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Foreword

[from DM] I gave an introductory course in algebraic geometry many times during the 60’s
and 70’s while I was teaching at Harvard. Initially notes to the course were mimeographed and
bound and sold by the Harvard math department with a red cover. These old notes were picked
up by Springer and are now sold as the “Red Book of Varieites and Schemes”. However, every
time I taught the course, the content changed and grew. I had aimed to eventually publish more
polished notes in three volumes. Volume I, dealing with varieites over the complex numbers
appeared in 1976 and roughly 2/3rds of a first draft for volume II was written down at about
the same time. This draft covered the material in the Red Book in more depth and added
some advanced topics to give it weight. Volume III was intended to be an introduction to
moduli problems but this was never started as my interests shifted to other fields in the 80’s.
To my surprise, however, some students did read the draft for volume II and felt it made some
contribution to the growing literature of multiple introductions to algebraic geometry.

[from [TO] I had the good fortune of first getting acquainted with schemes and functorial
approaches in algebraic geometry when the first author gave a series of introductory lectures
in Tokyo in spring, 1963. Throughout my graduate study at Harvard from October, 1964
through June, 1967, I had many chances to learn further from the first author as my Ph.D.
thesis advisor. It is a great honor and privilege to have this opportunity of sharing with as
many people as possible the excitement and joy in learning algebraic geometry through the first
author’s fascinating style.

The Herculean task of preparing the manuscript for publication, improving and fixing it
in multiple ways and adding some half a dozen new sections and results is due to the efforts
of the second author. Both authors want to thank those who have assisted in this draft that
we are posting on the Web, especially Ching-Li Chai, Vikraman Balaji, Frans Oort, Fernando
Quadros Gouvéa, Dinesh, Amnon Neeman and Akihiko Yukie. A number of extra sections
were added to make the book better. Thanks are due to John Tate for the new proof of
the Riemann-Roch theorem, Carlos Simpson for the proof of Belyi’s three point theorem and
Shigefumi Mori for the proofs of some results of his. The exercises are those found originally
in the manuscript plus further exercises kindly provided by Ching-Li Chai who gave a graduate
course in algebraic geometry at the University of Pennsylvania using a preliminary version of
this book. No systematic attempt was made to produce further exercises.

Special thanks are due to Ching-Li Chai for providing valuable suggestions during the prepa-
ration of the manuscript.
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CHAPTER 1

Schemes and sheaves: definitions

1. Spec(R)

For any commutative ring R, we seek to represent R as a ring of continuous functions on
some topological space. This leads us naturally to Spec(R):

DEFINITION 1.1. Spec(R) = the set of prime ideals p C R (here R itself is not considered as
a prime ideal, but {0}, if prime is OK). If p is a prime ideal, to avoid confusion we denote the
corresponding point of Spec(R) by [p].

DEFINITION 1.2. For all z € Spec(R), if z = [p], let
k(z) = the quotient field of the integral domain R/p.
For all f € R, define the value f(z) of f at x as the image of f via the canonical maps
R — R/p — k(z).

In this way, we have defined a set Spec(R) and associated to each f € R a function on
Spec(R) — with values unfortunately in fields that vary from point to point. The next step is
to introduce a topology in Spec(R):

DEFINITION 1.3. For every subset S C R, let

V(S) = {z € Spec(R) | f(z) =0 for all f € S}
= {[p] | p a prime ideal and p O S}.
It is easy to verify that V has the properties:
a) If a = the ideal generated by S, then V(S) = V (a),

b) S1 D So = V(S51) C V(Ss),
c) V(S) =0 <= [1 is in the ideal generated by S].

PROOF. <= is clear; conversely, if a = the ideal generated by S and 1 ¢ a, then
a C m, some maximal ideal m. Then m is prime and [m] € V(). O

d)
V(U Sa) = m V(Sq) for any family of subsets S,

V(Z ay) = ﬂ V(a,) for any family of ideals a,.

e) V(Cll n 02) = V(Cll) U V(ClQ).

PROOF. The inclusion D follows from (b). To prove “C”, say p D ajNag but p 2 a;
and p 2 ag. Then 3f; € a; \ p, hence f1 - f2 € a; Nag and fi - fo ¢ p since p is prime.
This is a contradiction. O

) V(a) = V(va).
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Because of (d) and (e), we can take the sets V(a) to be the closed sets of a topology on
Spec(R), known as the Zariski topology.

DEFINITION 1.4. For f € R

Spec(R)s = {x € Spec(R) | f(z) £ 0}
= Spec(R) \ V().
Since V(f) is closed, Spec(R); is open: we call these the distinguished open subsets of
Spec(R).
Note that the distinguished open sets form a basis of the topology closed under finite inter-
sections. In fact, every open set U is of the form Spec(R) \ V(.5), hence

U = SpecR\ V(95)
= Spec R\ [ V(f)

fes

= | J (Spec R\ V(f))

fes

and

DEFINITION 1.5. If S C Spec R is any subset, let
I(S)={f€eR| f(x)=0, all z € S}.

We get a Nullstellensatz-like correspondence between subsets of R and of Spec R given by
the operations V' and I (cf. Part I [87, §1A, (1.5)], Zariski-Samuel [119, vol. II, Chapter VII,
§3, Theorem 14] and Bourbaki [27, Chapter V, §3.3, Proposition 2]):

PRrorosITION 1.6.

(a) If a is any ideal in R, then I(V(a)) = 1/a.
(b) V and I set up isomorphisms inverse to each other between the set of ideals a with
a = +/a, and the set of Zariski-closed subsets of Spec R.

PROOF. In fact,

f€I(V(a)) < f €p for every p with [p] € V(a)
<~ fepforeverypDa

I(V(a)=(]p
p2a
—Va

(cf. Zariski-Samuel [119, vol. I, p. 151, Note II] or Atiyah-MacDonald [20, p. 9]).

(b) is then a straightforward verification. O
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The points of Spec(R) need not be closed: In fact,

{[p]} = smallest set V(S), containing [p], i.e., S Cp
= V(95), with S the largest subset of p
=V(p),
hence:
[p'] € closure of {[p]} <= p’ D p.

Thus [p] is closed if and only if p is a maximal ideal. At the other extreme, if R is an integral
domain then (0) is a prime ideal contained in every other prime ideal, so the closure of [(0)] is
the whole space Spec(R). Such a point is called a generic point of Spec(R).

DEeFINITION 1.7. If X is a topological space, a closed subset S is irreducible if .S is not the
union of two properly smaller closed subsets S, .52 ; S. A point z in a closed subset S is called
a generic point of S if S = {x}, and will be written 7g.

It is obvious that the closed sets {x} are irreducible. For Spec(R), we have the converse:

ProPoOSITION 1.8. If S C Spec(R) is an irreducible closed subset, then S has a unique
generic point ng.

PROOF. I claim S irreducible = I(S) prime. In fact, if f-g € I(S), then for all z € S,
f(z)-g(x) =0 in k(z), hence f(z) =0 or g(z) = 0. Therefore

S=[SnvVHIuISnV(g)l

Since S is irreducible, S equals one of these: say S = SN V(f). Then f = 0 on S, hence
f e 1(S). Thus I(S) is prime and
S =V(I(9))
= closure of [I(5)].
As for uniqueness, if [p1], [p2] were two generic points of S, then [p1] € V(p2) and [pa] € V(p1),
hence p1 C p2 C pi1. U

PROPOSITION 1.9. Let S be a subset of R. Then

Spec(R) = U Spec(R)f| < |1 € Z f - R, the ideal generated by S
fes fes

PROOF. In fact,
Spec R\ U Spec(R)f =V Zf ‘R

fes fes
so apply (c) in Definition 1.3. O

Notice that 1 € Zfes f+ R if and only if there is a finite set fi,..., f, € S and elements
g1,--.,9n € R such that
= Zgi - fi-

This equation is the algebraic analog of the partitions of unity which are so useful in differential
geometry.

COROLLARY 1.10. Spec R is quasz'—compactl, i.e., every open covering has a finite subcover-
mng.

1“con1pact” in the non-Hausdorff space.
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PROOF. Because distinguished open sets form a basis, it suffices to check that every covering
by distinguished opens has a finite subcover. Because of Proposition 1.9, this follows from the
fact that

1€Zf-R = IEZ]‘}-R, some finite set fi,...,fn, € 5.
fes 1=1

When R is noetherian, even more holds:

DEFINITION 1.11. If X is a topological space, the following properties are equivalent:
i) the closed sets satisfy the descending chain condition,
ii) the open sets satisfy the ascending chain condition,
iii) every open set U is quasi-compact.
A space with these properties is called a noetherian topological space.
Because of property (b) of V' in Definition 1.3, if R is a noetherian ring, then Spec(R) is a
noetherian space and every open is quasi-compact!
The next big step is to “enlarge” the ring R into a whole sheaf of rings on Spec R, written
OSpecR

and called the structure sheaf of Spec R. For background on sheaves, cf. Appendix to this
chapter. To simplify notation, let X = Spec R. We want to define rings

Ox(U)

for every open set U C X. We do this first for distinguished open sets X ;. Then by Proposition
7 of the Appendix, there is a canonical way to define Ox(U) for general open sets. The first
point is a generalization of Proposition 1.9:

LEMMA 1.12.
n
[Xf <U Xgi] = [Hm > 1, a; € R such that f™ = Zaigz} .
i=1
PrOOF. The assertion on the left is equivalent to:

gi([p]) =0 all i = f([p]) = 0, for all primes p,

iy (Sam) = (Sak

which is the assertion on the right. O

which is the same as

We want to define
Ox(Xy) = Ry
= localization of ring R with respect to multiplicative system
{1, £, f2,...}; or ring of fractions a/f", a € R, n € Z.

In view of Lemma 1.12, if Xy C X, then f™ = a - g for some m > 1, a € R, hence there is a
canonical map

Rg — Rf.
(Explicitly, this is the map b/g™ — ba"/(ag)"™ = ba"/f™™.) In particular, if X; = X, there are
canonical maps Ry — R, and Ry, — R; which are inverse to each other, so we can identify Ry
and R,. Therefore it is possible to define Ox(Xy) to be Ry. Furthermore, whenever Xy C X,
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we take the canonical map Ry — Ry to be the restriction map. Whenever X C X, C X;, we
get a commutative diagram of canonical maps:

Ry ——— > Ry,
Ry
Thus we have defined a presheaf Ox on the distinguished open sets. We now verify the sheaf
axioms:

KEY LEMMA 1.13. Assume X; = Y, X,,. Then
a) if b/ f* e Ry maps to 0 in each localization R, then b/fF =0,
b) if b,-/gfi € Ry, is a set of elements such that b,-/gfi = bj/g?j in Rg,qg,, then 3 b/ € Ry
which maps to b,-/gfi for each i.

Proor. The hypothesis implies that

fmzzaigi

for some m > 1 and a; € R. Raising this to a high power, one sees that for all n, there exists

7= "dg!

too. To prove (a), if b/f¥ = 0 in R,,, then g" - b = 0 for all 4, if n is large enough. But then
f™ b= ai(gib) =0

hence b/ f* = 0 in Ry. To prove (b), note that bi/gfi = bj/gfj in Ry, means:

an m’ and a} such that

(9i95)™79;"bi = (gig;)™" g;"b;
for some m;; > 1. If M = maxm;; + max k;, then

call this b,

M-k
b; bigi IR
=2 inR,
k‘i M 9i»
g; 9;
and
M—k;j M—k;\ K
g Yi=(g; Vg ") g;'bs
= (g?/[_kjgy_ki) -gfibj, since M — k; and M — k; are > my;
M
=9 - b;'-

Now choose k and a; so that k= > a;glM. Let b=>" a;b;-. Then I claim b/f’C equals bg/gZM in
Ry, In fact,

g'b="> " gMdi¥)
7

- S
J

= f*- .
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This means that Ox is a sheaf on distinguished open sets, hence by Proposition 7 of the
Appendix it extends to a sheaf on all open sets of X. Its stalks can be easily computed:
if = [p] € Spec R, then
O%X = lim Ox(U)

€l open

zelU

=_ lim Ox(Xy)
dist. open Xy
f(x)#0
= lim Ry
e
feR\p
= Rp

where R, as usual is the ring of fractions a/f, a € R, f € R\ p.
Now R, is a local ring, with maximal ideal p - R, and residue field:

R,/(p - Ry) = (quotient field of R/p) = k(z).

Thus the stalks of our structure sheaf are local rings and the evaluation of functions f € R
defined above is just the map:

R = 0Ox(X) — Oy x — residue field k(z).

In particular, the evaluation of functions at = extends to all f € Ox(U), for any open neighbor-
hood U of x. Knowing the stalks of Ox we get the following explicit description of Ox on all
open U C X:

U is covered by distinguished
Ox(U) =< (sp) € H R, | open Xy, and 3s; € Ry,
[p]eU inducing s, whenever f; ¢ p

The pairs (Spec R, Ospec r) are called affine schemes. We give a name to one of the most
important ones:

T}ZZ = (SpeCR[le s 7Xn]7 OSpecR[Xl ..... Xn])

= affine n-space over R.

2. M

An important aspect of the construction which defines the structure sheaf Ox is that it
generalizes to a construction which associates a sheaf M on Spec(R) to every R-module M. To
every distinguished open set X, we assign the localized module:

set of symbols m/f™", m € M, n € Z,

M; = modulo the identification my/f™ = mgo/ f"2
¢ iff fretk oy = fmtk omy, some k € Z
=M ®g Ry.

We check (1) that if Xy C X, then there is a natural map My, — My, (2) that

lim M, = M,
s
[pleXy



where

set of symbols m/g, m € M, g € R\ p,
modulo the identification mj /g1 = ma/g2
iff hgomi = hgimg, some h € R\ p

M,
P e def

and (3) that Xy — My is a “sheaf on the distinguished open sets”, i.e., satisfies Key lemma
1.13. (The proofs are word-for-word the same as the construction of Ox.) We can then extend
the map Xy — My to a sheaf U — M (U) such that M(X;) = My as before. Explicitly:

={s€ H M, | “s given locally by elements of M’s”
[pleU

The sheaf M that we get is a sheaf of groups. But more than this, it is a sheaf of Ox-modules

in the sense of:

DEFINITION 2.1. Let X be a topological space and Ox a sheaf of rings on X. Then a sheaf
F of Ox-modules on X is a sheaf F of abelian groups plus an Ox (U)-module structure on F(U)
for all open sets U such that if U C V, then resyy: F(V) — F(U) is a module homomorphism
with respect to the ring homomorphism resy: Ox (V) = Ox(U).

In fact check that the restriction of the natural map
II 2= [ M — ][] ™
[pleU [pleU [p]eU
maps Ox (U) x M(U) into M(U), ete.
Moreover, the map M — M is a functor: given any R-homomorphism of R-modules:
po: M — N
induces by localization:
(pf:Mf—>Nf, VfeR
hence
p: M(U) — N(U), V distinguished opens U.
This extends uniquely to a map of sheaves:
Q: M —s N ,
which is clearly a homomorphism of these sheaves as Ox-modules.

PROPOSITION 2.2. Let M, N be R-modules. Then the two maps

Homp(M, N) m———— Homp, (M, N)

oy %

$(X), the map "
on global sections

are inverse to each other, hence are isomorphisms.
PrROOF. Immediate. O

COROLLARY 2.3. The category of R-modules is equivalent to the category of Ox-modules of
the form M.
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This result enables us to translate much of the theory of R-modules into the theory of sheaves
on Spec R, and brings various geometric ideas into the theory of modules. (See for instance,
Bourbaki [27, Chapter IV].)

But there are even stronger categorical relations between R-modules M and the sheaves M:
in fact, both the category of R-modules M and the category of sheaves of abelian groups on X
are abelian, i.e., kernels and cokernels with the usual properties exist in both these categories
(cf. Appendix to this chapter). In particular one can define exact sequences, etc. The fact is
that preserves these operations too:

PROPOSITION 2.4. Let f: M — N be a homomorphism of R-modules and let K = Ker(f),
C = Coker(f). Taking s, we get maps of sheaves:

RAY el

K—M
Then
(a) K =Kex(f), i.e., K(U) = Kex[M(U) — N(U)] for all U.

(b) C = Coker(f): by definition this means C is the sheafification of U — ]\Nf(U)/f(M(U)),
but in our case, we get the stronger assertion:

C(X,) = Coker (M(Xa) — N(Xa)> ., all distinguished opens X,.
PRrOOF. Since 0 - K - M — N — C — 0 is exact, for all a € R the localized sequence:
0O—-K,—-M,—N,—C,—0
is exact (cf. Bourbaki [27, Chapter II, §2.4]; Atiyah-MacDonald [20, p. 39]). Therefore
0— K(Xa) = M(X,) = N(Xa) = C(Xa) =0

is exact for all a. It follows that K and Ker(f) are isomorphic on distinguished open sets,
hence are isomorphic for all U (cf. Proposition 7 of the Appendix). Moreover it follows that
the presheaf N(U)/ f(M (U)) is already a sheaf on the distinguished open sets X,, with values
C (Xa); there is only one sheaf on all open sets U extending this, and this sheaf is on the one
hand [ sheafification of U — N(U)/ f(zTi (U))] or Coker(f), (see the Appendix) and on the other
hand it is C. O

COROLLARY 2.5. A sequence
M—N-—P

of R-modules is exact if and only if the sequence
M—N-—P
of sheaves is exact.
Moreover in both the category of R-modules and of sheaves of Ox-modules there is an
internal Hom: namely if M, N are R-modules, Homp (M, N) has again the structure of an R-
module; and if F, G are sheaves of Ox-modules, there is a sheaf of Ox-modules Homo, (F,G)

whose global sections are Home , (F, G) (cf. Appendix to this chapter). In some cases Proposition
2.2 can be strengthened:

PROPOSITION 2.6. Let M, N be R-modules, and assume M is finitely presented, i.e., 3 an
exacl sequence:
RP— RT — M — 0.
Then
Homo, (M, N) = Homp(M, N) .
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PRrROOF. There is a natural map on all distinguished opens Xj:

Hompg(M,N) (Xy)=Hompgr(M,N)®gr Ry
—%IIODlRf(AffPAv)
= Hom A5 sheaves of (M|Xfa N|Xf)a by Proposition 2.2

x p-modules
Oan

= Homo (M, N)(X).

When M is finitely presented, one checks that the arrow on the second line is an isomorphism

using:
0 — Homp(M, N) — Homp(R?, N) — Homp(RP, N)
hence
0— HOIHR(M, N) RRr Rf — HOHIR(Rq, N) KRR Rf — HOHIR(Rp, N) KRR Rf
00— HOHlRf (Mf, Nf) B — HOHlRf (R;Zc, Nf) —_— HOHlRf(R?, Nf)
(]
Finally, we will need at one point later that "~ commutes with direct sums, even infinite
ones (Proposition-Definition 5.1):
PROPOSITION 2.7. If {My}acs is any collection of R-modules, then
S M= YV
a€EsS a€cs
PROOF. Since each open set X is quasi-compact,
<Z ]/\Za) (Xy) = Z (Ma(Xf)> cf. remark at the end of Appendix
=Y (Ma);
@ f
= Z M, (Xf)
Therefore these sheaves agree on all open sets. U

3. Schemes
We now proceed to the main definition:

DEFINITION 3.1. An affine scheme is a topological space X, plus a sheaf of rings Ox on
X isomorphic to (Spec R, Ogpec r) for some ring R. A scheme is a topological space X, plus a
sheaf of rings Ox on X such that there exists an open covering {U,} of X for which each pair
(Ua, Ox|u,,) is an affine scheme.

Schemes in general have some of the peculiar topological properties of Spec R. For instance:

PROPOSITION 3.2. Every irreducible closed subset S of a scheme X is the closure of a unique
point ng € S, called its generic point.

PROOF. Reduce to the affine case, using: U open, z € U, x € @ = yel. O
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PROPOSITION 3.3. If (X,Ox) is a scheme, and U C X is an open subset, then (U, Ox|y)
is a scheme.

Proor. If {U,} is an affine open covering of X, it suffices to show that U N U, is a scheme
for all . But if U, = Spec(R, ), then U N U,, like any open subset of Spec(R,) can be covered
by smaller open subsets of the form Spec(R,) s> /3 € Ra. Therefore we are reduced to proving:

LEMMA 3.4. For all rings R and f € R,
((Spec R)f, OSpeCR‘(Spec R)f) = (SpeC(Rf)v OSpec(Rf)> )

hence (Spec R) ¢ is itself an affine scheme.

Proor oF LEMMA 3.4. Let i: R — Ry be the canonical map. Then if p is a prime ideal of
R, such that f ¢ p, i(p)-Ry is a prime ideal of Ry; and if p is a prime ideal of Ry, i~!(p) is a prime
ideal of R not containing f. These maps set up a bijection between Spec(R); and Spec(Ry) (cf.
Zariski-Samuel [119, vol. I, p. 223]). This is a homeomorphism since the distinguished open sets

Spec(R) q C Spec(R)
and

Spec(Ry), C Spec(Ry)
correspond to each other. But the sections of the structure sheaves Ogpec(r) and OSpec(Rf)
on these two open sets are both isomorphic to Ryf,. Therefore, these rings of sections can be
naturally identified with each other and this sets up an isomorphism of (i) the restriction of
Ospec(r) to Spec(R)y, and (ii) Ospec(r;) compatible with the homeomorphism of underlying
spaces. U

O

Since all schemes are locally isomorphic to a Spec(R), it follows from §1 that the stalks O, x
of Ox are local rings. As in §1, define k(x) to be the residue field O, x /m, x where m, x =
maximal ideal, and for all f € T'(U,Ox) and z € U, define f(x) = image of f in k(z). We can
now make the set of schemes into the objects of a category:

DEFINITION 3.5. If (X,Ox) and (Y, Oy) are two schemes, a morphism from X to Y is a

continuous map
f: X—Y

plus a collection of homomorphisms:

Iy _
D(V,0y) =5 T(f71(V), 0x)
for every open set V C Y2, such that

a) whenever V] C V3 are two open sets in Y, then the diagram:

*

fv2
[(Va,Oy) ——— T (f}(V2),Ox)

J(res lres
f*

Vi

I'(V1,0y) —— T(f~'(11), Ox)
commutes, and

2Equivalently, a homomorphism of sheaves
Oy — f* Ox
in the notation introduced at the end of the Appendix to this chapter.
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b) because of (a), then f{’’s pass in the limit to homomorphisms on the stalks:
f;: Oy,Y — Om,X

forallz € X and y = f(z); then we require that f be a local homomorphism, i.e., ifa €
m,y = the maximal ideal of O, y, then f}(a) € m, x = the maximal ideal of O, x.

Equivalently, if a(y) = 0, then f(a)(z) = 0.

To explain this rather elaborate definition, we must contrast the situation among schemes
with the situation with differentiable or analytic manifolds. In the case of differentiable or
analytic manifolds X, X also carries a “structure sheaf” Oy, i.e.,

Ox(U) = {

Moreover, to define a differentiable or analytic map from X to Y, one can ask for a continuous
map f: X — Y with the extra property that:

for all open'V C Y and all a € Oy (V), the compositie function aof on f~1(V)
should be in Ox(f~1(V)).

Then we get a homomorphism:

ring of real-valued differentiable or
complex-valued analytic functions on U |

L(V,0y) — T(f71(V),0x)
ar—aof
automatically from the map f on the topological spaces. Note that this homomorphism does
have properties (a) and (b) of our definition. (a) is obvious. To check (b), note that the stalks
O, x of the structure sheaf are the rings of germs of differentiable or analytic functions at the
point z € X. Moreover, m, x is the ideal of germs a such that a(x) = 0, and
O x =my x @R -1, (differentiable case)
Orx =my x @C-1, (anallytic case)
where 1, represents the germ at x of the constant function a = 1 (i.e., every germ a equals
a(x) - 1z + b, where b(x) = 0). Then given a differentiable or analytic map f: X — Y, the
induced map on stalks f7: O,y — O, x is just the map on germs a — a o f, hence
acemyy <= a(y) =0
<= aof(x)=0
= fra € myx.
The new feature in the case of schemes is that the structure sheaf Oy is not equal to a sheaf of
functions from X to any field k: it is a sheaf of rings, possibly with nilpotent elements, and whose
“values” a(x) lie in different fields k(x) as x varies. Therefore the continuous map f: X — Y
does not induce a map f*: Oy — Ox automatically. However property (b) does imply that f*

is compatible with “evaluation” of the elements a € Oy (U), i.e., the homomorphism f induces
one on the residue fields:

k(y) = Oy,Y/my,Y Ox,X/mx,X = ]k({L')
Note that it is injective, (like all maps of fields), and that using it (b) can be strengthened to:

(b') For all V. C Y, and 2 € f~1(V), let y = f(x) and identify k(y) with its image in k(x)
by the above map. Then

f# modulo maximal ideals

for all a € I'(V, Oy).
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Given two morphisms X Loy andy %z , we can define their composition gof: X — Z
in an obvious way. This gives us the category of schemes. Also very useful are the related
categories of “schemes over 5.

DEFINITION 3.6. Fix a scheme S, sometimes referred to as the base scheme. Then a scheme
over S, written X /S, is a scheme X plus a morphism px: X — S. If S = Spec(R), we call this
simply a scheme over R or X/R. If X/S and Y/S are two schemes over S, an S-morphism from
X/S to Y/S is a morphism f: X — Y such that the diagram

f
X——Y

N

S

commutes.
The following theorem is absolutely crucial in tying together these basic concepts:

THEOREM 3.7. Let X be a scheme and let R be a ring. To every morphism f: X — Spec(R),
associate the homomorphism:

R=T (SpeC(R), OSpec(R)) f—> F(X, OX)

Then this induces a bijection between Hom (X, Spec(R)) in the category of schemes and Hom(R,T'(X, Ox))
in the category of rings.

ProoF. For all f’s, let A;: R — I'(X,Ox) denote the induced homomorphism. We first
show that f is determined by A;. We must begin by showing how the map of point sets
X — Spec(R) is determined by Ay. Suppose x € X. The crucial fact we need is that since
p ={a € R | a([p]) = 0}, a point of Spec(R) is determined by the ideal of elements of R
vanishing at it. Thus f(z) is determined if we know {a € R | a(f(z)) = 0}. But this equals
{a € R| f;(a)(x) =0}, and f;(a) is obtained by restricting A¢(a) to Oy x. Therefore

f(z) =[{a e R|(Afa)(z) = 0}].

Next we must show that the maps f}; are determined by Ay for all open sets U C Spec(R).
Since f* is a map of sheaves, it is enough to show this for a basis of open sets (in fact, if U = |J U,
and s € I'(U, Ogpec(ry), then ff(s) is determined by its restrictions to the sets f~1(U,), and
these equal f7; (resyu, s)). Now let Y = Spec(R) and consider f* for the distinguished open
set Yy. It makes the diagram

*

%,
L(f1(V),0x) «—T'(¥},,Oy) = Ry

T res Tres

Af
NX,0x)«——I'(Y,0y) =R
commutative. Since these are ring homomorphisms, the map on the ring of fractions Rp is
determined by that on R: thus Ay determines everything.
Finally any homomorphism A: R — I'(X, Ox) comes from some morphism f. To prove this,
we first reduce to the case when X is affine. Cover X by open affine sets X,. Then A induces

homomorphisms
res

Aai R — F(X, OX) — F(XOUOXQ).



3. SCHEMES 13

Assuming the result in the affine case, there is a morphism f,: X, — Spec(R) such that
Ay = Ay,. On X, N Xg, fo and fg agree because the homomorphisms

I'(Xq, Ox)
Aa &
k %

F(Xﬁv OX)

R F(XaﬂXg,Ox)

agree and we know that the morphism is determined by the homomorphism. Hence the f, patch
together to a morphism f: X — Spec(R), and one checks that Ay is exactly A.
Now let A: R — B be a homomorphism. We want a morphism

f: Spec(B) — Spec(R).
Following our earlier comments, we have no choice in defining f: for all points [p] € Spec(B),

F(Io]) = [A7 (p))-

This is continuous since for all ideals a C R, f~*(V(a)) = V(A(a)-B). Moreover if U = Spec(R)q,
then f~1(U) = Spec(B) (), so for ff; we need a map R, — Ba,). We take the localization of
A. These maps are then compatible with restriction, i.e.,

R, — Ba)

| !

