the limit: approximating this with an element e ∈
(f∗OZ)x mod mx · (f∗OZ)x, it follows that e = 0 on W1, e = 1 on W2. Let e extend to

a section of f∗OZ in an affine neighborhood U = SpecR of x.

Next, for all open U ⊂ X,

f∗OZ(U) =
def

Γ(f−1(U),OZ) ⊂ Γ(f−1(ηX),Of−1(ηX)).

The generic fibre f−1(ηX) of f is a complete variety over the field R(X), hence

L = Γ(f−1(ηX),Of−1(ηX))

is a field, finite and algebraic over R(X). Applying the theory of §IV.2, f−1(ηX) is also

a variety over L and passing to the algebraic closure R(X) of R(X), we find that the

geometric scheme:

f−1(ηX) = f−1(ηX)×SpecR(X) SpecR(X) −→ SpecR(X)

in fact lies over Spec(L ⊗R(X) R(X)). All points of the latter are conjugate, so

f−1(ηX) maps onto Spec(L⊗R(X)R(X)). By assumption f−1(ηX) is connected, hence

Spec(L ⊗R(X) R(X)) consists in one point, hence L is purely inseparable over R(X).

So we may assume Lp
l ⊂ R(X). In particular ep

l ∈ R(X).

Since f∗OZ(U) is a finite R-module, ep
l
is integrally dependent on R too. Let R′

be the integral closure of R in R(X) and we can factor the restriction of f to f−1(U)

via the function ep
l
:

Z

f

��

f−1U⊃

res f

��

&&NNNNNN
SpecR′

g

wwooooooo

SpecR[ep
l
]

f ′
��

X U⊃ SpecR

Since ep
l
takes on values 0 and 1 on f−1(x), it follows that (f ′)−1(x) consists in at

least two points! But R′ integral over R[ep
l
] so g is surjective by the going-up theorem

(Zariski-Samuel [119, vol. I, Chapter V, §2, Theorem 3, p. 257]).
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An elementary proof that N1 =⇒ N4 can be given along the lines of the proof that U1 =⇒ U3.

We sketch this: Given f : Z → X as in N4, form the diagram:

Z

f
��

(
Spec Ôx,X

)
×X Z = Z ′oo

f ′
��

X Spec Ôx,X = X ′oo

Decompose Z ′ via Hensel’s lemma (Lemma IV.6.1). Then it follows that Z ′
red has a component

Z ′′ which projects by a finite birational morphism to X ′. This means that Z ′ = SpecR′, where

R′ is a local domain finite over the normal local domain Ôx,X and is contained in the fraction

field of Ôx,X . It follows that Z ′′ ∼−→ X ′. Hence f ′ has a section. Using

Ôx,X ∩R(X) = Ox,X ,

it follows easily that f is a local isomorphism.

Remark. (Added in publication) (Chai) A local ring R is said to be unibranch if Rred is

an integral domain whose integral closure in its fraction field is a local ring. If in addition the

residue field of the integral closure of Rred is a purely inseparable extension of the residue field

of R, then we say that R is geometrically unibranch. A scheme X is said to be unibranch or

geometrically unibranch at a point x if so is the local ring Ox,X .
Consider the following properties for a pair (X,x), where X is a noetherian integral scheme.

GU3) X is geometrically unibranch at x.

GU5) (Strong form of Zariski’s Connectedness Theorem) For every proper morphism f : Z →
X with Z integral and f(ηZ) = ηX , if the generic fiber of f is geometrically connected,

then f−1(x) is geometrically connected, too.

Then we have the following implications.

N3 +3
KS

��

GU3 +3
KS

��

U3KS

��
N4 GU5 ks +3

Ũ5

There is yet another statement that Grothendieck calls “Zariski’s Main Theorem” which

generalizes the statement we have used so far. This is the result:

Theorem 6.4 (Zariski-Grothendieck “Main Theorem”). Let X be any quasi-compact scheme

and suppose

f : Z −→ X

is a morphism of finite type with finite fibres. Then there exists a factorization of f :

Z
� � i

// SpecX A
π

// X

where i is an open immersion and A is a quasi-coherent sheaf of OX-algebras such that for all

affine U ⊂ X, A(U) is finitely generated and integral over OX(U).

The proof can be found in EGA: (in [1, Chapter III, (4.4.3)] for X noetherian f quasi-

projective; in [1, Chapter IV, (8.12.6)] for f of finite presentation; in [1, Chapter IV, (18.12.13)]

in the general case!) We will not use this result in this book. Theorem 6.4 has the following

important corollaries which we will prove and use (for X noetherian):

Corollary 6.5. Let f : Z → X be a morphism. Then the following are quivalent:



196 V. SINGULAR VS. NON-SINGULAR

a) f is proper with finite fibres,

b) f is finite (Definition II.6.6), i.e., the sheaf A = f∗OZ is quasi-coherent, for all U ⊂ X
affine A(U) is finitely generated as algebra and integral over OX(U), and the natural

morphism Z → SpecX(A) is an isomorphism.

Proof using Theorem 6.4. (b) =⇒ (a) is elementary: use Proposition II.6.5. As for

(a) =⇒ (b), everything is local over X so we may assume X = SpecR. Then by Theorem 6.4 f

factors:

Z
� � // SpecB // SpecR.

Since Z is proper over SpecR, the image of Z in SpecB is closed as well as open, hence

Z ∼= SpecB/a for some ideal a. Then f∗OZ ∼= B̃/a ∼= Spec f∗OZ . □

Corollary 6.6 (Characterization of normalizations). Let X be an integral scheme, Z a

normal, integral scheme and f : Z → X a proper surjective morphism with finite fibres. Then

R(Z) is a finite algebraic extension of R(X) and Z is isomorphic to the normalization of X in

R(Z).

Proof. Straightforward. □

Corollary 6.7. Let X be a normal noetherian scheme, f : Z → X a proper étale morphism

with Z connected. Then Z is isomorphic to the normalization of X in some finite separable field

extension L ⊃ R(X).

Proof. This reduces to Corollary 6.6 because of Proposition 5.5. □

Independent proof of Corollary 6.5 when X is noetherian. Assume f : Z −→ X

given, proper with finite fibres. Let A = f∗OZ . Then by the fundamental theorem of “holo-

morphic functions” (6.3), A is an OX -module of finite type, hence A(U) is finitely generated

as algebra and integral over OX(U) for all affine U . Let Y = SpecX A so that we have a

factorization:

Z
h

//

f ��
==== Y

g������

X

Note that Y is noetherian, h is proper with finite fibres and now h∗OZ ∼= OY . We claim

that under these hypotheses, h is an isomorphism, which will prove Corollary 6.5. First of

all, h is surjective: in fact h proper implies h(Z) closed and if h(Z) ⫋ Y , then h∗OZ would

be annihilated by some power of the ideal of h(Z), hence would not be isomorphic to OY .
Secondly, h is injective: if h−1(y) consisted in more than one point, we argue as in the proof

that U3 =⇒ Ũ5 and find a non-trivial idempotent in

lim←−
ν

(h∗OZ)y/mν
y · (h∗OZ)y.

But since h∗OZ ∼= OY , this is just the completion Ôy,Y which is a local ring. The only idempotent

in local rings are 0 and 1 so this is a contradiction. Thus h is bijective and closed, hence it is a

homeomorphism. Since h∗OZ ∼= OY , h even sets up an isomorphism of the ringed space (Z,OZ)
with (Y,OY ), i.e., Z ∼= Y as schemes. □
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(7.2)

Spec Ôy,Y

��

��������������
Spec

(
Ôy,Y /N · Ôy,Y

)
? _oo

≈
��

Spec(Oy′,Y ′) ∪ Y ′
2

Y
f
��

Y ×X SpecRoo

��

Spec(Oy′,Y ′ ⊗R K) ∪ · · ·

X Spec Ôx,Xoo Spec Ôx,X/N = R? _oo Y ×X SpecK

jjUUUUUUUUU

��

hhhhhhhhh
hhhhhhhhh

VVVVVVVVV
VVVVVVVVV

SpecR(X) = {ηX}

ggOOOOOOOO

SpecK

jjUUUUUUUUU
oo f−1(ηX)×SpecR(X) SpecK

Figure V.4

7. Multiplicities following Weil

We can generalize to the case of schemes the concept of multiplicity of a point for a finite

morphism introduced for complex varieties by topological means in Part I [87, (3.12), (4.19)]:

Definition 7.1 (à la Weil). Let X be a noetherian integral scheme, x ∈ X a formally

unibranch point. Let f : Y → X be a morphism of finite type and let y be an isolated point of

f−1(x). Then we define multy(f) as follows: Let R = Ôx,X/
√

(0): By assumption this is an

integral domain. Let K = quotient field of R. Form the fibre product:

Y
f
��

Y ′oo

��

X SpecRoo

Let y′ ∈ Y ′ be the unique point over y. By Hensel’s lemma (Lemma IV.6.1):

Y ′ = Y ′
1 ∪ Y ′

2 (disjoint)

Y ′
1 = SpecOy′,Y ′ , being finite over SpecR.

Define

multy f = dimK

(
Oy′,Y ′ ⊗R K

)
.

If we write down all the schemes that this interesting definition suggests, we get the diagram

in Figure V.4 which needs to be pondered (we let N =
√

(0) in Ôx,X): This shows that to get

multy f , we take the generic fibre of f , extend it to the bigger ground field K ⊃ R(X), split this

K-scheme into two disjoint pieces in some sense by specializing from ηX to x, and then measure

the size of one of these pieces!

A few comments on this definition:

7.3. [k(y) : k(x)]s divides multy f , hence we write

multy(f) = [k(y) : k(x)]s ·mult◦y(f).

Proof. Let L ⊂ k(y) be the subfield of elements separable over k(x) and let Õ be the finite

étale extension of Ôx,X with residue field L, as in Corollary IV.6.3 (see also §3 of the present

chapter). Then by Corollary IV.6.3, Oy′,Y ′ is an Õ-algebra, hence if K̃ is the quotient field of
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Õ, Oy′,Y ′ ⊗R K is a vector space over K̃. Therefore [K̃ : K]|multy f . But

[K̃ : K] = rank of Õ as free Ôx,X -module

= [L : k(x)]
= [k(y) : k(x)]s.

□

7.4. multy f ≥ 1 if and only if Y has a component Y1 through y dominating X (i.e., ηY1 7→
ηX).

Proof. If Y has no such component, there will be some non-zero a ∈ Ox,X such that

f∗a = 0 in Oy,Y . Therefore f∗a = 0 in Oy′,Y ′ and Oy′,Y ′ ⊗R K = (0). To prove the converse,

use generic flatness (Theorem IV.4.8): there is a non-zero a ∈ Ox,X such that the localization

(Oy,Y )a is flat over (Ox,X)a. Making the base change, it follows that Y ′
1 is flat over SpecR over

the open set Ra. But then

multy f = 0 =⇒ Oy′,Y ′ ⊗R Ra = (0)

=⇒ al = 0 in Oy′,Y ′ for some l

=⇒ al = 0 in Ôy,Y /N · Ôy,Y (see diagram in Figure V.4)

=⇒ am = 0 in Ôy,Y for some m

=⇒ am = 0 in Oy,Y
=⇒ no component of Y through y dominates X.

□

7.5. Assume X is formally normal at x and that all associated points of Y lie over ηX . Then

mult◦y f = 1 if and only if f is étale at y.

Proof. If f is étale, then f is flat, hence Y ′
1 → SpecR is flat, hence Oy′,Y ′ is a free R-module

of some rank n. But on the one hand,

n = dimK Oy′,Y ′ ⊗R K = multy f

and on the other hand:

n = dimk(x)Oy′,Y ′ ⊗R k(x) = dimk(x)Oy,f−1(x).

But f−1(x) is zero-dimensional and reduced at y because f is étale, hence Oy,f−1(x) = k(y),
hence n = [k(y) : k(x)]. But f étale also implies k(y) separable over k(x), so mult◦y f = 1.

Conversely, if mult◦y f = 1, then using the notation of the proof of (7.3), Oy′,Y ′ ⊗R K ∼= K̃.

Now Õ is étale over Ôx,X which we have assumed is an integrally closed domain. Therefore Õ
is an integrally closed domain. But if a = {a ∈ Oy′,Y ′ | a · b = 0 for some b ∈ R, b ̸= 0}, then
Oy′,Y ′/a is an Õ-algebra, integrally dependent on Õ and contained in Oy′,Y ′ ⊗R K = K̃. Thus

Oy′,Y ′/a = Õ. Using generic flatness of f as in (7.4), we find a ∈ Ox,X such that (Oy′,Y ′)a is flat

over Ra. Since this means (Oy′,Y ′)a is torsion-free as Ra-module, aa = (0) or al · a = (0), some

l. But now by hypothesis a ̸= 0 at any associated point of Y so

Oy,Y
a−→ Oy,Y

is injective. Since Y ×X SpecR is flat over Y ,

Oy′,Y ′
a−→ Oy′,Y ′
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is injective too. Therefore a = (0), and Oy′,Y ′ ∼= Õ. Therefore

(ΩY/X)y ⊗Oy,Y
k(y) ∼= (ΩY ′

1/ SpecR
)⊗Oy′,Y ′ k(y)

∼= (Ω
Spec Õ/ SpecR)⊗Õ L

= (0)

so Y is étale over X at y by Criterion 4.1+. □

The most famous result about multiplicities is the formula n =
∑
eifi (cf. Zariski-Samuel

[119, vol. I, p. 287]). In our language, the result is:

Theorem 7.6. Let f : Y → X be a finite surjective morphism between integral schemes, and

assume X formally irreducible at x. Then if f−1(x) = {y1, . . . , yt}:

[R(Y ) : R(X)] =
t∑
i=1

mult◦y(f) · [k(y) : k(x)]s.

Proof. This follows immediately from the big diagram in Figure V.4: in fact,

Y ×X SpecR =
t∪
i=1

Y ′
i (disjoint)

where Y ′
i has one closed point y′i lying over yi ∈ Y . Then

Spec(R(Y )⊗R(X) K) = f−1(ηX)×SpecR(X) SpecK =

t∪
i=1

Spec(Oy′i,Y ′
i
⊗R K),

hence

R(Y )⊗R(X) K ∼=
t⊕
i=1

[
Oy′i,Y ′

i
⊗R K

]
.

Therefore

[R(Y ) : R(X)] = dimK R(Y )⊗R(X) K

=
t∑
i=1

dimK

(
Oy′i,Y ′

i
⊗R K

)
=

t∑
i=1

multyi f.

□

Exercise—Modifications needed

For some of the notions and terminology in the following, the reader is referred

to Part I [87].

(1) When x is a regular point of X, use Exercise 1, §4A with R = Ôx,X to prove that

multy(f) = e(mx,X · Oy,Y ;Oy,Y ).

Use this to give a second proof of the equality of the “results” of Part I and Part II in

case X is non-singular at x.
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(2) In the definition of multy(f), say X̃ is any intermediate integral scheme:

X X̃oo SpecRoo

ηX η
X̃

�oo [(0)]�oo

such that the decomposition of Y ′ is induced by a decomposition already over X̃:

Y ×X X̃ = Ỹ1 ∪ Ỹ2.

Let ỹ = image of y′ in Ỹ1, x̃ = image of x′ in X̃ and K̃ = R(X̃). Then show

multy f = dim
K̃

(
O
ỹ,Ỹ1
⊗O

x̃,X̃
K̃
)
.

Now if X is of finite type over C, take

X̃ = SpecOx,X,an.

Using the fact that Oy,Y,an is a finite Ox,X,an-module, show that Y ×X X̃ as above

decomposes and that Ỹ1 = SpecOy,Y,an. Deduce that the multiplicity of (7.1) is equal

to the multiplicity of Part I [87, (4.19)].

(3) Referred to in §VIII.3 (Kummer theory) Let X be a noetherian scheme with 1/n, ζ ∈
Γ(OX), ζ = primitive n-th root of unity, and consider pairs (π, ϕ):

Y

π
��

ϕ
ww

X

π étale and proper, π = π ◦ ϕ, ϕn = 1Y and for all geometric points:

λ : Spec k −→ X, k algebraically closed,

we assume

Y ×X Spec k = n points permuted cyclically by ϕ× 1y.

We call this an n-cyclic étale covering of X. Prove that ∃ an invertible sheaf L on X

and an isomorphism α : Ln ≈−→ OX such that

Y = SpecX A

A = OX ⊕ L⊕ L2 ⊕ · · · ⊕ Ln−1

with multiplication

Li × Lj −→
{
Li+j i+ j < n

Li+j−n i+ j ≥ n via α.

Hint : Write Y = SpecX A (cf. Proposition-Definition I.7.3) and show that A decom-

poses into eigensheaves under the action of ϕ∗:

A =

n−1⊕
ν=0

Lν , ϕ∗(x) = ζν · x, x ∈ Lν(U).

Use the fact: flat + finite presentation over a local ring =⇒ free to deduce that the

Lν are locally free. Then show by computing geometric fibres that rkLν = 1 and

multiplication induces an isomorphism Li ⊗ Lj
≈−→ Li+j or Li+j−n. Show conversely

that for any L, α, we obtain an n-cyclic étale covering Y . Deduce that ifX is a complete

variety over an algebraically closed field k, then:

{Set of n-cyclic étale coverings} ∼= {λ ∈ Pic(X) | nλ = 0}.
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(See Theorem VIII.4.2 for the case n = char k.)

(4) (cf. Remark at the end of §2) For simplicity, let S = Spec(k) with a field k. For a finite

dimensional k-vector space E, consider the Grassmannian scheme Grassr(E) over k.

Let

0 −→ K −→ OGrassr(E) ⊗k E
α−→ Q −→ 0

be the universal exact sequence on Grassr(E). A k-rational point x ∈ Grassr(E)

corresponds to an exact sequence of k-vector spaces

0 −→ K(x) −→ E −→ Q(x) −→ 0,

where K(x) and Q(x) are the fibres at x of K and Q, respectively. Using the description

of the tangent space in terms of k[ϵ]/(ϵ2) in §1, show

Tx,Grassr(E) = Homk(K(x),Q(x)),

hence

T ∗
x,Grassr(E) = Homk(Q(x),K(x)).

(5) (The tensor product Ln of a line bundle L is denoted L⊗ here, to avoid confusion

with the direct sum L⊕n.) Let X be a noetherian integral scheme, L an invertible

OX -module, and f ∈ Γ(X,L⊗n) a global section of L⊗n, n ≥ 2. Let B ⊂ X be the

Cartier divisor defined by f , so that f defines an isomorphism L⊗n ∼= OX(B). Let

L := Spec
(⊕

m≥0 L⊗(−m)
)

π̃−→ X, thought of as the total space of the line bundle

over X whose sheaf of germs of sections is L. Denote by T the tautological global

section of π̃∗L, corresponding to the canonical element

1 ∈ Γ(X,L⊗(−1) ⊗ L) ⊂
⊕
m≥0

Γ(X,L⊗(−m) ⊗ L) = Γ(L, π̃∗L).

The cyclic covering of order n of X attached to the triple (X,L, f) is by definition the

divisor Y ⊂ L of the section Tn − π∗f ∈ Γ(L, π∗L⊗n). Let π : Y → X be the finite

locally free morphism induced by π̃. Let B1 ⊂ Y be the Cartier divisor in Y attached

to the T |Y ∈ Γ(Y, π∗L), the image in in Γ(Y, π∗L) of the tautological section of π̃∗L.
(i) Show that π∗OY is isomorphic to ⊕0≤m≤n−1L⊗(−m) as an OX -module.

(ii) If n is invertible in OX , then π : π−1(Y \B1)→ X \B is finite étale.

(iii) Verify that B1 is the inverse image of B in Y , and we have a natural isomorphism

π∗L ∼= OY (B1). Consequently π
∗OX(B) ∼= OY (B1)

⊗n.

(iv) Suppose that n is invertible in OX and X is smooth over a scheme S. Then the

canonical sheaf KY/S := ΩY/S for Y/S is isomorphic to π∗
(
KX/S ⊗ L⊗(n−1)

)
.

(6) Work over an algebraically closed field k of characteristic ̸= 2. Let B ⊂ P2 be a smooth

conic curve defined by a homogeneous quadratic polynomial f(x, y, z). Let π : Y → P2

be the double cover of P2 attached to the triple (P2,OP2(1), f), a smooth projective

surface.

(i) Show that L := π∗OP2(1) is an ample invertible OY -module. Moreover the com-

plete linear system |Γ(Y,L)| is base point free.

(ii) Show that the canonical sheaf KY := Ω2
Y is isomorphic to L⊗−2, and (KY )2 = 8.

(iii) If l is a line in P2 meeting B at two distinct points, then π−1(l) is a smooth curve

in Y and deg(L|π−1(l)) = 2.

(iv) If l is a tangent line to B, then π−1(l) is the union l̃1 ∪ l̃2 of two smooth curves in

Y meeting transversally at a point. Moreover deg(L|
l̃i
) = 1 for i = 1, 2.

(v) Show that B is isomorphic to P1 × P1.
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(vi) Show that dimΓ(Y,L) = 4, dimΓ(Y,L⊗2) = 9, and dimSymm2(Γ(Y,L)) = 10.

Conclude that the image of the morphism ϕL : Y → P3 defined by the complete

linear system |Γ(Y,L)| is contained in a quadric hypersurface in P3.

(vii) Show that ϕL is a closed embedding.

(7) Work over a field k of characteristic ̸= 2. Let B ⊂ P2 be a smooth curve defined

by a homogeneous polynomial f(x, y, z) of degree 4. Let π : Y → P2 be the double

cover of P2 attached to the triple (P2,OP2(2), f), a smooth projective surface. Denote

by B1 the ramification locus of π in Y . We know by construction that π induces

an isomorphism B1
∼−→ B. Moreover the anticanonical sheaf K⊗−1

Y is ample and

isomorphic to π∗OP2(1); denote it by L. (Note: It is known that Y is a Del Pezzo

surface of degree 2, i.e., Y ×Spec k Spec k
alg is isomorphic to the blow up of P2 whose

center is the union of 7 distinct points of P2, no three of which lie on one line and no

six of which line on one conic.)

(i) Suppose that l is a line in P2 intersecting B transversally at 4 distinct points, i.e.,

l is not a tangent line to B. Let D1 = π−1(l) be the inverse image of l in Y . Show

that D1 is a smooth curve, degD(KY ) = −2, (D)2Y = 2, and D is a curve of genus

1.

(ii) Show that the inverse image of any line in P2 tangent to B is a singular divisor in

Y . Here the inverse image of a line l in Y means Spec(OY /π∗I · OY ), where I is

the ideal of OP2 which defines the line l.

(iii) Suppose that l is line in P2 that is tangent to B at a point x0, and l intersects

B transversally at two points x1 ̸= x2 different from x0. Let D2 = π−1(l) be the

inverse image of l in Y , and y0, y1, y2 the three points of D2 above x0, x1 and

x2, respectively. Show that D2 is an irreducible divisor on Y with (D2)
2
Y = 2,

(KY · D2)Y = −2. The curve D2 is smooth at y1 and y2, and has an ordinary

double point at y0. Moreover D2 is a rational curve.

(iv) Suppose that l is a line in P2 that intersects B at a point x0 with multiplicity 3.

Let D3 = π−1(l) be the inverse image of l in Y . Show that D3 is an irreducible

rational curve with a cusp, with (D3)
2
Y = 2, (KY ·D3)Y = −2.

(v) Suppose that l is a line in P2 that is tangent to B at two distinct points x1 and x2.

Assume moreover that every element of k has a square root. Show that the inverse

image of l in Y is a union of two smooth curves C1 and C2 meeting transversally

at the two points y1, y2 above x1 and x2, respectively, and the map π induces an

isomorphism Ci
∼−→ l for i = 1, 2. We have degCi

(L) = ((C1 + C2) · Ci)Y = 1,

degCi
(KY ) = −1, (Ci)2Y = −1, (C1 · C2)Y = 2.

Hint: Here is a sample calculation. After a linear change of variables, we may

assume that the equation of the tangent line is y = 0, and the affine equation of

the plane curve B is of the form f(x, y) = yg(x, y) + a(x − b1)2(x − b2)2, with
g(x, y) ∈ k[x, y], a, b1, b2 ∈ k, a ̸= 0, b1 ̸= b2, where (x, y) = (bi, 0) corresponds to

the point xi. Then over the affine open in question, the inverse image of l in Y is

Spec
(
k[u, x]/(u2 − a(x− b1)2(x− b2)2)

)
.

(vi) Suppose that l is a line in P2 that intersects B at a point x0 with multiplicity 4.

Show that the inverse image of l in Y is a union of two smooth rational curves

C1 and C2 on Y meeting at the point y0 above x0 with multiplicity 2. We have

degCi
(L) = ((C1 + C2) · Ci)Y = 1, degCi

(KY ) = −1, (Ci)2Y = −1, (C1 · C2)Y = 2,

same as in (v).
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(8) Work over a field k of characteristic ̸= 2. Let B ⊂ P2 be a smooth curve defined by a

homogeneous polynomial f(x, y, z) of degree 6. Let π : Y → P2 be the double cover of

P2 attached to the triple (P2,OP2(2), f), a smooth projective surface. Denote by B1 the

ramification locus of π in Y . We know by construction that π induces an isomorphism

B1
∼−→ B. Moreover the anticanonical sheaf KY is trivial. Let L := π∗OP2(1), an

ample invertible OY -module of degree 2.

(i) Show that H0(Y,OY ) = (0). (Note: The polarized surface (Y,L) is a K3 surface

of degree 2.)

(ii) Let l be a line in P2, and let C := Y ×P2 l be the scheme theoretic inverse image

of l in Y . Show that if l intersects B transversally at 6 distinct points, then C is

a smooth curve of genus 2, and the ramification locus in l of the projection C → l

is l ∩B.

(iii) Notation as in (ii). Discuss all possibilities of the configuration of C, including the

following.

(a) If l is tangent to B at x0 and intersects B at four distinct points x1, x2,

x3, x4 different from x0, then C is irreducible, (C)2 = 2, C has an ordinary

double point at the point y0 above x0, and the normalization C̃ of C is a

smooth curve of genus 1. (Write down the j-invariant of C̃ in terms of the

cross ratio of the four points x1, x2, x3, x4 on l.)

(b) If l is tangent to B at two distinct points x1 and x2, and l meets B at two

distinct points x3, x4 other than x1 and x2, then C has two ordinary double

points at the two points y1, y2 above x1, x2, and the normalization of C is

a smooth curve of genus 0.

(c) If l is tangent to B at three distinct points x1, x2, x3, then C is the disjoint

union of two smooth rational curves E1, E2 meeting transversally at the three

points y1, y2, y3 above x1, x2, x3, with (E1)
2 = (E2)

2 = −2, (E1 · E2) = 3.

(A degenerate case of (c) is: l meets B at x0 with multiplicity four. and at x1
with multiplicity two; then E1 meets E2 with multiplicity 2 at y0. A degenerate

case of (a) is: l meets B at x0 with multiplicity three and also at three other

distinct points x1, x2, x3; then C has a cusp at the point y0 above x0, and the

normalization of C is a smooth curve of genus 1.)

(iv) Show that there are only a finite number of complete smooth curves of genus 0 on

the surface Y .

(9) A double six in P3 is a pair of sextuples of disjoint lines (l1, . . . , l6), (m1, . . . ,m6) such

that li ∩mi = ∅ for all i and li meets mj at a point if i ̸= j. Find a double six on the

Fermat cubic. (Find the number of all double six’s if you feel adventurous.)

(10) Find all lines on the Fermat cubic surface in P3.

Let X = G(2, 4) be the Grassmanina of lines in P3. Let S → X be the tautological

rank two subbundle of the trivial rank four vector bundle on X, and let S∨ be the dual

of S. Let E := Symm3(S∨) be the third symmetric product of S∨, a rank four vector

bundle on X. We want to compute the Chern number c4(E), i.e., the pairing of c4(E)
with the fundamental class of X. This number is the “expected number of lines” on a

generic cubic surface in P3, because any cubic form f(x0, x1, x2, x3) defines a section sf
of E , and the zero locus of this section corresponds to lines in the cubic surface defined

by f(x0, x1, x2, x3).

First we express c4(E) in terms of c1(S∨) and c2(S∨). This is an exercise in symmetric

functions in two variables, i.e., we will get a formula for c4(Symm3F) for every rank
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two vector bundle F . Apply the splitting principle: assume that F ∼= L1 ⊕ L2. Then

c(Symm3F) = (1 + 3c1(L1)) · (1 + 2c1(L1) + c2(L2))×
×(1 + c1(L1) + 2c2(L2)) · (1 + 3c1(L2))

and we get

c4(Symm3F) = 9c1(L1)c2(L2) · (2c1(L1) + c2(L2)) · (c1(L1) + 2c2(L2)

= 9c2(F)2 + 18c1(F)2c2(F)
from the identity

9t1t2(2t1 + t2)(t1 + 2t2) = 9(t1t2)
2 + 18t1t2(t1 + t2)

2.

Applying the general identity to F = S∨, we get

c4(E) = 9c2(S∨)2 + 18c1(S∨)2c2(S∨).

To evaluate the Chern number c4(E), first recall that

c1(S∨) = σ1,0, c2(S∨) = σ1,1,

where σ1,0 and σ1,1 are Schbert cycles on X; see Griffiths-Harris [44]. The rest is an

exercise in the Schubert calculus for G(2, 4). There are four Schubert cycles whose di-

mensions are between 1 and 3: σ1,0, σ2,0, σ1,1, σ2,1, of dimensions 3, 2, 2, 1, respectively.

Their products are given by

σ1,0 · σ1,0 = σ2,0 + σ1,1, σ1,0 · σ2,0 = σ2,1, σ1,0 · σ1,1 = σ2,1,

σ2,0 · σ2,0 = 1, σ1,0 · σ2,1 = 1, σ1,1 · σ1,1 = 1, σ2,0 · σ1,1 = 0.

So we get

c2(S∨)2 = σ1,1 · σ1,1 = 1,

c1(S∨)2c2(S∨) = σ1,0 · σ1,0 · σ1,1 = 1

and

c4(E) = 9c2(S∨)2 + 18c1(S∨)2c2(S∨) = 9 + 18 = 27.



CHAPTER VI

Group schemes and applications

1. Group schemes

Definition 1.1. Let f : G→ S be an S-scheme. Then G is a group scheme over S if we are

given three S-morphisms:

µ : G×S G −→ G (“multiplication”)

ι : G −→ G (“inverse”)

ϵ : S −→ G (“identity”)

such that the following diagrams commute:

a) (“associativity”)

G×S G
µ

((PPPPPPPPPPP
G×S (G×S G)

1G×µ 22ddddddddd

∼ G

(G×S G)×S G µ×1G
,,ZZZZZZZZZ

G×S G
µ

77nnnnnnnnnnn

b) (“left and right identity laws”)

G×S S
1G×ϵ

// G×S G
µ

**TTTTTTTTTT

G

∼

∼

1G
// G

S ×S G
ϵ×1G

// G×S G
µ

44jjjjjjjjjj

c) (“left and right inverse laws”)

G×S G
1G×ι

// G×S G µ

''PPPPPP

G

∆ 77nnnnnn

∆ ''PPPPPP
f

// S
ϵ

// G

G×S G
ι×1G

// G×S G
µ

77nnnnnn

To relate this to the usual idea of a group, let p : T → S be any scheme over S and consider

HomS(T,G), the set of T -valued points of G over S! Then:

a′) via µ, get a law of composition in HomS(T,G):

∀f, g ∈ HomS(T,G), define f · g to be the composition:

T
(f,g)−−−→ G×S G

µ−→ G

(this is associative by virtue of (a)),

b′) via ϵ, get a distinguished element ϵ ◦ p ∈ HomS(T,G) which is a two-sided identity for

this law of composition by virtue of (b),

205



206 VI. GROUP SCHEMES AND APPLICATIONS

c′) via ι, get a map f 7→ f−1 of HomS(T,G), f
−1 = ι ◦ f , which is a two-sided inverse for

this law of composition by virtue of (c).

Summarizing, (µ, ϵ, ι) make HomS(T,G) into an ordinary group for every T over S: For instance,

if S = Spec k, then the set of k-rational points of G is a group, and if k is algebraically closed

and G is of finite type over k, this means that the set of closed points of G is a group. If you

think about it, this is really what one should expect: for instance suppose you want to consider

Ank as a group via vector addition. If Ank = Spec k[X1, . . . , Xn], then for any two k-valued points

P ′, P ′′ their sum is defined by:

Xi(P
′ + P ′′) = Xi(P

′) +Xi(P
′′);

thus if µ(P ′, P ′′) = P ′ + P ′′, then the pull-back of the function Xi is computed via:

µ∗(Xi) = Xi(µ(P
′, P ′′))

= Xi(P
′) +Xi(P

′′)

= (Xi ◦ p1)(P ′, P ′′) + (Xi ◦ p2)(P ′, P ′′)

= (p∗1Xi + p∗2Xi)(P
′, P ′′).

Thus the law of composition:

Ank ×Spec k Ank
µ

// Ank

Spec k[p∗1X1, . . . , p
∗
1Xn, p

∗
2X1, . . . , p

∗
2Xn] Spec k[X1, . . . , Xn]

is defined by µ∗Xi = p∗1Xi+p
∗
2Xi. Similarly, define ι and ϵ via ι∗Xi = −Xi and ϵ

∗Xi = 0. Now if

η ∈ Ank is the generic point, then to try to add η to itself, one would choose a point ζ ∈ Ank ×Ank
such that p1(ζ) = p2(ζ) = η and define η + η to be µ(ζ). But, taking n = 1 for instance, then

one could take

ζ =


generic point of A1

k × A1
k

or

generic point of line p∗1X = −p∗2X + a, (a ∈ k).

In the first case, one sees that µ(ζ) = generic point of A1
k, and in the second case, µ(ζ) =

(the point X = a)! The moral is that η + η is not well-defined.

Another standard group scheme is: define

GLn,k = Spec

(
k[X11, . . . , Xnn]

[
1

det(Xij)

])
µ∗(Xij) =

n∑
k=1

p∗1Xik · p∗2Xkj

ϵ∗(Xij) = δij

ι∗(Xij) = (−1)i+j · ((j, i)-th minor of (Xij))
1

det(Xi′j′)
.

More elegantly, all the group schemes GLn,k (resp. Ank) over various base schemes Spec k are

“induced” from one single group scheme GLn,Z (resp. AnZ) over SpecZ. One checks readily that

if f : G → S is a group scheme over S, and p : T → S is any morphism, then p2 : G ×S T → T

is a group scheme over T in a canonical way. And one can define “universal” general linear and
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affine group scheme by:

GLn,Z = Spec

(
Z[X11, . . . , Xnn]

[
1

det(Xij)

])
AnZ = SpecZ[X1, . . . , Xn]

µ∗, ϵ∗, ι∗ given by the same formulae as before.

(Added in publication)

In terms of the way we defined S-schemes as representable functors (Sch/S)◦ → (Sets) in

§I.8, we can formulate group schemes over S as follows:

Denote by (Groups) the category consisting of groups and homomorphisms of groups. Then

group schemes G over S are exactly those S-schemes such that the functors hG they represent

are group functors, that is, factor through the functor (Groups) → (Sets) (that sends a group

to its underlying set and a homomorphism to the underlying map)

hG : (Sch/S)◦ −→ (Groups) −→ (Sets).

Here are some examples:

Example 1.2. (cf. Example I.8.4) Ga,S = SpecS(OS [T ]) is a commutative group scheme

over S with the additive group

HomS(Z,Ga,S) = Γ(Z,OZ) for Z ∈ (Sch/S)

and with an obvious homomorphism f∗ : Γ(Z,OZ)→ Γ(Z ′,OZ′) for every S-morphism f : Z ′ →
Z.

More generally, we have:

Example 1.3. (cf. Example I.8.5) Let F be a quasi-coherent OS-module on S. Then the

relatively affine S-scheme

SpecS(Symm(F)),
where Symm(F) is the symmetric algebra of F over OS , represents the additive group functor

G defined as follows:

G(Z) = HomOZ
(OZ ⊗OS

F ,OZ) for Z ∈ (Sch/S)

with the obvious homomorphism

G(f) = f∗ : HomOZ
(FZ ,OZ)→ HomOZ′ (OZ′ ⊗OS

F ,OZ′) = HomOZ′ (f
∗(OZ ⊗OS

F), f∗OZ)

for f ∈ HomS(Z
′, Z).

Similarly to Example 1.2, we have:

Example 1.4. (cf. Example I.8.6) Gm,S = SpecS(OS [T, T−1]) is a commutative group

scheme over S with the multiplicative group

HomS(Z,Gm,S) = Γ(Z,OZ)∗ for Z ∈ (Sch/S),

where the asterisk denotes the set of invertible elements, with the obvious homomorphism

f∗ : Γ(Z,OZ)∗ → Γ(Z,OZ′)∗

for each f ∈ HomS(Z
′, Z).

More generally:
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Example 1.5. (cf. Example I.8.7) Let n be a positive integer.

GLn,S = SpecS

(
OS
[
T11, . . . , Tnn,

1

det(T )

])
,

where T = (Tij) is the n × n-matrix with indeterminates Tij as entries, is a relatively affine

S-group scheme representing the multiplicative group functor

HomS(Z,GLn,S) = GLn(Γ(Z,OZ)), for Z ∈ (Sch/S),

the set of invertible n × n-matrices with entries in Γ(Z,OZ), with obvious homomorphisms

corresponding to S-morphisms. Clearly, Gm,S = GL1,S .

Even more generally, we have (cf. EGA [1, Chapter I, revised, Proposition (9.6.4)]):

Example 1.6. (cf. Example I.8.8) Let E be a locally free OS-module of finite rank (cf.

Definition 5.3). The multiplicative group functor G defined by

G(Z) = AutOZ
(OZ ⊗OS

E) for Z ∈ (Sch/S)

with obvious homomorphisms corresponding to S-morphisms is represented by a relatively affine

group S-scheme GL(E). Example 1.5 is a special case with

GLn,S = GL(O⊕n
S ).

Example 1.7. For a positive integer n and a scheme S, the “multiplicative group of n-th

roots of unity” µn,S is the multiplicative group scheme over S defined by

µn,S(Z) = {ζ ∈ Γ(Z,OZ)∗ | ζn = 1}, ∀Z ∈ (Sch/S)

with obvious homomorphisms corresponding to S-morphisms Z ′ → Z. It is represented by the

S-scheme

µn,S = SpecS(OS [t]/(tn − 1)).

Example 1.8. Let S be a scheme of prime characteristic p (that is, p = 0 in OS , e.g.,

S = Spec(k) for a field k of characteristic p > 0). αp,S is an additive group scheme over S

defined by

αp,S(Z) = {ξ ∈ Γ(Z,OZ) | ξp = 0}, ∀Z ∈ (Sch/S)

with obvious homomorphisms corresponding to S-morphisms Z ′ → Z. It is represented by the

S-scheme

αp,S = SpecS(OS [t]/(tp)).
For ν ≥ 2, we can define αpν ,S similarly.

Example 1.9. The relative Picard functor in Example I.8.12 is the commutative group

functor

PicX/S : (Sch/S)
◦ → (Groups)

defined by

PicX/S(Z) = Coker[φ∗ : Pic(Z) −→ Pic(X ×S Z)] for each S-scheme φ : Z → S

and the homomorphism f∗ : PicX/S(Z) → PicX/S(Z
′) induced by the inverse image by each

S-morphism f : Z ′ → Z. The “sheafified” version of the relative Picard functor PicX/S when

representable thus gives rise to a commutative group scheme over S called the relative Picard

scheme of X/S. The reader is again referred to FGA [2, exposés 232, 236] as well as Kleiman’s

account on the interesting history (before and after FGA [2]) in FAG [3, Chapter 9]. See also

Bosch, Lütkebohmert and Raynaud [26] and Mumford [84]. It is not hard to see that

Lie(PicX/k) = H1(X,OX)
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in the sense to be defined in Proposition-Definition 1.12 below.

Murre [88] gave a general criterion for the representability of commutative group functors

over S = Spec(k) with a field k.

Example 1.10. (FGA [2, exposés 195, 221]) Let X be a scheme over S. The automorphism

functor of X/S is the multiplicative group functor G : (Sch/S)◦ → (Groups) defined by

G(Z) = AutZ(X ×S Z), for Z ∈ (Sch/S)

and an obvious homomorphism G(Z) → G(Z ′) induced by the base extension by each S-

morphism f : Z ′ → Z.

If it is representable, then the S-scheme representing it is denoted AutS(X) and called the

automorphism group scheme of X/S. It is not hard to see that over a field k,

Lie(Autk(X)) = H0(X,ΘX) = the tangent space of Autk(X) at idX

in the sense to be defined in Proposition-Definition 1.12.

For instance, if X = PnS , then AutS(PnS) = PGLn+1,S (cf. Mumford [83, Chapter 0, §5,
p.20]), where

PnS = ProjS(OS [X0, . . . , Xn]) = PnZ × S, PGLn+1,S = PGLn+1,Z×S

PGLn+1 = PGLn+1,Z open subset of Proj(Z[A00, . . . , Ann]) with det(Aij) ̸= 0.

Matsumura-Oort [79] gave a general criterion for the representability of group functors over

S = Spec(k) with a field k, generalizing the commutative case dealt with by Murre [88].

Theorem 1.11 (Cartier [28]). Any group scheme G of finite type over a field k of charac-

teristic 0 is smooth, hence, in particular, reduced.

Proof. We reproduce the proof in [85, Chapter III, §11, Theorem, p.101]. Denote by e ∈ G
the image of the identity morphism ϵ : Spec(k)→ G. Obviously e is a k-rational point, that is,

k(e) = k. For simplicity, we denote

O = Oe,G, m = me,G.

By what we saw in §V.4, it suffices to show thatO is a regular local ring, since the argument works

for the base extension G×Spec k Spec k to the algebraic closure k, and the translation by Spec(k)-

valued points of G are isomorphisms sending e to the other closed points of G×Spec k Spec k.

Choose x1, . . . , xn ∈ m so that their images form a k-basis of m/m2. Thus we obtain a con-

tinuous surjective k-algebra homomorphism from the formal power series ring to the completion

of O:

α : k[[t1, . . . , tn]] −→ Ô, α(ti) = xi.

As we show immediately after this proof (cf. Proposition-Definition 1.12), the map

Derk(O) −→ Homk(m/m
2, k) = Te,G

sending a local vector field D ∈ Derk(O) at e to the tangent vector of G at e sending f ∈ m to

(Df)(e) is surjective. Hence we can choose D1, . . . , Dn ∈ Derk(O) such that

Di(xj) = δij .



210 VI. GROUP SCHEMES AND APPLICATIONS

The Di’s obviously induce derivations of the completion Ô so that we get the Taylor expansion

map (k is of characteristic 0!)

β : Ô −→ k[[t1, . . . , tn]]

f 7−→
∑

ν1,...,νn
νi≥0

(Dν1
1 · · ·Dνn

n f)(e)

ν1! · · · νn!
tν11 · · · t

νn
n ,

which is a continuous k-algebra homomorphism. β is surjective since β(xi) ≡ ti mod (t1, . . . , tn)
2.

Consequently, β ◦ α is a surjective k-algebra homomorphism of k[[t1, . . . , tn]] onto itself, hence

is an automorphism. Thus α is injective as well so that

α : k[[t1, . . . , tn]]
∼−→ Ô,

and Ô is regular, hence so is O. □

In general, let G be a scheme over a field k, and e a k-rational point of G. Denote by

Derk(OG) the space of global k-derivations of OG into itself, that is, the space of vector fields

on G.

Introduce the k-algebra of “dual numbers”

Λ = k[δ]/(δ2) = k ⊕ kδ.

Then the vector fields D ∈ Derk(OG) are in one-to-one correspondence with the Λ-algebra

automorphisms

D̃ : OG ⊗k Λ
∼−→ OG ⊗k Λ

inducing the identity automorphism modulo δ by

D̃(a+ bδ) = a+ ((Da) + b)δ, a, b ∈ OG.

Likewise, the tangent vectors t ∈ Derk(Oe,G, k) of G at e are in one-to-one correspondence with

the Λ-algebra homomorphisms

t̃ : Oe,G ⊗k Λ −→ Λ

inducing the canonical surjection Oe,G → k mod me,G by

t̃(a+ bδ) = a(e) + (t(a) + b(e))δ, a, b ∈ Oe,G.

Proposition-Definition 1.12. Let G be a group scheme over a field k. A vector field

D ∈ Derk(OG) is said to be left invariant if

OG
D

//

µ∗

��

OG
µ∗

��

OG×kG
1⊗kD

// OG×kG

is a commutative diagram. The k-vector space Lie(G) of left invariant vector fields on G is called

the Lie algebra of G. We have a natural isomorphism of k-vector spaces

Lie(G)
∼−→ Te,G,

where e ∈ G is the image of the identity morphism ϵ : Spec(k)→ G.
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Proof. Let

D̃ : OG ⊗k Λ
∼−→ OG ⊗k Λ

be the the Λ-algebra automorphism corresponding to a vector field D ∈ Derk(OG). Then the

left invariance of D is equivalent to the commutativity of the following diagram

G×k G×k SpecΛ
1G×D̃

//

µ×1Λ

��

G×k G×k SpecΛ

µ×1Λ

��

(∗)

G×k SpecΛ
D̃

// G×k SpecΛ,

where we use the same symbol D̃ for the (SpecΛ)-automorphism G×k SpecΛ
∼−→ G×k SpecΛ

induced by D̃ : OG ⊗k Λ
∼−→ OG ⊗k Λ, etc.

If we denote

D′ = p1 ◦ D̃ : G×k SpecΛ
D̃−→ G×k SpecΛ

p1−→ G,

then the commutativity of the diagram (∗) is equivalent to

D′(x · y, l) = x ·D′(y, l), ∀x, y ∈ G(Z), ∀l ∈ (SpecΛ)(Z) (Z-valued points)

for any k-scheme Z, or equivalently,

D′(x, l) = x ·D′(ϵ, l), ∀x ∈ G(Z), ∀l ∈ (SpecΛ)(Z)

for any k-scheme Z. If we denote

t̃ = p1 ◦ D̃ ◦ (ϵ, 1Λ) : SpecΛ −→ G×k SpecΛ
D̃−→ G×k SpecΛ

p1−→ G,

then D̃ is the right multiplication by t̃ ∈ G(SpecΛ). Thus the Λ-valued points t̃ of G are in

one-to-one correspondence with the automorphisms D̃ of G×k SpecΛ over SpecΛ such that the

diagram (∗) commutes by the correspondence

p1 ◦ D̃ ◦ (ϵ, 1Λ) = t̃.

Thus the left invariant vector fields D ∈ Derk(OG) are in one-to-one correspondence with the

tangent vectors

t ∈ Derk(Oe,G, k) = Te,G.

□

Remark. When S = Spec(k) with a field k of characteristic p > 0, the additive group

scheme

αpν ,S = Spec(k[t]/(tp
ν
))

is not reduced with only one point! If n is divisible by p, the “multiplicative group of roots of

unity” µn,S is not reduced either. Indeed, if n = pν × n′ with n′ not divisible by p, then

µn,S = Spec(k[t]/(tn − 1)) = Spec(k[t]/(tn
′ − 1)p

ν
).

Definition 1.13. An S-morphism f : H → G is a homomorphism of group schemes over S

if the map

f(Z) : H(Z) −→ G(Z), ∀Z ∈ (Sch/S)

is a group homomorphism. The kernel Ker(f) is then defined as the group functor

Ker(f)(Z) = Ker(f(Z) : H(Z) −→ G(Z)), ∀Z ∈ (Sch/S)

with obvious homomorphisms corresponding to S-morphisms Z ′ → Z.
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Obviously, Ker(f) is a group scheme over S represented by the fibre product

Ker(f) //

��

S

ϵG
��

H
f

// G,

where ϵG is the identity morphism for G.

Example 1.14. If G is a commutative group scheme over S with the group law written

additively, the morphism n idG for any positive integer n defined by

G(Z) ∋ ξ 7−→ n idG(ξ) = nξ = ξ + · · ·+ ξ︸ ︷︷ ︸
n times

∈ G(Z), ∀Z ∈ (Sch/S)

is obviously a homomorphism of group schemes over S. Very often we denote nG = Ker(n idG).

For example

µn,S = nGm,S .

There is an important homomorphism peculiar to characteristic p > 0.

Definition 1.15. Let S be a scheme of prime characteristic p (that is, p = 0 in OS , e.g.,
S = Spec(k) with a field k of characteristic p > 0). As in Definition IV.3.1 denote by

ϕS : S −→ S

the morphism that is set-theoretically the identity map while ϕ∗S(a) = ap for all open U ⊂ S

and for all a ∈ Γ(U,OS). For any S-group scheme π : G→ S, we have a commutative diagram

G
ϕG

//

π
��

G

π
��

S
ϕS

// S,

hence a morphism, called the Frobenius morphism,

F : G −→ G(p) = G(p/S) := (S, ϕS)×S G,

where (S, ϕS) denotes the S-scheme ϕS : S → S. By the commutativity of the diagrams involving

ϕ’s, F is easily seen to be a homomorphism of group schemes over S, and is called the Frobenius

homomorphism.

We define the iterated Frobenius homomorphism

F ν : G→ G(pν) = G(pν/S)

similarly.

Example 1.16. We have

αp,S = Ker(F : Ga,S −→ G(p)
a,S).

For the following result, we restrict ourselves to the affine case S = Spec(k) with a commu-

tative ring k with 1 for simplicity.

Theorem 1.17 (Cartier duality). Let G = Spec(A) be a commutative finite locally free group

scheme over a commutative ring k with 1. Then the group functor

Ĝ : (k-algebras) −→ (Groups)
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defined for every k-algebra R by

Ĝ(R) := HomR-groupscheme(GR,Gm,R),

with GR := G×Spec(k) Spec(R), Gm,R := Gm × Spec(R)

and an obvious homomorphism Ĝ(R1) → Ĝ(R2) for every k-algebra homomorphism R1 → R2,

is represented by a commutative finite locally free k-group scheme Spec(A′) with

A′ := Homk-module(A, k)

endowed with an appropriate commutative co-commutative Hopf algebra structure over k. There

is a canonical isomorphism

G
∼−→ ̂̂

G.

Ĝ is called the Cartier dual of G.

Proof. Since G = Spec(A) is a commutative finite locally free group scheme over k, the

k-algebra A is a projective k-module of finite rank endowed with the following k-linear maps

(unity) i : k → A

(multiplication) m : A⊗k A→ A

(inverse) τ : A→ A

(co-unity) ϵ : A→ k

(co-multiplication) µ : A→ A⊗k A
satisfying the axioms for a commutative co-commutative Hopf algebra over k.

Let A′ := Homk−module(A, k). Dualizing the structure maps for A, we get k-linear maps

(unity) i′ : k → A′

(multiplication) m′ : A⊗k A′ → A′

(inverse) τ ′ : A′ → A′

(co-unity) ϵ′ : A′ → k

(co-multiplication) µ′ : A′ → A′ ⊗k A′,

making A′ a commutative co-commutative Hopf algebra over k. Here i′ is the transpose of ϵ, m′

is the transpose of µ, τ ′ is the transpose of τ , ϵ′ is the transpose of i and µ′ is the transpose of

m.

Let Ĝ = Spec(A′) be the commutative finite locally free group scheme attached to A′.

For every commutative k-algebra R, we use a subscript R to denote the base-changed objects

like AR := A ⊗k R, A′
R = A′ ⊗k R = HomR−module(AR, R) and for morphisms like µ′R : A

′
R →

A′
R ⊗R A′

R, ϵ
′
R : A

′
R → R.

The set of R-valued points

G(R) = Homk-alg(A,R) ↪→ Homk-module(A,R) = HomR-module(AR, R) = A′
R

of G is identified with the set of all ϕ̂ ∈ A′
R satisfying the following properties (i) and (ii):

(i) µ′R(ϕ̂) = ϕ̂⊗ ϕ̂ ∈ A′
R ⊗R A′

R

(ii) ϵ′R(ϕ̂) = 1 ∈ R.
(ii′) ϕ̂ ∈ (A′

R)
∗.

Note that (i) says that the R-linear map ϕ : AR → R corresponding to ϕ̂ ∈ A′
R respects mul-

tiplication, while (ii) says that ϕ ◦ iR = idR. So (i) and (ii) say that ϕ is a homomorphism of

k-algebras.

On the other hand, the set

HomR-groupscheme(Ĝ×Spec(k) Spec(R),Gm × Spec(R))
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of all R-homomorphisms of R-group schemes from Ĝ×Spec(k) Spec(R) to Gm × Spec(R) is nat-

urally identified with the set of all elements ϕ̂ ∈ A′
R satisfying the conditions (i) and (ii′).

Lemma 1.18. Suppose that ϕ̂ ∈ A′
R satisfies (i). Then (ii) and (ii′) are equivalent. In other

words, one has a natural bijection

G(R)
∼−→ Homk-groupscheme(Ĝ,Gm,k)(R).

Proof of Lemma. (ii′)=⇒(ii). Applying the identity

(ϵ′R ⊗ ϵ′R) ◦ µ′R = ϵ′R

(corresponding to 1 · 1 = 1 in AR) to ϕ̂ , we get

ϵ′R(ϕ̂)
2 = ϵ′R(ϕ̂)

Hence ϵ′R(ϕ̂) = 1 because ϵ′R(ϕ̂) is a unit in A′
R by (ii′).

(ii)=⇒(ii′). Applying the identity (for the inverse in ĜR := Spec(A′
R))

m′
R ◦ (1A′ ⊗ τ ′R) ◦ µ′R = i′R ◦ ϵ′R

to ϕ̂, we get ϕ̂ · τ ′R(ϕ̂) = 1 in A′
R. So ϕ̂ is a unit in A′

R. □

Applying the above lemma to Ĝ, we see that the commutative k-group functor

Homk-groupscheme(G,Gm,k)

is representable, and naturally identified with Ĝ = Spec(A′) (as schemes at this point). One can

reformulate this as a morphism

canG : G×Spec(k) Ĝ −→ Gm,k

obtained from the above lemma applied to the tautological element ϕ̂ = idA ∈ G(A) when

R = A. This morphism corresponds to the k-algebra homomorphism

k[T, T−1] −→ A⊗k A′,

which sends T to the “diagonal element” δ ∈ A ⊗k A′ that corresponds to idA. Since δ also

corresponds to idA′ , the canonical morphism canG is naturally identified with can
Ĝ
. Moreover,

the lemma tells us that

(†) µ′A(δ) = δ ⊗A δ ∈ A⊗k A′ ⊗k A′, ϵ′A(δ) = i(1) ∈ A and δ · τ ′A(δ) = 1.

The same argument (because δ also corresponds to the tautological element in Ĝ(A′)) gives

(‡) µA′(δ) = δ ⊗A′ δ ∈ A⊗k A⊗k A′, ϵA′(δ) = i′(1) ∈ A′, and δ · τA′(δ) = 1.

Note that δ⊗A δ is the product of p12(δ) and p13(δ) in A⊗k A′⊗k A′, and δ⊗A′ δ is the product

of p13(δ) and p23(δ) in A⊗k A⊗k A′. The formulas (†) and (‡) give the multiplicative inverse of

δ in A⊗k A′, namely, τ ′A(δ) = τA′(δ). More importantly they also show that the canonical map

can: G×Spec(k) Ĝ→ Gm,k

is bi-multiplicative. □

Example 1.19. Let H be an abstract commutative finite group. Write kH for the set of all

k-valued functions on H, and let k[H] be the group algebra of H over k. The delta functions

δh at h ∈ H form a k-basis of kH , and we have δx · δy = δ(x, y)δx for all x, y ∈ H, where δ(x, y)

denotes Kronecker’s symbol. The co-multiplication, co-unit and inverse in kH are given by

µ : δh 7→
∑

x,y∈H, x·y=h
δx ⊗ δy, ϵ : δx 7→ δ(x, 0) δx, τ : δx 7→ δ−x.
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The group algebra k[H] is best thought of as the convolution algebra of all k-valued measures

on H, where the basis element [h] corresponding to an element h ∈ H is “evaluation at h”. The

co-multiplication, co-unit and inverse are given by

µ′ : [x] 7→ [x]⊗ [x], ϵ′ : [x] 7→ 1, τ ′ : [x] 7→ [−x] .

Some samples of the equalities in (†) and (‡) are:

µk[H]

(∑
x∈H

δx ⊗ [x]

)
=

∑
y,z∈H

δy ⊗ δz ⊗ [y + z]

=

∑
y∈H

δy ⊗ 1⊗ [y]

 ·(1⊗∑
z∈H

δz ⊗ 1⊗ [z]

)

in kH ⊗k kH ⊗k k[H],

ϵkH

(∑
x∈H

δx ⊗ [x]

)
=
∑
x∈H

δx = ikH (1)

in kH , and (∑
x∈H

δx ⊗ [x]

)
·

∑
y∈H

δy ⊗ [y]

 =
∑
x,y∈H

δ(x, y) δx ⊗ [x− y]

=

(∑
x

δx

)
⊗ [0] = ikH⊗k[H](1)

in kH ⊗k k[H].

When H = Z/nZ we have Spec(k[Z/nZ]) = Spec(k[T ]/(Tn − 1)) = µn × Spec(k).

Example 1.20. Let p be a prime number, k ⊃ Fp a field, and G = αp = αp × Spec(k) =

Spec(k[X]/(Xp)). Let x ∈ A = k[X]/(Xp) be the image of X in A. The co-multiplication and

co-unity are determined by

µ : x 7→ x⊗ 1 + 1⊗ x and ϵ : x 7→ 0.

Let y0, y1, . . . , yp−1 ∈ A′ = Homk-module(A, k) be the basis dual to {1, x, x2, . . . , xp−1}. Then we

have

µ′ : yi 7→
∑

0≤a≤i
ya ⊗ yi−a, yi1 = i!yi, ∀i = 0, 1, . . . , p− 1, yp = 0 .

Then x 7→ y1 establishes an isomorphism A ∼= A′ of Hopf-algebras. The diagonal element

δ =

p−1∑
i=0

xi ⊗ yi ∈ A⊗k A′

is equal to

exp(x⊗ y1) = 1 + x⊗ y1 +
x2 ⊗ y21

2!
+ · · ·+ xp−1 ⊗ yp−1

1

(p− 1)!
= Ep(xy),

where Ep(T ) is the truncated exponential

Ep(T ) := 1 + T +
T 2

2!
+ · · ·+ T p−1

(p− 1)!
∈ k[T ].

In other words, the formula (x, y) 7→ E(xy) gives an auto-duality pairing

αa × αp −→ Gm
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which identifies αp with its own Cartier dual.

Example 1.21. Let k ⊃ Fp be a field of characteristic p. Let

αpn = Ker
(
Fn : Ga,k → G(pn)

a,k

)
= Spec(k[X]/(Xpn)).

We have short exact sequences

0 −→ αpn
jn,n+m−−−−→ αpn+m

βn+m,m−−−−−→ αpm −→ 0

for positive integers m, n, where jn,n+m is the natural inclusion and βn+m,m is induced by the

Frobenius homomorphism Fn.

Write A := k[X]/(Xpn) and let x be the image of X in A. Let y0, y1, . . . , ypn−1 be the k-basis

in A′ := Homk-module(A, k) dual to the k-basis 1, x, x2, . . . , xp
n−1 of A. The co-multiplication on

A is given by

µ : x 7→ x⊗ 1 + 1⊗ x.

The co-multiplication, unity and co-unity on A′ are given by

µ′ : yi 7→
∑

0≤a≤i
ya ⊗ yi−a, i = 0, 1, . . . , pn − 1; i′ : 1 7→ y0, ϵ′ : yi 7→ 0, ∀i > 0.

It is straightforward to deduce from µ(x) = x⊗ 1 + 1⊗ x that

y21 = 2 y2, y
3
1 = 3!y3, . . . , y

p−1
1 = (p− 1)! · yp−1, y

p
1 = 0.

Similarly we have

yjpa = j! · yjpa and yppa = 0, ∀a = 0, 1, . . . , n− 1, ∀j = 0, 1, . . . , p− 1.

More generally, for every positive integer i with 0 ≤ i ≤ pn − 1, written in p-adic expansion in

the form i =
∑

0≤a≤n−1 jap
a,

yi = yj0+j1p+···+jn−1pn−1 =
∏

0≤a≤n−1

yjapa

ja!
.

So A′ is isomorphic to

k[Z0, Z1, . . . , Zn−1]/(Z
p
0 , Z

p
1 , Z

p
2 , . . . , Z

p
n−1)

as k-algebras, such that ypa corresponds to the image of Za for a = 0, 1, . . . , n− 1. The diagonal

element

δ =

pn−1∑
i=0

xi ⊗ yi ∈ A⊗k A′ ∼= k[X,Z0, Z1, . . . , Zn−1]/(X
pn , Zp0 , Z

p
1 , . . . , Z

p
n−1)

can be written in terms of the truncated exponential Ep(T ) = 1+T +T 2/2!+ · · ·+T p−1/(p−1)!

as the image of the polynomial

δ(X,Z) = δ(X,Z0, Z1, . . . , Zn−1) =
n−1∏
a=0

Ep(X
pa · Za)

in k[X,Z0, Z1, . . . , Zn−1]/(X
pn , Zp0 , Z

p
1 , . . . , Z

p
n−1). The group law of the Cartier dual α̂pn−1 of

αpn is completely determined by the polynomial δ(X,Z) as follows: Using Z0, Z1, . . . , Zn−1 as
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the coordinates on α̂pn−1 , the sum of two points in α̂pn with coordinates z = (z0, z1, . . . , zn−1)

and w = (w0, w1, . . . , wn−1) is the point with coordinates Φ(z, w), where

Φ(Z, W )

= (Φ0(Z, W ), . . . ,Φn−1(Z,W ))

∈
(
k[Z0, Z1, . . . , Zn−1,W0,W1, . . . ,Wn−1]/(Z

p
0 , . . . , Z

p
p−1,W

p
0 , . . . ,W

p
n−1)

)n
is determined by the equation

n−1∏
a=0

Ep
(
XpaΦa(Z,W )

)
=

n−1∏
a=1

Ep
(
Xpa · Za

)
·
n−1∏
a=1

Ep
(
Xpa ·Wa

)
in k[X,Z0, Z1, . . . , Zn−1,W0,W1, . . . ,Wn−1]/(X

pn , Zp0 , . . . , Z
p
p−1,W

p
0 , . . . ,W

p
n−1). Notice that

Ep(XZ +XW ) ≡ Ep(XZ) · Ep(XW ) (mod (Xp, Zp,W p)),

but

Ep(X(Z0 +W0) +Xp(Z1 +W1)) ̸≡ Ep(XZ0 +XpZ1) · Ep(XW0 +XpW1)

(mod (Xp2 , Zp0 , Z
p
1 ,W

p
0 ,W

p
1 )).

So the usual “exponential rule” does not hold for the truncated exponential when applied to

rings like k[X,Z0, Z1,W0,W1]/(X
p2 , Zp0 , Z

p
1 ,W

p
0 ,W

p
1 ).