Ry — Ba(a)-ap)

commutes. Hence they determine a sheaf map (in fact, if U = |JU,, U, distinguished, and
s € (U, Ogpec(r)) then the elements f7; (resy, s) patch together to give an element f7;(s) in
F(f_l(U),Ospec(B))). From our definition of f, it follows easily that f* on O4-1, takes the
maximal ideal m{4-1,) into my). U

COROLLARY 3.8. The category of affine schemes is equivalent to the category of commutative
rings with unit, with arrows reversed.

COROLLARY 3.9. If X is a scheme and R is a ring, to make X into a scheme over R is
the same thing as making the sheaf of rings Ox into a sheaf of R-algebras. In particular, there
is a unique morphism of every scheme to SpecZ: “SpecZ is a final object in the category of
schemes™!

Another point of view on schemes over a given ring A is to ask: what is the “raw data” needed
to define a scheme X over Spec A? It turns out that such an X can be given by a collection of
polynomials with coefficients in A and under suitable finiteness conditions (see Definition I1.2.6)
this is the most effective way to construct a scheme. In fact, first cover X by affine open sets
U, (possibly an infinite set) and let U, = Spec R,. Then each R, is an A-algebra. Represent
R, as a quotient of a polynomial ring:

Ro=AL.., X, /(. f9,.0)

where the féa) are polynomials in the variables X éa). The scheme X results from glueing a whole

lot of isomorphic localizations (Ua, )ga,ay @04 (Uay )ha,a,vs and these isomorphisms result from
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A-algebra isomorphisms:

1
Al xe, b /< IO
I 67 ) a »Jy 9
goqazl/(Xé 1))

1
AL X2 ——————— | e )
’ ga ) a y Jy )
ha1a2V(X( 2)) /

B
given by
X(ag) _ ¢a1a21162(. .. ,Xéal), .. )
& (gOélocQV)Nalo‘Q’/ﬁ?
X(al) _ 1’[}‘)‘10‘2%31(‘ ) Xgm), .. )
& (halazl/)Mala?”ﬁl

Thus the collection of polynomials f, g, h, ¢ and @ with coefficients in A explicitly describes
X. In reasonable cases, this collection is finite and gives the most effective way of “writing out”
the scheme X.

It is much harder to describe explicitly the set of morphisms from Spec R to X than it is to
describe the morphisms from X to Spec R. In one case this can be done however:

PrRoOPOSITION 3.10. Let R be a local ring with maximal ideal M. Let X be a scheme. To
every morphism f: Spec R — X associate the point x = f([M]) and the homomorphism

f;: OZ,X — O[M],SpecR = R.

Then this induces a bijection between Hom(Spec R, X) and the set of pairs (x,¢), where z € X
and ¢: Oy x — R is a local homomorphism.

(Proof left to the reader.)

This applies for instance to the case R = K a field, in which case Spec K consists in only
one point [M] = [(0)]. A useful example is:

COROLLARY 3.11. For every x € X, there is a canonical homomorphism

iz: Speck(x) — X
defined by requiring that Image(i,) = x, and that
iyt Oz x — O[0)]Speck(z) = k(%)
be the canonial map. For every field k, every morphism
f: Speck — X
factors uniquely:
Spec k L+ Speck(z) NS¢

where x = Image(f) and g is induced by an inclusion k(x) — k.
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4. Products

There is one exceedingly important and very elementary existence theorem in the category
of schemes. This asserts that arbitrary fibre products exist:
Recall that if morphisms:

X Y
N s
S
are given, a fibre product is a commutative diagram
X x S Y
X Y
N ) o

with the obvious universal property: i.e., given any commutative diagram

lh/Z\i]z
X Y
N
S

there is a unique morphism t: Z — X xgY such that g1 = p1ot, go = ps ot. The fibre product
is unique up to canonical isomorphism. When S is the final object SpecZ in the category of
schemes, we drop the S and write X x Y for the product.

THEOREM 4.1. If A and B are C-algebras, let the diagram of affine schemes
Spec(A ®¢ B)
— T~
\ /
Spec(C)

Spec(A) Spec(B)

be defined by the canonical homomorphisms C — A, C — B, A - A®c B (a — a® 1),
B - A®c B (b— 1®b). This makes Spec(A ®c B) a fibre product of Spec(A) and Spec(B)
over Spec(C).

THEOREM 4.2. Given any morphismsr: X — S, s:' Y — S, a fibre product exists.

PROOF OF THEOREM 4.1. It is well known that in the diagram (of solid arrows):

/\

A®034>D
B//

the tensor product has the universal mapping property indicated by dotted arrows, i.e., is the
“direct sum” in the category of commutative C-algebras, or the “fibre sum” in the category of
commutative rings. Dually, this means that Spec(A ®¢ B) is the fibre product in the category
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of affine schemes. But if T" is an arbitrary scheme, then by Theorem 3.7, every morphism of T
into any affine scheme Spec(F) factors uniquely through Spec(I'(T, Or)):

T Spec(E)

\ /),
~

Spec(I'(T, (’):r))

Using this, it follows immediately that Spec(A ®¢ B) is the fibre product in the category of all
schemes. O

Theorem 4.1 implies for instance that:
A% = Ay x Spec R.

PROOF OF THEOREM 4.2. There are two approaches to this. The first is a patching argu-
ment that seems quite straightforward and “mechanical”, but whose details are really remarkably
difficult. The second involves the direct construction of X xgY as a local ringed space and then
the verification that locally it is indeed the same product as that given by Theorem 4.1. We will
sketch both. For the first, the main point to notice is this: suppose

» XXSYP

1 2

X/ \Y
N A

is some fibre product and suppose that X, C X, Yo C Y and S, C S are open subsets. Assume
that r(X,) C S, and s(Y5) C So. Then the open subset

pr(Xo) Npp ' (Ya) € X x5 Y

is always the fibre product of X, and Y, over S,. This being so, it is clear how we must set
about constructing a fibre product: first cover S by open affines:

Spec(Cy) = Wy, C S.

Next, cover 7~ (W},) and s~1(W},) by open affines:

Spec(Ay,;) = Ug; C X,

Spec(By;) = Vi; C Y.
Then the affine schemes:

Spec(Ax,i ®@c;, Brj) = P
must make an open affine covering of X x5 Y if it exists at all. To patch together ®; ; ; and
v 7, let p1, pa, and p}, py stand for the canonical projections of ®j;; and Py v j» onto its
factors. Then one must next check that the open subsets:
P1 (Ui N Uk ir) O p3 " (Vi N Viejr) © P
and
() (Urrir N Uki) 0 (95) ™ (Vi jr O Vi j) © P i o

are both fibre products of Up; N Uy » and Vi ; N Vi j» over S. Hence they are canonically
isomorphic and can be patched. Then you have to check that everything is consistent at triple
overlaps. Finally you have to check the universal mapping property. All this is in some sense

obvious but remarkably confusing unless one takes a sufficiently categorial point of view. For
details, cf. EGA [1, Chapter I, pp. 106-107].
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The second proof involves explicitly constructing X xgY as a local ringed space. To motivate
the construction note that if 2 € X xgY liesover x € X, y € Y and s € S, then the residue
fields of the four points lie in a diagram:

ot k(z) -
AN
k() k(y)
N
k(s)

From Theorem 4.1, one sees that the local rings of X xg Y are generated by tensor product of
the local rings of X and Y and this implies that in the above diagram k(z) is the quotient field
of its subring k(z) - k(y), i.e., k(z) is a compositum of k(x) and k(y) over k(s). We may reverse
these conclusions and use them as a basis of a definition of X xg Y

i) As a point set, X xgY is the set of 5-tuples (z,y, L, o, ) where
reX, yevy,

lie over the same point s € S and

L = a field extension of k(s)

a, B are homomorphisms:
o,
x) k(

N
k(s)

k( Y)

such that
L = quotient field of k(x) - k(y).

Two such points are equal if the points x, y on X and Y are equal and the corresponding
diagrams of fields are isomorphic.
ii) As a topological space, a basis of open sets is given by the distinguished open sets

UV, W {fi};, {a})

where
V C X is affine open
W C Y is affine open
fie Ox(V)
g1 € Oy (W)
U={(z,y, L, ) [z €Vy e W,
Za(fl) - B(g1) # 0 (this sum taken in L)}.
l

iii) The structure sheaf Ox .y is defined as a certain sheaf of maps from open sets in
X xXgY to:

T %ures
z7y)L7a’ﬂ
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where
localization of O, x R0, s Oyy
O(m,y,Lu:ﬂ) = | at p= Ker((?w Ko, Oy —ﬁ> L)
a®

(i.e., the elements of the sheaf will map points (z,y, L,a, 5) € X XgY to elements of
the corresponding ring O, 1,4,8)-) The sheaf is defined to be those maps which locally
are given by expressions

Shoa
> [ ®g
fi, fl € Ox(V)
91,91 € Oy (W)
on open sets UV, W, {f/}.{qg/}).

This certainly gives us a local ringed space, but it must be proven to be a scheme and to be the
fibre product. We will not give details. For the first, one notes that the construction is local on
X and Y and hence it suffices to prove that if X = Spec R’, Y = Spec S’ and S = Spec A, then
the local ringed space X xg Y constructed above is simply Spec(R’ ®4 S’). The first step then
is to verify:

LEMMA 4.3. The set of prime ideals of R® 4 S is in one-to-one correspondence with the set
of 5-tuples (pr,ps, L, o, B) where pr C R and ps C S are prime ideals with the same inverse
image pa C A and (L, o, B) is a compositum of the quotient fields of R/pr, S/ps over A/pa.

The proof is straightforward.

COROLLARY 4.4 (of proof). As a point set, X xg Y is the set of pairs of points v € X,
y € Y lying over the same point of S, plus a choice of compositum of their residue fields up to
isomorphisms:

L. s
NG
x) k(

o
K(s)

k( Y)
O

Summarizing the above proof, we can give in a special case the following “explicit” idea of
what fibre product means: Suppose we are in the situation

Spec(B)

X
N s

Spec(A)
and that X = JU,, U, affine. Then each U, is Spec R, and via ¥,
Ro=AL.., X /(L 0

as in §3, where the fasa) are polynomials in the variables X éa). Represent the glueing between
the U,’s by a set of polynomials go,,a0,0s Par,a0,vs Par,asw,fe A Yoy as,0.8, as in §3 again. Let
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s correspond to a homomorphism o: A — B. If f is a polynomial over A, let °f denote the
polynomial over B gotten by applying o to its coefficients. Then

X Xgpec A Spec B = U Ua X8pec 4 Spec B

[0}

~ | JSpec [(A[. ..,Xé“),...]/(...,f§a>,...)) ®4 B}

o USpec [B[...,Xéa),...]/(...,"fﬂsa),...)] .

o

In other words, the new scheme X Xgpec a4 Spec B is gotten by glueing corresponding affines,
each defined by the new equations in the same variables gotten by pushing their coefficients
from A to B via 0. Moreover, it is easy to see that the identification on (Us Xgpec 4 Spec B) N
(Ug Xgpec A Spec B) is gotten by glueing the distinguished opens %gq, 0., 7# 0 and ®ha; a0 # 0
by isomorphisms given by the polynomials % and °). Or we may simply say that the collection
of polynomials “f, g, °h, %p, %) with coefficients in B explicitly describes X Xsgpec 4 Spec B by
the same recipe used for X.

We can illustrate this further by a very important special case of fibre products: suppose
f+ X — Y is any morphism and y € Y. Consider the fibre product:

X xy Speck(y) — X

Ll

Speck(y) ——— Y
DEFINITION 4.5. Denote X xy Speck(y) by f~!(y) and call it the fibre of f over y.

To describe f~1(y) explicitly, let U C Y be an affine neighborhood of y, let U = Spec(R),
and y = [p]. It is immediate that the fibre product X xy U is just the open subscheme f~1(U)
of X, and by associativity of fibre products, f~1(y) = f~1(U) xy Speck(y). Now let f~1(U) be
covered by affines:

Vo = Spec(Sa)
Sa = R, X /G 9,00,
Then f~!(y) is covered by affines
Vo N f7H(y) = Spec(Sa @r k(y))
= Spec k(;,)[...,X}f%...]/(...jg“),...)}

(f = polynomial gotten from f via coefficient homomorphism R — k(y)). Notice that the
underlying topological space of f~!(y) is just the subspace f~1(y) of X. In fact via the ring
homomorphism
(z) )
Sa = (Sa/PSa) (r/p\(0)) = Sa @R k(y)
the usual maps

q——— &(a) - (Sa/PSa) (r/p\ (0)

¢~ (a) < K
set up a bijection between all the prime ideals of (Sa/pSa)(R/p\(O)) and the prime ideals q C S,
such that ¢ N R = p, and it is easily seen to preserve the topology. This justifies the notation

().
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5. Quasi-coherent sheaves

For background on kernels and cokernels in the category of sheaves of abelian groups, see the
Appendix to this chapter. If (X, Ox) is a scheme, the sheaves of interest to us are the sheaves F
of Ox-modules (Definition 2.1). These form an abelian category too, if we consider Ox-linear
homomorphisms as the maps. (In fact, given a: F — G, the sheaf U — Ker(a: F(U) — G(U))
is again a sheaf of Ox-modules; and the sheafification of U — G(U)/aF(U) has a canonical
Ox-module structure on it.) The most important of these sheaves are the quasi-coherent ones,
which are the ones locally isomorphic to the sheaves M defined in §2:

PROPOSITION-DEFINITION 5.1. Let X be a scheme and F a sheaf of Ox-modules. The
following are equivalent:
i) for allU C X, affine and open, F|y = M for some T'(U, Ox)-module M,
ii) 3 an affine open covering {Uy} of X such that F|y, = M, for some I'(Uy, Ox)-module
Mo,
iii) for all x € X, there is a neighborhood U of x and an exact sequence of sheaves on U:

(Ox|v)" = (Ox|v)” = Flu =0
(where the exponents I, J denote direct sums, possibly infinite).

If F has these properties, we call it quasi-coherent.

PROOF. It is clear that (i) = (ii). Conversely, to prove (ii) = (i), notice first that if U is
an open affine set such that F|y = M for some I'(U, Ox)-module M, then for all f € T'(U, Ox),
Flu, = My. Therefore, starting with condition (ii), we deduce that there is a basis {U;} for

the topology of X consisting of open affines such that F|y, = M;. Now if U is any open affine
set and R = I'(U, Ox), we can cover U by a finite number of these U;’s. Furthermore, we can
cover each of these U;’s by smaller open affines of the type Uy, g € R. Since U, = (U;)y, Flu,

P

is isomorphic to (M;)s. In other words, we get a finite covering of U by affines Uy, such that
Flu,, & Ni, Ni an Rg,-module.
For every open set V' C U, the sequence
0—T(V,F) — [[r(VnU,, F) — [[T(V U, NU,,, F)
( ,J

is exact. Define new sheaves F" and F; by:

LV, 7)) =LV NnUy, F)
LV, F) =T(V Uy, NUg,, F).
Then the sequence of sheaves:
0—F—[[7 — 1175
i i

is exact, so to prove that F is of the form M , it suffices to prove this for F and .7-"i*j. But if

7

My is M; viewed as an R-module, then F;" = ]’\4:5 In fact, for all distinguished open sets Uy,
F(Ugj}—z’*> = F(Ug N Ugi’F)
= F((Ugi)g7f’Ugi)
= (Mi)g
= (U, My).

The same argument works for the F/,’s.
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Uy Uz

[(0)]

generic pt

(0]
[M]
closed pt

FiGure I.1. The Spectrum of a discrete valuation ring

Next, (i) = (iii) because if Fly, = My, write M, by generators and relations:
Rl — R — M, —0
where R, = I'(U,, Ox). By Corollary 2.5
(/R\gj — @ — M, — 0

is exact. But Rq = Ox|u, since U, is affine and " commutes with direct sums (even infinite
ones by Proposition 2.7) so we get the required presentation of F|y, .

Finally (ili) == (ii). Starting with (iii), we can pass to smaller neighborhoods so as to
obtain an affine open covering {U,} of X in which presentations exist:

h
(Oxlv,)! — (Ox|v,)” — Flo, ——0

| |
(Rg) (RY)
By Proposition 2.2, h is induced by an R,-homomorphism k: R, — RJ. Let M, = Coker(k).
Then by Proposition 2.4, M, = Fly, . O

COROLLARY 5.2. If a: F — G is an Ox-homomorphism of quasi-coherent sheaves, then
Ker(«) and Coker(«) are quasi-coherent.

PRrOOF. Use characterization (i) of quasi-coherent and Proposition 2.4. O

We can illustrate the concept of quasi-coherent quite clearly on Spec R, R a discrete valu-
ation ring. R has only two prime ideals, (0) and M the maximal ideal. Thus Spec R has two
points, one in the closure of the other as in Figure I.1: and only two non-empty sets: U; consist-
ing of [(0)] alone, and U, consisting of the whole space. M is principal and if 7 is a generator,
then Uj is the distinguished open set (Spec R),. Thus:

a) the structure sheaf is:
OSpecR(U2) - R,

Ospecr(U1) = R [H

= quotient field K of R
b) general sheaf of abelian groups is a pair of abelian groups
F(Uy), F(Us) plus a homomorphism res: F(Us) — F(Uy),

c) general sheaf of Ogpec g-modules is an R-module F(Us), a K-vector space F(U;) plus
an R-linear homomorphism res: F(Us) — F(Uy),
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d) quasi-coherence means that F = F(Us), i.e., res factors through an isomorphism:
F(U) — F(U2) @r K = F(Uh).
The next definition gives the basic finiteness properties of quasi-coherent sheaves:

DEFINITION 5.3. A quasi-coherent sheaf F is locally of finite type if every x € X has a
neighborhood U in which there is a surjective Ox-homomorphism:

(OX‘U)” — .F‘U —0

some n > 1. F is locally of finite presentation, or coherent® if every x € X has a neighborhood
U in which there is an exact sequence:

(Oxl(])m — (OxlU)n — ]:’U — 0.

F is locally free (of finite rank) if every z € X has a neighborhood U in which there is an
isomorphism
(Ox[v)" — Flu-

The techniques used in the proof of Proposition 5.1 show easily that if U C X is affine and
open and F is locally of finite type (resp. coherent), then F|;; = M where M is finitely generated
(resp. finitely presented) as module over I'(U, Ox).

REMARK. (Added in publication) Although the notion of “locally of finite presentation”
coincides with that of “coherent” for X locally noetherian, the standard definition of the latter
is slightly different for general X. A quasi-coherent Ox-module F is said to be coherent, if

e F is locally of finite type over Ox, and
e for every affine open U C X and every Op-linear homomorphism h: (Oy)™ — F|y, the
kernel of h is of finite type.

Note that if X is covered by a finite number of affine opens U; such that the above property
holds for each (U;, Fly,), then F is coherent.

Here are the basic properties of Ox-modules that are locally of finite presentation or coher-
ent:

(1) If H is an Ox-module that is locally of finite presentation, then for every Ox-module
G and every x € X, the natural map

(/HOmOX (Ha g))x — HOHI(;)X,E (/Hx’ gfr)

is an isomorphism.

(2) If ¢: F — G is an Ox-linear homomorphism between coherent Ox-modules, then
Ker(¢), Coker(¢), Image(¢) and Coimage(¢) are all coherent Ox-modules.

(3) If 0 - Fi — Fa2 — F3 — 0 is a short exact sequence of quasi-coherent Ox-modules
such that F; and F3 are coherent, then Fy is coherent. (Actually, the statement
remains valid if we only assume F5 to be an Ox-module instead of a quasi-coherent
Ox-module.)

(4) If F and G are coherent Ox-modules, then F ®p, G and Homp, (F,G) are coherent
Ox-modules.

(5) Ox is a coherent Ox-module if and only if X is locally noetherian.

3IF X is locally noetherian, i.e., X is covered by Spec R’s with R noetherian (see §I1.2), then it is immediate
that a quasi-coherent F locally of finite type is also coherent; and that sub- and quotient-sheaves of coherent F’s
are automatically coherent. The notion of coherent will not be used except on noetherian X’s. (What about
§IV.47)
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(6) If X is locally noetherian, then a quasi-coherent Ox-module is coherent if and only if
it is locally of finite type over Ox.

The proof is left to the reader.
Here is an unpleasant example: Let k be a field. For each integer n > 1, let

R, = k[xg, x1,. .. ,a:n]/(x(%,:noxl,a:oxg, ey TOTy)

for variables zg,x1,...,2,. Let R := [],~; Rn, and let u € R be the element whose n-th
component is the image of zg in R,,. Let X = Spec R, and let ¢: Ox — Ox be the Ox-linear
homomorphism given by the multiplication by u € R. Then Ker(¢) is the quasi-coherent Ox-
ideal associated to the ideal I := [],~; I of R, where I,, is the ideal of R,, generated by the
images of zg,21,...,%, in R,. It is easy to see that I is not a finitely generated ideal of R,
hence Ox is not a coherent O x-module.

DEFINITION 5.4. Let F be a quasi-coherent sheaf on a scheme X. Then for all x € X, in
addition to the stalk of F at =, we get a vector space over k(x) the residue field:

F(x) = Fr @ k(z)
I‘kx F = dimk(x) .F(JZ)
4

A very important technique for quasi-coherent sheaves locally of finite type is Nakayama’s
lemma:

ProPOSITION 5.5 (Nakayama). Let F be a quasi-coherent sheaf locally of finite type on a
scheme X. Then

i) if z € X and if the images of s1,...,sy € Fy in F(x) span the vector space F(z), then

the s; extend to a neighborhood of x on which they define a surjective homomorphism

(OxlU)n M) .F‘U — 0

on U. When this holds, we say that s1,...,s, generate F over U.

ii) if rky F =0, then x has a neighborhood U such that F|y = {0}.

iii) rk: @ — rky F is upper semi-continuous, i.e., for all k > 0, {x € X | tky F < k} is
open.

iv) (Added in publication) (cf. Mumford [86, Souped-up version II, Chap. III, §2, p. 213])
Suppose X is noetherian and reduced. Then tk is locally constant if and only if F is
locally free.

PROOF. (i) is the geometric form of the usual Nakayama lemma. Because of its importance,
we recall the proof. (i) reduces immediately to the affine case where it says this:

R any commutative ring, p a prime ideal, M an R-module, generated by
mi,...,mg. If ny,...,n; € M satisfy

n1,...,n; generate M, @ k(p) over k(p)
then 3f € R\ p such that

ni,...,n generate My over Ry.

4(Added in publication) According to Nakayama himself, this lemma should be attributed to Krull-Azumaya-
Nakayama, or, NAK.
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But the hypothesis gives us immediately:
a;m; = Zbijnj + ch-jmj, 1<i<k

for some a; € R\ p, bjj € R, ¢;j € p. Solving these k equations for the m; by Cramer’s rule, we
get

!
(c;eqt(apépq - cpq)> -my = Z bijn;.
3 le

Let f be this determinant. Then f ¢ p and ny,...,n; generate My over Ry.
(ii) and (iii) are immediate consequences of (i). O

The following Corollary is often useful:

COROLLARY 5.6. Let X be a quasi-compact scheme, F a quasi-coherent sheaf of Ox -modules
locally of finite type. Suppose that for each x € X, there exists a finite number of global sections
of F which generate F(x). Then there exists a finite number of global sections of F that generate
F everywhere.

An important construction is the tensor product of quasi-coherent sheaves. The most general
setting for this is when we have

plXXSYPQ
X/ \Y
N T

F quasi-coherent on X
G quasi-coherent on Y.

Then we can construct a quasi-coherent sheaf 7 ®o, G on X X gY analogously to our definition
and construction of X xg Y itself—viz.?

Step I: characterize F®p,G by a universal mapping property: consider all quisi-coherent®
sheaves of Ox«y-modules H plus collections of maps:

FU)x G(V) = H(p'UNpy'V)

(U C X and V C Y open) which are Ox(U)-linear in the first variable and Oy (V)-
linear in the second and which commute with restriction. F ®o4G is to be the universal
one.
Step II: Show that when X = Spec A, Y = Spec B, S = SpecC, F = ]\7, g = N, then
(M ®c¢ N)N on Spec(A ®c¢ B) has the required property.
Step IIT: “Glue” these local solutions (M, ®c, Na)N together to form a sheaf F ®p, G.
We omit the details. Notice that the stalks of F ®o, G are given by:

If € X XxgY hasimagesz € X,y €Y and s € S,
localization of the O, x ®0, ¢ Oy y-module
(F®0sG), 2 Fr®o, s Gy with respect to the
prime ideal my x ® O%Y + O:p,X @myy
(Use the description of ® in the affine case.) Two cases of this construction are most important:
5(Added in publication) F Moy G is the accepted notation nowadays.
6In fact, F ®og G is universal for non-quasi-coherent H’s too.
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i) X =Y =5: Given two quasi-coherent Ox-modules F, G, we get a third one F ®o, G
with stalks F; ®o, y Gz On affines, it is given by:
M®SpecRﬁ = (M R N)N

ii) Y =5, F = Ox: Given a morphism r: X — Y and a quasi-coherent Oy-module G,
we get a quasi-coherent Ox-module Ox ®p, G. This is usually written r*(G) and has
stalks (r*G): = Oz x ®0,y Gy (y = r(x)). If X and Y are affine, say X = Spec(R),
Y = Spec(S), then it is given by:

(M) (M®sR)
The general case can be reduced to these special cases by formula:
F ®og G = nF ®OX><SY p3G.

Also iterating (i), we define F; ®o, -+ ®o, Fi; symmetrizing or skew-symmetrizing, we get
Symm® F and A* F just like the operations Symm®* M, /\k M on modules.
We list a series of properties of quasi-coherent sheaves whose proofs are straightforward

using the techniques already developed. These are just a sample from the long list to be found
in EGA [1].

5.7. If F is a quasi-coherent sheaf on X and T C Ox 1is a quasi-coherent sheaf of ideals,
then the sheaf
T F — subsheaf of F generated by
def | the submodules Z(U) - F(U)

is quasi-coherent and for U affine
Z-FU)=ZU)-F).
5.8. If F is quasi-coherent and U C'V C X are two affines, then
FU)=2FV) o) Ox(U).
5.9. Let X be a scheme and let
Uw— F(U)
be a presheaf. Suppose that for all affine U and all f € R=T1(U,Ox), the map
F(U) ®r Ry — F(Uy)
is an isomorphism. Then the sheafification sh(F) of F is quasi-coherent and
sh(F)(U) = F(U)
for all affine U.

5.10. If F is coherent and G is quasi-coherent, then Homo, (F,G) is quasi-coherent, with a
canonical homomorphism

F ®oy Homo (F,G) — G.
(cf. Appendiz to this chapter and Proposition 2.6.)

5.11. Let f: X — Y be a morphism of schemes, F a quasi-coherent sheaf on X and G a
quasi-coherent sheaf on'Y. Then

HOH’IOX (f*g7f) = Hom(’)y(gaf*]:)‘
(See (ii) above for the definition of f*G.)
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5.12. Let R be an S-algebra and let f: Spec R — Spec S be the corresponding morphism of
affine schemes. Let M be an R-module. Then M can be considered as an S-module too and we
can form Mg, Mg the corresponding sheaves on Spec R and SpecS. Then

f<(Mp) = Ms.
(cf. Appendiz to this chapter for the definition of f.)

6. The functor of points

We have had several indications that the underlying point set of a scheme is peculiar from
a geometric point of view. Non-closed points are odd for one thing. Another peculiarity is that
the point set of a fibre product X xgY does not map injectively into the set-theoretic product
of X and Y. The explanation of these confusing facts is that there are really two concepts of
“point” in the language of schemes. To see this in its proper setting, look at some examples in
other categories:

ExaMpPLE. Let C = category of differentiable manifolds. Let z be the manifold with one
point. Then for any manifold X,

Mor¢(z, X) = X as a point set.
EXAMPLE. Let C = category of groups. Let z = Z. Then for any group G
Mor¢(z,G) = G as a point set.
ExAMPLE. Let C = category of rings with 1 (and homomorphisms f such that f(1) = 1).
Let z = Z[X]. Then for any ring R,
Mor¢(z, R) 2 R as a point set.
This indicates that if C is any category, whose objects may not be point sets to begin with,

and z is an object, one can try to conceive of Mor¢(z, X) as the underlying set of points of the
object X. In fact:

X — Mor¢(z, X)

extends to a functor from the category C to the category (Sets), of sets. But, it is not satisfactory
to call Mor¢(z, X) the set of points of X unless this functor is faithful, i.e., unless a morphism
f from X7 to Xo is determined by the map of sets:

f: More(z, X1) — More(z, Xa).
EXAMPLE. Let (Hot) be the category of CW-complexes, where
Mor(X,Y)

is the set of homotopy-classes of continuous maps from X to Y. If z = the 1 point complex,
then

Mor (ot (2, X) = mo(X), (the set of components of X)

and this does not give a faithful functor.

ExXaAMPLE. Let C = category of schemes. Take for instance z to be the final object of the
category C: z = Spec(Z). Now
Mor¢(Spec(Z), X)

is absurdly small, and does not give a faithful functor.
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Grothendieck’s ingenious idea is to remedy this defect by considering (for arbitrary categories
C) not one z, but all z: attach to X the whole set:

UMorc(z,X).

In a natural way, this always gives a faithful functor from the category C to the category (Sets).
Even more than that, the “extra structure” on the set |J, Mor¢(z, X) which characterizes the
object X, can be determined. It consists in:
i) the decomposition of | J, Mor¢(z, X) into subsets S, = Mor¢(z, X ), one for each z.
ii) the natural maps from one set S, to another S,/, given for each morphism ¢: z’ — z in
the category.
Putting this formally, it comes out like this:
Attach to each X in C, the functor hx (contravariant, from C itself to (Sets)) via
(%) hx(z) = More(z, X), z an object in C.
(xx) hx(g) = [induced map from Mor¢(z, X') to More(z', X)], g: 2 — z a morphism in C.

Now the functor hx is an object in a category too: viz.
Funct(C®, (Sets)),

(where Funct stands for functors, C° stands for C with arrows reversed). It is also clear that if
g: X1 — X5 is a morphism in C, then one obtains a morphism of functors hy: hx, — hx,. All
this amounts to one big functor:

h: C — Funct(C?, (Sets)).
PROPOSITION 6.1. h is fully faithful, i.e., if X1, Xo are objects of C, then, under h,
More (X1, X2) — Morpunct (hx,, hx,)-
PrRoOOF. Easy. O

The conclusion, heuristically, is that an object X of C can be identified with the functor hx,
which is basically just a structured set.
Return to algebraic geometry! What we have said motivates I hope:

DEFINITION 6.2. If X and K are schemes, a K -valued point of X is a morphism f: K — X;
if K = Spec(R), we call this an R-valued point of X. If X and K are schemes over a third
scheme S, i.e., we are given morphisms px: X — 5, px: K — 5, then f is a K-valued point
of X/S if px o f = px; if K = Spec(R), we call this an R-valued point of X/S. The set of all
R-valued points of a scheme X, or of X/, is denoted X (R).

Proposition 3.10, translated into our new terminology states that if R is a local ring, there
is a bijection between the set of R-valued points of X and the set of pairs (z, ¢), where x € X
and ¢: Op x — R is a local homomorphism. Corollary 3.11 states that for every point z € X in
the usual sense, there is a canonical k(z)-valued point i, of X in our new sense. In particular,
suppose X is a scheme over Speck for a field k: then there is a bijection

set of points z € X such that
= ¢ the natural map k — k(z)
is surjective

set of k-valued points
of X/ Speck

given by associating i, to z. Points z € X with k — k(z) are called k-rational points of X.
K-valued points of a scheme are compatible with products. In fact, if K, X, Y are schemes
over S, then the set of K-valued points of (X xgY)/S is just the (set-theoretic) product of the
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set of K-valued points of X/S and the set of K-valued points of Y/S. This is the definition of
the fibre product.

The concept of an R-valued point generalizes the notion of a solution of a set of diophantine
equations in the ring R. In fact, let:

fl,...,fm S Z[Xl,,Xn}
X = Spec(Z[Xb s 7Xn]/(f17 e afm))

I claim an R-valued point of X is the “same thing” as an n-tuple aq,...,a, € R such that

filar,...,;an) == fm(ai,...,a,) =0.

But in fact a morphism
SpeC(R) i> SpeC(Z[X17 cee 7Xn]/(f17 RS fm))

is determined by the n-tuple a; = ¢*(X;), 1 <i < n, and those n-tuples that occur are exactly
those such that h +— h(aq,...,a,) defines a homomorphism

R(ﬂZ[Xl,---7Xn]/(f17---afm)7

i.e., solutions of fi,..., fm.

An interesting point is that a scheme is actually determined by the functor of its R-valued
points as well as by the larger functor of its K-valued points. To state this precisely, let X be a
scheme, and let hg?) be the covariant functor from the category (Rings) of commutative rings
with 1 to the category (Sets) defined by:

h)(R) = hx (Spec(R)) = Mor(Spec(R), X).

(©)

Regarding Ay’ as a functor in X in a natural way, one has:

PROPOSITION 6.3. For any two schemes X1, Xo,
Mor (X1, X3) — Mor(hg?z,h(;;).
Hence h'© is a fully faithful functor from the category of schemes to
Funct((Rings), (Sets)).

This result is more readily checked privately than proven formally, but it may be instructive
to sketch how a morphism F': hg — hg?g will induce a morphism f: X; — Xs. One chooses an

affine open covering U; = Spec(4;) of X7; let
I;: Spec(Ai) =2U, = Xy
be the inclusion. Then I; is an A;-valued point of X;. Therefore F(I;) = f; is an A;-valued
point of X, i.e., f; defines
UZ‘ = Spec(Ai) — X2.
Modulo a verification that these f; patch together on U; NUj, these f; give the morphism f via

U~ x,,

n /
f
X1
Proposition 6.3 suggests a whole new approach to the foundations of the theory of schemes.

Instead of defining a scheme as a space X plus a sheaf of rings Ox on X, why not define a
scheme as a covariant functor F' from (Rings) to (Sets) which satisfies certain axioms strong
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enough to show that it is isomorphic to a functor hg?) for some scheme in the usual sense? More

precisely:

DEFINITION 6.4. A covariant functor F': (Rings) — (Sets) is a sheaf in the Zariski topology
if for all rings R and for all equations

n
1=>"figi
i=1

then

a) the natural map F(R) — [[, F'(Ry,) is injective
b) for all collections s; € F'(Ry,) such that s; and s; have the same image in F(Ry,y,),
there is an s € F/(R) mapping onto the s;’s.

If F is a functor and £ € F(R), we get a morphism of functors:
¢¢: hg — F
i.e., a set of maps
51 hr(S) = Hom(R, S) = F(S5)

given by:

VR = S

e,s(@) = F()(§)-
If a C R is an ideal, define the subfunctor

® Chr

by
he(S) = set of all homomorphisms a: R — S
R | such that a(a)-S =S .
DEFINITION 6.5. Let F': (Rings) — (Sets) be a functor. An element £ € F(R) is an open
subset if

a) ¢¢: hp — F is injective
b) for all rings S and all n € F(5), consider the diagram:

hpf—) F
be
-
hs

Then there is an ideal a C S such that ¢, Y(hg) = subfunctor h% of hg.

DEFINITION 6.6. A functor F': (Rings) — (Sets) is a scheme functor if

a) it is a sheaf in the Zariski-topology,
b) there exist open subsets &, € F(R,) such that for all fields &,

P(k) = ¢e.hra (k).



30 I. SCHEMES AND SHEAVES: DEFINITIONS

We leave it to the reader now to check that the scheme-functors F' are precisely those given

by
F(R) = Mor(Spec R, X)

for some scheme X. This point of view is worked out in detail in Demazure-Gabriel [35].
It is moreover essential in a very important generalization of the concept of scheme which
arose as follows. One of the principal goals in Grothendieck’s work on schemes was to find a
characterization of scheme-functors by weak general properties that could often be checked in
practice and so lead to many existence theorems in algebraic geometry (like Brown’s theorem” in
(Hot)). It seemed at first that this program would fail completely and that scheme-functors were
really quite special®;but then Artin discovered an extraordinary approximation theorem which
showed that there was a category of functors F' only a “little” larger than the scheme-functors
which can indeed be characterized by weak general properties. Geometrically speaking, his
functors F' are like spaces gotten by dividing affines by étale equivalence relations (cf. Chapter
V) and then glueing. He called these algebraic spaces (after algebraic functions, i.e., meromorphic
functions on C satisfying a polynomial equation; see Artin [16], [17], [18], [19], Knutson [71])°.

7. Relativization

The goal of this section is to extend the concept of Spec in a technical but very important
way. Instead of starting with a ring R and defining a scheme Spec R, we want to start with a
sheaf of rings R on an arbitrary scheme X and define a scheme over X, w: Specy R — X. More
precisely, R must be a quasi-coherent sheaf of Ox-algebras. We may approach the definition of
Specx R by a universal mapping property as follows:

THEOREM-DEFINITION 7.1. Let X be a scheme and let R be a quasi-coherent sheaf of Ox -
algebras. Then there is a scheme over X:

m: Specy R = X
and an isomorphism of Ox-algebras:
R i> W*(OSpecX R)

uniquely characterized by the property:
For all morphisms
Y —=>X
plus homomorphisms of Ox -algebras

a: R — f.(Oy)

there is a unique factorization:

Y -9 Specx R

N

R i> 7I'>|<((98pecx R) g_> f*(OY)

for which « is given by g*:

"See Spanier [109, Chapter 7, §7].
8See for instance Hironaka [60] and Mumford [83, p. 83].
9(Added in publication) For more details and later developments see, §8 below and, e.g., FAG [3].
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The situation is remarkably similar to the construction of fibre products:
Firstly, if X is affine, then this existence theorem has an immediate solution:

Specy R = Spec(R(X)).

The universal mapping property is just a rephrasing of Theorem 3.7 and (5.12).

Secondly, we can use the solution in the affine case to prove the general existence theorem
modulo a patching argument. In fact, let U, be an affine open covering of X. Then the open
subset

71 (Uy,) C Specy(R)
will have to be
Specy, (Rlu.)
(just restrict the universal mapping property to those morphisms f:Y — X which factor
through U, ). Therefore Specy (R) must be the union of affine open pieces Spec(R(U,)). To use
this observation as a construction for all o, 8, we must identify the open subsets below:
??

Spec(R(Ua)) > 75t (Ua NUp) === (Us N Up) © Spec(R(Up))

T S

U, > UanNUs c Ug

Note that
Wa,*(OSpecR(Ua)) = R‘Ua
by (5.12) hence
F(ﬂ(;l(Ua N Uﬁ)7 OSpecR(Ua)) = R(Ua N Uﬁ)
Composing this with
R(UB) — R(Ua N Ug)
res
and using Theorem 3.7, we get a morphism
75 (Us NUg) — Spec R(Up)
that factors through ﬂﬂ_l(Ua NUg). Interchanging o and 3, we see that we have an isomorphism.
Thirdly, we can also give a totally explicit construction of Specy R as follows:
i) as a point set, Specy R is the set of pairs (z,p), where z € X and p C R, is a prime
ideal such that if
1: Op — Ry
is the given map, then
iil(p) = My
ii) as a topological space, we get a basis of open sets:
{U(V, f) | V C X open affine, f € R(V)}

where

UV, f)={(z,p) |z €V, f¢p}

iii) the structure sheaf is a certain sheaf of functions from open sets in Specy R to
H(RI)P’
z,p
namely the functions which are locally given by f/f’, f, f/ € R(V), on U(V, f).

COROLLARY 7.2 (of proof). m has the property that for all affine open sets U C X, 7= 1(U)
s affine.
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In fact, we can formulate the situation as follows:

PROPOSITION-DEFINITION 7.3. Let f: Y — X be a morphism of schemes. Then the follow-
ing are equivalent:

i) for all affine open U C X, f~1(U) is affine,
ii) there is an affine open covering {U,} of X such that f~1(Uy,) is affine,
iii) there is a quasi-coherent Ox-algebra R such that

Y = Specyx(R).
Such an f is called an affine morphism.

PRrROOF. (i) = (ii) is obvious.
(iii) = (i) has just been proven.
(ii) = (iii): let R = f.Oy. Note that if V,, = f~1(U,) and f,, is the restriction of f to

fa: Vo — U,

then f.Oy, is quasi-coherent by (5.10). But R|y, = f.Oy,, so R is quasi-coherent. Now
compare Y and Specy R. Using the isomorphism

[+Oy =R = 71'>»<(OSpecX R)

the universal mapping property for Specy R gives us a morphism ¢

Y _°* Specx R

N

fHUa) = Specy, (£:0v]u.)
= Specy, (Rlv.)
= W_I(Ua)

But f~1(U,) is affine, so

hence ¢ is an isomorphism. O

8. Defining schemes as functors
(Added in publication)
To illustrate the power of Grothendieck’s idea (cf. FGA [2]) referred to in §6, we show

examples of schemes defined as functors.
For any category C we defined in §6 a fully faithful functor

h : C — Funct(C®, (Sets)).

Here is a result slightly more general than Proposition 6.1:

PROPOSITION 8.1 (Yoneda’s lemma). For any X € C and any F € Funct(C°, (Sets)), we
have a natural bijection

F(X) = Morpunct(hx, F).

The proof is again easy, and can be found in EGA [1, Chapter 0 revised, Proposition (1.1.4)].
From this we easily get the following:
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PROPOSITION-DEFINITION 8.2. F' € Funct(C®, (Sets)) is said to be representable if it is
isomorphic to hx for some X € C. This is the case if and only if there exists X € C and
u € F(X), called the universal element, such that

Mor(Z,X) 3 ¢ — F(p)(u) € F(Z)
is a bijection for all Z € C. The pair (X, u) is determined by F up to unique isomorphism.
Let us now fix a scheme S and restrict ourselves to the case
C = (Sch/S) = the category of schemes over S and S-morphisms.

For schemes X and Y over S, denote by Homg(X,Y') the set of S-morphisms. (cf. Definition
3.6.)

A representable F' € Funct((Sch/S), (Sets)) thus defines a scheme over S.

Suppose F' is represented by X. Then for any open covering {U; };cr of Z, the sequence

F(z)— [[Fw) = [] Fwinuy
i€l 1,7€1

is an exact sequence of sets, that is, for any (fi)ier € [[;c; F'(U;) such that the images of f;
and f; in F(U; N Uj) coincide for all 4,j € I, there exists a unique f € F(Z) whose image in
F(U;) coincides with f; for all 4 € I. This is because a morphism f € F(Z) = Homg(Z, X) is
obtained uniquely by glueing morphisms f; € F(U;) = Homg(U;, X)) satisfying the compatibility
condition fi|v,nv; = fjlu;nu; for all 4, j € I. Another way of looking at this condition is that F
is a sheaf of sets (cf. Definition 3 in the Appendix below).

Actually, a representable functor satisfies a stronger necessary condition: it is a sheaf of sets
in the “faithfully flat quasi-compact topology”. (See §IV.2 for related topics. See also FAG [3].)

ExAMPLE 8.3. Let X and Y be schemes over S. The functor
F(Z) =Homg(Z,X) x Homg(Z,Y)
={(q1,2) | q1: Z — X, qs: Z — Y are S-morphisms},
with obvious maps F(f): F(Z) — F(Z') for S-morphisms f: Z' — Z, is represented by the
fibre product X xg Y by Theorem 4.2. The universal element is (p1,p2) € F(X xgY'), where
p1: X XgY — X and p2: X XgY — Y are projections.

ExAMPLE 8.4. The functor
F(Z)=1(Z,0z), for Z e (Sch/S)
F(f)=f*"T(Z,0z) =T(Z',0gz), forfecHoms(Z', Z)
is represented by the relatively affine S-scheme G, g := Specg(Og[T]) by Theorem-Definition
7.1, where Og[T] is the polynomial algebra over Og in one variable T'. The universal element is

T €I'(S,0g[T]). This S-scheme G, g is a commutative group scheme over S in the sense to be
defined in §VI.1.

More generally, we have (cf. EGA [1, Chapter I, revised, Proposition (9.4.9)]):

ExaMpPLE 8.5. Let F be a quasi-coherent Og-module on S. Then the relatively affine S-
scheme
Specg(Symm(F)),
where Symm(F) is the symmetric algebra of F over Og, represents the functor F' defined as
follows: For any S-scheme ¢: Z — S, denote by ¢*F = Oz ®o, F the inverse image of F by
the morphism ¢: Z — S (cf. §5).

F(Z) =Homo, (07 ®o4 F,0z), for Z € (Sch/S)
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with the obvious map
F(f) = f*:Homo,(Fz,0z) = Homo,, (Oz @0y F,0z) = Homo,, (f*(Oz ®og F), f*Oz)

for f € Homg(Z', Z). If we denote by m: X = Specg(Symm(F)) — S the canonical projection,
then the universal element is 7*F — Ox corresponding to the canonical injection F — 7,Ox =
Symm(F). This S-scheme is a commutative group scheme over S in the sense defined in §VI.1.

Similarly to Example 8.4, we have:

EXAMPLE 8.6. The functor
F(Z)=T1(Z,0z)", for Z € (Sch/S)

F(f)=f"T(Z,02)" =T(Z,0z)*, for f e Homg(Z' Z),
where the asterisk denotes the set of invertible elements, is represented by the relatively affine
S-scheme
Gm,s = Specg(Os[T, T~1)).
The universal element is again T' € T'(S, Og[T, T7!]). This S-scheme G, s is a commutative
group scheme over S in the sense to be defined in §VI.1.

More generally:

ExaMPLE 8.7. Let n be a positive integer. The relatively affine S-scheme defined by

1
GL,,s = Specg <OS {Tn, ooy T, det(T)]) )

where T' = (Tj;) is the n x n-matrix with indeterminates Tj; as entries, represents the functor
F(Z) = GLy(I'(Z,0z)),  for Z € (Sch/S),

the set of invertible n x n-matrices with entries in I'(Z, Oz), with obvious maps corresponding

to S-morphisms. This S-scheme is a group scheme over S in the sense defined in §VI.1.

Even more generally, we have (cf. EGA [1, Chapter I, revised, Proposition (9.6.4)]):

EXAMPLE 8.8. Let &£ be a locally free Og-module of finite rank (cf. Definition 5.3). The
functor F' defined by
F(Z) = Autp,(0Oz ®o4 E) for Z € (Sch/S)

with obvious maps corresponding to S-morphisms is represented by a relatively affine S-scheme
GL(E). (cf. EGA [1, Chapter I, revised, Proposition (9.6.4)].) This S-scheme is a group scheme
over S in the sense defined in §VI.1. Example 8.7 is a special case with

GL,.5 = GL(O%™).

ExaMpPLE 8.9. Let F be a quasi-coherent Og-module, and r a positive integer. For each
S-scheme Z, exact sequences of Oz-modules

Oz @og F — & —0
Oz ®os F — & — 0,

where £ and £’ are locally free Oz-modules of rank r, are said to be equivalent if there exists
an Oz-isomorphism a: & — £’ so that the following diagram is commutative:

Oz F —&—0

I

Oz F — & —0.
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For each S-scheme Z, let
F(Z)={0z ®0s F - & — 0| exact with £ locally free Oz-module of rank r}/ ~

(~ denotes the set of equivalence classes). For each S-morphism f: 7' — Z and an exact
sequence Oz ®oy F — £ — 0, the inverse image by f

Oy @0y F = f(Oz 004 F) — ff&—0
defines an element of F(Z’), since the inverse image preserves surjective homomorphisms and
local freeness. Thus we have a functor F': (Sch/S)° — (Sets). This functor turns out to be
representable. The proof can be found in EGA [1, Chapter I, revised, Proposition (9.7.4)].

The S-scheme representing it is denoted by m: Grass”(F) — S and is called the Grassmannian
scheme over S. The universal element is given by an exact sequence

T F —Q—0
with a locally free O assm(7)-module Q of rank r called the universal quotient.

Locally free Og-modules of rank one are called invertible Og-modules. (cf. Definition III.1.1.)
As a special case for r = 1 we have the following:

ExampLE 8.10. Let F be a quasi-coherent Og-module. The functor
F(Z)={0z ®py F = L — 0| exact with £ invertible Oz-module}/ ~

with the map F(f): F(Z) — F(Z') defined by the inverse image by each f: Z' — Z is repre-
sented by an S-scheme
m: P(F) = Projg(Symm(F)) — S
with the universal element given by the universal quotient invertible sheaf
o F — O[p(]:)(l) — 0.
(cf. Definition I1.5.7, Theorem II1.2.8.)

When S = Spec(k) with k an algebraically closed field, the set of k-rational points of the
Grassmann variety Grass” (k") over k parametrizes the r-dimenensional quotient spaces of k"
hence parametrizes (n — r)-dimensional subspaces of k®" that are the kernels of the quotient
maps. In particular the set of k-rational points of the (n—1)-dimensional projective space P(k®")
parametrizes the one-dimensional quotient spaces of k¥™ hence (n — 1)-dimensional subspaces.
To have a functor in the general setting, however, it is crucial to take the quotient approach
instead of the subspace approach, since tensor product is not left exact.

S-morphisms between representable functors can be defined as morphisms of functors by
Proposition 6.1. Here are examples:

ExaMpPLE 8.11. Let F be a quasi-coherent Og-module. Then the Pliicker S-morphism

,
Grass"(F) — P(/\ F)
is defined in terms of the functors they represent as follows: For any S-Scheme Z and
Oz ®oy F — & — 0 exact with locally free Oz-module £ of rank r,

the r-th exterior product gives rise to an exact sequence

Oz®(f)s/\]:—>/\g—>0,

with A" €& an invertible Oz-module, hence a morphism Z — P(A" F). EGA [1, Chapter I,
revised, §9.8] shows that the Pliicker S-morphism is a closed immersion (cf. Definition I1.3.2).
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For quasi-coherent Og-modules F and F’, the Segre S-morphism
P(F) xg P(F) — P(F ®0g F')

is defined in terms of the functors they represent as follows: For any S-scheme Z and exact
sequences

Oz®0s F —L—0 and Oz ®04 F — L — 0,

with invertible Oz-modules £ and £’ the tensor product gives rise to an exact sequence
Oz ®og (F ®og .7:/) — L ®0o, L —0,

with £ ®p, L' an invertible Oz-module, hence a morphism Z — P(F ®og F'). The Segre
S-morphism also turns out to be a closed immersion (cf. EGA [1, Chapter I, revised, §9.8]).

Some of the important properties of schemes and morphisms can be checked in terms of
the functors and morphisms of functors representing them: for instance, valuative criterion for
properness (cf. Proposition 11.6.8) and criterion for smoothness (cf. Criterion V.4.10).

In some cases, the tangent space of a scheme over a field at a point can be defined in terms
of the funtor representing it (cf. §V.1).

ExaMPLE 8.12. The Picard group Pic(X) of a scheme X is the set of isomorphism classes
of invertible Ox-modules forming a commutative group under tensor product (cf. Definition
II1.1.2). The inverse image by each morphism f: X’ — X gives rise to a homomorphism
f*: Pic(X) — Pic(X’). The contravariant functor thus obtained is far from being representable.
Here is a better formulation: For each S-scheme X define a functor Picx/g: (Sch/S)° — (Sets)
by

Picx/5(Z) = Coker[p™: Pic(Z) — Pic(X xg Z)], for each S-scheme ¢: Z — S.

The inverse image by each S-morphism f: Z' — Z gives rise to the map f*: Picx/s(Z) —
Picx,g(Z'). The representability of (modified versions of) the relative Picard functor Picy/g
has been one of the important issues in algebraic geometry. The reader is referred to FGA
[2] as well as Kleiman’s account on the interesting history (before and after FGA [2]) in FAG
[3, Chapter 9]. When representable, the S-scheme Picy, g representing it is called the relative
Picard scheme of X/S and the universal invertible sheaf on X x g Pic x/s 1s called the Poincaré
invertible sheaf. It is a commutative group scheme over S in the sense defined in §VI.1.

ExAMPLE 8.13. Using the notion of flatness to be defined in Definition 1V.2.10 and §IV.4,
the Hilbert functor for an S-scheme X, is defined by

Hilbx/s(Z) = {Y C X x5 Z | closed subschemes flat over Z}

with the maps induced by the inverse image by S-morphisms.
Giving a closed subscheme Y C X xg Z is the same as giving a surjective homomomorphism

Oxxgz — Oy — 0

of Ox x¢z-modules. Thus the Hilbert functor is a special case of the more general functor defined
for a quasi-coherent Ox-module £ on an S-scheme X by

Quote/x/5(Z) ={Oxxsz ®ox € = F — 0| with F flat over Oz}/ ~

with the maps induced by the inverse image by S-morphisms.
The representability of Hilbx s and Quotg, x/¢ has been another major issues. See, for
instance, FGA [2] and Nitsure’s account in FAG [3, Chapters 5 and 7].
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There are many other important schemes that could be defined as functors such as Autg(X)
for an S-scheme, Homg(X,Y") for S-schemes X and Y, moduli spaces, etc. introduced in FGA
[2]. For later purposes, we list here the basic representability theorem for Homg(X,Y).

Let S be a scheme. For S-schemes X and Y, the functor

Homg(X,Y): (Sch/S)° — (Sets)

is defined as follows: For each S-scheme T,

Homg(X,Y)(T) = Homp(X xgT,Y xgT)
and for each S-morphism ¢: T" — T,

¢*: Homg(X,Y)(T) — Homg(X,Y)(T")
sends f: X xgT =Y xgT to

" (f)=(fop,p2): X xgT' = (X xsgT) xp T — (Y xsT) x0T,
where p1: (X xgT) xpT' — X xgT and po: (X xgT) xpT" — T' are projections.
THEOREM 8.14 (Grothendieck). (cf. FGA [2, exposé 221, p. 20], FAG [3, Theorem 5.23]) Let

S be a locally noetherian scheme. Let X be an S-scheme that is projective and flat over S, while

Y is an S-scheme that is quasi-projective over S. (For “projective” and “quasi-projective”, see
Definition 11.5.8, while for “flat” see Definition IV.2.10 and §IV.4.) Then the functor

Homg(X,Y): (locally noetherian Sch/S)° — (Sets)

is representable. In other words, there exists a locally noetherian S-scheme Homg(X,Y') and a
uniwersal Homg(X,Y')-morphism

u: X xg Homg(X,Y) — Y xg Homg(X,Y)
such that for any locally noetherian S-scheme T, and a T-morphism f: X xgT — Y xg T,
there exists a unique S-morphism ¢: T — Homg(X,Y) such that f = ¢*(u).

Appendix: Theory of sheaves

DEFINITION 1. Let X be a topological space. A presheaf F on X consists in:

a) for all open sets U C X, a set F(U),
b) whenever U C V C X, a map

resyy: F(V) — F(U)
called the restriction map,
such that
c) resyy = identity
d) if U ¢V C W, then resy,y oresyy = resy,y.
DEFINITION 2. If F, G are presheaves on X, a map a: F — G is a set of maps
aU): F(U) — G(U)
one for each open U C X, such that forall U C V C X,

a(V)

FV) ——=6(V)
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commutes.

DEFINITION 3. A presheaf F is a sheaf if for all open V' C X and all open coverings {Up, }aes
of V' the two properties hold:
a) if s1,s0 € F(V) and resyp, (s1) = resy,u, (s2) in each set F(Uy,), then s; = so.
b) if s, € F(U,) is a set of elements such that for all o, 8 € S,

TeSU,, UanUs (8a) = Tesu, v.nu, (s5) in F(Us NUp),
then there exists an s € (V') such that resyp, (s) = s, for all a.

(Thus F(V') can be reconstructed from the local values F(Uy,), F(Un NUg) of the sheaf.) If
F is a sheaf, we will sometimes write I'(U, F) for F(U) and call it the set of sections of F over
U.

DEFINITION 4. If F is a sheaf on X and x € X, then with respect to the restriction maps,
one can form
Fr= lim F(U).

all open
with z € U

F, is called the stalk of F at x.

Thus F, is the set of germs of sections of F at x — explicitly, F, is the set of all s € T'(U, F),
for all neighborhoods U of x, modulo the equivalence relation:

S1 ~ 8§89 if reSUl,UlﬂUg (81) = reSUQ,UlﬂUz (82).

The usefulness of stalks is due to the proposition:

PROPOSITION 5.
i) For all sheaves F and open sets U, if s1,s2 € F(U), then s1 = s9 if and only if the
images of s1,s9 in F, are equal for all x € U.
ii) Let a: F — G be a map of sheaves. Then a(U): F(U) — G(U) is injective for all U
(resp. bijective for all U), if and only if the induced map on stalks ay: Fu — Gy i
injective for all x € X (resp. bijective for all x € X ).

(Proof left to the reader.)

DEFINITION 6. A sheaf F is a sheaf of groups, rings, etc., if its values F(U) are groups,
rings, etc., and its restriction maps are homomorphisms.

A typical example of a sheaf is the following: Let X and Y be topological spaces and define,

for all open U C X:

F(U) = {continuous maps from U to Y}.
If Y =R, F is a sheaf of rings whose stalks F, are the rings of germs of continuous real functions
at x.