The Cartier dual of the homomorphism βn+m,m : αpn+m → αpm induced by Fn : x 7→ xp
n
,

the n-th power of the Frobenius, corresponds to the homomorphism

β′n+m,m : k[Y0, . . . , Yn+m−1]/(Y
p
0 , . . . , Y

p
n+m−1) −→ k[Y0, . . . , Ym−1]/(Y

p
0 , . . . , Y

p
m−1)

of Hopf algebras such that

β′n+m,m : Y0, . . . , Yn−1 7→ 0; β′n+m,m : Yn+a 7→ Ya, a = 0, . . .m− 1 .

Similarly, the natural immersion jn,n+m : αpn ↪→ αpn+m corresponds to the homomorphism

j′n,n+m : k[Y0, . . . , Yn−1]/(Y
p
0 , . . . , Y

p
n−1) −→ k[Y0, . . . , Yn+m−1]/(Y

p
0 , . . . , Y

p
n+m−1)

of Hopf algebras which sends each Ya to Ya for all a = 0, 1, . . . , n− 1. Using the maps j′m1,m2
,

one easily sees that for each positive integer a with 0 ≤ a ≤ n, the a-th component Φa(Z,W ) of

the group law comes from a unique polynomial in Fp[Z0, . . . , Za,W0, . . . ,Wa] independent of n

whose degree in each variable is ≤ p− 1. For instance

Φ0(Z,W ) = Z0 +W0, Φ1(Z,W ) = Z1 +W1 +

p−1∑
i=1

Zi0
i!
· W

p−i
0

(p− i)!
.

These formulas could most easily be understood in terms of Witt vectors. (See, for instance,

Mumford [84, Lecture 26 by G. Bergman].)

Example 1.22. An S-group scheme π : X → S is called an abelian scheme if π is smooth

and proper with connected geometric fibres. X turns out to be commutative (at lease when S

is noetherian). (cf. Mumford [83, Corollary 6.6, p.117])

When S = Spec(k) with a field k, an abelian scheme X over S is called an abelian variety

over k. Thus X is a geometrically connected group scheme proper and smooth over k. In this

case, the commutativity is shown in two different ways in Mumford [85, pp.41 and 44]. X is

also shown to be divisible, that is, n idX is surjective for any positive integer n.

When k = C, the set X(C) of C-valued points of an abelian variety X over C turns out to

be a complex torus.
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Example 1.23. An algebraic group G is a smooth group scheme of finite type over a field k.

An algebraic group G over k is affine if and only if it can be realized as a linear group, that is,

as a closed subgroup of a general linear group GLn,k.

Definition 1.24. Suppose ϕ : H → G is a homomorphism of S-group schemes. A pair

(G/H, π) of an S-scheme G/H and an S-morphism π : G → G/H is said to be the quotient of

G by H, if it is universal for all pairs (Y, f) of an S-scheme Y and an S-morphism f : G → Y

such that the following diagram commutes:

G×S H
µG◦(1G×Sϕ)

//

p1
��

G

f
��

G
f

// Y,

that is, there exists a unique S-morphism f ′ : G/H → Y such that f = f ′ ◦ π. If H is a normal

S-subgroup scheme of G with ϕ the canonical monomorphism so that H(Z) is a normal subgroup

of G(Z) for any Z ∈ (Sch/S), then G/H inherits a unique structure of S-group scheme such

that π : G → G/H is an S-homomorphism with Ker(π) = H. In this case G/H is called the

quotient group scheme.

We certainly need conditions for the existence of G/H.

• FGA [2, exposé 212, Corollaries 7.3 and 7.4] shows the existence in the case where S

is the spectrum of an artinian ring (in particular, a field): Suppose G is of finite type

and flat over S and that H is an S-subgroup scheme of G with H flat over S. Then

G/H exists with π : G→ G/H flat and surjective. Moreover, the quotient is shown to

commute with base changes S′ → S.

• Demazure-Gabriel [35, Chapter III, §3] and SGA3 [6, exposés VIA and VIB] deal with

the quotient in terms of the “sheafification” of the contravariant functor

(Sch/S) ∋ Z 7−→ G(Z)/H(Z) ∈ (Sets).

• (cf. Borel [24, Chapter II, Theorem 6.8]) If G is an algebraic group over a field k and H

is a closed algebraic subgroup over k, then G/H exists (Weil 1955 and Rosenlicht 1956)

and is a smooth quasi-projective (cf. Definition II.5.8) algebraic variety over k (Chow

1957). See Raynaud [92] for the corresponding results in the case of more general base

schemes S.

More generally, an action G×S X → X of a group scheme G over S on an S-scheme X will

be defined in Definition 2.3 below.

Example 1.25. PGLn+1 = GLn+1 /Gm where Gm ⊂ GLn+1 is the normal subgroup scheme

of “invertible scalar matrices”.

We just mention the following basic results:

Theorem 1.26 (Chevally 1953). (See Rosenlicht [94, Theorem 16] and Chevalley [29].A

“modern” proof can be found in Conrad [33].) A connected algebraic group G over a perfect

field k has a closed connected affine normal subgroup L such that G/L is an abelian variety.

Such L is unique and contains all other closed connected affine subgroups of G.

Theorem 1.27 (Chevalley). (cf. Demazure-Gabriel [35, Chapter III, §3.5], SGA3 [6, VIB,

Theorem 11.17, p.408] and Humphreys [49]) If G is an affine algebraic group and H is a closed

normal algebraic subgroup, then G/H is an affine algebraic group.
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Borel subgroups (cf. Borel [24]) of affine algebraic groups play crucial roles in the classifica-

tion of semi-simple affine algebraic groups. Basic references are Chevalley [31], SGA3 [6] and

Demazure-Gabriel [35].

2. Lang’s theorems over finite fields

We can combine the geometric frobenius morphism (Definition IV.3.2) with ideas of smooth-

ness to give a very pretty result due to Lang [76].

Theorem 2.1 (Lang). Let k = Fq, k = an algebraic closure of k.

a) Let G be a connected reduced group scheme of finite type over Spec k and let G =

G×Spec k Spec k. Then G will be regular (smooth over k) and irreducible.

b) Let

fG = fgeomG : G −→ G

be the geometric frobenius morphism (cf. Definition IV.3.2). Define a k-morphism

ψ : G→ G on closed points by

x 7−→ ψ(x) = x · fG(x)−1

and in general by the composition:

ψ : G
∆−→ G×Spec k G

(1G×(ι◦fG))
−−−−−−−→ G×Spec k G

µ−→ G.

Then ψ is finite étale and surjective.

c) Moreover the group G(k) of k-rational points of G is finite and if we let each a ∈ G(k)
act on G by right translation Ra, then

1) ∀a ∈ G(k), ψ ◦Ra = ψ

2) ∀x, y ∈ G, ψ(x) = ψ(y) ⇐⇒ ∃a ∈ G(k) such that x = Ra(y).

Proof. According to Theorem IV.2.4, G is reduced because Fq is perfect. Therefore the set
of regular (smooth over k) points U ⊂ G is dense (cf. Jacobian criterion in Corollary V.4.2). But

if x, y ∈ G are any two closed points, right translation by x−1 ·y is an automorphism of G taking

x to y. So if x ∈ U , then y ∈ U too. Therefore U contains every closed point, hence U = G. But

then the components of G are disjoint. Now the identity point e = Image(ϵ) is a k-rational point

of G, hence it is Gal(k/k)-invariant. Therefore the component G◦ of G containing e as well as

G \G◦ are Gal-invariant open sets. By Theorem IV.2.3, this implies that G is disconnected too,

unless G = G◦. This proves (a).

Next note that fG : G→ G is a homomorphism of k-group schemes, i.e.,

G×Spec k G
µ

//

fG×fG
��

G

fG

��

G×Spec k G
µ

// G

commutes. This is because if you write G = G ×Spec k Spec k, then µ equals µ′ × 1k where

µ′ : G×Spec k G→ G is multiplication for G; but by definition fG = ϕνG × 1k (if q = pν) and for

any morphism g : X → Y in characteristic p, ϕX ◦ g = g ◦ ϕX (cf. Definition IV.3.1). Then for
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all closed points x ∈ G, a ∈ G(k)
ψ ◦Ra(x) = ψ(x · a)

= x · a · fG(x · a)−1

= x · a · fG(a)−1 · fG(x)−1

= x · a · a−1 · fG(x)−1

= ψ(x)

and for all closed points x, y ∈ G:

ψ(x) = ψ(y)⇐⇒ x · fG(x)−1 = y · fG(y)−1

⇐⇒ y−1 · x = fG(y)
−1 · fG(x)

⇐⇒ y−1 · x = fG(y
−1 · x)

⇐⇒ y−1 · x is Gal(k/k)-invariant

⇐⇒ y−1 · x = a ∈ G(k)
⇐⇒ x = Ra(y) for some a ∈ G(k).

But now for any scheme X of finite type over k, X(k) is finite. The last result shows that the

two closed subsets of G×Spec k G, namely∪
a∈G(k)

(Graph of Ra) and the fibre product: G×G G
wwpppp

''NNNN

G

ψ ''OOOOOO G

ψwwoooooo

G

have the same closed points. Therefore these sets are equal.! This proves (c).

Now we come to the main point — (b). We prove first that ψ is étale using Criterion V.4.6:

∀x ∈ G closed, dψx : Tx,G → Tψ(x),G is an isomorphism. We use:

Lemma 2.2. If X is a scheme over k = Fq and X = X ×Spec k Spec k, then the k-morphism

fX = fgeomX : X → X induces the zero map

f∗X : ΩX/k −→ ΩX/k.

Proof of Lemma 2.2. We may as well assume X affine, say = SpecR. Then X =

Spec(R⊗k k) and fX is induced by the homomorphism

R⊗k k −→ R⊗k k∑
ai ⊗ bi 7−→

∑
aqi ⊗ bi.

Therefore

f∗X

(
d(
∑

ai ⊗ bi)
)
= d(

∑
aqi ⊗ bi)

=
∑

d(aqi )⊗ bi +
∑

aqi ⊗ dbi
= 0.

□

By Chapter V, this means that for all closed points of x ∈ G,

(dfX)x : Tx,G −→ TfX(x),G
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is zero. To compute dψx : Tx,G → Tψ(x),G, use the identification of Tx,G with the set of k[δ]-

valued points t : Spec k[δ] → G of G with Image(t) = {x}, where k[δ] is the k-algebra of dual

numbers (cf. §1 and §V.1). In terms of this identification, if t ∈ Tx,G, then dψx(t) is nothing but

ψ ◦ t. Hence using the group law in the set of k[δ]-valued points of G:

dψx(t) = t · fX(t)−1.

But if Oy is the 0 tangent vector at y, i.e.,

Spec k[δ] −→ Spec k −→ G with image y,

then Lemma 2.2 showed that fX(t) = Of(x), hence

dψx(t) = t ·OfX(x)−1 , ∀t ∈ Tx,X .

The map t 7→ t ·OfX(x) is then an inverse to dψx so dψx is an isomorphism.

Next, ψ is surjective. In fact for all closed points a ∈ G we can introduce a new morphism

ψ(a) given on closed points by:

ψ(a)(x) = x · a · fX(x)−1.

The same argument given for ψ also shows that ψ(a) is étale. Therefore ψ(a) is flat (cf. Corollary

V.4.9) and by Proposition IV.5.12 Image(ψ(a)) is open. Therefore

Image(ψ) ∩ Image(ψ(a)) ̸= ∅,

i.e., ∃ closed points b1, b2 ∈ G such that

b1 · fX(b1)−1 = b2 · a · fX(b2)−1.

Then one calculates immediately that ψ(b−1
2 · b1) = a.

Finally ψ is finite: by Exercise (2) in Chapter II (possibly moved to another location?), ∃ a

non-empty open U ⊂ G such that resψ : ψ−1U → U is finite. But if La is left translation by a,

then for all closed points a ∈ G, consider the commutative diagram:

G

ψ

��

La

≈
// G

ψ

��

G
La◦Rf(a)−1

≈
// G

It follows that resψ is finite from La(ψ
−1U) to La(Rf(a)−1(U)) too. Since G is covered by the

open sets La(ψ
−1U), ψ is everywhere finite. □

For example, applied to A1
k, the theorem gives the Artin-Schreier homomorphism:

ψ : A1
k
−→ A1

k

ψ(x) = x− xq

Kerψ = Fq ⊂ A1
k
.

On Gm(k) = GL1(k), ψ is the homomorphism

ψ(x) = x1−q

Kerψ = F∗
q ⊂ Gm(k) = GL1(k),
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while on GL2(k), ψ is given by:

ψ

((
a b

c d

))
=

(
a b

c d

)
·
(
aq bq

cq dq

)−1

=
1

(ad− bc)q

(
adq − bcq −abq + baq

cdq − dcq −cbq + daq

)
.

Lang invented this theorem because of its remarkable application to homogeneous spaces for G

over k. We need another definition to explain this:

Definition 2.3. Let f : G → S plus (µ, ϵ, ι) be a group scheme and let p : X → S be any

scheme over S. Then an action of G on X is an S-morphism:

σ : G×S X −→ X

such that the following diagrams commute:

a) (“associativity”)

(G×S G)×S X
µ×1X

//

∼

G×S X σ

++XXXXXXXXXXXX

X

G×S (G×S X)
1G×σ

// G×S X σ

33ffffffffffff

b) (“identity acts by identity”)

S ×S X
ϵ×1X

//

∼
G×S X

σ
��

X
1X

// X

Corollary 2.4. Let G be a connected reduced group scheme of finite type over k = Fq and

let X be a scheme of finite type over k on which G acts via σ. Let Σ be a set of subschemes of

X = X ×Spec k Spec k such that:

a) ∀Z ∈ Σ, a ∈ G closed, σ(a, Z) ∈ Σ, and ∀Z1, Z2 ∈ Σ, ∃a ∈ G closed such that

σ(a)(Z1) = Z2
1

b) if farithX : X → X is the frobenius automorphism (cf. Definition IV.3.2), then ∀Z ∈ Σ,

farithX (Z) ∈ Σ.

Then Σ contains at least one subscheme Z of the form Z ′ ×Spec k Spec k, Z
′ a subscheme of X.

Proof. Start with any Z ∈ Σ and combine (a) and (b) to write

farithX (Z) = σ(a)(Z), a ∈ G closed.

By Lang’s theorem (Theorem 2.1),

a−1 = b · fG(b)−1, b ∈ G closed.

Now on closed points, fgeomG = farithG , so we deduce

farithX (Z) = σ(farithG b)(σ(b−1)(Z)),

1σ(a) is short for the automorphism of X:

X = Spec k ×Spec k X
{a}×X−−−−−→ G×Spec k X

σ−→ X.



EXERCISE—ADDITION NEEDED 223

hence since σ is defined over k:

farithX

(
σ(b−1)(Z)

)
= σ(farithX b−1)(farithX (Z))

= σ(b−1)(Z).

Therefore σ(b−1)(Z) ∈ Σ and is invariant under Gal(k/k). So by Theorem IV.2.9, σ(b−1)(Z) =

Z ′ ×Spec k Spec k for some subscheme Z ′ of X. □

Corollary 2.5. Let G, X be as above over k = Fq. Assume the group of closed points of

G acts transitively on the set of closed points of X. Then X(k) ̸= ∅.

Proof. Apply Corollary 2.4 with Σ = the closed points of X. □

If X is a smooth quadric hypersurface in Pnk , or a smooth cubic curve in P2
k with k = Fq, it

can be shown that such a G always exists, hence X has a k-rational point! For some conics in

P2
k, the next corollary tells us more:

Corollary 2.6. Let Y be a scheme of finite type over k = Fq such that

Y ∼= Pn
k
over k.

Then

Y ∼= Pnk over k.

Proof. Take the X in Corollary 2.4 to be Y ×Spec k Pnk . Let Σ be the set of graphs of

k-isomorphisms from Pn
k
to Y . Let G = GLn+1,k and let G act on X by acting trivially on Y

and acting in the usual fashion on Pnk (one should check that this action is a morphism). Recall

that every k-automorphism of Pn
k
is induced by the action of some g ∈ GLn+1(k) = the closed

points of G (cf. Example 1.10): this shows that the closed points of G act transitively on Σ. It

follows that the graph Γf of some f : Pn
k

≈−→ Y is defined over k, hence f = f ′ × 1k, where f
′ is

a k-isomorphism of Pnk and Y . □

Remark. See Proposition IV.3.5 and Corollary VIII.1.8 for P1 over finite fields.

Exercise—Addition needed

(1) Let k be a field, and V a finite dimensional vector space over k. Let ρ : GLn → GL(V )

be a k-linear rational representation of GLn on V , i.e., the homomorphism ρ is a k-

morphism of group schemes over k. Suppose that v ∈ V is a vector fixed by the

subgroup B of all upper-triangular elements in GLn. Prove that v is fixed by GLn.

Hint: The quotient variety GLn /B is proper over k.





CHAPTER VII

The cohomology of coherent sheaves

1. Basic Čech cohomology

We begin with the general set-up.

(i) X any topological space

U = {Uα}α∈S an open covering of X

F a presheaf of abelian groups on X.

Define:

(ii)

Ci(U ,F) = group of i-cochains with values in F

=
∏

α0,...,αi∈S
F(Uα0 ∩ · · · ∩ Uαi).

We will write an i-cochain s = {s(α0, . . . , αi)}, i.e.,

s(α0, . . . , αi) = the component of s in F(Uα0 ∩ · · ·Uαi).

(iii) δ : Ci(U ,F)→ Ci+1(U ,F) by

δs(α0, . . . , αi+1) =
i+1∑
j=0

(−1)j res s(α0, . . . , α̂j , . . . , αi+1),

where res is the restriction map

F(Uα ∩ · · · ∩ Ûαj ∩ · · · ∩ Uαi+1) −→ F(Uα0 ∩ · · ·Uαi+1)

and ̂ means “omit”. For i = 0, 1, 2, this comes out as

δs(α0, α1) = s(α1)− s(α0) if s ∈ C0

δs(α0, α1, α2) = s(α1, α2)− s(α0, α2) + s(α0, α1) if s ∈ C1

δs(α0, α1, α2, α3) = s(α1, α2, α3)− s(α0, α2, α3) + s(α0, α1, α3)− s(α0, α1, α2) if s ∈ C2.

One checks very easily that the composition δ2:

Ci(U ,F) δ−→ Ci+1(U ,F) δ−→ Ci+2(U ,F)

is 0. Hence we define:

225
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Uσβ1Uσβ0

Vβ1

Vβ0

ref s(β0, β1) defined here

s(σβ0, σβ1) defined here

Figure VII.1

(iv)

Zi(U ,F) = Ker
[
δ : Ci(U ,F) −→ Ci+1(U ,F)

]
= group of i-cocycles,

Bi(U ,F) = Image
[
δ : Ci−1(U ,F) −→ Ci(U ,F)

]
= group of i-coboundaries

H i(U ,F) = Zi(U ,F)/Bi(U ,F)

= i-th Čech-cohomology group with respect to U .

For i = 0, 1, this comes out:

H0(U ,F) =group of maps α 7→ s(α) ∈ F(Uα) such that

s(α1) = s(α0) in F(Uα0 ∩ Uα1)

∼=Γ(X,F) if F is a sheaf .

H1(U ,F) =group of cochains s(α0, α1) such that

s(α0, α2) = s(α0, α1) + s(α1, α2)

modulo the cochains of the form

s(α0, α1) = t(α0)− t(α1).

Next suppose U = {Uα}α and V = {Vβ}β∈T are two open coverings and that V is a refinement

of U , i.e., for all Vβ ∈ V , Vβ ⊂ Uα for some α ∈ S. Fixing a map σ : T → S such that Vβ ⊂ Uσ(β),
define

(v) the refinement homomorphism

refU ,V : H
i(U ,F) −→ H i(V,F)

by the homomorphism on i-cochains:

refσU ,V(s)(β0, . . . , βi) = res s(σβ0, . . . , σβi)

(using res : F(Uσβ0 ∩ · · · ∩ Uσβi) → F(Vβ0 ∩ · · · ∩ Vβi) and checking that δ ◦ refσU ,V =

refσU ,V ◦δ, so that ref on cochains induces a map ref on cohomology groups.) (cf. Figure

VII.1)
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Now one might fear that the refinement map depends on the choice of σ : T → S, but here we

encounter the first of a series of nice identities that make cohomology so elegant — although

“ref” on cochains depends on σ, “ref” on cohomology does not.

(vi) Suppose σ, τ : T → S satisfy Vβ ⊂ Uσβ ∩ Uτβ . Then
a) for all 1-cocycles s for the covering U ,

refσU ,V s(α0, α1) = s(σα0, σα1)

= s(σα0, τα1)− s(σα1, τα1)

= {s(σα0, τα0) + s(τα0, τα1)} − s(σα1, τα1)

= s(τα0, τα1) + s(σα0, τα0)− s(σα1, τα1)

= refτU ,V s(α0, α1) + s(σα0, τα0)− s(σα1, τα1)

i.e., the two ref’s differ by the coboundary δt, where

t(α) = res s(σα, τα) ∈ F(Vα).

More generally, one checks easily that

b) if s ∈ Zi(U ,F), then

refσU ,V s− refτU ,V s = δt

where

t(α0, . . . , αi−1) =

i−1∑
j=0

(−1)js(σα0, . . . , σαj , ταj , . . . , ταi−1).

For general presheaves F and topological spaces X, one finally passes to the limit via ref over

finer and finer coverings and defines:

(vii) 1

H i(X,F) = lim−→
U
H i(U ,F).

Here are three important variants of the standard Čech complex. The first is called the

alternating cochains:

Cialt(U ,F) = group of i-cochains s as above such that:

a) s(α0, . . . , αn) = 0 if αi = αj for some i ̸= j

b) s(απ0, . . . , απn) = sgn(π) · s(α0, . . . , αn) for all permutations π.

For i = 1, one sees that every 1-cocycle is automatically alternating; but for i > 1, this is no

longer so. One checks immediately that δ(Cialt) ⊂ Ci+1
alt , hence we can form the cohomology of

the complex (C �
alt, δ). By another beautiful identity, it turns out that the cohomology of the

subcomplex C �
alt and the full complex C � are exactly the same!

The following proof was modified in publication.

For the proof Serre [99, §3, No. 20, Prop. 2] refers to Eilenberg-Steenrod [37, Chap. VI, §5
and Thm. 6.10] in constructing an endomorphism th = (thi) of the cochain complex C � = C �(U ,F)
(hence thiδ = δthi−1 for all i), which is a retract from C � to the subcomplex C �

alt (i.e.,
th restricts

to the identity on C �
alt) together with a homomorphism

tki : C
i+1 −→ Ci, i = 0, 1, . . .

1This group, the Čech cohomology, is often written Ȟi(X,F) to distinguish it from the “derived functor”

cohomology. In most cases they are however canonically isomorphic and as we will not define the latter, we will

not use the ˇ .
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such that

id− thi =
tkiδ + δtki−1, i = 0, . . . , with tk−1 = 0,

hence th induces the inverse to the canonical homomorphism

H �(complex C �
alt) −→ H �(complex C �).

thi and
tki are the “transpose” of hi and ki for the chain complex K� built out of the set S of

open sets Uα: For all i ≥ 0, let Ki be the free abelian group generated by the ordered sequences

(α0, . . . , αi) of elements in S with Uα0 ∩ · · · ∩ Uαi ̸= ∅. The boundary map ∂ : Ki+1 → Ki is

defined by

∂(α0, . . . , αi+1) :=

i+1∑
j=0

(−1)j(α0, . . . , α̂j , . . . , αi+1).

Endowing S with a total order, define an endomorphism hi : Ki → Ki by

hi(α0, . . . , αi) = 0

if α0, . . . , αi are not distinct, while

hi(α0, . . . , αi) = sgn(σ)hi(ασ(0), . . . , ασ(i))

if α0, . . . , αi are distinct and σ is the permutation of {0, 1, . . . , i} such that ασ(0) < ασ(1) < · · · <
ασ(i).

It is easy to show that ∂hi = hi−1∂ for all i ≥ 1 so that h = (hi) is an endomorphism of the

chain complex K�. Moreover, the “transpose” thi : C
i → Ci obviously induces the identity map

on Cialt ⊂ Ci and has the property thi(C
i) = Cialt.

Eilenberg-Steenrod [37, Chap. VI, §5] constructs a homotopy

ki : Ki −→ Ki+1, i = 0, 1, . . .

such that

id− hi = ∂ki + ki−1∂, i = 0, 1, . . . with k−1 = 0

as follows: Let

k0 = 0.

For i ≥ 1, let

ki(α0, . . . , αi) := Ψα0

(
(id− hi)(α0, . . . , αi)− ki−1∂(α0, . . . , αi)

)
,

where Ψα0 is defined as follows: For l ≤ i − 1 and (β0, . . . , βl) ∈ Kl with {β0, . . . , βl} ⊂
{α0, . . . , αi},

Ψα0(β0, . . . , βl) := (α0, β0, . . . , βl) ∈ Kl+1.

Clearly, we have

∂Ψα0(β0, . . . , βl) = (β0, . . . , βl)−Ψα0∂(β0, . . . , βl).

We now show

(∗) id− hi = ∂ki + ki−1∂
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by induction on i ≥ 0. Note that k−1 = k0 = 0 and (∗) holds for i = 0. For i ≥ 1,

∂ki(α0, . . . , αi)

= ∂Ψα0

(
(id− hi)(α0, . . . , αi)− ki−1∂(α0, . . . , αi)

)
= (id− hi)(α0, . . . , αi)− ki−1∂(α0, . . . , αi)

−Ψα0

(
∂
(
(id− hi)(α0, . . . , αi)− ki−1∂(α0, . . . , αi)

))
= (id− hi)(α0, . . . , αi)− ki−1∂(α0, . . . , αi)

−Ψα0

(
(id− hi−1)∂(α0, . . . , αi)− ∂ki−1∂(α0, . . . , αi)

)
= (id− hi)(α0, . . . , αi)− ki−1∂(α0, . . . , αi),

since

∂ki−1∂ = ((id− hi−1)− ki−2∂) ∂

by the induction hypothesis.

Here is the explicit formula for i = 1:

(id− h1)(α0, α1) =


(α0, α1) if α0 = α1

0 if α0 < α1

(α0, α1) + (α1, α0) if α0 > α1,

hence

k1(α0, α1) = Ψα0 ((id− h1)(α0, α1)− 0)

=


(α0, α0, α1) if α0 = α1

0 if α0 < α1

(α0, α0, α1) + (α0, α1, α0) if α0 > α1.

Consequently, tk1 : C
2 → C1 sends s ∈ C2 to tk1s ∈ C1 with

(tk1s)(α0, α1) =


s(α0, α0, α1) if α0 = α1

0 if α0 < α1

s(α0, α0, α1) + s(α0, α1, α0) if α0 > α1.

The second variant is local cohomology. Suppose Y ⊂ X is a closed subset and that the

covering U = {Uα}α∈S has the property:

X \ Y =
∪
α∈S0

Uα for a subset S0 ⊂ S.

Consider the subgroups:

CiS0
(U ,F) = {s ∈ Ci(U ,F) | s(α0, . . . , αi) = 0 if α0, . . . , αi ∈ S0}.

One checks that δ(CiS0
) ⊂ Ci+1

S0
, hence one can define H i

S0
(U ,F) = cohomology of complex

(C �
S0
, δ). Passing to a limit with refinements (V, T0 refines U , S0 if ∃ρ : T → S such that

Vβ ⊂ Uρβ and ρ(T0) ⊂ S0), one gets H i
Y (X,F) much as above.

The third variation on the same theme is the hypercohomology of a complex of presheaves:

F � : 0 −→ F0 d0−→ F1 d1−→ · · · dm−1−−−→ Fm −→ 0

(i.e., di+1 ◦ di = 0, for all i). If U = {Uα}α∈S is an open covering, we get a double complex

Cij = Ci(U ,F j)
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where

δ1 : C
ij −→ Ci+1,j is the Čech coboundary

δ2 : C
ij −→ Ci,j+1 is given by applying dj to the cochain.

Then δ1δ2 = δ2δ1 and if we set

C(n) =
∑
i+j=n

Ci,j

and use d = δ1+(−1)iδ2 : C(n) → C(n+1) as differential, then d2 = 0. This is called the associated

“total complex”. Define

Hn(U ,F �) = n-th cohomology group of complex (C(�), d).

Passing to a limit with refinements, one gets Hn(X,F �). This variant is very important in the

De Rham theory (cf. §VIII.3 below).

The most important property of Čech cohomology is the long exact cohomology sequence.

Suppose

0 −→ F1 −→ F2 −→ F3 −→ 0

is a short exact sequence of presheaves (which means that

0 −→ F1(U) −→ F2(U) −→ F3(U) −→ 0

is exact for every open U). Then for every covering U , we get a big diagram relating the cochain

complexes:

...

��

...

��

...

��

0 // Ci−1(U ,F1) //

δ
��

Ci−1(U ,F2) //

δ
��

Ci−1(U ,F3) //

δ
��

0

0 // Ci(U ,F1) //

δ
��

Ci(U ,F2) //

δ
��

Ci(U ,F3) //

δ
��

0

0 // Ci+1(U ,F1) //

��

Ci+1(U ,F2) //

��

Ci+1(U ,F3) //

��

0

...
...

...

with exact rows, i.e., a short exact sequence of complexes of abelian groups. By a standard

fact in homological algebra, this always leads to a long exact sequence relating the cohomology

groups of the three complexes. In this case, this gives:

0 −→ H0(U ,F1) −→H0(U ,F2) −→ H0(U ,F3)
δ−→ H1(U ,F1)

−→ H1(U ,F2) −→ H1(U ,F3)
δ−→ H2(U ,F1) −→ · · · .

Moreover, we may pass to the limit over refinements, getting:

0 −→ H0(X,F1) −→H0(X,F2) −→ H0(X,F3)
δ−→ H1(X,F1)

−→ H1(X,F2) −→ H1(X,F3)
δ−→ H2(X,F1) −→ · · · .

In almost all applications, we are only interested in the cohomology of sheaves and unfor-

tunately short exact sequences of sheaves are seldom exact as sequences of presheaves. Still, in
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reasonable cases the long exact cohomology sequence continues to hold. The problem can be

analyzed as follows: let

0 −→ F1 −→ F2 −→ F3 −→ 0

be a short exact sequence of sheaves. If we define a subpresheaf F∗
3 ⊂ F3 by

F∗
3 (U) = Image [F2(U) −→ F3(U)] ,

then

0 −→ F1 −→ F2 −→ F∗
3 −→ 0

is an exact sequence of presheaves, hence we get a long exact sequence:

· · · −→ H i(X,F1) −→ H i(X,F2) −→ H i(X,F∗
3 )

δ−→ H i+1(X,F1) −→ · · ·

Now F3 is the sheafification of F∗
3 so a long exact sequence for the cohomology of the sheaves

Fi follows if we can prove the more general assertion:

(∗)
for all presheaves F , the canonical maps

H i(X,F) −→ H i(X, sh(F))
are isomorphisms.

Breaking up F → sh(F) into a diagram of presheaves:

0 // K // F //

##HHHHH shF // C // 0

F ′

99sssss

%%LLLLLL

0

::vvvvv
0

(K = kernel, C = cokernel, F ′ = image) and applying twice the long exact sequence for

presheaves, (∗) follows from:

(∗∗) If F is a presheaf such that sh(F) = (0), then H i(X,F) = (0).

The standard case where (∗∗) and hence (∗) is satisfied is for paracompact Hausdorff spaces2 X:

we will use this fact once in (3.11) below and §VIII.3 in comparing classical and algebraic De

Rham cohomology for complex varieties. Schemes however are far from Hausdorff so we need to

take a different tack. In fact, suppose X is a scheme (separated as usual) and

0 −→ F1 −→ F2 −→ F3 −→ 0

is a short exact sequence of quasi-coherent sheaves. Then in the above notations:

F∗
3 (U)

≈−→ F3(U), all affine U

so

K(U) = C(U) = (0), all affine U.

2The proof is as follows: We may compute Hi(X,F) by locally finite coverings U so let U be one and let

s ∈ Ci(U ,F). A paracompact space is normal so one easily constructs a covering V with the same index set I

such that V α ⊂ Uα, ∀α ∈ I. Now for all x ∈ X, the local finiteness of U shows that ∃ neighborhood Nx of x such

that

a) x ∈ Uα0 ∩ · · · ∩ Uαi =⇒ Nx ⊂ Uα0 ∩ · · · ∩ Uαi and resNx s(α0, . . . , αi) = 0. Shrinking Nx, we can also

assume that Nx meets only a finite set of Uα’s hence there is a smaller neighborhood Mx ⊂ Nx of x

such that:

b) Mx ⊂ some Vα and if Mx ∩ Vβ ̸= ∅, then Mx ⊂ Vβ . Let W = {Mx}x∈X . Then W refines V and it

follows immediately that refV,W(s) ≡ 0 as a cochain.
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Now if U is any affine open covering of X, then X separated implies Uα0 ∩ · · · ∩ Uαi affine for

all α0, . . . , αi, hence C
i(U ,K) = Ci(U , C) = (0), hence H i(U ,K) = H i(U , C) = (0). Since affine

coverings are cofinal among all coverings, H i(X,K) = H i(X, C) = (0), hence H i(X,F∗
3 )

≈−→
H i(X,F3) and we get a long exact sequence for the cohomology of the Fi’s for much more

elementary reasons!

What are the functorial properties of cohomology groups? Here are three important kinds:

a) If f : X → Y is a continuous map of topological spaces, F (resp. G) a presheaf on X

(resp. Y ), and α : G → F a homomorphism covering f , (i.e., a set of homomorphisms:

α(U) : G(U) −→ F(f−1(U)), all open U ⊂ Y

commuting with restriction), then we get canonical maps:

(f, α)∗ : H i(Y,G) −→ H i(X,F), all i.

b) If we have two short exact sequences of presheaves and a commutative diagram:

0 // F1
//

α1
��

F2
//

α2
��

F3
//

α3
��

0

0 // G1 // G2 // G3 // 0,

then the δ’s in the long exact cohomology sequences give a commutative diagram:

H i(X,F3)
δ

//

α3
��

H i+1(X,F1)

α1
��

H i(X,G3)
δ
// H i+1(X,G1),

(i.e., the H i(X,F)’s together are a “cohomological δ-functor”).

c) If F and G are two presheaves of abelian groups, define a presheaf F⊗G by (F⊗G)(U) =

F(U)⊗ G(U). Then there is a bilinear map:

H i(X,F)×Hj(X,G) −→ H i+j(X,F ⊗ G)

called cup product, and written ∪ .

To construct the map in (a), take the obvious map of cocycles and check that it commutes

with δ; (b) is a straightforward computation; as for (c), define ∪ on couples by:

(s ∪ t)(α0, . . . , αi+j) = res s(α0, . . . , αi)⊗ res t(αi, . . . , αi+j)

and check that δ(s ∪ t) = δs ∪ t+ (−1)is ∪ δt. It is not hard to check that ∪ is associative and

has a certain skew-commutativity property:

c′) If si ∈ Hki(X,Fi), i = 1, 2, 3, then in the group Hk1+k2+k3(X,F1 ⊗F2 ⊗F3) we have

(s1 ∪ s2) ∪ s3 = s1 ∪ (s2 ∪ s3).

c′′) If Symm2F is the quotient presheaf of F ⊗F by the subsheaf of elements a⊗ b− b⊗a,
and si ∈ Hki(X,F), i = 1, 2, then in the group Hk1+k2(X, Symm2F) we have

s1 ∪ s2 = (−1)k1k2s2 ∪ s1.

The proofs are left to the reader.

The cohomology exact sequence leads to the method of computing cohomology by acyclic

resolutions: suppose a sheaf F is given and we construct a long exact sequence of sheaves

0 −→ F −→ G0 −→ G1 −→ G2 −→ · · · ,

such that:



1. BASIC ČECH COHOMOLOGY 233

a) H i(X,Gk) = (0), i ≥ 1, k ≥ 0.

b) If Kk = Ker(Gk+1 → Gk+2) and Ck = cokernel as presheaf (Gk−1 → Gk) so that Kk =

sh(Ck), then assume

H i(X, Ck)
≈−→ H i(X,Kk), i ≥ 0, k ≥ 0.

Then H i(X,F) is isomorphic to the i-th cohomology group of the complex:

0 −→ G0(X) −→ G1(X) −→ G2(X) −→ · · · .

To see this, use induction on i. We may split off the first part of our resolution like this:

i) 0→ F → G0 → C0 → 0, exact as presheaves.

ii) 0→ K0 → G1 → G2 → G3 → · · · , exact as sheaves.
So by the cohomology sequence of (i) and induction applied to the resolution (ii):

a)

H0(X,F) ∼= Ker
[
H0(G0) −→ H0(C0)

]
∼= Ker

[
H0(G0) −→ H0(K0)

]
∼= Ker

[
H0(G0) −→ H0(G1)

]
b)

H1(X,F) ∼= Coker
[
H0(G0) −→ H0(C0)

]
∼= Coker

[
H0(G0) −→ H0(K0)

]
∼= Coker

[
H0(G0) −→ Ker

[
H0(G1) −→ H0(G2)

]]
∼= H1(the complex H0(G�)).

c)

H i(X,F) ∼= H i−1(X, C0)
∼= H i−1(X,K0)

∼= H i(the complex H0(G�)), i ≥ 2.

If F is a sheaf, we have seen that H0(X,F) is just Γ(X,F) or F(X). H1(X,F) also has a

simple interpretation in terms of “twisted structures” over X. Define

A principal F-sheaf
= a sheaf of sets G, plus an action of F on G

(i.e., F(U) acts on G(U) commuting with restriction)

such that ∃ a covering {Uα} of X where:

resUα (G, as sheaf with F-action)
∼= resUα (F , with F-action on itself by translation) .

Then if F is a sheaf:

(∗) H1(X,F) ∼= {set of principal F-sheaves, modulo isomorphism}.

H1(U ,F) ∼=
{

subset of those principal F-sheaves which are trivial

on the open sets Uα of the covering U

}
.

In fact:
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a) Given G, let ϕα : G|Uα

≈−→ F|Uα be an F-isomorphism. Then on Uα ∩ Uβ, ϕα ◦
ϕ−1
β : F|Uα∩Uβ

−→ F|Uα∩Uβ
is an F-automorphism. If it carries the 0-section to

s(α, β) ∈ F(Uα ∩ Uβ), it will be the map x 7→ x + s(α, β). One checks that s is

a 1-cocycle, hence it defines a cohomology class in H1(U ,F), and by refinement in

H1(X,F).
b) Conversely, given σ ∈ H1(X,F), represent σ by a 1-cocycle s(α, β) for a covering {Uα}.

Define a sheaf Gσ by

Gσ(V ) =

{
collections of elements tα ∈ F(V ∩ Uα) such that

res tα + s(α, β) = res tβ in F(V ∩ Uα ∩ Uβ)

}
.

Intuitively, Gσ is obtained by “glueing” the sheaves F|Uα together by translation by

s(α, β) on Uα ∩ Uβ.
We leave it to the reader to check that Gσ is independent of the choice of s and that the

constructions (a) and (b) are inverse to each other. The same ideas exactly allow you to prove:

If OX is a sheaf of rings on X and O∗
X = subsheaf of units in OX , then

H1(X,O∗
X)
∼=
{

set of sheaves of OX -modules, locally isomorphic

to OX itself, modulo isomorphism

}
(cf. §III.6)

and

If X is locally connected and (Z/nZ)X = sheafification of the constant presheaf

Z/nZ, then

H1(X, (Z/nZ)X) ∼=


set of covering spaces π : Y → X with Z/nZ
acting on Y , permuting freely and transitively

the points of each set π−1(x), x ∈ X

 .

2. The case of schemes: Serre’s theorem

From now on, we assume that X is a scheme3 and that F is a quasi-coherent sheaf. The

main result is this:

Theorem 2.1 (Serre). Let U and V be two affine open coverings of X, with V refining U .
Then

resU ,V : H
i(U ,F) −→ H i(V,F)

is an isomorphism.

The proof consists in two steps. The first is a general criterion for res to be an isomorphism.

The second is an explicit computation for modules and distinguished affine coverings. The

general criterion is this:

Proposition 2.2. Let X be any topological space, F a sheaf of abelian groups on X, and U
and V two open coverings of X. Suppose V refines U . For every finite subset S0 = {α0, . . . , αp} ⊂
S, let

US0 = Uα0 ∩ · · · ∩ Uαp

and let V|US0
denote the covering of US0 induced by V. Assume:

H i(V|US0
,F|US0

) = (0), all S0, i > 0.

3Our approach works only because all our schemes are separated. In the general case, Čech cohomology is not

good and either derived functors (via Grothendieck) or a Cech complex@Čech!modifiedmodified Čech complex

(via Lubkin or Verdier) must be used.
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Then refU ,V : H
i(U ,F)→ H i(V,F) is an isomorphism for all i.

Proof. The technique is to compare the two Čech cohomologies via a big double complexes:

Cp,q =
∏

α0,...,αp∈S

∏
β0,...,βq∈T

F(Uα0 ∩ · · · ∩ Uαp ∩ Vβ0 ∩ · · · ∩ Vβq).

By ignoring either the α’s or the β’s and taking δ in the β’s or α’s, we get two coboundary

maps:

δ1 : C
p,q −→ Cp+1,q

δ1s(α0, . . . , αp+1, β0, . . . , βq) =

p+1∑
j=0

(−1)js(α0, . . . , α̂j , . . . , αp+1, β0, . . . , βq)

and

δ2 : C
p,q −→ Cp,q+1

δ2s(α0, . . . , αp, β0, . . . , βq+1) =

q+1∑
j=0

(−1)js(α0, . . . , αp, β0, . . . , β̂j , . . . , βq+1).

One checks immediately that these satisfy δ21 = δ22 = 0 and δ1δ2 = δ2δ1. As in §1, we get a “total

complex” by setting:

C(n) =
∑
p+q=n
p,q≥0

Cp,q

and with d = δ1 + (−1)pδ2 : C(n) → C(n+1) as differential. Here is the picture:

C0,2

OO

//

C0,1

δ2

OO

δ1
// C1,1

OO

//

C0,0

δ2

OO

δ1
// C1,0

δ2

OO

δ1
// C2,0

OO

//
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where

C0,2 =
∏
α∈S

β0,β1,β2∈T

F(Uα ∩ Vβ0 ∩ Vβ1 ∩ Vβ2)

C0,1 =
∏
α∈S

β0,β1∈T

F(Uα ∩ Vβ0 ∩ Vβ1)

C1,1 =
∏

α0,α1∈S
β0,β1∈T

F(Uα0 ∩ Uα1 ∩ Vβ0 ∩ Vβ1)

C0,0 =
∏
α∈S
β∈T

F(Uα ∩ Vβ)

C1,0 =
∏

α0,α1∈S
β∈T

F(Uα0 ∩ Uα1 ∩ Vβ)

C2,0 =
∏

α0,α1,α2∈S
β∈T

F(Uα0 ∩ Uα1 ∩ Vβ).

We need to observe four things about this situation:

(A) The columns of this double complex are just products of the Čech complexes for the

coverings V|US0
for various S0 ⊂ S: in fact the p-th column Cp,0 → Cp,1 → · · · is the

product of these complexes for all S0 with #S0 = p+1. By assumption these complexes

have no cohomology beyond the first place, hence

the δ2-cohomology of the columns

Ker
[
δ2 : C

p,q −→ Cp,q+1
]
/ Image

[
δ2 : C

p,q−1 −→ Cp,q
]

is (0) for all p ≥ 0, all q > 0.

(B) The rows of this double complex are similarly products of the Čech complexes for the

coverings U|VT0 for various T0 ⊂ T . Now VT0 ⊂ some Vβ ⊂ some Uα, hence the covering

U|VT0 of VT0 includes among its open sets the whole space VT0 . For such silly coverings,

Čech cohomology always vanishes —

Lemma 2.3. X a topological space, F a sheaf, and U an open covering of X such

that X ∈ U . Then H i(U ,F) = (0), i > 0.

Proof of Lemma 2.3. Let X = Uζ ∈ U . For all s ∈ Zi(U ,F), define an (i − 1)-

cochain by:

t(α0, . . . , αi−1) = s(ζ, α0, . . . , αi−1)

[OK since Uζ ∩ Uα0 ∩ · · · ∩ Uαi−1 = Uα0 ∩ · · · ∩ Uαi−1 !] An easy calculation shows that

s = δt. □

Hence

the δ1-cohomology of the rows is (0) at the (p, q)-th spot, for all p > 0,

q > 0.

(C) Next there is a big diagram-chase —

Lemma 2.4 (The easy lemma of the double complex). Let {Cp,q, δ1, δ2}p,q≥0 be any

double complex (meaning δ21 = δ22 = 0 and δ1δ2 = δ2δ1). Assume that the δ2-cohomology:

Hp,q
δ2

= Ker
[
δ2 : C

p,q −→ Cp,q+1
]
/ Image

[
δ2 : C

p,q−1 −→ Cp,q
]
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is (0) for all p ≥ 0, q > 0. Then there is an isomorphism:(
δ1-cohomology of Hp,0

δ2

)
= ((d = δ1 + (−1)pδ2)-cohomology of total complex)

i.e.,

{x ∈ Cp,0 | δ1x = δ2x = 0}
{δ1x | x ∈ Cp−1,0 with δ2x = 0}

∼=

{
x ∈

∑
i+j=pC

i,j | dx = 0
}

{
dx | x ∈

∑
i+j=p−1C

i,j
} .

Proof of Lemma 2.4. We give the proof in detail for p = 2 in such a way that it

is clear how to set up the proof in general. Start with x = (x2,0, x1,1, x0,2) ∈
∑

i+j=2C
i,j

such that dx = 0, i.e.,

δ1x2,0 = 0; δ1x1,1 + δ2x2,0 = 0; δ1x0,2 − δ2x1,1 = 0; δ2x0,2 = 0.

0

x0,2
_
δ2

OO

� δ1
// ±y

x1,1
_
δ2

OO

� δ1
// ±z

x2,0
_
δ2

OO

� δ1 // 0

Now δ2x0,2 = 0 =⇒ x0,2 = δ2x0,1 for some x0,1. Alter x by the coboundary d(0,−x0,1):
we find

x ∼ x′ = (x′2,0, x
′
1,1, 0) ( ∼ means cohomologous).

But then dx′ = 0 =⇒ δ2x
′
1,1 = 0 =⇒ x′1,1 = δ2x1,0 for some x1,0. Alter x′ by the

coboundary d(x1,0, 0): we find

x′ ∼ x′′ = (x′′2,0, 0, 0)

and dx′′ = 0 =⇒ δ1x
′′
2,0 and δ2x

′′
2,0 are 0. Thus x

′′
2,0 defines an element ofH2

δ1

(
the complex Hp,0

δ2

)
.

This argument (generalized in the obvious way) shows that the map:

Φ:
(
δ1-cohomology of Hp,0

δ2

)
−→ (d-cohomology of total complex)

is surjective. Now say x2,0 ∈ C2,0 satisfies δ1x2,0 = δ2x2,0 = 0. Say (x2,0, 0, 0) = dx,

x = (x1,0, x0,1) ∈
∑

i+j=1C
i,j , i.e.,

x2,0 = δ1x1,0; −δ2x1,0 + δ1x0,1 = 0; δ2x0,1 = 0.

0

x0,1
_
δ2

OO

� δ1
// ±y

x1,0
_
δ2

OO

� δ1
// x2,0

Then δ2x0,1 = 0 =⇒ x0,1 = δ2x0,0, for some x0,0. Alter x by the coboundary −dx0,0:
we find

x ∼ x′ = (x′0,0, 0)
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and dx′ = (x2,0, 0, 0). Then δ2x
′
1,0 = 0 and δ1x

′
1,0 = x2,0, i.e., x2,0 goes to 0 in the

δ1-cohomology of Hp,0
δ2

. This gives injectivity of Φ. □

If we combine (A), (B) and (C), applied both to the rows and columns of our double complex,

we find isomorphisms:

Hn
d (total complex C(�)) ∼= Hn

δ1

(
the complex Ker δ2 in C �,0)

∼= Hn
δ2

(
the complex Ker δ1 in C0,�) .

But

Ker
(
δ2 : C

n,0 −→ Cn,1
) ∼= ∏

α0,...,αn∈S
F(Uα0 ∩ · · · ∩ Uαn) = Cn(U ,F)

Ker
(
δ1 : C

0,n −→ C1,n
) ∼= ∏

β0,...,βn∈T
F(Vβ0 ∩ · · · ∩ Vβn) = Cn(V,F),

so in fact

Hn
d

(
total complex C(�)

)
∼= Hn(U ,F)
∼= Hn(V,F).

It remains to check:

(D) The above isomorphism is the refinement map, i.e., if s(α0, . . . , αn) is an n-cocycle for

U , then s ∈ Cn,0 and refσU ,V s ∈ C0,n are cohomologous in the total complex. In fact,

define t ∈ C(n−1) by setting its (l, n− 1− l)-th component equal to:

tl(α0, . . . , αl, β0, . . . , βn−1−l) = (−1)l res s(α0, . . . , αl, σβ0, . . . , σβn−1−l).

Thus a straightforward calculation shows that dt = (refσU ,V s)− s.
This completes the proof of Proposition 2.2. □

Now return to the proof of Theorem 2.1 for quasi-coherent sheaves on schemes! The second

step in its proof is the following explicit calculation:

Proposition 2.5. Let SpecR be an affine scheme, U = {SpecRfi}i∈I a finite distinguished

affine covering and M̃ a quasi-coherent sheaf on X. Then H i(U , M̃) = (0), all i > 0.

Proof. Since M̃(SpecRf ) ∼=Mf and
∩
i∈I0 SpecRfi = SpecR(

∏
i∈I0

fi), the complex of Čech

cochains reduces to:∏
i∈I

Mfi −→
∏

i0,i1∈I
M(fi0 ·fi1 ) −→

∏
i0,i1,i2∈I

M(fi0 ·fi1 ·fi2 ) −→ · · · .

Using the fact that the covering is finite, we can write a k-cochain:

m(i0, . . . , ik) =
mi0,...,ik

(fi0 · · · fik)N
, mi0,...,ik ∈M

with fixed denominator. Then

(δm)(i0, . . . , ik+1) =
mi1,...,ik+1

(fi1 · · · fik)N
−

mi0,i2,...,ik+1

(fi0fi2 · · · fik+1
)N

+ · · ·+ (−1)k+1 mi0,...,ik

(fi0 · · · fik)N

=
fNi0 mi1,...,ik+1

− fNi1 mi0,i2,...,ik+1
+ · · ·+ (−1)k+1fNik+1

mi0,...,ik

(fi0 · · · fik+1
)N

.

If δm = 0, then this expression is 0 in M(fi0 ···fik+1
), hence

(fi0 · · · fik+1
)N

′
[
fNi0 mi1,...,ik+1

− fNi1 mi0,i2,...,ik+1
+ · · ·+ (−1)k+1fNik+1

mi0,...,ik

]
= 0
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inM if N ′ is sufficiently large. But rewriting the original cochain m with N replaced by N+N ′,

we have

m(i0, . . . , ik) =
m′
i0,...,ik

(fi0 · · · fik)N+N ′ , m′
i0,...,ik

= (fi0 · · · fik)
N ′
mi0,...,ik

so that

(∗) fN+N ′

i0
m′
i1,...,ik+1

− fN+N ′

i1
m′
i0,i2,...,ik+1

+ · · ·+ (−1)k+1fN+N ′

ik+1
m′
i0,...,ik

= 0 in M.

Now since

SpecR =
∪

SpecRfi =
∪

SpecR
(fN+N′

i )
,

it follows that 1 ∈ (. . . , fN+N ′

i , . . .), i.e., we can write

1 =
∑
i∈I

gi · fN+N ′

i

for some gi ∈ R. Now define a (k − 1)-cochain n by the formula:

n(i0, . . . , ik−1) =
ni0,...,ik

(fi0 · · · fik−1
)N+N ′

ni0,...,ik−1
=
∑
l∈I

gl ·m′
l,i0,...,ik=1

.

Then m = δn! In fact

(δn)(i0, . . . , ik) =

k∑
j=0

(−1)j · ni0 , . . . , îj , . . . , ik

(fi0 · · · f̂ij · · · fik)N+N ′

=
1

(fi0 · · · fik)N+N ′

k∑
j=0

(−1)jfN+N ′

ij
·
∑
l∈I

glm
′
l,i0,...,̂ij ,...,ik

=
1

(fi0 · · · fik)N+N ′

∑
l∈I

gl

k∑
j=0

(−1)jfN+N ′

ij
m′
l,i0,...,̂ij ,...,ik

=
1

(fi0 · · · fik)N+N ′

∑
l∈I

glf
N+N ′

i m′
i0,...,ik

(by (∗))

=
m′
i0,...,ik

(fi0 · · · fik)N+N ′

∑
l∈I

glf
N+N ′

i

= m(i0, . . . , ik).

□

Corollary 2.6. Let X be an affine scheme, U any affine covering of X and M̃ a quasi-

coherent sheaf on X. Then H i(U , M̃) = (0), i > 0.

Proof. Since the distinguished affines form a basis for the topology of X, and X is quasi-

compact, we can find a finite distinguished affine covering V of X refining U . Consider the

map

refU ,V : H
i(U , M̃) −→ H i(V, M̃).

By Proposition 2.5, H i(V, M̃) = (0) all i > 0, and H i(V|US0
, M̃ |US0

) = (0) for all i > 0 and

for all finite intersections US0 = Uα0 ∩ · · · ∩ Uαp (since each Vβ ∩ US0 is a distinguished affine in

US0 too). Therefore by Proposition 2.2, refU ,V is an isomorphism, hence H i(U , M̃) = (0) for all

i > 0. □
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Theorem 2.1 now follows immediately from Proposition 2.2 and Corollary 2.6, in view of the

fact that since X is separated, each US0 as a finite intersection of affines, is also affine as are the

open sets Vβ ∩ US0 that cover it.

Theorem 2.1 implies:

Corollary 2.7. For all schemes X, quasi-coherent F and affine covering U , the natural

map:

H i(U ,F) −→ H i(X,F)
is an isomorphism.

The “easy lemma of the double complex” (Lemma 2.4) has lots of other applications in

homological algebra. We sketch one that we can use later on.

a) Let R be any commutative ring, let M (1), M (2) be R-modules, choose free resolutions

F
(1)
� →M (1) and F

(2)
� →M (2), i.e., exact sequences

−→F (1)
n −→ F

(1)
n−1 −→ · · · −→ F

(1)
1 −→ F

(1)
0 −→M (1) −→ 0

−→F (2)
n −→ F

(2)
n−1 −→ · · · −→ F

(2)
1 −→ F

(2)
0 −→M (2) −→ 0

where all F
(i)
j are free R-modules. Look at the double complex Ci,j = F

(1)
i ⊗R F (2)

j ,

0 ≤ i, j with boundary maps

d(1) : Ci,j −→ Ci−1,j

d(2) : Ci,j −→ Ci,j−1

induced by the d’s in the two resolutions. Then Lemma 2.4 shows that

Hn(total complex C�,�) ∼= Hn(complex F
(1)
� ⊗RM (2))

∼= Hn(complex M (1) ⊗R F (2)
� ).

Note that the arrows here are reversed compared to the situation in the text. For

complexes in which d decreases the index, we take homology Hn instead of cohomology

Hn. It is not hard to check that the above R-modules are independent of the resolutions

F
(1)
� , F

(2)
� . They are called TorRn (M

(1),M (2)). The construction could be globalized: if

X is a scheme, F (1), F (2) are quasi-coherent sheaves, then there are canonical quasi-

coherent sheaves TorOX
n (F (1),F (2)) such that for all affine open U ⊂ X, if

U = SpecR

F (i) = M̃ (i),

then

TorOX
n (F (1),F (2))|U = TorRn (M

(1),M (2))̃ .

I want to conclude this section with the classical explanation of the “meaning” ofH1(X,OX),
via so-called “Cousin data”. Let me digress to give a little history: in the 19th century Mittag-

Leffler proved that for any discrete set of points αi ∈ C and any positive integer ni, there is a

meromorphic function f(z) with poles of order ni at αi and no others. Cousin generalized this to

meromorphic functions f(z1, . . . , zn) on Cn in the following form: say {Ui} is an open covering

of Cn and fi is a meromorphic function on Ui such that fi− fj is holomorphic on Ui ∩Uj . Then
there exists a meromorphic function f such that f −fi is holomorphic on Ui. We can easily pose

an algebraic analog of this —

a) Let X be a reduced and irreducible scheme.

b) Let R(X) = function field of X.
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c) Cousin data consists in an open covering {Uα}α∈S of X plus fα ∈ R(X) for each α

such that

fα − fβ ∈ Γ(Uα ∩ Uβ,OX), all α, β.

d) The Cousin problem for this data is to find f ∈ R(X) such that

f − fα ∈ Γ(Uα,OX), all α,

i.e., f and fα have the same “polar part” in Uα.

For all Cousin data {fα}, let gαβ = fα − fβ ∈ Γ(Uα ∩ Uβ,OX). Then {gαβ} is a 1-cocycle in

OX for the covering {Uα} and by refinement, it defines an element of H1(X,OX), which we call

ob({fα})(= the “obstruction”).

Proposition 2.8. ob({fα}) = 0 iff the Cousin problem has a solution.

Proof. If ob({fα}) = 0, then there is a finer covering {Vα}α∈T and hα ∈ Γ(Vα,OX) such

that if σ : T → S is a refinement map, then

hα − hβ = res gσα,σβ = res(fσα − fσβ)

(equality here being in the ring Γ(Vα ∩ Vβ,OX)). But then in R(X),

hα − fσα = hβ − fσβ ,

i.e., fσα − hα = F is independent of α. Then F has the same polar part as fσα in Vα. And

for any x ∈ Uα, take β so that x ∈ Vβ too; then since fα − fσβ ∈ Ox,X , it follows that

F −fα = (F −fσβ)+(fσβ−fα) ∈ Ox,X , i.e., F has the same polar part as fα throughout Uα, so

F solves the Cousin problem. Conversely, if such F exists, let hα = fα−F ; then hα− hβ = gαβ
and hα ∈ Γ(Uα,OX), i.e., {gαβ} = δ({hα}) is a 1-coboundary. □

3. Higher direct images and Leray’s spectral sequence

One of the main tools that is used over and over again in computing cohomology is the

higher direct image sheaf and the Leray spectral sequence. Let f : X → Y be a continuous map

of topological spaces and let F be a sheaf of abelian groups on X. For all i ≥ 0, consider the

presheaf on Y :

a) U 7−→ H i(f−1(U),F), ∀U ⊂ Y open

b) if U1 ⊂ U2, then

res : H i(f−1(U2),F) −→ H i(f−1(U1),F)

is the canonical map.

Definition 3.1. Rif∗(F) = the sheafification of this presheaf, i.e., the universal sheaf which

receives homomorphisms:

H i(f−1(U),F) −→ Rif∗F(U), all U.

Proposition 3.2. If X and Y are schemes, f : X → Y is quasi-compact and F is a quasi-

coherent OX-module, then Rif∗(F) is a quasi-coherent OY -module. Moreover, if U is affine or

if i = 0, then

H i(f−1(U),F) −→ Rif∗(F)(U)

is an isomorphism.
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Proof. In fact, by the sheaf axiom for F , it follows immediately that the presheaf U 7→
H0(f−1(U),F) = F(f−1(U)) is a sheaf on Y . Therefore H0(f−1(U),F) → R0f∗F(U) is an

isomorphism for all U . The rest of the proposition falls into the set-up of (I.5.9). As stated there,

it suffices to verify that if U is affine, R = Γ(U,OX) and g ∈ R, then we get an isomorphism:

H i(f−1(U),F)⊗R Rg
≈−→ H i(f−1(Ug),F).

But since f is quasi-compact, we may cover f−1(U) by a finite set of affines {V1, . . . , VN} = V.
Then f−1(Ug) is covered by {

(V1)f∗(g), . . . , (VN )f∗(g)
}
= V|f−1(Ug)

which is again an affine covering. Therefore

H i(f−1(U),F) = H i(C �(V,F))

H i(f−1(Ug),F) = H i(C �(V|f−1(Ug),F)).

The cochain complexes are:

Ci(V,F) =
∏

1≤α0,...,αi≤N
F(Vα0 ∩ · · · ∩ Vαi)

Ci(V|f−1(Ug),F) =
∏

1≤α0,...,αi≤N
F((Vα0)f∗g ∩ · · · ∩ (Vαi)f∗g).

Since if S = Γ(Vα0 ∩ · · · ∩ Vαi ,OX):
F((Vα0)f∗g ∩ · · · ∩ (Vαi)f∗g)

∼= F(Vα0 ∩ · · · ∩ Vαi)⊗S Sf∗g
∼= F(Vα0 ∩ · · · ∩ Vαi)⊗R Rg,

it follows that

Ci(V|f−1(Ug),F) ∼= Ci(V,F)⊗R Rg
(since ⊗ commutes with finite products). But now localizing commutes with kernels and

cokernels, so for any complex A� of R-modules, H i(A�)⊗R Rg ∼= H i(A� ⊗R Rg). Thus

H i(f−1(Ug),F) ∼= H i(f−1(U),F)⊗R Rg
as required. □

Corollary 3.3. If f : X → Y is an affine morphism (cf. Proposition-Definition I.7.3) and

F a quasi-coherent OX-module, then

Rif∗F = 0, ∀i > 0.

A natural question to ask now is whether the cohomology of F on X can be reconstructed

by taking the cohomology on Y of the higher direct images Rif∗F . The answer is: almost. The

relationship between them is a spectral sequence. These are the biggest monsters that occur in

homological algebra and have a tendency to strike terror into the heart of all eager students. I

want to try to debunk their reputation of being so difficult4.

Definition 3.4. A spectral sequence Epq2 =⇒ En consists in two pieces of data5:

4(Added in publication) Fancier notions of “derived categories and derived functors” have since become

indispensable not only in algebraic geometry but also in analysis, mathematical physics, etc. Among accessible

references are: Hartshorne [55], Kashiwara-Schapira [65], [66] and Gelfand-Manin [40].
5Sometimes one also has a spectral sequence that “begins” with an Epq

1 . Then the first differential is

dpq1 : Epq
1 −→ Ep+1,q

1

and if you set Epq
2 = (Ker dp,q1 )/(Image dp−1,q

1 ), you get a spectral sequence as above.
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Epq2
d2

""E
E

E
E

E

d3
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@

@
@
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@
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@
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@
@

@
@

@
• • •

• • Ep+2,q−1
2

•

• • • Ep+3,q−2
2

• • • etc.