In our applications to schemes, we encounter the situation where we are given a basis B =
{U,} for the open sets of a topological space X, closed under intersection, and a “sheaf” only
on ‘B, i.e., satisfying the properties in Definition 3 for open sets and coverings of 8 — call this
a B-sheaf. In such a situation, we have the facts:

PROPOSITION 7. Every 2B-sheaf extends canonically to a sheaf on all open sets. If F and G
are two sheaves, every collection of maps

(Us): F(Us) = G(Uy)  for all Uy € B

commuting with restriction extends uniquely to a map ¢: F — G of sheaves.
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IDEA OF PROOF. Given F(U,) for U, € B, define stalks

Fp = lim F(Uy,)
Uae%
:EGUQL

as before. Then for all open U, set

3 a covering {U,, } of U, U,, € ‘B,
F(U) =1 (sz) € [[ 7= | and s; € F(Us,) such that

zeU sy = res s; whenever x € Uy,

If F is a presheaf, we can define several associated presheaves:
a) YU, Vs1,s9 € F(U), say
s1 ~ sy if 3 a covering {U,} of U such that
resy,u, (s1) = resyu, (s2), for all a.
This is an equivalence relation, so we may set

F®(U) = F(U)/(the above equivalence relation ~).
Then F® is a presheaf satisfying (a) in Definition 3 of sheaves.
b) YU, consider sets {Uy, so} where {U,} is a covering of U and s, € F®(U,) satisfy
resy, UanUs (Sa) = T€8u, U.nus (), all o, B.
Say
Wa, sa} ~ {Va, ta} if resy, v.nv;(8a) = resv, v,nvg (ts), all a, 8.

Let
the set of sets {Uy, sq} modulo }

sh(F)(U) = { the above equivalence relation
Then sh(F) is in fact a sheaf.

DEFINITION 8. sh(F) is the sheafification of F.
It is trivial to check that the canonical map
F +—— sh(F)

is universal with respect to maps of F to sheaves, i.e., VF — G, G a sheaf, 33: sh(F) = G
such that
sh(F)

commutes. A useful connection between these concepts is:

PROPOSITION 9. Let B be a basis of open sets and F a presheaf defined on all open sets,
but which is already a sheaf on 6. Then the unique sheaf that extends the restriction to B of F
is the sheafification of the full F.

(Proof left to the reader)

The set of all sheaves of abelian groups on a fixed topological space X forms an abelian
category (cf., e.g., Bass [21, p. 21]). In fact
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a) the set of maps Hom(F,G) from one sheaf F to another G is clearly an abelian group
because we can add two maps; and composition of maps is bilinear.
b) the 0-sheaf, 0(U) = {0} for all U, is a 0-object (i.e., Hom(0, F) = Hom(F,0) = {0},
for all F),
¢) sums exist, i.e., if F, G are two sheaves, define (F & G)(U) = F(U) ® G(U). This
is a sheaf which is categorically both a sum and a product (i.e., Hom(H,F & G) =
Hom(#,F) ® Hom(H,G) and Hom(F & G, H) = Hom(F,H) ® Hom(G, H)).
(This means we have an additive category.)
d) Kernels exist: if a: F — G is any homomorphism, define
Ker(a)(U) ={s € F(U) | a(s) =01in G(U)}.
Then one checks immediately that Ker(a) is a sheaf and is a categorical kernel, i.e.,
Hom(#H, Ker(a)) = {# € Hom(H,F) | o 8 = 0}.
e) Cokernels exist: if a: F — G is any homomorphism, look first at the presheaf:
Pre-Coker(a)(U) = quotient of G(U) by a(F(U)).
This is not usually a sheaf, but set
Coker(a) = sheafification of Pre-Coker(a).
One checks that this is a categorical cokernel, i.e.,
Hom(Coker(a),H) = { € Hom(G,H) | 5o o = 0}.
f) Finally, the main axiom: given a: F — G, then

Ker(G — Coker ) = Coker(Ker oo — F).

PRrROOF. By definition

Coker(Ker a — F)
= sheafification of {U — F(U)/Ker(a)(U)}
= shealfification of {U — Image of F(U) in G(U)}.
Since the presheaf U — aF(U) satisfies the first condition for a sheaf, and is
contained in a sheaf G, its sheafification is simply described as:
Coker(Kera — F)(U)

B 3 a covering {U,} of U
= {S S g(U) such that resy,u, (S) S af(U> }

But
Ker(G — Coker ) (U)

= {s€gGU)|s+ 0in Coker(a)(U)}
image of s in the presheaf

= ¢seGU) | U—GWU)/aF(U) is killed by
process (a) of sheafification

B 3 a covering {U,} of U such

- {3 €4(U) ‘ that s — 0 in G(Ua)/aF(Ua) }

B 3 a covering {U,} of U such
N {S €46(U) that resyy, (s) € aF (Uy) }
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The essential twist in the theory of abelian sheaves is that if
0=F—=>G—->H—-0
is an exact sequence, then:
0— F(U) — G(U) — H(U) is exact
but
G(U) — H(U) is not in general surjective.
In fact, to test the surjectivity of a sheaf homomorphism «: G — H, one must see whether the

presheaf U —— H(U)/G(U) dies when it is sheafified, i.e.,

Vs € H(U), 3 covering
[a: G — H surjective] <= | {Uy} of U such that
resy v, (s) € Image of G(Uy)

As one easily checks, this is equivalent to the induced map on stalks G, — H, being surjective
for all x € X.

The category of abelian sheaves also has infinite sums and products but one must be a little
careful: if {F,}aes is any set of sheaves, then

Ur— [ Fa(U)
a€esS
is again a sheaf, and it is categorically the product of the F,’s but
Ur— > Fo(U)
a€es
need not be a sheaf. It has property (a) but not always property (b), so we must define the
sheaf > F, to be its sheafification, i.e.,

3 a covering {Ug} of U such that
Z Fo(U)=4qs€ H Fa(U) | for all B, resyy,(s) has only a

a€s aEs finite number of non-zero components

This ) cg Fa is a categorical sum. But note that if U is quasi-compact, i.e., all open coverings
have finite subcoverings, then clearly

D Fall) =) (Fall)).
aEesS aesS
There are several more basic constructions that we will use:
a) given F, G abelian sheaves on X, we get a new abelian sheaf
Hom(F,G) by
Hom(F,G)(U) = {homomorphisms over U from F|y to G|y }.
b) given a continuous map f: X — Y of topological spaces and a sheaf F on X, we get a
sheaf f,F onY by
LFU) = F(fHU)).

It is trivial to check that both of these are indeed sheaves.
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Exercise

Let F be a presheaf of sets on a topological space X. Show that there is a sheaf aF on
X and a map a: F — aF of presheaves such that a induces a bijection

Homsheaves(a]:a g) — Hompresheaves (]:a g)

for every sheaf of sets G on X. Here the first Hom means maps in the category of
sheaves, while the second Hom means maps in the category of presheaves.

Hint: Try to use a direct limit construction to force the sheaf property to hold. You
probably will need to apply the same procedure twice, because when applied for the
first time you are likely to get only a separated presheaf, i.e., for every open covering
U; of an open U, the map G(U) — [[, G(U;) is injective. Repeating the process, you
get the exactness of

GU) = [[oW) = [[owinu;).
(2 1,7
Let f: X — Y be a continuous map of topological spaces.
(i) Show that the functor f, from the category of presheaves on X to the category of
presheaves on Y has a left adjoint f*%.
Hint: Let F be a sheaf of sets on Y. For any open subset U C X, let
AUy = lim  F(V),
U=f=1(V)
where the indexing set of the direct limit is the set of all open subsets V' C Y such
that f(U) C V.

(ii) Show that the functor f, from the category of sheaves on X to the category of
sheaves on Y has a left adjoint f°.

Hint: Let f*F be the sheafification af*(F) of the presheaf f#(F).

(iii) When X = Spec(R), Y = Spec(S), f is given by a ring homomorphism from S
to R, and F = M is the quasi-coherent Oy-module attached to an S-module M,
check that O x ® pey. f*F is naturally isomorphic to the quasi-coherent O x-module
attached to R ®g M.

Let f: X — Y be a morphism of schemes, and let F be a quasi-coherent Oy-module.

Verify that f*F := Ox ®pep, f*F is canonically isomorphic to the pull-back of quasi-

coherent modules explained after Corollary 5.6 and before (5.7). Similarly, suppose

that 7: X — S and s: Y — S are S-schemes, and F (resp. G) is a quasi-coherent Ox-
module (resp. Oy-module). Verify that p{F ®Oxx gy p5G is canonically isomorphic to

the quasi-coherent Ox x ¢y-module “Ox ®p, Oy” after Corollary 5.6 and before (5.7).

Verify that for any commutative ring R with 1, the set of all R-valued points of GL,, 7

is in bijection with the set of all units of the algebra M, (R) of n x n-matrices with

entries in R.

Denote by Ag the ring of all Q-adeles, defined to be the subset of R x ]_[p Qp, consisting

of all sequences (z;);cx, where the indexing set ¥ consists of oo and the set of all

prime numbers, z, € R, 2, € Q, for all p, and x, € Z, for all but a finite number
of p’s. Describe explicitly the set of all Ag-points of G, := Spec(Z[T,1/T]), GL,, and

A\ {0,1}.

Give an example of a sheaf on Spec(Z[T]) that is not quasi-coherent.

Let X be a scheme. Do infinite products exists in the category of all quasi-coherent

Ox-modules? Either give a proof or a counterexample.
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(8) Let k be a field. Are Spec(k[x,y, 2]/(z? — y? — 2*)) and Spec(k[z,y, 2]/ (2% — y? — 22))
isomorphic as k-schemes? Either give a proof or a counterexample.

(9) Let k be a field of characteristic p > 0. Let o: Spec(k) — Spec(k) be the morphism
such that ¢* is the Frobenius homomorphism u +— uP for u € k. For any k-scheme X,
denote by X®) the fibre product X X spec(k) (0, Spec(k)). Give an example in which the

scheme X ® is not isomorphic to X.

(10) Give an example of an additive category which is not an abelian category.

(11) (Weil’s retriction of scalars) Let T'— S and X — T be schemes. The Weil restriction
Ry/s(X) is the contravariant functor from the category of S-schemes to the category
of sets such that

RT/S<X)(Z) = HOHIT(T Xgs Z,X)

for every S-scheme Z — S. If T' = Spec(R) and S = Spec(A), one often shortens the
notation to Rg/4(X). Prove that Re/r(Gm) = Spec(Rlz,y, (z* + %)~ 1]).

Note: Here is a more intrinsic way to think about the ring R[z,y, (z2+4?)7!]. Let B =
Symm*(C") be the R-algebra of polynomial functions on C, where CV = Homg(C, R).
Let Tr and Nm be the elements in B corresponding to Tr¢ g and Nmc /g, respectively.
Then the localization B[(Nm)~'] of B represents R¢/g(Gm).-

(12) (Continuation on the Weil restriction) Let A be a ring, and let R be finitely generated
A-algebra which is a projective A-module. Let RY = Homy (R, A) be the A-module
dual to R. Denote by d§ the element of R ®4 R" corresponding to the identity map
id € End4(R) under the natural isomorphism Ends(R) = R®4 R".

(i)

Let B be an R-algebra. For any f € B and any u € RY, let u,(f) € R¥ ®4 B be
the image of the element § @ f € R®4 RY ®4 B under the map
u®idrvgp: R®4 RY ®4 B — RY ®4 B.
For any f1, fo € B and any element u € RY, let u(f1, f2) be the image of (§® f1)®
(6 ® f2) under the composition of the following maps
(R4 RY ®4B)®4 (R®a Ry ® B)
= (R®AR)®4(RY®aB)®4 (R ®aB)

HEean R®4 Symm?(R" ®4 B)

usid Symm?(RY ®4 B),
where the arrow g ® can is induced by the multiplication yu: R® R — R of R
and the natural surjection can: (RY ®4 B) ®4 (RY ®4 B) — Symm?(RY ®4 B).
Let F = Symm®(RY ®4 B) be the symmetric algebra of the A-module RV ®4 B.

Denote by Rg/4(B) the quotient ring of F' with respect to the ideal I generated
by all elements of the form

u(f1, f2) — wy(f1- f2), UER\/, f1, fo € B.

Show that Spec(Rp/4(B)) represents Rp/4 Spec(B).
Show that for any R-scheme X, the functor Rp/4(X) is representable in the cat-
egory of S-schemes.






CHAPTER II

Exploring the world of schemes

1. Classical varieties as schemes

Having now defined the category of schemes, we would like to see how the principal objects
of classical geometry—complex projective varieties—fit into the picture. In fact a variety is
essentially a very special kind of scheme and a regular correspondence between two varieties is
a morphism. I would like first to show very carefully how a variety is made into a scheme, and
secondly to analyze step by step what special properties these schemes have and how we can
characterize varieties among all schemes.

I want to change notation slightly to bring it in line with that of the last chapter and write
P™(C) for complex projective n-space, the set of non-zero (n + 1)-tuples (ag, .. ., a,) of complex
numbers modulo (ag, . ..,a,) ~ (Aag,...,Aa,) for A € C*. Let

X(C) c PY(C)
be a complex projective variety, i.e., the set of zeroes of the homogeneous equations f € p,
p C C[Xp,...,X,] being a homogeneous prime ideal. Next for every irreducible subvariety:
W(C) c X(C), dimW(C) > 1

let my be a new point. Define X to be the union of X(C) and the set of these new points
{...,nw,...}. This will be the underlying point set of a scheme with X(C) as its closed points
and the ny’s as the non-closed points. Extend the topology from X (C) to X as follows:

for all Zariski open U(C) C X(C),
let U=U(C)U{nw | W(C)NU(C) £ 0}.
One sees easily that the map U(C) — U preserves arbitrary unions and finite intersections,
hence it defines a topology on X. Moreover, in this topology:
a) Vo € X(C), z € {nw} < z € W(C)
b) vV(C) € X(C), nv € {mw} < V(C) c W(C),

hence {nw} is just W, ie., qy is a generic point of W. You can picture P? for instance,

something like that in Figure II.1.
To put a sheaf on X, we can proceed in two ways:

METHOD (1). Recall that we have defined in Part I [87, Chapter 2], a function field C(X)
and for every x € X(C), a local ring O, x with quotient field C(X). Now for every open set
U C X, define

Ox(U)= () Oux
zeU(C)
and whenever U; C Us, note that Ox (Uz) is a subring of Ox(U;): let

resy,,u; : OX(UQ) — Ox(Ul)

be the inclusion map. In this way we obviously get a sheaf; in fact a subsheaf of the constant
sheaf with value C(X) on every U.

45
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FiGureg I1.1. P2

METHOD (2). Instead of working inside C(X), we can work inside the sheaf of functions
from the closed points of X to C:

CX(U) = {set of functions f: U(C) — C}
restriction now being just restriction of functions. Then define

subset of CX(U) of functions f such that for every
x € U(C), there is a neighborhood Uy of z in U and a

rational function a(xg,...,z,)/b(xo,...,2y), a and b
Ox(U) = { homogeneous of the same degree, such that
a/ y07 AR yn
f(y()a?yn):(i) b(?/0>,2/n)7é0

b(y07 LR 7yn)’

for every y € U,

This is clearly a subsheaf of CX. To see that we have found the same sheaf twice, call these
two sheaves (’)g(, (’)E} for a minute and observe that we have maps:

[0}

—
Ox(U) - OX(U)

alf) = the function x — f(z) (OK since f(x) is defined)
| whenever f € O, x

the element of C(X) represented by any of the
rational functions a(xg, ..., xz,)/b(xo, ..., Tn)

_J which equal f in a Zariski open subset of U.
b (OK since if a/b and ¢/d have the same values in a
non-empty Zariski-open U NV, then ad — bc =0
on X, hence a/b=c¢/d in C(X).) )

From now on, we identify these two sheaves and consider the structure sheaf Ox either as a
subsheaf of the constant sheaf C(X) or of CX, whichever is appropriate. The main point now is
that (X, Ox) is indeed a scheme. To see this it is easiest first to note that we can make all the
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above definitions starting with a complex affine variety Y (C) C C™ instead of with a projective
variety. And moreover, just as X (C) C P"(C) is covered by affine varieties

Yi(C) = X(C)\ X(C) nV(Xi)

so too the pair (X, Ox) is locally isomorphic at every point to (Y;, Oy,) for some i. Therefore it is
enough to show that (Y;, Oy;) is a scheme. But if the affine Y'(C) equals V (p), p C C[X7,..., X,)]
a prime ideal, then I claim:

(1'1) (Y OY) (Spec(c[Xh--an]/paOSpec(C[X]/p)'

PROOF. The prime ideals § € C[Xy,...,X,]/p are in one-to-one correspondence with the
prime ideals q:
pCqCClXy,..., X,
and these are in one-to-one correspondence with the set of irreducible closed subsets of V' (p),
i.e., to the points of Y (C) plus the positive dimensional subvarieties of Y (C). Therefore there
is a canonical bijection:

Y = SpecC[Xy,..., X,]/p
via
Nv(q) < [a] for § not maximal
Y(C)sa+—[(X1 —a1,..., X, —a,) mod p]
[Recall that the maximal ideals of C[X1,..., X,]/p are the ideals I(a) of all functions vanishing

at a point a € X(C), i.e., the ideals (X7 —a1,..., X, —a,)/p.] It is seen immediately that this
bijection is a homeomorphism. To identify the sheaves, note that for all f € C[X1,..., X,],

Oy (Yy) = (| Oay
aEYf((C)
I(a)

= () (localization of C[X1,...,Xy]/p at (X1 —ay,...,Xn—an)/p)

acY (C)
f(a)7#0

while
OSpec(C[X}/p (Yf) locahzatlon (C[Xq,... ,Xn]/p)f

These are both subrings of C(Y'), the quotlent field of C[X7, ..., X,]/p. Now since f(a) # 0 =
€ (C[X]/p) \ I(a), we see that

CX)/prc () (CIX/P)rw

acY (C)
f(a)#0
And if
ge N
acY (C)
J(a)#0
let

a={heC[X]/p|gh € C[X]/p}.
If f(a) # 0, then 3gq, he € C[X]/p and h, & I(a) such that g = gq/hq, hence h, € a. Thus a ¢
V(a). Since this holds for all @ € Y/(C)y, we see that V(a) C V(f), hence by the Nullstellensatz
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(cf. Part I [87, §1A, (1.5)], Zariski-Samuel [119, vol. II, Chapter VII, §3, Theorem 14| and
Bourbaki [27, Chapter V, §3.3, Proposition 2]) fV € a for some N > 1. This means precisely
that g € (C[X]/p)s. Thus the sheaves are the same too. O

To simplify terminology, we will now call the scheme X attached to X(C) a complex pro-
jective variety too. Next, if

X(C) cPY(C)
Y (C) c P*(C)
are two complex projective varieties and if
Z(C)c X(C) xY(C)
is a regular correspondence from X to Y, we get a canonical morphism
fz: X —Y.

In fact, as a map of sets, define the following.
If x € X(C): fz(x) = the unique y € Y(C) such that (z,y) € Z(C)

ny ifdimV(C) >1
If X(C): =
W(C) € X(©) fom) ={ ™ LG
where V(C)=p [(W(C) xY(C))n Z(C)].

One checks immediately that this map is continuous. To define the map backwards on sheaves,
proceed in either of two ways:

METHOD (1). Recall that Z defined a map Z*: C(Y) — C(X) and the fact that Z is regular
implies that for all z € X(C), if y = fz(z), then

Z*(O%y) C 0357)(.

Therefore, for every open set U C Y,

ZHOoyU)=2"| () Oy
yeU(C)

c () Oux
z€f,;'U(C)
= Ox(f;'U)
giving a map of sheaves.
METHOD (2). Define a map
f7:CY(U) — C¥(f;'U)
by composition with fz, i.e., if a: U(C) — C is a function, then ao f is a function fz_lU((C) —

C. One checks immediately using the regularity of Z that f7 maps functions « in the subring
Oy (U) to functions a o fz € Ox(f,;1(U)).

There is one final point in this direction which we will just sketch. That is:

PRrOPOSITION 1.2. Let X(C) C P*(C) and Y(C) C P™(C) be complex projective varieties.
Let Z(C) c P"™ ™ (C) be their set-theoretic product, embedded by the Segre embedding as
third complex projective variety (cf. Part I [87, Chapter 2]). Then the scheme Z is canonically
isomorphic to the fibre product X Xgpec(cy Y of the schemes X and Y.
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IDEA OF PROOF. Let Xo,...,Xp,Yp,...,Y,, and Z;; (0 < i < n,0 < j < m) be homoge-
neous coordinates in P"(C), P"™(C) and P""*+"*™(C). Then by definition Z(C) is covered by
affine pieces Z;,;, # 0 which are set-theoretically the product of the affine X;, # 0 in X (C) and
Yj, # 0in Y(C). The Segre embedding is given in this piece by

Zy X Y,
Zivio  Xio Yo

0J0

so the affine ring of Z comes out:

Zij
Cl..., ,...]/{functions 0 on Z(C)}
Ziojo
=CJ..., &, cee ﬁ, ...]/{functions 0 on X(C) x Y/(C)}.
X, Y,

To see that this is the tensor product of the affine rings of X and Y:

X; Y.

Cl...,~=,...]/{functions 0 on X(C)} | ®c (C[..., >

X, Y;

one uses the ordinary Nullstellensatz (cf. Part I [87, §1A, (1.5)], Zariski-Samuel [119, vol. II,
Chapter VII, §3, Theorem 14] and Bourbaki [27, Chapter V, §3.3, Proposition 2]) plus:

, . ..]/{functions 0 on Y((C)})

LEMMA 1.3. If R and S are k-algebras with no nilpotents, k a perfect field, then R®y S has
no nilpotent elements.

(cf. §IV.2 below.) O

COROLLARY 1.4. Let X(C), Y(C) be complex projective varieties. Then the set of reqular
correspondences from X(C) to Y(C) and the set of C-morphisms from the scheme X to the
scheme Y are the same.

IDEA OF PROOF. Starting from f: X — Y, we get a morphism
f X ly: X XSpec((C) Y —Y XSpec((C) Y.

If A(C) € Y(C) x Y(C) is the diagonal, which is easily checked to be closed, define I' =
(f x 1y)"Y(A), then I'(C) is closed in X(C) x Y (C) and is the graph of res(f). Therefore I'(C)
is a single-valued correspondence and a local computation shows that it is regular. O

2. The properties: reduced, irreducible and finite type

The goal of this section is to analyze some of the properties that make classical varieties
special in the category of schemes. We shall do two things:

a) Define for general schemes, and analyze the first consequences, of three basic properties
of classical varieties: being irreducible, reduced, and of finite type over a field k. A
scheme with these properties will be defined to be a variety over k.

b) Show that for reduced schemes X of finite type over any algebraically closed field k, the
structure sheaf Ox can be considered as a sheaf of k-valued functions and a morphism
is determined by its map of points. Thus varieties over algebraically closed k’s form
a truly geometric category which is quite parallel to differentiable manifolds/analytic
spaces/classical varieties.

PROPERTY 1. A complex projective variety X is irreducible, or equivalently has a generic
point Nx.
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This is obvious from the definition. To put this property in its setting, we can prove that
every scheme has a unique irredundant decomposition into irreducible components. In fact:

DEFINITION 2.1. A scheme X is locally noetherian if every x € X has an affine neighborhood
U which is Spec(R), R noetherian. A scheme is noetherian if it is locally noetherian and quasi-
compact; or equivalently, if it has a finite covering by Spec’s of noetherian rings.

PROPOSITION 2.2. Fvery scheme X has a unique decomposition

X = U Za, Lo trreducible closed, Zo ¢ Zg if o # f.

If X is locally noetherian, this decomposition is locally finite. If X 1is noetherian, then the
decomposition is finite.

PRrROOF. The general case is immediate, and the noetherian cases from the fact that in a
noetherian ring R, 1/(0) is a finite intersection of prime ideals. O

An important point concerning the definition of locally noetherian is:

PROPOSITION 2.3. If X s locally noetherian, then for every affine open Spec(R) C X, R is
noetherian.

Without this proposition, “locally noetherian” would be an awkward artificial concept. This
proposition is the archetype of a large class of propositions that “justify” a definition by showing
that if some property is checked for a covering family of open affines, then it holds for all open
affines.

PROOF OF PROPOSITION 2.3. Let U, = Spec(R,) be an open cover of X with R, noether-
ian. Then Spec(R) is covered by distinguished open subsets of the U,, and each of these is of
the form Spec((Rqa)y, ), i-e., Spec of another noetherian ring. But now when f € R is such that:

Spec(Ryf) C Spec(Rqy) .,

then
Spec(Ry) = Spec (((Ra)fa)resy), Via res: R — (Ra)y,,
hence
Ry = (Ra) fo)yes 1

hence Ry is noetherian. Therefore we can cover Spec(R) by distinguished opens Spec(Ry,) with
Ry, noetherian. Since Spec(R) is quasi-compact, we can take this covering finite. This implies
that if a, is an ascending chain of ideals in R, a, - Ry, is stationary for all ¢ if « is large enough,
and then

n n
Aa+1 = ﬂ aoz—i—lRf,L- = ﬂ ClaRfi = Oq-
i=1 =1

PROPERTY 2. A complex projective variety X is reduced, in the sense of:

DEFINITION 2.4. A scheme X is reduced if all its local rings O, x have no non-zero nilpotent
elements.

It is easy to check that a ring R has non-zero nilpotents if and only if at least one of its
localizations R, has nilpotents: therefore a scheme X is reduced if and only if it has an affine
covering U, such that Ox(U,) has no non-zero nilpotents, or if and only if this holds for all
affine U C X. Moreover, it is obvious that a complex projective variety is reduced.
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Reduced and irreducible schemes in general begin to look a lot like classical varieties. In
fact:

PROPOSITION 2.5. Let X be a reduced and irreducible scheme with generic point . Then
the stalk O, x is a field which we will denote R(X), the function field of X. Then

i) for all affine open U C X, (resp. all points v € X ), Ox(U) (resp. Oy x) is an integral
domain with quotient field R(X),
ii) for all open U C X,
Ox(U) = () Oux
reX
(the intersection being taken inside R(X)) and if Uy C Uy, then resy,y, : Ox(Uz) —
Ox (Uy) is the inclusion map between subrings of R(X).

PROOF. If U = Spec R is an affine open of X and n = [p], p a prime ideal of R, then @ U
implies that p is contained in all prime ideals of R, hence p = \/@ in R. But R has no nilpotents
sop = (0), i.e., Ris an integral domain. Moreover O, x = O] spec g = Ry = quotient field of R.
Thus O, x = R(X) is a field and is the common quotient field both of the affine rings R of X

and of all localizations Rg of these such as the local rings Ry = O x (9 C R any prime ideal).
This proves (i). Now if U C X is any open set, consider

res: Ox(U) — O, x = R(X).

For all s € Ox(U), s # 0, there is an affine U’ = Spec R’ C U such that resy y(s) is not 0 in R’
Since R’ C R(X), res(s) € R(X) is not 0. Thus res is injective. Since it factors through O, x
for all x € U, this shows that
Ox(U) C ) Ou.x.
zeU
Conversely, if s € () cx Oz, x, then there is an open covering {U,} of U and s, € Ox(Ua)
mapping to s in R(X). Then s, —sg € Ox(Uy NUp) goes to 0 in R(X), so it is 0. Since Ox is
a sheaf, then s,’s patch together to an s € Ox(U). This proves (ii). O

PROPERTY 3. A complex projective variety X is a scheme of finite type over C, meaning:

DEFINITION 2.6. A morphism f: X — Y is locally of finite type (resp. locally finitely
presented) if X has an affine covering {U,} such that f(U,) C V,, V,, an affine of Y, and the
ring Ox (Uy) is isomorphic to Oy (V,)[t1, ..., tn]/a (resp. same with finitely generated a). f is
quasi-compact if there exists an affine covering {V,} of Y such that each f~!(V,) has a finite
affine covering; f is of finite type (resp. finitely presented) if it is locally of finite type (resp.
locally finitely presented) and quasi-compact.

It is clear that the canonical morphism of a complex projective variety to Spec(C) has all
these properties. As above with the concept of noetherian, these definitions should be “justified”
by checking:

ProprosITION 2.7. If f is locally of finite type, then for every pair of affine opens U C X,
V CY such that f(U) CV, Ox(U) is a finitely generated Oy (V')-algebra; if f is quasi-compact,
then for every quasi-compact open subset S C'Y, f~1(S) is quasi-compact. (Analogous results
hold for the concept “locally finitely presented”.)

PrOOF. The proof of the first assertion parallels that of Proposition 2.3. We are given U, ’s,
Vo's with Ox (U, ) finitely generated over Oy (V,). Using the fact that Ry = Rz]/(1 — zf),
hence is finitely generated over R, we can replace U,, V, by distinguished opens to get new
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Ug’s, V’s such that Ox(Up) is still finitely generated over Oy (V3), but now Ug C U, Vg C V
and U = |JUs. Next make another reduction until U, (resp. V) is a distinguished open in
U (resp. V). Then since Ox(U,) is finitely generated over Oy (V,) and Oy (V) = Oy (V)y, is
finitely generated over Oy (V'), we may replace V,, by V. We come down to the purely algebraic
lemma:

S is an R-algebra

1= Z fig9i, [fi:9i €S = S finitely generated over R.

Sy, finitely generated over R

PrOOF. Take a finite set of elements x) of S including the f;’s, ¢g;’s and elements whose
images in Sy, plus 1/f; generate Sy, over R. These generate S, because if k € S, then
Pi(z))
sz

P; = polynomial over R.

k:

in Sfi

Thus fN™k = fMP,(z,) in S. But
1= (Z figi

=> Qilf.9)- £V
=1

>n(N+M)

hence .
k= Qi(f,9) M Pi(xy).
i=1 -
We leave the proof of the second half of Proposition 2.7 to the reader. O

A morphism of finite type has good topological properties generalizing those we found in
Part I [87, (2.31)]. To state these, we must first define:

DEFINITION 2.8. If X is a scheme, a constructible subset S C X is an element of the Boolean
algebra of subsets generated by the open sets: in other words,

S=5U---US5;
where S; is locally closed, meaning it is an intersection of an open set and a closed subset.

THEOREM 2.9 (Chevalley’s Nullstellensatz). Let f: X — Y be a morphism of finite type and
Y a noetherian scheme. Then for every constructible S C X, f(S) CY is constructible.

PRrOOF. First of all, we can reduce the theorem to the special case where X and Y are
affine: in fact there are finite affine covering {U;} of X and {V;} of Y such that f(U;) C Vi. Let
fi =res f: U; — V;. Then for every S C X constructible, f(S) =] fi(SNU;) so if f;(SNU;)
is constructible, so is f(S). Secondly if X = Spec R, Y = Spec S, we can reduce the theorem to
the case R = S[z]. In fact, if R = S[z1,...,xy], we can factor f:

X = Spec S[z1,...,xy] = Spec S[x1,...,xp-1] — -
- — Spec S[z1] — Spec S =Y.
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Now a basic fact is that every closed subset V(a) of an affine scheme Spec(R) is homeomor-
phic to the affine scheme Spec(R/a). In fact there is a bijection between the set of prime ideals
q C R/a and the set of prime ideals q C R such that q D a and this is readily seen to be a home-
omorphism (we will generalize this in §3). Also, since V(a) = V(y/a), V(a) is homeomorphic to
the reduced scheme Spec(R/+/a) too. We use this first to make a third reduction to the case

f+: Spec S[X] — Spec S.

In fact, if R is generated over S by one element, then R 2 S[X]/a and via the diagram:

SpecR = V(a) c S[X]
NS
Spec S

the theorem for f implies the theorem for f’. Fourthly, we make a so-called “noetherian in-
duction”: since the closed subsets V(a) C Spec S satisfy the descending chain condition, if the
theorem is false, there will be a minimal V(a) C Spec(S) such that

res f: f~1(V(a)) — V(a)

does not take constructibles to constructibles. Since f~1(V(a)) = V(a - S[X]), we can replace
Spec S by Spec S/a and Spec S[X] by Spec(S/a)[X] and reduce to the case:

for all constructible sets C' C Spec S[X], if f(C) & Spec(S),
then f(C) is constructible.

()

Of course we can assume in this reduction that a = /a, so that the new S has no nilpotents.
Spec S in fact must be irreducible too: if not,

Spec S = Z1 U Zo, Z; G Spec S, Z; closed.

Then if C' C Spec S[X] is constructible, so are CN f~1(Z;), hence by () so are f(CNf~Y(Z;)) =
F(C)NZ;; hence f(C) = (f(C)NZ1)U(f(C)NZ3) is constructible. Thus S is an integral domain.
In view of (x), it is clear that the whole theorem is finally reduced to:

LEMMA 2.10. Let S be an integral domain and let n € SpecS be its generic point. Let
C C Spec S[X] be an irreducible closed set and Cy C C an open subset. Consider the morphism:

f: Spec S[X] — Spec S.
Then there is a non-empty open set U C Spec S such that either U C f(Cy) or U N f(Cy) = 0.

PROOF OF LEMMA 2.10. Let K be the quotient field of S. Note that f~1(n) = Spec K[X] =
A}(, which consists only of a generic point n* and its closed points. C' N f~1(n) is a closed
irreducible subset of f~1(n), hence there are three possibilities:

Casei) C' D f~1(n), so C = Spec S[X],
Case ii) C'N f~1(n) = {¢}, ¢ a closed point of f~1(n), and
Case iii) C' N f~1(n) = 0.
In case (i), Cp contains some distinguished open Spec S[X] 4, where g = ap X" +a1 X" 1+ - -+ay,,
ag # 0. Let U = Spec S,,. For all z € Spec S, f~1(x) 2 Speck(x)[X] = Aﬂlg(m) and:

Coﬂf‘l(x)z{yeAulg(x) ’ 9(y) #0, where g =GoX" +--- + }

and @; = image of a; in k(x)
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So if # € U, @y # 0, hence g # 0, hence the generic point of f~1(x) is in Cy N f~!(z), hence
x € f(Cp). In case (ii), let C =V (p). Then
p- K[X]| =g K[X], g irreducible.
We may assume that g = ag X" + - - - + a,, is in p, hence a; € S. Then
V(g) > C > Cy,

but all three sets intersect the generic fibre f~1(n) in only one point ¢. Thus V(g) \ Cp is a
constructible set disjoint from f~!(n). Let:

V(g)\Co=WiU---UW;, W, irreducible with generic points w; ¢ f~1(n).
Then f(W;) C {f(w;)} and {f(w;)} is a closed proper subset of Spec S. Thus

t
f(V(g)\ Co) C U {f(w;)} C some subset V() of Spec S
i=1
(€S, a«#0). Now let U = Spec Sgyq. Then if x € U,

a(z) # 0= f"H(z)NCo= f (z)NV(g)

= {y € Ay | 9y) = 0} :

Since ag(z) # 0, g #Z 0, hence g has an irreducible factor g, and the prime ideal g, - k(z)[X]
defines a point of f~!(x) where g is zero. Thus = € f(Cp), which proves U C f(Cp). In case
(iii), let ¢ be the generic point of C. Then

F(C) c{f(O}
hence U = Spec S\ {f(¢)} is an open set disjoint from f(Cp). O

COROLLARY 2.11. Let k be a field and X a scheme of finite type over k. If x € X then

T 18 an algebraic point

s closed] <
[ s closed] i.e., k(z) is an algebraic extension of k.

ProoF. First assume « closed and let U = Spec R be an affine neighborhood of z. Then x
is closed in U and hence {z} is a constructible subset of U. Let R = k[X1,...,X,]/a. Each X;
defines a morphism p;: U — A} by Theorem 1.3.7. p; is clearly of finite type so by Theorem 2.9
pi(x) is a constructible point of Al. Now apply:

LEMMA 2.12 (Euclid). For any field k, A,lg contains an infinite number of closed points.

PROOF. Al = Speck[X] and its closed points are of the form [(f)], f monic and irreducible.
If fi,..., fn is any finite set of such irreducible polynomials, then an irreducible factor g of
Hf\il fi + 1 cannot divide any of the f;, hence [(g)] # [(f;)] for any 3. O

It follows that the generic point of A} is not a constructible set! Thus k(p;(x)) is algebraic
over k. Since the residue field k(z) is generated over k by the values of the coordinates X, i.e.,
by the subfields k(p;(x)), k(z) is algebraic over k. Conversely, if = is algebraic but not closed,
let y € {2}, y # x. Let U = Spec R be an affine neighborhood of y. Then z € U too, so x is
not closed in U. Let x = [p] and use the fact that if £ is algebraic over k, then k[{] is already
a field. Since k(z) D R/p D k, all elements of R/p are algebraic over k, hence R/p is already a
field. Therefore p is maximal and x must be closed in U — contradiction. U

COROLLARY 2.13. Let k be a field and X a scheme of finite type over k. Then:
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generic point [(0)]

FIGURE I1.2. “Parody of P}.”

a) If U C X is open, and x € U, then x is closed in U if and only if = is closed in X.

b) For all closed subsets S C X, the closed points of S are dense in S.

¢) If Max(X) is the set of closed points of X in its induced topology, then there is a natural
bijection beween X and the set of irreducible closed subsets of Max(X) (i.e., X can be
reconstructed from Max(X) as schemes were from classical varieties).

PROOF. (a) is obvious by Corollary 2.11. To prove (b), we show that for every affine open
UcCX,ifUNS # 0, then U N S contains a point closed in X. But if U = Spec R, and
UNS =V(p), then in the ring R, let m be a maximal ideal containing p. Then [m] is a closed
point of U in UN S. By (a), [m] is closed in X. Finally (c) is a formal consequence of (b) which
we leave to the reader. (]

To illustrate what might go wrong here, contrast the situation with the case
X = Spec(O), O local noetherian, maximal ideal m.

If
U=X\[m],

then U satisfies the descending chain condition for closed sets so it has lots of closed points.
But none of them can be closed in X, since [m] is the only closed point of X. Take the case
O = k[X,Y](x,y): its prime ideals are m = (X,Y’), principal prime ideals f (with f irreducible)
and (0). In this case, U has only closed points and one generic point and is a kind of parody of
P} as in Figure I1.2 (cf. §5 below).

We have now seen that any scheme of finite type over a field shares many properties with
classical projective varieties and when it is reduced and irreducible the resemblance is even
closer. We canonize this similarity with a very important definition:

DEFINITION 2.14. Let k be a field. A variety X over k is a reduced and irreducible scheme
X plus a morphism p: X — Spec k making it of finite type over k. The dimension of X over k
is trdeg;, R(X).

We want to finish this section by showing that when k is algebraically closed, the situation
is even more classical.
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PROPOSITION 2.15. Let k be an algebraically closed field and let X be a scheme of finite type
over k. Then:

a) Forallz e X
[z is closed) <= [x is rational, i.e., k(z) = kJ.

Let X (k) denote the set of such points.
b) Ewvaluation of functions define a homomorphism of sheaves:

Ox — k¥R
where
EX®(U) = ring of k-valued functions on U(k).
If X is reduced, this is injective.
Now let X and Y be two schemes of finite type over k and f: X — Y a k-morphism. Then:

c) f(X(K)) CY (k).

d) If X is reduced, f is uniquely determined by the induced map X (k) — Y (k), hence by
its graph

{(z, f(2)) |z € X(k)} C X(k) x Y (k).
PROOF. (a) is just Corollary 2.11 in the case k algebraically closed. To check (b), let

U = Spec R be an affine. If f € R is 0 at all closed points of U, then U \ V(f) has no closed
points in it, hence is empty. Thus

fe (1 »=v0
p prime of R

and if X is reduced, f = 0. (c) follows immediately from (a) since for all x € X, we get inclusions
of fields:

k(z) «—k(f(z)) «—k.
As for (d), it follows immediately from the density of X (k) in X, plus (b). O

3. Closed subschemes and primary decompositions

The deeper properties of complex projective varieties come from the fact that they are closed
subschemes of projective space. To make this precise, in the next two sections we will discuss
two things—closed subschemes and a construction called Proj. At the same time that we make
the definitions necessary for characterizing complex projective varieties, we want to study the
more general classes of schemes that naturally arise.

DEFINITION 3.1. Let X be a scheme. A closed subscheme (Y,Z) consists in two things:

a) a closed subset Y C X
b) a sheaf of ideals Z C Ox such that

Im;OX,ac if z€eY
and such that Y, plus the sheaf of rings Ox /Z supported by Y is a scheme.

DEFINITION 3.2. Let f: Y — X be a morphism of schemes. Then f is a closed immersion
if

a) f is an injective closed map,
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b) the induced homomorphisms

Iy Ox ) — Ovy

are surjective, for every y € Y.

It is clear that

a) if you start from a closed subscheme (Y, Z), then the morphism (Y, Ox/Z) — (X, Ox)
defined by the inclusion of Y in X and the surjection of Ox to Ox/Z is a closed
immersion;

b) conversely if you start with a closed immersion f: Y — X, then the closed subset f(Y)
and the sheaf 7:

Z(U) = Ker (Ox(U) = Oy (f'U))

is a closed subscheme.

Thus these two concepts are essentially equivalent. A locally closed subscheme or simply
subscheme (resp. immersion) in general is defined to be a closed subscheme of an open set
U C X (resp. a morphism f such that f(Y) C U open and res f: Y — U is a closed immersion).
The simplest example of a closed immersion is the morphism

f: Spec(R/a) — Spec(R)

where a is any ideal in R. In fact, as noted in the proof of Theorem 2.9 above, f maps Spec(R/a)
homeomorphically onto the closed subset V' (a) of Spec(R). And if ¢ C R/a is a prime ideal,
q = q/a, then the induced map on local rings is clearly surjective:

(R/a)y = Rg/a-Rq«— Ry
| |

Ospec(R/a),[d] Ospec(R), 4]

We will often say for short, “consider the closed subscheme Spec(R/a) of Spec(R)”. What
we want to check is that these are the only closed subschemes of Spec R.
We prove first:

PropoOSITION 3.3. If (Y,Z) is a closed subscheme of X, then T is a quasi-coherent sheaf of
Ox-modules.

PROOF. On the open set X \ Y, Z = Ox so it is quasi-coherent. If z € Y, we begin by
finding an affine neighborhood U C X of x such that U NY is affine in Y. To find U, start with
any affine neighborhood U; and let Vi C U; N'Y be an affine neighborhood of z in Y. Then
choose some «a € I'(Uy,Ox) such that « =0 on U; NY \ Vi, while a(x) # 0. Let U = (Uy)q.
Since UNY = (U1NY )resa = (Vi)resa, UNY is affine in Y too. Next, suppose that U = Spec R,
UNY = Spec S and let the inclusion of UNY into U correspond to ¢: R — S. Let I = Ker(¢):
I claim then that

Iy =T
hence 7 is quasi-coherent. But for all 8 € T'(U, Ox),

I(Ug) = I3
= Ker(Rg — S3)
= Ker (Ox (Ug) — Oy (Y NUp))
= Z(Us)

hence I = T|y. O
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COROLLARY 3.4. If (Y,Z) is a closed subscheme of X, then for all affine open U C X,
UNY is affine inY and if U = Spec R, then U NY = Spec(R/a) for some ideal a C R, i.e.,
Y = Specx(Ox/I).

PROOF. Since 7 is quasi-coherent, Z|; = a for some ideal a C R. But then

Oy |y = Coker (Z|y — Ox|v)
— Coker(a — R)
= R/a
hence
(Y. 0y) = (V(a), R/a) = (Spec(R/a), Ospec r/a)-
O

COROLLARY 3.5. Let f: Y — X be a morphism. Then f is a closed immersion if and only
if:
(%) 3 an affine covering {U;} of X such that f=*(U;) is affine
and T'(U;, Ox) — D(f~1(U;), Oy) is surjective.
PrOOF. Immediate. O

We want to give some examples of closed subschemes and particularly of how one can have
many closed subschemes attached to the same underlying subset.

EXAMPLE 3.6. Closed subschemes of Spec(klt]), k algebraically closed. Since k[t] is a PID,

all non-zero ideals are of the form
a= (H(t — ai)”) .

i=1
The corresponding subscheme Y of Al = Spec(k[t]) is supported by the n points ay, ..., a,, and
at a; its structure sheaf is
Oa,-,Y = OahA}C/mzi?
where m; = m,, a1 = (¢t —a;). Y is the union of the a;’s “with multiplicity r;”. The real

significance of the multiplicity is that if you restrict a function f on A,lc to this subscheme, the
restriction can tell you not only the value f(a;) but the first (r; — 1)-derivatives:

d'f
dt!

In other words, Y contains the (r; — 1)st-order normal neighborhood of {a;} in A}.

(a;), 1 <r;—1.

Consider all possible subschemes supported by {0}. These are the subschemes
Yo = Spec (k[t] /()

Y7 is just the point as a reduced scheme, but the rest are not reduced. Corresponding to the
fact that the defining ideals are included in each other:

ODO>EHD>EH D D" D---D(0),
the various schemes are subschemes of each other:

YicYaCY3C---CY,C - CAL
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Fi1GURE II.3. O-dimensional subschemes of Ai

EXAMPLE 3.7. Closed subschemes of Spec(k[x,y]), k algebraically closed. Every ideal a C
klz,y] is of the form:

(Hne

for some f € k[z,y] and @ of finite codimension (to check this use noetherian decomposition
and the fact that prime ideals are either maximal or principal). Let Y = Spec(k[z,y]/a) be the
corresponding subscheme of A2. First, suppose a = (f). If f = [[lL, f*, with f; irreducible,
then the subscheme Y is the union of the irreducible curves f; = 0, “with multiplicity r;”. As
before, if g is a function on A%, then one can compute solely from the restriction of g to Y the
first ; — 1 normal derivatives of g to the curve f; = 0. Second, look at the case a of finite

codimension. Then

a=01N---NQ;
where /Q; is the maximal ideal (z — a;,y — b;). Therefore, the support of Y is the finite set
of points (a;,b;), and the stalk of Y at (a;, b;) is the finite dimensional algebra k[x,y]/Q;. For

simplicity, look at the case a = Q1, v/Q1 = (z,y). The lattice of such ideals a is much more
complicated than in the one-dimensional case. Consider, for example, the ideals:

(z,y) D (az + By,2*,zy,y*) D (2%, zy,y°) D (2°,4%) D (0).
These define subschemes:
{(0,0) with reduced structure} C Y, 5 C Yo C Y3 C A}.

Since (ax + By, 2%, 2y, y*) D (ax + By), Yap is a subscheme of the reduced line ¢, g defined by
ar + By = 0: Y, g is the point and one normal direction. But Y3 is not a subscheme of any
reduced line: it is the full double point and is invariant under rotations. Y3 is even bigger, is
not invariant under rotations, but still does not contain the second order neighborhood of (0, 0)
along any line. If g is a function on AZ, gly, ; determines one directional derivative of g at
(0,0), gly, determines both partial derivatives of g at (0,0) and g|y, even determines the mixed
partial %(0,0) (cf. Figure I1.3). As an example of the general case, look at a = (22, zy).
Then a = (x) N (2%, 2y,y?). Since \/a = (), the support of Y is y-axis. The stalk O,y has no
nilpotents in it except when z = (0,0). This is an “embedded point”, and if a function g on Ai
is cut down to Y, the restriction determines both partials of g at (0,0), but only 8% at other
points (cf. Figure 11.4):
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Fi1GURE I1.4. Subschemes of A%

ExaMPLE 3.8. The theory of the primary decomposition of an ideal is an attempt to describe
more “geometrically” a general closed subscheme of Spec R, when R is noetherian. In fact, if

Z = Spec R/a C Spec R
is a closed subscheme, then the theory states that we can write:
a=ain---Na,
where q; is primary with p; = /q; prime. Then geometrically:
Z =scheme-theoretic union of (i.e., smallest closed
subscheme containing) W1,..., W,
where W; =Spec R/q;
=set-theoretically V (p;), the closure of [p;]
but with some infinitesimal thickening.
The property which distinguishes the W;’s is described as follows:
q is p-primary <= p = /qgand q=RNq- (Ry)
<= set-theoretically Spec R/q is V(p) and the map
L(Ospec r/q) — (the generic stalk Ogpec g /qy[p])
is injective.
(In other words, a “function” f € R is to have 0 restriction everywhere to Spec R/q if it restricts
to 0 at the generic point of Spec R/q.) The unfortunate thing about the primary decomposition
is that it is not unique: if W; is an “embedded component” | i.e., set-theoretically W; ;Ct W;, then
the scheme structure on W; is not unique. However the subsets W, are uniquely determined
by Z. By far the clearest treatment of this is in Bourbaki [27, Chapter 4] who considers the

problem module-theoretically rather than ideal-theoretically. His theory globalizes immediately
to give:
THEOREM 3.9. Let X be a noetherian scheme, F a coherent sheaf on X. Then there is a

finite set of points x1,...,x: € X such that

i) VUcC X,Vse F(U), 3 C{1,...,t} such that:

Supp(s) = {z € U | the image s, € Fy is not 0} = U {z;} NU
def el
ii) if U is affine, then any subset of U of the form \J;c;{w:} NU occurs as the support of
some s € F(U).
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These x; are called the associated points of F, or Ass(F).

PRrOOF. Note that if U = Spec R, F|y = M, s € M, and Ann(s) = {a € R | as = 0}, then
s; Z0in F, <= s4 0 in M,
where = = [p]
< Vac€ R\p,a-s#0
<= Ann(s) C p
<= z € V(Ann(s))

so that Supp(s) = V(Ann(s)). It follows from the results in Bourbaki [27, Chapter 4, §1] that
in this case his set of points Ass(M) C Spec R has our two required properties!. Moreover, he
proves in [27, §1.3] that Ass(My) = Ass(M)NSpec Ry: hence the finite subsets Ass(M) all come
from one set Ass(F) by Ass(M) = Ass(F) N Spec R. O

Note that Ass(F) must include the generic points of Supp(F) but may also include in
addition embedded associated points.

COROLLARY 3.10. If Z C Spec R is a closed subscheme and
Z=WyU---uW,
is a primary decomposition, then
Ass(Ogz) = {w1,...,w},
where w; = generic point of W;.

PROOF. Let Z = Spec R/a, W; = Spec R/q;, so that a = () ¢;. A primary decomposition is
assumed irredundant, i.e., V,
a7 (g

J#
This means 3f € ﬂ#i q; \ ¢, i.e., the “function” f is identically 0 on the subschemes Wj,
J # i, but it is not 0 at the generic point of W;, i.e., in Oy, w,. Therefore as a section of Oz,
Supp(f) = W;. On the other hand, we get natural maps:

t t
R/a— @R/Qi - @Rpi/qiRm
i=1 i=1
hence

t t
Oz — @ Ow, — @ (constant sheaf on W; with value O, w;)
i=1 i=1
from which it follows readily that the support of any section of Oy is a union of various W;’s. [J

For instance, in the example R = k[z,y], a = (22, 2y),
(Supp in R/a)(y) = whole subset V' (a)
(Supp in R/a)(z) = embedded pointV (z,y).

In order to globalize the theory of primary decompositions, or to analyze the uniqueness
properties that it has, the following result is very useful:

Un fact, if s € M, then R/Ann(s) < M by multiplication by s, hence Ass(R/Ann(s)) C Ass(M); if
Supp(s) = S1 U --- U Sk, S; irreducible and S; ¢ S;, then S; = V(p;), and p; are the minimal primes in
Supp(R/ Ann(s)), hence by his [27, Chapter 4, §1, Proposition 7], are in Ass(R/ Ann(s)). This gives our assertion
(i). Conversely, for all p € Ass(M), there is an s € M with Ann(s) = p, hence Supp(s) = V(p). Adding these, we
get our assertion (ii).
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PROPOSITION 3.11. If X is locally noetherian? and Y C X is a locally closed subscheme,
then there is a smallest closed subscheme Y C X containing Y as an open subscheme, called the
scheme-theoretic closure of Y. The ideal sheaf I defining Y is given by:

Z(U) = Ker[Ox (U) — Oy (Y NU),

and the underlying point set of Y is the topological closure of Y. Y can be characterized as
the unique closed subscheme of X containing Y as an open subscheme such that Ass(Oy) =
Ass(Oy).

PRrROOF. Everything is easy except the fact that Z is quasi-coherent. To check this, it suffices
to show that if U = Spec R is an affine in X and Uy = Spec Ry is a distinguished affine subset,
then:

Ker(R — Oy (Y NU)) - Ry = Ker(Rf = Oy(YN Uf))

because then Ker(R — Oy (Y N U)) agrees with Z on all Uy’s, hence agrees with Z on U.
Since “ C 7 is obvious, we mush check that if a € R and a/f" = 0 in Oy (Y N Uy), then Im,
f™a/f") =01in Oy (Y NU). Now U is noetherian so Y N U is quasi-compact, hence is covered
by a finite number of affines V;. For each i,

af " = 0 in Oy((Vi)y) = Fms, f™ (/") =0 in Oy (V)
and taking m = max(m;)
= Im, fM(a/f")=01in Oy (Y NU).
O

REMARK. (Added in publication) As noted in the footnote to Proposition 3.11,if f: X — Y
is a quasi-compact morphism of schemes (cf. Definition 4.9 below), then Ker (Oy — f.Ox) is a
quasi-coherent sheaf of ideals of Oy . This ideal defines a closed subscheme of Y, which is called
the scheme-theoretic closure of the image of f.

Here is a sketch of the proof: We may assume Y to be affine. Let {U; | i € I} be an open
affine cover of X indexed by a finite set I. Let ¢;: U; — X be the inclusion morphism. Applying
f« to the injection

OX — H LZ'*L;(OX,

i€l

we get an injection
£:0x — [](f 0 1)+O0u,.

el

Hence
Ker(Oy — f.Ox) = Ker <(’)y — H(f ) L,-)*OUZ) )
i€l

Note that [[;c;(f o ¢)+Oy, is a quasi-coherent Oy-module since each Uj; is affine, hence the
kernel of the above map is quasi-coherent.

We can apply Proposition 3.11 to globalize Example 3.8:

THEOREM 3.12. Let X be a noetherian scheme, let Z be a subscheme and let Ass(Oz) =
{wy,...,wi}. Then there exist closed subschemes W1, ... , Wy C Z such that

2Actually all we need here is that the inclusion of Y in X is a quasi-compact morphism. (cf. Definition 4.9
below.)



3. CLOSED SUBSCHEMES AND PRIMARY DECOMPOSITIONS 63

a) W is irreducible with generic point w; and for all open U; C W,
OWi(Ui) — Owi,Wi

is injective (i.e., Ass(Ow,) = {w;}).
b) Z is the scheme-theoretic union of the W;’s, i.e., set-theoretically Z = W1 U --- U W,
and

t
) 7z — EB OWi
i=1
18 surjective.

PROOF. For each i, let U; = Spec R; be an affine neighborhood of w;, let ZNU; = Spec R;/a;,
let w; = [p;] and let g; be a p;-primary component of a;. Let

W; = scheme-theoretic closure of Spec R;/q; in X.
(a) and (b) are easily checked. O

Proposition 3.11 can also be used to strip off various associated points from a subscheme.
For instance, returning to Example 3.8:

SpecRD Z=WiU---UWs, a primary decomposition,

and applying the proposition with X = Spec R, Y = ZNU where U is an open subset of Spec R,
we get

Znu= J w,

7 such that
W;NU#D

and hence these unions of the W;’s are schemes independent of the primary decomposition
chosen.
Two last results are often handy:

PRrROPOSITION 3.13. Let X be a scheme and Z C X a closed subset. Then among all closed
subschemes of X with support Z, there is a unique one (Z,Ox/ZI) which is reduced. It is a
subscheme of any other subscheme (Z,Ox /T") with support Z, i.e., T DT'.

PRrROOF. In fact define Z by
ZWU)={s€O0Ox(U)|s(z)=0,VeeUNZ}.
The rest of the proof is left to the reader. O

ProprosITION 3.14. Let f: X =Y and g: Y — Z be two morphisms of schemes. If go f is
an immersion, then f is an immersion.

ProoF. The morphism f is the composite of the graph I'y: X — X Xz Y and the second
projection pa: X xz Y — Y. We know that I'y is an immersion for every morphism f (cf.
Proposition 4.1 below), while p2 is an immersion since it is a base extension of the immersion
go f X = Z. U

(Added in publication) The corresponding statement for closed immersions is false as was
pointed out by Chai. As an example, let Y = U; U Uy be “Al with duplicated origin” as in
Example 4.4 below. Let X = U; = Speck[11] and Z = Spec k[T], with f the inclusion of U; to
Y and with g: Y — Z the natural projection. Clearly, g o f is a closed immersion (in fact an
isomorphism), but f is not a closed immersion, since U; is not closed in Y.
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4. Separated schemes

In the theory of topological spaces, the concept of a Hausdorff space plays an important role.
Recall that a topological space X is called Hausdorff if for any two distinct points z,y € X,
there are disjoint open sets U,V C X such that x € U, y € V. This very rarely holds in the
Zariski topology so it might seem as if the Hausdorff axiom has no relevance among schemes.
But if the product topology is given to the set-theoretic product X x X, then the Hausdorff
axiom for X is equivalent to the diagonal A C X x X being closed. In the category of schemes,
the product scheme X x X is neither set-theoretically nor topologically the simple Cartesian
product of X by itself so the closedness of the diagonal gives a way to interpret the Hausdorff
property for schemes. The most striking way to introduce this property is by proving a theorem
that asserts the equivalence of a large number of properties of X, one of them being that the
diagonal A is closed in X x X.