Figure VII.2

(A) A doubly infinite collection of abelian groups Epq2 , (p, q ∈ Z, p, q ≥ 0) called the initial

terms plus filtrations on each Epq2 , which we write like this:

Epq2 = Zpq2 ⊃ Z
pq
3 ⊃ Z

pq
4 ⊃ · · · ⊃ B

pq
4 ⊃ B

pq
3 ⊃ B

pq
2 = (0),

also, let

Zpq∞ =
∩
r

Zpqr

Bpq
∞ =

∪
r

Bpq
r ,

plus a set of homomorphisms dpqr that allow us to determine inductively Zpqr+1, B
pq
r+1

from the previous ones Zpqr , Bpq
r :

dpqr : Zpqr −→ Ep+r,q−r+1
2 /Bp+r,q−r+1

r

(cf. Figure VII.2).

The d’s should have the properties

i) Bpq
r ⊂ Ker(dpqr ), Zp+r,q−r+1

r ⊃ Image(dpqr ) so that dpqr induces a map

Zpqr /B
pq
r −→ Zp+r,q−r+1

r /Bp+r,q−r+1
r .

This sub-quotient of Epq2 is called Epq
r .

ii) d2 = 0; more precisely, the composite

Zpqr /B
pq
r −→ Zp+r,q−r+1

r /Bp+r,q−r+1
r −→ Zp+2r,q−2r+2

r /Bp+2r,q−2r+2
r

is 0.

iii) Zpqr+1 = Ker(dpqr ); Bp+r,q−r+1
r+1 = Image(dpqr ). This implies that Epqr+1 is the coho-

mology of the complex formed by the Epqr ’s and the dr’s!

(B) The so-called “abutment”: a simply infinite collection of abelian groups En plus a

filtration on each En whose successive quotients are precisely the groups Ep,n−p∞ =

Zp,n−p∞ /Bp,n−p
∞ :

En = F 0(En) ⊃ F 1︸ ︷︷ ︸
∼=E0,n

∞

(En) ⊃ · · ·︸ ︷︷ ︸
∼=E1,n−1

∞

· · · · · · ⊃ Fn︸ ︷︷ ︸
···

(En) ⊃ Fn+1(En)︸ ︷︷ ︸
∼=En,0

∞

= (0)

To illustrate what is going on here, look at the terms of lowest total degree. One sees easily

that one gets the following exact sequences:

a) E00
2
∼= E0.
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b) 0 −→ E1,0
2 −→ E1 −→ E0,1

2
d2−→ E2,0

2 −→ E2.

c) For all n, one gets “edge homomorphisms”

En,02 −→ En,0∞ −→ En

and

En −→ E0,n
∞ −→ E0,n

2 :

i.e.,

En

uukkkkkkkkkkk

E0,n
2

F
F

En,02

EE����������

Theorem 3.5. 6 Given any quasi-compact morphism f : X → Y and quasi-coherent sheaf F
on X, there is a canonical spectral sequence, called Leray’s spectral sequence, with initial terms

Epq
2 = Hp(Y,Rqf∗F)

and abutment En = Hn(X,F).

Proof. Choose open affine coverings U = {Uα}α∈S of Y and V = {Vβ}β∈T ofX and consider

the double complex introduced in §2 for the two coverings f−1(U) and V of X:

Cpq =
∏

α0,...,αp∈S

∏
β0,...,βq∈T

F(f−1Uα0 ∩ · · · ∩ f−1Uαp ∩ Vβ0 ∩ · · · ∩ Vβq).

Note that all the open sets here are affine because of Proposition II.4.5.

Now the q-th row of our double complex is the product over all β0, . . . , βq ∈ T of the Čech

complex C �(f−1(U) ∩ Vβ0 ∩ · · · ∩ Vβq ,F), i.e., the Čech complex for an affine open covering of

an affine Vβ0 ∩ · · · ∩ Vβq . Therefore all the rows are exact except at their first terms where their

cohomology is
∏
β0,...,βq

F(Vβ0 ∩· · ·∩Vβq), i.e., Cq(V,F). Hence by the easy lemma of the double

complex (Lemma 2.4),

1)

Hn(total complex) ∼= Hn(C �(V,F))
∼= Hn(X,F).

But on the other hand, the p-th column of our double complex is the product over all α0, . . . , αp ∈
S of the Čech complex C �(V ∩ f−1(Uα0 ∩ · · · ∩ Uαp),F). The cohomology of this complex at

the q-th spot is Hq(f−1(Uα0 ∩ · · · ∩ Uαp),F) which is also the same as Rqf∗F(Uα0 ∩ · · · ∩ Uαp).

Therefore:

2) [vertical δ2-cohomology of p-th column at (p, q)] ∼=
∏
α0,...,αp∈S R

qf∗F(Uα0 ∩ · · ·∩Uαp).

But now the horizontal maps δ1 : C
p,q → Cp+1,q induce maps from the [δ2-cohomology

at (p, q)-th spot] → [δ2-cohomology at (p+ 1, q)-th spot] and we see easily that

3) [q-th row of vertical cohomology groups] ∼=
as complex

Čech complex C �(U , Rqf∗F). There-

fore finally:

4) [horizontal δ1-cohomology at (p, q) of vertical δ2-cohomology group] ∼= Hp(Y,Rqf∗F)!
Theorem 3.5 is now reduced to:

6Theorem 3.5 also holds for continuous maps of paracompact Hausdorff spaces and arbitrary sheaves F , but

we will not use this.
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Lemma 3.6 (The hard lemma of the double complex). Let (Cp,q, δ1, δ2) be any double com-

plex. Make no assumption on the δ2-cohomology, but consider instead its δ1-cohomology:

Ep,q2 = Hp
δ1
(Hq

δ2
(C �,�)).

Then there is a spectral sequence starting at Ep,q2 and abutting at the cohomology of the total

complex. Alternatively, one can “start” this spectral sequence at

Ep,q
1 = Hq

δ2
(Cp,�) = (cohomology in vertical direction)

with d1 being the maps induced by δ1 on δ2-cohomology7. Also, since the rows and columns of a

double complex play symmetric roles, one gets as a consequence a second spectral sequence with

Ep,q2 = Hp
δ2
(Hq

δ1
(C �,�))

or

Ep,q1 = Hq
δ1
(C �,p) = (cohomology in horizontal direction),

abutting also to the cohomology of the total complex.

A hard-nosed detailed proof of this is not very long but quite unreadable. I think the reader

will find it easier if I sketch the idea of the proof far enough so that he/she can work out for

himself/herself as many details as he/she wants. To begin with, we may describe Epq2 rather

more explicitly as:

Epq2 =
{x ∈ Cp,q | δ2x = 0 and δ1x = δ2y, some y ∈ Cp+1,q−1}

δ2(Cp,q−1) + δ1{x ∈ Cp−1,q | δ2x = 0}
.

The idea is — how hard is it to “extend” the δ2-cocycle x to a whole d-cocycle in the total

complex: more precisely, to a set of elements

x ∈ Cp,q δ2x = 0

y1 ∈ Cp+1,q−1 δ2y1 = δ1x

y2 ∈ Cp+2,q−2 δ2y2 = δ1y1

etc. etc.

so that d(x± y1 ± y2 ± · · · ) = 0 (the signs being mechanically chosen here taking into account

that d = δ1 + (−1)pδ2). See Figure VII.3.

Define Zpq∞ to be the subgroup of Epq2 for which such a sequence of yi’s exist; define Z
pq
3 to

be the set of x’s such that such y1 and y2 exist; define Zpq4 to be the set of x’s such that such

y1, y2 and y3 exist; etc.

On the other hand, a δ2-cocycle x may be a d-coboundary in various ways — let

Bpq
3 = image in Epq2 of

{
x ∈ Cp,q

∣∣∣∣ w1 ∈ Cp−1,q, w2 ∈ Cp−2,q−1

δ1w1 = x, δ2w1 = δ1w2, δ2w2 = 0

}
Bpq

4 = image in Epq2 of

{
x ∈ Cp,q

∣∣∣∣ w1, w2 as above, w3 ∈ Cp−3,q−2

δ1w1 = x, δ2w1 = δ1w2, δ2w2 = δ1w3, δ2w3 = 0

}
etc.

(cf. Figure VII.4)

7More precisely, to construct the spectral sequence, one doesn’t need both gradings on
⊕

Cp,q and both

differentials; it is enough to have one grading (the grading by total degree), one filtration (Fk =
⊕

p≥k C
p,q) and

the total differential: for details cf. MacLane [77, Chapter 11, §§3 and 6].
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0

x
_

δ2

OO

� δ1
// z1

y1
_δ2

OO

� δ1
// z2

y2
_δ2

OO

� δ1
//

. . .
. . . drx!





x
�

	
�

�
�

yr−1
� δ1
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yr−1
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OO

� δ1
///.-,()*+?

Figure VII.3

0

wr
_
δ2

OO

�
δ1

// ur−1

wr−1
_
δ2

OO

. . .

. . .
. . .

. . . u2

w2
_
δ2

OO

�
δ1

// u1

w1
_
δ2

OO

�
δ1

// x

Figure VII.4

As for dpqr : Zpqr → Ep+r,q−r+1
r /Bp+r,q−r+1

r , suppose x ∈ Cp,q defines an element of Zpqr , i.e.,

∃y1 ∈ Cp+1,q−1, . . . , yr−1 ∈ Cp+r−1,q−r+1 such that δ2yi+1 = δ1yi, i < r − 1; δ2y1 = δ1x. Define

dpqr (x) = δ1yr−1.

This is an element of Cp+r,q−r+1 killed by δ1 and δ2, hence it defines an element of Ep+r,q−r+1
r /Bp+r,q−r+1

r .

At this point there are quite a few points to verify — that dr is well-defined so long as the im-

age is taken modulo Br and that dr has the three properties of the definition. These are all

mechanical and we omit them.
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Figure VII.5

Finally, define the filtration on the cohomology of the total complex:

F k(En) =those elements of

Ker d in
∑

p+q=nC
p,q

d
(∑

p+q=n−1C
p,q
)


which can be represented by a d-cocycle

with components xpq ∈ Cp,q, xpq = 0 if p < k

(cf. Figure VII.5). The whole point of these definitions, which is now reasonable I hope, is the

isomorphism:

F pEn/F p+1En ∼= Zp,n−p∞ /Bp,n−p
∞ .

The details are again omitted. □

An important remark is that the edge homomorphisms in the Leray spectral sequence:

a) Hn(Y, f∗F) ∼= En,0
2 → En ∼= Hn(X,F)

b) Hn(X,F) ∼= En → E0,n
2
∼= H0(Y,Rnf∗F)

are just the maps induced by the functorial properties of cohomology (i.e., the set of maps

f∗F(U)→ F(f−1(U)) means that there is a map of sheaves “f∗F → F with respect to f” in an

obvious sense and this gives (a); and the maps Hn(X,F)→ Hn(f−1U,F)→ Rnf∗F(U) for all

U give (b)). This comes out if V is a refinement of f−1(U) by the calculation used in the proof

of Theorem 3.5.

Proposition 3.7. Let F be a quasi-coherent OX-module. If f : X → Y is an affine mor-

phism (cf. Proposition-Definition I.7.3), then

Hp(X,F) ∼−→ Hp(Y, f∗F), ∀p.

Proof. Leray’s spectral sequence (Theorem 3.5) and Corollary 3.3. □

Corollary 3.8. Let F be a quasi-coherent OX-module. If i : X → Y is a closed immersion

of schemes (cf. Definition 3.1), then

Hp(X,F) ∼−→ Hp(Y, i∗F), ∀p.

Remark. If X is identified with its image i(X) in Y , i∗F is nothing but the quasi-coherent

OY -module obtained as the extension of the OX -module F by (0) outside X.
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A second important application of the hard lemma (Lemma 3.6) is to hypercohomology and

in particular to De Rham cohomology (cf. §VIII.3 below). Let F � be any complex of sheaves on

a topological space X. Then if U is an open covering, Hn(U ,F �) is by definition the cohomology

of the total complex of the double complex Cq(U ,Fp), hence we get two spectral sequences

abutting to it. The first is gotten by taking vertical cohomology (with respect to the superscript

q):

Epq1 =Hq(U ,Fp) =⇒ En = Hn(U ,F �)

(with dpq1 the map induced on cohomology by d : Fp → Fp+1).

Passing to the limit over finer coverings, we get:

(3.9) Epq1 = Hq(X,Fp) =⇒ En = Hn(X,F �).

The second is gotten by taking horizontal cohomology (with respect to p) and then vertical

cohomology. To express this conveniently, define presheaves Hppre(F �) by

Hppre(F �)(U) =
Ker(Fp(U)→ Fp+1(U))

Image(Fp−1(U)→ Fp(U))
.

The sheafification of these presheaves are just:

Hp(F �) =
Ker(Fp → Fp+1)

Image(Fp−1 → Fp)

but Hppre will not generally be a sheaf already. The horizontal cohomology of the double complex

Cq(U ,Fp) is just Cq(U ,Hppre) and the vertical cohomology of this is Hq(U ,Hppre), hence we get

the second spectral sequence:

Epq2 = Hp(U ,Hqpre(F �)) =⇒ En = Hn(U ,F �).

Passing to the limit over U , this gives:

(3.10) Epq2 = Hp(X,Hqpre(F �)) =⇒ En = Hn(X,F �).

In good cases, e.g., X paracompact Hausdorff (cf. §1), the cohomology of a presheaf is the

cohomology of its sheafification, so we get finally:

(3.11) Epq2 = Hp(X,Hq(F �)) =⇒ En = Hn(X,F �).

4. Computing cohomology (1): Push F into a huge acyclic sheaf

Although the apparatus of cohomology of quasi-coherent sheaves may seem at first acquain-

tace rather formidable, it should always be remembered that it is really only fancy linear algebra.

In many specific cases, it is no great problem to compute it. To stress the flexibility of the tools

available for computing cohomology, we present in a fugal style four calculations each using a

different method.

A standard approach for cohomology is via a resolution of the type:

0 −→ F −→ I0 −→ I1 −→ I2 −→ · · · · · ·

where the Ik’s are injective, or “flasque” or “mou” or at least are acyclic. (See Godement [42]

or Swan [110].) Sheaves of this type tend to be huge monsters, but there has been quite a bit

of work done on injectives in the category of sheaves of OX -modules on a noetherian X (see

Hartshorne [55, p. 120]). We use the method as follows:
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Lemma 4.1. If U ⊂ X is affine and i : U → X the inclusion map, then for all quasi-coherent

F on U , i∗F is acyclic, i.e., Hp(X, i∗F) = (0), all p ≥ 1.

Proof. In fact, for V ⊂ X affine, i−1(V ) = U∩V is affine, so the presheaf V 7→ Hp(i−1V,F)
is (0) on affines (p ≥ 1). Thus Rpi∗F = (0) if p ≥ 1. Then Leray’s spectal sequence (Theorem

3.5) degenerates since

Epq
2 = Hp(X,Rqi∗F) = (0), q ≥ 1.

Thus Epq2
∼= Epq∞ ∼= Ep+q, and the edge homomorphism

Hp(X, i∗F) −→ Hp(U,F)

is an isomorphism. Since Hp(U,F) = (0), p ≥ 1, the lemma is proven. □

If F is quasi-coherent on X, and i : U → X is the inclusion of an affine, there is a canonical

map:

ϕ : F −→ i∗(F|U )
via

F(V )
res−→ F(U ∩ V ) ∼= i∗(F|U )(V ), ∀open V,

which is an isomorphism on U . We can apply this to prove:

Proposition 4.2. Let X be a noetherian scheme and F a quasi-coherent sheaf on X. Let

n = dim(SuppF), i.e., n is the maximum length of chains:

Z0 ⫋ Z1 ⫋ · · · ⫋ Zr ⊂ Supp(F), Zi closed irreducible.

Then H i(X,F) = (0) if i > n.

Proof. Use induction on n. If n = 0, then SuppF is a finite set of closed points {x1, . . . , xN}.
For all i, let Ui ⊂ X be an affine neighborhood of xi such that xj /∈ Ui, all j ̸= i; let {Uβ}β∈T be

an affine covering of X \{x1, . . . , xN}. Then {U1, . . . , UN}∪{Uβ} is an affine covering of X such

that for any two distinct open sets Uα, Uα′ in it, Uα ∩ Uα′ ∩ SuppF = ∅. Thus Ci(U ,F) = (0),

i ≥ 1, and hence H i(X,F) = (0), i ≥ 1.

In general, decompose SuppF into irreducible sets:

SuppF = S1 ∪ · · · ∪ SN .

Let Ui ⊂ X be an affine open set such that

Ui ∩ Si ̸= ∅
Ui ∩ Sj = ∅, all j ̸= i.

Let ik : Uk → X be the inclusion map, and let

Fk = ik,∗(F|Uk
).

As above we have a canonical map:

F ϕ−→
N⊕
k=1

Fk

given by:

F(V )
res−→

N⊕
k=1

F(Uk ∩ V ) ∼=

[
N⊕
k=1

ik,∗(F|Uk
)

]
(V ).

Concerning ϕ, we have the following facts:
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a) If i ̸= j, Ui ∩ Uj ∩ SuppF = ∅, hence F(Ui ∩ Uj) = (0). Therefore if V ⊂ Uk0 ,
N⊕
k=1

F(Uk ∩ V ) = F(Uk0 ∩ V ) = F(V ).

Therefore ϕ is an isomorphism of sheaves on each of the open sets Uk.

b) If V ∩ Sk = ∅, then V ∩ Uk ∩ SuppF = ∅ so Fk(V ) = F(Uk ∩ V ) = (0). Thus

SuppFk ⊂ Sk.
c) Each Fk is quasi-coherent by Proposition 3.2, hence K1 = Kerϕ and K2 = Cokerϕ are

quasi-coherent.

Putting all this together, if i = 1, 2

SuppKi ⊂ (S1 ∪ · · · ∪ SN ) \ (open set where ϕ is an isomorphism)

⊂
N∪
k=1

(Sk \ Sk ∩ Uk).

Therefore dimSuppKi < n, and we can apply induction. If we set K3 = F/K1, we get two short

exact sequences:

0 −→ K1 −→F −→ K3 −→ 0

0 −→ K3 −→
N⊕
k=1

Fk −→ K2 −→ 0,

hence if p > n:

Hp(X,K1) // Hp(X,F) // Hp(X,K3)

(∗) (0)

by induction

by induction

(0)

by Lemma 4.1

Hp−1(X,K2) // Hp(X,K3) //
⊕N

k=1H
p(X,Fk).

This proves that Hp(X,F) = (0) if p > n. □

5. Computing cohomology (2): Directly via the Čech complex

We illustrate this approach by calculating H i(PnR,O(m)) for any ring R. We need some more

definitions first:

a) Let R be a ring, f1, . . . , fn ∈ R. Let M be an R-module. Introduce formal symbols

ω1, . . . , ωn such that

ωi ∧ ωj = −ωj ∧ ωi, ωi ∧ ωi = 0.

Define an R-module:

Kp(f1, . . . , fn;M) =
⊕

1≤i1<i2<···<ip≤n
M · ωi1 ∧ · · · ∧ ωip .

Define

d : Kp(f1, . . . , fn;M) −→ Kp+1(f1, . . . , fn;M)

by

dm =

(
n∑
i=1

fiωi

)
∧m.
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Note that d2 = 0. This gives us the Koszul complex K �(f1, . . . , fn;M):

0 // K0((f);M) // K1((f);M) // · · · // Kn((f);M) // 0

M
⊕n

i=1M · ωi M · ω1 ∧ · · · ∧ ωn

b) Now say R is a graded ring, fi ∈ Rdi is homogeneous and M is a graded module.

Then we assign ωi the degree −di, so that
∑
fiωi is homogeneous of degree 0. Then

K �(f1, . . . , fn;M) is a complex of graded modules with degree preserving maps d. We

let K �(f1, . . . , fn;M)0 denote the degree 0 subcomplex, i.e.,

Kp(f1, . . . , fn;M)0 =
⊕

i1<···<ip

Mdi1+···+dip · ωi1 ∧ · · · ∧ ωip .

c) Next compare the Koszul complexes K �(fν1 , . . . , f
ν
n ;M) for various ν ≥ 1. If we write

Kp(fν1 , . . . , f
ν
n ;M) =

⊕
i1<···<ip

M · ω(ν)
i1
∧ · · · ∧ ω(ν)

ip

and set

ω
(ν)
i = f

(ν′)
i · ω(ν+ν′)

i

then we get a natural homomorphism

Kp(fν1 , . . . , f
ν
n ;M) −→ Kp(fν+ν

′

1 , . . . , fν+ν
′

n ;M)

which commutes with d.

The point of all this is:

Proposition 5.1. If R is a graded ring, fi ∈ Rdi, 1 ≤ i ≤ n, M a graded R-module,

Ui = (ProjR)fi, U = {U1, . . . , Un}, then there is a natural isomorphism:

Cp−1
alt (U , M̃) ∼= lim−→

ν

Kp(fν1 , . . . , f
ν
n ;M)0, p ≥ 1,

under which the Čech coboundary δ and the Koszul d correspond.

Proof. We have

Cp−1
alt (U , M̃) =

⊕
i1<...<ip

M̃(Ui1 ∩ · · · ∩ Uip)

=
⊕

i1<···<ip

(
Mfi1 ···fip

)0
and

lim−→
ν

Kp((fν);M)0 =
⊕

i1<...<ip

lim−→
ν

[
M · ω(ν)

i1
∧ · · · ∧ ω(ν)

ip

]0
=

⊕
i1<···<ip

lim−→
ν

Mν(di1+···+dip ) · ω
(ν)
i1
∧ · · · ∧ ω(ν)

ip
.

Define a homomorphism:

Mν(di1+···+dip ) · ω
(ν)
i1
∧ · · · ∧ ω(ν)

ip
−→ (Mfi1 ···fip )

0

by taking ω
(ν)
j to 1/fνj . This clearly commutes with the limit operation in ν and since for any

ring S, any S-module N and g ∈ S, Ng
∼= direct limit of the system

N
multiplication by g−−−−−−−−−−−→ N

multiplication by g−−−−−−−−−−−→ N
multiplication by g−−−−−−−−−−−→ · · · ,
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it follows that

lim−→
ν

Mν(di1+···dip )ω
(ν)
i1
∧ · · · ∧ ω(ν)

ip
∼= (Mfi1 ···fip )

0.

We leave it to the reader to check that δ and d correspond. □

The complex {Kp} goes down to p = 0 while {Cp−1} only goes down to p = 1. We can

extend {Cp−1} one further step so that it matches up with {Kp} as follows:

0 // M0
ε

// C0
alt(U , M̃) // C1

alt(U , M̃) // · · ·

0 // lim−→ν
(K0)0 // lim−→ν

(K1)0 // lim−→ν
(K2)0 // · · ·

where ε is the composite of the canonical maps:

M0 −→ Γ(ProjR, M̃) −→ C0
alt(U , M̃).

What we need next is a criterion for a Koszul complex to be exact:

Proposition 5.2 (Koszul). Let R be a ring, f1, . . . , fn ∈ R and M an R-module. If fs is

a non-zero-divisor in M/(f1, . . . , fs−1) ·M for 1 ≤ s ≤ t, then the complex K �(f1, . . . , fn;M) is

exact at Ks(f1, . . . , fn;M) for 0 ≤ s ≤ t− 1.

Proof. To see how simple this is, it’s better to take the first non-trivial case and check it,

rather than getting confused in a general inductive proof. Take t = 3 and check that⊕
i

Mωi
d−→
⊕
i1<i2

Mωi1 ∧ ωi2
d−→

⊕
i1<i2<i3

Mωi1 ∧ ωi2 ∧ ωi3

is exact. Write an element η of the middle module as

η = mω1 ∧ ω2 + ω1 ∧

(
n∑
i=3

niωi

)
+
∑

2≤i<j
pijωi ∧ ωj .

Assume dη = 0. Looking at the coefficient of ω1 ∧ ω2 ∧ ω3, it follows

f3m = f2n3 − f1p23 ∈ (f1, f2)M.

Therefore by hypothesis m = f1q1 + f2q2, qi ∈ M . Replace η by η − d(q1ω2 − q2ω1) and

the coefficient m becomes 0. Assuming we have any η with m = 0, look at the coefficient of

ω1 ∧ ω2 ∧ ωi, i ≥ 3. It follows

f2ni = f1p23 ∈ f1M.

Therefore ni = f1qi, qi ∈ M . Replace η by η − d(
∑n

i=3 qiωi) and now all the coefficients m, ni
are 0. Assuming we have any η with m = ni = 0, look at the coefficient of ω1∧ωi∧ωj , 2 ≤ i < j.

It follows that

f1pij = 0

whence by hypothesis pij = 0, hence η = 0. This idea works for any t. □

Combining the two propositions, we get:

Proposition 5.3. Let R be a graded ring generated by homogeneous elements fi ∈ Rdi,

1 ≤ i ≤ n. Let M be a graded R-module. Fix an integer t and assume8 that, for every ν, and

every s, 1 ≤ s ≤ t, fνs is a non-zero-divisor in M/(fν1 , . . . , f
ν
s−1) ·M . Then

a) If t ≥ 1, Md → Γ(ProjR, M̃(d)) is injective for all d.

b) If t ≥ 2, Md → Γ(ProjR, M̃(d)) is an isomorphism for all d.

8A closer analysis shows that if this condition holds for ν = 1, it automatically holds for larger ν.
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c) If t ≥ 3, H i(ProjR, M̃(d)) = (0), 1 ≤ i ≤ t− 2, for all d.

This follows by combining Propositions 5.1 and 5.2, taking note that we must augment the

Čech complex C �(U , M̃(d)) by “0→Md →” to get the lim−→ of Koszul complexes (and also using

the fact that a direct limit of exact sequences is exact).

Corollary 5.4. Let S be a ring. Then

a) [
S-module of homogeneous polynomials

f(X0, . . . , Xl) of degree d

]
−→ Γ(PlS ,OPl(d))

is an isomorphism for all d ∈ Z,
b) H i(PlS ,OPl(d)) = (0), for all d ∈ Z, 1 ≤ i ≤ l − 1.

Proof. Apply Proposition 5.3 to R = S[X0, . . . , Xl], n = l+1, fi = Xi−1, 1 ≤ i ≤ l+1 and

M = R. Then in fact multiplication by Xν
j is injective in the ring of truncated polynomials:

R/(Xν
0 , . . . , X

ν
j−1) ·R

so Proposition 5.3 applies with t = n. □

On the other hand, for any quasi-coherent F on PlS , using the affine covering Ui = (PlS)Xi ,

0 ≤ i ≤ l, we get non-zero alternating cochains Cialt(U ,F) only for 0 ≤ i ≤ l. Therefore:

(5.5) H i(PlS ,F) = (0), i > l, all quasi-coherent F .

If we look more closely, we can describe the groups H l(PlS ,OPl(d)) too. Look first at the

general situation R, (f1, . . . , fn), M :

Hn−1(U , M̃) = Hn−1(C �
alt(U , M̃))

= Cn−1
alt (U , M̃)/δ(Cn−2

alt )

= M̃(U1 ∩ · · · ∩ Un)

/
n∑
i=1

res M̃(U1 ∩ · · · Ûi, . . . ,∩Un)

=
(
M(

∏
fj)

)0/ n∑
i=1

(
M(

∏
j ̸=i fj)

)0
.

Thus in the special case:

H l(PlS ,OPl(d)) ∼=elements of degree d in the S[X0, . . . , Xl]-module

S[X0, . . . , Xl](
∏
Xj)

/
l∑

i=0

S[X0, . . . , Xl](
∏

j ̸=iXj)

∼=S-module of rational functions∑
αi≤−1∑
αi=d

cα0,...,αl
Xα0

0 · · ·X
αl
l .

(5.6)

In particular H l(OPl(d)) = (0) if d > −l − 1. It is natural to ask to what extent this is a

canonical description of H l — for instance, if you change coordinates, how do you change the

description of an element of H l by a rational function. The theory of this goes back to Macaulay

and his “inverse systems”, cf. Hartshorne [58, Chapter III].
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Koszul complexes have many applications to the local theory too. For instance in Chapter

V, we presented smooth morphisms locally as:

X = SpecR[X1, . . . , Xn+r]/(f1, . . . , fr)

f

��

Y = SpecR

and in Proposition V.3.19, we described the syzygies among the equations fi locally. We can

strengthen Proposition V.3.19 as follows: let x ∈ X, y = f(x) so that

Ox,X = Oy,Y [X1, . . . , Xn+r]p/(f1, . . . , fr)

for some prime ideal p. Then I claim:

K �((f),Oy,Y [X1, . . . , Xn+r]p) −→ Ox,X −→ 0

is a resolution of Ox,X as module over Oy,Y [X1, . . . , Xn+r]p. This follows from the general fact:

Proposition 5.7. Let R be a regular local ring, M its maximal ideal and let f1, . . . , fr ∈M
be independent in M/M2. Then

0 −→ K0((f), R) −→ · · · −→ Kr((f), R) −→ R/(f1, . . . , fr) −→ 0

is exact.

Proof. Use Proposition 5.2. □

Proposition 5.7 may also be applied to prove that if R is regular, f1, . . . , fn ∈ M are inde-

pendent in M/M2, then:

TorRi (R/(f1, . . . , fk), R/(fk+1, . . . , fn)) = (0), i > 0.

(cf. discussion of Serre’s theory of intersection multiplicity, §V.1.)

6. Computing cohomology (3): Generate F by “known” sheaves

There are usually no projective objects in categories of sheaves, but it is nontheless quite

useful to examine resolutions of the type:

· · · −→ E2 −→ E1 −→ E0 −→ F −→ 0

where, for instance, the Ei are locally free sheaves of OX -modules (on affine schemes, such Ei
are projective in the category of quasi-coherent sheaves).

Let S be a noetherian ring. We proved in Theorem III.4.3 due to Serre that for every

coherent sheaf F on PlS there is an integer n0 such that F(n0) is generated by global sections.

This means that for some m0, equivalently,

a) there is a surjection

Om0

Pl
S

−→ F(n0) −→ 0

or

b) there is a surjection

OPl
S
(−n0)m0 −→ F −→ 0.

Iterating, we get a resolution of F by “known” sheaves:

· · · −→ OPl
S
(−n1)m1 −→ OPl

S
(−n0)m0 −→ F −→ 0.

We are now in a position to prove Serre’s Main Theorem in his classic paper [99]:
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Theorem 6.1 (Fundamental theorem of F.A.C.). Let S be a noetherian ring, and F a

coherent sheaf on PlS. Then

1) H i(PlS ,F(n)) is a finitely generated S-module for all i ≥ 0, n ∈ Z.
2) ∃n0 such that H i(PlS ,F(n)) = (0) if i ≥ 1, n ≥ n0.
3) Every F is of the form M̃ for some finitely generated graded S[X0, . . . , Xl]-module M ;

and if F = M̃ where M is finitely generated, then ∃n1 such that Mn → H0(PlS ,F) is

an isomorphism if n ≥ n1.

Proof. We prove (1) and (2) by descending induction on i. If i > l, then as we have

seen H i(F(n)) = (0), all n (cf. Proposition 4.2). Suppose we know (1) and (2) for all F and

i > i0 ≥ 1. Given F , put it in an exact sequence as before:

0 −→ G −→ OPl
S
(−n1)n2 −→ F −→ 0.

For every n ∈ Z, this gives us:

0 −→ G(n) −→ OPl
S
(n− n1)n2 −→ F(n) −→ 0,

hence

H i0(OPl
S
(n− n1))n2 −→ H i0(F(n)) −→ H i0+1(G(n)).

By inductionH i0+1(G(n)) is finitely generated for all n and (0) for n≫ 0 and by §5, H i0(OPl
S
(n−

n1)) is finitely generated for all n and (0) for n≫ 0: therefore the same holds for F(n).
The first half of (3) has been proven in Proposition III.4.4. Suppose F = M̃ . Let R =

S[X0, . . . , Xl] and let ⊕
β

R(−nβ) −→
⊕
α

R(−mα) −→M −→ 0

be a presentation of M by twists of the free rank one module R. Taking ˜, this gives a

presentation of F :

(6.2)
⊕
β

OPl
S
(−nβ) −→

⊕
α

OPl
S
(−mα) −→ F −→ 0.

Twisting by n and taking sections, we get a diagram:

(6.3)
⊕

β Rn−nβ
//

≈
��

Rn−mα
//

≈
��

Mn
//

��

0

⊕
β Γ(OPl

S
(n− nβ)) //

⊕
α Γ(OPl

S
(n−mα)) // H0(F(n)) // 0

with top row exact, but the bottom row need not be so. But break up (6.2) into short exact

sequences

0 // G //
⊕

αOPl
S
(−mα) // F // 0

0 // H //
⊕

β OPl
S
(−nβ) // G // 0.

Choose n1 so that

H1(G(n)) = H1(H(n)) = (0), n ≥ n1.
Then if n ≥ n1

0 // H0(G(n)) //
⊕

αH
0(OPl

S
(n−mα)) // H0(F(n)) // 0

0 // H0(H(n)) //
⊕

αH
0(OPl

S
(n− nβ)) // H0(G(n)) // 0

are exact, hence so is the bottom row of (6.3). This proves (3). □
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Corollary 6.4. Let f : X → Y be a projective morphism (cf. Definition II.5.8) with Y a

noetherian scheme. Let L be a relatively ample invertible sheaf on X. Then for all coherent F
on X:

1) Rif∗(F) is coherent on Y .

2) ∃n0 such that Rif∗(F ⊗ L⊗n) = (0) if i ≥ 1, n ≥ n0.
3) ∃n1 such that all the natural map

f∗f∗(F ⊗ L⊗n) −→ F ⊗L⊗n

is surjective if n ≥ n1.

Proof. Since Y can be covered by a finite set of affines, to prove all of these it suffices

to prove them over some fixed affine U = SpecR ⊂ Y . Then choose n ≥ 1 and (s0, . . . , sk) ∈
Γ(f−1(U),L⊗n) defining a closed immersion i : f−1(U) ↪→ PkR. Let X ′ ⊂ PkR be the image of i,

and let F ′, L′ be coherent sheaves on PkR, (0) outside X ′ and isomorphic on X ′ to F|f−1(U) and

L|f−1(U). By construction OX′(1) ∼= (L′)⊗n. Then applying Serre’s theorem (Theorem 6.1):

1) Rif∗(F)|U ∼= (H i(X ′,F ′))̃ is coherent.

2) For any fixed m,

Rif∗(F ⊗ L⊗(m+νn))|U ∼= (H i(X ′,F ′ ⊗ (L′)⊗(m+νn)))̃

∼= (H i(X ′, (F ′ ⊗ (L′)⊗m)(ν)))̃
= (0), if ν ≥ ν0.

Apply this for m = 0, 1, . . . , n− 1 to get (2) of Corollary 6.4.

3) For any fixed m,

f∗f∗(F ⊗ L⊗(m+νn))|f−1(U)
∼= H0(X ′,F ′ ⊗ (L′)⊗(m+νn))⊗R OX′

∼= H0(X ′,F ′ ⊗ (L′)⊗m(ν))⊗R OX′

and this maps onto F ′ ⊗ (L′)⊗m if ν ≥ ν1.
Apply this for m = 0, 1, . . . , n− 1 to get (3) of Corollary 6.4. □

Combining this with Chow’s lemma (Theorem II.6.3) and the Leray spectral sequence (The-

orem 3.5), we get:

Theorem 6.5 (Grothendieck’s coherency theorem). Let f : X → Y be a proper morphism

with Y a noetherian scheme. If F is a coherent OX-module, then Rif∗(F) is a coherent OY -
module for all i.

Proof. The result being local on Y , we need to prove that if Y = SpecS, then H i(X,F) is
a finitely generated S-module. Since X is also a noetherian scheme, its closed subsets satisfy the

descending chain condition and we may make a “noetherian induction”, i.e., assume the theorem

holds for all coherent G with SuppG ⫋ SuppF . Also, if I ⊂ OX is the ideal of functions f such

that multiplication by f is 0 in F , we may replace X by the closed subscheme X ′, OX′ = OX/I.
This has the effect that SuppF = X. Now apply Chow’s lemma to construct

X ′
π

�������

X
f
��

with π and f ◦ π projective

Y
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where resπ : π−1(U0) → U0 is an isomorphism for an open dense U0 ⊂ X. Now consider the

canonical map of sheaves α : F → π∗(π
∗F) defined by the collection of maps:

α(U) : F(U) −→ π∗F(π−1U) = π∗(π
∗)(U).

F coherent implies π∗F coherent and since π is projective, π∗(π
∗F) is coherent by Corollary

6.4. Look at the kernel, cokernel, and image:

0 // K1
// F α

//

##GGGGG π∗(π
∗F) // K2

// 0.

F/K1

88ppppp

''OOOOOOO

0

::vvvvv
0

Since α is an isomorphism on U0, SuppKi ⊂ X \ U0 ⫋ X. Thus Hj(Ki) are finitely generated

S-modules by induction. But now using the long exact sequences:

H i−1(K2) // H i(F/K1) // H i(π∗π
∗F)

finitely generated

OO�
�

��
�
�

H i(K1) // H i(F) // H i(F/K1)

it follows readily that if H i(π∗π
∗F) is finitely generated, so is H i(F). But now consider the

Leray spectral sequence:

Hp(Rqπ∗(π
∗F)) = Epq2 =⇒ En = Hn(π∗F)︸ ︷︷ ︸

finitely generated S-module
because X′ is projective

over SpecS.

If q ≥ 1, then Rqπ∗(π
∗F)|U0 = (0); and since π is projective, Rqπ∗(π

∗F) is coherent by Corollary

6.4. Therefore by noetherian induction, Hp(Rqπ∗(π
∗F)) is finitely generated if q ≥ 1. In other

words, we have a spectral sequence of S-modules with En (all n) and Epq2 (q ≥ 1) finitely

generated. It is a simple lemma that in such a case Ep02 must be finitely generated too. □

7. Computing cohomology (4): Push F into a coherent acyclic one

This is a variant on Method (1) taking advantage of what we have learned already — that

at least on PlS there are plenty of coherent acyclic sheaves obtained by twists. It is the closest

in spirit to the original Italian methods out of which cohomology grew. For simplicity we work

only on Pnk (and its closed subschemes) for k an infinite field for the rest of §7.
Let F be coherent on Pnk . Then if F (X0, . . . , Xn) is a homogeneous polynomial of degree d,

multiplication by F defines a homomorphism:

F F−→ F(d).

If d is sufficiently large, H i(Pnk ,F(d)) = (0), i > 0, and the cohomology of F can be deduced

from the kernel K1 and cokernel K2 of F as follows:

0 // K1
// F //

##GGGGG F(d) // K2
// 0

F/K1

99ssss

&&LLLLLL

0

::vvvvv
0
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(7.1) // H i(K1) // H i(F) // H i(F/K1) // H i+1(K1) //

H i−1(K2), if i ≥ 2

or

H0(K2)/H
0(F(d)), if i = 1.

≈
OO

This reduces properties of the cohomology of F to those of K1 and K2 which have, in general,

lower dimensional support. In fact, one can easily arrange that F is injective, hence K1 = (0)

too. In terms of Ass(F), defined in §II.3, we can give the following criterion:

Proposition 7.2. Given a coherent F on Pnk , let Ass(F) = {x1, . . . , xt}. Then F : F →
F(d) is injective if and only if F (xa) ̸= 0, 1 ≤ a ≤ t (more precisely, if xa /∈ V (Xna), then the

function F/Xd
na

is not 0 at xa).

Proof. Let Ua = Pnk \ V (Xna). If (F/Xd
na
)(xa) = 0, then F/Xd

na
= 0 on {xa} ∩ Ua. But

∃s ∈ F(Ua) with Supp(s) = {xa} ∩ Ua, so (F/Xd
na
)N · s = 0 if N ≫ 0. Choose Na so that

(F/Xd
na
)Na · s ̸= 0 but (F/Xd

na
)Na+1 · s = 0. Then

F ·
(

F

Xd
na

)Na

· s = 0 in F(d)(Ua)

so F is not injective. Conversely if F (xa) ̸= 0 for all a and s ∈ F(U) is not 0, then for some a,

sxa ∈ Fxa is not 0. But F/Xd
na

is a unit in Oxa , so (F/Xd
na
) · sxa ̸= 0, so F · sxa ̸= 0. □

Assuming then that F is injective, we get

H i(F) ≈
// H i−1(K2) if i ≥ 2

(7.1∗)

H1(F) ≈
// H0(K2)/ ImageH0(F(d)).

It is at this point that we make contact with the Italian methods. Let X ⊂ Pnk be a projective

variety, i.e., a reduced and irreducible closed subscheme. Let D be a Cartier divisor on X and

OX(D) the invertible sheaf of functions “with poles on D” (cf. §III.6). Then OX(D), extended

by (0) outside X, is a coherent sheaf on Pnk of OPn-modules (cf. Remark after Corollary 3.8) and

its cohomology may be computed by (7.1∗).

In fact, we may do even better and describe its cohomology by induction using only sheaves

of the same type OX(D)! First, some notation —

Definition 7.3. If X is an irreducible reduced scheme, Y ⊂ X an irreducible reduced

subscheme and D is a Cartier divisor on X, then if Y ⊈ SuppD, define TrY D to be the Cartier

divisor on Y whose local equations at y ∈ Y are just the restrictions to Y of its local equations

at y ∈ X. Note that:

OY (TrY D) ∼= OX(D)⊗OX
OY .

Now take a homogeneous polynomial F endowed with the following properties:

a) X ⊈ V (F ) and the effective Cartier divisor H = TrX(V (F )) is reduced and irreducible,

b) no component Dj of SuppD is contained in V (F ).

It can be shown that such an F exists (in fact, in the affine space of all F ’s, any F outside a

proper union of subvarieties will have these properties). Take a second F ′ with the property

c) H ⊈ V (F ′)
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and let H ′ = TrX(V (F ′)). Start with the exact sequence

0 −→ OX(−H) −→ OX −→ OH −→ 0

and tensor with OX(D +H ′). We find

0 −→ OX(D +H ′ −H) −→ OX(D +H ′) −→ OH(TrH D +TrH H
′) −→ 0.

But the first sheaf is just OX(D) via:

OX(D)
multiply F/F ′
−−−−−−−−−→

≈
OX(D +H ′ −H)

and the second sheaf is just OX(D)(d) and the whole sequence is the same exact sequence as

before:

(7.4) 0 // OX(D)

multiplication
by F

//

≈multiplication
by F/F ′

��

OX(D)(d) //

≈ multiplication
by F/F ′

��

K2
// 0

0 // OX(D +H ′ −H)
natural
inclusion

// OX(D +H ′) // OH(TrH D +TrH H
′) // 0

Thus K2 ≈ OH(TrH D + TrH H
′). This inductive precedure allowed the Italian School to

discuss the cohomology in another language without leaving the circle of ideas of linear systems.

For instance

H1(OX(D)) ∼= Coker
[
H0(OX(D +H ′)) −→ H0(OH(TrH D +TrH H

′))
]

∼=

 space of linear conditions that must be imposed

on an f ∈ R(H) with poles on TrH D +TrH H
′ before

it can be extended to an f ∈ R(X) with poles in D +H ′

 .
Classically one dealt with the projective space |D+H ′|X of divisors V (s), s ∈ H0(OX(D+H ′)),

(which is just the set of 1-dimensional subspaces of H0(OX(D+H ′))), and provided dimX ≥ 2,

we can look instead at:{
subset of |D +H ′|X of divisors

E with H ⊈ SuppE

}
TrH

// |TrH D +TrH H
′|H

E
� // TrH E.

Then

dimH1(OX(D)) =codimension of Image of TrH , called

the “deficiency”of TrH |D +H ′|X .

We go on now to discuss another application of method (4) — to the Hilbert polynomial.

First of all, suppose X is any scheme proper over k and F is a coherent sheaf on X. Then one

defines:

χ(F) =
dimX∑
i=0

(−1)i dimkH
i(X,F)

= the Euler characteristic of F ,
(7.5)

which makes sense because the H i are finite-dimensional by Grothendieck’s coherency theorem

(Theorem 6.5). The importance of this particular combination of the dimH i’s is that if

0 −→ F1 −→ F2 −→ F3 −→ 0
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is a short exact sequence of coherent sheaves, then it follows from the associated long exact

cohomology sequence by a simple calculation that:

(7.6) χ(F2) = χ(F1) + χ(F3).

This makes χ particularly easy to compute. In particular, we get:

Theorem 7.7. Let F be a coherent sheaf on Pnk . Then there exists a polynomial P (t) with

degP = dimSuppF such that

χ(F(ν)) = P (ν), all ν ∈ Z.

In particular, by Theorem 6.1, there exists an ν0 such that

dimH0(F(ν)) = P (ν), if ν ∈ Z, ν ≥ ν0.

P (t) is called the Hilbert polynomial of F .

Proof. This is a geometric form of Part I [87, (6.21)] and the proof is parallel: Let L(X)

be a linear form such that L(xa) ̸= 0 for any of the associated points xa of F . Then as above

we get an exact sequence

0 −→ F L−→ F(1) −→ G −→ 0

for some coherent G, with
SuppG = SuppF ∩ V (L)

hence

dimSuppG = dimSuppF − 1.

Tensoring by OPn(l) we get exact sequences:

(7.8) 0 −→ F(l) −→ F(l + 1) −→ G(l) −→ 0

for every l ∈ Z, hence
χ(F(l + 1)) = χ(F(l)) + χ(G(l)).

Now we prove the theorem by induction: if dimSuppF = 0, SuppF is a finite set, so SuppG = ∅
and F(l) ≈−→ F(l + 1) for all l by (7.8). Therefore χ(F(l)) = χ(F) = constant, a polynomial of

degree 0! In general, if s = dimSuppF , then by induction χ(G(l)) = Q(l), Q a polynomial of

degree s− 1. Then

χ(F(l + 1))− χ(F(l)) = Q(l)

hence as in Part I [87, (6.21)], χ(F(l)) = P (l) for some polynomial P of degree s. □

This leads to the following point of view. Given F , one often would like to compute

dimk Γ(F): for F = OX(D), this is the typical problem of the additive theory of rational func-

tions on X. But because of the formula (7.6), it is often easier to compute either χ(F) directly,
or dimk Γ(F(ν)) for ν ≫ 0, hence the Hilbert polynomial, hence χ(F) again. The Italians called
χ(F) the virtual dimension of Γ(F) and viewed it as dimΓ(F) (the main term) followed by an

alternating sum of “error terms” dimH i(F), i ≥ 1. Thus one of the main reasons for computing

the higher cohomology groups is to find how far dimΓ(F) has diverged from χ(F).
Recall that in Part I [87, (6.28)], we defined the arithmetic genus pa(X) of a projective

variety X ⊂ Pnk with a given projective embedding to be

pa(X) = (−1)r(P (0)− 1)

where P (x) = Hilbert polynomial of X, r = dimX.

It now follows:
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Corollary 7.9 (Zariski-Muhly).

pa(X) = dimHr(OX)− dimHr−1(OX) + · · ·+ (−1)r−1 dimH1(OX)

hence pa(X) is independent of the projective embedding of X.

Proof. By Theorem 7.7, P (0) = χ(OX) so the formula follows using dimH0(OX) = 1

(Corollary II.6.10). □

I’d like to give one somewhat deeper result analyzing the “point” vis-a-vis tensoring with

O(ν) at which the higher cohomology vanishes; and which shows how the vanishing of higher

cohomology groups alone can imply the existence of sections:

Theorem 7.10 (Generalized lemma of Castelnuovo and syzygy theorem of Hilbert). Let F
be a coherent sheaf on Pnk . Then the following are equivalent:

i) H i(F(−i)) = (0), 1 ≤ i ≤ n,
ii) H i(F(m)) = (0), if m+ i ≥ 0, i ≥ 1,

iii) there exists a “Spencer resolution”:

0 −→ OPn(−n)rn −→ OPn(−n+ 1)rn−1 −→ · · · −→ OPn(−1)r1 −→ Or0Pn −→ F −→ 0.

If these hold, then the canonical map

H0(F)⊗H0(OPn(l)) −→ H0(F(l))

is surjective, l ≥ 0.

Proof. We use induction on n: for n = 0, Pnk = Spec k, F = k̃n and the result is clear.

So we may suppose we know the result on Pn−1
k . The implication (ii) =⇒ (i) is obvious and

(iii) =⇒ (ii) follows easily from what we know of the cohomology of OPn(l), by splitting the

resolution up into a set of short exact sequences:

0 // OPn(−n)rn // OPn(−n+ 1)rn−1 // Fn−1
// 0

_______________

0 // F2
// OPn(−1)r1 // F1

// 0

0 // F1
// Or0Pn

// F // 0.

So assume (i). Choose a linear form L(X) such that L(xa) ̸= 0 for any associated points xa of

F , getting sequences

0 −→ F(l − 1)
⊗L−→ F(l) −→ G(l) −→ 0, all l ∈ Z

where G is a coherent sheaf on the hyperplane H = V (L). In fact G is not only supported on H

but is annihilated by the local equations L/Xj of H: hence G is a sheaf of OH -modules. Since

H ∼= Pn−1
k , we are in a position to apply our induction hypothesis. The cohomology sequences

give:

−→ H i(F(−i)) −→ H i(G(−i)) −→ H i+1(F(−i− 1)) −→ .

Applying this for i ≥ 1, we find that G satisfies (i) also; applying it for i = 0, we find that

H0(F)→ H0(G) is surjective. Therefore by the theorem for G,

H0(G)⊗H0(OH(l)) −→ H0(G(l))
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is surjective. Consider the maps:

H0(F)⊗H0(OPn(l))
γ

//

α
��

H0(F(l))
β
��

H0(G)⊗H0(OH(l)) // H0(G(l)).

We prove next that γ is surjective for all l ≥ 0. By Proposition III.1.8, H0(OH(l)) is the space

of homogeneous polynomials of degree l in the homogeneous coordinates on H: therefore each

is obtained by restricting to H a polynomial P (X0, . . . , Xn) of degree l and H0(OPn(l)) →
H0(OH(l)) is surjective. Therefore α is surjective. It follows that if s ∈ H0(F(l)), then β(s) =∑
uq ⊗ vq, uq ∈ H0(G), vq ∈ H0(OH(l)); hence lifgint uq to uq ∈ H0(F), vq to vq ∈ H0(OPn(l)),

s−
∑
uq⊗ vq lies in Kerβ. But Kerβ = Image of H0(F(l− 1)) under the map ⊗L : F(l− 1)→

F(l) and by induction on l, anything in H0(F(l − 1)) is in H0(F)⊗H0(OPn(l − 1)). Thus

s−
∑

uq ⊗ vq =
(∑

u′q ⊗ v′q
)
⊗ L, u′q ∈ H0(F), v′q ∈ H0(OPn(l − 1)).

Thus

s =
∑

uq ⊗ vq +
∑

u′q ⊗ (v′q ⊗ L), where v′q ⊗ L ∈ H0(OPn(l))

as required.

Next, note that this implies that F is generated by H0(F). In fact, if x ∈ Pnk , x /∈ V (Xj),

and s ∈ Fx, then X l
j · s ∈ F(l)x. For l≫ 0, F(l) is generated by H0(F(l)). So

X l
j · s ∈ H0(F(l)) · (OPn)x(

H0(F)⊗H0(OPn(l))
)
· (OPn)x

i.e.,

X l
j · s =

∑
uq ⊗ vq · aq, uq ∈ H0(F), vq ∈ H0(OPn(l)), aq ∈ (OPn)x

hence

s =
∑

uq ⊗
vq

X l
j

· aq︸ ︷︷ ︸
∈(OPn )x

.

We can now begin to construct a Spencer resolution: let s1, . . . , sr0 be a basis of H0(F) and

define

Or0Pn −→ F −→ 0

by

(a1, . . . , ar0) 7−→
r0∑
q=0

aqsq.

If F1 is the kernel, then from the cohomology sequence it follows immediately that F1(1) satisfies

Condition (i) of the theorem. Hence F1(1) is also generated by its sections and choosing a basis

t1, . . . , tr1 of H0(F1(1)), we get the next step:

Or1Pn −→ F1(1) −→ 0

(a1, . . . , ar1) 7−→
r1∑
q=1

aqtq
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hence

OPn(−1)r1 //

&&NNNNNN
Or0Pn

// F // 0.

F1

<<xxxx

##HHHHH

0

77oooooooo
0

Continuing in this way, we derive the whole Spencer resolution. It remains to check that after

the last step:

0 −→ Fn+1 −→ OPn(−n)rn −→ Fn −→ 0,

the sheaf Fn+1 is actually (0)! To prove this, we compute H i(Fn+1(l)) for 0 ≤ i ≤ n, 0 ≤ l ≤ n,
using all the cohomology sequences (∗)m associated to:

0 −→ Fm+1 −→ OPn(−m)rm −→ Fm −→ 0.

We get:

a) H0(Fn+1(l)) =
by (∗)n

(0) (using injectivity of H0(Frn)→ H0(Fn(n)) when l = n)

b)

H1(Fn+1)



=
by (∗)n

(0) if l = n (using surjectivity of

H0(Orn)→ H0(Fn(n)))
∼=

by (∗)n
H0(Fn(l)) =

by (∗)n−1

(0) if l < n (using injectivity of

H0(Orn−1)→ H0(Fn−1(n− 1))

when l = n− 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x)

Hn(Fn+1(l)) ∼=
by (∗)n

Hn−1(Fn(l)) ∼=
by (∗)n−1

· · ·

· · · ∼=
by (∗)2

H1(F2(l))

=
by (∗)1

(0) if l ≥ 1 (using surjectivity of

H0(O(l − 1)r1)→ H0(F1(l)))
∼=

by (∗)1
H0(F1) =

by (∗)0
(0) if l = 1 (using injectivity of

H0(Or0)→ H0(F)).

So all these groups are (0). Thus χ(Fn+1(l)) = 0, for n + 1 distinct values l = 0, . . . , n. Since

χ(Fn+1(l)) is a polynomial of degree at most n, it must be identically 0. But then for l ≫ 0,

dimH0(Fn+1(l)) = χ(Fn+1(l)) = 0, hence H0(Fn+1(l)) = (0) and since these sections generate

Fn+1(l), Fn+1(l) = (0) too. □

8. Serre’s criterion for ampleness

This section gives a cohomological criterion equivalent to ampleness for an invertible sheaf

introduced in §III.5. We apply it later to questions of positivity of intersections, formulated in

terms of the Euler characteristic.
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Theorem 8.1. Let X be a scheme over a noetherian ring A, embedded as a closed subscheme

in a projective space over A, with canonical sheaf OX(1). Let F be coherent on X. Then for

all i ≥ 0, H i(X,F) is a finite A-module, and there exists an integer n0 such that for n ≥ n0 we

have

H i(X,F(n)) = 0 for all i ≥ 1.

Proof. We have already seen in Corollary 3.8 that under a closed immersion X ↪→ PrA the

cohomology of F over X is the same as the cohomology of F viewed as a sheaf over projective

space. Consequently we may assume without loss of generality that X = PrA, which we denote

by P.
The explicit computation of cohomology H i(P,OP(n)) in Corollary 5.4 and (5.6) shows that

the theorem is true when F = OP(n) for all integers n. Now let F be an arbitrary coherent

sheaf on P. We can represent F in a short exact sequence (cf. §6)

0 −→ G −→ E −→ F −→ 0

where E is a finite direct sum of sheaves OP(d) for appropriate integers d, and G is defined to

be the kernel of E → F . We use the cohomology sequence, and write the cohomology groups

without P for simplicity:

−→ H i(E) −→ H i(F) −→ H i+1(G) −→

We apply descending induction. For i > r we have H i(F) = 0 because P can be covered by

r + 1 open affine subsets, and the Čech complex is 0 with respect to this covering in dimension

≥ r+1 (cf. (5.5)). If, by induction, H i+1(G) is finite over A, then the finiteness of H i(E) implies

that H i(F) is finite.
Furthermore, twisting by n, that is, taking tensor products with OP(n), is an exact functor,

so the short exact sequence tensored withOP(n) remains exact. This gives rise to the cohomology

exact sequence:

→ H i(E(n))→ H i(F(n))→ H i+1(G(n))→

Again by induction, H i+1(G(n)) = 0 for n sufficiently large, and H i(E(n)) = 0 because of the

special nature of E as a direct sum of sheaves OP(d). This implies that H i(F(n)) = 0 for n

sufficiently large, and concludes the proof of the theorem. □

Theorem 8.2 (Serre’s criterion). Let X be a scheme, proper over a noetherian ring A. Let

L be an invertible sheaf on X. Then L is ample if and only if the following condition holds: For

any coherent sheaf F on X there is an integer n0 such that for all n ≥ n0 we have

H i(X,F ⊗ Ln) = 0 for all i ≥ 1.

Proof. Suppose that L is ample, so Ld is very ample for some d. We have seen (cf. Theorem

III.5.4 and §II.6) that X is projective over A. We apply Theorem 8.1 to the tensor products

F ,F ⊗ L, . . . ,F ⊗ Ld−1

and the very ample sheaf Ld = OX(1) to conclude the proof that the cohomology groups vanish

for i ≥ 1.

Conversely, assume the condition on the cohomology groups. We want to prove that L is

ample. It suffices to prove that for any coherent sheaf F the tensor product F ⊗Ln is generated

by global sections for n sufficiently large. (cf. Definition III.5.1) By Definition III.2.1 it will

suffice to prove that for every closed point P , the fibre F ⊗ Ln ⊗ k(P ) is generated by global
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sections. Let IP be the ideal sheaf defining the closed point P as a closed subscheme. We have

an exact sequence

0 −→ IPF −→ F −→ F ⊗ k(P ) −→ 0.

Since Ln is locally free, tensoring with Ln preserves exactness, and yields the exact sequence

0 −→ IPF ⊗ Ln −→ F ⊗Ln −→ F ⊗ k(P )⊗ Ln −→ 0

whence the cohomology exact sequence

H0(F ⊗ Ln) −→ H0(F ⊗ k(P )⊗ Ln) −→ 0

because H1(IPF⊗Ln) = 0 by hypothesis. This proves that the fibre at P of F⊗Ln is generated

by global sections, and concludes the proof of the theorem. □

9. Functorial properties of ampleness

This section gives a number of conditions relating ampleness on a scheme with ampleness

on certain subschemes.

Proposition 9.1. Let X be a scheme of finite type over a noetherian ring and L an invertible

sheaf, ample on X. For every closed subscheme Y , the restriction L|Y = L ⊗OX
OY is ample

on Y .

Proof. Taking a power of L we may assume without loss of generality that L is very ample

(cf. Theorem III.5.4), so OX(1) in a projective embedding of X. Then OX |Y = OY (1) in that

same embedding. Thus the proposition is immediate. □

Let X be a scheme. For each open subset U we let Nil(U) be the ideal of nilpotnet elements

in OX(U). Then Nil is a sheaf of ideals, and the quotient sheaf OX/Nil defines a closed

subscheme called the reduced scheme Xred. Its sheaf of rings has no nilpotent elements. If F is

a sheaf of OX -modules, then we let

Fred = F/NF where N = Nil .

Alternatively, we can say that Fred is the restriction of F to Xred.

Proposition 9.2. Let X be a scheme, proper over a noetherian ring. Let L be an invertible

sheaf on X. Then L is ample on X if and only if Lred is ample on Xred.

Proof. By Proposition 9.1, it suffices to prove one side of the equivalence, namely: if Lred
is ample then L is ample. Since X is noetherian, there exists an integer r such that if N = Nil
is the sheaf of nilpotent elements, then N r = 0. Hence we get a finite filtration

F ⊃ NF ⊃ N 2F ⊃ · · · ⊃ N rF = 0.

For each i = 1, . . . , r − 1 we have the exact sequence

0 −→ N iF −→ N i−1F −→ N i−1F/N iF −→ 0

whence the exact cohomology sequence

Hp(X,N iF ⊗ Ln) −→ Hp(X,N i−1F ⊗ Ln) −→ Hp(X, (N i−1F/N iF)⊗ Ln).

For each i, N i−1F/N iF is a coherentOX/N -module, and thus is a sheaf onXred. By hypothesis,

and Theorem 8.2, we know that

Hp(X, (N i−1F/N iF)⊗ Ln) = 0
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for all n sufficiently large and all p ≥ 1. But N iF = 0 for i ≥ r. We use descending induction

on i. We have

Hp(X,N iF ⊗ Ln) = 0 for all p > 0, i ≥ r,
and n sufficiently large. Hence inductively,

Hp(X,N iF ⊗ Ln) = 0 for all p > 0

implies that Hp(X,N i−1F ⊗ Ln) = 0 for all p > 0 and n sufficiently large. This concludes the

proof. □

Proposition 9.3. Let X be a proper scheme over a noetherian ring. Let L be an invertible

sheaf on X. Then L is ample if and only if L|Xi is ample on each irreducible component Xi of

X.

Proof. Since an irreducible component is a closed subscheme of X, Proposition 9.1 shows

that it suffices here to prove one implication. So assume that L|Xi is ample for all i. Let Ii
be the coherent sheaf of ideals defining Xi, and say i = 1, . . . , r. We use induction on r. We

consider the exact sequence

0 −→ I1F −→ F −→ F/I1F −→ 0,

giving rise to the exact cohomology sequence

Hp(X, I1F ⊗ Ln) −→ Hp(X,F ⊗ Ln) −→ Hp(X, (F/I1F)⊗ Ln).

Since L|X1 is ample by hypothesis, it follows that

Hp(X, (F/I1F)⊗ Ln) = 0

for all p > 0 and n ≥ n0. Furthermore, I1F is a sheaf with support in X2 ∪ · · · ∪ Xr, so by

induction we have

Hp(X, I1F ⊗ Ln) = 0

for all p > 0 and n ≥ n0. The exact sequence then gives

Hp(X,F ⊗ Ln) = 0

for all p > 0 and n ≥ n0, thus concluding the proof. □

Proposition 9.4. Let f : X → Y be a finite (cf. Definition II.6.6) surjective morphism of

proper schemes over a noetherian ring. Let L be an invertible sheaf on Y . Then L is ample if

and only if f∗L is ample on X.

Proof. First note that f is affine (cf. Proposition-Definition I.7.3 and Definition II.6.6).

Let F be a coherent sheaf on X, so f∗F is coherent on Y . For p ≥ 0 we get:

Hp(Y, f∗(F)⊗ Ln) = Hp(Y, f∗(F ⊗ (f∗L)n))
= Hp(X,F ⊗ (f∗L)n)

by the projection formula9 and by Proposition 3.7.

9Let f : X → Y be a morphism, F an OX -module and L an OY -module. The identity homomorphism

f∗L → f∗L induces an OY -homomorphism L → f∗f
∗L. Tensoring this with f∗F over OY and composing the

result with a canonical homomorphism, one gets a canonical homomorphism

f∗F ⊗OY L −→ f∗F ⊗OY f∗f
∗L −→ f∗(F ⊗OX f∗L).

This can be easily shown to be an isomophism if L is a locally free OY -module of finite rank, giving rise to the

“projection formula”

f∗F ⊗OY L ∼−→ f∗(F ⊗OX f∗L).
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If L is ample, then the left hand side is 0 for n ≥ n0 and p > 0, so this proves that f∗L is

ample on X.

Conversely, assume f∗L ample on X. We show that for any coherent OY -module G, one has

Hp(Y,G ⊗ Ln) = 0, ∀p > 0 and n≫ 0

by noetherian induction on Supp(G).
By Propositions 9.2 and 9.3, we may assume X and Y to be integral. We follow Hartshorne

[56, §4, Lemma 4.5, pp. 25–27] and first prove:

Lemma 9.5. Let f : X → Y be a finite surjective morphism of degree m of noetherian integral

schemes X and Y . Then for every coherent OY -module G on Y , there exist a coherent OX-
module F and an OY -homomorphism ξ : f∗F → G⊕m that is a generic isomorphism (i.e., ξ is

an isomorphism in a neighborhood of the generic point of Y ).

Proof of Lemma 9.5. By assumption, the function field R(X) is an algebraic extension

of R(Y ) of degree m. Let U = SpecA ⊂ X be an affine open set. Since R(X) is the quotient

field of A, we can choose s1, . . . , sm ∈ A such that {s1, . . . , sm} is a basis of R(X) as a vector

space over R(Y ). The OX -submodule H =
∑m

i=1OXsi of the constant OX -module R(X) is

coherent. Since s1, . . . , sm ∈ H0(X,H) = H0(Y, f∗H), we have an OY -homomorphism

η : O⊕m
Y =

m∑
i=1

OY ei −→ f∗H, ei 7−→ si (i = 1, . . . ,m),

which is a generic isomorphism by the choice of s1, . . . , sm. If a coherent OY -module G is given,

η induces an OY -homomorphism

ξ : H′ = HomOY
(f∗H,G) −→ HomOY

(O⊕m
Y ,G) = G⊕m,

which is a generic isomorphism. Since H′ is an f∗OX -module through the first factor of Hom
and f is finite, we have H′ = f∗F for a coherent OX -module F . □

To continue the proof of Proposition 9.4, let G be a coherent OY -module G. Let F be

a coherent OX -module as in Lemma 9.5, and let K and C be the kernel and cokernel of the

OY -homomorphism ξ : f∗(F)→ G⊕m. We have exact sequences

0 −→ K −→ f∗F −→ Image(ξ) −→ 0

0 −→ Image(ξ) −→ G⊕m −→ C −→ 0.

K and C are coherent OY -modules, and Supp(K) ⫋ Y and Supp(C) ⫋ Y , since ξ is a generic

isomorphism. Hence by the induction hypothesis, we have

Hp(Y,K ⊗ Ln) = Hp(Y, C ⊗ Ln) = 0, ∀p > 0 and n≫ 0.

By the cohomology long exact sequence, we have

Hp(Y, (f∗F)⊗ Ln)
∼

// Hp(Y, Image(ξ)⊗ Ln) ∼
// Hp(Y,G ⊗ Ln)⊕m

Hp(X,F ⊗ (f∗L)n)

for all p > 0 and n≫ 0, the equality on the left hand side being again by the projection formula.

Hp(X,F ⊗ (f∗L)n) = 0 for all p > 0 and n≫ 0, since f∗L is assumed to be ample. Hence

Hp(Y,G ⊗ Ln) = 0, ∀p > 0 and n≫ 0.

□
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Proposition 9.6. Let X be a proper scheme over a noetherian ring A. Let L be an invertible

sheaf on X, and assume that L is generated by its global sections. Suppose that for every closed

integral curve C in X the restriction L|C is ample. Then L is ample on X.

For the proof we need the following result given in Proposition VIII.1.7:

Let C ′ be a geometrically irreducible curve, proper and smooth over a field k.

An invertible sheaf L′ on C ′ is ample if and only if degL′ > 0.

Proof. By Propositions 9.2 and 9.3 we may assume without loss of generality that X is

integral. Since L is generated by global sections, a finite number of these define a morphism

φ : X −→ PnA
such that L = φ∗OP(1). Then φ is a finite morphism. For otherwise, by Corollary V.6.5 some

fiber of φ contains a closed integral curve C. Let φ(C) = P , a closed point of PnA. Let f : C ′ → C

be a morphism obtained as follows: C ′ is the normalization of C in a composite field k(P )R(C)

obtained as a quotient of

k(P )⊗k(P ) R(C),

where k(P ) is the algebraic closure of k(P ). (C ′ is regular by Proposition V.5.11, hence is

proper and smooth over k(P ).) Since L|C is ample, so is L′ = f∗L by Proposition 9.4. But

then degL′ > 0 by Proposition VIII.1.7, while L′ = f∗L = f∗φ∗OP(1). This contradicts the

fact that φ(C) = P is a point. Hence φ is finite. Propositions 9.2, 9.3 and 9.4 now conclude the

proof. □

10. The Euler characteristic

Throughout this section, we let A be a local artinian ring. We let

X −→ Spec(A)

be a projective morphism. We let F be a coherent sheaf on X.

By Theorem 8.1, the cohomology groups H i(X,F) are finite A-modules, and since A is

artinian, they have finite length. By (5.5) and Corollary 3.8, we also have H i(X,F) = 0 for i

sufficiently large. We define the Euler characteristic

χA(X,F) = χA(F) =
∞∑
i=0

(−1)i lengthH i(X,F).

This is a generalization of what we introduced in (7.5) in the case A = k a field. As a general-

ization of Theorem 7.7, we have:

Proposition 10.1. Let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be a short exact sequence of coherent sheaves on X. Then

χA(F) = χA(F ′) + χA(F ′′).

Proof. This is immediate from the exact cohomology sequence

−→ Hp(X,F ′) −→ Hp(X,F) −→ Hp(X,F ′′) −→

which has 0’s for p < 0 and p sufficiently large. cf. Lang [75, Chapter IV]. □

We now compute this Euler characteristic in an important special case.
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Proposition 10.2. Suppose P = PrA. Then

χA(OP(n)) =

(
n+ r

r

)
=

(n+ r)(n+ r − 1) · · · (n+ 1)

r!
for all n ∈ Z.

Proof. For n > 0, we can apply Corollary 5.4 to conclude that

χA(OP(n)) = lengthH0(P,OP(n)),

which is the number of monomials in T0, . . . , Tr of degree n, and is therefore equal to the binomial

coefficient as stated. If n ≤ −r − 1, then similarly by (5.6), we have

χk(OP(n)) = (−1)r lengthHr(P,OP(n)).

From the explicit determination of the cohomology in (5.6) if we put n = −r−d then the length

of Hr(P,OP(n)) over A is equal to the number of r-tuples (q0, . . . , qr) of integers qj > 0 such

that
∑
qj = r + d, which is equal to the number of r-tuples (q′0, . . . , q

′
r) of integers ≥ 0 such

that
∑
q′j = d− 1. This is equal to(

d− 1 + r

r

)
= (−1)r

(
n+ r

r

)
.

Finally, let −r ≤ n ≤ 0. Then H i(P,OP(n)) = 0 for all i > 0 once more by Corollary 5.4 and

(5.6). Also the binomial coefficient is 0. This proves the proposition. □

Starting with the explicit case of projective space as in Proposition 10.2, we can now derive

a general result, which is a generalization of Theorem 7.7 in the case A = k a field.

Theorem 10.3. Let A be a local artinian ring. Let X be a projective scheme over Y =

Spec(A). Let L be an invertible sheaf on X, very ample over Y , and let F be a coherent sheaf

on X. Put

F(n) = F ⊗ Ln for n ∈ Z.
i) There exists a unique polynomial P (T ) ∈ Q[T ] such that

χA(F(n)) = P (n) for all n ∈ Z.

ii) For n sufficiently large, χA(F(n)) = lengthH0(X,F(n)).
iii) The leading coefficient of P (T ) is ≥ 0.

Proof. By Theorem 8.1 we know that

H i(F(n)) = 0 for i ≥ 1 and n large.

Hence χA(F(n)) is the length of H0(F(n)) as asserted in (ii). In particular, χA(F(n)) is ≥ 0

for n large, so the leading coefficient of P (T ) is ≥ 0 if such polynomial exists. Its uniqueness is

obvious.

To show the existence, we reduce to the case of Proposition 10.2 by Jordan-Hölder techniques.

Suppose we have an exact sequence

0 −→ F ′ −→ F −→ F ′′ −→ 0.

Taking the tensor product with L preserves exactness. It follows immediately that if (i) is true

for F ′ and F ′′, then (i) is true for F . Let m be the maximal ideal of A. Then there is a finite

filtration

F ⊃ mF ⊃ m2F ⊃ · · · ⊃ msF = 0.

By the above remark, we are reduced to proving (i) when mF = 0, because m annihilates each

factor sheaf mjF/mj+1F .
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Suppose now that mF = 0. Then F can be viewed as a sheaf on the fibre Xy, where y is the

closed point of Y = Spec(A). The restriction of L to Xy is ample by Proposition 9.1, and the

cohomology groups of a sheaf on a closed subscheme are the same as those of that same sheaf

viewed on the whole scheme. The twisting operation also commutes with passing to a closed

subscheme. This reduces the proof that χA(F(n)) is a polynomial to the case when A is a field

k. Thus we are done by Theorem 7.7. □

When A = k is a field, the length is merely the dimension over k. For any coherent sheaf F
on X we have by definition

χ(F) =
d∑
i=0

(−1)i dimkH
i(X,F),

where d = dimX. By Theorem 7.7, we know that

P (n) = χ(F(n))

is a polynomial of degree e where e = dimSuppF .

Remark. (Added in publication) As a part of the results on cohomology and base change,

Grothendieck showed in EGA [1, Chapter III, Theorem 7.9.4] the following:

Let f : X → Y be a proper morphism of noetherian schemes, and F a coherent

OX -module flat over Y . Then

Y ∋ y 7−→ χ(Xy,Fy) :=
∞∑
i=0

(−1)i dimk(y)H
i(Xy,Fy)

is locally constant, where

Xy := X ×Y Spec(k(y)) a scheme over k(y)
Fy := F ⊗OY,y

k(y) an OXy -module.

For the proof, see also Mumford [85, Chapter II, §5].

11. Intersection numbers

Throughout this section we let X be a proper scheme over a field k. We let

χ = χk.

Theorem 11.1 (Snapper). Let L1, . . . ,Lr be invertible sheaves on X and let F be a coherent

sheaf. Let d = dimSupp(F). Then there exists a polynomial P with rational coefficients, in r

variables, such that for all integers n1, . . . , nr we have

P (n1, . . . , nr) = χ(Ln1
1 ⊗ · · · ⊗ L

nr
r ⊗F).

This polynomial P has total degree ≤ d.

Proof. Suppose first that L1, . . . ,Lr are very ample. Then the assertion follows by induc-

tion on r and Theorem 7.7 (generalized in Theorem 10.3). Suppose X projective. Then there

exists a very ample invertible sheaf L0 such that L0L1, . . . ,L0Lr are very ample (take any very

ample sheaf, raise it to a sufficiently high power and use Theorem III.5.10). Let

Q(n0, n1, . . . , nr) = χ (Ln0
0 ⊗ (L0L1)n1 ⊗ · · · ⊗ (L0Lr)nr ⊗F) .

Then

P (n1, . . . , nr) = Q(−n1 − · · · − nr, n1, . . . , nr)
and the theorem follows.
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If X is not projective, the proof is more complicated. We follow Kleiman [70]. The proof

proceeds by induction on d = dimSupp(F). Since the assertion is trivial if d = −1, i.e., F = (0),

we assume d ≥ 0.

Replacing X by the closed subscheme SpecX(OX/Ann(F)) defined by the annihilator ideal

Ann(F), we may assume Supp(F) = X. The induction hypothesis then means that the assertion

is true for any coherent OX -module F with Supp(F) ⫋ X, i.e., for torsion OX -modules F .
Let K be the abelian category of coherent OX -modules, and let K′ ⊂ Ob(K) consist of those

F ’s for which the assertion holds. K′ is obviously exact in the sense of Definition II.6.11. By

dévissage (Theorem II.6.12), it suffices to show that OY ∈ K′ for any closed integral subscheme

Y of X. In view of the induction hypothesis, we may assume Y = X, that is, X itself is

integral. Then by Proposition III.6.2, there exists a Cartier divisor D on X such that L1 =

OX(D) and that the intersections I = OX(−D) ∩ OX as well as J = OX(D) ∩ OX taken

inside the function field R(X) are coherent OX -ideals not equal to OX . Obviously, we have

J = I ⊗ OX(D) = I ⊗ L1. Tensoring the exact sequence 0 → I → OX → OX/I → 0 (resp.

0→ J → OX → OX/J → 0) with Ln1
1 (resp. Ln1−1

1 ), we have exact sequences

0 // I ⊗ Ln1
1

// Ln1
1

// Ln1
1 ⊗ (OX/I) // 0

0 // J ⊗ Ln1−1
1

// Ln1−1
1

// Ln1−1
1 ⊗ (OX/J ) // 0.

Thus tensoring both sequences with Ln2
2 ⊗· · ·⊗Lnr

r and taking the Euler characteristic, we have

χ(Ln1
1 ⊗ L

n2
2 ⊗ · · · ⊗ L

nr
r )− χ(Ln1−1

1 ⊗ Ln2
2 ⊗ · · · ⊗ L

nr
r )

=χ(Ln1
1 ⊗ L

n2
2 ⊗ · · · ⊗ L

nr
r ⊗ (OX/I))− χ(Ln1−1

1 ⊗ Ln2
2 ⊗ · · · ⊗ L

nr
r ⊗ (OX/J )).

The right hand side is a polynomial with rational coefficients in n1, . . . , nr of total degree < d

since OX/I and OX/J are torsion OX -modules. Hence we are done, since χ(Ln2
2 ⊗ · · · ⊗ Lnr

r )

is a polynomial in n2, . . . , nr of total degree ≤ d by induction on r. □

We recall here the following result on integral valued polynomials.

Lemma 11.2. Let P (x1, . . . , xr) ∈ Q[x1, . . . , xr] = Q[x] be a polynomial with rational coeffi-

cients, and integral valued on Zr. Then P admits an expression

P (x1, . . . , xr) =
∑

a(i1, . . . , ir)

(
x1 + i1
i1

)
· · ·
(
xr + ir
ir

)
where a(i1, . . . , ir) ∈ Z, the sum is taken for i1, . . . , ir ≥ 0,(

x+ i

i

)
=

(x+ i)(x+ i− 1) · · · (x+ 1)

i!
if i > 0,

and the binomial coefficients is 1 if i = 0, and 0 if i < 0.

Proof. This is proved first for one variable by induction, and then for several variables by

induction again. We leave this to the reader. □

Lemma 11.3. The coefficient of n1 · · ·nr in χ(Ln1
1 ⊗ · · · ⊗ Lnr

r ⊗F) is an integer.

Proof. Immediate from Lemma 11.2. □

Let us define the intersection symbol :

(L1.L2 . . .Lr.F) = coefficient of n1 · · ·nr in the polynomial

χ(Ln1
1 ⊗ · · · ⊗ L

nr
r ⊗F).

Lemma 11.4.
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(i) The function (L1 . . .Lr.F) is multilinear in L1, . . . ,Lr.
(ii) If c is the coefficient of nr in χ(Ln ⊗F), then

(L.L . . .L.F) = r!c (L is repeated r times.)

Proof. Let L,M be invertible sheaves. Then

χ(Ln ⊗Mm ⊗ Ln2
2 ⊗ · · · ⊗ L

nr
r ⊗F) = ann2 · · ·nr + bmn2 · · ·nr + · · ·

with rational coefficients a, b. Putting n = 0 and m = 0 shows that

a = (L.L2 . . .Lr.F) and b = (M.L2 . . .Lr.F).

Let m = n = n1. It follows that

((L ⊗M).L2 . . .Lr.F) = (L.L2 . . .Lr.F) + (M.L2 . . .Lr.F).

Similarly, (L−1.L2 . . .Lr.F) = −(L.L2 . . .Lr.F). This proves the first assertion.

As to the second, let P (n) = χ(Ln.F) and

Q(n1, . . . , nr) = χ(Ln1
1 . . .Lnr

r .F).

Let ∂ be the derivative, and ∂1, . . . , ∂r be the partial derivatives. Then the second assertion

follows from the relation

∂1 · · · ∂rQ(0, . . . , 0) = ∂rP (0).

□

The next lemma gives the additivity as a function of F , in the sense of the Grothendieck

group.

Lemma 11.5. Let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be an exact sequence of coherent sheaves. Then

(L1 . . .Lr.F) = (L1 . . .Lr.F ′) + (L1 . . .Lr.F ′′).

Proof. Immediate since the Euler characteristic satisfies the same type of relation. □

Remark. (Added in publication) Let X be a proper scheme over an algebraically closed

field k. For a connected noetherian scheme T over k, consider the scheme X := X ×Spec(k) T

over T and a coherent OX -module F that is flat over T . For any closed point t of T , we have a

family of coherent OX -modules Ft on Xt = X. By what we remarked at the end of §10,

χ(X,Ft) is independent of t.

Consequently for invertible sheaves L1, . . . ,Lr on X, we have

(L1.L2 . . .Lr.Ft) is independent of t.
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12. The criterion of Nakai-Moishezon

Let X be a proper scheme over a field k.

Let Y be a closed subscheme of X. Then Y is defined by a coherent sheaf of ideals IY , and

OY = OX/IY

is its structure sheaf. Let D1, . . . , Dr be divisors on X, by which we always mean Cartier

divisors, so they correspond to invertible sheaves L1 = OX(D1), . . . ,Lr = OX(Dr). Suppose Y

has dimension r. We define the intersection number

(D1.D2 . . . Dr.Y ) = coefficient of n1 · · ·nr in the polynomial

χ(Ln1
1 ⊗ L

n2
2 ⊗ · · · ⊗ L

nr
r ⊗OY ).

(Dr.Y ) = (D . . .D.Y ), where D is repeated r times.

Lemma 12.1.

(i) The intersection number (D1.D2 . . . Dr.Y ) is an integer, and the function

(D1, . . . , Dr) 7−→ (D1 . . . Dr.Y )

is multilinear symmetric.

(ii) If a is the coefficient of nr in χ(Ln ⊗OY ), and L = OX(D), then (Dr.Y ) = r!a.

Proof. This is merely a repetition of Lemma 11.4 in the present context and notation. □

Remark. (Added in publication) Let X be a proper scheme over an algebraically closed

field k. For a connected noetherian scheme T over k, consider the scheme X := X ×Spec(k) T

over T and its closed subscheme Y that is flat over T with r-dimensional fibres. We thus have a

family of r-dimensional closed subschemes Yt of Xt = X parametrized by closed points t of T .

By what we remarked at the end of §11, we see that

(D1.D2 . . . Dr.Yt) is independent of t.

Remark. Suppose that Y is zero dimensional, so Y consists of a finite number of closed

points. Then the higher cohomology groups are 0, and

(Y ) = χ(OY ) = dimH0(Y,OY ) > 0,

because H0(Y,OY ) is the vector space of global sections, and is not 0 since Y is affine. One can

reduce the general intersection symbol to this case by means of the next lemma.

Lemma 12.2. Let L1, . . . ,Lr be invertible sheaves on X such that L1 is very ample. Let D1

be a divisor corresponding to L1 such that D1 does not contain any associated point of OY . Let

Y ′ be the scheme intersection of Y and D1. Then

(D1 . . . Dr.Y ) = (D2 . . . Dr.Y
′).

In particular, if D1, . . . , Dr are ample, then

(D1 . . . Dr.Y ) > 0.

Proof. If IY is the sheaf of ideals defining Y , and I1 is the sheaf of ideals defining D1, the

(IY , I1) defines Y ∩D1. By §III.6 we know that I1 is locally principal. The assumption in the

lemma implies that we have an exact sequence

(∗) 0 −→ I1 ⊗OY −→ OY −→ OY ∩D1 −→ 0.
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Indeed, let Spec(A) be an open affine subset of X containing a generic point of Y , and such that

D1 is represented in A by the local equation f = 0, while Y is defined by the ideal I. Then the

above sequence translates to

0 −→ fA⊗A/I −→ A/I −→ A/(I, f) −→ 0

which is exact on the left by our assumption on f .

But I1 = L−1
1 by the definitions. Tensoring the sequence (∗) with

Ln1
1 ⊗ · · · ⊗ L

nr
r ,

taking the Euler characteristic, and using the additivity of the Euler characteristic, we get

(D1 . . . Dr.Y )n1 · · ·nr − (D1 . . . Dr.Y )(n1 − 1)n2 · · ·nr + lower terms

= (D2 . . . Dr.Y
′)n2 · · ·nr + lower terms.

This proves the lemma. □

The intersection number (Dr.Y ) was taken with respect to the scheme X and it is sometimes

necessary to include X in the notation, so we write

(D1 . . . Dr.Y )X or (L1 . . .Lr.Y )X .

On the other hand, let Z be a closed subscheme of X. Then we may induce the sheaves to Z to

get L1|Z , . . . ,Lr|Z .

Lemma 12.3. Let Y ⊂ Z ⊂ X be inclusions of closed subschemes. Suppose Y has dimension

r as before. Then

(L1 . . .Lr.Y )X = (L1|Z . . .Lr|Z .Y )Z .

Proof. In the tensor products

Ln1
1 ⊗ · · · ⊗ L

nr
r ⊗OY

we may tensor with OZ each one of the factors without changing this tensor product. The

cohomology of a sheaf supported by a closed subscheme is the same as the cohomology of the

sheaf in the scheme itself (cf. Corollary 3.8), so the assertion of the lemma is now clear. □

Theorem 12.4 (Criterion of Nakai-Moishezon). Let X be a proper scheme over a field k.

Then a divisor D is ample on X if and only if (Dr.Y ) > 0 for all integral closed subschemes Y

of dimension r, for all r ≤ dimX.

Proof. Suppose D is ample. Replacing D by a positive multiple, we may assume without

loss of generality that D is very ample. Let L = O(D), and let L = f∗OP(1) for a projective

embedding f : X → P over k. Abbreviate H = OP(1). Then the Euler characteristic

χk(Ln1 ⊗ · · · ⊗ Lnr ⊗OY )

is the same as the Euler characteristic

χk(Hn1 ⊗ · · · ⊗ Hnr ⊗OY )

where OY is now viewed as a sheaf on P. This reduces the positivity to the case of projective

space, and D is a hyperplane, which is true by Lemma 12.2.

The converse is more difficult and is the essence of the Nakai-Moishezon theorem. We assume

that (Dr.Y ) > 0 for all integral closed subschemes Y of X of dimension r ≤ dimX and we want

to prove that D is ample. By Propositions 9.2 and 9.3, we may assume that X is integral

(reduced and irreducible), so X is a variety.

For the rest of the proof we let L = O(D).
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By Lemma 12.3 and induction we may assume that L|Z is ample for every closed subscheme

Z of X, Z ̸= X.

Lemma 12.5. For n large, H0(X,Ln) ̸= 0.

Proof of Lemma 12.5. First we remark that χ(Ln)→∞ as n→∞, for by Lemma 12.1

(ii),

χ(Ln) = and + lower terms

where d = dimX, and r!a = (Dd.X) > 0 by assumption.

Next, we prove that H i(Ln) ≈ H i(Ln−1) for i ≥ 2 and n ≥ n0. Since X is integral, we can

identify L as a subsheaf of the sheaf of rational functions on X. We let

I = L−1 ∩ OX .

Then I is a coherent sheaf of ideals of OX , defining a closed subscheme Y ̸= X. Furthermore

I ⊗L is also a coherent sheaf of ideals, defining a closed subscheme Z ̸= X. We have two exact

sequences

0 // I // OX // OY // 0

0 // I ⊗ L // OX // OZ // 0.

We tensor the first with Ln and the second with Ln−1. By induction, H i(Ln|Y ) = H i(Ln−1|Z) =
0 for i ≥ 1 and n ≥ n0. Then the exact cohomology sequence gives isomorphisms for i ≥ 2 and

n ≥ n0:
H i(I ⊗ Ln) ≈ H i(Ln) and H i(I ⊗ L ⊗ Ln−1) ≈ H i(Ln−1).

This proves that H i(Ln) ≈ H i(Ln−1) for i ≥ 2. But then

dimH0(Ln) ≥ χ(Ln)→∞,

thus proving the lemma. □

A global section of Ln then implies the existence of an effective divisor E ∼ nD, and since the

intersection number depends only on the linear equivalence class (namely, on the isomorphism

class of the invertible sheaves), the hypothesis of the theorem implies that (Er.Y ) > 0 for all

closed subschemes Y of X. It will suffice to prove that E is ample. This reduces the proof of

the theorem to the case when D is effective, which we now assume.

Lemma 12.6. Assume D effective. Then for sufficiently large n, Ln is generated by its global

sections.

Proof of Lemma 12.6. We have L = O(D) where D is effective, so we have an exact

sequence

0 −→ L−1 −→ OX −→ OD −→ 0.

Tensoring with Ln yields the exact sequence

0 −→ Ln−1 −→ Ln −→ Ln|D −→ 0.

By induction, Ln|D is ample on D, so H1(Ln|D) = 0 for n large. The cohomology sequence

H0(Ln) −→ H0(Ln|D) −→ H1(Ln−1) −→ H1(Ln) −→ H1(Ln|D)

shows that H1(Ln−1) → H1(Ln) is surjective for n large. Since the vector spaces H1(Ln) are

finite dimensional, there exists n0 such that

H1(Ln−1) −→ H1(Ln) is an isomorphism for n ≥ n0.
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Now the first part of the cohomology exact sequence shows that

H0(Ln) −→ H0(Ln|D) is surjective for n ≥ n0.

Since Ln|D is ample on D, it is generated by global sections. By Nakayama, it follows that Ln
is generated by global sections. This proves Lemma 12.6 □

We return to the proof of Theorem 12.4 proper. If dimX = 1, then (D) > 0, X is a curve,

and every effective non-zero divisor on a curve is ample (cf. Proposition VIII.1.7 below).

Suppose dimX ≥ 2. For every integral curve (subscheme of dimension one) C on X, we

know by induction that Ln|C is ample on C. We can apply Proposition 9.6 to conclude the

proof. □

Exercise—Modifications needed

Bezout’s Theorem via the Spencer resolution.

(1) If C is any abelian category, define

K0(C) =


free abelian group on elements [X], one for each

isomorphism class of objects in C, modulo relations

[X2] = [X1] + [X3] for each short exact sequence:

0→ X1 → X2 → X3 → 0

in C.


If X is any noetherian scheme, define

K0(X) = K0(Category of coherent sheaves of OX -modules on X)

K0(X) = K0(Category of locally free finite rank sheaves of OX -modules).

Prove:

a) ∃ a natural map K0(X)→ K0(X).

b) K0(X) is a contravariant functor in X, i.e., ∀ morphism f : X → Y , we get

f∗ : K0(Y )→ K0(X) with the usual properties.

c) K0(X) is a commutative ring via

[E1] · [E2] = [E1 ⊗OX
E2]

and K0(X) is a K0(X)-module via

[E ] · [F ] = [E ⊗OX
F ].

d) K0(X) is a covariant functor for proper morphisms f : X → Y via

f∗([F ]) =
∞∑
n=0

(−1)n[Rnf∗F ].

(2) Return to the case where k is an infinite field.

a) Using the Spencer resolution, show that

K0(Pnk) −→ K0(Pnk)

is surjective and that they are both generated by the sheaves [OPn(l)], l ∈ Z.
Hint : On any scheme X, if

0 −→ F −→ E1 −→ E0 −→ 0

is exact, Ei locally free and finitely generated, then F is locally free and finitely

generated, and locally on X, the sequence splits, i.e., E1 ∼= F ⊕ E0.
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b) Consider the Koszul complexK �(X0, . . . , Xn; k[X0, . . . , Xn]). Take ˜ and hence

show that [OPn(l)] ∈ K0(Pnk) satisfy

(∗)
n+1∑
ν=0

(−1)ν
(
n+ 1

ν

)
[OPn(ν + ν0)] = 0, ∀ν0 ∈ Z,

henceK0(Pnk) is generated by [OPn(ν)] for any set of ν’s of the form ν0 ≤ ν ≤ ν0+n.
Show that [OLν ], 0 ≤ ν ≤ n, Lν = a fixed linear space of dimension ν, generate

K0(Pnk).
c) Let

Sn =

(
group of rational polynomials P (t) of degree ≤ n
taking integer values at integers

)

=

 free abelian group on the polynomials

Pν(t) =

(
t

ν

)
, 0 ≤ ν ≤ n

 .

Prove that

[F ] 7−→ Hilbert polynomial of F
defines

K0(Pnk) −→ Sn.

d) Combining (a), (b) and (c), show that K0(Pnk)
∼−→ K0(Pnk).

e) Using the result of Part I [87, §6C] show that if Z ⊂ Pnk is any subvariety, of

dimension r and

gν = pa(Z ·H1 · · ·Hr−ν)

= arithmetic genus of the ν-dimensional

linear section of Z, (1 ≤ ν ≤ r)

d = degZ, then in K0(Pnk):

[OZ ] = d · [OLn ] + (1− d− g1)[OLr−1 ] + (g1 + g2)[OLr−2 ]+

· · ·+ (−1)n(gr−1 + gr)[OL0 ].

(3) Because of (2), (d), K0(Pnk) inherits a ring structure. Using the sheaves Tor i defined
in §2 as one of the applications of the “easy lemma of the double complex” (Lemma

2.4), show that this ring structure is given by

(∗) [F1] · [F2] =
n∑
i=0

(−1)i[Tor i(F1,F2)].

In particular, check that Tor i = (0) if i > n. (In fact, on any regular scheme X, it can

be shown that Tor i = (0), i > dimX; and that (∗) defines a ring structure in K0(X)).

Next apply this with F1 = OX1 , F2 = OX2 , X1, X2 subvarieties of Pnk intersecting

properly and transversely at generic points of the components W1, . . . ,Wν of X1 ∩X2

(cf. Part I [87, §5B]). Show by Ex. 2, §5D2??? , that if i ≥ 1,

dimSupp(Tor i(OX1 ,OX2)) < dimX1 ∩X2.

Combining this with the results of (2), show Bezout’s Theorem:

(degX1) · (degX2) =

ν∑
i=1

degWi.
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Hint : Show that [OLr ] · [OLs ] = [OLr+s−n ]. Show next that if i ≥ 1

[Tor i(OX1 ,OX2)] = combination of [OLt ] for t < dim(X1 ∩X2).



CHAPTER VIII

Applications of cohomology

In this chapter, we hope to demonstrate the usefulness of the formidable tool that we devel-

oped in Chapter VII. We will deal with several topics that are tied together by certain common

themes, although not in a linear sequence. We will start with possibly the most famous theorem

in all algebraic geometry: the Riemann-Roch theorem for curves. This has always been the

principal non-trivial result of an introduction to algebraic geometry and we would not dare to

omit it. Besides being the key to the higher theory of curves, it also brings in differentials in

an essential way — foreshadowing the central role played by the cohomology of differentials

on all varieties. This theme, that of De Rham cohomology is discussed in §3. In order to be

able to prove strong result there, we must first discuss in §2 Serre’s cohomological approach to

Chow’s theorem, comparing analytic and algebraic coherent cohomologies. In §4 we discuss the

application, following Kodaira, Spencer and Grothendieck, of the cohomology of Θ, the sheaf

of vector fields, to deformation of varieties. Finally, in §§2, 3 and 4, we build up the tools to

be able at the end to give Grothendieck’s results on the partial computation of π1 of a curve in

characteristic p.

1. The Riemann-Roch theorem

As we discussed in §VII.7, cohomology, disguised in classical language, grew out of the

attempt to develop formulas for the dimension of:

H0(OX(D)) =

{
space of 0 and non-zero rational functions f on X

with poles at most D, i.e., (f) +D ≥ 0

}
.

(See also the remark in §III.6.)
Put another way, the general problem is to describe the filtration of the function field R(X)

given by the size of the poles. This one may call the fundamental problem of the additive theory

of functions on X (as opposed to the multiplicative theory dealing with the group R(X)∗,

and leading to Pic(X)). Results on dimH0(OX(D)) lead in turn to results on the projective

embeddings of X and other rational maps of X to Pn, hence to many results on the geometry

and classification of varieties X.

The first and still the most complete result of this type is the Riemann-Roch theorem for

curves. This may be stated as follows:

Theorem 1.1 (Riemann-Roth theorem). Let k be a field and let X be a curve, smooth and

proper over k such that X is geometrically irreducible (also said to be absolutely irreducible,

i.e., X ×Spec k Spec k is irreducible with k = algebraic closure of k). If
∑
niPi (Pi ∈ X, closed

points) is a divisor on X, define

deg(
∑

niPi) =
∑

ni[k(Pi) : k].

Then for any divisor D on X:

1) dimkH
0(OX(D))− dimkH

1(OX(D)) = degD − g + 1, where g = dimkH
1(OX) is the

genus of X, and

279
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2) (weak form) dimkH
1(OX(D)) = dimkH

0(Ω1
X/k(−D)).

The first part follows quickly from our general theory like this:

Proof of 1). Note first that H0(OX) consists only in constants in k. In fact H0(OX) is

a finite-dimensional k-algebra (cf. Proposition II.6.9), without nilpotents because X is reduced

and without non-trivial idempotents because X is connected. Therefore H0(OX) is a field L,

finite over k. By the theorey of §IV.2, X smooth over k =⇒ R(X) separable over k =⇒ L

separable over k; and X ×k k irreducible =⇒ k separable algebraically closed in R(X) =⇒ L

purely inseparable over k. Thus L = k, and (1) can be rephrased:

χ(OX(D)) = degD + χ(OX).

Therefore Part (1) of Theorem 1.1 follows from:

Lemma 1.2. If P is a closed point on X and L is an invertible sheaf, then

χ(L) = χ(L(−P )) + [k(P ) : k].

Proof of Lemma 1.2. Use the exact sequence:

0 −→ L(−P ) −→ L −→ L⊗OX
k(P ) −→ 0

and the fact that L invertible =⇒ L ⊗OX
k(P ) ∼= k(P ) (where: k(P ) = sheaf (0) outside P ,

with stalk k(P ) at P ). Thus
χ(L) = χ(L(−P )) + χ(k(P ))

and since H0(k(P )) = k(P ), H1(k(P )) = (0), the result follows. □

□

To explain the rather mysterious second part, consider the first case k = C, D =
∑d

i=1 Pi
with the Pi distinct, so that degD = d. Let zi ∈ OPi,X vanish to first order at Pi, so that zi is

a local analytic coordinate in a small (classical) neighborhood of Pi. Then if f ∈ H0(OX(D)),

we can expand f near each Pi as:

f =
ai
zi

+ function regular at Pi,

and we can map

H0(OX(D)) // Cd

f � // (a1, . . . , ad)

by assigning the coefficients of their poles to each f . Since only constants have no poles, this

shows right away that

dimH0(OX(D)) ≤ d+ 1.

Suppose on the other hand we start with a1, . . . , ad ∈ C and seek to construct f . From elementary

complex variable theory we find obstructions to the existence of this f ! Namely, regarding X as

a compact Riemann surface (= compact 1-dimensional complex manifold), we use the fact that if

ω is a meromorphic differential on X, then the sum of the residues of ω at all its poles is zero (an

immediate consequence of Cauchy’s theorem). Now Ω1
X/C is the sheaf of algebraic differential

forms on X and for any Zariski-open U ⊂ X and ω ∈ Ω1
X/C(U), ω defines a holomorphic

differential form on U . (In fact if locally near x ∈ U ,

ω =
∑

ajdbj , aj , bj ∈ Ox,X
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then aj , bj are holomorphic functions near x too and
∑
ajdbj defines a holomorphic differential

form: we will discuss this rather fine point more carefully in §3 below.) So if ω ∈ Γ(Ω1
X/C), then

write ω near Pi as:

ω = (bi(ω) + function zero at Pi) · dzi, bi(ω) ∈ C.

If f exists with poles ai/zi at Pi, then fω is a meromorphic differential such that:

fω = ai · bi(ω) ·
dzi
zi

+ (differential regular at Pi),

hence

resPi(fω) = ai · bi(ω)
hence

0 =
d∑
i=1

resPi(fω) =
d∑
i=1

ai · bi(ω).

This is a linear condition on (a1, . . . , ad) that must be satisfied if f is to exist. Now Assertion

(2) of Theorem 1.1 in its most transparent form is just the converse: if
∑
ai · bi(ω) = 0 for every

ω ∈ Γ(Ω1
X/C), then f with polar parts ai/zi exists. How does this imply (2) as stated? Consider

the pairing:

Cd ×H0(Ω1
X/C)

// C

((ai), ω)
� //

∑
ai · bi(ω).

Clearly the null-space of this pairing on theH0(Ω1
X/C)-side is the space of ω’s zero at each Pi, i.e.,

H0(Ω1
X/C(−

∑
Pi)). We have claimed that the null-space on the Cd-side is ImageH0(OX(

∑
Pi)).

Thus we have a non-degenerate pairing:(
Cd/ ImageH0(OX(

∑
Pi))

)
×
(
H0(Ω1

X/C)/H
0(Ω1

X/C(−
∑

Pi))
)
−→ C.

Taking dimensions,

(∗) d− dimH0(OX(
∑

Pi)) + 1 = dimH0(Ω1
X/C)− dimH0(ΩX/C(−

∑
Pi)).

Now it turns out that if
∑d

i=1 Pi is a large enough positive divisor, H1(OX(
∑
Pi)) = (0) and

H0(Ω1
X/C(−

∑
Pi)) = (0) and this equation reads:

d− χ(OX(
∑

Pi)) + 1 = dimH0(Ω1
X/C),

and since by Part (1) of Theorem 1.1, χ(OX(
∑
Pi)) = d−g+1, it follows that g = dimH0(Ω1

X/C).

Putting this back in (∗), and using Part (1) of Theorem 1.1 again we get

g − dimH0(Ω1
X/C(−

∑
Pi)) = d+ 1− χ(OX(

∑
Pi))− dimH1(OX(

∑
Pi))

= g − dimH1(OX(
∑

Pi))

hence Part (2) of Theorem 1.1.

A more careful study of the above residue pairing leads quite directly to a proof of Assertion

(2) of Theorem 1.1 when k = C. Let us first generalize the residue pairing: if D1 and D2 are

any two divisors on X such that D2−D1 is positive (D1, D2 themselves arbitrary), then we get

a pairing: (⊕
x

OX(D2)x/OX(D1)x

)
×H0(Ω1

X/C(−D1)) −→ C
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as follows: given (fx) representing a member of the left hand side (fx ∈ OX(D2)x) and ω ∈
H0(Ω1

X/C(−D1)), pair these to
∑

x resx(fx · ω). Here fx · ω may have a pole of order > 1 at x,

but resx still makes good sense: expand

fxω =

(
+∞∑
n=−N

cnt
n

)
dt

where t has a simple zero at x, and set resx = c−1. Since

c−1 =
1

2πi

∮
fxω

(taken around a small loop around x), c−1 is independent of the choice of t. Note that if

f ′x ∈ fx + OX(D1)x, then f ′x · ω − fx · ω ∈ Ω1
x, hence resx(f

′
xω) = resx(fxω). If D2 =

∑
Pi,

D1 = 0, we get the special case considered already. By the fact that the sum of the residues of

any ω ∈ Ω1
R(X)/C is 0, the pairing factors as follows:

(residue pairing)

⊕
xOX(D2)x/OX(D1)x
ImageH0(OX(D2))

×
H0(Ω1

X/C(−D1))

H0(Ω1
X/C(−D2))

−→ C.

It is trivial that this is non-degenerate on the right: i.e., if ω ∈ H0(Ω1
X/C(−D1))\H0(Ω1

X/C(−D2)),

then for some (fx), resx(fxω) ̸= 0. But in fact:

Theorem 1.3 (Riemann-Roch theorem (continued)). (2)-strong form: For every D1, D2

with D2 −D1 positive, the residue pairing is non-degenerate on both sides.

Proof of Theorem 1.3. First, note that the left hand side can be interpreted via H1’s:

namely the exact sequence:

0 −→ OX(D1) −→ OX(D2) −→
⊕
x

Ox(D2)/Ox(D1) −→ 0,

where OX(D2)x/OX(D1)x is the skyscraper sheaf at x with stalk Ox(D2)/Ox(D1), induces an

isomorphism ⊕
xOx(D2)/Ox(D1)

ImageH0(OX(D2))
∼= Ker

[
H1(OX(D1)) −→ H1(OX(D2))

]
.

Now let D2 increase. Whenever D2 < D′
2 (i.e., D′

2 −D2 a positive divisor), it follows that there

are natural maps: ⊕
xOX(D2)x/OX(D1)x
ImageH0(OX(D2))

↪→
injective

⊕
xOX(D′

2)x/OX(D1)x
ImageH0(OX(D′

2))

and
H0(Ω1

X/C(−D1))

H0(Ω1
X/C(−D2))

↠
surjective

H0(Ω1
X/C(−D1))

H0(Ω1
X/C(−D

′
2))

compatible with the pairing. Passing to the limit, we get a pairing:⊕
x∈X
closed

R(X)/OX(D1)x

R(X) (embedded diagonally)
×H0(Ω1

X/C(−D1)) −→ C.

It follows immediately that if this is non-degenerate on the left, so is the original pairing. Note

here that the left hand side can be interpreted as an H1: namely the exact sequence:

0 −→ OX(D1) −→ R(X)
constant
sheaf

−→
⊕
x∈X
closed

R(X)/OX(D1)x −→ 0,
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where R(X)/OX(D1)x is the skyscraper sheaf at x with stalk R(X)/OX(D1)x, induces an

isomorphism: ⊕
x∈X
closed

R(X)/OX(D1)x

R(X)
∼= H1(OX(D1)).

Thus we are now trying to show that we have via residue a perfect pairing:

H1(OX(D1))×H0(Ω1
X/C(−D1)) −→ C.

This pairing is known as “Serre duality”. To continue, suppose

l :
⊕
x∈X
closed

R(X)/OX(D1)x −→ C

is any linear function. Then l =
∑
lx, where

lx : R(X)/OX(D1)x −→ C

is a linear function. Now if tx has a simple zero at x, and nx = order of x in the divisor D1,

then let

cν = lx(t
−ν
x ), all ν ∈ Z.

Note that cν = 0 if ν ≤ −nx. Then we can write lx formally:

lx(f) = resx(f · ωx)

where

ωx =

+∞∑
ν=−nx+1

cνt
ν
x ·

dtx
tx

is a formal differential at x; in fact

ωx ∈ Ω1
X(−D1)x.

This suggests defining, for the purposes of the proof only, pseudo-section of Ω1
X(−D1) to be a

collection (ωx)x∈X, closed, where ωx ∈ Ω1
X(−D1)x are formal differentials and where∑

x∈X
closed

resx(f · ωx) = 0, all f ∈ R(X).

If we let H̃0(Ω1
X(−D1)) be the vector space of such pseudo-sections, then we see that⊕

x∈X
closed

R(X)/OX(D1)x

R(X)
× H̃0(Ω1

X(−D1)) −→ C

is indeed a perfect pairing, and we must merely check that all pseudo-sections are true sections

to establish the assertion. Now let D1 tend to −∞ as a divisor. If D′
1 < D1, we get a diagram:

H0(Ω1
X(−D′

1)) ⊂ H̃0(Ω1
X(−D′

1))

H0(Ω1
X(−D1))

∪

⊂ H̃0(Ω1
X(−D1))

∪

and clearly:

H0(Ω1
X(−D′

1)) ∩ H̃0(Ω1
X(−D1)) = H0(Ω1

X(−D1)).

Passing to the limit, we get:

Ω1
R(X)/C ⊂ Ω̃1

R(X)/C
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where

Ω̃1
R(X)/C =


set of meromorphic pseudo-differentials, i.e.,

collections of ωx,X ∈ Ωx,X ⊗Ox R(X) such that∑
x resx(f · ωx) = 0, all f ∈ R(X)

 .

It suffices to prove that Ω1 = Ω̃1. But it turns out that if D′
1 is sufficiently negative, then −D′

1

is very positive and

H1(Ω1
X(−D′

1)) = H0(OX(D′
1)) = (0).

Thus

dimH0(Ω1
X(−D′

1)) = degΩ1
X − degD′

1 − g + 1

dim H̃0(Ω1
X(−D′

1)) = dimH1(OX(D′
1))

= −degD′
1 + g − 1

hence

dimC

(
H̃0(Ω1

X(−D′
1))/H

0(Ω1
X(−D′

1))
)
= 2g − 2− degΩ1

X (independent of D′
1).

Thus dimC

(
Ω̃1
R(X)/C/Ω

1
R(X)/C

)
< +∞. But Ω̃1

R(X)/C is an R(X)-vector space! So if Ω̃1 ⫌ Ω1,

then dimC Ω̃1/Ω1 = +∞. Therefore Ω̃1 = Ω1 as required. □

All this uses the assumption k = C only in two ways: first in order to know that if we define

the residue of a formal meromorphic differential via:

res

(
+∞∑
n=−N

cnt
ndt

)
= c−1,

then the residue remains unchanged if we take a new local coordinate t′ = a1t + a2t
2 + · · · ,

(a1 ̸= 0). Secondly, if ω ∈ Ω1
R(X)/k, then we need the deep fact:∑

x∈X
closed

resx ω = 0.

Given these facts, our proof works over any algebraically closed ground field k (and with a

little more work, over any k at all). For a long time, only rather roundabout proofs of these

facts were known in characteristic p (when characteristic = 0, there are simple algebraic proofs

or one can reduce to the case k = C). Around the time this manuscript was being written,

Tate [111] discovered a very elementary and beautiful proof of these facts: we reproduce his

proofs in an appendix to this section. Note that his “dualizing sheaf” is exactly the same as our

“pseudo-differentials”.

We finish the section with a few applications.

Corollary 1.4. If X is a geometrically irreducible curve, proper and smooth over a field

k, then:

a) For all f ∈ R(X), deg(f) = 0; hence if OX(D1) ∼= OX(D2), then degD1 = degD2.

This means we can assign a degree to an invertible sheaf L by requiring:

degL = degD if L ∼= OX(D).

b) If degD < 0, then H0(OX(D)) = (0).
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Proof. Multiplication by f is an isomorphism OX
≈−→ OX((f)), χ(OX) = χ(OX((f))),

so by Riemann-Roch (Theorem 1.1), deg(f) = 0. Secondly, if f ∈ H0(OX(D)), f ̸= 0, then

D + (f) ≥ 0, so

degD = deg(D + (f)) ≥ 0.

□

Corollary 1.5. If X is a geometrically irreducible curve, proper and smooth over a field k

of genus g (g =
def

dimH1(OX)), then:

a) dimkH
0(Ω1

X/k) = g, dimkH
1(Ω1

X/k) = 1,

b) If K is a divisor such that Ω1
X/k
∼= OX(K) — a so-called canonical divisor — then

degK = 2g − 2.

Proof. Apply Riemann-Roch (Theorem 1.1) with D = K. □

Corollary 1.6. If X is a geometrically irreducible curve, proper and smooth over a field k

of genus g, then degD > 2g − 2 implies:

a) H1(OX(D)) = (0)

b) dimH0(OX(D)) = degD − g + 1.

Proof. If Ω1
X/k
∼= OX(K), then deg(K − D) < 0, hence H0(Ω1

X/k(−D)) = (0). Thus

by Riemann-Roch (Theorem 1.1), H1(OX(D)) = (0) and dimH0(OX(D)) = χ(OX(D)) =

degD − g + 1. □

Proposition 1.7. Added Let X be a geometrically irreducible curve proper and smooth

over a field k. An invertible sheaf L on X is ample if and only if degL > 0.

Proof. We use Serre’s cohomological criterion (Theorem VII.8.2). Note that the coho-

mology groups Hp for p > 1 of coherent OX -modules vanish since dimX = 1 (cf. Proposition

VII.4.2). Thus we need to show that

for any coherent OX -module F one has H1(X,F ⊗ Ln) = 0, n≫ 0

if and only if degL > 0.

Let r = rkF , i.e., the dimension of the R(X)-vector space Fη (η = generic point). Then

we claim that F has a filtration

(0) ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fr−1 ⊂ Fr = F

by coherent OX -submodules such that

F0 = torsion OX -module

Fj/Fj−1 = invertible OX -module for j = 1, . . . , r.

Indeed, Ox,X for closed points x are discrete valuation rings since X is a regular curve. Thus

for the submodule (Fx)tor of torsion elements in the finitely generated Ox,X -module Fx, the
quotient Fx/(Fx)tor is a free Ox,X -module. F0 is the OX -submodule of F with (F0)x = (Fx)tor
for all closed points x and F/F0 is locally free of rank r. X is projective by Proposition V.5.11.

Thus if we choose a very ample sheaf on X, then a sufficient twist of F/F0 by it has a section.

Untwising the result, we get an invertible subsheaf M ⊂ F/F0. Let F1 ⊂ F be the OX -
submodule containing F0 such that F1/F0 ⊃M and that (F1/F0)/M is the OX -submodule of

torsions of (F/F0)/M. Obviously, F1/F0 is an invertible submodule of F/F0 with F/F1 locally

free of rank r − 1. The above claim thus follows by induction.
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Since H1(X,F0 ⊗Ln) = 0 for any n again by Proposition VII.4.2, the proposition follows if

we show that

for F invertible one has H1(X,F ⊗ Ln) = 0, n≫ 0

if and only if degL > 0. But this is immediate, since the cohomology group vanishes if deg(F ⊗
Ln) = degF + ndegL > 2g − 2 by Corollary 1.6, (a). □

Remark. Added Using the filtration appearing in the proof above, we can generalize

Theorem 1.1 (Riemann-Roch), (1) for a locally free sheaf E of rank r as:

dimkH
0(X, E)− dimkH

1(X, E) = deg(

r∧
E) + r(1− g).

Remark. Let X be a curve proper and smooth over an algebraically closed field k, and L
an invertible sheaf on X. We can show:

• If degL ≥ 2g, then L is generated by global sections.

• If degL ≥ 2g + 1, then L is very ample (over k).

Corollary 1.8. If X is a geometrically irreducible curve smooth and proper over a field k

of genus 0, and X has at least one k-rational point x (e.g., if k is algebraically closed; or k a

finite field, cf. Proposition IV.3.5), then X ∼= P1
k.

Proof. Apply Riemann-Roch (Theorem 1.1) to OX(x). It follows that

dimkH
0(OX(x)) ≥ 2,

hence ∃f ∈ H0(OX(x)) which is not a constant. This f defines a morphism

f ′ : X −→ P1
k

such that (f ′)−1(∞) = {x}, with reduced structure. Then f ′ must be finite; and thus Ox,X is a

finite O∞,P1-module such that

O∞,P1/m∞,P1 // Ox,X/(m∞,P1 · Ox,X)

k k(x)

k

is an isomorphism. Thus Ox,X ∼= O∞,P1 , hence f ′ is birational, hence by Zariski’s Main Theorem

(§V.6), f ′ is an isomorphism. □

Corollary 1.9. If X is a geometrically irreducible curve smooth and proper over a field k

of genus 1, then Ω1
X/k
∼= OX . Moreover the map

X(k) =

{
set of k-rational

points x ∈ X

}
//

{
invertible sheaves L
of degree 1 on X

}

x � // OX(x)

is an isomorphism, hence if x0 ∈ X(k) is a base point, X(k) is a group via x+y = z if and only

if

OX(x)⊗OX(y) ∼= OX(z)⊗OX(x0).
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Proof. Since H0(Ω1
X/k) ̸= (0), Ω1

X/k
∼= OX(D) for some non-negative divisor D. But then

degD = 2g − 2 = 0,

so D = 0, i.e., Ω1
X/k
∼= OX . Next, if L is an invertible sheaf of degree 1, then by Corollary 1.6,

H1(L) = (0), hence by Riemann-Roch (Theorem 1.1), dimkH
0(L) = 1. This means there is a

unique non-negative divisor D such that L ∼= OX(D). Since degD = 1, D = x where x ∈ X(k).

Finally, the invertible sheaves of degree 0 form a group under ⊗ , hence so do the sheaves of

degree 1 if we multiply them by:

(L,M) 7−→ L ⊗M⊗OX(−x0).

This proves that X(k) is a group. □

In fact, it can be shown that X is a group scheme (in fact an abelian variety) over k (cf.

§VI.1) with origin x0: especially there is a morphism

µ : X ×Spec k X −→ X

inducing the above addition on X(k): see Mumford [85, Chapter I, p. 36], and compare Part I

[87, §7D].

Corollary 1.10. If ΘX = Hom(Ω1
X ,OX) ∼= OX(−K) is the tangent sheaf to X, then its

cohomology is:

g = 0 g = 1 g > 1

dimH0(ΘX) 3 1 0

dimH1(ΘX) 0 1 3g − 3

In fact, the three sections of Θ when X = P1
k come from the infinitesimal section of the

3-dimensional group scheme PGL2,k acting on P1
k; the one section of Θ when g = 1 comes from

the infinitesimal action of X on itself, and the absence of sections when g > 1 is reflected in the

fact that the group of automorphisms of such curves is finite. Thus three way division of curves,

according as g = 0, g = 1, g > 1 is the algebraic side of the analytic division of Riemann surfaces

according as whether they are a) the Gauss sphere, b) the plane modulo a discrete translation

group or c) the unit disc modulo a freely acting Fuchsian group; and of the differential geometric

division of compact surfaces according as they admit a metric with constant curvature K, with

K > 0, K = 0, or K < 0.

For further study of curves, an excellent reference is Serre [103, Chapters 2–5]. Classical

references on curves are: Hensel-Landsberg [59], Coolidge [32], Severi [107] and Weyl [116]1.

What happens in higher dimensions?2

The necessisity of the close analysis of all higher cohomolgy groups becomes much more

apparent as the dimension increases. Part (1) of the curve Riemann-Roch theorem (Theorem 1.1)

was generalized by Hirzebruch [62], and by Grothendieck (cf. [25])3 to a formula for computing

χ(OX(D)) — for any smooth, projective variety X and divisor D— by a “universal polynomial”

in terms of D and the Chern classes of X; this polynomial can be taken in a suitable cohomology

ring of X, or else in the so-called Chow ring — a ring formed by cycles
∑
niZi (Zi subvarieties

of X) modulo “rational equivalence” with product given by intersection. For this theory, see

Chevalley Seminar [30] and Samuel [96].

1(Added in publication) See also Iwasawa [63].
2(Added in publication) There have been considerable developments on Kodaira dimension, Minimal model

program, etc. See §IX.1
3(Added in publication) See also SGA6 [9] for further developments.
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Part (2) of the curve Riemann-Roch theorem (Theorem 1.1) was generalized by Serre and

Grothendieck (see Serre [99], Altman-Kleiman [13] and Hartshorne [55]) to show, if X is a

smooth complete varietie of dimension n, that

a) a canonical isomorphism ϵ : Hn(X,ΩnX/k)
≈−→ k, and

b) that — plus cup product induces a non-degenerate pairing

H i(X,OX(D))×Hn−i(X,ΩnX(−D))→ k

for all divisors D and all i.

Together however, these results do not give any formula in dim ≥ 2 involving H0’s alone. Thus

geometric applications of Riemann-Roch requires a good deal more ingenuity (cf. for instance

Shafarevitch et al. [108]).

Three striking examples of cases where the higher cohomology groups can be dealt with so

that a geometric conclusion is deduced from a cohomological hypothesis are:

Theorem 1.11 (Criterion of Nakai-Moishezon). Let k be a field, X a scheme proper over k,

and L an invertible sheaf on X. Then
L is ample, i.e., n ≥ 1 and

a closed immersion

ϕ : X → PN such that

ϕ∗(OPN (1)) ∼= Ln

⇐⇒

∀ reduced and irreducible

subvarieities Y ⊂ X of

positive dimension,

χ(Ln ⊗OY )→∞ as n→∞

 .
(This is another form of Theorem VII.12.4. See also Kleiman [69]).

Theorem 1.12 (Criterion of Kodaira). Let X be a compact complex analytic manifold and

L an invertible analytic sheaf on X. Then

 X is a projective

variety and L is

an ample sheaf on it

⇐⇒

L can be defined by transition functions {fαβ}
for a covering {Uα} of X, where

|fαβ |2 = gα/gβ, gα positive real C∞ on Uα and

(∂2 log gα/∂zi∂zj)(P )

positive definite Hermitian form at all P ∈ Uα

 .
(For a proof, cf. Gunning-Rossi [54].)

Theorem 1.13 (Vanishing theorem of Kodaira-Akizuki-Nakano). Let X be an n-dimensional

complex projective variety, L an ample invertible sheaf on X. Then

Hp(X,ΩqX ⊗ L) = (0), if p+ q > n.

(For a proof, cf. Akizuki-Nakano [11].)

Appendix: Residues of differentials on curves by John Tate

(Added in publication)

We reproduce here, in our notation, the very elementary and beautiful proof of Tate [111].

Here is the key to Tate’s proof: Let V be a vector space over a field k. A k-linear endomor-

phism θ ∈ Endk(V ) is said to be finite potent if θnV is finite dimensional for a positive integer

n. For such a θ, the trace

TrV (θ) ∈ k
is defined and has the following properties:

(T1) If dimV <∞, then TrV (θ) is the ordinary trace.
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(T2) If W ⊂ V is a subspace with θW ⊂W , then

TrV (θ) = TrW (θ) + TrV/W (θ).

(T3) TrV (θ) = 0 if θ is nilpotent.

(T4) Suppose F ⊂ Endk(V ) is a finite potent k-subspace, i.e., there exists a positive integer

n such that θ1 ◦ θ2 ◦ · · · ◦ θnV is finite dimensional for any θ1, . . . , θn ∈ F . Then

TrV : F → k is k-linear.

(It does not seem to be known if

TrV (θ + θ′) = TrV (θ) + TrV (θ
′)

holds in general under the condition θ, θ′ and θ + θ′ are finite potent.)

(T5) Let ϕ : V ′ → V and ψ : V → V ′ be k-linear maps with ϕ ◦ ψ : V → V finite potent.

Then ψ ◦ ϕ : V ′ → V ′ is finite potent and

TrV (ϕ ◦ ψ) = TrV ′(ψ ◦ ϕ).

(T1), (T2) and (T3) characterize TrV (θ): Indeed, by assumption, W = θnV is finite dimen-

sional for some n. Then TrV (θ) = TrW (θ).

For the proof of (T4), we may assume F to be finite dimensional and compute the trace on

the finite dimensional subspace W = FnV .

As for (T5), ϕ and ψ induce isomorphisms between the subspaces W = (ϕ ◦ ψ)nV and

W ′ = (ψ ◦ ϕ)nV ′ for n≫ 0, under which (ψ ◦ ϕ)|W ′ and (ϕ ◦ ψ)|W correspond.

Definition 1. Let A and B be k-subspaces of V .

• A is said to be “not much bigger than” B (denoted A ≺ B) if dim(A+B)/B <∞.

• A is said to be “about the same size as” B (denoted A ∼ B) if A ≺ B and A ≻ B.

Proposition 2. Let A be a k-subspace of V .

(1) E = {θ ∈ Endk(V ) | θA ≺ A} is a k-subalgebra of Endk(V ).

(2) The subspaces

E1 = {θ ∈ Endk(V ) | θV ≺ A}
E2 = {θ ∈ Endk(V ) | θA ≺ (0)}
E0 = E1 ∩ E2 = {θ ∈ Endk(V ) | θV ≺ A, θA ≺ (0)}

are two-sided ideals of E with E = E1 + E2, and E0 is finite potent so that there

is a k-linear map TrV : E0 → k. Moreover, E, E1, E2 and E0 depend only on the

∼-equivalence class of A.

(3) Let ϕ, ψ ∈ Endk(V ). If either (i) ϕ ∈ E0 and ψ ∈ E, or (ii) ϕ ∈ E1 and ψ ∈ E2, then

[ϕ, ψ] := ϕ ◦ ψ − ψ ◦ ϕ ∈ E0

with TrV ([ϕ, ψ]) = 0.

Proof. (1) is obvious. As for (2), express V as a direct sum V = A ⊕ A′, and denote by

ε : V ↠ A, ε′ : V ↠ A′ the projections. Then idV = ε + ε′ with ε ∈ E1 and ε ∈ E2, so that

θ = θε + θε′ for all θ ∈ E. Obviously, θ1 ◦ θ2V is finite dimensional for any θ1, θ2 ∈ E0. (3)

follows easily from (T5). □

Theorem 3 (Abstract residue). Let K be a commutative k-algebra (with 1), V a k-vector

space which is also a K-module, and A ⊂ V a k-subspace such that fA ≺ A for all f ∈ K.

(Hence K acts on V through K → E ⊂ Endk(V ) with the image in E of each f ∈ K denoted
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by the same letter f , where E, E1, E2 and E0 are defined with respect to the present A as in

Proposition 2.) Then there exists a unique k-linear map

ResVA : Ω1
K/k −→ k

such that for any pair f, g ∈ K, we have

ResVA(fdg) = TrV ([f1, g1])

for f1, g1 ∈ E such that

i) f ≡ f1 (mod E2), g ≡ g1 (mod E2)

ii) either f1 ∈ E1 or g1 ∈ E1.

The k-linear map is called the residue and satisfies the following properties:

(R1) ResVA = ResV
′

A if V ⊃ V ′ ⊃ A and KV ′ = V ′. Moreover, ResVA = ResVA′ if A ∼ A′.

(R2) (Continuity in f and g) We have

fA+ fgA+ fg2A ⊂ A =⇒ ResVA(fdg) = 0.

Thus ResVA(fdg) = 0 if fA ⊂ A and gA ⊂ A. In particular, ResVA = 0 if A ⊂ V is a

K-submodule.

(R3) For g ∈ K and an integer n, we have

ResVA(g
ndg) = 0 if


n ≥ 0

or

n ≤ −2 and g invertible in K.

In particular, ResVA(dg) = 0.

(R4) If g ∈ K is invertible and h ∈ K with hA ⊂ A, then

ResVA(hg
−1dg) = TrA/(A∩gA)(h)− TrgA/(A∩gA)(h).

In particular, if g ∈ K is invertible and gA ⊂ A, then

ResVA(g
−1dg) = dimk(A/gA).

(R5) Suppose B ⊂ V is another subspace such that fB ≺ B for all f ∈ K. Then f(A+B) ≺
A+B and f(A ∩B) ≺ A ∩B hold for all f ∈ K, and

ResVA +ResVB = ResVA+B +ResVA∩B .

(R6) Suppose K ′ is a commutative K-algebra that is a free K-module of finite rank r. For a

K-basis {x1, . . . , xr} of K ′, let

V ′ = K ′ ⊗K V ⊃ A′ =
r∑
i=1

xi ⊗A.

Then f ′A′ ≺ A′ holds for any f ′ ∈ K ′, and the ∼-equivalence class of A′ depends only

on that of A and not on the choice of {x1, . . . , xr}. Moreover,

ResV
′

A′ (f ′dg) = ResVA((TrK′/K f
′)dg), ∀f ′ ∈ K ′, ∀g ∈ K.