Before giving this theorem, we need some preliminaries. We first introduce the concept of
the graph of a morphism. Say we have an S-morphism f of two schemes X, Y over S, i.e., a
diagram:

f
X —Y

L
s

Then f induces a section of the projection:
X x S Y
pll IRI Ff
/
X

defined by I'y = (1x, f). I claim that I'y is an immersion. In fact, choose affine coverings {U;}
of X, {V;} of Y and {W;} of S such that f(U;) C V; and ¢(V;) C W;. Then

I (Ui xs Vi) = U
and if U; = Spec R;, V; = Spec S;, W; = SpecT;, then
resl'y: Uy — U; Xg 'V
corresponds to the ring map

R, @7, Si — R;
a®b —a- f

which is surjective. Therefore if U = |J;(U; xs V;), then I'y factors

X — U C X xgY.
closed open
immersion subscheme

This proves:

PROPOSITION 4.1. If X and Y are schemes over S and f: X — Y is an S-morphism, then
I'y=1x,f): X = X xgY is an immersion.

The simplest example of I'; arises when X =Y and f = 1y. Taking S = SpecZ, we get the
diagonal map

(5:(1x,1x)1X—>XXX.
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T, =0 Pl‘/Ul
\\:‘>

T :O/P;\U

2

FiGURE I1.5. A! with “duplicate origin”

We have proven that if {U;} is an open cover of X, then § is an isomorphism of X with a closed
subscheme §(X) of U C X x X, where

u = Jw x ).

But is 6(X) closed in X x X7 This leads to:

PROPOSITION 4.2. Let X be a scheme. The following properties are equivalent:
i) 6(X) is closed in X x X.
ii) There is an open affine covering {U;} of X such that for all i, j, Uy NUj is affine and
Ox(Ui>, O)((Uj) generate Ox(UZ N Uj).
iii) For all open affines U,V C X, UNV is affine and Ox (U), Ox (V) generate Ox(UNV).

PROOF. (i) = (iii): Given open affines U, V', note that U x V is an open affine subset of
X x X such that Oxxx (U x V) is Ox(U) @ Ox (V). If §(X) is closed in X x X, ¢ is a closed
immersion. Therefore ~1(U x V) is affine and its ring is generated by Oxxx (U x V). But
5 YU x V) =UnNV so this proves (iii).

(iii) = (ii) is obvious.

(i) == (i): Note that if {U;} is an open affine covering of X, then {U; x U;} is an open
affine covering of X x X. Since 6 *(U; x U;) = U; N Uj, (ii) is exactly the hypothesis () of
Corollary 3.5. The corollary says that then ¢ is a closed immersion, hence (i) holds. U

DEFINITION 4.3. X is a separated scheme if the equivalent properties of Proposition 4.2
hold.

Here’s the simplest example of a non-separated scheme X:
EXAMPLE 4.4. Take X = U; U Us where
Uy = Spec k[T7]
Us = Spec k1]
and where Uy and Us are identified along the open sets:
(U1), = Speck[T1,T; !
(Us)1, = Speck[Ty, Ty !
by the isomorphism
1: Spec k[Tl,Tl_l] — Spec k[Tg,Tz_l]
i(Ty) = To.
This “looks” like Figure IL.5, i.e., it is A,lf except that the origin occurs twice!

The same construction with the real line gives a simple non-Hausdorff one-dimensional man-
ifold. Tt is easy to see 6(X) is not closed in Uy x Uy or Uy x Uy because (P, P5) € Uy x Uy and
(P2, P1) € Uy x Uy will be in its closure.
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Once a scheme is known to be separated, many other intuitively reasonable things follow.
For example:

PROPOSITION 4.5. Let f: X — Y be a morphism and assume Y is separated. Then
Iy: X — XxY
is a closed immersion. Hence for allU C X,V CY affine, UN f~Y(V) is affine and its ring is
generated by Ox (U) and Oy (V).
PrOOF. Consider the diagram:

Ly
X —XxY

fJ{ J/(fXIY)

Y —Y xY
oy

It is easy to see that this diagram makes X into the fibre product of Y and X x Y over Y x Y,
so the proposition follows from the following useful result: O

ProrosiTIiON 4.6. If X — S is a closed immersion and Y — S is any morphism, then
X xgY =Y is a closed immersion.

PRrOOF. Follows from Corollary 3.5 and (using the definition of fibre product) the fact that
(A/I)®4 B=B/I-B. g

Before giving another useful consequence of separation, recall from §1.6, that two morphisms

J1
Spec k ? X
2

are equal if and only if fi(Speck) = fo(Spec k) — call this point x — and the induced maps
fik(z) —k
o k(z) — k
are equal. Now given two morphisms
1
73X
f2
one can consider the “subset of Z where f; = f3”: the way to define this is:
fi(z) = fa(z) and the induced maps }

Eq(f1, f2) = {z ez FE 13 k(f1(2)) — Kk(2) are equal

Using this concept, we have:

PROPOSITION 4.7. Given two morphisms f1, fo: Z — X where X is separated, Eq(f1, f2) is
a closed subset of Z.

PRrROOF. fi and fo5 define
(fl,fz)l Z — X xX
and it is straightforward to check that Eq(f1, f2) = (f1, f2) "1(6(X)). O
Looking at reduced and irreducible separated schemes, another useful perspective is that

such schemes are characterized by the set of their affine rings, i.e., the glueing need not be given
explicitly. The precise statement is this:
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PROPOSITION 4.8. Let X and Y be two reduced and irreducible separated schemes with the
same function field K = R(X) = R(Y). Suppose {U;} and {V;} are affine open coverings of X
and Y such that for all i, Ox(U;) = Oy (Vi) as subrings of K. Then X =Y.

Proor. Left to the reader. O

Another important consequence of separation is the quasi-coherence of direct images. More
precisely:

DEFINITION 4.9. A morphism f: X — Y of schemes is quasi-compact if for all U C Y quasi-
compact, f~1U is quasi-compact. Equivalently, for all affine open U C Y, f~'U is covered by a
finite set of affine open subsets of X.

PROPOSITION 4.10. Let f: X — Y be a quasi-compact morphism of separated schemes and
let F be a quasi-coherent sheaf on X. Then f.JF is quasi-coherent.

PROOF. The assertion is local on Y so we may assume Y = Spec R. Let {U;} be a finite
affine open cover of X and let f;: U; — Y be the restriction of f to U;. Since X is separated,
U;NUj is also affine. Let f;;: U; NU; — Y be the restriction of f to U; NU;. Then consider the
homomorphisms:

0— f*]" i> Hfz,*f i) Hfjk,*]:
i gk

where « is just restriction and f is the difference of restrictions, i.e.,

B({si})jrx = res(s;) — res(sg).

By the sheaf property of F and the definition of direct images, this sequence is exact! But f;
and fj; are affine morphisms by Proposition 4.5 and the products are finite so the second and
third sheaves are quasi-coherent by Lemma (1.5.12). Therefore f.F is quasi-coherent. O

REMARK. (Added in publication) A morphism f: X — Y of schemes is said to be separated
(resp. quasi-separated) if the diagonal morphism

AX/Y:X—>XXYX

is a closed immersion (resp. quasi-compact).
Proposition 4.10 above remains valid in the following form:

Let f: X — Y be a quasi-compact and quasi-separated morphism of schemes
and let F be a quasi-coherent sheaf on X. Then f,F is quasi-coherent.

The proof is essentially the same.

From this point on a blancket assumption is made that all schemes are separated over
SpecZ, which implies that all morphisms are separated. Without this blancket assumption,
some adjustment may be needed in subsequent materials. For instance, in Lemma I11,4.1 below,
(i) holds for any quasi-compact scheme X, but in (ii) one needs to assume that X is quasi-
separated over Spec Z.

(xx) In the rest of this book, we will always assume that all our
schemes are separated, hence all morphisms are separated. (xx)
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5. ProjR
The essential idea behind the construction of P™ can be neatly generalized. Let
R=Ry®R®R®---

be any graded ring (i.e., R; - Rj C R;4;), and let

R =PR;
i=1

be the ideal of elements of positive degree. We define a scheme Proj R as follows:

(I) As a point set:

Proj R = {p CR ‘ p a homogeneous prime ideal }

(e, p=B;2 pNR;) and p p Ry
(IT) As a topological space:
for all subsets S C R, let V(S) ={[p] € ProjR| S C p}.
If a is the homogeneous ideal generated by the homogeneous parts of all f € .S, then
V(S)=V(a).

It follows easily that the V' (S) are the closed sets of a topology and that the “distin-
guished open subsets”

(ProjR)f = {[p] € Proj R | f € p}, where f € Ry, some k > 1

form a basis of open sets.
[Problem for the reader: check that if f € Ry, then

{leProjR| f¢p} =] | (ProjR)sy]

k>1 geRy

(III) The structure sheaf:
(*) for all f € R, k>1,let OprojR((PrOj R)f) = (Rf)(),

where (Rf)o = degree 0 component of the localization Ry. This definition is justified
in a manner quite parallel to the construction of Spec, resting in this case however on:

PROPOSITION 5.1. Let f, {gi}ties be homogeneous elements of R, with deg f > 0. Then

(ProjR)f = U(Proj R)y | = [f" = Zaigi, somen > 1, some a; € R| .

1€S

PRroOOF. The left hand side means
V[p] € Proj R, f ¢ p = Ji such that g; € p
which is equivalent to saying

fe m p homogeneous prime ideal such that
Pl poSgRrbutp 2 Ry |

Since p O Ry implies f € p, we can ignore the second restriction on p in the braces. and what
we need is:
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LEMMA 5.2. If a C R is a homogeneous ideal, then

Va= (] »
p homogeneous
pOa

PROOF OF LEMMA 5.2. Standard, i.e., if f ¢ \/a, choose a homogeneous ideal g D a maxi-
mal among those such that f™ & q, all n > 1. Check that q is prime. O

O
COROLLARY 5.3. Ifdeg f,degg > 0, then
(ProjR)f C (ProjR)y = f" =a-g, somen, a
= 3 canonical map (Ry)o — (Rf)o.

— [R+ = m]

We leave to the reader the details in checking that there is a unique sheaf Op,o;j r satisfying
() and with restriction maps coming from Corollary 5.3. The fact that we get a scheme in this
way is a consequence of:

COROLLARY 5.4. Ifdegg; >0, Vi € S, then

Proj R = |_J(Proj R),,
€S

PROPOSITION 5.5. Let f € Ry, k > 1. Then there is a canonical isomorphism:
((PI‘Oj R)f, res OProj R) =~ (Spec ((Rf)o) , OSpec((Rf)o)> .
PrOOF. For all homogeneous primes p C R such that f & p, let
p'={a/f" la€pN Ry} =p- Ry (Ryo.
This is a prime ideal in (Rf)o. Conversely, if p’ C (Ry)o is prime, let

o0

p:@{aeRn

n=0

a*/f" ep’}-

It follows readily that there are inverse maps which set up the set-theoretic isomorphism (Proj R) y =
Spec(Ry)o. It is straightforward to check that it is a homeomorphism and that the two structure
sheaves are canonically isomorphic on corresponding distinguished open sets. O

Moreover, just as with Spec, the construction of the structure sheaf carries over to modules
too. In this case, for every graded R-module M, we can define a quasi-coherent sheaf of Opyj(r)-

modules M by the requirement:

M ((Proj R)f) = (My)o.
We give next a list of fairly straightforward properties of the operations Proj and of e
a) The homomorphisms Ry — (Ry)o for all f € Ry, all k> 1 induce a morphism
Proj(R) — Spec(Ry).
b) If R is a finitely generated Ry-algebra, then Proj(R) is of finite type over Spec(Rp).
c) If Sy is an Rp-algebra, then
Proj(R ®r, So) = Proj(R) Xspec Ry, SPec Sp.
d) If d > 1 and R(d) = @;- Rax, then Proj R = Proj R(d).
[Check that for all f € Rg, k > 1, the rings (Ry)o and (R(d)a)o are canonically
isomorphic; this induces isomorphisms (Proj R)y = (Proj R(d)) fa,. . . .]
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Because of (c), it is possible to globalize Proj just as Spec was globalized in §1.7. If X
is a scheme, and

Ro®GR1OR2B -+

is a quasi-coherent graded sheaf of Ox-algebras where each R; is quasi-coherent, then
one can construct a scheme over X:

T Pron(@Ri) — X

as follows: for all U C X open affine, take the scheme Proj(@p R;(U)), which lies over
Spec Ox (U), i.e., U. For any two open affines Uy, Uy C X construct an isomorphism

P12:
Proj(@ Ri(U)) ——— U

\
P12 | ~ Ul N U2
/

Proj(@ Ri(Uz)) ——— Us

by covering Uy N Us by open affine Us, and noting that:
7T1_1(U3) & Proj (@ RZ(U1> ®OX(U1) Ox(U3)>

= Proj (P Ri(Us))
= Proj (D Ri(U2) @0 (1) Ox (Us) )
=, | (Us).
If a C R is a homogeneous ideal, then there is a canonical closed immersion:
Proj R/a — Proj R.

A somewhat harder result is the converse in the case when R is finitely generated over
Ry: that every closed subscheme Z of Proj R is isomorphic to Proj R/a for some a. The
proof uses the remark that if fi, fo,g € R, and g/f1 vanishes on Z N (Proj R)¢, then
for some k, gf{“/féngl vanishes on Z N (Proj R)y, .

Proj R is separated.

ProoOF. Use Criterion (ii) of Proposition 4.2, applying it to a covering of Proj R
by distinguished affines. O

The map taking R to Proj R is not a functor but it does have a partial functoriality.
To be precise, let R and R’ be two graded rings and let

¢»:R— R
be a homomorphism such that for some d > 0,

¢(Rn) C Ry, all n.
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(Usually d = 1 but this isn’t necessary.) Let

Ry => Ry,

n>0
a=¢(Ry) R.
Then ¢ induces a natural map:
f: Proj R\ V(a) — Proj R.

In fact,
Proj R\ V(a) = | J |J (ProjR)sa.
n>1a€R,
Define the restriction of f to (ProjR’)s, to be the morphism from (ProjR')s, to
(Proj R), induced by the ring homomorphism

¢ (Ra)o — (Rya)o

o(8)- ven

It is easy to check that these morphisms agree on intersections hence glue together to

the morphism f.
If R and R’ are two graded rings with the same degree 0 piece: Ry = Ry, then

Proj R Xspec Ry Proj R =ProjR"
where

R" =P R ®r, R,
n=0

ProOOF. This follows easily from noting that for all f € R,,, f' € R],,

(Rf)o @R, (R0 = (Rfg )0
hence
(Proj R) f Xspec Ry (Proj R') p = (Proj R") fe
and glueing. O

M — M is an exact functor; more precisely V¢: M — N preserving degrees, we get
an Opyoj g-homomorphism ¢: M — N and if

0—M-5HNLP—0

is a sequence with 1 o ¢ = 0 and such that
0— M, — N, — P. —0

is exact if £ > 0, then

0—M-—N-—P—0
is exact.
There is a natural map:

My —s I'(Proj R, M)

given by

m — element m/1 € (My)o = M((ProjR)y).
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There is a natural relationship between Spec and Proj which generalizes the fact that or-
dinary complex projective space P" is the quotient of C**1\ (0) by homotheties. If R is any

graded ring, let
.

n>0
Then there is a canonical morphism

m: Spec R\ V(R4+) — Proj R.
In fact, for all n > 1, a € R, the restriction of 7 to (Spec R), will be the morphism

(Spec R)q, —— (Proj R),
| |
Spec R, Spec(Rq)o

given by the inclusion of (Rg)o in R,.
The most important Proj is:

DEFINITION 5.6. P = Proj R[ X, ..., X,].

Note that since Xy, ..., X, generate the ideal of elements of positive degree, this Proj is
covered by the distinguished affines (Proj R[Xy,..., X,])x,, i.e., by the n 4+ 1 copies of A’:
X X .
U; = Spec R [)gj,,)él] , 0<i<n

glued in the usual way. Moreover if R = @;°, R; is any graded ring generated over Ry by ele-
ments of Ry and with R; finitely generated as Ro-module, then R is a quotient of Ry[Xo, ..., Xy]
for some n: just choose generators ao,...,a, of R; and define

Ro[Xo, . ,Xn] — R
by X; — a;.
Therefore by (f), Proj R is a closed subscheme of P, .

More generally, let X be any scheme and let F be a finitely generated quasi-coherent sheaf
of Ox-modules. Then we can construct symmetric powers Symm"(F) by

Symm"(F)(U) = Symm"(F(U)), all affine open U
and hence a quasi-coherent graded O x-algebra:
Symm* F = Ox @ (F) @ (Symm? F) @ (Symm3 F) @ - - - .
DEFINITION 5.7. Px(F) = Projx (Symm* F).

Note that by (f) above, if R is any quasi-coherent graded Ox-algebra with

Ro=0Ox
R1 finitely generated
R, generated by Ri, n > 2,

then we get a surjection
Symm*R; - R
hence a closed immersion
Projx(R) < Px(Ra).

This motivates:

DEFINITION 5.8. Let f: X — Y be a morphism of schemes.
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a) f is projective if X = Projy (D R;), some quasi-coherent graded Oy-algebra € R; but
such that Rg = Oy, R finitely generated as Oy-module and R1, multiplied by itself
n times generates R,, n > 2. Equivalently 3 a diagram:

closed

XC immersion PY ( f)
N

where F is quasi-coherent, finitely generated.
b) f is quasi-projective® if 3 a diagram:

where f’ is projective.
Note that if Y = Spec R, say, then

f projective <= X is a closed subscheme of P%, some n
f quasi-projective <= X is a subscheme of P%, some n.

We can now make the final link between classical geometry and the theory of schemes:
when R = C it is clear that Py becomes the scheme that we associated earlier to the classical
variety P"(C). Moreover the reduced and irreducible closed subschemes of P¢ are precisely the
schemes Proj(C[Xy, ..., X,]/p), which are the schemes that we associated earlier to the classical
varieties V (p) C P"(C). In short, “complex projective varieties” as in Part I [87] define “complex
projective varieties” in the sense of Definition 5.8, and, up to isomorphism, they all arise in this
way.

Note too that for P, the realization of P} Xspec r P as a Proj in (i) above is identical to
the Segre embedding studied in Part I [87]. In fact, the construction of (i) shows:

IP% XSpec R P% - PI‘Oj R[XOa oo 7Xn] XSpec R PI‘Oj R[Yb, R 7Ym]

~ Pro; subring of R[X] ®g R[Y] generated by
- J polynomials of degrees (k, k), some k

~ Proi subring of R[Xo,...,Xn, Y0, ..., Y]
N generated by elements X;Y; '

Let U;;, 0 <@ <n, 0 <j <m, be new indeterminates. Then for some homogeneous prime ideal
p C R[UJ,

R[U()o,...,Unm]/p = [

via Uij — XZ}/]

subring of R[Xy, ..., Y]
generated by elements XY

Thus P} Xspec r PR is isomorphic to a closed subscheme of Pﬁm+”+m. This is clearly the Segre
embedding from a new angle:

The really important property of Proj is that the fundamental theorem of elimination theory
(Part I [87, Chapter 2]) can be generalized to it.

3Grothendieck’s definition agrees with this only when Y is quasi-compact. I made the above definition only
to avoid complications and have no idea which works better over non-quasi-compact bases.
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THEOREM 5.9 (Elimination theory for Proj). If R is a finitely generated Ry-algebra, then
the map

m: Proj R — Spec Ry
is closed.

PROOF. Every closed subset of Proj R is isomorphic to V' (a) for some homogeneous ideal
a C Ry. But V(a) = ProjR/a, so to show that w(V(a)) is closed in Spec Ry, we may as well
replace R by R/a to start with and reduce the theorem to simply showing that Image 7 is closed.
Also, we may reduce the theorem to the case when R is generated over Ry by elements of degree
1. This follows because of Proj R = Proj R(d) and the amusing exercise:

LEMMA 5.10. Let R be a graded ring, finitely generated over Ry. Then for some d, R{(d) is
generated over Ry by R(d)1 = Ry.

(Proof left to the reader).
After these reductions, take pg C Ry a prime ideal. Then

A homogeneous prime p C R such ]

[po] ¢ Imagem <= [ that p N Ry = po, p B Ry

Let R' = R®R, (Ro)p,- Then homogeneous primes p in R such that pN Ry = po are in one-to-one
correspondence with homogeneous primes p’ in R’ such that p’ D pg - R’. Therefore

A homogeneous prime p’ C R’ such
that p’ D po- R and p’ R/,

< /po-R' DR,

< dn, po- R D (R/,)" (since Ry is a finitely generated ideal)

[po] & Imagem <= [

<= 3n, po- R, D R, (since Ry is generated by R;)

In, R, = (0)
<= | (by Nakayama’s lemma since R,
is a finitely generated R’-module)

Now for any finitely generated Rg-module M,
My, = (0) = My = (0), some f € Rg\ po,
hence
{[po] € Spec Ro | My, = (0)}
is the maximal open set of Spec Ry on which M is trivial, i.e.,
Supp M = {[po] € Spec Ry | My, # (0)}
and this is a closed set. What we have proven is:

[po] € Image 7 <= Vn, R, ®r, (Ro)y, # (0)

<= [po] € () Supp Ry

n=1

Thus Image 7 is closed. O
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6. Proper morphisms

Theorem 5.9 motivates one of the main non-trivial definitions in scheme-theory:

DEFINITION 6.1. Let f: X — Y be a morphism of schemes. Then f is proper? if
a) f is of finite type,
b) for all Y/ — Y, the canonical map
X xy Y — Y

is closed.

When Y = Speck, X is complete over k if f: X — Spec(k) is proper.

Since “proper” is defined by such an elementary requirement, it is easy to deduce several
general properties:
Suppose we are given X L Y -%5 Z. Then
i) f, g proper = g o f proper
ii) go f proper = f proper
iii)
g o f proper
f surjective —> ¢ proper
g of finite type

iv) Proper morphisms are “maximal” in the following sense: given

X C X
A /r
Y
where X is open and dense in X’,
f proper = X = X',

For instance, take (ii) which is perhaps subtler. One notes that f can be gotten as a composition:

17
XMX xZYLY

l Jg
X ——Z
gof

where (1, f) is a closed immersion.
Using the concept proper, the Elimination Theorem (Theorem 5.9) now reads:

COROLLARY 6.2. A projective morphism f: X — Y is proper.

PrOOF. Note that f: X — Y is closed if there exists an open cover {U;} of Y such that
f~1U; — Uj is closed. Therefore Corollary 6.2 follows from Theorem 5.9, the definition of Proj
and Property (c) of Proj. O

4(Addod in publication) According to the standard definition, a morphism f: X — Y is proper if it is

separated, (a) of finite type and (b) universally closed. Here both X and Y are assumed to be separated over Z
by the convention at the end of §4. Hence f is automatically separated.
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On the other hand, “projective” is the kind of explicit constructive property that gives one
a very powerful hold on such morphisms, whereas “proper” is just an abstraction of the main
qualitative property that projective morphisms possess. Now there exist varieties over k that
are complete but not projective—even non-singular complex varieties—so proper is certainly
weaker than projective. But what makes proper a workable concept is that it is not too much
weaker than projective because of the following:

THEOREM 6.3 (“Chow’s lemma”). Let f: X — Y be a morphism of finite type between
noetherian schemes. Then there erists

a) a surjective projective morphism w: X' — X, “birational” in the sense that there is an
open set U such that:

7T_1(U) C X!

dense
isomorphismlz g
C
U dense X’

b) a factorization of fom:

/\
Y A

P" xY
where i is an immersion, so that f ow is quasi-projective.

If f is proper, then i is a closed immersion, so we have m and f o m projective, i.e., f is a
“factor” of projective morphisms!

PROOF. We do this in several steps:
STEP (I). 3 a finite affine covering {U;} of X such that (| U; is dense in X.

PROOF. Let X = X; U---U X; be the components of X and let {V;} be any finite affine
covering of X. For all s, 1 < s <t, let X be an affine open subset of X such that
a) XNX, =0ifr#s
b) X? C V; whenever X, NV, # (.
Then define U; to be the union of V; and those X¢ such that V; N X, = (). Since V; and all these
X are disjoint, U; is affine too. Moreover (U; D |J X, hence is dense in X. O

STEP (II). For each i, res f: U; — Y can be factored
Ui — A" xY —Y
I; D2
where I; is a closed immersion.

PrOOF. Let {V;} be an affine covering of Y. Then U; N f~1(V;) is affine and its ring is
generated by Ox (U;) @ Oy (V;). Let fi,..., fi,, € Ox(U;) be enough elements to generate the
affine rings of U; N f~1(V;) over Oy (V;) for all j. Define I;1: U; — AY by I (Xk) = fi and
define I; = (I;1,res f). One sees easily that I; is a closed immersion. O

STEP (III). Consider the immersions:

I U; P xY
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gotten by composing I; with the usual inclusion of A¥ in P¥. Let U; be the scheme-theoretic

closure:
U, C ﬁz — P xY.

open  closed
dense immersion

Let U = O, Ui. Consider the immersion:
U—P"x.---xP"xY

given by (I,...,I%) and the inclusion of U in each U;. Let U be the scheme-theoretic closure
of the image here. Via the Segre embedding, we get:
Uc¢ U P" xY

open . closed
dense ‘/ immersion

f p2

Y

Note that by projecting P** x --- x PYN on its i-th factor, we get morphisms:

U open U
dense
Pi

U;

' open
dense

Define X’ to be the open subscheme of U which is the union of the open subschemes p{l(Ui).
Finally, define 7: X’ — X by:
X ---=X

U U
pi

p; U —— U
Note that this is OK because on the open set U C ﬂpi_lUi, all these morphisms p; equal the
inclusion morphism U < X, and hence p; = p; on p;” Ui pjflUj since U is scheme-theoretically
dense in pz-_lUi ﬂpj_lUj.
STEP (IV). 7: X’ — X is projective. In fact note that p;: U — U is the restriction of

the projection P"! x --- x P» x Y — P x Y to U, hence it is projective, hence it is proper.
Therefore resp;: pi_l(Ui) — U, is proper. We are now in the abstract situation:

LEMMA 6.4. If m: X = Y is a morphism, U; C X, V; CY open dense sets covering X and
Y such that m(U;) C Vi, resw: U; — V; proper, then m=Y(V;) = U; and 7 is proper.

(Proof left to the reader.)
But now consider the morphism
j: X' —P"x X
induced by a) X’ c U — P*x Y 2% P" and b) 7: X’ — X. It is an immersion since the
composite X’ LPrx X ﬁ) P" x Y is an immersion. Since m: X’ — X is proper, j is proper
too, hence j(X') is closed, hence j is a closed immersion. Thus 7 is projective. Finally, if f is

proper too, then fom: X' — Y is proper, hence the immersion X’ — P x Y is proper, hence
it is a closed immersion, hence f o 7 is projective. (]



78 II. EXPLORING THE WORLD OF SCHEMES

Interestingly, when this result first appeared in the context of varieties, it was considered
quite clear and straightforward. It is one example of an idea which got much harder when
transported to the language of schemes.

Proper morphisms arise in another common situation besides Proj:

PROPOSITION 6.5. Let ¢p: A — B be a homomorphism of rings where B is a finite A-module
(equivalently, B is a finitely generated A-algebra and B is integrally dependent on A). Then the
induced morphism f

f: Spec B — Spec A
18 proper.

PROOF. This is simply the “going-up” theorem (Zariski-Samuel [119, vol. I, Chapter V, §2,

Theorem 3]). It suffices to show f is closed. Let Z = V(a) C Spec B be a closed set. I claim

f(2) =V (¢~ ().
We must show that if p is a prime ideal:
¢~ (a) CpC A
then there is a prime ideal q:

acqCcB, ¢ '(q) =p
Apply the going-up theorem to p/¢~!(a) and the inclusion:

A/¢~(a) C B/a.

One globalizes this situation via a definition:

DEFINITION 6.6. A morphism f: X — Y is called finite if X = Specy R where R is a
quasi-coherent sheaf of Oy-algebras which is finitely generated as Oy-modules.

COROLLARY 6.7. A finite morphism is proper.
There is a very important criterion for properness known as the “valuative criterion”:
PROPOSITION 6.8. Let f: X — Y be a morphism of finite type. Then f is proper if and only

if the “valuative criterion” holds:

For all valuation rings R, with quotient field K, every K-valued point o of X
extends to an R-valued point if the K-valued point f o o of Y extends, i.e.,
given the solid arrows:

Spec K *— X

/?(
SpecR —— Y

the dotted arrow exists.

PRrOOF. It’s obvious that the criterion is necessary: just make the base change by the
extended morphism : Spec R — Y:

X' =X xy SpecR—— X

/ . —~ -
a'=(a) - Jf’ J{f

Spec K——— Spec R ﬂ—> Y
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Then « defines a morphism o’ = (a,i) from Spec K to X Xy Spec R, l.e., a section of f! over
Spec K. Let z € X xy Spec R be the image of o’ and let Z = {z}. Then if f is proper:

f(Z) = f(Z) = {f'(2)} = Spec R.

Let w € Z lie over the closed point of Spec R. Then we get homomorphisms

Ow,Z
/ Tu
K D R
Since R is a valuation ring and (f’)* is a local homomorphism, this can only hold if R = O,, z (a

valuation ring is a maximal subring of its quotient field with respect to local homomorphisms:
Zariski-Samuel [119, vol. II, Chapter VI, §2]). Then

SpecOy,z — Z
defines the required extension:
SpecR —ZCc X — X

of a.

The converse is only a bit harder. Assume f satisfies the criterion. Then so does py: X Xy
Y’ — Y after every base change Y’ — Y, so replacing f by ps, it suffices to check that f itself
is closed. Everything is local over Y so we may also assume Y is affine: say Y = Spec S. Since f
is of finite type, X is the union of finitely many affines X,: say X, = Spec R,. Now let Z C X
be closed. Then

Z=|]J(ZnXa)

so if f(Z N X4) is closed for every «, so is f(Z). We can therefore also replace Z by Z N X, for
some «, i.e., we can assume Z N X, dense in Z for some «. There are two steps:

a) for every irreducible component W of f(Z), the generic point ny equals f(z), some
z €7, L
b) for every z € Z and y € {f(2)}, there is a point x € {z} such that f(z) = y.

Together, these prove that f(Z) is closed.

PROOF OF (a). The affine morphism
ZNXy — f(Z)=f(ZNX,)

corresponds to an injective ring homomorphism

R./bq LS/a

between rings without nilpotents. 7y corresponds to a minimal prime ideal p C S/a. Localizing
with respect to M = ((S/a) \ p), we still get an injection (res f)* in the diagram

(Ra/ba)ar 2580

| T

Ra/ba < —:f* S/Cl

(Zariski-Samuel [119, vol. I, Chapter IV, §9] and Bourbaki [27, Chapter II, §2.4, Theorem 1]).
But (S/a)y is the field k(nw), so if ¢ C (Ra/bs)y is any prime ideal, ((res £)*)~1(q) = (0).
Then j~!(q) defines a point z = [i71(q)] € Z N X,, such that f(z) = nw. O
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PROOF OF (b). In the notation of (b), let W = {f(2)}. Then we have a diagram of rings
Oy,w — its quotient field k(f(z)) C k(z).

We use the fundamental valuation existence theorem (Zariski-Samuel [119, vol. II, Chapter VI,
Theorem 5]) which states that there is a valuation ring R C k(z) with quotient field K = k(z)
such that O, w — R is a local homomorphism. This gives us maps:

Spec K — {2} ¢ X
\{ Jresf j/f
SpecR —— W c Y

By the criterion, a lifting Spec R — X exists, and this must factor through {27} (since Spec K
is dense in Spec R)i.Then x, the image under this lifting of the closed point of Spec R, is the
required point of {z}. O

O
An amusing exercise that shows one way the definition of properness can be used is:

PROPOSITION 6.9. Let k be a field and let X be a scheme proper over Speck. Then the
algebra T'(X, Ox) is integrally dependent on k.

PROOF. Let a € I'(X, Ox). Define a morphism
fa: X — A}
by the homomorphism
kE[T] — I'(X, Ox)
T+— a.
Let i: A} < P} be the inclusion. Consider the diagram

10 fq

X P!
T~ e

Speck

where 71, my are the canonical maps. Since m is proper, so is i o f, (cf. remarks following
Definition 6.1). Therefore the image of io f, is closed. But co ¢ Image(io f,), so the image must
be a proper subscheme of A,lg. Since k[T is a principal ideal domain, the image is contained in
V(p), some monic polynomial p(T"). Therefore the function

p(a) €e T(X,Ox)

is everywhere zero on X. On each affine, such a function is nilpotent (an element in every prime
ideal of a ring is nilpotent) and X is covered by a finite number of affines. Thus

p(a)¥ =0
some N > 1, and a is integral over k. U

COROLLARY 6.10. Let k be an algebraically closed field and let X be a complete k-variety.
Then I'(X,O0x) = k.

The following result, given in a slightly stronger form in EGA [1, Chapter III, §3.1], will be
needed in the proof of Snapper’s theorem (Theorem VII.11.1) in the proper but non-projective
case.
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DEFINITION 6.11. Let K be an abelian category, and denote by Ob(K) the set of its objects.
A subset K’ € Ob(K) is said to be ezact if 0 € K’ and if the following is satisfied: In an exact
sequence 0 - A" -+ A — A” — 0 in K, if two among A, A" and A” belong to K', then the third
belongs to K'.

THEOREM 6.12 (“Lemma of dévissage”). Let K be the abelian category of coherent Ox-
modules on a noetherian scheme X, and K' C Ob(K) an ezxact subset. We have K' = Ob(K),
if for any closed irreducible subset Y C X with generic point y there exists G € K' with support
Y such that G, is a one-dimensional k(y)-vector space.

PrOOF. For simplicity, a closed subset Y C X is said to have property P(Y) if any S €
Ob(K) with Supp(S) C Y satisfies S € K'.

We need to show that X has property P(X).

By noetherian induction, it suffices to show that a closed subset Y C X has property P(Y)
if any closed subset Y’ & Y has property P(Y”).

Thus we now show F € Ob(K) satisfies 7 € K’ if Supp(F) C Y. Endow Y with the unique
structure of closed reduced subscheme of X with the ideal sheaf 7. Since J O Ann(F), there
exists n > 0 such that J"F = (0). Looking at successive quotients in the filtration

FOIJFOJ*Fo--->J" ' FoJ"F=(0),

we may assume n = 1, that is, 7F = (0), in view of the exactness of K. Let j: Y — X be the
closed immersion so that F = j.j*F.

Suppose Y is reducible and Y = Y" UY” with closed reduced subschemes Y, Y” G Y. Let
J' and J” be the ideal sheaves of Ox defining Y’ and Y, respectively, so that J = J' N J".
Let 7/ = F® (Ox/J') and F' = F @ (Ox/J"), both of which belong to K’ by assumption.
Regarding the canonical Ox-homomorphism

wF —FeF

we have 7' @ F” € K’ by exactness, while Ker(u), Coker(u) € K’ by assumption, since the
induced homomorphism of the stalks at each z ¢ Y/ NY” is obviously bijective. Hence we have
F € K’ by exactness.

It remains to deal with the case Y irreducible. Endowing Y with the unique integral scheme
structure, let y be the generic point of Y. Since O,y = k(y) and j*F is Oy-coherent, F, =
(§*F)y is a k(y)-vector space of finite dimension m, say. By assumption there exists G € K’
with Supp(G) = Y and dimy,) G, = 1. Hence there is a k(y)-isomorphism (G,)" — F,
which extends to an Oy-isomorphism in a neighborhood W in X of y. Let H be the graph in
(G @ F)|w of the Oy |w-isomorphism G®"|y, — Flw. The projections from H to G¥™ |y,
and F|y are isomorphisms. Hence there exists a coherent Ox-submodule Hy C G¥™ @ F such
that Holw = H and that Ho|x\y = (0), since Supp(G), Supp(F) C Y. The projections from H
to G¥™ and F are homomorphisms of O x-modules which are isomorphisms on W and X \ Y.
Thus their kernels and cokernels have support in Y\ (Y N W) G Y, hence belong to K'. Since
G € K/, we thus have Hy € K’, hence F € K'. O

Exercise

(1) Let f: X — Y be a finite morphism. If the fibre f~!(y) over one point y € Y is
isomorphic to Speck(y), show that res f: f~1(U) — U is a closed immersion for some
neighborhood U of y.
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(2) (Referred to in the proof of Lang’s Theorem VI.2.1.) Let f: X — Y be a morphism of
finite type with Y noetherian such that f~!(y) is finite for all y € Y. Show that 3 an
open dense U C Y such that

res f: fHU) — U

is finite.

(3) (Complement to Proposition 3.11) Let f: X — Y be a quasi-compact morphism of
schemes. Show that Z := Ker(Oy — f.Ox) is a quasi-coherent sheaf of ideals of Ox.
(The closed subscheme of X defined by Z is called the scheme-theoretic closure of the
image of X in Y.)

(4) Let f: X — Y be a quasi-compact and quasi-separated morphism of schemes, and let
F be a quasi-coherent Ox-module. Show that f.F is a quasi-coherent Oy-module.
(Recall as in Remark at the end of §4 that f is defined to be quasi-separated if the
diagonal morphism Ax/y: X — X xy X is quasi-compact.)

(5) Give an example of a scheme X with two affine open subsets U and V such that UNV
is not affine.



CHAPTER III

Elementary global study of Proj R

1. Intertible sheaves and twists

DEFINITION 1.1. Let X be a scheme. A sheaf £ of Ox-modules is called invertible if L is
locally free of rank one. This means that each point has an open neighborhood U such that

Lly = Ox|u;
or equivalently, there exists an open covering {U,} of X such that for each «,
Lly, ~ Ox|u,-
The reason why invertible sheaves are called invertible is that their isomorphism classes form

a group under the tensor product over Ox for multiplication, as we shall now see.
(a) If £, L are invertible, so is L& L.

PROOF. For each point we can find an open neighborhood U such that both £, £’
are isomorphic to Ox when restricted to U, so £L® £’ is isomorphic to Ox @ Ox = Ox
when restricted to U. O

(b) Tt is clear that L& Ox ~ L ~ Ox ® L, so Ox is a unit element for the multiplication,
up to isomorphism.
(c) Let LY = Hom(L,Ox). Then LV is invertible.

PROOF. Restricting to a suitable open set U we may assume that £ =~ Ox, in which
case

Hom (L, Ox) =~ Hom(Ox,O0x) ~ Ox.

(d) The natural map
L& Hom(L,Ox) — Ox

is an isomorphism.

PROOF. Again restricting to an appropriate open set U, we are reduced to proving
the statement when £ = Ox, in which case the assertion is immediate. O

Thus £V = Hom(L,Ox), which is call the dual sheaf, is an inverse for £ up to isomorphism.
This proves that isomorphism classes of invertible sheaves over Ox form a group.
We also have the property:

(e) Let f: X — Y be a morphism and £ an invertible sheaf on Y. Then f*L is an invertible
sheaf on X.

DEFINITION 1.2. Let X be a scheme. We let Pic(X), the Picard group, be the group of all
isomorphism classes of invertible sheaves.

83
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Invertible sheaves and Proj are closely related because under a certain hypothesis, Proj R
carries a canonical invertible sheaf, known as Opyojr(1).

Let R be a graded ring,
R =P Ry.

n>0
Then R is an algebra over Ry. The hypothesis that allows us to define Oprojr(1) is that R is
generated by Ry over Ry, that is
R = Ry[Ry]

(cf. Proposition 11.5.1). We shall make this hypothesis throughout this section.

ExaMPLE 1.3. The most basic ring of this type is obtained as in Definition 11.5.6 as follows.
Let A be any commutative ring, and let

R=AlTy,...,T,]

be the polynomial ring in r 4+ 1 variables. Then Rg = A, and R, consists of the homogeneous
polynomials of degree n with coefficients in A. Furthermore R; is the free module over A, with
basis Ty, ..., .
For simplicity, we abbreviate

P = Proj R.
To define Op(1), start with any graded module M. Then for all integer d € Z we may define
the d-twist M(d) of M, which is the module M but with the new grading

M(d)p = Mgip,.

Then we define o

Op(1) = R(1)
where the is the projective . If f € R is a homogeneous element, we abbreviate the open

subset
(ProjR)s =Py or Uy.

PROPOSITION 1.4. The sheaf Op(1) is invertible on ProjR. In fact: Given f € Ry, the
multiplication by f
mys: R — R(1)
is a graded homomorphism of degree 0, whose induced sheaf homomorphism
mp: R=0p — R(1) = Op(1)
restricts to an isomorphism on Uy. Let oy = my. For f,g € Ry, the sheaf map 4,0/?1 o g 18
multiplication by g/ f on Ur N U,.

PrOOF. By definition

Op(1)|u; = (R(1)f)os
and we have an isomorphism
multiplication by f: Ry — R(1);.

This induces an isomorphism on the parts of degree 0, whence taking the affine N, it induces
the isomorphism

OIP”Uf — Op(l)‘(]f.
In fact, the module associated with Op(1) on Uy is just given by

(Rf)o- f,
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and is consequently free of rank 1 over the affine coordinate ring of Spec(Ry)o. Since R is
generated by Ry, the Uy’s cover Proj R, and this shows that Op(1) is invertible. O

ProproSITION 1.5. Let M be a graded R-module. Then the isomorphism
M ®pr R(1) — M(1)

induces an isomorphism

P

M ®0, Op(1) — M(1).

PRroor. Let f € R;. On P; the isomorphism of graded modules induces the corresponding
isomorphism of (Ry)o-modules
(My)o @ (R(1))o — (M(1)1)o,

where the tensor product is taken over (Ry)g. Taking the affine tilde yields the desired sheaf
isomorphism. O

DEFINITION 1.6. For every integer d we define
Oz(d) = R(d),
and for any sheaf F of Op-modules, we define
F(d) = F @0, Op(d).
PROPOSITION 1.7.

(i) For d,m € Z we have F(d+m) =~ F(d) ® Op(m).
(ii) For d positive,

Op(d) = Op(l) ®--- @ Op(1) (product taken d times).
(iii) For d € Z the natural pairing
Op(d) ® Op(—d) — Op
identifies Op(—d) with the dual shiqu[p:(d)v.
(iv) For a graded module M, we have M (d) ~ M(d).
PROOF. The first assertion follows from the formula

(M ®r N) ~ M ®0, N

for any two graded R-modules M and N, because R is generated by R;. Indeed, for f € Ry we
have
(M ®rN)s =My ®r, Ny

The other assertions are immediate. O

The collection of sheaves M (d) attached to M allows us to interpret globally each graded
piece of the module M. In fact, for each d, we get a canonical homomorphism (cf. §I1.5)

My = M(d)o — T(P, M(d)) = T(P, M(d)).
For any sheaf F of Op-modules, we define
I.(F) = @ T @, F(m)).
meZ

Then we obtain a canonical homomorphism

M — T (M).
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In particular, when M = R, we get a ring homomorphism

R — @I (P,0p(d)) = T(R) = T'.(Op),
d=0
where multiplication on the right hand side is defined by the tensor product.
We also note that I'x(F) is a graded R-module as follows. We have the inclusion of Ry in

—

I'(P, R(d)), and the product of Ry on I'(P, Fp(m)) is induced by the tensor product
(P, Op(d)) @ T(P,F(m)) — T(P, F(m + d)).
It is not always the case that there is an isomorphism
I.(Op) ~ R,

so for some positive integer d, it may happen that the module of sections I'(P, Op(d)) is larger
than R;. We now give an example when these are equal.

PROPOSITION 1.8. Let A be a ring and R = A[ly,...,T;], r > 1. Let P = ProjR = P’,.
Then for all integers d € Z we have

Rd ~ F(P, Op(d)) so R=~ P*(Op).

Proor. For ¢ = 0,...,r let U; = Ug,, so U; is the usual affine open subscheme of Proj R,
complement of the hyperplanes T; = 0. A section s € I'(P, Op(n)) is the same as a family of
sections s; € Op(n)(U;) for all i, such that s; = s; on U; N Uj for all 4, j. But a section in
Op(n)(U;) is simply an element

where k(i) is an integer and f;(T") is a homogeneous polynomial of degree k(i)+n. The restriction
to U; N Uj is the image of that element in the localization Ry, Since the elements Ty, ..., T,
are not zero-divisors in R, the natural maps

R — RTi and RTZ- — RTiTJ-

are injective, and all such localized rings can be viewed as subrings of Ry,...1;.. Hence I'y(Op) is
the intersection (| Rz, taken inside Ry,...7,. Any homogeneous element of Ryy...7,, can be written
in the form

f(To,..., TTFO ... T
where f(Tp,...,T,) is a homogeneous polynomial not divisible by any 7; (i = 0,...,r) and
k(0),...,k(r) € Z. Such an element lies in Ry, if and only if k(j) > 0 for all j # i. Hence the
intersection of all the Ry, for i = 0,...,7 is equal to R. This proves the proposition. U

The proposition both proves a result and gives an example of the previous constructions. In
particular, we see that the elements Ty, ..., T, form a basis of R; over A, and can be viewed as
a basis of the A-module of sections I'(P"}, Op(1)).

Next we look at the functoriality of twists with respect to graded ring homomorphisms. As
in §I1.5 we let R’ be a graded ring which we now assume generated by R} over Rj. Let

o: R— R

be a graded homomorphism of degree 0. Let V be the subset of Proj R’ consisting of those
primes p’ such that p’ 5 ¢(R+). Then we saw that V is open in Proj R’, and that the inverse
image map on prime ideals

f:V—ProjR="P
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defines a morphism of schemes.
PROPOSITION 1.9. Let P = Proj R'. Then
frOp(d) = Op(d)ly  and  f(Op/(d)lv) = (f.Ov)(d).

PRrROOF. These assertions about the twists hold more generally for any graded R-module M,
because

F*(M) = (M ®r Ry

and for any graded R’-module N, we have

fo(Nlv) = (Ng),
where Np is NV viewed as R-module via ¢. The proof is routine and left to the reader. O

To conclude this section we note that everything we have said extends to the global Proj
without change. Instead of Proj R, we can consider Projyx R where R is a quasi-coherent graded
sheaf of Ox-algebras. We need to make the hypothesis that R,, is generated by R over Ry,
i.e., the multiplication map

Symmgp, R1 — Ry

is surjective. Let P = Projy R. Then if M is a quasi-coherent graded sheaf of R-modules, we
define M(d) by

M(d)n - Md+n-
Then let

and for every quasi-coherent F on P, let
F(d) = F ®0, Op(d).

As before, Op(1) is invertible, with powers Op(d) and

—_—

M(d) = (M)(d).
The extension of the definition of I',(F) to the global case is:
8 F = P mF(m)
meZ

where 7 is the projection of Projx R to X. This is quasi-coherent provided that R, is finitely
generated as Ro-modules, since this implies that 7 is quasi-compact, hence Proposition 11.4.10
applies. As above, we have a natural graded homomorphism

M — 7E(M).

Finally Proposition 1.8 globalizes immediately to:

PROPOSITION 1.10. Let € be a locally free sheaf of Ox-module and consider P(£) = Projx (Symm* £).
Then the natural homomorphism

Symm? €& — 7 Op(g)(d)

s an isomorphism. In particular, Symm* £ = wfr(?]p(g).
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2. The functor of Proj R

Throughout this section we let R be a graded ring, generated by Ry owver
Ry. We let S = Spec(Ry), P = ProjR and let m: P — S be the canonical
projection.
An important example of a graded ring R as above is Symmp (R1), namely the symmetric
algebra, but we shall meet other cases, so we do not restrict our attention to this special case.
We are interested in schemes X over .S, and in morphisms of X into Proj R over S:

X4>IP’ Proj R

N

In the simplest case, P = P}, and f becomes a morphism of X into projective space.
Given such a morphism f: X — P, we can take the inverse image f*Op(1), which is an
invertible sheaf on X. By the general formalism of inverse images of sheaves, this induces a

natural map on global sections
[T TP, 0p(1)) — (X, f7Op(1)),
and in light of the natural map Ry — I'(P, Op(1)) induces a homomorphism
or=p: Ry — I'(X, f*Op(1)).
Thus to each morphism f: X — P we have associated a pair (£, ¢) consisting of an invertible
sheaf £ (in this case f*Op(1)) and a homomorphism
v: R — I'(X, 0).
To describe an additional important property of this homomorphism, we need a definition.

DEFINITION 2.1. Let F be a coherent sheaf of Ox-modules. Let {s;} be a family of sections.
We say that this family generates F if any one of the following conditions is satisfied:

(1) For every point € X the family of images {(s;),} generates F, as an O,-module, or
equivalently (by Nakayama’s lemma Proposition 1.5.5) F,/m;F,

(2) For each point x € X there exists some open neighborhood U of x such that the sections
{silu} generate F(U) over Ox(U).

Note that by Proposition 1.4, if ¢ € R;, then over the open set (ProjR), of P = Proj R
the section g € I'(P, Op(1)) generates the sheaf Op(1). Since these open sets cover the scheme
PP, it follows that the collection of global sections R; of Op(1) generates Op(1) everywhere (see
Nakayama’s lemma Proposition 1.5.5), or equivalently that

TRy — Op(1)

is surjective.

From the definition of the inverse image f*, which is locally given by the tensor product, it
follows that the inverse image f*R; generates f*Op(1).

Thus finally, to each morphism f: X — Proj R we have associated a pair (£, ) consisting
of an invertible sheaf £ on X and a homomorphism

p: R — F(X , ﬁ)
such that ¢(R;) generates L, or equivalently, the homomorphism

f*Rl — L
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is surjective.

THEOREM 2.2. Let P = Proj R. Assume that R = Symmp (R1). Let S = Spec(Ro). Let
p: X — S be a scheme over S and let (L, ) be a pair consisting of an invertible sheaf L on X
and a homomorphism
p: R — T'(X, L)

which generates L. Then there exists a unique pair (f,¢) consisting of a morphism f: X —
Proj R over S and a homomorphism : f*Op(1) — L making the following diagram commuta-
tive:

R —— S T(X,L)

[

(P, Op(1)) — (X, f*Op(1))
Furthermore, the homomorphism 1 is an isomorphism.

Before giving the proof, we make some comments. An important special case occurs when R
is a free module of finite rank 41 over Ry. Then P = ]P’%O. The Ry-module R; then has a basis
To,...,Tr. Let sq,...,s, be sections of £ which generate £. There is a unique homomorphism
w: Ry — I'(X, £) such that ¢(7;) = s;. The theorem asserts that there is a unique morphism
f+ X — Py such that f*Op(1) is isomorphic to £, and the sections s; correspond to f*T;
under this isomorphism. This is the formulation of the theorem in terms of the homogeneous
coordinates Tp, ..., T;.

The proof of Theorem 2.2 will require some lemmas. We first consider the uniqueness, and
for this the hypothesis that R = Symmp (R1) will not be used.

Let s be a section of an invertible sheaf £ over the scheme X. Let s, be the value of the
section in L;, and let m, be the maximal ideal of O,. Then s, generates L, if and only if
Se & My L.

LEMMA 2.3. Let L be an invertible sheaf on the scheme X. Let s € I'(X, L) be a global
section of L. Then the set of points x € X such that s, generates L, is an open set which we
denote by Xs. Multiplication by s, that is,

mg: OX|U — £|U
is an isomorphism on this open set.

PROOF. We may suppose that X = Spec(4), and £ = Ox since the conclusions of the
lemma are local. Then s € A. The first assertion is then obvious from the definition of Spec(A).
As to the second, s is a unit in A5 so multiplication by s induces an isomorphism on the sheaf
on the open subset Spec(Ag). This proves the lemma. (No big deal.) O

To show uniqueness, we suppose given the pair
f: X —ProjR and ¢: Ry —TI'(X, L),

and investigate the extent to which f is determined by (. Note that for all a € Ry the map f
restricts to a morphism

p(a) — f_l((PI'Oj R)ll) — (PI‘Oj R)CL
and
(Proj R)a = SpeC(Ra)O'
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If b € Ry, then the map ¢ sends b, a to ¢(b), p(a) respectively, and so

* 9 p(b) —m-!
F e Dy = ma (o)

But the set of elements b/a with b € Ry generates (R,)o. Consequently the ring homomorphism
(Ra)o — I‘()(ch(a)7 Ox)

is uniquely determined by . This proves the uniqueness.
Next we wish to show existence.

LEMMA 2.4. Let R be a graded ring generated by Ry over Ry. Let a € Ry. Then there is a
unique (not graded) ring homomorphism

R/(a—1) = (Ra)o

such that for b € Ry we have

br—>é
a

PROOF OF LEMMA 2.4. The map b — b/a defines an additive homomorphism of R; into
(Rq)o. Consequently, this additive map extends uniquely to a ring homomorphism

h: R — (Ra)o,

because of the assumption R = Symmpg (R1), and @ — 1 is in the kernel. Since a becomes
invertible under the map R — R/(a — 1), we can factor h as follows:

R — Ry, — R/(a—1) — (Ra)o-

The first map is the natural map of R into the localization of R by a. Since R; generates R,
any element of the homogeneous component R,, can be written as a sum of elements in the form
by - - - by, for some b; € Ry, so an element of (R,)o is a sum of elements of the form

bi--by (b1 bn
av  \a a )’

Since (Ry)o is contained in Ry, it follows that the composite map

(Ra)o 2wt B R/(a— 1) — (Ra)o

is the identity. Furthermore given an element in R/(a — 1) represented by a product by - - - by,
with b; € Ry, it is the image of an element in (R,)g since a =1 mod (a — 1). Hence the map

(Ra)o — R/(a—1)
is an isomorphism. This concludes the proof of Lemma 2.4. U

We revert to the existence part of Theorem 2.2. Given the data (£, ¢) we wish to construct

the morphism
f: X — ProjR.
For each a € Ry we let X, be the open set of points x € X such that ¢(a)(x) # 0 (we are
using Lemma 2.3). Since ¢(R1) generates L, it follows that the sets X, cover X for a € Ry.
On the other hand,
ProjR = U Spec(Rq)o-
a€Ry

It will suffice to construct for each a € Ry a morphism

Xo(a) — Spec(Rq)o C Proj R
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such that this family is compatible on the intersections of the open sets X (,). The construction
is done for the corresponding rings of global sections. By restriction from X to X, the map
© gives rise to a map

Pa : R1 — F(Xgo(a)a E)

1

Composing with the multiplication m, " as in Lemma 2.3, we obtain a homomorphism R; —

['(X,(a), Ox) as in the following triangle:

Ry F(Xap(a)v [’)

F(Xgo(a)u OX)

But m, ! sends ¢(a) to the section represented by 1. By the assumption that R = Symmp, (R1),
the additive Rg-homomorphism

Ry — T'(Xy(a), Ox)
induces a ring homomorphism
Yo R/(a—1) = (Rg)o — T'(Xy(a), Ox)-
This is the homomorphism of global sections that we wanted. Then 1, induces a morphism
far Xp(a) — Spec(Ra)o-

We now leave to the reader the verification that these morphisms are compatible on the inter-
sections of two open subschemes X N X ). From the construction, it is also easy to verify
that the morphism

v(a)

f: X — ProjR
obtained by glueing the morphisms f, together has the property that
frOop(1) =L,
and that the original map ¢ is induced by f*. This proves the existence.

Finally, the fact that ¢ is an isomorphism results from the following lemma.

LEMMA 2.5. Let+: L' — L be a surjective homomorphism of invertible sheaves. Then 1) is
an isomorphism.

PROOF. The proof is immediate and will be left to the reader. O

We used the assumption that R = Symmp (R1) only once in the proof. In important
applications, like those in the next section, we deal with a ring R which is not Symmpg (R1),
and so we give another stronger version of the result with a weaker, but slightly more complicated
hypothesis.

The symmetric algebra had the property that a module homomorphism on R; induces a
ring homomorphism on R. We need a property similar to this one. We have the graded ring

I.(L)=EPrX, ),

n>0

where £ = L®" is the tensor product of £ with itself n times. The Ro-homomorphism ¢: Ry —
I'(£) induces a graded algebra homomorphism

Symm(y): Symmpg (R1) — T's(L).
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We say that Symm(p) factors through R if there is a commutative diagram of graded algebras

Symmp, (R1) —— [, (L)
\ P

so for each n we have a commutative diagram:

THEOREM 2.6. Theorem 2.2 is valid without change except that instead of assuming R =
Symmp, (R1) we need only assume that Symm(yp) factors through R.