Proof of the existence of residue. By assumption, we have f, g ∈ E = E1+E2. Thus

f1 and g1 satisfying (i) and (ii) can be chosen. Then [f1, g1] ∈ E1 by (ii), and [f1, g1] ≡ [f, g]

(mod E2) by (i) with [f, g] = 0 by the commutativity of K. Thus [f1, g1] ∈ E1 ∩ E2 = E0 and

TrV ([f1, g1]) is defined. By Proposition 2, (3), it is unaltered if f1 or g1 is changed by an element

of E2 as long as the other is in E1. Moreover by (T4), TrV ([f1, g1]) is a k-bilinear function of f

and g. Thus there is a k-linear map

β : K ⊗k K −→ k such that β(f ⊗ g) = TrV ([f1, g1]).
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We now show that

β(f ⊗ gh) = β(fg ⊗ h) + β(fh⊗ g), ∀f, g, h ∈ K,

hence r factors through the canonical surjective homomorphism

c : K ⊗k K −→ Ω1
K/k, c(f ⊗ g) = fdg.

Indeed, for f, g, h ∈ K, choose suitable f1, g1, h1 ∈ E1 and let (fg)1 = f1g1, (fh)1 = h1f1 and

(gh)1 = g1h1. Then we obviously have

[f1, g1h1] = [f1g1, h1] + [h1f1, g1].

□

We use the following lemma in proving the rest of Theorem 3:

Lemma 4. For f, g ∈ K, define subspaces B,C ⊂ V by

B = A+ gA

C = B ∩ f−1(A) ∩ (fg)−1(A) = {v ∈ B | fv ∈ A and fgv ∈ A}.

Then B/C is finite dimensional and

ResVA(fdg) = TrB/C([εf, g]),

where ε : V ↠ A is a k-linear projection.

Proof. B/C is finite dimensional, since B/{v ∈ B | fv ∈ A} and B/{v ∈ B | fgv ∈ A} are
mapped injectively into the finite dimensional space (A+fA+fgA+fg2A)/A. Moreover, εf ∈ E1

and εf ≡ f (mod E2), hence ResVA(fdg) = TrV ([εf, g]). On the other hand, [εf, g] = εfg − gεf
maps V into B, and C into 0, since fg = gf . Thus the assertion follows by (T2), since

TrV = TrV/B +TrB/C +TrC . □

Proof of Theorem 3 continued. (R1) follows easily from Lemma 4, since B,C ⊂ V ′.

As for (R2), we have B = C in Lemma 4.

To prove (R3), choose g1 ∈ E1 such that g1 ≡ g (mod E2). If n ≥ 0, we have ResVA(g
ndg) =

TrV ([g
n
1 , g1]) = 0 since gn1 and g1 commute. If g is invertible, then g−2−ndg = −(g−1)nd(g−1),

whose residue is 0 if n ≥ 0 by what we have just seen.

For the proof of (R4), let f = hg−1 and apply Lemma 4. We have [εf, g] = εh− ε1h, where
ε1 = gεg−1 is a projection of V onto gA. Since both A and gA are stable under h, we have

ResVA(fdg) = Tr(A+gA)/(A∩gA)(εh)− Tr(A+gA)/(A∩gA)(gεg
−1h)

and we are done by computing the traces through A+ gA ⊃ A ⊃ A ∩ gA and A+ gA ⊃ gA ⊃
A ∩ gA, respectively.

To prove (R5), choose projections εA : V ↠ A, εB : V ↠ B, εA+B : V ↠ A+B, εA∩B : V ↠
A ∩B such that

εA + εB = εA+B + εA∩B.

Then [εAf, g] and [εA+Bf, g] belong to

F = {θ ∈ E | θV ≺ A+B, θ(A+B) ≺ A, θA ≺ (0)},

which is finite potent, since θ1 ◦ θ2 ◦ θ3V is finite dimensional for any θ1, θ2, θ3 ∈ F . Since

εAf ∈ E1, εAf ≡ f (mod E2), εA+Bf ∈ E1 and εA+Bf ≡ f (mod E2), one has

ResVA(fdg)− ResVA+B(fdg) = TrV ([εAf, g])− TrV ([εA+Bf, g])

= TrV ([(εA − εA+B)f, g])
= TrV ([(εA∩B − εB)f, g]),
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which, by a similar argument using

F ′ := {θ ∈ Endk(V ) | θV ≺ B, θB ≺ A ∩B, θ(A ∩B) ≺ 0},

equals ResVA∩B(fdg)− ResVB(fdg).

As for (R6), a k-endomorphism φ of V ′ can be expressed as an r × r matrix (φij) of endo-

morphisms of V by the rule

φ(
∑
j

xj ⊗ vj) =
∑
ij

xi ⊗ φijvj , for vj ∈ V.

If F ⊂ Endk(V ) is a finite potent subspace, then φ’s such that φij ∈ F for all i, j form a

finite potent subspace F ′ ⊂ Endk(V
′). We see that TrV ′(φ) =

∑
iTrV (φii) for all φ ∈ F ′ by

decomposing the matrix (φij) into the sum of a diagonal matrix, a nilpotent triangular matrix

having zeros on and below the diagonal, and another nilpotent triangular matrix having zeros

on and above the diagonal. For f ′ ∈ K ′, write f ′xj =
∑

i xifij with fij ∈ K. Let ε : V ↠ A be

a k-linear projection and put ε′(
∑

i xi ⊗ vi) =
∑

i xi ⊗ εvi. Then ε′ : V ′ ↠ A′ is a projection,

and

[f ′ε′, g]ij = [fijε, g].

We are done since TrK′/K f =
∑

i fii. □

We are now ready to deal with residues of differentials on curves.

Let X be a regular irreducible curve proper over a field k, and denote by X0 the set of closed

points of X. For each x ∈ X0 let

Ax = Ôx,X = mx,X -adic completion of Ox,X
Kx = quotient field of Ax.

Define

Resx : Ω
1
R(X)/k −→ k

by

Resx(fdg) = ResKx
Ax

(fdg), f, g ∈ R(X),

which makes sense since k(x) = Ax/mx,XAx is a finite dimensional k-vector space so that

Ax ∼ mn
x,XAx for any n ∈ Z and that for any non-zero f ∈ Kx we have fAx ≺ Ax since

fAx = mn
x,XAx for some n.

Theorem 5.

i) Suppose x ∈ X0 is k-rational so that Ax = k[[t]] and Kx = k((t)). For

f =
∑
ν≫∞

aνt
ν , g =

∑
µ≫∞

bµt
µ ∈ Kx,

we have

Resx(fdg) = coefficient of t−1 in f(t)g′(t)

=
∑

ν+µ=0

µaνbµ.

ii) For any subset S ⊂ X0, let O(S) =
∩
x∈S Ox,X ⊂ R(X). Then∑

x∈S
Resx(ω) = Res

R(X)
O(S) (ω), ∀ω ∈ Ω1

R(X)/k.

In particular ∑
x∈X0

Resx(ω) = 0, ∀ω ∈ Ω1
R(X)/k.
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iii) Let φ : X ′ → X be a finite surjective morphism of irreducible regular curves proper over

k. Then ∑
x′∈φ−1(x)

Resx′(f
′dg) = Resx((TrR(X′)/R(X) f

′)dg)

if f ′ ∈ R(X ′), g ∈ R(X) and x ∈ X0, while

Resx′(f
′dg) = Resx((TrK′

x′/Kx
f ′)dg)

if x′ ∈ X ′
0 with φ(x′) = x, f ′ ∈ K ′

x′ and g ∈ Kx. (K ′
x′ is the quotient field of the

mx′,X′-adic completion A′
x′ of Ox′,X′.)

Proof. (i) By the continuity (R2), we may assume that only finitely many of the aν and

bµ are non-zero. Indeed, express f and g as

f = ϕ1(t) + ϕ2(t)

g = ψ1(t) + ψ2(t)

in such a way that ϕ1(t) and ψ1(t) are Laurent polynomials and that ϕ2(t), ψ2(t) ∈ tnAx for

large enough n so that

ϕ1(t)ψ
′
2(t) + ϕ2(t)ψ

′
1(t) + ϕ2(t)ψ

′
2(t) ∈ Ax.

Then fdg = f(t)g′(t)dt, and only the term in t−1 can give non-zero residue by (R3). By (R4)

we have

ResVxAx
(t−1dt) = dimk k(x) = 1.

(Note that in positive characteristics it is not immediately obvious that the coefficient in question

is independent of the choice of the uniformizing parameter t).

For (ii), let

AS =
∏
x∈S

Ax

VS =
∏′

x∈S
Kx

= {f = (fx) | fx ∈ Kx, ∀x ∈ S and fx ∈ Ax for all but a finite number of x}.

Embedding R(X) diagonally into VS , we see that R(X) ∩AS = O(S). By (R5) we have

ResVSAS
+ResVSR(X) = ResVSO(S)+ResVS(R(X)+AS)

.

ResVSR(X) = 0 by (R2), since R(X) is an R(X)-module. We now show VS/(R(X) + AS) to be

finite dimensional, hence ResVS(R(X)+AS)
= 0 by (R1). It suffices to prove the finite dimensionality

when S = X0 because of the projection VX0 ↠ VS . Regarding R(X) as a constant sheaf on X,

we have an exact sequence

0 −→ OX −→ R(X)
constant
sheaf

−→ R(X)/OX =
⊕
x∈X0

Kx/Ax −→ 0,

where Kx/Ax is the skyscraper sheaf at x with stalk Kx/Ax. The associated cohomology long

exact sequence induces an isomorphism

VX0/(R(X) +AX0)
∼−→ H1(X,OX),

the right hand side of which is finite dimensional since X is proper over k. To complete the

proof of (ii), it remains to show

ResVSAS
(ω) =

∑
x∈S

Resx(ω), ∀ω = fdg.
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Let S′ ⊂ S be a finite subset containing all poles of f and g. We write

VS = VS\S′ ×
∏
x∈S′

Kx

AS = AS\S′ ×
∏
x∈S′

Ax.

By (R5) and (R1),

ResVSAS
(fdg) = Res

VS\S′

AS\S′ (fdg) +
∑
x∈S′

Resx(fdg).

Res
VS\S′

AS\S′ (fdg) = 0 and Resx(fdg) = 0 for x ∈ S \ S′ by the choice of S′. The last assertion in

(ii) follows, since

O(X0) =
∩
x∈X0

Ox,X = H0(X,OX)

is finite dimensional over k so that O(X0) ∼ (0) and Res
VX0

O(X0)
= 0 by (R1).

To prove (iii), regard the function field R(X ′) of X ′ as a finite algebraic extension of R(X).

Then (iii) follows from (R6), since the integral closure of Ox (resp. Ax) in R(X ′) (resp. K ′
x′) is

a finite module over Ox (resp. Ax). □

Recall that X0 is the set of closed points of an irreducible regular curve X proper over k.

Each x ∈ X0 determines a prime divisor on X, which we denote by [x]. Thus a divisor D on X

is of the form

D =
∑
x∈X0

nx[x], with nx = 0 for all but a finite number of x.

We denote ordxD = nx.

Let

V = VX0 =
∏′

x∈X0

Kx

A = AX0 =
∏
x∈X0

Ax.

For a divisor D on X, let

V (D) = {f = (fx) ∈ V | ordx fx ≥ − ordxD, ∀x ∈ X0}.

Then by an argument similar to that in the proof of Theorem 5, (ii), we get

H1(X,OX(D)) ∼= V/(R(X) + V (D)).

Let

JR(X)/k = {λ ∈ Homk(V, k) | λ(R(X) + V (D)) = 0, ∃D divisor}

= lim−→
D

Homk(H
1(X,OX(D)), k),

which is nothing but the space of meromorphic “pseudo-differentials” appearing in §1.
JR(X)/k is a vector space over R(X) by the action

(gλ)(f) = λ(gf), ∀g ∈ R(X), ∀f = (fx) ∈ V,

since obviously (gλ)(R(X)) = 0, while (gλ)(V ((g) +D)) = 0.

As in §1, let us assume X to be smooth and proper over k and geometrically irreducible.

Then R(X) is a regular transcendental extension of transcendence degree one so that the module

Ω1
R(X)/k is a one-dimensional vector space over R(X). Moreover, for any x ∈ X0, the stalk



APPENDIX: RESIDUES OF DIFFERENTIALS ON CURVES BY JOHN TATE 295

Ω1
X/k,x is a free Ox,X -submodule of Ω1

R(X)/k of rank one. If tx is a local parameter at x so that

mx,X = txOx,X , then each ω ∈ Ω1
R(X)/k can be expressed as

ω = hdtx, for some h ∈ R(X).

Let us denote ordx(ω) = ordx(h), which is independent of the choice of the local parameter tx.

We then denote

(ω) =
∑
x∈X0

ordx(ω)[x],

which is easily seen to be a divisor on X.

For any divisor D, one has

H0(X,Ω1
X/k(−D)) = {ω ∈ Ω1

R(X)/k | (ω) ≥ D}

and

Ω1
R(X)/k = lim−→

D

H0(X,Ω1
X/k(−D)).

The abstract residue gives rise to an R(X)-linear map

σ : Ω1
R(X)/k −→ JR(X)/k

defined by

σ(ω)(f) =
∑
x∈X0

Resx(fxω), ∀ω ∈ Ω1
R(X)/k, ∀f = (fx) ∈ V.

This makes sense, since σ(ω)(R(X)) = 0 by Theorem 5, (ii), while σ(ω)(V (D)) = 0 for D = (ω)

by (R2).

For any divisor D, we see easily that σ induces a k-linear map

σD : H0(X,Ω1
X/k(−D)) −→ Homk(V/(R(X) + V (D)), k) = Homk(H

1(X,OX(D)), k).

Theorem 6 (Serre duality). As in the Riemann-Roch theorem (Theorem 1.1), let X be a

curve, smooth, proper and geometrically irreducible over a field k. Then

σ : Ω1
R(X)/k −→ JR(X)/k

is an isomorphism, which induces an isomorphism

σD : H0(X,Ω1
X/k(−D))

∼−→ Homk(V/(R(X) + V (D)), k) = Homk(H
1(X,OX(D)), k),

for any divisor D. Consequently, (2)-strong form of the Riemann-Roch theorem (Theorem 1.3)

holds, giving rise to a non-degenerate bilinear pairing

H0(X,Ω1
X/k(−D))×H1(X,OX(D)) −→ k.

In particular, Part (2) of Theorem 1.1 holds.

To show that σ and σD are isomorphisms, we follow Serre [103, Chapter II, §§6 and 8].

Lemma 7.

dimR(X) JR(X)/k ≤ 1.

Proof. Suppose λ, λ′ ∈ JR(X)/k were R(X)-linearly independent. Hence we have an injec-

tive homomorphism

R(X)⊕R(X) ∋ (g, h) 7−→ gλ+ hλ′ ∈ JR(X)/k.
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There certainly exists D such that λ(V (D)) = 0 and λ′(V (D)) = 0. Fix x ∈ X0 and let P = [x].

For a positive integer n and g, h ∈ R(X) with (g) + nP ≥ 0 and (h) + nP ≥ 0, we have

(gλ+ hλ′)(V (D − nP )) = 0. Thus we have an injective homomorphism

H0(X,OX(nP ))⊕H0(X,OX(nP )) ∋ (g, h) 7−→ gλ+ hλ′ ∈ Homk(H
1(X,OX(D − nP )), k).

Hence we have

(∗) dimH1(X,OX(D − nP )) ≥ 2 dimkH
0(X,OX(nP )).

The right hand side of (∗) is greater than or equal to 2(n degP − g + 1) by Theorem 1.1, (1).

On the other hand, again by Theorem 1.1, (1), the left hand side of (∗) is equal to

−deg(D − nP ) + g − 1 + dimkH
0(X,OX(D − nP ))

= ndegP + (g − 1− degD) + dimkH
0(X,OX(D − nP )).

However, one has deg(D−nP ) < 0 for n≫ 0, hence H0(X,OX(D−nP )) = 0 by Corollary 1.4,

(b). Thus (∗) obviously leads to a contradiction for n≫ 0. □

To continue the proof, we need to consider the base extension X ′ = X×Spec(k) Spec(k
′) with

respect to a finite extension k′ of k. By assumption, X ′ is proper and smooth over k′ and we

obviously have a canonical commutative diagram

Ω1
R(X′)/k′

σ′
// JR(X′)/k′

k′ ⊗k Ω1
R(X)/k

k′⊗σ
//

?�

OO

k′ ⊗k JR(X)/k.
?�

OO

The base extension D′ = D ×Spec(k) Spec(k
′) of a divisor D on X induces

H0(X ′,Ω1
X′/k′(−D

′))
σ′
D′

// Homk′(H
1(X ′,OX′(D′)), k′)

k′ ⊗k H0(X,Ω1
X/k(−D))

k′⊗σD
// k′ ⊗k Homk(H

1(X,OX(D)), k).

Lemma 8. Under the R(X)-linear map

σ : Ω1
R(X)/k −→ JR(X)/k,

ω ∈ Ω1
R(X)/k belongs to H0(X,Ω1

X/k(−D)) if σ(ω)(V (D)) = 0.

Proof. Otherwise, there exists y ∈ X0 such that ordy(ω) < ordyD. Replacing k by a finite

extension k′, we may assume y to be k-rational so that k(y) = k. Let n = ordy(ω) + 1, hence

n ≤ ordyD. Define f = (fx) ∈ V by{
fx = 0 if x ̸= y

fy = 1/tny (ty being a local parameter at y).

Obviously, Resx(fxω) = 0 for x ̸= y, while

ordy(fyω) = ordy((1/t
n
y )ω) = −n+ ordy(ω) = −1,

hence σ(ω)(f) = Resy(fyω) = 1 ̸= 0 by (R4). Since n ≤ ordy(D), one has f ∈ V (D), a

contradiction to the assumption σ(ω)(V (D)) = 0. □
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Remark. (Added in publication) (Chai) Without resorting to any base extension of k, we

can prove the lemma as follows: Pick a k-morphism α from an open neighborhood U of y to

A1 = Spec k[s] which is étale at y. Let z = α(y) and L = k(s). Write ω = hα∗ds, h ∈ R(X),

and ordy(h) = n. We need to show that there exists an element fy ∈ Ky with ordy(fy) = −n−1

such that Resy(fyhds) ̸= 0. We know that TrKy/Lz
(Ay) = Az because α is étale at y, so that

by Theorem 5 (iii) it suffices to exhibit an element gz ∈ Lz such that ordz(gz) = −1 and

Resz(gzds) ̸= 0. Let q(s) be a monic irreducible polynomial in k[s] corresponding to the closed

point z ∈ A1
k, and let d = deg(q(s)). Then everything follows from the formula

Resz

 ∑
1≤i≤N

a−i(s)

q(s)i

 ds

 = bd−1, a−1(s) =
∑

0≤j≤d−1

bjs
j

for local residues at z of rational differentials, where each a−i(s) is a polynomial in k[s] of degree

at most d− 1. This formula can be proved either by direct computation using Tate’s definition,

or using the residue theorem and computing

−Res∞

 ∑
1≤i≤N

a−i(s)

q(s)i

 ds

 = bd−1,

because z and ∞ are the only poles.

Proof of Theorem 6. σ is injective, for if σ(ω) = 0, then ω ∈ H0(X,Ω1
X/k(−D)) for all

D by Lemma 8, hence ω = 0.

σ is surjective, since σ is a non-zero R(X)-linear map with dimR(X) ≤ 1 by Lemma 7.

Moreover, σD is surjective, for if λ ∈ JR(X)/k satisfies λ(V (D)) = 0, then there exists ω ∈
Ω1
R(X)/k with σ(ω) = λ. We see that ω ∈ H0(X,Ω1

X/k(−D)) by Lemma 8. □

Remark. (Added in publication) (Chai)

(1) The classical style of treating algebraic curves via valuations and adèles (as in the book by

Chevelley, following a 1938 paper by Weil written in German) amounts to, in modern language,

considering one-dimensional irreducible regular scheme X of finite type proper over a field k.

Let K := R(X) be the function field of X. We may and do assume that k is algebraically closed

in K. Then X can be recovered from K by considering discrete valuations on K that are trivial

on k.

In general, the scheme X may not be smooth over k. There are two potential problems.

First, the field K may not be separable over k, i.e., K/k(x) is not a finite separable extension

for any x ∈ K; equivalently, SpecK may not be smooth over Spec k. An example: k = F (u, v),

with u, v transcendental over a field F ⊃ F, and K is the fraction field of k[x, y]/(xp− uyp− v).
Even when K/k is a regular extension (i.e., K/k is separable and k is algebraically closed in

K), the morphism X → Spec k may still be non-smooth. An example: k ⊃ Fp, a /∈ kp, p odd,

and K is the fraction field of k[x, y]/(y2 − xp + a). Then X is the algebraic curve containing

Spec k[x, y]/(y2 − xp + a) as an affine open set, with Spec k[x, y]/(y2 − xp + a) regular but not

smooth over k. Note that the genus of K is (p − 1)/2, while the genus of K · k1/p over k1/p

is 0. (Whenever X is not smooth over k, the phenomenon “genus change under constant field

extension” occurs—see Artin [15, Chap. 15].)

(2) Tate’s definition of residue gives a K-linear map σ : Ω1
K/k → JK/k. This map is an

isomorphism if K/k is separable (hence regular) as shown in Theorem 5, while it is identically

zero if K is not separable over k. This last assertion follows from Theorem 5, (iii). For any

x ∈ K transcendental over k, K is inseparable over k(x), hence TrK/k(x) is identically zero.
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Sheafification of the map σ gives an OX -linear map

σX : Ω1
X/k −→ JX/k,

where JX/k is an invertible OX -module, while Ω1
X/k is an invertible OX -module if and only if X

is smooth over k.

We have seen that the map σX is identically zero when K/k is not separable. When X

is not smooth over k, the map σX is never injective (since Ω1
X/k has torsion), and it may not

be surjective either. Consider the case where K is the fraction field of k[x, y]/(y2 − xp + a),

with a /∈ kp and p odd. Let P0 be the closed point of X corresponding to the principal ideal

yk[x, y]/(y2 − xp + a) of k[x, y]/(y2 − xp + a). Then the image of σX is JX/k(−P0) as can be

checked by an easy computation using Theorem 5, (iii).

[Here is the proof: Let O′ be the completed local ring at P0, and let O be the completion

of the localization of k[x] at the principal ideal generated by xp − a. The maximal ideals of

these two discrete valuation rings are generated by y and xp − a, respectively. Then the sheaf

of continuous differentials Ω1
O′/k is generated by dx and dy, with the relation ydy = 0. Hence

σX,P0(dy) = 0, and the image of σx,P0 is determined by Theorem 5, (iii). An easy computation

shows that TrO′/O(y
−1O′) = O, while TrO′/O(y

−2O′) = (xp − a)−1O.]

2. Comparison of algebraic with analytic cohomology

In almost all of this section, we work only with complex projective space and its non-singular

subvarieties. We abbreviate PnC to Pn and recall that the set of closed points of Pn has two

topologies: the Zariski topology and the much finer classical (or ordinary) topology. By (Pn in

the classical topology) we mean the set of closed points of Pn in the classical topology and by

(Pn in the Zariski topology) we mean the scheme PnC as usual. Note that there is a continuous

map

ϵ : (Pn in classical topology) −→ (Pn in the Zariski topology).

We shall consider sheaves on the space on the left. The following class is very important.

Definition 2.1. The holomorphic or analytic structure sheaf OPn,an on (Pn in the classical

topology) is the sheaf:

OPn,an(U) = ring of analytic functions f : U → C.

If U ⊂ Pn is an open set, then a sheaf F of OPn,an-modules on U is called a coherent analytic

sheaf if the following conditions are satisfied:

• F is locally of finite type: for all x ∈ U , there exists a (classical) open neighborhood

Ux ⊂ U of x and a surjective homomorphism

OmPn,an|Ux ↠ F|Ux

of OPn,an-modules on Ux,

• for any open set V ⊂ U and any homomorphism

h : OlPn,an|V → F|V
of OPn,an|V -modules, Ker(h) is locally of finite type.

For basic results on coherent analytic sheaves, we refer to Gunning-Rossi [54]. Among the

standard results given there are:

(2.2) If ϕ : F → G is an OPn,an-module homomorphism of coherent analytic sheaves on some

U , then Kerϕ, Imageϕ and Cokerϕ are coherent; thus the coherent analytic sheaves

on U form an abelian category.
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(2.3) If U ⊂ PnC is a polycylinder in some affine piece and F is coherent on U , then

H i(U,F|U ) = (0), i > 0, and F|U is generated as OPn,an-module by H0(U,F|U ).
(2.4) If X ⊂ U is a closed analytic subset, then the sheaf IX of analytic functions vanishing

on X is coherent. If F is coherent, then {x ∈ Pn | Fx ̸= (0)} is a closed analytic subset.

Now if F is an algebraic coherent sheaf on PnC, one can define canonically an associated analytic

coherent sheaf Fan as follows: for all classical open U , let:

Fan(U) = submodule of
∏
x∈U

(OPn,an)x ⊗OPn,x
Fx

consisting of families {sx} satisfying the following condition:

for all x ∈ U , classical neighborhood U1 of x and a Zariski

neighborhood U2 of x, fi ∈ OPn,an(U1) and ti ∈ F(U2) such that

sx =
∑
fi ⊗ ti, x ∈ U1 ∩ U2.

This looks a bit cumbersome but, in fact, it is the natural way to define f∗F for any morphism

f of ringed spaces, and sheaf of modules F on the image space. In the present situation, one

has Fan = ϵ∗F . An elementary calculation gives the stalks of Fan:

(Fan)x = (OPn,an)x ⊗OPn,x
Fx.

Also, F 7−→ Fan is obviously a functor, i.e., any OPn-homomorphism ϕ : F1 → F2 induces

ϕan : F1,an → F2,an. We now invoke the basic fact:

Lemma 2.5 (Serre). C{X1, . . . , Xn}, the ring of convergent power series, is flat as a module

over C[X1, . . . , Xn].

Proof. In fact, the completion Ô of a noetherian local ring O is a faithfully flat O-module

(Atiyah-MacDonald [20, (10.14) and Exercise 7, Chapter 10]), hence C[[X1, . . . , Xn]] is faith-

fully flat over C{X1, . . . , Xn} and over C[X1, . . . , Xn](X1,...,Xn). Hence ∀M → N → P over

C[X1, . . . , Xn],

M → N → P exact =⇒M ⊗ C[[X]]→ N ⊗ C[[X]]→ P ⊗ C[[X]] exact

=⇒M ⊗ C{X} → N ⊗ C{X} → P ⊗ C{X} exact.
□

Corollary 2.6. F 7−→ Fan is an exact functor from the category of all OPn-modules to the

category of all OPn,an-modules.

Proof. If F → G → H is exact, then by Proposition IV.4.3

Fan,x −→ Gan,x −→ Han,x

is exact for all x, hence Fan → Gan → Han is exact. □

Corollary 2.7. If F is a coherent algebraic sheaf, then Fan is a coherent analytic sheaf.

The proof is left to the reader.

Note that covering the identity map

ϵ : (Pn in the classical topology) −→ (Pn in the Zariski topology)

there is a map ϵ∗ : F → Fan of sheaves. This induces a canonical map on cohomology H i(F)→
H i(Fan).

Our goal is now the following fundamental theorem:

Theorem 2.8 (Serre). (Fundamental “GAGA”4 comparison theorem)

4Short for “géométrie analytique et géométrie algébrique”
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i) For every coherent algebraic F , and every i,

H i(Pn in the Zariski topology,F) ∼= H i(Pn in the classical topology,Fan).

ii) The categories of coherent algebraic and coherent analytic sheaves are equivalent, i.e.,

every coherent analytic F ′ is isomorphic to Fan, some F , and

HomOPn (F ,G) ∼= HomOPn,an
(Fan,Gan).

Remark. (Added in publication) The statement of Serre’s GAGA theorem (Theorem 2.8)

holds also when the underlying variety is replaced by a scheme proper over C, by an argument

using Chow’s lemma and noetherian induction similar to that in the proof of Grothendieck’s

coherency theorem (Theorem VII.6.5).

We will omit the details of the first and most fundamental step in the proof (for these we

refer the reader to Gunning-Rossi [54, Chapter VIII A]). This is the finiteness assertion: given

a coherent analytic F , then dimCH
i(Pn,F) < +∞, for all i. The proof goes as follows:

a) For all C > 1, 0 ≤ i ≤ n, let

Ui,C =

{
x ∈ Pn

∣∣∣∣ x /∈ V (Xi) and

∣∣∣∣Xj

Xi
(x)

∣∣∣∣ < C, 0 ≤ j ≤ n
}
.

b) Then
∪n
i=0 Ui,C = Pn so we have an open covering UC = {U0,C , · · · , Un,C} of Pn.

c) Note that each intersection Ui1,C ∩ · · · ∩ Uik,C can be mapped bihilomorphically onto

a closed analytic subset Z of a high-dimensional polycylinder D by means of the set

of functions Xj/Xil , 0 ≤ j ≤ n, 1 ≤ l ≤ k. Therefore, every coherent analytic F on

Ui1,C∩· · ·Uik,C corresponds to a sheaf F ′ on Z and, extending it to D\Z by (0) outside

Z, a coherent analytic F ′ on D. Then

H i(Ui1,C ∩ · · ·Uik,C ,F) ∼= H i(Z,F ′) ∼= H i(D,F ′) ∼= (0), i > 0.

d) Therefore by Proposition VII.2.2 it follows that

H i(Pn,F) ∼= H i(UC ,F)

and that the refinement maps (for C > C ′ > 1):

refiC,C′ : Ci(UC ,F) −→ Ci(UC′ ,F)

induce an isomorphism on cohomology.

e) The key step is to show that the space of sections:

F(Ui1,C ∩ · · ·Uik,C)

is a topological vector space, in fact, a Fréchet space in a natural way; and that all

restriction maps such as

F(Ui2,C ∩ · · ·Uik,C) −→ F(Ui1,C ∩ · · ·Uik,C)

are continuous, and that restriction to a relatively compact open subset, as in

F(Ui1,C ∩ · · ·Uik,C) −→ F(Ui1,C′ ∩ · · ·Uik,C′) (C > C ′)

is compact. This last is a generalization of Montel’s theorem that

res :

{
holomorphic functions on

disc |z| < C

}
−→

{
holomorphic functions on

disc |z| < C ′

}
is compact. It follows that Ci(UC ,F) is a complex of Fréchet spaces and continuous

maps, and that refiC,C′ is compact.
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f) By step (d),

Zi(UC ,F)⊕ Ci−1(UC′)
ref +δ

// Zi(UC′ ,F)

(a, b) � // refiC,C′ a+ δb

is surjective. A standard fact in the theory of Fréchet spaces is that if

α, β : V1 −→ V2

are two continuous maps of Fréchet spaces, with α surjective and β compact, then α+β

has closed image of finite codimension. Apply this with α = ref +δ, β = − ref and we

find that Coker(δ) = H i(UC′ ,F) is finite-dimensional.

The second step in the proof is the vanishing theorem — if F is coherent analytic, then

for i > 0, m ≫ 0, H i(Pn,F(m)) = (0). (Here F(m) =
def
F ⊗OPn,an

OPn,an(m) as usual.) We

prove this by induction on n, the complex dimension of the ambient projective space, since it

is obvious for n = 0. As in §VII.7, we use the ⊗L : F(m) → F(m + 1), where L =
∑
ciXi is a

linear form. This induces exact sequences:

(2.9) 0 // GL(m) // F(m) //

&&LLLL
F(m+ 1) // HL(m) // 0

F ′
L(m)

77ooooo

((QQQQQQQ

0

88pppppp
0

where both GL and HL are annihilated by L/Xi on Pn \ V (Xi). Therefore they are coherent

analytic sheaves on V (L) ∼= Pn−1, and the induction assumption applies to them, i.e., ∃m0(L)

such that
H i(Pn,GL(m)) ∼= (0)

H i(Pn,HL(m)) ∼= (0)
if m ≥ m0(L), 1 ≤ i ≤ n.

The cohomology sequence of (2.9) then gives us:

⊗L : H i(Pn,F(m))
∼−→ H i(Pn,F(m+ 1)), m ≥ m0(L).

In particular, dimH i(Pn,F(m)) = Ni, independent of m for m ≥ m0(L). Now fix one linear

form L and consider the maps:

⊗F : H i(F(m0(L))) −→ H i(F(m0(L) + d))

for all homogeneous F of degree d. If Rd is the vector space of such F ’s, then choosing fixed

bases of the above cohomology groups, we have a linear map:

Rd // vector space of (Ni ×Ni)-matrices

F
� // matrix for ⊗F .

Let Id be the kernel. It is clear that I =
∑∞

d=1 Id is an ideal in R =
⊕∞

d=0Rd and that

dimRd/Id ≤ N2
i . Thus the degree of the Hilbert polynomial of R/I is 0, hence the subscheme

V (I) ⊂ Pn with structure sheaf OPn/Ĩ is 0-dimensional. If V (I) = {x1, . . . , xt}, it follows that
the only associated prime ideals of I can be either

mxi = ideal of forms F with F (xi) = 0, 1 ≤ i ≤ t

or

(X0, . . . , Xn).
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By the primary decomposition theorem, it follows that

I ⊃ (X0, . . . , Xn)
d0 ∩

t∩
i=1

mdi
xi

for some d0, . . . , dt. Now fix linear forms Li such that Li(xi) = 0. Let

F = Lmax(d0,m0(Li)−m0(L)) ·
t∏
i=1

Ldii .

On the one hand, we see that F ∈ I, hence ⊗F on H i(F(m0(L))) is 0. But on the other hand,

if m1 = max(d0,m0(Li)−m0(L)), then ⊗F factors:

H i(F(m0(L)))
⊗L−−→
≈
· · · ⊗L−−→

≈
H i(F(m0(L) +m1))

⊗L1−−−→
≈

. . .
⊗Lt−−→
≈

H i(F(m0(L) +m1 +
∑

di))

which is an isomorphism. It follows that H i(F(m0(L))) = (0) as required.

The third step is to show that if F is coherent analytic, then F(ν) is generated by its sections

if ν ≫ 0. For each x ∈ Pn, let mx = sheaf of functions zero at x, and consider the exact sequence:

0 // mx · F(ν) // F(ν) // F(ν)/mx · F(ν) // 0

(mx · F)(ν).

There exists νx such that if ν ≥ νx, then H1(mx ·F(ν)) = (0), hence H0(F(ν))→ H0(F(ν)/mx ·
F(ν)) is onto. Let G be the cokernel:

H0(F(νx))⊗C OPn,an −→ F(νx) −→ G −→ 0.

Then G is coherent analytic and

Gx/mx · Gx ∼= F(ν)x/
(
mx · F(ν)x + ImageH0(F(ν)

)
= (0).

Therefore by Nakayama’s lemma, Gx = (0) and by coherency, ∃ a neighborhood Ux of x in which

G ≡ (0). It follows that F(νx) is generated by H0(F(νx)) in Ux and hence F(ν) is generated by

H0(F(ν)) in Ux for ν ≥ νx too! By compactness Pn is covered by finitely many of these Ux’s,

say Ux1 , . . . , Uxt . Then if ν ≥ max(νxi), F(ν) is generated everywhere by H0(F(ν)).
The fourth step is to show that

H0(OPn,an(m)) = vector space of homogeneous forms of

degree m in X0, . . . , Xn

just as in the algebraic case. We do this by induction first on n, since it is clear for n = 0; and

then by a second induction on m, since it is also clear for m = 0, i.e., by the maximum principle

the only global analytic functions on the compact space Pn are constants. The induction step

uses the exact sequence:

0 −→ OPn,an(m− 1)
⊗Xn−−−→ OPn,an(m) −→ OPn−1,an(m) −→ 0
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which gives:

0 //


Polynomials in

X0, . . . , Xn

of degree m− 1

 Xn
//

��


Polynomials in

X0, . . . , Xn

of degree m

 //

��


Polynomials in

X0, . . . , Xn−1

of degree m

 //

��

0

0 // H0(OPn,an(m− 1))
⊗Xn

// H0(OPn,an(m)) // H0(OPn−1,an(m)).

“Chasing” this diagram shows the required assertion for OPn,an(m).

The fifth step is that every coherent analytic F ′ is isomorphic to Fan, some coherent algebraic

F . By the third step there is a surjection:

On0
Pn,an −→ F

′(m0) −→ 0

for suitable n0 and m0, hence a surjection:

OPn,an(−m0)
n0 −→ F ′ −→ 0.

Applying the same reasoning to the kernel, we get a presentation:

OPn,an(−m1)
n1

ϕ′−→ OPn,an(−m0)
n0 −→ F ′ −→ 0.

Now ϕ′ is given by an (n0×n1)-matrix of sections ϕ′ij of OPn,an(m1−m0), hence by an (n0×n1)-
matrix Fij of polynomials of degree m1 −m0. Thus the Fij defines ϕ, with cokernel F :

OPn(−m1)
n1

ϕ−→ OPn(−m0)
n0 −→ F −→ 0.

By exactness of the functor G 7→ Gan, it follows that F ′ ∼= Fan. Using the same set-up, we can

also conclude that H0(F(m)) ∼= H0(Fan(m)) for m ≫ 0. In fact, twist enough so that the H1

of the kernel and image of both ϕ and ϕ′ are all (0): then the usual sequences show that the two

rows below are exact:

H0(OPn(m−m1)
n1) //

��

H0(OPn(m−m0)
n0) //

��

H0(F(m)) //

��

0

H0(OPn,an(m−m1)
n1) // H0(OPn,an(m−m0)

n0) // H0(Fan(m)) // 0.

Thus H0(F(m))→ H0(Fan(m)) is an isomorphism.

The sixth step is to compare the cohomologies of F(m) and Fan(m) for all m. We know that

for m ≫ 0, all their cohomology groups are isomorphic and we may assume by induction on n

that we know the result for sheaves on Pn−1. We use a second induction on m, i.e., assuming

the result for H i(F(m + 1)), all i, deduce it for H i(F(m)), all i. Use the diagram (2.9) above

for any linear form L. We get

H i−1(F(m+ 1)) //

��

H i−1(HL(m)) //

��

H i(F ′
L(m)) //

��

H i(F(m+ 1)) //

��

H i(HL(m))

��

H i−1(Fan(m+ 1)) // H i−1(HL,an(m)) // H i(F ′
L,an(m)) // H i(Fan(m+ 1)) // H i(HL,an(m))

and

H i−1(F ′
L(m)) //

��

H i(GL(m)) //

��

H i(F(m)) //

��

H i(F ′
L(m)) //

��

H i+1(GL(m))

��

H i−1(F ′
L,an(m)) // H i(GL,an(m)) // H i(Fan(m)) // H i(F ′

L,an(m)) // H i+1(GL,an(m)).

By the 5-lemma, the result for H i(F(m + 1)) and H i−1(F(m + 1)) implies it for H i(F ′
L(m)).

And the result for H i(F ′
L(m)) and H i−1(F ′

L(m)) implies it for H i(F(m)).
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The seventh step is to compare Hom(F ,G) and Hom(Fan,Gan). Presenting F as before, we

get:

Hom(F ,G) ∼= Ker
[
Hom(OPn(−m0)

n0 ,G) ◦ϕ−→ Hom(OPn(−m1)
n1 ,G)

]
∼= Ker

[
H0(G(m0)

n0)
⊗Fij−−−→ H0(G(m1)

n1)

]
∼= Ker

[
H0(Gan(m0)

n0)
⊗Fij−−−→ H0(Gan(m1)

n1)

]
∼= Ker

[
Hom(OPn,an(−m0)

n0 ,Gan)
◦ϕ−→ Hom(OPn,an(−m1)

n1 ,Gan)
]

∼= Hom(Fan,Gan).
□

Corollary 2.10. A new proof of Chow’s theorem (Part I [87, (4.6)]): If X ⊂ Pn is a closed

analytic subset, then X is a closed algebraic subset.

Proof. If X ⊂ Pn is a closed analytic subset, then IX ⊂ OPn,an is a coherent analytic sheaf,

so IX = Jan for some coherent algebraic J ⊂ OPn . So X = SuppOPn,an/IX = SuppOPn/J is

a closed algebraic subset. □

Corollary 2.11. If X1 and X2 are two complete verieties over C, then every holomorphic

map f : X1 → X2 is algebraic, i.e., a morphism.

Proof. Apply Chow’s lemma (Theorem II.6.3) to find proper birational π1 : X
′
1 → X1 and

π2 : X
′
2 → X2 with X ′

i projective. Let Γ ⊂ X1 × X2 be the graph of f . Then (π1 × π2)−1Γ ⊂
X ′

1 ×X ′
2 is a closed analytic subset of projective space, hence is algebraic by Chow’s theorem.

Since π1 × π2 is proper, Γ = (π1 × π2)[(π1 × π2)−1Γ] is also a closed algebraic set. In order to

see that it is the graph of a morphism, we must check that p1 : Γ→ X1 is an isomorphism. This

follows from:

Lemma 2.12. Let f : X → Y be a bijective morphism of varieties. If f is an analytic

isomorphism, then f is an algebraic isomorphism.

Proof of Lemma 2.12. Note that f is certainly birational since #f−1(y) = 1 for all y ∈ Y .

Let x ∈ X, y = f(x). We must show that f∗ : OY,y → OX,x is surjective. The local rings of

analytic functions on X and Y at x and y and the formal completions of these rings are related

by:

OY,y
f∗

//

��

OX,x
��

(OY,an)y
f∗an

//

��

(OX,an)x
��

ÔY,y
f∗

// ÔX,x.
Now f∗an is an isomorphism by assumption. If a ∈ OX,x, write a = b/c, b, c ∈ OY,y using the fact

that f is birational. Then

f∗an isomorphism =⇒ ∃a′ ∈ (OY,an)y with b = c · a′

=⇒ b ∈ OY,y ∩ c · ÔY,y.

But for any ideal a ⊂ OY,y, a = OY,y ∩ a · ÔY,y, so b ∈ c · OY,y, i.e., a ∈ OY,y. □

□
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Corollary 2.13 (Projective case of Riemann’s Existence Theorem). Let X be a complex

projective variety5. Let Ỹ be a compact topological space and

π̃ : Ỹ −→ (X in the classical topology)

a covering map (since Ỹ is compact, this amounts merely to requiring that π̃ is a local homeo-

morphism). Then there is a unique scheme Y and étale proper morphism π : Y → X such that

there exists a homeomorphism ρ:

Ỹ
≈
ρ

//

((QQQQQQQQQQQQQ (Y in the classical topology)

ssgggggggggggggggg

(X in the classical topology).

Proof. Given Ỹ , note first that since π̃ is a local homeomorphism we can put a unique

analytic structure on it making π̃ into a local analytic isomorphism. Let B = π̃∗(OỸ ): this is a
sheaf of OX,an-algebras. Now every x ∈ X has a neighborhood U such that π̃−1(U) ∼= disjoint

union of l copies of U ; hence B|U ∼=
⊕l

i=1OX,an as a sheaf of algebras. In particular, B is a

coherent analytic sheaf of OX,an-modules. Recall that we can identify sheaves of OX,an-modules

with sheaves of OPn,an-modules, (0) outside X and killed by multiplication by IX . Therefore by
the fundamental GAGA Theorem 2.8, B ∼= Ban for some algebraic coherent sheaf of OX -modules

B. Multiplication in B defines an OX,an-module homomorphism

µ : B ⊗OX,an
B −→ B,

hence by the GAGA Theorem 2.8 again this is induced by some OX -module homomorphism:

ν : B⊗OX
B −→ B.

The associative law for µ implies it for ν and so this makes B into a sheaf of OX -algebras.
The unit in B similarly gives a unit in B. We now define Y = SpecX(B), with π : Y → X the

canonical map (proper since B is coherent by Proposition II.6.5). How are Y and Ỹ related?

We have

i) a continuous map ζ : Ỹ → (closed points of X)

ii) a map backwards covering ζ:

ζ∗ : B −→ (sheaf of continuous C-valued functions on Ỹ )

such that ∀x ∈ Ỹ and ∀f ∈ Bζ(x),

ζ∗f(x) = f(ζ(x)),

defined as the composite

B(U) −→ B(U) −→ O
Ỹ ,an

(π̃−1U) −→ [continuous functions on π̃−1U ].

These induce a continuous map:

η : Ỹ −→ (closed points of Y )

5The theorem is true in fact for any variety X and finite-sheeted covering π∗ : Y ∗ → X, but this is harder, cf.

SGA4 [7, Theorem 4.3, Exposé 11], where Artin deduces the general case from Grauert-Remmert [43]; or SGA1

[4, Exposé XII, Théorème 5.1, p. 332], where Grothendieck deduces it from Hironaka’s resolution theorems [61].
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by

η(x) = point corresponding to maximal ideal
{f ∈ Bζ(x) | ζ∗f(x) = 0}

mX,ζ(x) ·Bζ(x)

via the correspondence

π−1(ζ(x)) ⇆ maximal ideals in Bζ(x)/mζ(x) ·Bζ(x).

Now η has the property

2.14. ∀f ∈ OY (V ), the composite map

η−1(V )
η−→ (closed points of V )

f−→ C

is a continuous function on η−1(V ) (in the classical topology).

But a basis for open sets in the classical topology on Y is given by finite intersections of the

sets:

V Zariski open, f ∈ OY (V ), let

Wf,ϵ = {x ∈ V | x closed and |f(x)| < ϵ}.

Because of (2.14), η−1(Wf,ϵ) is open in Ỹ , i.e., η is a continuous map from Ỹ to (Y in the

classical topology). Now in fact η is bijective too. In fact, if U ⊂ X is a classical open so that

π−1(U) = (disjoint union of n copies of U) and B|U =
⊕l

i=1OX,an|U , then for all x ∈ U ,

Bx/mx · Bx ∼=
l⊕

i=1

C

and the correspondence between points of π−1(x) and maximal ideals of Bx/mx · Bx given by

y 7→ {f | f(y) = 0} is bijective. On the other hand, since Bx ∼= Bx⊗Ox,x (OX,an)x, it follows that
Bx/mx · Bx ∼= Bx/mx ·Bx. Thus η is a continuous bijective map from a compact space Ỹ to (Y

in the classical topology). Thus η is a homeomorphism. Finally Bx is a free (OX,an)x-module,

hence it follows that Bx is a free OX,x-module: Hence π : Y → X is a flat morphism. And the

scheme-theoretic fibre is:

π−1(x) = SpecBx/mx ·Bx

∼= SpecBx/mx · Bx

∼= Spec

l⊕
i=1

C = l reduced points.

Thus π is étale.

As for the uniqueness of Y , it is a consequence of the stronger result: say

Y1

π1 !!CCC Y2

π2}}{{{

X

are two étale proper morphisms. Then any map continuous in the classical topology:

(Y1 in the classical topology)
f−→ (Y2 in the classical topology)

with π2 ◦ f = π1 is a morphism. To see this, note that πi are local analytic isomorphisms, hence

f is analytic, hence by Corollary 2.11, f is a morphism. □
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This Corollary 2.13 implies profound connections between topology and field theory. To

explain these, we must first define the algebraic fundamental group πalg1 (X) for any normal

noetherian scheme X6. We have seen in §V.6 that morphisms:

(a)

π : Y −→ X

Y normal irreducible

π proper, surjective, π−1(x) finite for all x,

π generically smooth

are uniquely determined by the function field extension R(Y ) ⊃ R(X), which is necessarily

separable; and that conversely, given any finite separable K ⊃ R(X), we obtain such a π by

setting Y = the normalization of X in K. In particular, suppose we start with a morphism:

(b)

π : Y −→ X

Y connected

π proper and étale.

Then Y is smooth over a normal X, hence is normal by Proposition V.5.5. Being connected,

Y is also irreducible. Thus Y = normalization of X in R(Y ). Now choose a specific separable

algebraic closure R(X) of R(X) and let

G = Gal(R(X)/R(X)), the Galois group

∼= lim←−
K

Aut(K/R(X))

where R(X) ⊂ K ⊂ R(X), K normal over R(X) with [K : R(X)] < +∞.

As usual, G, being an inverse limit of finite groups, has a natural structure of compact, totally

disconnected topological group. One checks easily7 that there is an intermediate field:

R(X) ⊂ R̃(X) ⊂ R(X)

such that for all K ⊂ R(X), finite over R(X):

the normalization YK of X

in K is étale over X

}
⇐⇒ K ⊂ R̃(X).

6Normality is not necessary and noetherian can be weakened. For a discussion of the results below in more

general case, see SGA1 [4, Exposés V and XII].
7This follows from two simple facts:

a) K1 ⊂ K2, YK2 étale over X =⇒ YK1 étale over X,

b) YK1 and YK2 étale over X =⇒ YK1·K2 étale over X.

To prove (a), note that we have a diagram

YK2 −→ YK1 −→ X.

Now YK2 étale over X =⇒ ΩYK2
/X = (0) =⇒ ΩYK2

/YK1
= (0) =⇒ YK2 étale over YK1 by Criterion 4.1 for

smoothness in §V.4. In particular, YK2 is flat over YK1 , hence if y2 ∈ YK2 has images y1 and x in YK1 and X,

then Oy2 is flat over Oy1 , hence mx · Oy2 ∩ Oy1 = mx · Oy1 . Thus

Oy1/mx · Oy1 ⊂ Oy2/mx · Oy2
∼= product of separable field extensions of k(x)

hence Oy1/mx · Oy1 is also a product of separable field extensions of k(x). This shows ΩYK1
/X ⊗ k(y1) = (0),

hence by Nakayama’s lemma, ΩYK1
/X = (0) near y1, hence by Criterion 4.1 for smoothness in §V.4, YK1 is étale

over X at y1.

To prove (b), note that YK1 ×X YK2 will be étale over X, hence normal. We get a morphism

YK1·K2

ϕ−→ YK1 ×X YK2

and if Z = component of YK1 ×X YK2 containing Imageϕ, then ϕ : YK1·K2 → Z is birational. Since Z is normal

and the fibres of ϕ are finite, ϕ is an isomorphism by Zariski’s Main Theorem in §V.6.
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Note that because of its defining property, R̃(X) is invariant under all automorphisms of R(X),

i.e., it is normal over R(X) and its Galois group over R(X) is a quotient G/N of G. By Galois

theory, the closed subgroups of finite index in G are in one-to-one correncepondence with the

subfields K ⊂ R(X) finite over R(X). So the closed subgroups of finite index in G/N are in

one-to-one correspondence with the subfields K ⊂ R̃(X) finite over R(X), hence with the set

of schemes YK étale over X. It is therefore reasonable to call G/N the algebraic fundamental

group of X, or πalg1 (X):

(2.15) πalg1 (X) = Gal(R̃(X)/R(X)).

Next in the complex projective case again choose a universal covering space Ω of X in the

classical topology. Then the topological fundamental group is:

πtop1 (X) = group of homeomorphisms of Ω over X,

and its subgroups of finite index are in one-to-one correspondence with the compact covering

spaces Ỹ dominated by Ω:

Ω −→ Ỹ
π̃−→ X,

which give, by algebraization (Corollary 2.13), connected normal complete varieties Y , étale over

X. This must simply force a connection between the two groups and, in fact, it implies this:

Theorem 2.16. Let X be a normal subvariety of PnC and let

π̂top1 (X) = lim←−
H

πtop1 (X)/H, over all H ⊂ πtop1 (X) of finite index

= “pro-finite completion” of πtop1 (X).

Then π̂top1 (X) and πalg1 (X) are isomorphic as topological groups, the isomorphism being canonical

up to an inner automorphism.

Proof. Choose a sequence {Hν} of normal subgroups of πtop1 of finite index, with Hν+1 ⊂
Hν , such that for any H of finite index, Hν ⊂ H for some ν. Let πtop1 /Hν = Gν and let Hν

define Ỹν → X. Then

π̂top1
∼= lim←−

ν

Gν

and Gν ∼= group of homeomorphisms of Ỹν over X.

Algebraize Ỹν to a scheme Yν étale over X by Corollary 2.13. Then the map Ỹν+1 → Ỹν comes

from a morphism Yν+1 → Yν and we get a tower of function field extensions:

· · · ←− R(Yν+1)←− R(Yν)←− · · · ←− R(X).

Note that

AutR(X)(R(Yν)) ∼= AutX(Yν) ∼= AutX(Ỹν) ∼= Gν

and since #Gν = degree of the covering (Ỹν → X) = [R(Yν) : R(X)], this shows that R(Yν) is

a normal extension of R(X). The fact that Yν ∼= YR(Yν) is étale over X shows that R(Yν) is

isomorphic to a subfield of R̃(X). Now choose an R(X)-isomorphism:

ϕ :
∞∪
ν=1

R(Yν) −→ R̃(X).
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It is easy to see that ϕ is surjective by going backwards from an étale YK → X to a topological

covering ỸK → X and dominating this by Ω. So we get the sought for isomorphism:

π̂top1
∼= lim←−

ν

Gν

∼= lim←−
ν

Gal(R(Yν)/R(X))

∼= Gal(R̃(X)/R(X))

∼= πalg1 .

The only choice here is of ϕ and varying ϕ changes the above isomorphism by an inner auto-

morphism. □

As a final topic I would like to discuss Grothendieck’s formal analog of Serre’s fundamental

theorem. His result is this:

Let R = noetherian ring, complete in the topology

defined by the powers of an ideal I.

Let X −→ SpecR be a proper morphism.

Consider the schemes:

Xn = X ×SpecR SpecR/In+1

i.e.,

X0

��

⊂ · · · ⊂ Xn

��

⊂ · · · · · · ⊂ X

��

SpecR/I ⊂ · · · ⊂ SpecR/In+1 ⊂ · · · · · · ⊂ SpecR

Define: a formal coherent sheaf F on X is a set of coherent sheaves Fn on Xn plus isomor-

phisms:

Fn−1
∼= Fn ⊗OXn

OXn−1 .

Note that every coherent F on X induces a formal Ffor by letting

Ffor,n
∼= F ⊗OX

OXn .

Then:

Theorem 2.17 (Grothendieck). (Fundamental “GFGA”8 comparison theorem)

i) For every coherent algebraic F on X and every i,

H i(X,F) ∼= lim←−
n

H i(Xn,Fn)

where Fn = F ⊗OX
OXn.

ii) The categories of formal and algebraic coherent sheaves are equivalent, i.e., every formal

F ′ is isomorphic to Ffor, some F , and

HomOX
(F ,G) ∼= Formal HomOX

(Ffor,Gfor).

The result for H0 is essentially due to Zariski, whose famous [118] proving this and apply-

ing it to prove the connectedness theorem (see (V.6.3) Fundamental theorem of “holomorphic

functions”) started this whole development. A complete proof of Theorem 2.17 can be found in

EGA [1, Chapter 3, §§4 and 5]9.

8Short for “géométrie formelle et géométrie algébrique”.
9(Added in publication) Illusie’s account in FAG [3, Chapter 8] “provides an introduction, explaining the

proofs of the key theorems, discussing typical applications, and updating when necessary.”
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Here we will prove only the special case:

R complete local, I = maximal ideal, k = R/I

X projective over SpecR

(which suffices for most applications)10. If X is projective over SpecR, we can embed X in PmR
for some m, and extend all sheaves from X to PmR by (0): thus it suffices to prove Theorem 2.17

for X = PmR .
Before beginning the proof, we need elementary results on the category of coherent formal

sheaves. For details, we refer the reader to EGA [1, Chapter 0, §7 and Chapter 1, §10]; however
none of these facts are very difficult and the reader should be able to supply proofs.

2.18. If A is a noetherian ring, complete in its I-adic topology and Un = SpecA/In+1, then

there is an equivalence of categories between:

a) sets of coherent sheaves Fn on Un plus isomorphism

Fn−1
∼= Fn ⊗OUn

OUn−1

b) finitely generated A-modules M

given by:

M = lim←−
n

Γ(Un,Fn)

Fn = ˜M/In+1M.

In particular, Category (a) is abelian: [but kernel is not the usual sheaf-theoretic kernel

because M1 ⊂M2 does not imply M1/I
n+1M1 ⊂M2/I

n+1M2!].

2.19. Given A as above, and f ∈ A, then

Af = lim←−
n

Af/I
n ·Af = lim←−

n

(A/InA)f

is flat over A.

Corollary 2.20. The category of coherent formal sheaves {Fn} on a scheme X, proper

over SpecR (R as above) is abelian with

Coker[{Fn} −→ {Gn}] = {Coker(Fn −→ Gn)}n=0,1,...

but

Ker[{Fn} −→ {Gn}] = {Hn}

where for each affine U ⊂ X:

Hn(U) = H(U)/In+1H(U)

H(U) = Ker

[
lim←−
n

Fn(U) −→ lim←−
n

Gn(U)

]
.

Proof of Corollary 2.20. Applying (2.18) with A = lim←−nOXn(U) we construct kernels

of {Fn|U} → {Gn|U} for each affine U as described above. Use (2.19) to check that on each

distinguished open Uf ⊂ U , the restriction of the kernel on U is the kernel on Uf . □

10(Added in publication) See the remark at the end of this section.
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2.21. If A is any ring and

0 −→ Kn −→ Ln −→Mn −→ 0

are exact sequences of A-modules for each n ≥ 0 fitting into an inverse system

0 // Kn+1
//

��

Ln+1
//

��

Mn+1
//

��

0

0 // Kn
// Ln // Mn

// 0

and if for each n, the decreasing set of submodules Image(Kn+k → Kn) of Kn is stationary for

k large enough, then

0 −→ lim←−
n

Kn −→ lim←−
n

Ln −→ lim←−
n

Mn −→ 0

is exact.

Proof of Theorem 2.17. We now begin the proof of GFGA. To start off, say F = {Fn}
is a coherent formal sheaf on PmR . Introduce

grR =

∞⊕
n=0

In/In+1 : a finitely generated graded k-algebra

S = Spec(grR) : an affine scheme of finite type over k

grF =

∞⊕
n=0

In · Fn : a quasi-coherent sheaf on Pmk .

Note that grF is in fact a sheaf of (
⊕∞

n=0 I
n/In+1)⊗OPm

k
-modules and since(

In/In+1
)
⊗k F0 −→ In · Fn

is surjective, grF is finitely generated as a sheaf of (
⊕∞

n=0 I
n/In+1) ⊗ OPm

k
-modules. In other

words, we can form a coherent sheaf g̃rF on

SpecS

(( ∞⊕
n=0

In/In+1

)
⊗OPm

k

)
= PmS .

Moreover,

Hq(PmS , g̃rF) =
∞⊕
n=0

Hq(Pmk , In · Fn).

This same holds after twisting F by the standard invertible sheaf O(l), hence:

Hq(PmS , g̃rF(l)) =
∞⊕
n=0

Hq(Pmk , In · Fn(l)).

But since grR is a noetherian ring, the left hand side is (0) if l ≥ l0 (for some l0) and q ≥ 1.

Thus:

Hq(Pmk , In · Fn(l)) = (0), if q ≥ 1, n ≥ 0, l ≥ l0.
Now look at the exact sequences:

0 −→ In · Fn(l) −→ Fn(l) −→ Fn−1(l) −→ 0.

It follows from the cohomology sequences by induction on n that:

Hq(PmR ,Fn(l)) = (0), if q ≥ 1,

and H0(PmR ,Fn(l)) −→ H0(PmR ,Fn−1(l)) surjective for all n ≥ 0, l ≥ l0.
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The next step (like the third step of the GAGA Theorem 2.8) is that for some l1, {Fn(l)} is
generated by its sections for all l ≥ l1: i.e., there is a set of surjections:

(2.22) ONPm
R
/In+1 · ONPm

R
−→ Fn(l) −→ 0

commuting with restriction from n+1 to n. To see this, take l1 ≥ l0 so that F0(l) is generated

by its sections for l ≥ l1. This means there is a surjection:

ONPm
k
−→ F0(l) −→ 0.

By (2.21), this lifts successively to compatible surjections as in the third step of the GAGA

Theorem 2.8. In other words, we have a surjection of formal coherent sheaves:

(2.23) ONPm
R
(−l)for −→ {Fn}.

Next, as in the fourth step of the GAGA Theorem 2.8, we prove

lim←−
n

H0(OPm
R
(l)/In+1 · OPm

R
(l)) ∼= (R-module of homogeneous forms of degree l)

∼= H0(OPm
R
(l)).

This is obvious since OPm
R
(l)/In+1 · OPm

R
(l) is just the structure sheaf of PmRn

, where Rn =

R/In+1 · R. Then the fifth step follows GAGA in Theorem 2.8 precisely: given {Fn}, we take

the kernel of Corollary 2.20 and repeat the construction, obtaining a presentation:

ON1
Pm
R
(−l1)for

ϕ−→ ON0
Pm
R
(−l0)for −→ {Fn} −→ 0.

By the fourth step, ϕ is given by a matrix of homogeneous forms, hence we can form the algebraic

coherent sheaf:

F = Coker
[
ϕ : ON1

Pm
R
(−l1) −→ ON0

Pm
R
(−l0)

]
and it follows immediately that Fn ∼= F/In+1 · F , i.e., {Fn} ∼= Ffor.

The rest of the proof follows that of GAGA in Theorem 2.8 precisely with Hq(Fan) replaced

by lim←−nH
q(F/In+1 · F), once one checks that

F 7−→ lim←−
n

Hq(F/In · F)

is a “cohomological δ-functor” of coherent algebraic sheaves F , i.e., if 0→ F → G → H → 0 is

exact, then one has a long exact sequence

0 −→ lim←−
n

H0(F/In · F) −→ lim←−
n

H0(G/In · G) −→ lim←−
n

H0(H/In · H)

δ−→ lim←−
n

H1(F/In · F) −→ · · · · · · .

But this follows by looking at the exact sequences:

0 −→ F/(F ∩ In · G) −→ G/In · G −→ H/In · H −→ 0.

By (2.21), the cohomology groups

lim←−
n

Hq(F/(F ∩ In · G))

lim←−
n

Hq(G/In · G)

lim←−
n

Hq(H/In · H)

fit into a long exact sequence (since for each n, the n-th terms of these limits are finitely generated

(R/In · R)-modules, hence are of finite length). But by the Artin-Rees lemma (Zariski-Samuel
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[119, vol. II, Chapter VIII, §2, Theorem 4′, p. 255]), the sequence of subsheaves F ∩ In · G of F
is cofinal with the sequence of subsheaves In · F : in fact ∃l such that for all n ≥ l:

In · F ⊂ F ∩ In · G = In−l · (F ∩ I l · G) ⊂ In−l · F .

Therefore

lim←−
n

Hq(F/(F ∩ In · G)) = lim←−
n

Hq(F/In · F).

□

Corollary 2.24. Every formal closed subscheme Yfor of X (i.e., the set of closed subschemes

Yn ⊂ Xn such that Yn−1 = Yn×Xn Xn−1) is induced by a unique closed subscheme Y of X (i.e.,

Yn = Y ×X Xn).

Corollary 2.25. Every formal étale covering π : Yfor → X (i.e., a set of coverings πn : Yn →
Xn plus isomorphisms Yn−1

∼= Yn ×Xn Xn−1) is induced by a unique étale covering π : Y → X

(i.e., Yn ∼= Y ×X Xn).

In fact, it turns out that an étale covering π0 : Y0 → X0 already defines uniquely the whole

formal covering, so that it follows that πalg1 (X0) ∼= πalg1 (X): See Corollary 5.9 below.11 Another

remarkable fact is that the GAGA and GFGA comparison theorems are closer than it would

seem at first. In fact, if R is a complete discrete valuation ring with absolute value | |, note
that for AmR :

lim←−
n

H0(Am(R/In+1),OAm) = lim←−
n

(R/In+1)[X1, . . . , Xm]

∼= ring of “convergent power series”
∑

cαX
α

where cα ∈ R and |cα| → 0 as |α| → ∞.

This is the basis of a connection between the above formal geometry and a so-called “rigid” or

“global” analytic geometry over the quotient field K of R. For an introduction to this, see Tate

[112].

Remark. (Added in publication) (Chai) Grothendieck’s GFGA theorem (Theorem 2.17) is

proved here when X is projective over a complete local ring R and I is the maximal ideal of R.

The proof for the case X proper over any complete noetherian ring (R, I) follows from the case

X projective over (R, I) again by an argument using Chow’s lemma and noetherian induction

similar to that in the proof of Grothendieck’s coherency theorem (Theorem VII.6.5).

The assumption here that I is the maximal ideal makes the Mittag-Leffler condition auto-

matically satisfied and simplifies the proof.

Grothendieck’s original proof of GFGA (Theorem 2.17) does not seem to have been pub-

lished. The folklore is that the original proof uses downward induction on the degree of co-

homology as in Serre’s proof of GAGA theorem (Theorem 2.8). In the published proof in

EGA [1, Chap. III, §4.1], the degree is fixed, and the Artin-Rees/Mittag-Leffler type conditions

are deduced from the finiteness theorem for proper morphism applied to the base change of

f : X → SpecR to the spectrum of the Artin-Rees algebra
⊕∞

ν Iν .

Mumford’s proof of the GAGA theorem (Theorem 2.8) does not use downward induction

on the degree of cohomology, but uses downward induction on the integers d and m for Pd and

F(m). In Mumford’s proof here of the GFGA theorem (Theorem 2.17), the required uniform

11(Added in publication) See §5 for other applications of GFGA in connection with deformations (e.g.,

Theorem 5.5 on algebraization). See also Illusie’s account in FAG [3, Chapter 8].
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vanishing is proved by the usual vanishing theorem applied to the associated graded ring gr(R) =⊕∞
ν=0 I

ν/Iν+1.

It might be of interest to note that this trick of base change to the associated graded ring

also gives a proof that the projective system(
H i(Fn)

)
n∈N

attached to any compatible family (Fn)n∈N of coherent OXn-modules satisfies the Mittag-Leffler

condition and that the topology induced on the projective limit

lim←−
n

H i(Fn)

is equal to the I-adic topology on lim←−nH
i(Fn) without the assumption that I is the maximal

ideal. With this additional ingredient, Mumford’s proof of the GFGA theorem (Theorem 2.17)

becomes valid for a general open (not necessarily maximal) ideal I in a complete noetherian

local ring R. The detailed proof for

the finiteness of
∞⊕
n=0

H i(InFn) as an (
∞⊕
n=0

In/In+1)-module for i = i0 and i0 + 1

implies the uniform Mittag-Leffler/Artin-Rees for(
H i(Fn)

)
n∈N for i = i0 and i0 + 1

can be found in EGA [1, 0III, 13.7.7] (with correction). Here is a sketch of the spectral sequence

argument for the proof:

For any triple of natural numbers p, i and n, define

Zp,i−pr (H �(Fn)) := Image
(
H i(IpFn/Ip+rFn)→ H i(IpFn/Ip+1Fn)

)
Bp,i−p
r (H �)(Fn) := Image

(
H i−1(Ip−r+1Fn/IpFn)→ H i(IpFn/Ip+1Fn)

)
.

Note that H i(IpFn/Ip+1Fn) = H i(IpFp) for ∀n ≥ p. For each fixed n we have natural isomor-

phisms

(∗) dp,i−pr :
Zp,i−pr (H �(Fn))
Zp,i−pr+1 (H �(Fn))

∼−→
Bp+r,i−p−r+1
r+1 (H �(Fn))

Bp+r,i−p−r+1
r (H �(Fn))

,

inclusion relations

(0) = Bp,i−p
1 (H �(Fn)) ⊂ Bp,i−p

2 (H �(Fn)) ⊂ · · · ⊂ Bp,i−p
p+1 (H �(Fn))

= Bp,i−p
p+2 (H �(Fn)) = · · · = Bp,i−p

∞ (H �(Fn))

⊂ Zp,i−p∞ (H �(Fn)) = · · · = Zp,i−pn−p+2(H
�(Fn))

= Zp,i−pn−p+1(H
�(Fn)) ⊂ Zp,i−pn−p (H �(Fn)) ⊂ · · · ⊂ Zp,i−p1 (H �(Fn)) = H i(IpFn/Ip+1Fn),

and isomorphisms

Image
(
H i(IpFn)→ H i(Fn)

)
Image (H i(Ip+1Fn)→ H i(Fn))

∼−→ Zp,i−p∞ (H �(Fn))
Bp,i−p

∞ (H �(Fn))
,

which comes from the map between cohomology long exact sequences associated to the map

0 // IpFn //

��

Fn //

��

Fn/IpFn //

��

0

0 // IpFn/Ip+1Fn // Fn/Ip+1Fn // Fn/IpFn // 0
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between short exact sequences. If we fix p and r, then we have

· · · ∼−→ Bp,i−p
r (H �(Fp+2))

∼−→ Bp,i−p
r (H �(Fp+1))

∼−→ Bp,i−p
r (H �(Fp))

and

· · · ∼−→ Zp,i−pr (H �(Fp+r+1))
∼−→ Zp,i−pr (H �(Fp+r))

∼−→ Zp,i−pr (H �(Fp+r−1)).

Denote by Bp,i−p
r (H �(F∞)) and Zp,i−pr (H �(F∞)) the respective projective limits, and let

Ep,i−pr (H �(F∞)) :=
Zp,i−pr (H �(F∞))

Bp,i−p
r (H �(F∞))

.

We record here that

Zp,qr (H �(Fn)) stabilizes

{
in the r-direction for r ≥ n− p+ 1

in the n-direction for n ≥ p+ r − 1

and

Bp,q
r (H �(Fn)) stabilizes

{
in the r-direction for r ≥ p+ 1

in the n-direction for n ≥ p.
For each i and r, the direct sum ⊕

p≥0

Bp,i−p
r (H i(F∞))

has a natural structure as a graded (
⊕

p≥0 I
p/Ip+1)-submodule of

⊕
p≥0H

i(IpFp) and increases

with r. Since
⊕

p≥0H
i(IpFp) is finitely generated over

⊕
p≥0 I

p/Ip+1, the increasing chain

of submodules
⊕

p≥0B
p,i−p
r (H �(F∞)) stabilizes for r ≥ r(i), where r(i) is a positive integer

depending on i. (This is where the properness assumption is used.) So the differentials dp,qr = 0

for all p, q with p + q = i0 − 1 and all r ≥ r(i − 1). Hence the decreasing chain of submodules⊕
p≥0 Z

p,i−p
r (H �(F∞)) stabilizes for r ≥ r(i− 1). Let r0 be the maximum of r(0), r(1), . . . , r(d),

where d = dim(X0/ Spec(R/I)).

Since the graded (
⊕

p≥0 I
p/Ip+1)-modules⊕

p≥0

Bp,i−p
r0 (H �(F∞)),

⊕
p≥0

Zp,i−pr0 (H �(F∞)) and
⊕
p≥0

Ep,i−pr0 (H �(F∞))

are finitely generated, we have:

(1) Bp,q
r0 (H �(F∞))

∼−→ Bp,q
r0+1(H

�(F∞))
∼−→ · · · ∼−→ lim−→

r

Bp,q
r (H �(F∞)) ∀p, q,

(2) Zp,qr0 (H �(F∞))
∼←− Zp,qr0+1(H

�(F∞))
∼←− · · · ∼←− lim←−

r

Zp,qr (H �(F∞)) ∀p, q,

(3) there exists a positive integer p0 such that

I · Zp,qr0 (H �(F∞)) = Zp+1,q
r0 (H �(F∞)), ∀p ≥ p0

I ·Bp,q
r0 (H �(F∞)) = Bp+1,q

r0 (H �(F∞)), ∀p ≥ p0
I · Ep,qr0 (H �(F∞)) = Ep+1,q

r0 (H �(F∞)), ∀p ≥ p0.

From (1) and the stabilization range for Zp,qr (H ·(Fn)), we see that

Zp,qr (H �(Fn)) = Zp,qr0 (H �(F∞))

if p ≤ p0, n ≥ p + r0 − 1 and r ≥ r0. Note that the family (Zp,qr (H �(Fn)))r,n∈N is projective in

both directions r and n, and the transition maps are injective for n ≥ p. Hence we see from (3),

(2) and (∗) that

(4) Zp,qr (H �(Fn))
∼−→ Zp,qr0 (H �(F∞)) if n ≥ p+ r0 − 1 and r ≥ r0,
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and

(5) Bp,q
r (H �(Fn)) ∼= Bp,q

r0 (H �(F∞)) if n ≥ p and r ≥ r0.

It is not difficult to deduce from these the following:

(6) (uniform Mittag-Leffler)

Image
(
H i(Fn+r0−1)→ H i(Fn)

)
= Image

(
H i(Fm)→ H i(Fn)

)
for all m ≥ n+ r0 − 1.

(7) For each i, the topology on H i(F∞) := lim←−nH
i(Fn) induced by the projective limit coincides

with the I-adic topology on H i(F∞).

3. De Rham cohomology

As in §2 we wish to work in this section only with varieties X over C. For any such X, we

have the topological space (X in the classical topology) and for any group G, we can consider

the “constant sheaf GX” on this:

GX(U) =

{
functions f : U → G, constant on each

connected component of U.

}
It is a standard fact from algebraic topology (cf. for instance, Spanier [109, Chapter 6, §9]; or
Warner [114]) that if a topological space Y is nice enough — e.g., if it is a finite simplicial

complex — then the sheaf cohomology H i(Y,GY ) and the singular cohomology computed by G-

valued cochains on all singular simplices of Y as in Part I [87, §5C] are canonically isomorphic.

One may call these the classical cohomology groups of Y . I would like in this part to indicate the

basic connection between these groups for G = C, and the coherent sheaf cohomology studied

above. This connection is given by the ideas of De Rham already mentioned in Part I [87, §5C].
We begin with a completely general definition: let f : X → Y be a morphism of schemes.

We have defined the Kähler differentials ΩX/Y in Chapter V. We now go further and set:

ΩkX/Y =
def

k∧
(ΩX/Y ), i.e., the sheafification of the pre-sheaf

U 7→
k∧

of the OX(U)-module ΩX/Y (U).

One checks by the methods used above that this is quasi-coherent and that

ΩkX/Y (U) =

k∧
over OX(U) of ΩX/Y (U) for U affine.

In effect, this means that for U affine in X lying over V affine in Y :

ΩkX/Y (U) =free OX(U)-module on generators dg1 ∧ · · · ∧ dgk,
(gi ∈ OX(U)), modulo

a) d(g1 + g′1) ∧ · · · ∧ dgk = dg1 ∧ · · · ∧ dgk + dg′1 ∧ · · · ∧ dgk
b) d(g1g

′
1) ∧ · · · ∧ dgk = g1dg

′
1 ∧ · · · ∧ dgk + g′1dg1 ∧ · · · ∧ dgk

c) dgϵ1 ∧ · · · ∧ dgϵk = sgn(ϵ) · dg1 ∧ · · · ∧ dgk (ϵ =permutation)

d) dg1 ∧ dg2 ∧ · · · ∧ dgk = 0 if g1 = g2

d) dg1 ∧ · · · ∧ dgk = 0 if g1 ∈ OY (V ).

The derivation d : OX → ΩX/Y extends to maps:

d : ΩkX/Y −→ Ωk+1
X/Y (not OX -linear)
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given on affine U by:

d(fdg1 ∧ · · · ∧ dgk) = df ∧ dg1 ∧ · · · ∧ dgk, f, gi ∈ OX(U).

(Check that this is compatible with relations (a)–(e) on Ωk and Ωk+1, hence d is well-defined.)

It follows immediately from the definition that d2 = 0, i.e.,

Ω�
X/Y : 0 −→ OX

d−→ Ω1
X/Y

d−→ Ω2
X/Y

d−→ · · ·

is a complex. Therefore as in §VII.3 we may define the hypercohomology Hi(X,Ω�
X/Y ) of this

complex, which is known as the De Rham cohomology H i
DR(X/Y ) of X over Y . Grothendieck

[45], putting together more subtly earlier ideas of Serre, Atiyah and Hodge with Hironaka’s

resolution theorems [61] has proven the very beautiful:

Theorem 3.1 (De Rham comparison theorem). If X is a variety smooth (but not necessarily

proper) over C, then there is a canonical isomorphism:

H i
DR(X/C) ∼= H i((X in the classical topology),CX).

We will only prove this for projective X referring the reader to Grothendieck’s elegant paper

[45] for the general case. Combining Theorem 3.1 with the spectral sequence of hypercohomology

gives:

Corollary 3.2. There is a spectral sequence with

Epq1 = Hq(X,ΩpX/C)

and dpq1 being induced by d : Ωp → Ωp+1 abutting to Hν((X in the classical topology),C). In

particular, if X is affine, then

{closed ν-forms}
{exact ν-forms}

∼= Hν((X in the classical topology),C).

To prove the theorem in the projective case, we must simply combine the GAGA comparison

theorem (Theorem 2.8) with the so-called Poincaré lemma on analytic differentials. First we

recall the basic facts about analytic differentials. If X is an n-dimensional complex manifold,

then the tangent bundle TX has a structure of a rank n complex analytic vector bundle over X,

i.e.,

TX ∼= {(P,D) | P ∈ X, D : (OX,an)P → C a derivation over C centered at P}
(cf. Part I [87, SS1A, 5C, 6B]). Thus if U ⊂ X is an open set with analytic coordinates z1, . . . , zn,

then the inverse image of U in TX has coordinates

(P,D) 7−→ (z1(P ), . . . , zn(P ), D(z1), . . . , D(zn))

under which it is analytically isomorphic to U × Cn. We then define the sheaves ΩpX,an of

holomorphic p-forms by:

ΩpX,an(U) = {holomorphic sections over U of the complex vector bundle

p∧
(T ∗
X)}.

(Here E∗ = Hom(E,C) is the dual bundle.) Locally such a section ω is written as usual by an

expression

ω =
∑

1≤i1<···<ip≤n
ci1,...,ipdzi1 ∧ · · · ∧ dzip , ci1,...,ip ∈ OX,an(U),

and we get the first order differential operators:

d : ΩpX,an −→ Ωp+1
X,an
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given by

dω =
∑

1≤i1<···<ip+1≤n

p+1∑
k=1

(−1)k+1
∂ci1,...,îk,...,ip+1

∂zik
dzi1 ∧ · · · ∧ dzip+1 .

The map (ω, η) 7→ ω ∧ η makes
⊕

pΩ
p
X,an into a skew-commutative algebra in which d is a

derivation.

Lemma 3.3 (Poincaré’s lemma). The sequence of sheaves:

0 −→ OX,an
d−→ Ω1

X,an
d−→ Ω2

X,an
d−→ · · · d−→ ΩnX,an −→ 0

is exact, except at the 0-th place where Ker(d : OX,an → Ω1
X,an) is the sheaf of constant functions

CX .

For an elementary proof of this see Hartshorne [57, Remark after Proposition (7.1), p. 54].

(See also Wells [115, Chapter II, §2, Example 2.13, p. 49] as well as the proof of the Dolbeault

Lemma in Gunning-Rossi [54, Chapter I, §D, 3.Theorem, p. 27].)

Now if X is a variety smooth over C, an essential point to check is that the general functor

F 7→ Fan of §2 takes the Kähler p-forms ΩpX/C to the above-defined sheaf of holomorphic p-forms

ΩpX,an. This is virtually a tautology but to tie things together properly, we can proceed like this.

For the sake of this argument, we write ΩpX,alg for Kähler differentials on the scheme X, parallel

to ΩpX,an defined above:

a) For all U ⊂ X affine,
⊕

pΩ
p
X,alg(U) is the universal skew-commutative OX(U)-algebra

with derivation (i.e., the free algebra on elements df , f ∈ OX(U), modulo the standard

identities); since
⊕

pΩ
p
X,an(U) is another skew-commutative algebra with derivation

over OX(U) (via the inclusion OX(U) ⊂ OX,an(U)), there is a unique collection of

maps:

ΩpX,alg(U) −→ ΩpX,an(U)

commuting with ∧ and d.

b) From a general sheaf theory argument, such a collection of maps factors through a map

of sheaves of OX,an-modules (on X in the classical topology):(
ΩpX,alg

)
an
−→ ΩpX,an.

c) If z1, . . . , zn ∈ mX,x induce a basis of mX,x/m
2
X,x, then we have:

(ΩX,alg)x
∼=

n⊕
i=1

OX,x · dzi

hence (
ΩpX,alg

)
x

∼=
⊕

1≤ii<···<ip≤n
OX,x · dzi1 ∧ · · · ∧ dzip ,

hence (
ΩpX,alg

)
an,x

∼=
⊕

1≤i1<···<ip≤n
(OX,an)x dzi1 ∧ · · · ∧ dzip .

While z1, . . . , zn are local analytic coordinates near x, so(
ΩpX,an

)
x

∼=
⊕

1≤i1<···<ip≤n
(OX,an)x dzi1 ∧ · · · ∧ dzip

too! So we have the following situation: with respect to the identity map

ϵ : (X in the classical topology) −→ (X in the Zariski topology)
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we have a map backwards from the De Rham complex (Ω�
X , d) of the scheme X to the analytic

De Rham complex (Ω�
X,an, d) of the analytic manifold X. This induces:

a) a map of hypercohomology

Hi(X in the Zariski topology,Ω�
X/C) −→ Hi(X in the classical topology,Ω�

X,an)

and

b) a map of the spectral sequences abutting to these too:

algebraic Epq
1

// analytic Epq1

Hq(X in the Zariski topology,ΩpX/C) Hq(X in the classical topology,ΩpX,an).

But by the GAGA comparison theorem (Theorem 2.8), the map on Epq1 ’s is an isomorphism.

Now quite generally, if

Epq2 =⇒ Eν

Ẽpq2 =⇒ Ẽν

are two spectral sequences, and

ϕp,q : Epq2 −→ Ẽpq2

ϕν : Eν −→ Ẽν

are homomorphisms “compatible with the spectral sequences”, i.e., commuting with the d’s, tak-

ing F l(Eν) into F l(Ẽν) and commuting with the isomorphisms of Epq
∞ with F p(Ep+q)/F p+1(Ep+q),

then it follows immediately that

ϕp,q isomorphisms, all p, q =⇒ ϕν isomorphisms, all ν.

In our case, this means that the map in (a) is an isomorphism.

Now compute Hν(X in the classical topology,Ω�
X,an) by the second spectral sequence of hy-

percohomology (cf. (VII.3.11)). Since X in its classical topology is paracompact Hausdorff, we

get (cf. §VII.1)

Hp

X in the classical topology, sheaf
Ker

(
d : Ωqan → Ωq+1

an

)
Image

(
d : Ωq−1

an → Ωqan
)
 =⇒ Hν(X,Ω�

X,an).

By Poincaré’s lemma (Lemma 3.3), all but one of these sheaves are (0) and the spectral sequence

degenerates to an isomorphism:

Hν(X in the classical topology,CX) ∼= Hν(X in the classical topology,Ω�
X,an).

This proves Theorem 3.1 in the projective case.

In the projective case and more generally for any complete variety X, the spectral sequence

of Corollary 3.2:

Epq1 = Hq(X,ΩpX/C) =⇒ Hν(X in the classical topology,C)

simplifies quite remarkably. In fact the Theory of Hodge implies:

Fact. I: All dpqr ’s are 0.
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This implies that

Hq(X,ΩpX/C)
∼= Epq∞

∼= p-th graded piece: F p(Hp+q)/F p+1(Hp+q) of Hp+q(X,C).

Note that Hp+q(X,C) ∼= Hp+q(X,Z)⊗ C, hence there is a natural complex conjugation x 7→ x

on Hp+q(X,C).

Fact. II: In Hp+q(X,C), F q+1(Hp+q) is a complement to the subspace F p(Hp+q).

This implies that Hp+q splits canonically into a direct sum:

Hν(X,C) =
⊕
p+q=ν
p,q≥0

Hp,q

such that

a) Hq,p = Hp,q.

b) F p(Hp+q) =
⊕

p′≥pH
p′,q′ .

Combining both facts,

Hp,q ∼= Hq(X,ΩpX/C)

hence

(3.4) Hν(X,C) ∼=
⊕
p+q=ν

Hq(X,ΩpX/C).

Fact. III: If we calculate Hν(X,C) by C∞ differential forms, then

Hp,q ∼=


set of cohomology classes representable by forms ω

of type (p, q), i.e., in local coordinates z1, . . . , zn,

ω =
∑

1≤i1<···<ip≤n
1≤j1<...<jq≤n

ci1,...,ip,j1,...,jqdzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq

 .

(See Kodaira-Morrow [72]).

4. Characteristic p phenomena

The theory of De Rham cohomology in characteristic p is still in its infancy12 and rather

than trying to discuss the situation at all generality, I would like instead to fix on one of the

really new features of characteristic p and discuss this: namely the Hasse-Witt matrix. To set

the stage, if X is a complete non-singular variety over a field k of characteristic p > 0, then the

De Rham groups

Hν(X,Ω�
X/k)

are finite-dimensional k-vector spaces which usually behave quite like their counterparts in char-

acteristic 0 and are “reasonable” candidates for the cohomology of X with coefficients in k13.

For instance, if X is a complete non-singular curve of genus g, then

dimH1(OX) = dimH0(Ω1) = g, dimH1(Ω�
X) = 2g

12(Added in publication) There have been considerable advances, since the original manuscript was written.

See the footnote at the end of this section.
13There are some cases where their dimension is larger than the expected n-th Betti number Bn and there

are also cases where the spectral sequence

Hq(Ωp) =⇒ Hn(Ω�)

does not degenerate. This is apparently connected with the presence of p-torsion on X. And if X is affine instead

of complete, these groups are not even finite-dimensional.
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in all characteristics. However the De Rham groups have a much richer structure in characteristic

p even in the case of curves. The simplest examples of this are the Frobenius cohomology

operations:

F : Hn(X,OX) −→ Hn(X,OX),
X = any scheme in which p · OX ≡ 0

given by

F ({ai0,...,in}) = {a
p
i0,...,in

}
on the cocycle level. Note that if X is a scheme over k, char k = p, so that Hν(X,OX) is a

k-vector space, then F is not k-linear; in fact F (α · x) = αp · F (x), ∀α ∈ k, x ∈ Hν(OX). Such
a map we call p-linear. Expanded in terms of a basis of Hν(OX), F is given by a matrix which

is called the ν-th Hasse-Witt matirix of X. p-linear maps do not have eigenvalues; instead they

have the following canonical form:

Lemma 4.1. Let k be an algebraically closed field of characteristic p, let V be a finite-

dimensional vector space over k and let T : V → V be a p-linear transformation. Then V has a

unique decomposition:

V = Vs ⊕ Vn
where

a) T (Vn) ⊂ Vn and T is nilpotent on Vn.

b) T (Vs) ⊂ Vs and Vs has a basis e1, . . . , en such that T (ei) = ei. Furthermore,

{e ∈ Vs | Te = e} = {
∑

miei | mi ∈ Z/pZ}.

Proof. Let Vs =
∩∞
ν=1 ImageT ν and Vn =

∪∞
ν=1KerT ν . Since dimV < +∞, Vs =

ImageT ν , Vn = KerT ν for ν ≫ 0. Now if ν ≫ 0:

x ∈ Vs ∩ Vn =⇒ T νx = 0 and x = T νy

=⇒ T 2νy = 0

=⇒ T νy = 0

=⇒ x = 0

and since dimV = dimKerT ν + dim ImageT ν , it follows that V ∼= Vs ⊕ Vn. Then T |Vn is

nilpotent and T |Vs is bijective. Now choose x ∈ Vs and take ν minimal such that there is a

relation

T νx = a0x+ a1T (x) + · · ·+ aν−1T
ν−1(x).

If a0 = 0, then

T ν−1x = a′1x+ · · ·+ a′ν−1T
ν−2(x)

and ν would not be minimal. Now try to solve the equation:

T (λ0x+ · · ·+ λν−1T
ν−1(x)) = λ0x+ · · ·+ λν−1T

ν−1(x).

This leads to

λpν−1 · a0 = λ0

λp0 + λpν−1 · a1 = λ1

· · · · · ·
λpν−2 + λpν−1 · aν−1 = λν−1.

By substitution, we get:

λp
ν

ν−1 · a
pν−1

0 + λp
ν−1

ν−1 · a
pν−2

1 + · · ·+ λpν−1 · aν−1 − λν−1 = 0
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which has a non-zero solution. Solving backwards, we find λν−2, . . . , λ0 as required, hence an

x ∈ Vs with Tx = x. Now take a maximal independent set of solutions e1, . . . , el to the equation

Tx = x. IfW =
∑
k ·ei, then T : W →W is bijective, hence T : Vs/W → Vs/W is also bijective.

If W ⫋ Vs, the argument above then shows ∃ x ∈ Vs/W such that Tx = x. Lifting x to x ∈ Vs,
we find

Tx = x+
∑

λiei.

Let µi ∈ k satisfy µpi −µi = λi. Then el+1 = x−
∑
µiei also lifts x but it satisfies Tel+1 = el+1.

This proves that ei span Vs. □

We can apply this decomposition in particular to H1(X,OX) and we find the following

interpretations of the eigenvectors:

Theorem 4.2. Let X be a complete variety over an algebraically closed field k of character-

istic p. Consider F acting on H1(X,OX). Then:

a) There is a one-to-one correspondence between {α ∈ H1(OX) | Fα = α} and pairs

(π, ϕ):

Y

π
��

ϕ
ww

X

π étale, proper, π ◦ ϕ = π, ϕp = idY , such that ∀x ∈ X closed, #π−1(x) = p and ϕ

permutes these points cyclically: we call this, for short, a p-cyclic étale convering14.

b) If X is non-singular, there is an isomorphism:

{a ∈ H1(OX) | Fα = 0} ∼= {ω ∈ H0(Ω1
X) | ω = df, some f ∈ R(X)}.

Proof. (a) Given α with Fα = α, represent α by a cocycle {fij}. Then Fα is represented

by {fpij} and since this is cohomologous to α:

fij = fpij + gi − gj
gi ∈ OX(Ui).

But then define a sheaf A of OX -algebras by:
A|Ui = OX [ti]/(fi)
fi(ti) = tpi − ti + gi

and by the glueing:

ti = tj + fij

over Ui ∩ Uj . Let Yα = SpecX(A). Since (dfi/dti)(ti) = −1, Yα is étale over X. Since A
is integral and finitely generated over OX , Yα is proper over X (cf. Corollary II.6.7). Define

ϕα : Yα → Yα by

ϕ∗α(ti) = ti + 1.

For all closed points x ∈ Ui, let a be one solution of tpi − ti+ gi(x) = 0. Then π−1(x) consists of

the p points ti = a, a + 1, . . . , a + p − 1 which are permuted cyclically by ϕα. Finally, and this

is where we use the completeness of X, note that Yα depends only on α:

if f ′ij = fij + hi − hj
and f ′ij = (f ′ij)

p + g′i − g′j
14Compare the statement of (a) and the proof with Exercise (3) in Chapter V, which treats the Kummer

theory of n-cyclic étale coverings for n not divisible by char(k).
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is another solution to the above requirements, then

g′i − g′j = f ′ij − (f ′ij)
p

= fij − fpij + hi − hj − (hi − hj)p

= (gi + hi − hpi )− (gj + hj − hpj ),

hence

g′i = gi + hi − hpi + ξ, ξ ∈ Γ(OX).
Thus ξ ∈ k, hence ξ = η − ηp for some η ∈ k and we get an isomorphism

OX [ti]/(fpi − ti + gi)
≈

// OX [t′i]/((t′i)p − t′i + g′i)

ti
� // t′i − (hi + η).

We leave it to the reader to check that (Yα, ϕα) ∼= (Yβ, ϕβ) only if α = β.

Conversely, suppose π : Y → X and ϕ : Y → Y are a p-cyclic étale covering. By Proposition

II.6.5, Y = SpecX A, A a coherent sheaf of OX -algebras.
Now π étale =⇒ π flat =⇒ Ax is a flat Ox,X -module. A finitely presented flat module over

a local ring is free (cf. Bourbaki [27, Chapter II, §3.2]), hence Ax is a free Ox,X -module. In fact

Ax/mx,X · Ax ∼= Γ(Oπ−1(x)) ∼=
⊕

y∈π−1(x)

k(y)

so Ax is free of rank p, and the function 1 ∈ Ax, since it is not in mx,X · Ax, may be taken as

a part of a basis. Moreover, ϕ induces an automorphism ϕ∗ : A → A in terms of which we can

characterize the subsheaf OX ⊂ A:

OX(U) = {f ∈ A(U) | ϕ∗f = f}.

In fact for all closed points x ∈ X, we get an inclusion:

Ox,X/mx,X
� � // Ax/mx,X · Ax

k(x) Γ(Oπ−1(x))⊕
y∈π−1(x) k(y)

and clearly k(x) is characterized as the set of ϕ∗-invariant functions in
⊕

y∈π−1(x) k(y). So if U

is affine and f ∈ A(U) is ϕ∗-invariant, then

(∗) f ∈
∩
x∈U
closed

[OX(U) +mx,X · A(U)].

But if U is small enough, A|U has a free basis:

A|U = OX |U ⊕
p∑
i=2

OX |U · ei

and if we expand f = f1 +
∑p

i=2 fi · ei, then (∗) means that fi(x) = 0, 2 ≤ i ≤ p, ∀x ∈ U

closed. By the Nullstellensatz, fi = 0, hence f ∈ OX(U). Let x ∈ X be a closed point and let

π−1(x) = {y, ϕy, . . . , ϕp−1y}. We can find a function ex ∈ Ax such that ex(y) = 1, ex(ϕ
iy) = 0,

1 ≤ i ≤ p− 1. Then

• Tr ex =
∑p−1

i=0 (ϕ
i)∗ex satisfies ϕ∗(Tr ex) = Tr ex and has value 1 at all points of π−1(x),

hence is invertible in Ax.
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• Set

fx =
−1
Tr ex

·
p−1∑
i=0

i · (ϕi)∗ex.

A small calculation shows that ϕ∗(fx) = fx + 1 and fx(ϕ
iy) = i. Let gx = fx − fpx . Then

ϕ∗gx = gx, hence gx ∈ Ox,X . Define a homomorphism

λx : Ox,X [tx]/(tpx − tx + gx) // Ax

tx
� // fx.

Note that since fx has distinct values at all points ϕiy, fx generates

Ax/mx,X · Ax ∼=
p−1⊕
i=0

k(ϕiy),

hence by Nakayama’s lemma, λx is surjective. But as λx is a homomorphism of free Ox,X -
modules of rank p, it must be injective too. Now λx extends to an isomorphism in some

neighborhood of x and covering X by such neighborhoods, we conclude that X has a covering

{Ui} such that

A|Ui
∼= OX |Ui [ti]/(t

p
i − ti + gi), gi ∈ OX(Ui).

Over Ui ∩ Uj , ϕ∗(ti − tj) = ti − tj , hence ti = tj + fij , fij ∈ OX(Ui ∩ Uj). Then
fij − fpij = (ti − tj)− (ti − tj)p

= gi − gj ,

so α = {fij} is a cohomology class in OX such that Fα = α. This completes the proof of (a).

(b) Given α with Fα = 0, represent α by a cocycle {fij}. Then
fpij = gi − gj
gi ∈ OX(Ui)

hence dgi = dgj on Ui ∩Uj . Therefore the dgi’s define a global section ωα of Ω1
X of the form df ,

f ∈ R(X). If

f ′ij = fij + hi − hj
(f ′ij)

p = g′i − g′j
is another solution to the above requirements, then

g′i − g′j = (f ′ij)
p

= fpij + hpi − h
p
j

= (gi + hpi )− (gj + hpj )

hence

g′i = gi + hpi + ξ, ξ ∈ Γ(OX) = k.

Thus dg′i = dgi and ωα depends only on α. Conversely, if we are given ω ∈ Γ(Ω1
X), ω = df ,

f ∈ R(X), the first step is to show that for all x ∈ X, ω = dfx for some fx ∈ Ox,X too. We use

the following important lemma:

Lemma 4.3. Let X be a smooth n-dimensional variety over an algebraically closed field k,

and assume ∃z1, . . . , zn ∈ Γ(OX) such that

Ω1
X/k
∼=

n⊕
i=1

OX · dzi.
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Consider OX as a sheaf of OpX-modules: OX is a free OpX-module with basis consisting of

monomials
∏n
i=1 z

αi
i , 0 ≤ α ≤ p− 1.

Another way to view this is to consider the pair Y = (X,OpX) consisting of the topological

space X and the sheaf of rings OpX : this is a scheme too, in fact it is isomorphic to X as scheme

— but not as scheme over k — via:

identity : X
≈

// Y

p-th power: OX
≈

// OpX = OY .

Thus Y is in fact an irreducible regular scheme, ant it is of finite type over k, i.e., a smooth

k-variety. Now

identity : X
≈

// X

inclusion: OY = OpX // OX
induces a k-morphism

π : X −→ Y

which is easily seen to be bijective and proper. Thus π∗OX is a coherent OY -module, and we

are asserting that it is free with basis
∏n
i=1 z

αi
i , 0 ≤ αi ≤ p− 1.

Proof of Lemma 4.3. To check that
∏
zαi
i generate π∗OX , it suffices to prove that for all

closed points x ∈ Y ,
∏
zαi
i generate (π∗OX)x/mx,Y · (π∗OX)x over k. But identifying Ox,Y with

Opx,X , mx,Y = {fp | f ∈ mx,X}: write this m
[p]
x,X . Then

(π∗OX)x/mx,Y · (π∗OX)x ∼= Ox,X/m[p]
x,X · Ox,X .

Let ai = zi(x) and yi = zi − ai. Then y1, . . . , yn generate mx,X and Ôx,X ∼= k[[y1, . . . , yn]] by

Proposition V.3.8. Thus

(π∗ÔX)x/mx,Y · (π∗ÔX)x ∼= k[[y1, . . . , yn]]/(y
p
1 , . . . , y

p
n)

and the latter has a basis given by the monomials
∏
yαi
i , 0 ≤ αi ≤ p − 1, hence by

∏
zαi
i ,

0 ≤ αi ≤ p− 1.

But now suppose there was a relation over U ⊂ X:∑
α=(α1,...,αn)
0≤αi≤p−1

cpα · zα = 0, cα ∈ OX(T ) not all zero.

Then for some closed point x ∈ U , cα(x) ̸= 0 for some α, hence there would be relation over k:∑
α=(α1,...,αn)
0≤αi≤p−1

cα(x)
p · zα = 0

in (π∗ÔX)x/mx,Y · (π∗ÔX)x. But the above proof showed that the zα were k-independent in

(π∗ÔX)x/mx,Y · (π∗ÔX)x. □

To return to the proof of Theorem 4.2, let x ∈ X, f ∈ R(X) and suppose df ∈ (Ω1
X/k)x.

Write f = g/hp, g, h ∈ Ox,X , and by Lemma 4.3 expand:

g =
∑

α=(α1,...,αn)
0≤αi≤p−1

cpαz
α, {z1, . . . , zn} a generator of mx,X .
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Then

df =

n∑
l=1

 ∑
α=(α1,...,αn)
0≤αi≤p−1

(cα
h

)p
αlz

α1
1 · · · z

αl−1
l · · · zαn

n

 dzl

hence ∑
α=(α1,...,αn)
0≤αi≤p−1

0<αl

cpααlz
α1
1 · · · z

αl−1
l · · · zαn

n = hp · bl, bl ∈ Ox,X .

Expanding bl by Lemma 4.3, and equating coefficients of zα, it follows that cpα ∈ hp · Opx,X if

αl > 0. Since this is true for all l = 1, . . . , n, it follows:

g = cp(0,...,0) + hp · fx, fx ∈ Ox,X .

Therefore

df = d(g/hp) = dfx.

Now we can find a covering {Ui} of X and fi ∈ OX(Ui) such that ω = dfi. Then in Ui ∩Uj ,
d(fi−fj) = 0, hence fi−fj = gpij , gij ∈ O(Ui∩Uj) (prove this either by Lemma 4.3 again, or by

field theory since d : R(X)/R(X)p → Ω1
X/k is injective and Ox ∩R(X)p = Opx by the normality

of X). Then {gij} defines α ∈ H1(OX) such that Fα = 0. This completes the proof of Theorem

4.2. □

The astonishing thing about (b) is that any f ∈ [R(X) \ k] must have poles and in charac-

teristic 0,

f /∈ Ox,X =⇒ df /∈ (Ω1
X/k)x.

In fact, if f has an l-fold pole along an irreducible divisor D, then df has an (l + 1)-fold pole

along D. But in characteristic p, if p | l then the expected pole of df may sometimes disappear!

Nonetheless, this is relatively rare phenomenon even in characteristic p.

For instance, in char ̸= 2, consider a hyperelliptic curve C. This is defined to be the

normalization of P1 in a quadratic field extension k(X,
√
f(X)). Explicitly, if we take f(X) to

be a polynomial with no multiple roots and assume its degree is odd: say 2n + 1, then C is

covered by two affine pieces:

C1 = Spec k[X,Y ]/(Y 2 − f(X))

C2 = Spec k[X̃, Ỹ ]/(Ỹ 2 − g(X̃))

where

X̃ = 1/X

Ỹ = Y/Xn+1

g(X̃) = (X̃)2n+2 · f(1/X̃).
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Then consider ω = dX/Y :

On C1 : 2Y dY = f ′(X) · dX, so
ω = dX/Y = 2dY/f ′(X) and since Y, f ′(X)

have no common zeroes, ω has no poles.

On C2 : 2Ỹ dỸ = g′(X̃) · dX̃, and one checks

ω = −(X̃)n−1dX̃/Ỹ = −2(X̃)n−1dỸ /g′(X̃) and since

Ỹ , g′(X̃) have no common zeroes, ω has no poles.

But now say

f(X) = h(X)p +X.

Then f ′(X) = 1, so ω = d(2Y ) is exact!

The area of characteristic p De Rham theory is far from being completely understood.

For further developments, see Serre [102, p.24] (from which our theorem has been taken),

Grothendieck [46] and Monsky [80, p.451]15.

5. Deformation theory

We want to study here some questions of a completely new type: given an artin local ring

R, with maximal ideal M , residue field k = R/M and some other ideal I such that I ·M = (0),

we get

SpecR ⊃ SpecR/I ⊃ Spec k.

Then

a) Suppose X1 is a scheme smooth and of finite type over R/I. How many schemes X2

are there, smooth and of finite type over R, such that X1
∼= X2 ×SpecR SpecR/I?

X2

��

X1

��

⊃

SpecR SpecR/I⊃

Such an X2 we call a deformation of X1 over R.

b) Suppose X2, Y2 are two schemes smooth and of finite type over R, and let X1 =

X2 ×SpecR SpecR/I, Y1 = Y2 ×SpecR SpecR/I. Suppose f1 : X1 → Y1 is an R/I-

morphism. How many R-morphisms f2 : X2 → Y2 are there lifting f1?

In fact the methods that we use to study these questions can be extended to the case where the

X’s and Y ’s are merely flat over R or R/I (this is another reason why flat is such an important

concept). We can state the results in the smooth case as follows:

In case (a), let X0 = X1 ×SpecR/I Spec k. As in §V.3, let

ΘX0 = Hom(Ω1
X0/k

,OX0)

∼= sheaf of k-derivations from OX0 to OX0

be the tangent sheaf to X0. Then

ai) In order that at lease one X2 exist, it is necessary and sufficient that a canonically

defined obstruction α ∈ H2(X0,ΘX0) ⊗k I vanishes. (α will be denoted by obstr(X1)

below.)

15(Add in publication) There have been considerable developments since the manuscript was written. See,

for instance, Chambert-Lior [53], Astérisque volumes [51], [52] on “p-adic cohomology” related to “crystalline

cohomology” initiated by Grothendieck [46].
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aii) If one X2 exists, consider the set of pairs (X2, ϕ), with X2 as above and ϕ : X1
≈−→

X2 ×SpecR SpecR/I an isomorphism, modulo the equivalence relation

(X2, ϕ) ∼ (X ′
2, ϕ

′) if ∃an R-isomorphism X2
≈−→
ψ
X ′

2

such that

X2 ×SpecR SpecR/I
ψ×1R/I

//

**UUUUUUUUUU
X ′

2 ×SpecR SpecR/I

ttiiiiiiiiii

X1

commutes.

Denote this set Def(X1/R): then Def(X1/R) is a principal homogeneous space over

the group H1(X0,ΘX0)⊗k I: i.e., the group acts freely and transitively on the set.

aiii) Given two smooth schemes X1 and Y1 over R/I and a morphism over R/I:

f1 : X1 −→ Y1

the obstructions to deforming X1 and Y1 are connected by having the same image in

H2(X0, f
∗ΘY0)⊗k I:

obstr(X1) ∈ H2(X0,ΘX0)⊗k I df0
--[[[[[[[[[[[

H2(X0, f
∗
0ΘY0)⊗k I

obstr(Y1) ∈ H2(Y0,ΘY0)⊗k I
f∗0

11ccccccccccc

where f0 = f1 ⊗R/I k : X0 → Y0 and df0 : ΘX0 → f∗0ΘY0 is the differential of f0.

In case (b), let X0 = X1×SpecR/I Spec k, Y0 = Y1×SpecR/I Spec k and let f1 induce f0 : X0 →
Y0. We have:

bi) In order that at least one lifting f2 exist, it is necessary and sufficient that a canonically

defined obstruction α ∈ H1(X0, f
∗
0ΘY0)⊗k I vanishes.

bii) If one lifting f2 exists, denote the set of all lifts by Lift(f1/R). Then Lift(f1/R) is a

principal homogeneous space over the group H0(X0, f
∗
0ΘY0)⊗k I.

biii) The action of H1(X0,ΘX0) ⊗k I on Def(X1/R) is a special case of the obstructions

in (i): namely, if X2, X
′
2 are two deformations of X1 over R, then the element of

H1(X0,ΘX0)⊗k I by which they differ is the obstruction to lifting 1X1 : X1 → X1 to a

morphism from X2 to X ′
2.

biv) Given three schemes and two morphisms:

X1
f1−→ Y1

g1−→ Z1,

the obstructions to lifting compose as follows: if

α = (obstruction for f1) ∈ H1(X0, f
∗
0ΘY0)

β = (obstruction for g1) ∈ H1(Y0, g
∗
0ΘZ0)

γ = (obstruction of g1 ◦ f1) ∈ H1(X0, (g0 ◦ f0)∗ΘZ0)

then

γ = dg0(α) + f∗0 (β)

where dg0 : ΘY0 → g∗0ΘZ0 is the differential of g0.
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Note, in particular, what these say in the affine case16

Affine a) If X0 is affine, ∃! deformation X2 of X1 smooth over R.

Affine b) If X0 and Y0 are affine, then every f1 lifts to some f2 : X2 → Y2 and if X0 = SpecA0,

Y0 = SpecB0 then these liftings are a principal homogeneous space under:

Γ(X0, f
∗
0ΘY0)⊗k I ∼= Derk(B0, A0)⊗k I.

If one is interested only in the existence of a lifting in (b), then the smoothness of X2 is

irrelevant and one can prove:

Lifting Property for smooth morphisms: : If X2, Y2 are of finite type over R, Y2
smooth and X2 affine, then any f1 : X1 → Y1 lifts to an f2 : X2 → Y2.

Variants of this lifing property have been used by Grothendiek to characterize smooth mor-

phisms (cf. “formal smoothness” in Criterion V.4.10, EGA [1, Chapter IV, §17] and SGA1 [4,

Exposé III]). Our method of proof will be to analyze the deformation problem in an even more

local case and then to analyze the patching problem via Čech cocycles. In fact if Z is smooth

over SpecR′, then we know that locally Z is isomorphic to U where

U = (SpecR′[X1, . . . , Xn+l]/(f1, . . . , fl))g

��

SpecR′

where in R′[X1, . . . , Xn+l]

det
1≤i,j≤l

(
∂fi

∂Xn+j

)
· h = g, some h ∈ R′[X].

Let’s call such U special smooth affine schemes over R′.

Step. I: If X1 is a special smooth affine over R/I, then ∃ a deformation X2 of X1 over R

which is again a special smooth affine.

Proof. Write X1 = (Spec(R/I)[X]/(f))g as above, with det ·h = g. Simply choose any

polynomials f ′i , h
′ with coefficients inR which reduce mod I to fi, h. LetX2 = (SpecR[X]/(f ′))g′ ,

where g′ = det′ ·h′. □

Step. II: If X2 is any affine over R (not even necessarily smooth) and Y2 is a special

smooth affine over R, then any f1 : X1 → Y1 lifts to an f2 : X2 → Y2.

Proof. If X2 = SpecA2 and Y2 = (SpecR[X]/(f))g as above, then the problem is to define

a homomorphism ϕ2 indicated by the dotted arrow.

R[X]g

uulllllllll

A2

��

R[X]g/(f)
ϕ2

oo_ _ _ _ _ _

��

A2/I ·A2 (R/I)[X]g/(f).
ϕ1

oo

If we choose any element aj ∈ A2 which reduce mod I to ϕ1(Xj), then we get a homomorphism

ϕ′2 : R[X]g −→ A2

16It is a theorem that for any noetherian scheme X, X affine ⇐⇒ Xred affine (EGA [1, Chapter I, (5.1.10)]).

Hence in our case, X2 affine ⇐⇒ X1 affine ⇐⇒ X0 affine.
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by setting ϕ′2(Xj) = aj (since ϕ′2(g) mod I · A2 equals ϕ1(g) which is a unit; hence ϕ′2(g) is a

unit in A2). However ϕ′2(fi) = fi(a) may not be zero. But we may alter aj to aj + δaj provided

δaj ∈ I ·A2. Then since I2 = (0), ϕ′2(fi) changes to

fi(a+ δa) = fi(a) +

n+l∑
j=1

∂fi
∂Xj

(a) · δaj .

Note that since δaj ∈ I ·A2 and I ·M = (0),
∂fi
∂Xj

(a) · δaj depends only on the image of
∂fi
∂Xj

(a)

in k[X]. Multiplying the adjoint matrix to

(
∂fi

∂Xn+j

)
1≤i,j≤l

by h, we obtain an (l × l)-matrix

(hij) ∈ k[X] such that
l∑

j=1

∂fi
∂Xn+j

· hjq = g · δiq.

Now set

δaj = 0, 1 ≤ j ≤ n

δan+j = −g(a)−1
l∑

q=1

hjqfq(a), 1 ≤ j ≤ l.

Then:

fi(a+ δa) = fi(a)−
l∑

n+j

∂fi
∂Xn+j

(a) · g(a)−1 ·
l∑

q=1

hjqfq(a)

= fi(a)− g(a)−1
l∑

q=1

fq(a) · g(a)δiq

= 0.

Therefore if we define ϕ2 by ϕ2(Xj) = aj + δaj , we are through. □

Step. III: Suppose X2 and Y2 are affines over R, X2 = SpecA2, Y2 = SpecB2. A0 =

A2/M · A2, B0 = B2/M · B2. Let f2 : X2 → Y2 be a morphism and let f1 = resX1 f2. Then

Lift(f1/R) is a principal homogeneous space over

Derk(B0, I ·A2).

Proof. We are given a homomorphism ϕ1 : B1 → A1 and we wish to study

L = {ϕ2 : B2 −→ A2 | ϕ2 mod I = ϕ1},

which we assume is non-empty. If ϕ2, ϕ
′
2 ∈ L, then ϕ′2 − ϕ2 factors via D:

B2

ϕ′2−ϕ2
//

))SSSSSSSS A2

B2/M ·B2
D

//____ I ·A2

∪

B0

One checks immediately that D is a derivation. And conversely for any such derivation D,

ϕ2 ∈ L =⇒ ϕ2 +D ∈ L. □
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Step. IV: Globalize Step III: LetX2, Y2 be two schemes of finite type overR. Let f2 : X2 →
Y2 be a morphism, and let f1 = resX1 f2. Then Lift(f1/R) is a principal homogeneous space

over

Γ(X2,Hom(f∗0Ω
1
Y0/k

, I · OX)).
(Note that I · OX is really an OX0-module).

Proof. Take affine coverings {Uα}, {Vα} of X2 and Y2 such that f2(Uα) ⊂ Vα. If Uα =

SpecA
(α)
2 , Vα = SpecB

(α)
2 , f

(α)
1 = resUα f1, then as in Step III,

Lift(f
(α)
1 /R) = principal homogeneous space under Derk(B

(α)
0 , I ·A(α)

2 )

Hom
B

(α)
0

(Ω1

B
(α)
0 /k

, I ·A(α)
2 )

Hom
A

(α)
0

(Ω1

B
(α)
0 /k

⊗
B

(α)
0

A
(α)
0 , I ·A(α)

2 )

Γ(Uα,Hom(f∗0Ω
1
Y0/k

, I · OX2)).

Therefore on the one hand, one can “add” a morphism f2 : X2 → Y2 and a global section D of

Hom(f∗0Ω
1
Y0/k

, I · OX2) by adding them locally on the Uα’s and noting that the “sums” agree on

overlaps Uα ∩ Uβ. Again given two lifts f2, f
′
2, their “difference” f2 − f ′2 defines locally on the

Uα’s a section Dα of Hom(f∗0Ω
1
Y0/k

, I · OX2), hence a global section D.

Note that if Y0 is smooth over k, Ω1
Y0/k

is locally free with dual ΘY0 , hence

Hom(f∗0Ω
1
Y0/k

,F) ∼= f∗0ΘY0 ⊗OX0
F for any sheaf F ;

and if X2 is flat over R, then I ·OX2
∼= I⊗kOX0 . Thus case (bii) of our main result is proven! □

Step. V: Proof of case (bi): viz. construction of the obstruction to lifting f1 : X1 → Y1.
17

Proof. Choose affine open coverings {Uα}, {Vα} of X2, Y2 such that

• f1(Uα) ⊂ Vα
• Vα is a special smooth affine.

Then by Step II, there exists a lift f
(α)
2 : Uα → Vα of resUα f1. By Step III, res f

(α)
2 : Uα ∩ Uβ →

Vα ∩ Vβ and res f
(β)
2 : Uα ∩ Uβ → Vα ∩ Vβ differ by an element

Dαβ ∈ Γ(Uα ∩ Uβ, f∗0ΘY0 ⊗k I).

But on Uα ∩ Uβ ∩ Uγ we may write somewhat loosely:

Dαβ +Dβγ = [res f
(α)
2 − res f

(β)
2 ] + [res f

(β)
2 − res f

(γ)
2 ]

= res f
(α)
2 − res f

(γ)
2

= Dαγ .

(Check the proof in Step III to see that this does make sense.) Thus

{Dαβ} ∈ Z1({Uα}, f∗0ΘY0 ⊗k I).

Now if the lifts f
(α)
2 are changed, this can only be done by adding to them elements Eα ∈

Γ(Uα, f
∗
0ΘY0 ⊗k I) and then Dαβ is changed to Dαβ +Eα −Eβ. Moreover, if the covering {Uα}

17Note that we use, in fact, only that Y2 is smooth over R and that the same proof gives the Lifting Property

for smooth morphisms.
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is refined and one restricts the lifts f
(α)
2 , then the cocycle we get is just the refinement of Dαβ .

Thus we have a well-defined element of H1(X0, f
∗
0ΘY0 ⊗k I). Moreover it is zero if and only if

for some coverings {Uα}, {Vα}, Dαβ is homologous to zero, i.e.,

Dαβ = Eα − Eβ, Eα ∈ Γ(Uα, f
∗
0ΘY0 ⊗k I).

Then changing f
(α)
2 by Eα as in Step III, we get f̃

(α)
2 ’s, lifting f1 such that on Uα∩Uβ, f̃

(α)
2 −f̃

(β)
2 is

represented by the zero derivation, i.e., the f̃
(α)
2 ’s agree on overlaps and give an f2 lifting f1. □

The assertion (biv) is a simple calculation that we leave to the reader.

Step. VI: Proof of (aii) and (bii) simultaneously.

Proof. Suppose we are given X1 smooth over SpecR/I and at least one deformation X2

of X1 over R exists. If X2, X
′
2 are any two deformations, we can apply the construction of

Step V to the lifting of 1X1 : X1 → X1 to an R-morphism X2 → X ′
2, getting an obstruction in

H1(X0,ΘX0)⊗k I. This gives us a map:

Def(X1/R)×Def(X1/R) −→ H1(X0,ΘX0)⊗k I

which we write:

(X,X ′) 7−→ X −X ′.

The functorial property (biv) proves that:

(∗) (X −X ′) + (X ′ −X ′′) = (X −X ′′).

Moreover, X −X ′ = 0 =⇒ X = X ′: because if 1X1 : X1 → X1 lifts to an R-morphism f : X2 →
X ′

2, f is automatically an isomorphism in view of the easy:

Lemma 5.1. Let A and B be R-algebras, B flat over R. If ϕ : A→ B is an R-homomorphism

such that

ϕ : A/I ·A ≈−→ B/I ·B

is an isomorphism, then ϕ is an isomorphism.

(Proof left to the reader.)

If we now show that ∀ deformation X2 and ∀α ∈ H1(X0,ΘX0) ⊗k I, ∃ a deformation X ′
2

with X ′
2 −X2 = α, we will have proven that Def(X1/R) is a principal homogeneous space over

H1(X0,ΘX0) ⊗k I as required. To construct X ′
2, represent α by a Čech cocycle {Dij}, for any

open covering {Ui} of X2, where

Dij ∈ Γ(Ui ∩ Uj ,ΘX0 ⊗k I).

As in Step IV, we then have an automorphism of Ui ∩ Uj (as a subscheme of X2):

1Ui∩Uj +Dij : Ui ∩ Uj −→ Ui ∩ Uj .

X ′
2 is obtained by glueing together the subschemes Ui of X2 by these new automorphisms

between Ui∩Uj regarded as part of Ui and Ui∩Uj regarded as part of Uj . The cocycle condition

Dij+Dji = Dik guarantees that these glueings are consistent and one checks easily that for this

X ′
2, X

′
2 −X2 is indeed α. □

Step. VII: Proof of (ai): viz. construction of the obstruction to deforming X1 over R.
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Proof. Starting with X1, take a special affine covering {Ui,1} of X1. By Step I, Ui,1 deforms

to a special affine Ui,2 over R. This gives us two deformations of the affine scheme Ui,1 ∩ Uj,1
over R, viz. the open subschemes

jUi,2 ⊂ Ui,2
iUj,2 ⊂ Uj,2.

By Step VI, these must be isomorphic so choose

ϕij : jUi,2
≈−→ iUj,2.

If we try to glue the schemes Ui,2 together by these isomorphisms, consistency requires that the

following commutes:

iUj,2 ∩ kUj,2
resϕjk

((RRRRRRRRRR

jUi,2 ∩ kUi,2

resϕij
66mmmmmmmmmm

resϕik

// jUk,2 ∩ iUk,2.

But, in general, (resϕij) ◦ (resϕik)−1 ◦ (resϕjk) will be an automorphism of iUj,2 ∩ kUj,2 given

by a derivation Dijk ∈ Γ(Ui ∩ Uj ∩ Uk,ΘX0 ⊗k I). One checks easily (1) that Dijk is a 2-

cocycle, (2) that altering the ϕij ’s adds to the Dijk a 2-coboundary, and conversely that any

D′
ijk cohomologous to Dijk in H2({Ui},ΘX0 ⊗k I) is obtained by altering the ϕij ’s, and (3) that

refining the covering {Ui} replaces Dijk by the refined 2-cocycle. Thus {Dijk} defines an element

α ∈ H2(X0,ΘX0 ⊗k I) depending only on X1, and α = 0 if and only if X2 exists. □

Step. VIII Proof of (aiii).

Proof. Given X1, Y1 and f , take special affine coverings {Ui,1}, {Vi,1} of X1 and Y1 such

that f(Ui,1) ⊂ Vi,1. Deform Ui,1 (resp. Vi,1) to Ui,2 (resp. Vi,2) over R. By Step II, lift f to

fi : Ui,2 → Vi,2. Consider the diagram:

jUi,2
res fi

//

ϕij
��

jVi,2

ψij
��

iUj,2
res fj

// iVj,2.

It need not commute, so let

(res fj) ◦ ϕij = ψij ◦ (res fi) + Fij

where Fij ∈ Γ(Ui ∩ Uj , f∗0ΘY0 ⊗k I). It is a simple calculation to check now that if the ϕij ’s

define a 2-cocycle Dijk representing obstr(X1) and the ψij ’s similarly define Eijk, then

df0(Dijk)− f∗0Eijk = Fij − Fik + Fjk.

□

This completes the proof of the main results of infinitesimal deformation theory. We get

some important corollaries:

Corollary 5.2. Let R be an artin local ring with maximal ideal M and residue field k and

let I ⊂ R be any ideal contained in M . If X1 is a scheme smooth of finite type over SpecR/I

such that H2(X0,ΘX0) = (0) — e.g., if dimX0 = 1 — then a deformation X2 of X1 over R

exists.
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Proof. Filter I as follows: I ⊃ MI ⊃ M2I ⊃ · · · ⊃ MνI = (0). Then deform X1

successively as follows:

X1

��

⊂ X
(1)
1

��

⊂ · · · ⊂ X
(l)
1

��

SpecR/I ⊂ SpecR/MI ⊂ · · · ⊂SpecR/M lI⊂ · · · ⊂ SpecR

using case (ai) of each stage to show that X
(l)
1 can be deformed to a X

(l+1)
1 . Set X2 = X

(ν)
1 . □

Corollary 5.3. Let R be an artin local ring with residue field k and let X be a scheme

smooth18 of finite type over R. Let X0 = X ×SpecR Spec k and let

f0 : Y0 −→ X0

be an étale morphism. Then there exists a unique deformation Y of Y0 over R such that f0 lifts

to f : Y → X.

Proof. Let M be the maximal ideal of R. Deform Y0 successively as follows:

Y0

f0
��

⊂ Y1

f1
��

⊂ · · · ⊂ Yl−1

fl−1
��

X0

��

⊂ X1

��

⊂ · · · ⊂ Xl−1

��

⊂ · · · ⊂ X

��

Spec k ⊂ Spec(R/M2)⊂ · · · ⊂Spec(R/M l)⊂ · · · ⊂ SpecR

where Xl−1 = X×SpecRSpec(R/M
l). Because f0 is étale, df0 : ΘY0 → f∗0ΘX0 is an isomorphism.

Therefore at each stage, the existence of the deformation Xl of Xl−1 gurantees by (aiii) the

existence of a deformation Y ′
l of Yl−1. Then choose any Y ′

l and ask whether fl−1 lifts. We get

an obstruction α:

H1(Y0,ΘY0)⊗k (M l/M l+1)
≈
df0

// H1(Y0, f
∗
0ΘX0)⊗k (M l/M l+1).

Then alter the deformation Y ′
l by df−1

0 (α), giving a new deformation Yl. By functoriality (biv),

fl−1 lifts to fl : Yl → Xl and by injectivity of df0 this is the only deformation for which this is

so. □

The most exciting applications of deformation theory, however, are those cases when one can

construct deformations not only over artin local rings, but over complete local rings. If the ring

R is actually an integral domain, then one has constructed, by taking fibre product, a scheme

over the quotient field K of R as well. A powerful tool for extending constructions to this case

is Grothendieck’s GFGA Theorem (Theorem 2.17). This is applied as follows:

Definition 5.4. Let R be a complete local noetherian ring with maximal ideal M . Then a

formal scheme X over R is a system of schemes and morphisms:

X0

��

// X1

��

// · · · // Xn

��

// · · · · · ·

Spec(R/M) // Spec(R/M2) // · · · // Spec(R/Mn+1) // · · · · · · SpecR

18A more careful proof shows that the smoothness of X is not really needed here and that Corollary 5.3 is

true for any X of finite type over R. It is even true for comparing étale coverings of X and Xred, any noetherian

scheme X (cf. SGA1 [4, Exposé I, Théorème 8.3, p. 14]).
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whereXn−1
∼= Xn×Spec(R/Mn+1)Spec(R/M

n). X is flat overR if eachXn is flat over Spec(R/M
n+1).

If X is a scheme over SpecR, the associated formal scheme X̂ is the system of schemes

Xn = X ×SpecR Spec(R/Mn+1) together with the obvious morphisms Xn → Xn+1.

Theorem 5.5. Let R be a complete local noetherian ring and let X = {Xn} be a formal

scheme flat over R. If X0 is smooth and projective over k = R/M , and if H2(X0,OX0) = (0),

then there exists a scheme X smooth and proper over R such that:

X = X̂.

Proof. Since X0 is projective over k, there exists a very ample invertible sheaf L0 on X0.

By Exercise (3) in Chapter III, Ln0 is very ample for all n ≥ 1; by Theorem VII.8.1, H1(Ln0 ) = (0)

if n ≫ 0. So we may replace L0 by Ln0 and assume that H1(L0) = (0) too. The first step is to

“lift” L0 to a sequence of invertible sheaves Ln on Xn such that

Ln ∼= Ln+1 ⊗OXn+1
OXn , all n ≥ 0.

To do this, recall that the isomorphism classes of invertible sheaves on any scheme X are

classified by H1(X,O∗
X). Therefore to construct the Ln’s inductively, it will suffice to show that

the natural map:

H1(Xn,O∗
Xn

) −→ H1(Xn−1,O∗
Xn−1

)

(given by restriction of functions from Xn to Xn−1) is surjective. But consider the map of

sheaves:

exp: Mn · OXn −→ O∗
Xn

a 7−→ 1 + a.

SinceMn ·Mn ≡ 0 in OXn , this map is a homomorphism fromMn ·OXn in its additive structure

to O∗
Xn

in its multiplicative structure, and the image is obviously Ker
(
O∗
Xn
→ O∗

Xn−1

)
, i.e., we

get an exact sequence:

0 −→Mn · OXn

exp−→ O∗
Xn
−→ O∗

Xn−1
−→ 1.

But now the flatness of Xn over R/Mn+1 implies that for any ideal a ⊂ R/Mn+1,

a⊗R/Mn+1 OXn −→ a · OXn

is an isomorphism. Apply this with a =Mn/Mn+1:

Mn · OXn
∼= (Mn/Mn+1)⊗R/Mn+1 OXn

∼= (Mn/Mn+1)⊗R/M
(
(R/M)⊗R/Mn+1 OXn

)
∼= (Mn/Mn+1)⊗k OX0

∼= O⊕νn
X0

, if νn = dimkM
n/Mn+1.

Therefore we get an exact sequence19:

0 −→ O⊕νn
X0
−→ O∗

Xn
−→ O∗

Xn−1
−→ 1

hence an exact cohomology sequence:

H1(O∗
Xn

) // H1(O∗
Xn−1

)
δ

// H2(OX0)
⊕νn .

(0)

19Note that all Xn are topologically the same space, hence this exact sequence makes sense as a sequence of

sheaves of abelian groups on X0.
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This proves that the sheaves Ln exist.

The second step is to lift the projective embedding of X0. Let s0, . . . , sN be a basis of

Γ(X0,L0), so that (L0, s0, . . . , sN ) defines a projective embedding of X0 in PNk . I claim that for

each n there are sections s
(n)
0 , . . . , s

(n)
N of Ln such that via the isomorphism:

Ln−1
∼= Ln ⊗OXn

OXn−1
∼= Ln/Mn · Ln,

s
(n−1)
i = image of s

(n)
i . To see this, use the exact sequence:

0 −→Mn · Ln −→ Ln −→ Ln−1 −→ 0

and note that because Ln is flat over R/Mn+1 too,

Mn · Ln ∼= (Mn/Mn+1)⊗R/Mn+1 Ln
∼= (Mn/Mn+1)⊗R/M

(
(R/M)⊗R/Mn+1 Ln

)
∼= (Mn/Mn+1)⊗k L0,

hence we get an exact cohomology sequence:

H0(Ln) // H0(Ln−1)
δ

// H1(L0)⊕νn .

(0)

This allows us to define s
(n)
i inductively on n. Now for each n, (Ln, s(n)0 , . . . , s

(n)
N ) defines a

morphism

ϕn : Xn −→ PN(R/Mn+1)

such that the diagram:

Xn−1
//

��

PN(R/Mn)

��

Xn
// PN(R/Mn+1)

commutes. I claim that ϕn is a closed immersion for each n. Topologically it is closed and

injective because topologically ϕn = ϕ0 and ϕ0 is by assumption a closed immersion. As for

structure sheaves, ϕ∗n lies in a diagram:

0 // (Mn/Mn+1)⊗k OPN
k

//

1Mn⊗ϕ∗0
��

OPN
(R/Mn+1)

//

ϕ∗n
��

OPN
(R/Mn)

//

ϕ∗n−1

��

0

0 // (Mn/Mn+1)⊗k OX0
// OXn

// OXn−1
// 0.

Since ϕ∗0 is surjective, this shows ϕ∗n−1 surjective =⇒ ϕ∗n surjective. So by induction, all the ϕn
are closed immersions.

Finally, let ϕn induce an isomorphism of Xn with the closed subscheme Yn ⊂ PN(R/Mn+1).

Then the sequence of coherent sheaves {OYn} is a formal coherent sheaf on PNR in the sense of

§2 above. By the GFGA theorem (Theorem 2.17), there is a coherent sheaf F on PNR such that

OYn ∼= F ⊗R (R/Mn+1)

for every n. Moreover since {OYn} is a quotient of the formal sheaf

{
OPN

(R/Mn+1)

}
, F is quotient

of OPN , i.e., F = OY for some closed subscheme Y ⊂ PN . Therefore since:

Xn
∼= Yn ∼= Y ×SpecR Spec(R/Mn+1),
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it follows that Ŷ ∼= X . □

Corollary 5.6. Let R be a complete local noetherian ring and let X = {Xn} be a formal

scheme flat over R. If X0 is a smooth complete curve, then X = X̂ for some X smooth and

proper over R.

Proof. By Proposition V.5.11, X0 is projective over k and because dimX0 = 1, H2(OX0) =

(0). □

Corollary 5.7. (Severi20 -Grothendieck) Let R be a complete local noetherian ring and

let X0 be a smooth complete curve over k = R/M . Then X0 has a deformation over R, i.e.,

there exists a scheme X, smooth and proper over R such that X0
∼= X ×SpecR Spec k.

Proof. Corollaries 5.2 and 5.6. □

An important supplementary remark here is that if for simplicity X0 is geometrically irre-

ducible (also said to be absolutely irreducible), i.e., X0×Spec kSpec k is irreducible (k = algebraic

closure of k), then H1(OX) is a free R-module such that

H1(OX)⊗R k ∼= H1(OX0)

H1(OX)⊗R K ∼= H1(OXη)

(K = quotient field of R, Xη = X ×SpecR SpecK).

Since the genus of a curve Y over k is nothing but dimkH
1(OY ), this shows that genus(Xη) =

genus(X0). The proof in outline is this:

a) X0 ×Spec k Spec k irreducible and X0 smooth over k implies k algebraically closed in

R(X), hence k algebraically closed in H0(OX0). Thus

k
≈−→ H0(OX0).

b) Show that there are exact sequences

0 // Mn · OXn
// OXn

// OXn−1
// 0.

O⊕νn
X0

c) Show by induction on n that if g = dimkH
1(OX0), then R/M

n+1 ≈−→ H0(OXn) and

H1(OXn) is a free (R/Mn+1)-module of rank g such that

H1(OXn−1)
∼= H1(OXn)/M

n ·H1(OXn).

d) Apply GFGA (Theorem 2.17) to prove that H1(OX) is a free R-module of rank g such

that H1(OXn)
∼= H1(OX)/Mn+1 ·H1(OX) for all n.

e) Use the flatness of K over R to prove that

H1(OXη)
∼= H1(OX)⊗R K.

Corollary 5.7 is especially interesting when k is a perfect field of characteristic p and R

is the Witt vectors over k (see, for instance, Mumford [84, Lecture 26 by G. Bergman]), in

which case one summarizes Corollary 5.7 by saying: “non-singular curves can be lifted from

characteristic p to characteristic 0”. On the other hand, Serre [104]21 has found non-singular

projective varieties X0 over algebraically closed fields k of characteristic p such that for every

20Modulo translating Italian style geometry into the theory of schemes, a rigorous proof of this is contained

in Severi [107, Anhang]. This approach was worked out by Popp [91].
21(Added in Publication) See also Illusie’s account in FAG [3, Chapter 8].
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complete local characteristic 0 domain R with R/M = k, no such X exists: such an X0 is called

a non-liftable variety!

One can strengthen the application of deformation theory to coverings in the same way:

Theorem 5.8. Let R be a complete local noetherian ring with residue field k and let X be a

scheme smooth22 and proper over R. Let X0 = X ×SpecR Spec k and let

f0 : Y0 −→ X0

be a finite étale morphism. Then there exists a unique finite étale morphism

f : Y −→ X

such that f0 is obtained from f by fibre product ×SpecR Spec k.

Proof. By Corollary 5.3 we can lift f0 : Y0 → X0 to a unique formal finite étale scheme

F : Y → X̂, i.e., Y = {Yn}, F = {fn} where fn : Yn → Xn is finite and étale, where Xn =

X ×SpecR SpecR/Mn+1 and the diagram:

Yn //

fn
��

Yn+1

fn+1

��

Xn
// Xn+1

commutes (the inclusion Yn → Yn+1 being part of the definition of a formal scheme Y). If

An = fn,∗(OYn), then

SpecXn
(An) ∼= Yn

∼= Yn+1 ×Xn+1 Xn

∼= SpecXn

(
An+1 ⊗OXn+1

OXn

)
hence An ∼= An+1 ⊗OXn+1

OXn . Therefore {An} is a coherent formal sheaf on X, hence by

GFGA (Theorem 2.17) there is a unique coherent sheaf A on X such that An ∼= A ⊗OX
OXn

for all n. Using the fact that

HomOX
(A⊗OX

A,A) ∼= Formal HomOX
(Afor ⊗OX

Afor,Afor)

and similar facts with A⊗A⊗A, we see immediately that A is a sheaf of commutative algebras.

Let Y = SpecX(A), and let f : Y → X be the canonical morphism. f is obviously proper and

finite to one. Moreover since for all x ∈ X0, An,x is a free Ox,Xn-module, it follows immediately

that Ax is a free Ox,X -module, i.e., f is flat at x. And f0 étale implies ΩY/X ⊗OX
k(x) = (0),

hence (ΩY/X)x = (0) by Nakayama’s lemma. Therefore by Criterion V.4.1, f is étale at x. Since

this holds for all x, f is étale in an open set U ⊂ X, with U ⊃ X0. But X proper over SpecR

implies that every such open set U equals X. Thus f is étale. Finally if f ′ : SpecX A′ → X is

another such lifting with A′
0 = A0, then by GFGA (Theorem 2.17) there is a unique isomorphism

ϕn : An
≈−→ A′

n

of OXn-algebras inducing the identity A0
≈−→ A′

0. Then these ϕn patch together into a formal

isomorphism Afor
≈−→ A′

for, which comes by GFGA (Theorem 2.17) from a unique algebraic

isomorphism ϕ : A ≈−→ A′. □

22As mentioned above, Corollary 5.3 is actually true without assuming smoothness and hence since smooth-

ness is not used in proving this result from Corollary 5.3, it is unnecessary here too.
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Corollary 5.9. In the situation of Theorem 5.8, there is an isomorphism of pro-finite

groups:

πalg1 (X0)
≈−→ πalg1 (X)

canonical up to inner automorphism.

Proof. If f : Y → X is any connected covering, i.e., f finite and étale, then by fibre

product ×X X0, we get a covering f0 : Y0 → X0. Note that Y0 is connected (if not, we could

lift its connected components separately by Theorem 5.8, hence find a disconnected covering

f ′ : Y ′ → X lifting f0, thus contradicting the uniqueness in the theorem). By Theorem 5.8 every

connected covering f0 : Y0 → X0, up to isomorphism, arises in this way. Moreover, if R(Y ) is

Galois over R(X), then we get a homomorphism:

Gal(R(Y )/R(X))
≈−→ Aut(Y/X) −→ Aut(Y0/X0)

≈−→ Gal(R(Y0)/R(X0))

which is easily seen to be an isomorphism. Now fix separable algebraic closures R(X)∗ of R(X)

and R(X0)
∗ of R(X0), and let R̃(X) ⊂ R(X)∗, R̃(X0) ⊂ R(X0)

∗ be the maximal subfields such

that normalization in finitely generated subfields of these is étale over X or over X0. Now write

R̃(X) as an increasing union of finite Galois extensions Ln of R(X); we get a tower of coverings

YLn = normalization of X in Ln; let Zn = YLn ×X X0 (this is a tower of connected coverings of

X0); choose inductively in n isomorphisms:

R(Zn)
≈−→ Kn ⊂ R̃(X0).

It follows readily that
∪
Kn = R̃(X0), and that

πalg1 (X) ∼= lim←−Gal(Ln/R(X))

∼= lim←−Gal(Kn/R(X0))

∼= πalg1 (X0).

□

This result can be used to partially compute π1 of liftable characteristic p varieties in terms of

π1 of varieties over C, hence in terms of classical topology. This method is due to Grothendieck

and illustrates very beautifully the Kroneckerian idea of §IV.1: Let

k = algebraically closed field of characteristic p,

R = complete local domain of characteristic 0 with R/M = k,

K = quotient field of R,

K = algebraic closure of K.

Choose an isomorphism (embedding?):

K ∼= C.

Let

X = scheme proper and smooth over R,

X0 = X ×SpecR Spec k : we assume this is irreducible,

Xη = X ×SpecR SpecK,

Xη = X ×SpecR SpecK : we assume this is irreducible,

X̃η = X ×SpecR SpecC.
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Theorem 5.10. There is a surjective homomorphism

πalg1 (Xη) ↠ πalg1 (X0)

canonical up to inner automorphism, and hence, fixing an isomorphism K ≈ C, a surjective

homomorphism:

π̂top1 (X̃η) ↠ πalg1 (X0).

Proof. By Theorem 2.16 and Corollary 5.9, it suffices to compare πalg1 (Xη) and πalg1 (X).

Let Ω ⊃ R(Xη) be an algebraic closure. Note that

i) R(X) = R(Xη)

ii) R(Xη) = R(Xη) ⊗K K is algebraic over R(Xη), hence Ω is an algebraic closure of

R(Xη) too.

Thus we may consider the maximal subfields of Ω such that the normalization of any of the

schemes X, Xη and Xη is étale. Note that:

iii) L ⊂ Ω finite over R(X), normalization of X in L étale over X =⇒ normalization of

Xη in L étale over Xη,

iv) K0 ⊂ K finite over K, normalization of Xη in R(Xη) ⊗K K0 is Xη ×SpecK SpecK0

which is étale over Xη.

Thus we get a diagram

Ω

  
  

  
  

  

Ω1

??????

�����

Ω2

�����
K ·R(Xη) = R(Xη)

?????

R(Xη) = R(X)K

??????

�����

K

�����

where

Ω1/R(Xη) = maximal extension étale over Xη

Ω1/R(Xη) = maximal extension étale over Xη

Ω2/R(Xη) = maximal extension étale over X

i.e.,

πalg1 (Xη) ∼= Gal(Ω1/R(Xη))

πalg1 (Xη) ∼= Gal(Ω1/R(Xη))

πalg1 (X) ∼= Gal(Ω2/R(Xη)).

Since

v) Gal(R(Xη)/R(Xη)) ∼= Gal(K/K),
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we get homomorphisms:

1 // πalg1 (Xη)
//

ϕ %%KKKKKKKKKK
πalg1 (Xη)

//

��

Gal(K/K) // 1

πalg1 (X)

To finish the proof of Theorem 5.10, we must show that ϕ is surjective. A small consideration

of this diagram of fields shows that this amounts to saying:

vi) Ω2 ⊗K K → Ω is injective; or equivalently (cf. §IV.2) K is algebraically closed in Ω2.

If this is not true, then suppose L ⊂ K is finite over K and L ⊂ Ω2. Let S be the integral closure

of R in L. Then X ×SpecR SpecS is smooth over SpecS, hence is normal; since R(X ×SpecR

SpecS) = R(X) ⊗K L, X ×SpecR SpecS is the normalization of X in R(X) ⊗K L. Now

f : SpecS → SpecR is certainly not étale unless R = S: because if [M ] ∈ SpecR is the closed

point, then (a) by Hensel’s lemma (Lemma IV.6.1), f−1([M ]) = one point, so (b) if f is étale,

the closed subscheme f−1([M ]) is isomorphic to Spec k, hence (c) f is a closed immersion, i.e.,

R → S is surjective. But then neither can g : X ×SpecR SpecS → X be étale because I claim

there is a section s:

X

��

SpecR

s

UU

hence g étale implies by base change via s that f is étale. To construct s, just take a closed

point x ∈ X0, let a1, . . . , an be generators of mx,X0 in the regular local ring Ox,X0 , lift these to

a1, . . . , an ∈ mx,X and set Z = Spec (Ox,X/(a1, . . . , an)). By Hensel’s lemma (Lemma IV.6.1), Z

is finite over R, hence is isomorphic to a closed subscheme ofX. Since the projection Z → SpecR

is immediately seen to be étale, Z → SpecR is an isomorphism, hence there is a unique s with

Z = Image(s). □

At this point we can put together Parts I and II to deduce the following famous result of

Grothendieck.

Corollary 5.11. Let k be an algebraically closed field of characteristic p and let X be a

non-singular complete curve over k. Let g = dimkH
1(OX), the genus of X. Then

∃a1, . . . , ag, b1, . . . , bg ∈ πalg1 (X)

satisfying:

(∗) a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g = e

and generating a dense subgroup: equivalently πalg1 (X) is a quotient of the pro-finite completion

of the free group on the ai’s and bi’s modulo a normal subgroup containing at least (∗).

Proof. Lift X to a scheme Y over the ring of Witt vectors W (k), and via an isomorphism

of C with (embedding into C of?) the algebraic closure of the quotient field of W (k) (see, for

instance, Mumford [84, Lecture 26 by G. Bergman]), let Y induce a curve Z over C. Note

that g = dimCH
1(OZ) by the remark following Corollary 5.7. By Part I [87, §7B], we know

that topologically Z is a compact orientable surface with g handles. It is a standard result in

elementary topology that πtop1 of such a surface is free on ai’s and bi’s modulo the one relation

(∗). Thus everything follows from Theorem 5.10. □
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What is the kernel of πalg1 (Xη) → πalg1 (X0)? A complete structure theorem is not known,

even for curves, but the following two things have been discovered:

a) Grothendieck has shown that the kernel is contained in the closed normal subgroup

generated by the p-Sylow subgroups: i.e., ifH is finite such that p ∤ #H and πalg1 (Xη)→
H is a continuous map, then this map factors through πalg1 (X0).

b) If you abelianize the situation, and look at the p-part of these groups, the kernel tends

to be quite large. In fact

πalg1 (Xη)/
[
πalg1 , πalg1

]
∼=

∏
primes l

Z2g
l × T0

while

πalg1 (X0)/
[
πalg1 , πalg1

]
∼=
∏
l ̸=p

Z2g
l × Zrp × Tp

where 0 ≤ r ≤ g and T0, Tp are finite groups, (0) in the case of curves. In fact,

Shafarevitch has shown for curves that the maximal pro-p-nilpotent quotient of πalg1 (X0)

is a free pro-p-group on r generators.

Going back now to general deformation theory, it is clear that the really powerful applications

are in situations where one can apply the basic set-up: R→ R/I (I ·M = (0)) inductively and

get statements over general artin rings and via GFGA (Theorem 2.17) to complete local ring.

In the two cases examined above, we could do this by proving that there were no obstructions.

However even if obstructions may be present, one can seek to build up inductively a maximal

deformation of the original variety X0/k. This is the point of view of moduli, which we want to

sketch briefly.

Start with an arbitrary scheme X0 over k. Then for all artin local rings R with residue field

k, define

Def(X0/R)

or

the deformations

of X0 over R

=



the set of triples (X,ϕ, π), where

π : X → SpecR is a flat morphism

and ϕ : X ×SpecR Spec k
≈−→ X0 is a

k-isomorphism, modulo (X,ϕ, π) ∼ (X ′, ϕ′, π′)

if ∃ an R-isomorphism ψ : X
≈−→ X ′ such that

X ×SpecR Spec k
ψ×1k

//

ϕ ((RRRRRRRRRR
X ′ ×SpecR Spec k

ϕ′vvllllllllll

X0

commutes.


Note that

R 7−→ Def(X0/R)

is a covariant functor for all homomorphisms f : R → R′ inducing the identities on the residue

fields. In fact, if (X,ϕ, π) ∈ Def(X0/R), let

X ′ = X ×SpecR SpecR′

π′ = projection of X ′ onto SpecR′

ϕ′ = the composition:

X ′ ×SpecR′ Spec k = (X ×SpecR SpecR′)×SpecR′ Spec k ∼= X ×SpecR Spec k
ϕ−→ X0.

Then (X ′, ϕ′, π′) ∈ Def(X0/R
′) depends only on the equivalence class of (X,ϕ, π) and on f . One

says that X ′/R′ is the deformation obtained from X/R by the base change f . What one wants
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to do next is to build up inductively the biggest possible deformation of X0 so that any other is

obtained from it by base change! More precisely, suppose that R is a complete noetherian local

ring with maximal ideal M and residue field R/M = k. Then we get a sequence of artin local

rings Rn = R/Mn+1. Then, by definition, a formal deformation X of X0 over R is a sequence

of deformations Xn and closed immersions ϕn:

· · · Xn
oo

��

Xn−1
ϕn

oo

��

· · ·oo X0
ϕ1

oo

��

SpecR · · ·oo SpecRnoo SpecRn−1
oo · · ·oo Spec koo

where ϕn induces an isomorphism:

Xn−1
≈−→ Xn ×SpecRn SpecRn−1.

Note that if S is artin local with residue field k, R→ S is a homomorphism inducing identity on

residue fields and X/R is a formal deformation, we can define a real deformation X×SpecRSpecS

by base change, since R→ S factors through Rn if n is large enough. Then a formal deformation

X/R is said to be versal or semi-universal if:

(1) every deformation Y of X0 over S is isomorphic to the one obtained by base change

X ×SpecR SpecS for a suitable α : R→ S, and

(2) if the maximal ideal N ⊂ S satisfies N2 = (0), then one asks that there be only one α

for which (1) holds.

(2′) X/R is universal if α is always unique. It is clear that a universal deformation is unique

if it exists, and it is not hard to prove that a versal one is also unique, but only up to

a non-canonical isomorphism.

A theorem of Grothendieck and Schlessinger [97] asserts the following:

a) If X0 is smooth and proper over k, then a versal deformation X/R exists and there is

a canonical isomorphism:

char k = 0 : Homk(M/M2, k)

char k = p : Homk(M/(M2 + (p)), k)

}
∼= H1(X0,ΘX0).

b) If H0(X0,ΘX0) = (0), then X/R is universal.

c) If H2(X0,ΘX0) = (0), then{
char k = 0 : R ∼= k[[t1, . . . , tn]], n = dimH1(X0,ΘX0)

char k = p, k perfect : R ∼=W (k)[[t1, . . . , tn]], n = dimH1(X0,ΘX0).

A further development of these ideas leads us to the global problem of moduli. Starting with

any X0 smooth and proper over k, suppose you drop the restriction that R be an artin local

ring and for any pair (R,m), R a ring, m ⊂ R a maximal ideal such that R/m = k you define

Def(X0/R) to be the pairs (X,ϕ) as before, but now X is assumed smooth and proper over

SpecR. If moreover you isolate the main qualitative properties that X0 and its deformations

have, it is natural to cut loose from the base point [m] ∈ SpecR and consider instead functors

like:

MP(S) =


set of smooth proper morphisms f : X → S such that

all the fibres f−1(s) of f have property P,

modulo f ∼ f ′ if ∃ an S-isomorphism g : X
≈−→ X ′

 ,

where S is any scheme and P is some property of schemes X over fields k. Provided that P

satisfies: [if X/k has P and k′ ⊃ k, then X ×Spec k Spec k
′ has P], then MP is a functor in S,

i.e., given g : S′ → S and X/S ∈MP(s), then X ×S S′ ∈MP(S
′).
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For instance, take P(X/k) to mean

dimX = 1

H0(X,OX)
≈−→ k

dimkH
1(X,OX) = g;

then MP is the usual moduli functor for curves of genus g. The “problem of moduli” is just the

question of describing MP as explicitly as possible and in particular asking how far it deviates

from a representable functor. The best case, in other words, would be that as functors in S,

MP(S) ∼= Hom(S,MP) for some scheme MP which would then be called the moduli space. For

an introduction to these questions, see Mumford et al. [83].

Exercise

(1) Let X be a normal irreducible noetherian scheme and let L ⊃ R(X) be a Galois

extension such that the normalization YL of X in L is étale over X. Let π : YL → X

be the canonical morphism. Let G = Gal(L/R(X)). Then G acts on YL over X: show

that for all y ∈ YL, if x = π(y), then:

a) G acts transitively on π−1(x).

b) If Gy ⊂ G is the subgroup leaving y fixed, then Gy acts naturally on k(y) leaving
k(x) fixed.

c) k(y) is Galois over k(x) and, via the action in (b),

Gy
≈−→ Gal(k(y)/k(x)).

[Hint : Let n = [L : R(X)]. Using the fact that L ⊗R(X) L ∼=
n times︷ ︸︸ ︷

L× · · · × L and that

YL ×X YL is normal, prove that YL ×X YL = disjoint union of n copies of YL. Prove

that if G acts on YL ×X YL non-trivially on the first factor but trivially on the second,

then it permutes these components simply transitively.]

(2) Note that the first part of the GFGA theorem (Theorem 2.17) would be trivial if the

following were true:

X a scheme over SpecA

F a quasi-coherent sheaf of OX -modules

B an A-algebra.

Then for all i, the canonical map

H i(X,F)⊗A B −→ H i(X ×SpecA SpecB,F ⊗A B)

is an isomorphism. Show that if B is flat over A, this is correct.

(3) Using (2), deduce the more elementary form of GFGA:

f : Z −→ X proper, X noetherian

F a coherent sheaf of OX -modules.

Then for all i, and for all x ∈ X,

lim←−
n

Rif∗(F)x/
(
mn
x ·Rif∗(F)x

) ∼= lim←−
n

H i(f−1(x),F/mn
x · F).



CHAPTER IX

Applications

1. Mori’s existence theorem of rational curves

(Added in publication)

In this section X is a smooth projective variety over an algebraically closed field k of char-

acteristic p ≥ 0. For simplicity, we omit k and Spec(k) from tensor products over k, X/k, fibre

products over Spec(k), etc.

The highest nonzero exterior power

KX := detΩdimX
X =

dimX∧
Ω1
X

is an invertible OX -module called the canonical sheaf. The canonical divisor KX is the divisor

on X defined up to linear equivalence by

KX = OX(KX).

The tangent sheaf ΘX = HomOX
(Ω1

X ,OX) thus gives rise to

detΘX = OX(−KX) = K−1
X .

We already encountered canonical divisors in the Riemann-Roch theorem for curves in §VIII.1.

The canonical sheaf and divisor play pivotal roles especially in birational geometry. As

a nontrivial application of what we have seen so far, we prove the following theorem, which

provided a breakthrough in higher-dimensional birational geometry since the 1980’s:

Theorem 1.1 (Mori). (Mori [81, Theorem 5], Mori [82, Theorem 1.4], Kollár-Mori [74,

Theorem 1.13]) Let X be a smooth projective variety over k with a closed irreducible curve

C ⊂ X such that

(K−1
X .C) > 0.

Then for any fixed ample divisor H on X, there exists a rational curve l on X such that

dimX + 1 ≥ (K−1
X .l) > 0 and

(K−1
X .l)

(H.l)
≥

(K−1
X .C)

(H.C)
.

Here a rational curve is an irreducible and reduced curve proper over k with the normalization

P1, while (L.C) denotes the intersection number of an inverstible sheaf L and a curve C defined

in §VII.11.
Why is a rational curve so important? As in §III.3, consider the blow up of a smooth variety

Z over k along a closed smooth subvariety Y ⊂ Z of codimension r ≥ 2 defined by an ideal sheaf

I:
π : Z ′ := BlY (X) −→ Z.

Since Y is supposed to be smooth, hence is a local complete intersection, I/I2 is OY -locally
free of rank r. Thus by Theorem III.3.5, the exceptional divisor

π−1(Y ) = Z ′ ×Z Y = PY (I/I2)
345
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is a Pr−1-bundle over Y , hence contains lots of rational curves in the fibres that are contracted

to points by π.

In particular when Z is a smooth surface and Y = {z} is a closed point, the exceptional

curve π−1(z) = P1 is contracted to the point z by π.

Mori’s result was the starting point of looking for rational curves that can be contracted.

Mori produces a rational curve out of a given curve C in the theorem via the “bend and

break” technique. To do so, he needs the following nontrivial result on deformation of morphisms,

which combine what we had in §I.8 and §VIII.5.

We work over S = Spec(k) with an algebraically closed field k. For simplicity, we omit

subscripts S and k for /k, ×S , ⊗k, etc.
Let V be a projective variety over k, while W is a smooth quasi-projective variety over k.

By Grothendieck’s theorem (Theorem I.8.14), there exists a locally noetherian schemeHom(V,W )

over k parametrizing morphisms from V toW , that is, for any locally noetherian k-scheme T , the

set Hom(V,W )(T ) of its T -valued points is canonically isomorphic to the set of T -morphisms

V × T →W × T .
Fixing a morphism f : V → W , let us consider its infinitesimal deformations. For an artin

local k-algebra R, denote by m its maximal ideal (hence R/m = k) and let I be an ideal of R

such that mI = 0.

Given an infinitesimal deformation f1 over Spec(R/I) of f , we would like to see if it lifts to

an infinitesimal deformation f2 over Spec(R), that is,

Hom(V,W )(Spec(R)) // Hom(V,W )(Spec(R/I)) // Hom(V,W )(Spec(k))

f2
� //_____________ f1

� // f

In the description of §VIII.5, we are in the situation:

V2 = V × Spec(R)
f2

//____ W × Spec(R) =W2

∪ ∪
V1 = V × Spec(R/I)

f1
// W × Spec(R/I) =W1

∪ ∪
V0 = V

f
// W =W0.

As we saw in bi) and bii), the obstruction for lifting f1 to f2 lies in

H1(V, f∗ΘW )⊗ I.

If the lifting exists, then the set Lift(f1/R) of all liftings is a principal homogeneous space over

H0(V, f∗ΘW )⊗ I.

In Mori’s applications, we have an additional information: Fix a closed immersion j : Z ↪→ V

and a morphism ζ : Z → W , and consider a morphism f : V → W whose restriction to Z is ζ,

that is, f ◦ j = ζ. The subfunctor of Hom(V,W ), defined by

Hom(V,W ; ζ)(T ) := {g : V × T →W × T | T -morphism with g ◦ (j × id) = ζ × id}

for k-schemes T , is represented by a closed subscheme of Hom(V,W ) obtained as the fibre

product of the natural restriction morphism Hom(V,W ) → Hom(Z,W ) and the morphism

Spec(k)→ Hom(Z,W ) corresponding to ζ ∈ Hom(Z,W )(Spec(k)).

In terms of the ideal sheaf IZ on V defining the subscheme Z, we have an exact sequence

0 −→ IZ −→ OV −→ OZ −→ 0.
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Tensoring the locally free OV -module f∗ΘW , we obtain an exact sequence

0 −→ IZ ⊗OV
f∗ΘW −→ f∗ΘW −→ ζ∗ΘW −→ 0,

hence the associated cohomology long exact sequence

0 −→H0(V, IZ ⊗OV
f∗ΘW ) −→ H0(V, f∗ΘW ) −→ H0(Z, ζ∗ΘW )

−→ H1(V, IZ ⊗OV
f∗ΘW ) −→ H1(V, f∗ΘW ) −→ H1(Z, ζ∗ΘW ) −→ · · · .

Given f1 ∈ Hom(V,W ; ζ)(Spec(R/I)), the obstruction for lifting it to f2 ∈ Hom(V,W ; ζ)(Spec(R))

lies in H1(V, IZ ⊗OV
f∗ΘW ), since the image in Hom(Z,W )(Spec(R/I)) of f1, regarded as an

element of Hom(V,W )(Spec(R/I)), is ζ × id, which is lifted to ζ × id ∈ Hom(Z,W )(Spec(R)).

When f1 is liftable to Spec(R), the set of all liftings is a principal homogeneous space over

H0(V, IZ⊗OV
f∗ΘW ), since the liftings as elements of Hom(V,W )(Spec(R)) have to be mapped

to ζ × id ∈ Hom(Z,W )(Spec(R)).

Proposition 1.2 (Mori). (cf. Mori [81, Proposition 2]) Let k be an algebraically closed field.

For a projective variety V over k and a smooth quasi-projective variety W over k, consider

a k-morphism f : V → W whose restriction to a closed subscheme j : Z ↪→ V is ζ = f ◦
j : Z → W . Then the tangent space of H := Hom(V,W ; ζ) at its point [f ] corresponding to

f ∈ Hom(V,W ; ζ)(Spec(k)) is given by

TH,[f ] = H0(V, IZ ⊗V f∗ΘW ),

while the dimension of H at [f ] satisfies

dim[f ]H ≥ h0(V, IZ ⊗OV
f∗ΘW )− h1(V, IZ ⊗OV

f∗ΘW ).

Here, hi(V, IZ ⊗OV
f∗ΘW ) is the customary notation for the dimension of H i(V, IZ ⊗OV

f∗ΘW ) as a vector space over k.

Proof. For the first assertion, apply what we have seen to the situation R = k[ε] with

ε2 = 0 and I = kε (cf. Definition V.1.3).

To prove the second assertion, let us simplify the notation as

O := OH,[f ], m := mH,[f ].

There certainly exists a formal power series ring A over k with maximal ideal M such that the

m-adic completion Ô is of the form

Ô = A/a, with M2 ⊃ a.

For any positive integer ν ≥ 2, consider the canonical surjective homomorphism

A/(Ma+Mν) −→ O/mν = A/(a+Mν)

whose kernel (a+Mν)/(Ma+Mν) is killed by M . The canonical surjection

φ1 : O = A/a −→ O/mν = A/(a+Mν)

corresponds to f1 ∈ H(Spec(A/(a+Mν))). Thus by what we have seen above, the obstruction

for lifting f1 to f2 ∈ H(Spec(A/(Ma+Mν))), hence the obstruction ψ for lifting φ1 to

φ2 : O = A/a −→ A/(Ma+Mν),

lies in

H1(V, IZ ⊗OV
f∗ΘW )⊗

(
a+Mν

Ma+Mν

)
.

In terms of a basis {ψ1, . . . , ψa} of H1(V, IZ ⊗OV
f∗ΘW ), the obstruction is of the form

ψ = ψ1 ⊗ r1 + ψ2 ⊗ r2 + · · ·+ ψa ⊗ ra
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for the residue classes r1, . . . , ra modulo Ma+Mν of r1, . . . , ra ∈ a ⊂ a+Mν = a+(Ma+Mν).

This obstruction thus lies in

H1(V, IZ ⊗OV
f∗ΘW )⊗

(
(r1, . . . , ra) +Ma+Mν

Ma+Mν

)
.

Hence there exists a lifting

H(Spec(A/((r1, . . . , ra) +Ma+Mν))) ∋ f ′2 7−→ f1 ∈ H(Spec(A/(a+Mν))),

or equivalently, there exists a homomorphism α : O → A/((r1, . . . , ra) +Ma +Mν) such that

the diagram

A/(Ma+Mν) // // A/((r1, . . . , ra) +Ma+Mν) // // O/mν = A/(a+Mν)

O = A/a

φ1

44hhhhhhhhhhhhhhhhhhhh
α

OO

is commutative. Obviously α is surjective, since a ⊂ M2. Hence there exists a k-algebra

automorphism σ of A such that the diagram

A // // A/((r1, . . . , ra) +Ma+Mν) // // A/(a+Mν) = O/mν

A

σ

OO

// // A/a = O

α

OO

φ1

44hhhhhhhhhhhhhhhhhhhh

is commutative. We automatically have σ(M) =M . By the commutativity of the diagram, we

have r−σ(r) ∈ a+Mν for any r ∈ A. In particular, r−σ(r) ∈ a+Mν for all r ∈ σ−1(a). Thus

σ−1(a) ⊂ a+Mν , hence a ⊂ σ(a) +Mν . Again by the commutativity of the diagram, we thus

have

σ(a) ⊂ (r1, . . . , ra) +Ma+Mν ⊂ (r1, . . . , ra) +Mσ(a) +Mν .

On the other hand, as an easy consequence of the Artin-Rees lemma (cf., e.g., Zariski-Samuel

[119, Chap. VIII, §2, Theorem 4′], or Matsumura [78, Theorem 8.5]) we have

a ∩Mν =M(a ∩Mν−1) ⊂Ma, for ν ≫ 0.

Consequently, we have σ(a) ∩Mν ⊂ Mσ(a). Thus the images of r1, . . . , ra ∈ a ⊂ σ(a) +Mν

modulo Mσ(a) +Mν generate

σ(a) +Mν

Mσ(a) +Mν
∼=

σ(a)

Mσ(a)
.

Thus r1, . . . , ra generate σ(a) by Nakayama’s lemma, hence σ−1(r1), . . . , σ
−1(ra) generate a.

Consequently, we get

Krull dimO = Krull dimA/a

≥ Krull dimA− a

= h0(V, IZ ⊗OV
f∗ΘW )− h1(V, IZ ⊗OV

f∗ΘW ).

□

Recall that for a locally free OY -module E of rank r = rk E on a scheme Y , we denote

det E :=
r∧
E ,

which is an invertible sheaf on Y .
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Let C be a smooth projective curve over k of genus g. As in the Remark immediately after

the proof of Proposition VIII.1.7, the Riemann-Roth theorem says

χ(C, E) = deg(det E) + (1− g) rk E

for any locally free OC-module E . By the filtration for E mentioned there, it is easy to see that

det(L ⊗OC
E) = L⊗ rk E ⊗OC

det E .

Corollary 1.3. (Mori [81, Proof of Theorem 4]) Suppose W is a smooth quasi-projective

variety over an algebraically closed field k, and let f : P1 →W be a morphism such that f(0) ̸=
f(∞). Denote by j : Z := {0,∞} ↪→ P1 the closed immersion of the reduced subscheme consisting

of two closed points. Then

dim[f ]Hom(P1,W ; f ◦ j) ≥ deg(f∗ detΘW )− dimW.

Proof. In the situation of Proposition 1.2, we have

IZ = OP1(−2)

and

det
(
OP1(−2)⊗OP1

f∗ΘW

)
= OP1(−2 dimW )⊗OP1

f∗ detΘW .

Thus by Proposition 1.2, we have

dim[f ]Hom(P1,W ; f ◦ j) ≥ h0(P1,OP1(−2)⊗OP1
f∗ΘW )− h1(P1,OP1(−2)⊗OP1

f∗ΘW )

= χ(P1,OP1(−2)⊗OP1
f∗ΘW )

= deg
(
det
(
OP1(−2)⊗OP1

f∗ΘW

))
+ (1− 0) dimW

= deg(OP1(−2 dimW )⊗OP1
f∗ detΘW ) + dimW

= −2 dimW + deg(f∗ detΘW ) + dimW

= deg(f∗ΘW )− dimW.

□

Corollary 1.4. (Mori [81, Proof of Theorem 5]) LetW be a smooth quasi-projective variety

over k, and C a smooth projective curve over k of genus g. Fix a closed point P0 ∈ C and denote

by j : Z = {P0} ↪→ C the closed immersion of the reduced subvariety consisting of one point.

For a nonconstant morphism f : C →W , we have

dim[f ]Hom(C,W ; f ◦ j) ≥ deg(f∗ΘW )− g dimW.

Proof. In the situation of Proposition 1.2, we have IZ = OC(P0). Hence

dim[f ]Hom(C,W ; f ◦ j) ≥ χ(C,OC(−P0)⊗OC
f∗ΘW )

= deg
(
det (OC(−P0)⊗OC

f∗ΘW )
)
+ (1− g) dimW

= deg (OC((−dimW )P0)⊗OC
f∗ detΘW ) + (1− g) dimW

= − dimW + deg(f∗ detΘW ) + (1− g) dimW

= deg(f∗ΘW )− g dimW.

□

For simplicity, let us mean by a curve on X a closed irreducible reduced subscheme of X of

dimension one, unless otherwise specified.
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Definition 1.5. A 1-cycle on X is a finite linear combination

a1Y1 + a2Y2 + · · ·+ amYm

of curves Y1, . . . , Ym on X with coefficients a1, . . . , am ∈ Z. It is said to be effective if aj ≥ 0 for

all j. We denote by Z1(X) the free abelian group of 1-cycles on X.

Recall that for an invertible sheaf L on X and a closed 1-dimensional subscheme Y ⊂ X,

we introduced in §VII.11 the intersection symbol

(L.OY ) :=
(

the coefficient of n in the polynomial

χ(X,Ln ⊗OX
OY ) in n of degree ≤ 1,

)
which was also denoted (L.Y ) in §VII.12. We denote the intersection symbol for 1-cycles as

above by

(L.a1Y1 + · · ·+ amYm) := a1(L.OY1) + · · ·+ am(L.OYm).
More generally for a coherent OX -module F with dimSupp(F) = 1, the intersection symbol

(L.F) :=
(

the coefficient of n in the polynomial

χ(X,Ln ⊗OX
F) in n of degree ≤ 1

)
was defined in §VII.11.

Definition 1.6. Invertible sheaves L,L′ ∈ Pic(X) are said to be numerically equivalent

and denoted L ≡ L′ if (L.C) = (L′.C) for any curve C on X. On the other hand, 1-cycles

Z,Z ′ ∈ Z1(X) are said to be numerically equivalent and denoted Z ≡ Z ′ if (L.Z) = (L.Z ′) for

all L ∈ Pic(X).

Proposition 1.7. The intersection number (L.Z) defines a perfect pairing

(Pic(X)/ ≡)× (Z1(X)/ ≡) −→ Z

between the group Pic(X)/ ≡ of invertible sheaves modulo numerical equivalence and the group

Z1(X)/ ≡ of 1-cycles modulo numerical equivalence. These groups are free Z-modules of finite

rank ρ = ρ(X) called the Picard number.

The proof can be found in Kleiman [70, Chapter IV, §1, Propositions 1 and 4].

Proposition 1.8. To every morphism φ : Y → X from a purely 1-dimensional proper

scheme Y over k is associated a unique effective 1-cycle (φ∗Y )cycle on X such that

(L.(φ∗Y )cycle) = (L.φ∗OY ), for any invertible sheaf L on X,

which is the coefficient of n in the polynomial χ(Y, φ∗Ln) in n. If Ass(OY ) = {y1, . . . , yl} and

Yj is the irreducible subscheme of Y with the generic point yj and Ass(OYj ) = {yj} as in the

global primary decomposition (cf. Theorem II.3.12), then

(φ∗Y )cycle =
∑

1≤j≤l
dimφ(Yj)=1

length(OYj ,yj )[k(yj) : k(φ(yj))]φ(Yj)red.

Proof. We proceed in several steps.

(1) Suppose Y is irreducible and smooth, Y ′ := φ(Y ) ⊂ X with the reduced structure is a

curve, and φ : Y → Y ′ is the resolution of singularities (i.e., the normalization in the function

field). Then (φ∗X)cycle := Y ′. It suffices to show

(L.OY ′) = (L.φ∗OY ) = deg(φ∗L).
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Indeed, (L.φ∗OY ) is the coefficient of n in

χ(X,Ln ⊗OX
φ∗OY ) = χ(Y, φ∗Ln) = n deg(φ∗L) + χ(OY ),

by the projection formula (cf. the footnote after Proposition VII.9.4) and the Riemann-Roch

theorem (Theorem VIII.1.1). Since the support of the cokernel of the canonical injection OY ′ →
φ∗OY is 0-dimensional, the additivity of χ (cf. Proposition VII.10.1) implies that the coefficient

in question coincides with the coefficient (L.OY ′) of χ(X,Ln ⊗OX
OY ′).

(2) Suppose Y is a reduced and irreducible curve over k and Y ′ = φ(Y ) ⊂ X with the

reduced structure. Then

(φ∗Y )cycle :=

{
0 if dimY ′ = 0

[R(Y ) : R(Y ′)]Y ′ if dimY ′ = 1.

It suffices to show that

(L.φ∗OY ) =

{
0 if dimY ′ = 0

[R(Y ) : R(Y ′)](L.OY ′) if dimY ′ = 1.

Since the first case is obvious, we assume dimY ′ = 1. The left hand side is the coefficient of n

in

χ(X,Ln ⊗OX
φ∗OY ) = χ(Y, φ∗Ln),

which is the same as the coefficient of n in χ(Ỹ , σ∗φ∗Ln), where σ : Ỹ → Y is the resolution

of singularities (cf. the proof of (1) above). Thus we may replace Y by Ỹ and assume Y to be

smooth. Then φ factors through the resolution of singularities π : Ỹ ′ → Y ′ so that φ = π ◦ ψ
with ψ : Y → Ỹ ′. By the projection formula and the Riemann-Roch theorem for locally free

sheaves (cf. Remark after Proposition VIII.1.7), we have

χ(Y, φ∗Ln) = χ(Ỹ ′, ψ∗φ
∗Ln)

= χ(Ỹ ′, π∗Ln ⊗O
Ỹ ′
ψ∗OY )

= deg(det(π∗Ln ⊗OY ′ ψ∗OY )) + [R(Y ) : R(Y ′)]χ(O
Ỹ ′)

= n[R(Y ) : R(Y ′)] deg(π∗L) + deg(detψ∗OY ) + [R(Y ) : R(Y ′)]χ(O
Ỹ ′).

On the other hand, (L.OY ′) = (L.π∗OỸ ′) (by (1)) is the coefficient of n in

χ(Ỹ ′, π∗Ln) = n deg(π∗L) + χ(O
Ỹ ′).

(3) Suppose Y is irreducible but not necessarily reduced with the generic point y, and

φ : Y → Y ′ = φ(Y ) ⊂ X with the reduced structure on Y ′. Then

(φ∗Y )cycle =

{
0 if dimY ′ = 0

length(OY,y)[R(Yred) : R(Y ′)]Y ′ if dimY ′ = 1.

Since the first case is obvious, we assume dimY ′ = 1, and show

(L.φ∗OY ) = length(OY,y)[R(Yred) : R(Y ′)](L.OY ′).

The left hand side is the coefficient of n in χ(Y, φ∗Ln). Denote by n the nilradical sheaf of OY
so that OYred = OY /n. If we denote ν := length(OY,y), then we have a filtration

OY ⊃ n ⊃ n2 ⊃ · · · ⊃ nν = (0).

By the additivity of χ, we obviously have

(L.φ∗OY ) = length(OY,y)(L.φ∗OYred),

hence we are done by (2).
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(4) In the general case, if Ass(OY ) = {y1, . . . , yl} and Yj is the irreducible subscheme of

Y with the generic point yj and Ass(OYj ) = {yj} as in the global primary decomposition (cf.

Theorem II.3.12), then we have a surjective homomorphism

OY −→
l⊕

j=1

OYj

with the support of the kernel having dimension less than 1. Thus by the additivity of χ, the

coefficient (L.φ∗OY ) of n in χ(X,Ln ⊗OX
φ∗OY ) = χ(Y, φ∗Ln) coincides with the coefficient of

n in
l∑

j=1

χ(Y, (φ∗L)n ⊗OY
OYj ) =

l∑
j=1

χ(Yj , φ
∗
jLn),

where φj : Yj → X is the composite of φ : Y → X with the canonical closed immersion Yj → Y .

Thus

(L.φ∗OY ) =
l∑

j=1

(L.(φj)∗OYj ),

and we are done by (3). □

Proposition 1.9 (Bend and break with a fixed point). (Kollar-Mori [74, Corollary 1.7],

Mori [81, proof of Theorem 5]) Let P be a closed point in an irreducible smooth proper curve C,

and f : C → X a non-constant morphism. Suppose there exists a smooth connected curve T , a

closed point t0 ∈ T and a morphism φ : C × T → X such that

φ|C×{t0} = f

φ({P} × T ) = f(P )

φ|C×{t} ̸= f for general t ∈ T.

Then there exists a closed point t1 in the smooth compactification T of T with t1 /∈ T , and

morphisms π : Y → T and ψ : Y → X such that

(ψ∗Yt)cycle =

{
(f∗C)cycle for t = t0

(f ′∗C)cycle + Z for t = t1,

for a (possibly constant) morphism f ′ : C → X, and a nonzero effective 1-cycle of rational curves

with f(P ) contained in the support of Z, where

Yt = π−1(t) = Y ×T Spec(k(t)).

In particular,

(f∗C)cycle ≡ (f ′∗C)cycle + Z.

Proof. φ : C × T → X gives rise to a rational map φ : C × T · · · → X. We first claim that

φ is not defined at (P, t1) for some t1 ∈ T \T . Otherwise, we would have a morphism φ : U → X

from a neighborhood U of {P} × T such that φ({P} × T ) = f(P ), hence by the rigidity lemma

(cf. Remark below), we have φ = f ◦p1 on U with the projection p1 : C×T → C, a contradiction

to the assumption.

Let r : Y → C × T be a succession of point blow ups eliminating the indeterminacy of φ (cf.

Remark below) and giving a morphism ψ : Y → X. Denote π = p2 ◦ r : Y → C × T → T . We

have π−1(t0) = C × {t0}, while

π−1(t1) = (strict transform in Y of C × {t1}) + (exceptional divisor for r).
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Since {P}×T and C ×{t1} intersect transversally, the strict transform in Y of {P}×T (which

is mapped by ψ to the point f(P )) does not intersect the strict transform in Y of C × {t1}.
Hence f(P ) is contained in the exceptional divisor.

Denote

Ψ := (ψ, π) : Y → X × T ,
which is a proper T -morphism. For each closed point t ∈ T , denote by the subscript t the base

change with respect to Spec(k(t))→ T . Then

(Ψ∗OY )t = ψ∗OYt ,

since for affine open sets U ⊂ X and t ∈ V ⊂ T we have

OY
(
Ψ−1(U × V )

)
⊗OV,t

k(t) = OYt(ψ−1(U))

by the flatness of Y over T . Hence by Proposition 1.8

(L.(ψ∗Yt)cycle) = (L.ψ∗OYt) = (L.(Ψ∗OY )t)

for any invertible sheaf L on X and for any closed point t ∈ T . We are done by what we

remarked in §VII.11, since Ψ∗OY is a coherent OX×T -module flat over T . □

Proposition 1.10 (Bend and break with two fixed points). (Kollár-Mori [74, Lemma 1.9],

Mori [81, Proof of Theorem 4]) Let f : P1 → X be a morphism such that f(0) ̸= f(∞). Suppose

there exists a smooth connected curve T , a closed point t0 ∈ T and a morphism φ : P1 × T → X

such that

φ|P1×{t0} = f

φ({0} × T ) = f(0)

φ({∞} × T ) = f(∞)

dimφ(P1 × T ) = 2.

Then there exists a closed point t1 in the smooth compactification T of T with t1 /∈ T and

morphisms π : Y → T and ψ : Y → X such that

(ψ∗Yt)cycle =


(f∗P1)cycle for t = t0(

cycle with at least two rational curves

or with multiple rational curves

)
for t = t1.

In particular, (f∗P1)cycle is numerically equivalent to a cycle with at least two rational curves or

multiple rational curves as components.

Proof. For the proof by induction, we use a ruled surface q : S → T (cf. Remark below)

to compactify p2 : P1 × T → T . We denote by C0 (resp. C∞) the section of the ruled surface S

extending {0} × T (resp. {∞} × T ).
φ : P1 × T → X gives rise to a rational map φ : S · · · → X. We first claim that φ is not a

morphism. Otherwise, φ maps the sections C0 and C∞ to distinct points f(0) and f(∞). Let H
be an ample invertible sheaf on X. Then, since dimφ(S) = dimφ(P1 × T ) = 2 by assumption,

while φ(C0) and φ(C∞) are points, we have

(φ∗H)2 > 0, (φ∗H.C0) = 0, (φ∗H.C∞) = 0.

By the Hodge index theorem (cf. Remark below), (C2
0 ) < 0 and (C2

∞) < 0 but (C0.C∞) = 0,

hence φ∗H, C0 and C∞ are linearly independent modulo numerical equivalence. However, the

Picard number of the ruled surface S is two (cf. Remark below), a contradiction.
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Let r : Y → S be a succession of point blow ups eliminating the indeterminacy of φ and

giving a morphism ψ : Y → X. Denote π = q ◦ r : Y → S → T . Our proof is by induction on

the number of point blow ups appearing in r.

Let σ : S̃ → S be the blow up of P ∈ S appearing as the first blow up in the succession r.

Denote t1 = q(P ) ∈ T \T . The irreducible components of π−1(t1) are rational curves, since they

arise either as exceptional divisors or as the strict transform of q−1(t1) = P1. Then ψ(π−1(t1))

is a union of rational curves by Lüroth’s theorem (cf. Remark below).

We are done if ψ(π−1(t)) is reducible or non-reduced. Thus we assume

(∗) ψ(π−1(t1)) is reduced and irreducible.

We claim that φ is defined at the points in q−1(t1) \ {P}. For, if φ were not defined at P ′ ∈
q−1(t1) \ {P}, then

ψ(π−1(t1)) ⊃ ψ(r−1(P )) ∪ ψ(r−1(P ′)),

a contradiction to the assumption (∗).
Let E (resp. F) be the exceptional curve for σ : S̃ → S (resp. the strict transform by σ of

q−1(t1)). Thus

(q ◦ σ)−1(t1) = F ∪ E with Q := E ∩ F.
φ : P1 × T → X gives rise to a rational map φ̃ : S̃ · · · → X. Denote r = r′ ◦ σ with r′ : Y → S̃

being the composite of the point blow ups other than σ.

We claim that φ̃ is defined at Q = E ∩ F . For otherwise, the blow up of Q would appear in

the succession r′ : Y → S̃ so that every irreducible component of (r′)−1(Q) has multiplicity ≥ 2

in π−1(t1), a contradiction to the assumption (∗).
We have F = P1 with (F 2) = −1. Hence by Castelnuovo’s criterion (cf. Remark below) F

can be contracted to a point by σ′ : S̃ → S′ giving rise to another ruled surface q′ : S′ → T (S′

is said to be obtained from S by an elementary transformation.) The resulting rational map

φ′ : S′ · · · → X needs one less point blow ups for the elimination of indeterminacy, since φ̃ is

defined along the exceptional divisor F of σ′ : S̃ → S. Thus we are done by induction.

The proof of the final assertion is exactly the same as that for Proposition 1.9. □

Remark. Here are the results used in the proofs of Propositions 1.9 and 1.10 and their

references:

Elimination of indeterminacy of a rational map: Although there are many varia-

tions, here is the one we need (whose proof over C in Part I [87, Chapter 8, §8B,
Corollary (8.8)] works over any k as well): Let φ : S · · · → Pm be a rational map from

a smooth surface over k. Then there exists a sequence

Sn
πn−→ Sn−1

πn−1−→ · · · π2−→ S1
π1−→ S0 = S

of point blow ups such that the induced rational map Sn · · · → Pm is a morphism.

Rigidity lemma: (cf. Mumford [85, Chapter II, §4]) Let U, V, W be varieties over k

with V proper, and φ : U×V →W a morphism such that φ(u0×V ) = point for a closed

point u0 ∈ U . Then there exists a morphism ψ : U → W such that φ(u, v) = ψ(u) for

all closed points u ∈ U and v ∈ V .

Lüroth’s theorem: (cf., e.g., Hartshorne [58, Chapter IV, Example 2.5.5]) A curve C

(i.e., an irreducible reduced proper scheme over k of dimension one) is a rational curve

(i.e., its normalization in its function field R(C) is P1), if there exists a surjective

morphism ψ : P1 → C.

Here is a sketch of the proof. Without loss of generality, we may assume C to be smooth

and show C ∼= P1. If the finite extension R(P1) ⊃ R(C) is purely inseparable, we show
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ψ to be an iteration of the Frobenius morphism F : C → C(p) as in Definition VI.1.15

(see also the proof of Theorem 1.13 below), hence C ∼= P1. Thus we may assume the

R(P1) ⊃ R(C) to be a finite separable extension. Then what was discussed in §V.2–4

gives rise to an exact sequence

0 −→ ψ∗Ω1
C/k −→ Ω1

P1/k −→ Ω1
P1/C −→ 0

with dimSupp(Ω1
P1/C) = 0. If g is the genus of C, then by Corollary VIII.1.5

−2 = degΩ1
P1/k ≥ degψ∗Ω1

C/k = [R(P1) : R(C)] deg Ω1
C/k

= [R(P1) : R(C)](2g − 2),

hence g = 0, and we are done by Corollary VIII.1.8.

Hodge index theorem: (cf., e.g., Mumford [84, Lecture 18], Hartshorne [58, Chapter

V, Theorem 1.9]) For a smooth projective surface S, divisors and 1-cycles coincide.

Hence the free Z-module

Λ := (Pic(S)/ ≡) = (Z1(S)/ ≡) ∼= Zρ

is endowed with a non-degenerate symmetric bilinear pairing

( . ) : Λ× Λ −→ Z.

The Hodge index theorem says that its scalar extension to ΛR ∼= Rρ has one positive

eigenvalue and ρ−1 negative eigenvalues. More specifically, let h = [H] be the numerical

equivalence class of an ample invertible sheaf on S, hence (h.h) > 0. Then

ΛR = Rh⊕ (Rh)⊥

with the restriction of ( . ) to (Rh)⊥ being negative definite.

Castelnuovo’s theorem: (cf., e.g., Hartshorne [58, Chapter V, Theorem 5.7]) Let C be

a smooth rational curve on a smooth proper surface S. Then C = σ−1(P ′) for the blow

up σ : S → S′ of a smooth proper surface S′ at a closed point P ′ ∈ S′ if and only if

(C2) = −1.
Ruled surfaces: (cf., e.g., Hartshorne [58, Chapter V, §2]) Let E be a locally free sheaf

of rank 2 on a smooth proper curve C. Then the P1-bundle S = P(E) over C is called a

ruled surface. Let π : S → C be the projection. By (V.2.16), we have an exact sequence

0 −→ Ω1
S/C −→ OS(−1)⊗OS

π∗E −→ OS −→ 0,

where OS(1) is the tautological invertible sheaf, while by what was discussed in §V.2–4,

we have an exact sequence

0 −→ π∗Ω1
C −→ Ω1

S −→ Ω1
S/C −→ 0.

Hence we have the canonical sheaf formula

KS = det(Ω1
S) = OS(−2)⊗OS

π∗(KC ⊗OC
det E).

Λ := (Pic(S)/ ≡) = (Z1(S)/ ≡) can be shown to be a free Z-module generated by the

numerical equivalence classes [OS(1)] and [f ], where f is a fibre of π. Clearly, we have

(OS(1).f) = 1 and (f.f) = 0.

Let σ : S̃ → S be the blow up of a point P ∈ S. Let f := π−1(π(P )) be the fibre of π

passing through P . The total transform of f is

σ−1(f) = E + F,
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where E = σ−1(P ) is the exceptional divisor and F is the strict transform of f hence

F ∼= P1. Since (E + F.E + F ) = 0, (E.E) = −1 and (E.F ) = 1, we have (F.F ) = −1.
Hence by Castelnuovo’s theorem, F is obtained as the exceptional divisor of a blow up

σ′ : S̃ → S′. It turns out that S′ is another ruled surface over C with σ′(E) as the fibre

passing through the center of the blow up σ′. The process of obtaining S′ from S is

called an elementary transformation.

Theorem 1.11. (Mori [82, Theorem (1.6)]) For a smooth projective curve C of genus g and

a morphism f : C → X, there exists a morphism h : C → X and an effective 1-cycle Z with the

properties

(a) (K−1
X .(h∗C)cycle) ≤ g dimX,

(b) every irreducible component E of Z is a rational curve with (K−1
X .E) ≤ dimX + 1,

(c) (f∗C)cycle ≡ (h∗C)cycle + Z.

Proof. Let H be a fixed ample invertible sheaf on X.

(Case g = 0, hence C = P1) We proceed by induction on (H.(f∗P1)cycle).

If (K−1
X .(f∗P1)cycle) ≤ dimX + 1, then take h to be a constant map and Z = (f∗C)cycle.

If (K−1
X .(f∗P1)cycle) ≥ dimX + 2, then by Corollary 1.3, H := Hom(P1, X; f ◦ j) satisfies

dim[f ]H ≥ deg(f∗K−1
X )− dimX ≥ 2,

where j : {0,∞} ↪→ P1 for any pair of distinct points 0,∞ ∈ P1 with f(0) ̸= f(∞). The group

of automorphisms of P1 fixing 0 and ∞, which is the multiplicative group Gm, has a natural

action on H with 1-dimensional orbit Gm[f ] through [f ]. Since dimH ≥ 2, there exists a curve

(possibly not proper over k) T ⊂ H passing through [f ] and T ̸⊂ Gm[f ]. The embedding

T ↪→ H induces a T -morphism P1 × T → X × T , hence its composite φ : P1 × T → X with the

projection p1 : X × T → X gives rise to the situation of the “bend and break with two fixed

points” (Proposition 1.10). Hence

(f∗P1)cycle ≡ Z1 + Z2

for nonzero effective 1-cycles Z1 and Z2 with rational curves as components. We are done by

induction, since (H.(f∗P1)cycle) = (H.Z1) + (H.Z2).

(Case g > 0) We proceed by induction on (H.(f∗C)cycle).
If (K−1

X .(f∗C)cycle) ≤ g dimX, then we just take h = f and Z = 0.

If (K−1
X .(f∗C)cycle) ≥ g dimX + 1, then by Corollary 1.4, H := Hom(C,X; f ◦ j) satisfies

dim[f ]H ≥ deg(f∗K−1
X )− g dimX ≥ 1,

where j : {P0} ↪→ C for a closed point P0 ∈ C. Hence there exists a curve (possibly not

proper over k) T ⊂ H passing through [f ]. The embedding T ↪→ H induces a T -morphism

C×T → X ×T , whose composite φ : C×T → X with the projection p1 : X ×T → X gives rise

the situation of the “bend and break with a fixed point” (Proposition 1.9). Hence

(f∗C)cycle ≡ (f ′∗C)cycle + Z ′,

where f ′ : C → X is a morphism and Z ′ is a nonzero effective 1-cycle with rational curves as

components. We are done by induction because of (H.(f ′∗C)cycle) < (H.(f∗C)cycle) as well as by
our earlier result in the case g = 0 applied to each component of Z ′. □

Definition 1.12. We denote

N1(X) := (Z1(X)/ ≡)⊗Z R,
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which is an R-vector space of dimension ρ, the Picard number of X (cf. Proposition 1.7). For a

curve C ⊂ X, we denote its image in N1(X) by [C].

Theorem 1.13. (Mori [82, Theorem (1.4), (1.4.1)]) Suppose k is of characteristic p > 0. For

a fixed ample invertible sheaf L on X and ε > 0, there exist rational curves l1, . . . , lr (possibly

r ≥ 0) on X satisfying

(K−1
X .li) ≤ dimX + 1 for i = 1, . . . , r

such that for any effective 1-cycle Z, its numerical equivalence class satisfies

[Z] ∈
r∑
i=1

Q≥0[li] +

y ∈
∑
Γ⊂X
curves

Q≥0[Γ]

∣∣∣∣∣∣∣ (K−1
X .y) ≤ ε(L, y)

 ,

where Q≥0 denotes the set of nonnegative rational numbers.

Proof. Let

Φ :=

{
l

∣∣∣∣ rational curves on X

ε(L.l) < (K−1
X .l) ≤ dimX + 1

}
.

Since (L.l) < (dimX + 1)/ε for l ∈ Φ, the Hilbert polynomials of l ∈ Φ with respect to L have

only a finite number of possibilities. (Φ is a so-called bounded family.) Hence by Grothendieck’s

decomposition (cf. FGA [2, Exposé 221]) of the Hilbert scheme HilbX into the components HilbPX
corresponding to Hilbert polynomials P , we see that the points of HilbX corresponding to l ∈ Φ

belong to the union of a finite number of those components HilbPX , which are projective. Thus by

the invariance of intersection numbers under connected flat family of curves (possibly reducible

or non-reduced) on X as in the proofs of Propositions 1.9 and 1.10, we see that Φ modulo

numerical equivalence is a finite set. We claim that a complete set {l1, . . . , lr} of representatives
of Φ up to numerical equivalence satisfies the requirements. It certainly suffices to show that

for any smooth projective curve C of genus g and a morphism f : C → X,

[(f∗C)cycle] ∈
r∑
i=1

Q≥0[li] +

y ∈
∑
Γ⊂X
curves

Q≥0[Γ]

∣∣∣∣∣∣∣ (K−1
X .y) ≤ ε(L.y)

 .

(Case g = 0) By Theorem 1.11, C is numerically equivalent to an effective 1-cycle whose com-

ponents E are rational curves such that (K−1
X .E) ≤ dimX + 1. We are done, since either E is

in Φ or satisfies (K−1
X .E) ≤ ε(L.E).

(Case g > 0) Denote by σ : k → k the p-th power automorphism. As in §IV.3 denote by

ϕ : C → C the p-th power morphism defined by

a) set-theoretically, ϕ = identity,

b) ∀U and ∀a ∈ OC(U), define ϕ∗a = ap.

ϕ is not a k-morphism, but the Frobenius morphism

C ×Spec(k) Spec(σ
−1, k) −→ C

induced by ϕ is a k-morphism, where Spec(σ−1, k) is the k-scheme for the k-algebra (σ−1, k),

which is k regarded as a k-algebra through σ−1. Likewise, we define

Cj := C ×Spec(k) Spec(σ
−j , k).

The p-th power morphism ϕ induces a k-morphism πj : Cj → Cj−1 for each j > 0, with C0 = C.

Starting from f0 = f , we inductively find a k-morphism

fj : Cj → X, with Dj := (fj∗Cj)cycle



358 IX. APPLICATIONS

such that

(K−1
X .Dj+1) ≤ g dimX

p[Dj ]− [Dj+1] ∈
r∑
i=0

Q≥0[li] +

y ∈
∑
Γ⊂X
curves

Q≥0[Γ]

∣∣∣∣∣∣∣ (K−1
X .y) ≤ ε(L.y)


for all j ≥ 0. Indeed, applying Theorem 1.11 to fj ◦ πj+1 : Cj+1 → Cj → X, we get a morphism

fj+1 : Cj+1 → X such that

(K−1
X .Dj+1) ≤ g dimX where Dj+1 := (fj+1∗Cj+1)cycle

((fj ◦ πj+1)∗Cj+1)cycle = Dj+1 + Z,

where Z is an effective 1-cycle whose irreducible components E are rational curves satisfying

(K−1.E) ≤ dimX + 1. However,

((fj ◦ πj+1)∗Cj+1)cycle = pDj ,

since (πj+1∗Cj+1)cycle = pCj . Hence

p[Dj ]− [Dj+1] = [Z] ∈
r∑
i=1

Q≥0[li] +

y ∈
∑
Γ⊂X
curves

Q≥0[Γ]

∣∣∣∣∣∣∣ (K−1
X .y) ≤ ε(L.y)


by what we have seen in Case g = 0 above. Thus for any positive integer a, we obviously have

[D0]− p−a[Da] =

a−1∑
j=0

p−j−1(p[Dj ]− [Dj+1])

∈
r∑
i=1

Q≥0[li] +

y ∈
∑
Γ⊂X
curves

Q≥0[Γ]

∣∣∣∣∣∣∣ (K−1
X .y) ≤ ε(L.y)

 .

Thus it suffice to show that [Da] belongs to the right hand side for some a > 0, since [D0] = [C].

We are done if

[Da] ∈

y ∈
∑
Γ⊂X
curves

Q≥0[Γ]

∣∣∣∣∣∣∣ (K−1
X .y) ≤ ε(L.y)


for some a. Otherwise, we have

(L.Dj) <
(K−1

X .Dj)

ε
≤ g dimX

ε
, for any j.

Thus (L.Dj)’s are uniformly bounded above. Hence by the same argument as before on the

finiteness of such bounded family of 1-cycles modulo numerical equivalence, there exist b < c

such that [Db] ≡ [Dc]. Then

(pc−b − 1)[Db] = pc−b[Db]− [Dc]

=

c−1∑
j=b

pc−1−j(p[Dj ]− [Dj+1])

∈
r∑
i=1

Q≥0[li] +

y ∈
∑
Γ⊂X
curves

Q≥0[Γ]

∣∣∣∣∣∣∣ (K−1
X .y) ≤ ε(L.y)

 ,

and we are done. □
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Finally we are ready to prove Mori’s theorem on the existence of rational curves. It is note-

worthy that the proof of the result in characteristic zero requires those in positive characteristics.

Proof of Theorem 1.1.

(Positive characteristic cases =⇒ characteristic zero case) First of all, suppose we have proven

the assertion when the characteristic of k is positive. Then the assertion holds in characteristic

zero as well. Here is why:

As in Proposition IV.1.4, we can find a subring R ⊂ k finitely generated over Z and a

smooth projective morphism π : X → S = Spec(k), a π-ample invertible sheaf H on X and a

closed subscheme C ⊂ X flat over S such that their base extensions by Spec(k) → S are X, H
and C, respectively. Indeed, we could express X as a closed subscheme of a projective space

over k defined by a finite set of homogeneous equations. We obtain a subring R ⊂ k generated

over Z by these coefficients as well as the coefficients of those homogeneous polynomials needed

to define H and C. Thus we obtain a projective scheme X over R, an invertible sheaf H on

X and a closed subscheme C whose base extensions by Spec(k) → Spec(R) are X, H and C,

respectively. We then replace R by an appropriate localization to guarantee that X is smooth

over R and C flat over R.

By Grothendieck’s theorem (Theorem I.8.14), there exists a locally noetherian S-scheme

HomS(P1
S ,X)

representing the functor

locally noetherian S-schemes T 7−→ HomT (P1
T ,X×S T ).

In fact, it is obtained as an open subscheme of the Hilbert scheme

Hilb(P1
S×SX)/S

parametrizing flat families of subschemes of P1
S ×S X: a T -morphism P1

T → X×S T is dealt with

as its graph in P1
T ×T (X×S T ).

Denote by Ξ ⊂ HomS(P1
S ,X) the subscheme such that for any morphism Spec(K)→ S with

an algebraically closed field K, the base extention ΞK parametrizes K-morphisms f : P1
K → XK

such that

dimX + 1 ≥ deg(f∗K−1
XK

), and
deg(f∗K−1

XK
)

deg(f∗HK)
≥

(K−1
XK
.CK)

(HK .CK)
=

(K−1
X .C)

(H.C)
.

In particular, we have

(dimX + 1)
(H.C)
(K−1

X .C)
≥ deg(f∗HK) > 0.

We claim that Ξ is of finite type, hence quasi-projective, over S. Indeed, since the left hand

side of the above inequality is a constant, deg(f∗HK) can take only a finite number of positive

integral values. Consequently, the Hilbert polynomial of the graph Γf of f with respect to the

ample invertible sheaf OP1
K
(1)⊗KHK on P1

K×KXK can have only a finite number of possibilities.

(Γf ’s form a so-called bounded family.) Hence by Grothendieck’s decomposition of Hilb into

components corresponding to Hilbert polynomials (cf. FGA [2, Exposé 221]), we see that Ξ is

contained in the union of a finite number of these components, which are projective over S.

Denote by ξ : Ξ→ S = Spec(R) the structure morphism. Then the fibre of ξ over Spec(K)→
S for an algebraically closed field K consists of K-valued points f : P1

K → XK of ΞK , which

gives rise to a possibly multiple rational curve (f∗P1
K)cycle = [R(P1

K) : R(f(P1
K))]f(P1

K) ⊂ XK
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satisfying

dimX + 1 ≥ (K−1
XK
.(f∗P1

K)cycle) and
(K−1

XK
.(f∗P1

K)cycle)

(HK .(f∗P1
K)cycle)

≥
(K−1

XK
.CK)

(HK .CK)
.

We now claim ξ : Ξ → S = Spec(R) to be surjective. Indeed, if s is a closed point of S, then

the residue field k(s) is of positive characteristic, since R is finitely generated over Z. Hence the

geometric fibre of ξ over s is non-empty, since we can take f : P1
K → E ⊂ XK to be the resolution

of singularities of a rational curve E satisfying the required inequalities for the algebraic closure

K of k(s). Thus the image of ξ contains all the closed points of S. By Chevalley’s Nullstellensatz

(Theorem II.2.9), the image thus contains the generic point of S, hence ξ is surjective.

Consequently, the fibre of ξ over the generic geometric point Spec(k) → S is non-empty.

Thus there exists a possibly multiple rational curve (f∗P1
k)cycle on Xk for some f : P1

k → Xk = X

satisfying the required inequalities. Obviously, we are done.

(Characteristic p > 0) Let L be another ample invertible sheaf on X and let ε = 1/N for a large

enough positive integer N such that

H⊗N ⊗OX
L−2(H.C) is ample.

Then by Theorem 1.13, there exist rational curves l1, . . . , lr with

(K−1
X .li) ≤ dimX + 1, for i = 1, . . . , r

such that

[C] =
r∑
i=1

ai[li] + z

for a1, . . . , ar ∈ Q≥0 and

z ∈

y ∈
∑
Γ⊂X
curves

Q≥0[Γ]

∣∣∣∣∣∣∣ (K−1
X .y) ≤ ε(L.y)

 .

By the choice of ε = 1/N , we have

0 ≤ (H⊗N ⊗OX
L−2(H.C).z)

N
= (H.z)− 2ε(H.c)(L.z).

Hence

(K−1
X .z) ≤ ε(L.z) ≤ (H.z)

2(H.C)
.

Consequently,

(K−1
X .C)

(H.C)
=

∑
i ai(K

−1
X .li) + (K−1

X .z)∑
i ai(H.li) + (H.z)

≤
∑

i ai(K
−1
X .li) +

(H.z)
2(H.C)∑

i ai(H.li) + (H.z)

≤ max

{
max
i

(K−1
X .li)

(H.l1)
,

1

2(H.C)

}
.

Since (K−1
X .C) ≥ 1, by assumption, we thus have

(K−1
X .C)

(H.C)
≤ max

i

(K−1
X .li)

(H.li)
.
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Hence there exists i such that
(K−1

X .C)

(H.C)
≤

(K−1
X .li)

(H.li)
.

□

Definition 1.14. Denote by R≥0 the semigroup of nonnegative real numbers, and let

NE(X) :=
∑
C⊂X
curves

R≥0[C]

= {finite nonnegative linear combinations of [C]’s for curves C ⊂ X}.

The Kleiman-Mori cone NE(X) is defined to be the closure of NE(X) in the usual topology of

N1(X) ∼= Rρ.

NE(X) plays pivotal roles in birational geometry. The following theorem implies thatNE(X)

is a “strictly convex cone”, that is, it does not contain a straight line.

Theorem 1.15 (Kleiman’s criterion for ampleness). (Kleiman [70, Chapter IV, Theorem 2

and Proposition 2]) An invertible sheaf L on X is ample if and only if

(L.z) > 0, ∀z ∈ NE(X) \ {0}.

This theorem holds even if X is a singular projective variety. The Nakai-Moishezon criterion

(Theorem VII.12.4) plays a crucial role in the proof. (See also Kollár-Mori [74, Theorem 1.18].)

Mori further formulated the existence of rational curves in the following Cone Theorem,

which gives an entirely new perspective even to classical results on nonsingular surfaces including

Castelnuovo’s theorem (cf. Remark immediately before Theorem 1.11) as Mori explains in [82,

Chapter 2].

Theorem 1.16 (The cone theorem). (Mori [82, Theorem (1.4)]. See also Kollár-Mori [74,

Theorem 1.24]) For any ample invertible sheaf H and any 0 < ε ∈ R, there exist rational curves

l1, . . . , lr (possibly r = 0) on X satisfying

0 < (K−1
X .li) ≤ dimX + 1, i = 1, . . . , r

such that

NE(X) = R≥0[l1] + · · ·+ R≥0[lr] + {z ∈ NE(X) | (K−1
X .z) ≤ ε(H.z)}.

This means that the part

{z ∈ NE(X) | (K−1
X .z) ≥ ε(H.z)}

of NE(X), if non-empty, is a polyhedral cone spanned by a finite number of extremal rays R≥0[l]

for extremal rational curves l, i.e., rational curves l satisfying

0 < (K−1
X .l) ≤ dimX + 1.

For the proof, the reader is referred to Mori [82, pp.139–140].

For the Minimal Model Program (also called the Mori Program) in higher dimension, how-

ever, we need to prove an analog for X with “terminal singularities”, since the contraction of

an extremal ray may give rise to varieties with such singularities. In fact, it is essential to

prove an analog even for “projective pairs” (X,∆) with “Kawamata log terminal” singularities.

“Relativization” is crucial as well. Entirely different methods are needed in these general cases.

See Kawamata [68] and Kollár [73]. See also Kawamata-Matsuda-Matsuki [67] and Kollár-Mori

[74, Chapter 3, especially Theorem 3.7], for instance.
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2. Belyi’s three point theorem

(Added in publication)

The following result is due to Belyi [22], [23]:

Theorem 2.1 (Belyi’s three point theorem). Let C be an irreducible proper smooth curve

over C. Then C is defined over the field Q of algebraic numbers (that is, C = C0×Spec(Q)Spec(C)
for some C0 over Q) if and only if it can be represented as a covering of the projective line P1

C
branched only at 0, 1, ∞.

Let C and C ′ be irreducible curves proper and smooth over an algebraically closed field k,

and f : C → C ′ a finite surjective separable morphism. The ramification locus of f is the finite

set of closed points of C at which f is not étale, and coincides with Supp(ΩC/C′) by Definition

V.3.1 and Criterion V.4.1.

∆(f) = f(Supp(ΩC/C′))

is called the branch locus of f .

Remark. (Added in Publication) This result is closely related to “dessins d’enfants” intro-

duced by Grothendieck [47]. See, for instance, Luminy Proceedings [50].

Proof of the “only if” part of Theorem 2.1. We show that if C is an irreducible

curve proper and smooth over Q, then there exists a finite surjective morphism f : C → P1
Q such

that ∆(f)(Q) ⊂ {0, 1,∞}.
Since the function field R(C) is an extension of Q of transcendence degree 1, choose f0 ∈

R(C) \Q, which gives a finite surjective morphism

f0 : C −→ P1
Q.

Without loss of generality, we may assume ∆(f0)(Q) ⊂ P1(Q) contains ∞.

We now show the existence of a non-constant polynomial g(t) ∈ Q[t] such that the composite

morphism

g ◦ f0 : C
f0−→ P1

Q
g−→ P1

Q

satisfies ∆(g ◦ f0)(Q) ⊂ P1(Q) by induction on

δ(f0) =
∑

y∈∆(f0)(Q)

([k(y) : Q]− 1).

There is nothing to prove if δ(f0) = 0. If δ(f0) > 0, choose y1 ∈ ∆(f0)(Q) with n = [k(y1) :

Q] > 1. Let g1(t) be the minimal polynomial over Q of y1. We then replace f0 with g1 ◦ f0.
Since (g1 ◦ f0)′ = ((g1)

′ ◦ f0) · f ′0, the new morphism is ramified where g1 or f0 is. But since

g1(y1) = 0, y1 no longer adds to δ(g1 ◦ f0), decreasing it by n − 1. But the sum of the degrees

of the zeros of g′1 is n− 1, so δ(g1) ≤ n− 2 and we have δ(g1 ◦ f0) < δ(f0).

Thus it suffices to show the following:

Lemma 2.2 (Belyi). If f1 : P1
Q → P1

Q is a finite surjective morphism with ∆(f1)(Q) ⊂ P1(Q),

then there exists a finite surjective morphism

h : P1
Q −→ P1

Q

such that ∆(h ◦ f1)(Q) ⊂ {0, 1,∞}.
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The first proof of Lemma 2.2. We prove the existence of h(t) ∈ Q[t] by induction on

the cardinality #∆(f1)(Q).

If #∆(f1)(Q) ≤ 3, we choose h to be a linear fractional transformation with coefficients in

Q that sends ∆(f1)(Q) to {0, 1,∞}.
If #∆(f1)(Q) > 3, we may choose a suitable linear fractional transformation with coefficients

in Q and assume that

∆(f1)(Q) ⊃ {0, 1, n

m+ n
,∞}

for positive integers m, n. Let

h(t) =
(m+ n)m+n

mmnn
tm(1− t)n ∈ Q[t],

which gives a morphism h : P1
Q −→ P1

Q with

h(0) = 0

h(1) = 0

h(
n

m+ n
) = 1.

Thus we have #∆(h ◦ f1)(Q) < #∆(f1)(Q). □

The second proof of Lemma 2.2. By linear fractional transformation with coefficients

in Q we may assume

∆(f1)(Q) = {λ1, . . . , λn,∞} ⊂ P1(Q)

with λ1, . . . , λn ∈ Z such that

0 = λ1 < λ2 < · · · < λn, gcd(λ2, . . . , λn) = 1.

Denote the Vandermonde determinant by

w =W (λ1, . . . , λn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

λ1 λ2 · · · λn
λ21 λ22 · · · λ2n
...

...
...

λn−1
1 λn−1

2 · · · λn−1
n

∣∣∣∣∣∣∣∣∣∣∣
=
∏
j>l

(λj − λl).

Similarly, denote the Vandermonde determinant for each i = 1, . . . , n by

wi = (−1)n−iW (λ1, . . . , λ̂i, . . . , λn) = (−1)n−i
∏
j>l
j,l ̸=i

(λj − λl),

where λ̂i means λi deleted. It is easy to check that
n∑
i=1

wi
t− λi

=
w∏n

i=1(t− λi)
n∑
i=1

wi = 0

n∑
i=1

λn−1
i wi = w.

Let ri = wi/ gcd(w1, . . . , wn) ∈ Z and

h(t) =

n∏
i=1

(t− λi)ri ∈ Q(t).
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Note that
∑n

i=1 ri = 0. Since

h′(t)

h(t)
=

n∑
i=1

ri
t− λi

=
w/ gcd(w1, . . . , wn)∏n

i=1(t− λi)
,

the ramification locus of h : P1
Q −→ P1

Q is contained in {λ1, . . . , λn,∞}, while ∆(h)(Q) ⊂
{0, 1,∞}. We see that

h(λi) = 0, n− i even
h(λi) =∞, n− i odd
h(∞) = 1

∆(h)(Q) = {0, 1,∞}.

Then the composite

P1
Q

f1−→ P1
Q

h−→ P1
Q

has the property ∆(h ◦ f1)(Q) ⊂ {0, 1,∞}. □

□

Proof of the “if” part of Theorem 2.1. We show that if g′ : C → P1
C is a finite cov-

ering with ∆(g′)(C) ⊂ {0, 1,∞}, then there exists a curve C0 over Q such that C = C0×Spec(Q)

Spec(C) = (C0)C.

Here is what we are going to do: We construct a “deformation” f : X → S of C parametrized

by an irreducible affine smooth variety S over Q. Then the fibre over a Q-rational point s0 ∈ S
turns out to be C0 we are looking for.

Since C is projective (cf. Proposition V.5.11), we have a closed immersion C ↪→ PNC . In

view of the covering g′ : C → P1
C and the Segre embedding (cf. Example I.8.11 and Proposition

II.1.2), we have closed immersions

C ↪→ PNC ×Spec(C) P1
C ↪→ P2N+1

C .

Using an idea similar to that in the proof of Proposition IV.1.4, we have a subring R ⊂ C
generated over Q by the coefficients of the finite number of homogeneous equations defining C

as well as PNC ×Spec(C) P1
C in P2N+1

C and a scheme X of finite type over R with closed immersions

X ↪→ PNR ×Spec(R) P1
R ↪→ P2N+1

R

such that the base extension by Spec(C)→ Spec(R) gives rise to

C ↪→ PNC ×Spec(C) P1
C ↪→ P2N+1

C .

S = Spec(R) is an integral scheme of finite type over Q. Replacing S by a suitable non-empty

affine open subset, we may assume S to be smooth over Q. Moreover, S is endowed with a

fixed C-valued point Spec(C) → S. Denote the structure morphism of X by f : X → S. By

construction, we have a factorization

f : X
g−→ P1

S −→ S

with f and g projective. Moreover, the base extension by Spec(C)→ S gives rise to

C = XC
g′−→ P1

C → Spec(C).

We now show the following:
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Lemma 2.3. There exists a non-empty affine open subset S0 ⊂ S such that the restriction

f : X0 = f−1(S0)
g−→ P1

S0
−→ S0

to S0 satisfies the following conditions:

i) X0 is integral.

ii) f : X0 → S0 is surjective and smooth of relative dimension 1.

iii) g : X0 → P1
S0

is étale outside {0, 1,∞}× S0. We may further assume

f(X0 \ ({0, 1,∞}× S0)) = S0.

Proof of Lemma 2.3.

Proof of (i): Let K be the function field of S so that K is the field of fractions of R and

is a subfield of C. The fibre of f over the generic point ηS of S is f−1(ηS) = XK , whose base

extension by Spec(C)→ Spec(K) gives rise to the original curve C = XC. Hence XK is integral.

Let X =
∪
iXi be the irreducible decomposition with the generic point ηi of Xi for each i.

Let Ui’s be mutually disjoint neighborhoods of ηi. Since XK = f−1(ηS) is irreducible, at most

one Ui intersects f
−1(ηS). If none of the ηi’s were in f−1(ηS), then for each i we would have

f(ηi) ̸= ηS so that ηS /∈ f(ηi) and f−1(ηS) ∩ f−1(f(ηi)) = ∅. Since closed f−1(f(ηi)) contains

Xi, we would have f−1(ηS) ∩Xi = ∅ for all i, a contradiction. Thus there exists exactly one i

such that ηi ∈ f−1(ηS). Hence f
−1(ηS) ⊂ Xi and ηS /∈ f(X \Xi). By Chevalley’s Nullstellensatz

(cf. Theorem II.2.9) f(X \Xi) is constructible. Thus there exists an open neighborhood S0 of

ηS with S0 ∩ f(X \Xi) = ∅. Hence f−1(S0) ∩ (X \Xi) = ∅ so that f−1(S0) ⊂ Xi is irreducible.

Obviously, we may replace S0 by a non-empty affine open subset.

Let us replace S and X by this S0 and f−1(S0), respectively so that we may now assume X

to be irreducible.

We next show that there exists a non-empty affine open subset Spec(Rt) ⊂ S = Spec(R) for

some t ∈ R such that f−1(Spec(Rt)) is reduced. Indeed, let X =
∪
i Spec(Ai) be a finite affine

open covering. Since XK = f−1(ηS) is reduced, Ai ⊗R K is reduced for all i. Obviously, there

exists a non-zero divisor ti ∈ R such that Ai ⊗R Rti is reduced. Letting t =
∏
i ti, we see that

X ×S Spec(Rt) = f−1(Spec(Rt)) is reduced.

Proof of (ii): Let us replace S and X by Spec(Rt) and f−1(Spec(Rt)) in (i), respectively

so that we may assume X to be integral with the generic point ηX of X mapped by f to ηS .

SinceXC = C is smooth of relative dimension 1 over C, so isXK smooth of relative dimension

1 over K. By what we saw in §V.3, the stalks of ΩX/S at points x ∈ f−1(ηS) are locally free

of rank 1. Thus we find an open neighborhood U of f−1(ηS) such that f : U → S is smooth of

relative dimension 1. Since f is projective, f(X \ U) is closed and does not contain ηS . Hence

S0 = S \ f(X \ U) is an open neighborhood of ηS such that f−1(S0)→ S0 is smooth of relative

dimension 1.

Replacing S and X by this S0 and f−1(S0), respectively, we may thus assume f : X → S to

be smooth of relative dimension 1.

Proof of (iii): The base extension of g : X → P1
S by Spec(C) → S is g′ : C = XC → P1

C,

which is étale outside {0, 1,∞}. Hence the base extension

gK : XK = f−1(ηS)→ P1
K

by Spec(K)→ S is étale outside {0, 1,∞}. By what we saw in §V.3, we have

Supp(ΩX/P1
S
) ∩ f−1(ηS) ⊂ {0, 1,∞}× {ηS}.
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X

0

1

∞

S

E

D

ηS
S0

P1
S

f−1(ηS)

Figure IX.1

Denote

E = g−1({0, 1,∞}× S)

D = the closure of
(
Supp(ΩX/P1

S
) \E

)
.

Thus ηS /∈ f(D \ E), which is constructible again by Chevalley’s Nullstellensatz. Hence ηS /∈
f(D \ E) = f(D), and there exists an open affine neighborhood of ηS such that S0 ∩ f(D) = ∅.
Consequently, f−1(S0) ∩D = ∅ so that g : f−1(S0)→ P1

S0
is étale outside {0, 1,∞}× S0, and

g : f−1(S0) \ E −→ P1
S0

is étale.

We may thus replace S and X by this S0 and f−1(S0), respectively. If f(X \ E) ̸= S, then

since f(X \E) contains ηS and is constructible again by Chevalley’s Nullstellensatz, there exists

an affine open neighborhood S0 of ηS such that for X0 = f−1(S0), we have f(X0 \ E) = S0.

Thus we are in the situation as in Figure IX.1. □

To continue the proof of the “if” part of Theorem 2.1, we denote X0 and S0 obtained in

Lemma 2.3 by X and S, respectively.

Choose a closed point s0 ∈ S. Obviously, we have k(s0) = Q. Thus C0 = f−1(s0) is an

irreducible projective smooth curve over Q. We now show

C ∼= C0 ×Spec(Q) Spec(C) as algebraic curves,

which would finish the proof of the “if” part of Theorem 2.1.

The base change by Spec(C)→ Spec(Q) of what we obtained in Lemma 2.3 gives rise to

fC : XC
gC−→ P1

C ×Spec(C) SC −→ SC.

We also have two C-valued points of SC:

t0 : Spec(C) −→ SC induced by k(s0) = Q ↪→ C
t1 : Spec(C) −→ SC induced by k(ηS) = K ↪→ C

so that

(fC)
−1(t0) = C0 ×Spec(Q) Spec(C)

(fC)
−1(t1) = C.
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As we have explained in §VIII.2, let us consider the associated complex analytic spaces and

holomorphic maps. For simplicity, we denote

M = Xan
C , T = San

C , P1(C) = (P1
C)

an, φ = fanC , ψ = ganC .

Thus we have

φ : M
ψ−→ P1(C)× T −→ T,

where M and T are connected complex manifolds, φ : M → T is a proper smooth holomorphic

map of relative dimension 1, ψ : M → P1(C)×T is a finite covering unramified outside {0, 1,∞}×
T . We can regard t0 and t1 as points of T so that

φ−1(t0) =
(
C0 ×Spec(Q) Spec(C)

)an
φ−1(t1) = Can.

Lemma 2.4. For any pair of points t, t′ ∈ T , one has

φ−1(t) ∼= φ−1(t′) as complex manifolds.

As a consequence of this lemma, one has

(C0 ×Spec(Q) Spec(C))
an = φ−1(t0) ∼= φ−1(t1) = Can.

In view of a GAGA result given as Corollary VIII.2.11, we have

C0×Spec(Q) Spec(C)
∼= C as algebraic curves.

□

Proof of Lemma 2.4. For simplicity, denote

P ◦ = P1(C) \ {0, 1,∞}, M◦ = ψ−1(P ◦ × T )

so that the restriction of ψ to M◦ induces a finite surjective unramifield covering

ψ◦ : M◦ −→ P ◦ × T.

For each t ∈ T , let
ψ◦
t : φ

−1(t) ∩M◦ −→ P ◦ × {t} ∼−→ P ◦

be the restriction of ψ◦ to the fibre over t.

We claim that for any pair of points t, t′ ∈ T , there exists a homeomorphism

h : φ−1(t) ∩M◦ −→ φ−1(t′) ∩M◦

such that the diagram

φ−1(t) ∩M◦ h
//

ψ◦
t ''PPPPPPPP

φ−1(t′) ∩M◦

ψ◦
t′vvnnnnnnnnn

P ◦

is commutative.

Before proving this claim, let us continue the proof of Lemma 2.4. Since ψ◦
t and ψ

◦
t′ are finite

unramifield coverings of P ◦, they are local analytic isomorphisms. Hence

h : φ−1(t) ∩M◦ ∼−→ φ−1(t′) ∩M◦

is necessarily an analytic isomorphism. Examining h on a disjoint open disc at each point of the

finite ramification loci φ−1(t)\(φ−1(t)∩M◦) and φ−1(t′)\(φ−1(t′)∩M◦), we see by the Riemann

Extension Theorem that h extends to a unique analytic isomorphism h : φ−1(t)
∼−→ φ−1(t).
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It remains to prove the above claim. Since T is path-connected, it suffices to show the claim

for t′ in a contractible open neighborhood (e.g., open ball) U of t. Denote by ψ◦
U : φ−1(U)∩M◦ →

P ◦ × U the restriction of ψ◦. Thus we have a commutative diagram

φ−1(t) ∩M◦ � � //

ψ◦
t
��

φ−1(U) ∩M◦

ψ◦
U

��

P ◦ ∼
// P ◦ × {t} � � // P ◦ × U.

The finite surjective unramified covering ψ◦
U corresponds, in terms of the fundamental groups,

to a subgroup

π1(φ
−1(U) ∩M◦) ⊂ π1(P ◦ × U)

of finite index. The restriction of this covering to the covering ψ◦
t along the fibre corresponds to

a subgroup

π1(φ
−1(t) ∩M◦) ⊂ π1(P ◦).

Since U is assumed to be contractible, the restriction to the fibre induces isomorphisms

π1(φ(U) ∩M◦) ⊂

∼
��

π1(P
◦ × U)

∼
��

π1(φ
−1(t) ∩M◦) ⊂ π1(P

◦),

hence a commutative diagram

(φ−1(t) ∩M◦)× U
homeo

//

p1
))SSSSSSSSSS

φ−1(U) ∩M◦

ψ◦
Uvvnnnnnnnnn

U.

□
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Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck, Lecture Notes in

Mathematics 151, Springer-Verlag, Berlin-New York, (1970);

II: Groupes de type multiplicatif, et structure des schémas en groupes généraux. Lecture Notes in Mathe-
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[26] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Gren-

zgebiete (3) 21, Springer-Verlag, Berlin, (1990).

[27] N. Bourbaki, Commutative algebra, Chapters 1–7, Translated from the French, Reprint of the 1989 English

translation. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, (1998);
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(1960), 307–317.
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commutatifs, Avec un appendice Corps de classes local par M. Hazewinkel, Masson & Cie, Éditeur, Paris;
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[100] J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1–42.

[101] J.-P. Serre, Local algebra, Translated from the French by CheeWhye Chin and revised by the author,

Springer Monographs in Mathematics, Springer-Verlag, Berlin, (2000); originally published as: Algèbre
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A. Brill, Begleitwort zum Neudruck von Beniamino Segre, Bibliotheca Mathematica Teubneriana, Band 32

Johnson Reprint Corp., New York-London (1968).

[108] I. Shafarevitch et al., Algebraic surfaces, By the members of the seminar of I. R. S̆afarevič, Translated from
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≺, 289

∼, 289

1-cycle, 350

5-lemma, 303

A, 6
Abelian

category, 8, 81

of coherent analytic sheaves, 298

of formal coherent sheaves, 310

scheme, 217

variety, 217, 218, 287

Absolute value, 155

Absolutely irreducible, 279

Abstract residue, 289

Abutment, 243

Action of group scheme, 218, 222

Acyclic

resolution, 232, 248

sheaf, 249

Additive theory of rational functions, 260

Additivity of Euler characteristic, 268

Adèle, 42, 297

Adjoint, 42

Adjointness of inverse image and direct image of

quasi-coherent sheaf, 25

Affine

algebraic group, 218

morphism, 32

higher direct image under, 242

Leray spectral sequence for, 247

normal subgroup, 218

scheme, 6, 9

category of, 13

cohomology of, 239

explicit calculation of cohomology of, 238

fibre product of, 15

morphism to, 12

quasi-coherent sheaf on, 20

red and, 329

relatively ample over, 103

space, 6

Algebraic

fundamental group, 308, 339, 340

abelianized, 342

group, 218

affine, 218

linear, 218

rational representation of, 223

semi-simple affine, 219

point, 54

space, 30

αp, 208, 215

αpn , 208, 216

Alternating cochain, 227

Ample

and finite surjective morphism, 266

and irreducible component, 266

and red, 265

cohomological criterion of, 264

criterion of Nakai-Moishezon, 274, 361

criterion on curve, 285

criterion through closed integral curves, 268

divisor on curve, 268

effective divisor on curve, 276

inherited on closed subscheme, 265

invertible sheaf, 102, 106

over affine open, 105

Kleiman’s criterion for, 361

relatively

invertible sheaf, 103, 105, 106

over affine scheme, 103

relatively very, invertible sheaf, 102

An, 207

Analytic

coordinate, 175

manifold, 11

map, 11

structure sheaf, 298

Analytically

normal: N2, 189

unibranch: U2, 189

Arithmetic

frobenius, 135, 222

genus, 260

independence of projective embedding, 261

Artin local ring, 182

Artin’s approximation theorem, 30
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Artin-Rees

algebra, 313

lemma, 312, 348

Artin-Schreier homomorphism, 221

Artinian ring, 218

Ass, 61, 140, 258, 350

Associated

point, 61

embedded, 61

prime, 140

Assumption on

Cartier divisor on proper scheme over field in

§VII.12, 273

coherence, 22

finite generation, 96

infinite base field in §VII.7, 257

local artin, projective morphism, coherent in

§VII.10, 268

proper scheme over field in §VII.11, 270

separatedness and quasi-coherence, 234

separatedness from §II.5 on, 67

smooth projective variety over algebraically

closed field in §IX.1, 345

Aut, 37, 156

Auto-duality pairing, 215

Automorphism group scheme, 209

Base scheme, 12

Basis

of open sets, 38

Belyi’s

lemma, 362

three point theorem, 362

Bend and break

with a fixed point, 352

with two fixed points, 353

Bezout’s theorem, 277

Binomial coefficient, 271

Bl, 93

Blow up, 93, 345

fibre of, 95

universality of, 94

Borel subgroup, 219

Bounded family, 357–359

Branch locus, 362

Bundle

line, 111

vector, 112

canG, 214

Canonical

5-term exact sequence, 164

divisor, 285, 345

form of p-linear map, 321

sheaf, 201, 345

formula for ruled surface, 355

Cartier

divisor, 109, 159

dual, 213

Cartier’s

duality theorem, 212

smoothness theorem, 209

Castelnuovo’s

lemma, generalized, 261

theorem, 355, 361

Category

abelian, 8, 39, 81

additive, 40

of affine schemes, 13

of CW-complexes, 26

of differentiable manifolds, 26

of functors, 27

of graded modules modulo quasi-equality, 98

of groups, 26

of modules, 7

of quasi-coherent sheaves on affine scheme, 7, 20

of rings with 1, 13, 26, 28

of schemes, 12, 26

of sets, 26

opposite, 27

Catenary, 150, 151

Cauchy’s theorem, 280

Čech cohomology, 108, 226, 227

Central simple algebra, 135

Characterization

of genus 0 curve, 286

of genus 1 curve, 286

of normalization, 196

of scheme functor, 30

of UFD, 112

Chern class, 287

Chevalley’s

existence theorem on quotient affine algebraic

group, 218

Nullstellensatz, 52, 121, 151, 360, 365, 366

structure theorem for algebraic group, 218

Chow ring, 287

Chow’s

lemma, 76, 191, 256, 300, 304, 313

theorem, 304

Closed

immersion, 35, 36, 56, 63

Leray spectral sequence for, 247

map, 75, 125

set, irreducible, 3, 9

subscheme, 56

Coboundary, 108, 226

Cochain, 225

alternating, 227

Cocycle, 108, 226

codim, 150

Codimension, 150
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Cofinal, 232

Cohen’s structure theorem, 165

Cohen-Macaulay, 175

Coherent

analytic sheaf, 298

analytic sheaf, associated to coherent algebraic

sheaf, 299

assumption, 22

extension

of coherent sheaf, 103

of coherent subsheaf, 103

sheaf, 22, 255, 256

formal, 309

generated by global sections, 88, 102

on projective scheme, 102

on projective scheme, cohomology of, 101, 264

Cohomological δ-functor, 232

Cohomology

Čech, 108, 226, 227

classical, 316

crystalline, 327

De Rham, 231, 248, 317

derived functor, 227, 234

functorial properties of, 232

hyper-, 229

local, 229

of affine scheme, 239

of affine scheme, explicit calculation, 238

of coherent sheaf on projective scheme, 101, 264

of projective space, explicit computation of, 253

of projective space, Serre’s fundamental theorem

on, 255

of scheme, 240

p-adic, 327

Coker, 40

Cokernel, 8

Collapsing of tangent space, 187, 188

Compact

map, 300

Riemann surface, 280

Complete

discrete valuation ring, 154

intersection, local, 95, 345

intersection, relative local, 175

local ring, 152, 334

variety over field, 75

Completion, 292

formal, 169

Complex

affine variety, 47

analytic space, associated, 367

manifold, 367

projective variety, 45, 48

fibre product of, 48

morphism of, 49

scheme of finite type, 122

torus, 217

variety, 121

Component, 177

Cone theorem, 361

Conjugate Galois action, 124

Connectedness theorem, 309

Ũ5, 192

U5, 190

Constructible subset, 52

Contraction, 346

Convolution algebra, 215

Correspondence, regular, 48, 49

Cotangent space, 201

Cousin

data, 240

problem, 241

Covering map, 305

finite-sheeted, 305

Criterion

for ampleness by Kodaira, 288

for ampleness by Nakai-Moishezon, 274, 288, 361

for ampleness on curve, 285

for ampleness through closed integral curves, 268

for ampleness, cohomological, 264, 285

for exactness of Koszul complex, 252

for normality by Krull-Serre, 185, 186

for refinement of open covering, 234

for smooth, 338

for smoothness, 36, 176–178, 180, 182, 187, 307

for smoothness, Jacobian, 177

Criterion for

étale, 181

étale morphism, 177

Crystalline cohomology, 327

Cup product, 232, 288

Curve, 349

ample divisor on, 285

proper and smooth, 362

regular complete, 189

very ample divisor on, 286

Cyclic

covering, 201

étale covering, 200, 322

d, 161

De Rham

cohomology, 231, 248, 317

comparison theorem, 317

theory, 230

Dedekind domain, 151

Def, 328

Deficiency, 259

Defined over field

closed subscheme, 130

morphism, 130

point, 130
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Deformation, 327, 364

formal, 343

infinitesimal, 346

semi-universal formal, 343

theory, 182

universal formal, 343

versal formal, 343

Degree

of divisor on curve, 279

of invertible sheaf on curve, 284

positive, 268

δ, 225

Der , 169
Der, 162, 209

Derived

category and functor, 242

functor cohomology, 227, 234

Descent

data, 134

data, effective, 134

theory, 133

Dessins d’enfants, 362

det, 348

Dévissage, lemma of, 81, 271

df , 158

df∗, 158

Diagonal morphism, 64

Differentiable

manifold, 11

map, 11

dim, 150, 157, 249

Dimension

and flat morphism, 148, 151

of scheme, 150

of variety over field, 55

theorem over valuation ring, 145

upper semi-continuity of, 149

Diophantine equation, 121

Direct

image

quasi-coherent sheaf, 67

sheaf, 10, 41, 42

limit of free modules of finite rank, 139

sum, infinite, 9

Discrete

valuation ring, 21, 111

Distinguished open set, 2

Div, 109, 159

DivCl, 110

Divisible, 217

Divisor

Cartier, 109, 159

class, 110

principal, 109

Weil, 112

Double complex, 229, 235

Double six, 203

Dual numbers, algebra of, 210

Dual sheaf, 83

Duality

Serre, 283, 295

Serre-Grothendieck’s generalization of, 288

Dwork’s theorem, 137

Easy lemma of double complex, 236, 240, 244, 277

Edge homomorphism, 244, 247

Effective

1-cycle, 350

Cartier divisor, 109

Elementary transformation for ruled surface, 356

Elimination

of indeterminacy of rational map, 354

theory, 74, 75

Embedded

associated point, 61

component, 60

point, 184

Equi-characteristic, 159, 160

Error term, 260

Étale

covering, 334

cyclic, 200, 322

p-cyclic, 322

criterion for, 181

morphism, 153, 167, 171, 177, 196, 198, 219, 220,

334

proper morphism, 305

Étale morphism

criterion for, 177

Euclid’s lemma, 54

Euler characteristic, 259, 268

additivity of, 260, 268

local constancy of, 270

Excellent scheme, 193

Exceptional divisor, 345

Exterior product, 35

Extremal

rational curve, 361

ray, 361

f , 135

farith, 135, 222

fgeom, 135, 220

F(d), 85, 87

f∗, 25

f∗
x , 11

f∗, 10

Factorial scheme, 111

Faithful functor, 26

Faithfully flat morphism, 134

Fermat cubic surface, 203

Fermat’s last theorem, 121
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Fibre

of blow up, 95

of morphism, 19

of quasi-coherent sheaf, 23

Fibre product, 15

as point set, 18

of affine schemes, 15

of complex projective varieties, 48

of schemes, 33

scheme-valued points of, 28

universality of, 15

Field of algebraic numbers, 362

Field-valued point of scheme over field, 27

Filtration, 243, 245

Final object, 13, 26, 119

Finite

étale morphism, lifting of, 338

module, 78

morphism, 78, 196, 199

surjective morphism and ample, 266

Finite potent

linear endomorphism, 288

subspace, 289

Finite presentation, locally of

quasi-coherent sheaf, 22

Finite type

morphism of, 51

Finite type, locally of

morphism, 51

quasi-coherent sheaf, 22

Finite-sheeted covering map, 305

Finitely presented

graded module, 99

module, 8

morphism, 51

Finitely presented, locally

morphism, 51

Flasque resolution, 248

Flat, 36

formal scheme, 335

module, 138, 168, 270

morphism, 37, 134, 153, 167, 175, 180, 181, 221,

327

and dimension, 148, 151

intuitive content of, 141

quasi-coherent sheaf, 134, 139

Flatness

generic, 141

of convergent power series ring, 299

Form

of projective space over finite field, 223

over field, 134, 156

over real field, 131

Formal

closed subscheme, 313

coherent sheaf, 309

completion, 169

deformation, 343

semi-universal, 343

universal, 343

versal, 343

differential, 283

étale covering, 313

geometry, 313

implicit function theorem, 170

meromorphic differential

residue of, 284

residue theorem for, 284

scheme, 334

associated to scheme, 335

flat, 335

Formally

irreducible, 199

normal, 198

normal: N1, 189

smooth, 182, 329

unibranch: U1, 189

Fréchet space, 300

Free resolution, 240

Frobenius

arithmetic farith, 135, 222

cohomology operation, 321

geometric fgeom, 135, 219, 220

homomorphism, 43, 212

homomorphism, iterated, 212

morphism, 212, 355, 357

Fuchsian group, 287

Fully faithful functor, 27

Funct, 27

Function field, 51, 109

Functor

contravariant, 27

covariant, 28

faithful, 26

fully faithful, 27, 28

Grassmannian, 35

Hilbert, 36

relative Picard, 36

representable, 33

Functorial

definition of Zariski-tangent space, 158

properties of cohomology, 232

Fundamental group

abelianized algebraic, 342

algebraic, 308, 339, 340

topological, 308, 340

Ga, 33, 207

GAGA comparison theorem, 299, 305, 313, 367

Gal, 124

Galois

action, 156
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conjugate, 124

quotient by, 125

cohomology, 156

extension, 344

group, 124

Γ, 38, 64

Γ∗, 85

Gauss sphere, 287

General linear group scheme, 207

Generated by global sections

coherent sheaf, 88, 102

invertible sheaf on curve, 286

Generic

flatness, 141, 198

geometric fibre, 192

point, 3, 9, 45

Genus, 279, 337

change under constant field extension, 297

Geometric

frobenius, 135, 219, 220

generic fibre, 192

Geometrically

irreducible, 279, 337

unibranch: GU3, 195

Germ

of functions, 11

of sections, 38

GFGA comparison theorem, 194, 309, 313, 334,

336–338, 342, 344

GL, 34, 42, 207

Glueing data, 108

Gm, 34, 207

God-given natural rings, 122

Going-up theorem, 78, 125, 194

gr, 94, 157, 171, 178, 311

Graded

homomorphism, quasi-equal, 98

module

finitely presented, 99

quasi-equal, 97

Graph of morphism, 64

Grass, 35

Grassmann variety, 35

Grassmannian

functor, 35

scheme, 35, 167, 201

GrModqe, 98

Grothendieck’s

coherency theorem, 256, 259, 300, 313

De Rham comparison theorem, 317

decomposition of Hilbert scheme, 357, 359

generalization of Riemann-Roch theorem, 287

GFGA comparison theorem, 194, 309, 313, 334,

336–338, 342, 344

lemma, 141

local constancy of Euler characteristic, 270

theorem on algebraic fundamental group of

curve, 341

theorem on Hom scheme, 346, 359

Grothendieck-Schlessinger’s result on formal

deformation, 343

Group

algebra, 214

functor, 207

scheme, 34, 205, 287

action of, 218, 222

commutative, 33, 34, 36

homomorphism of, 211

quotient, 218

(Groups), 207

GU3: geometrically unibranch, 195

GU5: Zariski’s connectedness theorem, strong form,

195

H, 227

H, 230

Ȟ, 227

h, 27

Hard lemma of double complex, 245, 248

Hasse-Witt matrix, 321

Hausdorff, 64

HDR, 317

height, 159

Hensel’s lemma, 152, 193, 195, 197, 341

classical, 153

Higher direct image

quasi-coherence of, 241

sheaf, 241

under affine morphism, 242

under projective morphism, 256

Hilb, 36

Hilbert

functor, 36

polynomial, 260, 269, 277, 357, 359

scheme, 357

syzygy theorem, 261

Hilbert-Samuel polynomial, 157, 160

Hironaka’s

example, 144

resolution theorems, 317

Hirzebruch’s generalization of Riemann-Roch

theorem, 287

Hodge

index theorem, 355

theory, 319

Holomorphic

differential form, 169

form, 317

map, associated, 367

vector field, 169

Hom, 8, 41

Hom, 37, 214
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Hom

internal, 8

Homomorphism

Frobenius, 212

Homomorphism of group schemes, 211

Homotopy, 228

Hopf algebra, 213

(Hot), 26

Hypercohomology, 229

spectral sequence for, 248

Hyperelliptic curve, 326

I, 2

Identification of points, 187, 188

Immersion, 57, 63

closed, 35, 36, 56, 63

Leray spectral sequence for, 247

Imperfect field, 179

Imperfection, module of, 164

Indeterminacy

of rational map, 95

Infinite

product of sheaves, 41

sum of sheaves, 41

Initial term, 243

Injective resolution, 248

Integrally closed, 111

Internal Hom, 8

Interpretation of H1, 233

Intersection

multiplicity, 159, 160

number, 160, 273

constancy in flat family, 273, 357

multilinearity and symmetry, 273

proper, 159

symbol, 271, 350

additivity, 272

constancy in flat family, 272

multilinearity, 272

self-intersection, 272

theory, 159

Inverse image

of quasi-coherent sheaf, 25

of sheaf, 42

Invertible

element, 34

sheaf, 35, 36, 83, 89, 92, 93

ample, 102

ample inherited on closed subscheme, 265

ample over affine open, 105

generated by global sections, on curve, 286

Poincaré, 36

relatively ample, 103, 256

relatively very ample, 102

Irreducible

absolutely, 279

closed set, 3, 9

component and ample, 266

formally, 199

geometrically, 279, 337

subvariety, 45

Italian school, 184, 258–260, 337

Iterated Frobenius homomorphism, 212

J , 294

Jacobian

criterion, 177, 219

matrix, 167, 176, 180

Jordan-Hölder technique, 269

k, 1, 10
K, 109

K-group, 276

K0, 276

K0, 276

Kähler differential, 161, 163, 316

Kawamata log terminal singularity, 361

Ker, 40

Kernel, 8, 211

Kleiman’s criterion for ampleness, 361

Kleiman-Mori cone, 361

Kodaira’s criterion for ampleness, 288

Kodaira-Akizuki-Nakano’s vanishing theorem, 288

Koszul complex, 251, 277

criterion for exactness of, 252

Kroneckerian geometry, 122, 339

Krull dim, 150, 157, 348

Krull dimension, 159

Krull’s

principal ideal theorem, 150, 156

structure theorem, 111, 185

theorem, 152

Krull-Azumaya-Nakayama, 23

Krull-Serre’s normality criterion, 185, 186

Kummer theory, 200, 322

Lang’s theorem

on action of algebraic group over finite field, 222

on algebraic group over finite field, 219

on rational point of homogeneous space over

finite field, 138, 223

Left invariant, 210

Lemma

of dévissage, 81, 271

of double complex, easy, 236, 240, 244, 277

of double complex, hard, 245, 248

on integral valued polynomial, 271

on silly open covering, 236

Leray spectral sequence, 244, 257

for affine morphism, 247

for closed immersion, 247

Lie, 208, 209, 210

Lie algebra, 210
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Lift, 328, 346

Lifting

of syzygies for fibre, 143

property for smooth morphism, 329, 331

Line bundle, 111

Linear

algebraic group, 218

equivalence, 110

system, 259

Ln = L⊗n, 91

Local

cohomology, 229

complete intersection, 95, 345

equation, 109

homeomorphism, 305

homomorphism, 11

ring, 10, 157

ring, complete noetherian, 152

ring, regular, 157

ring-valued point of scheme, 27

Locally

closed subscheme, 57

constant, 23

finitely presented, 51

free resolution, 254

free sheaf, 23, 34, 92, 112, 140, 208

noetherian scheme, 37, 50, 50

of finite type

morphism, 51

quasi-coherent sheaf, 22

Long exact cohomology sequence, 230

Lüroth’s theorem, 354

M̃ , 7, 69

M(d), 84

M(d), 87

Macaulay’s inverse system, 253

MacLane’s theorem, 129

Map

analytic, 11

differentiable, 11

of presheaves, 37

Matsumura-Oort’s criterion for representability, 209

Max, 55, 154

Maximum principle, 302

Meromorphic pseudo-differential, 284, 294

Metric with constant curvature, 287

Minimal

model program, 361

prime ideal, 111

Mittag-Leffler condition, 313

uniform, 316

Mixed characteristic, 159, 160

Modified Čech complex, 234

Module

flat, 138, 168

of finite presentation, 8

of syzygies, 143, 174, 175

Moduli

functor, 343

problem of, 343

space, 37, 344

Montel’s theorem, 300

Mor, 26

Mori program, 361

Mori’s theorem on existence of rational curves, 345

Morphism

affine, 32

Leray spectral sequence for, 247

diagonal, 64

étale, 153, 167, 171, 177, 196, 198, 219, 220, 334

faithfully flat, 134

fibre of, 19

finite, 78, 196, 199

finitely presented, 51

flat, 37, 134, 153, 167, 175, 180, 181

intuitive content of, 141

Frobenius, 212

from spectrum of local ring, 14

generic flatness of, 141

graph of, 64

locally finitely presented, 51

locally of finite type, 51

of complex projective varieties, 49

of finite type, 51

of schemes, 10

over scheme, 12

Plücker, 35

projective, 37, 73

proper, 75, 196

quasi-compact, 51, 62, 67

quasi-projective, 37, 73

quasi-separated, 67

scheme-theoretic closure of image of, 62, 82

Segre, 36

separated, 67

smooth, 167, 167, 186

to affine scheme, 12

to Proj, 89, 92

Mou resolution, 248

mult, 197

Multiplicity formula, 199

µn, 208

Murre’s criterion for representability, 209

N1, 356

N1: formally normal, 189

N2: analytically normal, 189

N4: Zariski’s main theorem, 189

Nagata’s

pathology on normalization, 188

theorem on normality of completion, 190
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NAK, 23

Nakai-Moishezon’s criterion for ampleness, 288, 361

Nakayama’s lemma, 23, 88, 140, 146, 153, 157, 176,

181, 183, 276, 302, 307, 324, 338, 348

NE, 361

n idG, 212

Nil , 265

Noether’s normalization lemma, 141

Noetherian

induction, 53, 81, 256

scheme, 50, 50, 182, 255, 256

locally, 22, 37, 50, 50

space, 4

Non-Hausdorff, 3

Non-singular, 179

Normal

analytically: N2, 189

formally, 198

formally: N1, 189

scheme, 111, 184, 186, 187

subgroup scheme, 218

Normalization

characterization of, 196

of projective scheme, 189

of scheme, 188, 189

Nullstellensatz, 47, 49, 323

Chevalley’s, 52, 121, 151, 360, 365, 366

Numerical equivalence, 350

O, 4, 9

O∗, 108

Obstruction, 241, 327, 346

Ω, 161, 163, 168

ΩGrass(E), 167

ΩP(E), 166

OP(1), 84

OP(d), 85, 87

Open

map, 125, 151

set, distinguished, 2

Opposite category, 27

ord, 111

P, 35, 72
P(E), 87
p-adic cohomology, 327

p-basis, 162, 324

p-cyclic étale covering, 322

p-linear map, 321

pa, 260

Paracompact Hausdorff space, 231, 244, 248, 319

Partition of unity, 3

Patching argument, 16

Path-connected, 368

PGL, 209, 218

ϕ, 135, 212

πgr
∗ , 87

πalg
1 , 308, 339, 340

πtop
1 , 308, 340

Pic, 36, 83, 108

Picard

group, 36, 83

number, 350, 357

scheme, 36

Plücker morphism, 35

(Pn in the classical topology), 298

(Pn in the Zariski topology), 298

Poincaré’s lemma, 318, 319

Poincaré

invertible sheaf, 36

Point

embedded, 184

proper, 184, 189

regular, 158

Positive degree, 268

Presheaf, 5

map of, 37

of sets, 37

sheafification of, 8, 39

Primary decomposition, 60, 61, 302

theorem, globalized, 62, 350

Principal

divisor, 109

homogeneous space, 328

ideal domain, 140

sheaf, 233

Pro-finite completion, 308

Proj, 35, 68

morphism to, 89, 92

relative, 70

Projection formula, 266, 351

Projective

morphism, 37, 73

higher direct image under, 256

scheme

cohomology of coherent sheaf on, 101, 264

normalization of, 189

space, 35

explicit cohomology of, 253

Projectivity of regular complete curve, 189

Proper

map, topological, 191

morphism, 75, 196, 256, 265, 266

étale, 305

valuative criterion for, 36, 78

with finite fibres, 196

point, 184, 189

Property: S2, 184, 185

Pseudo-differential, 284

Pseudo-section, 283

Quasi-coherent
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assumption, 234

direct image, 67

sheaf, 20

adjointness of inverse image and direct image

of, 25

direct image of, 67

fibre of, 23

flat, 134, 139

higher direct image of, 241

inverse image of, 25

locally of finite presentation, 22

locally of finite type, 22

of algebras, 30

of graded algebras, 70

on affine scheme, 20

rank of, 23

tensor product of, 24

Quasi-compact

morphism, 51, 62, 67

scheme, 50

space, 3

Quasi-equal

graded homomorphisms, 98

graded modules, 97

Quasi-projective morphism, 37, 73

Quasi-separated morphism, 67

Quot, 36

Quotient

by Galois action, 125

group scheme, 218

of group scheme, 218

R: function field, 51, 109

Ramification locus, 362

Rank

of quasi-coherent sheaf, 23

upper semi-continuity of, 23

Rational

curve, 345

curve, extremal, 361

map, indeterminacy of, 95

point, 27, 56

representation of algebraic group, 223

red, 265

and affine scheme, 329

and ample, 265

and étale covering, 334

Reduced

scheme, 50

structure on closed subscheme, 63

Refinement of open covering, 108, 226

Regular, 176–180

complete curve

projectivity of, 189

uniqueness of, 189

correspondence, 48, 49

local ring, 157

point, 158

scheme, 158, 184

sequence, 95

Relative

local complete intersection, 175

Picard functor, 36, 208

Picard scheme, 208

tangent sheaf, 169

Relatively ample

invertible sheaf, 103, 105, 106, 256

over affine scheme, 103

Relatively very ample invertible sheaf, 102

Relativization, 361

Representable functor, 33

Res, 290, 292

Residue

abstract, 289

field, 6, 10

of formal meromorphic differential, 284

pairing, 282

theorem

abstract, 292

for compact Riemann surface, 280

for formal meromorphic differential, 284

Resolution

acyclic, 248

flasque, 248

injective, 248

locally free, 254

mou, 248

of indeterminacy of rational map, 95

Spencer, 261

theorems by Hironaka, 317

Retract, 227

Rf∗, 241

Riemann extension theorem, 367

Riemann’s

existence theorem, projective case, 305

zeta-function, 137

Riemann-Roch theorem, 279, 351

for locally free sheaf, 286, 349, 351

Grothendieck’s generalization of, 287

Hirzebruch’s generalization of, 287

strong form, 282, 295

weak form, 280

Rigid analytic

geometry, 313

space, 155

Rigidity lemma, 354

(Rings), 28

Ruled surface, 355

canonical sheaf formula for, 355

S2: property, 184, 185

Sard’s lemma, 179
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Scheme, 9

affine, 6, 9

base, 12

category of, 12

cohomology of, 240

dimension of, 150

excellent, 193

factorial, 111

formal, 334

formal scheme associated to, 335

functor, 29

Grassmannian, 35, 201

local ring-valued point of, 27

locally noetherian, 22, 37, 50, 50

noetherian, 50, 50, 182

normal, 111, 184, 186, 187

normalization of, 188, 189

of finite type over complex field, 122

over field, field-valued point of, 27

over scheme, 12

Picard, 36

quasi-compact, 50

rational point of, 27

reduced, 50

regular, 158, 184

relative Picard, 36

ring-valued point of, 27

scheme-valued point of, 27

separated, 65

Scheme-theoretic

closure

of image of morphism, 62, 82

of subscheme, 62

dense, 144

union, 63

Section

of P(E), 92
of sheaf, 38

Segre embedding, 36, 48, 73, 113, 137, 364

Semi-simple affine algebraic group, 219

Separable, 129, 177, 178

algebraic, 126, 127, 177, 181

finite, 153

Separated

assumption, 234

assumption from §II.5 on, 67

morphism, 67

scheme, 65

Separating transcendence basis, 162

Serre duality, 283, 295

Serre’s

cohomological criterion for ampleness, 264, 285

example of non-liftable variety, 338

GAGA comparison theorem, 299, 305, 313, 317,

319, 367

intersection multiplicity, 254

theorem

on cohomology of projective space, 255

on cohomology on projective scheme, 101, 264

on generation by global sections, 99

on refinement of open covering, 234

Serre-Grothendieck duality, 288

(Sets), 26

Severi-Grothendieck’s theorem on lifting of

complete smooth curve, 337

Sheaf

ample invertible, 102

analytic coherent, 298

analytic structure, 298

associated to greaded module, 69

associated to module, 7

axioms, 5

coherent, 22

coherent extension of, 103

generated by global sections, 88, 102

direct image, 10, 41, 42

dual, 83

formal coherent, 309

in Zariski topology, 29

infinite product of, 41

infinite sum of, 41

inverse image, 42

invertible, 35, 36, 83, 89, 92, 93

generated by global sections, on curve, 286

locally free, 23, 34, 92, 112

of algebras, 30

of graded algebras, 70

of groups, 38

of holomorphic differential forms, 169

of holomorphic vector fields, 169

of modules, 7

of rings, 38

of sets, 33, 38

of total quotient rings, 109

of units, 108

Poincaré invertible, 36

quasi-coherent, 20

relative tangent, 169

relatively ample invertible, 103

relatively very ample invertible, 102

stalk of, 38

structure, 4

stalk of, 6, 10

Sheafification, 218, 231

of presheaf, 8, 39

Skew-commutative, 232

Skyscraper sheaf, 282, 293

Smooth, 179, 180

cubic curve over finite field, 223

morphism, 167, 167, 186

criterion for, 36, 176–178, 180, 182, 187

formally, 182, 329
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jacobian criterion for, 177

lifting property for, 329, 331

local syzygy for, 254

quadric hypersurface over finite field, 223

Snapper’s theorem, 270

sp, 155

Space

affine, 6

algebraic, 30

moduli, 37

noetherian, 4

projective, 35

quasi-compact, 3

tangent, 36

Spec, 1

relative, 30

Specialization, 175

map, 155

over valuation ring, 144

Spectral sequence, 242, 314, 317

for hypercohomology, 248

Spencer resolution, 261, 276

Stalk, 41

of sheaf, 38

of structure sheaf, 6, 10

Strict transform, 356

Structure sheaf, 4

analytic, 298

stalk of, 10

Subfunctor, 29

Subscheme, 57

closed, 56

locally closed, 57

scheme-theoretic closure of, 62

Subset

constructible, 52

Subvariety

irreducible, 45

Supp, 109, 249

Support

of Cartier divisor, 109

Sylow subgroup, 342

Symm, 33, 72, 158, 207

Symmetric algebra, 33

Syz, 143, 174

Syzygy, 143

for smooth morphism, local, 254

module of, 143, 174, 175

theorem of Hilbert, 261

T , 157

T, 158

T ∗, 157

Tangent

bundle, 317

cone, 158

sheaf, 327, 345

space, 36, 201

collapsing of, 187, 188

Tate’s dualizing sheaf, 284

Taylor expansion, 210

TC, 158, 171

Tensor product

of algebras, universality of, 15

of quasi-coherent sheaves, 24

universality of, 24

Terminal singularity, 361

Θ, 169, 287, 327, 345

Topological

fundamental group, 308, 340

proper map, 191

unibranch: U4, 190

Topology

faithfully flat quasi-compact, 33

Zariski, 2

Tor , 240, 277
Tor, 159, 240, 254

Total

complex, 230, 235

quotient ring, 109, 184

transform, 355

Tr, 258, 288

Trace, 288

Truncated exponential, 215, 216

U1: formally unibranch, 189

U2: analytically unibranch, 189

U3: unibranch, 189

U4: topologically unibranch, 190

Ũ5: connectedness theorem, 192

U5: connectedness theorem, 190

UFD, 111, 159, 184

characterization of, 112

Unibranch, 195

analytically: U2, 189

formally: U1, 189

geometrically: GU3, 195

topologically: U4, 190

U3, 189

Uniqueness of regular complete curve, 189

Universal

derivation, 161

element, 33

quotient, 35, 167

Universality

of blow up, 94

of fibre product, 15

of relative Spec, 30

of sheafification, 39

of tensor product

of algebras, 15

of quasi-coherent sheaves, 24
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Universally closed map, 75

Unramified, 367

Upper semi-continuity of

dimension, 149

rank, 23

Upper-triangular matrix, 223

Υ, 164

V , 1, 68

Valuation, 111

ring, 140, 189

complete discrete, 154, 175, 313

dimension theorem over, 145

discrete, 21, 111, 285, 297

specialization over, 144

Valuative criterion for properness, 36, 78

Vandermonde determinant, 363

Vanishing theorem

for curve, 285

of Kodaira-Akizuki-Nakano, 288

Variety

complex affine, 47

complex projective, 45, 48

over field, 55, 126

complete, 75

Vector

bundle, 112

field, 210

Very ample divisor on curve, 286

Virtual dimension, 260

Wedderburn’s theorem, 127

Weierstrass preparation theorem, 170

Weil divisor, 112

Weil’s

conjecture, 137

multiplicity, 197

restriction of scalars, 43

Witt vector, 217, 337, 341

Yoneda’s lemma, 32

Z1, 112

Z1, 350

Zariski topology, 2

sheaf in, 29

Zariski’s

connectedness theorem, strong form: GU5, 195

fundamental theorem of holomorphic functions,

194, 196, 309

main theorem, 191, 286, 307

N4, 189

theorem on normality of completion, 190

Zariski-cotangent space, 157

Zariski-Grothendieck’s main theorem, 195

Zariski-Muhly’s theorem on arithmetic genus, 261

Zariski-tangent space, 157, 169, 178

functorial definition of, 158

Zeta-function, 121, 136

Riemann’s, 137

Zorn’s lemma, 103