PROOF. The proof is the same, since the hypothesis that Symm(¢p) factors through R can
be used instead of R = Symmp (R1). O

COROLLARY 2.7. Let £ be a locally free sheaf on the scheme X. Then sections s: X —
Px(€) = Projx(Symme, (£)) are in bijection with surjective homomorphisms

E—L—0

of £ onto invertible sheaves over X.
Proor. Take X = S in Theorem 2.2. O

Let R be a quasi-coherent graded sheaf of Ox-algebras, and let P = Projy R. We have a
canonical homomorphism

R1 — m.0p(1)
or equivalently (cf. Lemma (1.5.11))
mR1 — Op(1)
which is surjective. This leads to the following generalization of Theorem 2.2:

THEOREM 2.8. Let p: Z — X be a scheme over X and let L be an invertible sheaf on Z.
Let

h: p*Rl — L
be a surjective homomorphism. Assume in addition that R = Symmp (R1) or that Symm(h)
factors through R. Then there exists a unique pair (f,1) consisting of a morphism

f:Z — Projxy(R)=P
over X and a homomorphism
Y: ffOp(1) — L
making the following diagram commutative:

f*(canonical)

[rm*(R1) =p*(R1) ———— f*Op(1)
\ T

In other words, h: p*(R1) — L is obtained from 7*(R1) — Op(1) by applying f* and composing
with 1. Furthermore, this homomorphism 1) is an isomorphism.
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3. Blow ups
This section provides examples for Proj of some graded rings, in one of the major contexts
of algebraic geometry.
Throughout this section, we let X be a scheme.

Let 7 be a quasi-coherent sheaf of ideals of Ox. We may then form the sheaf of graded

algebras
R=P1"
n>0
where by definition Z° = Ox. Then R satisfies the hypotheses stated at the beginning of §2,
so the results of §2 apply to such R. The sheaf of ideals Z defines a closed subscheme Y whose
structure sheaf is

Oy = O0x/T.
We define the blow up of X along Y, or with respect to I, to be:
Bly (X) = Projx R.
Let
m: Bly(X) — X

be the structural morphism.
Let

f: X —X
be a morphism. Let Z be a sheaf of ideals of Ox. Then we have homomorphism
F'T— fOx = Ox
(cf. §1.5). We let
fYT)Ox oralso ZOx
to be the image of this homomorphism. Then ZOx is a quasi-coherent sheaf of ideals of Ox-.
THEOREM 3.1. Let X' = Bly(X) be the blow up of X along Y, where Y s the closed
subscheme defined by a sheaf of ideals T, and let w: X' — X be the structural morphism.

i) The morphism m gives an isomorphism
X'\l (y) S X \V.
ii) The inverse image sheaf ZOx: is invertible, and in fact
ZOxr = Ox(1).

PRrROOF. The first assertion is immediate since Z = Ox on the complement of Y by definition.
So if we put U = X \ 'Y, then
7~} (U) = Proj,; Oy[T] = U.

For (ii), we note that for any affine open set V' in X, the sheaf Ox/(1) on Proj(R(V)) is the
sheaf associated to the graded R(V)-module

ROV)(1) =Pz (V).
n>0

But this is equal to the ideal ZR (V) generated by Z(V') in R(V). This proves (ii), and the
concludes the proof of the theorem. O
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THEOREM 3.2 (Universality of Blow-ups). Let
m: Bly(X) — X
be the blow up of a sheaf of ideals T in X. Let
f1Z2—X

be a morphism such that ZOyz is an invertible sheaf of ideals on Z. Then there exists a unique
morphism fi1: Z — Bly(X) such that the following diagram is commutative.

z—" L Bly(X)

P

ProoF. To construct f; we use Theorem 2.8, taking £L = ZOz and h to be the natural map
h: f*Ri=f"T — IOz =L.

Note that Symm/(h) factors through € L.
To see that f; is unique, take a sufficiently small affine open piece Spec(R) of Z in which

—~—

IOz is (aR), a € Z. Then a is a non-zero divisor in R by hypothesis. Now Spec(R,) lies over
X \ 'Y, over which 7 is an isomorphism:

Spec(Ryg) Bly (X) \ 7~ 1(Y)
X\Y /

Therefore f is unique on Spec(R,). But since a is not a zero-divisor, any morphism on Spec(R,)
has at most one extension to Spec(R). This is because R — R, is injective and hence a
homomorphism S — R is determined by the composition S — R,. This concludes the proof. [J

THEOREM 3.3. Let Y’ be the restriction of Bly (X) to Y, or in other words
Y =Y xy Bly(X).

Then Y' = Projy gr7(Ox) where gr{(Ox) = @nZOI”/I”H. In other words we have the
following commutative diagram:

Projy grz(Ox) =Y’ —— Bly(X) = Projx (D Z")

| |

Y X

PROOF. Let R = @,5,Z" as before. Then IR = @,5,I""!, where "' is the n-th
graded component, and is a homogeneous ideal sheaf of R. The restriction to Y is given by the
graded ring homomorphism

R — R/IR,
which induces the restriction of Projx(R) to Y. Hence this restriction is equal to Projy (R/ZR),
viewing R/ZR as an Ox/Z = Oy-sheaf of graded algebras. But
R/IR =PI1" /T
n>0

This proves the theorem. O
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In general, nothing much more can be said about the sheaf

er7(0x) = P17/

n>0

However, under some conditions, this sheaf is the symmetric algebra of Z/Z2. Assume that A

is a noetherian ring and I an ideal of A. We say that a sequence of elements (ai,...,a,) is a
reqular sequence in I if aq is not a divisor of 0, and if a;41 is not a divizor of 0 in I/(aq,...,a;)
for all ¢ > 1.

LEMMA 3.4. Assume that I is generated by a reqular sequence of length r. Then there is a
natural isomorphism
Symmy,(I/1%) ~ @ 1"/ 1"+
n>0

and I/I? is free of dimension r over A/I.
PROOF. See Matsumura [78, Chapter 6]. O

Now suppose X is a noetherian scheme and 7 is a sheaf of ideals as before, defining the
subscheme Y. We say that Y is a local complete intersection in X of codimension r if each point
y € Y has an affine open neighborhood Spec(A) in X, such that if [ is the ideal corresponding
to Z over Spec(A), then I is generated by a regular sequence of length r. The elementary
commutative algebra of regular sequences shows that if this condition is true over Spec(A), then
it is true over Spec(Ay) for any element f € A. Lemma 3.4 then globalizes to an isomorphism

Symmy (Z/I°) ~ gr(Ox) = P T"/7".

n>0

Furthermore Z/Z? is locally free of rank r over Oy. Therefore we may rephrase Theorem 3.3 as
follows:

THEOREM 3.5. Suppose that Y is a local complete intersection of codimension r in X, and
is defined by the sheaf of ideals T. Let Y' be the restriction of Bly(X) to Y. Then we have a
commutative diagram:

Y = Py(Z/I%) — Bly(X)

| |

Y —— X
In particular, if y is a closed local complete intersection point, then
B,(Z/T%) = F}

where k is the residue class field of the point. Thus the fibre of the blow up of such a point is a
projective space.

We shall now apply blow ups to resolve indeterminacies of rational maps.

Let X be a noetherian scheme and let £ be an invertible sheaf on X. Let sq,..., s, be global
sections of £. By Lemma 2.3, the set of points € X such that (sg)s, ..., (sr), generate L, is
an open set Uy, and these sections generate £ over Us. Here s denotes the r-tuple

S =1(80y-,S)-

Then s defines a morphism
fs: Us — P
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of Uy into projective r-space over X, in line with Theorem 2.2 and the remarks following it. We
shall now define a closed subscheme of X whose support is the complement of Uy, and we shall
define a canonical blow up (depending on the given sections) so that the morphism f; extends
to a morphism of this blow up.

Let sg,...,s, be sections of L. We shall define an associated sheaf of ideals Zs as follows.
Let U be an open affine set where L is free, and so

E|U ~ OX‘U-

Under this isomorphism, the sections become sections of Ox over U. We let Ziy be the sheaf of
ideals generated by these sections over U. If U = Spec(A), then the sections can be identified
with elements of A, and the ideal corresponding to this sheaf is the ideal (so,...,s;) generated
by these elements. It is immediately verified that this ideal is independent of the trivialization
of L|y, and that the sheaf 7y agrees with the similarly defined sheaf L]y on the intersection
U NV of two affine open sets U and V. This is the sheaf of ideals which we call Z, determined
by or associated with the family of sections s.

Since X is assumed noetherian, Z; is a coherent sheaf of ideals, or in other words, it is locally
finitely generated.

Us is the open subset of X which is the complement of the support of Ox/Z;. Thus Z
defines a closed subscheme Y, and U is the complement of Y. We view U; as a scheme, whose
structure sheaf is Ox|y,.

PROPOSITION 3.6. Let s = (sq, ..., 8:) be sections of an invertible sheaf L over X as above.
Let T = I be the associated sheaf of ideals, defining the subscheme Y, and let m: X' — X be
the blow up of X along Y. Then the sections w¥sg,...,n*s, generate an invertible subsheaf of
7L, and thus define a morphism

Jrrs: X' — P )

such that the following diagram is commutative:

f *

—1 TS T

s (US) —_— PX
isomorphism Tinclusion

Us f Py,
ProoFr. By Theorem 3.1 we know that ZOx is invertible, and the sections 7*sg,...,7*s,
generate this subsheaf of 7*L.
Thus the assertion of the proposition is immediate. O

In this manner, we have a globally defined morphism on the blow up X’ which “coincides”
with fs on the open set Us.

4. Quasi-coherent sheaves on Proj R

Throughout this section we let R be a graded ring, generated by Ry over Ry.
We let P = Proj R. We assume moreover that Ry is a finitely generated Ry-
module, hence P is quasi-compact.

The purpose of this section is to classify quasi-coherent sheaves in terms of graded modules
on projective schemes in a manner analogous to the classification of quasi-coherent sheaves in
terms of ordinary modules over affine schemes. We start with a lemma.
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Let £ be an invertible sheaf on a scheme X. Let f € I'(X, £) be a section. We let:
Xy = set of points x such that f(z) # 0.
We recall that f(zx) is the value of f in £, /m,L,, as distinguished from f, € L.

LEMMA 4.1. Let L be an invertible sheaf on the scheme X. Let F be a quasi-coherent sheaf
on X. Assume X is quasi-compact.

i) Let s € I'(X,F) be a section whose restriction to Xy is 0. Then for some n > 0 we
have f"s =0, where f"s e T'(L" @ F) ~ T'(F @ L").

ii) Suppose X has a finite covering by open affine subsets U; such that L|y, is free for each
J. Lett € I'(Xy, F) be a section over X¢. Then there exists n > 0 such that the section
frte (X, F @ L") extends to a global section of F @ L™ over X.

PRrROOF. There is a covering of X by affine open sets on which L is free, and since X is
assumed quasi-compact, we can take this covering to be finite. Hence it suffices to prove that if
U = Spec(A) is affine open such that L|y is free, then there is some n > 0 such that fs =0 on
U. But Fly = M with some A-module M by Proposition-Definition I.5.1. Then we can view s
as an element of M, and f as an element of A under an isomorphism L|yy =~ Ox|y. By definition
of the localization, the fact that the restriction of s to X is 0 means that s is 0 in My, and so
there is some n such that f"s = 0. This has an intrinsic meaning in £ ® F, independently of
the choice of trivialization of £ over U, whence (i) follows.

For (ii), let t € I'(Xf, F). We can cover X by a finite number of affine open U; = Spec(4;)
such that £|y, is free. On each U; there is an A;-module M; such that F|y, = ]\Z The restriction
of t to Xy NU; = (U;)s is in (M;)y,, where f; = f|y, can be viewed as an element of A; since
L|y, is free of rank one. By definition of the localization, for each i there is an integer n and a
section t; € I'(U;, F) such that the restriction of t; to (U;)y, is equal to f"t (that is f™ ®t) over
(Us)¢,. Since we are dealing with a finite number of such open sets, we can select n large to work
for all i. On U; NU; the two sections ¢; and ¢; are defined, and are equal to f"t when restricted
to Xy NU; NU;. By the first part of the lemma, there is an integer m such that f™(¢; —t;) =0
on U; NUj for all ¢, j, again using the fact that there is only a finite number of pairs (4, j). Then
the section ft; € I'(U;, L™ ® F) define a global section of L™ @ F, whose restriction to X is
f™t™¢. This concludes the proof of the lemma. O

We turn to the application in the case of sheaves over P = Proj(R). The sheaf £ of Lemma
4.1 will be Op(1).

Let M be a graded module over R. Then M is a sheaf on P. Suppose that N is a graded
module such that Ny = My for all d > dy. Then

M = N.

This is easily seen, because for f € Ry, we know that [P is covered by the affine open sets Py.
Then any section of M over P ¢ can be written in the form z/f" for some x € M,, but we can
also write such an element in the form

r [T

fr - fm+n

so we can use only homogeneous elements of arbitrarily high degree. Hence changing a finite

number of graded components in M does not affect My, nor M.
If M is finitely generated, it is therefore natural to say that M is quasi-equal to N if My = Ny
for all d sufficiently large. Quasi-equality is an equivalence relation. Two graded homomorphisms

fLg: M — N
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are called quasi-equal if fq = g4 for all d sufficiently large. (fq,94: My — N4 are the restrictions
of f, g.) More generally, we define:

Homye(M,N) = lim Hom (M>p, N>n),

where M>,, denotes the submodule of M of components of degree > n. This defines a category
which we call the category of graded modules modulo quasi-equality, and denote by GrModge(R).
The association

Mr— M (projective tilde)

is a functor from this category to the category of quasi-coherent sheaves on P.

Our object is now to drive toward Theorem 4.8, which states that under suitable finiteness
assumptions, this functor establishes an equivalence of categories. Some of the arguments do
not use all the assumptions, so we proceed stepwise. The first thing to show is that every
quasi-coherent sheaf is some M. Let F be quasi-coherent over P. Then in §1 we had defined

I.(F) =PI (P, F(n)).

nez
PROPOSITION 4.2. Let F be a quasi-coherent sheaf over P. Let M = T'.(F). Then F =~ M.

PrOOF. Let f € R;. We want to establish an isomorphism
(Myf)o — F(Py).
The left hand side is the module of sections of M over P;. The compatibility as f varies will be

obvious from the definition, and this isomorphism will give the desired isomorphism of M with
F. Multiplication by f gives a homomorphism

F(n) L5 Fn+1)
whence a corresponding homomorphism on global sections. There is a natural isomorphism

(Mj)o = lim(M,, f) ~ lim(TF(n), f)

where the right hand side is the direct limit of the system:

MOLMlﬁMQL...LMnL...

Indeed, an element of (My)g can be represented as a quotient x/f" with x € I'F(n). There is

an equality
T Y

7
with y € T F(m) if and only if there is some power f¢ such that
fd+m$ — deLy.

This means precisely that an element of (My)o corresponds to an element of the direct limit as
stated.
On the other hand, let © = Op. We have an isomorphism

Ole, L5 0,
and since F(n) = F @ O(n) by definition, we get an isomorphism

Fley L5 Fn)le,.
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Now we look at the directed system and commutative diagrams:

n

TF(n) — = F(n)(By) «—L— F(Py)

~

d 1
LF(n—1) — F(n—1)(Py)
The top row gives a homomorphism
[ "ores: ' F(n) — F(Py).
The commutativity of the square and triangle induces a homomorphism on the direct limit

(Mp)o = lim(TF(n), f) — F(®y).

The first part of Lemma 4.1 shows that this map is injective. Using the quasi-compactness of
P, the second part shows that this map is surjective, whence the desired isomorphism. We leave
to the reader the verification of the compatibility condition as f varies in Rj, to conclude the
proof. O

THEOREM 4.3 (Serre). Let F be a finitely generated quasi-coherent sheaf on P. Then there
is some ng such that for all n > ng, the sheaf F(n) is generated by a finite number of global
sections.

PRrROOF. Let fo,..., fr generate Ry over Ry, and let P; = Py,. For each ¢ there is a finitely
generated module M; over O(P;) such that Flp, = ]\Aiz For each 4, let s;; be a finite number
of sections in M; generating M; over O(P;). By Lemma 4.1 there is an integer n such that for
all 7, j the sections f]'s;; extend to global sections of F(n). But for fixed ¢, the global sections
fl'sij (j variable) generate M; over O(IP;) since f! is invertible over O(IP;). Since the open sets
P; (i=0,...,r) cover P, this concludes the proof. O

PROPOSITION 4.4. Let F be a finitely generated quasi-coherent sheaf on P. Then there is a
finitely generated R-submodule N of I'yF such that F = N.

PROOF. As in Proposition 4.2, let M = I',F, so M= F. By Theorem 4.3, there exists n
such that F(n) is generated by global sections in I'(P, F(n)). Let N be the R-submodule of M
generated by this finite number of global sections. The inclusion N < M induces an injective
homomorphism of sheaves

0—N-—M=F
whence an injective homomorphism obtained by twisting n times

0 — N(n) — M(n) = F(n).

This homomorphism is an isomorphism because F(n) is generated by the global sections in N.
Twisting back by —n we get the isomorphism N ~ F, thereby concluding the proof. O

We have now achieved part of our objective to relate quasi-equal graded modules with
coherent sheaves. We proceed to the inverse construction, and we consider the morphisms.

PROPOSITION 4.5. Assume that M is a finitely presented graded module over R. Let N be
a graded module. Then we have an isomorphism

lim Hom(Ms,, N>,) < Hom(M, N).
n
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PRroor. Consider a finite presentation
R — R?T — M — 0.
In such a presentation, the homomorphism are not of degree 0, and we rewrite it in the form
F—F—M-—70

where each of F', F is a direct sum of free graded module of type R(d) with d € Z. We then
obtain an exact and commutative diagram

0 —— Hom(M, N) ———— Hom(E, N) ——— Hom(F, N)

| L |

0 li%Hom(MZn,NZn) liﬁmHom( >ns N>n) li%Hom(FZn,NZn).

It will suffice to prove that the two vertical arrows on the right are isomorphisms. In light of
the direct sum structure of £ and F', it suffices to prove that

—_~—

lim Hom (R(d)>n, N>n) — Hom(R(d), N)

is an isomorphism, and twisting by —d, it suffices to prove that

lim Hom (R, N>,) — Hom(R, N)

is an isomorphism for any graded module N. But R = Op and thus
Hom(R, N) = Hom(Op, N) =T'N.
Thus it suffices to prove the following lemma.

LEMMA 4.6. Let N be a graded R-module. Then we have an isomorphism

lim Hom (R, N>,) = T'N.

PrROOF OF LEMMA 4.6. Corresponding to a finite set of generators of Ry over Ry, we have
a graded surjective homomorphism

Ro[To, e ,Tr] — R()[Rl] =R — 0,

which makes P = Proj R into a closed subscheme of P’y where A = Ry. We can view the module
N as graded module over P}, and the sheaves are sheaves over P’;. We also view R as graded
module over the polynomial ring A[Ty, ..., T,]. The relation to be proved is then concerned with
objects on ;.

In this notation, the arrow in the lemma is given as follows: For a homomorphism

a: ATy, ..., Tr]>n — N>p

of graded A[Ty, . . ., T,]-modules, the global section of N corresponding to « is given by a(T7) /(T7),
where I = (ig,...,4,) is an (r+ 1)-tuple of nonnegative integers with |I| :=ip+---+14, > n and
T!:= T ... Tir. In other words, the restriction of this section to the affine open subset (P%) 1
is a(T1)/T!, an element of degree 0 in the localization Np.

We have to prove the surjectivity and injectivity of the arrow. For surjectivity, let x € I'N.
Let P; be the complement of the hyperplane T; = 0 as usual. Then
T

resp, (r) = T
i
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with n sufficiently large and some z; € N,,. Increasing n further, we may assume that
T'zj = Tj'w;

because x; /1" = x;/ T} in Ny, for all ¢, j. Therefore there exists a homomorphism of the ideal
(T§, ..., T7) into N,
e: (1Y, ..., 1) — N

sending 7" — x; for each 7, and this homomorphism maps on x by the arrow

Hom(Rspm, N>p) — T'N,

for m sufficiently large, because R>y, C (1y,...,T;') for m large compared to n. In fact, the
ideals (1§}, ..., T}) are cofinal with the modules R>,, as m, n tend to infinity. This shows that
the map

lim Hom(R>p, N>5) — I'N

is surjective. The injectivity is proved in the same way. This concludes the proof of the lemma,
and also the proof of Proposition 4.5. U

O
The proof of the next proposition relies on the following:

FAcT. Let F be a coherent sheaf on P = Proj R with Ry noetherian. Then U'wF is a finitely
presented R-module.

The proof of this fact will be given as a consequence of theorems in cohomology, by descend-
ing induction, and is therefore postponed to Chapter VII (cf. Theorem VII.6.1, which is the
fundamental theorem of Serre [99], and its proof.)

PROPOSITION 4.7. Let M be a finitely presented graded module over R with Ry noetherian.
Then the natural map

M —T.M

s an tsomorphism modulo quasi-equality.

PRrooOF. By Proposition 4.2 we have an isomorphism

—_~—

@: (T,M) =5 M,

so by Proposition 4.5, and the “Fact” above:

—~—

€ Hom((I', M), M) ~ lim Hom (T« M) >, Ms).

Therefore ¢ comes from a homomorphism
hot (DeM)sn — Msy,

for n sufficiently large since M is finitely presented over R, that is ¢ = hNn But since ¢ is an
isomorphism, it follows from applying Proposition 4.5 to ¢ ~! that h,, has to be an isomorphism
for n large. This concludes the proof. O

We can now put together Propositions 4.2 and 4.7 to obtain the goal of this section.
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THEOREM 4.8. If Ry is noetherian, then the association
M— M

is an equivalence of categories between finitely presented graded modules over R modulo quasi-
equality and coherent sheaves on P. The inverse functor is given by

Fr—T.F.

This theorem now allows us to handle sheaves like graded modules over R. For example we
have the immediate application:

COROLLARY 4.9. Let F be a coherent sheaf on Proj R with Ry noetherian. Then there exists
a presentation
E—F —0

where € is a finite direct sum of sheaves Op(d) with d € 7Z.

PrOOF. The corresponding assertion is true for graded modules, represented as quotients
of finite direct sums of modules R(d) with d € Z. Taking the tilde gives the result for coherent
sheaves. (]

5. Ample invertible sheaves

There will be two notions of ampleness, one absolute and the other relative. We start with
the absolute notion. For simplicity, we develop the theory only in the notherian case.

DEFINITION 5.1. Let X be a noetherian scheme. An invertible sheaf £ on X is called ample
if for all coherent sheaves F on X there exists ng such that F ® L" is generated by its global
sections if n > ny.

EXAMPLE. Serre’s Theorem 4.3 gives the fundamental example of an ample £, namely Op(1)
where P = Proj R with R noetherian.

It is obvious that if £ is ample, then £™ is ample for any positive integer m. It is convenient
to have a converse version of this fact.

LEMMA 5.2. If L™ is ample for some positive integer m, then L is ample.

PRrOOF. Let F be a coherent sheaf on X. Then F ® L™ is generated by global sections for

all n > ng. Furthermore, for each ¢ = 0,...,m — 1 the sheaf

FRL ®Lm
is generated by global sections for n > n;. We let N be the maximum of ng,...,n;,—1. Then
F ® L™ is generated by global sections for n > N, thus proving the lemma. O

DEFINITION 5.3. Let ¢: X — Y be a morphism of finite type over a noetherian base Y. Let
L be an invertible sheaf on X. We say that L is relatively very ample with respect to ¢, or -
relatively very ample, if there exists a coherent sheaf F on Y and an immersion (not necessarily
closed)
t: X — Py (F)

over Y, i.e., making the following diagram commutative

X ———— Py(F

\/
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such that £ = t*Op(1). We say that L is relatively ample if for some n > 1, L®" is relatively
very ample.

The definition is adjusted to be able to deal with a wide assortment of base scheme Y.
However, when Y = Spec(A) is affine, then it turns out that one can replace Py (F) by P, for
some 7, as in the following theorem. Observe that in the affine case, we have

P, =Py (F) with F =05,

THEOREM 5.4. Let X be a scheme of finite type over a noetherian ring A and let L be
an invertible sheaf on X. Then L is ample if and only if L is relatively ample over Spec(A).
Moreover, when this holds the immersion v: X — Pa(F) such that L = *Op(1) can be taken
wnto projective space P’ .

REMARK. Serre’s cohomological criterion for ampleness will be given in Theorem VII.8.2.

PROOF. Suppose that there is an immersion ¢: X — P",. The only problem to show that £
is ample is that X need not be closed in P’;, because if X is closed then we can apply Theorem
4.3. The next result is designed to take care of this problem.

PROPOSITION 5.5. Let F be a quasi-coherent sheaf on a noetherian scheme X. Let U be an

open subscheme of X, and let Gy be a coherent subsheaf of F|y. Then there exists a coherent
subsheaf G of F on X such that

Glv = Gu.

PRroOF. Consider all pairs (G, W) consisting of an open subscheme W of X and a coherent
subsheaf G of F|y extending (Gy, U). Such pairs are partially ordered by inclusion of W’s and
are in fact inductively ordered because the notion of a coherent sheaf is local, so the usual union
over a totally ordered subfamily gives a pair dominating every element of the family. By Zorn’s
lemma, there exists a maximal element, say (G,W). We reduce the proposition to the affine
case as follows. If W # X, then there is an affine open subscheme V' = Spec(A) in X such that
V ¢ W. Then W NV is an open subscheme of V', and if we have the proposition in the affine
case, then we extend G from W NV to V, thus extending G to a larger subscheme than W,
contradicting the maximality.

We now prove the proposition when X is affine. In that case, we note that the coherent
subsheaves of Gy satisfy the ascending chain condition. We let G; be a maximal coherent
subsheaf which admits a coherent extension G which is a subsheaf of 7. We want to prove that
G1 = Gy. If G1 # Gy then there exists an affine open X; C U and a section s € QU(Xf) such
that s & G1(Xy). By Lemma 4.1 (ii), there exists n such that f™s extends to a section s’ € F(X)
and the restriction of ¢’ to U is in F(U). By Lemma 4.1 (i) there exists a still higher power f™
such that

() =0 in (F/G)(U).
Then G; + f™s’'Ox is a coherent subsheaf of F which is bigger than Gy, contradiction. This
concludes the proof of the proposition. O

COROLLARY 5.6. Let X be a noetherian scheme. Let U be an open subscheme, and let G be
a coherent sheaf on U. Then G has a coherent extension to X, and this coherent extension may
be taken as a subsheaf of 1.G, where 1: U — X 1is the open immersion.

PRrROOF. By Proposition 11.4.10 we know that ¢,G is quasi-coherent, and so we can apply
Proposition 5.5 to finish the proof. O
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We can now finish one implication in Theorem 5.4. Assuming that we have the projective
immersion ¢: X — P, we consider the closure X and apply Theorem 4.3 to an extension F
of a coherent sheaf 7 on X. Then F ® O (n) is generated by global sections for n > ng, and
the restrictions of these sections to F generate F, thus concluding the proof of one half of the
theorem.

To prove the converse, we need a lemma.

LEMMA 5.7. Let L be an ample sheaf on a noetherian scheme X. Then there exists an open
affine covering of X by subschemes defined by the property s(x) # 0, for some global section s
of L™, some n.

PROOF. Given a point x € X, there is an open affine neighborhood U of x such that L|y is
free. Let Y = X \ U be the complement of U, with the reduced scheme structure, so that Y is a
closed subscheme, defined by a sheaf of ideals Zy, which is coherent on X. There exists n such
that Zy ® L™ is generated by global sections, and in particular, there is a section s of Zy ® L"
such that s(z) # 0, or equivalently, s, & m,(Zy ® L™),. Since L™ is free, we can view Zy ® L"
as a subsheaf of £". Then by Lemma 2.3 the set X of points z such that s(z) # 0 is open and
is contained in U because s(y) € m, Ly for y € Y. The section s restricted to U can be viewed
as an element of £™(U), and since L, so L", are free over U, it follows that s corresponds to a
section f of Oy and that X, = Uy so X is affine. O

Thus we have proved that for each point © € X there is an affine open neighborhood X
defined by a global section s of £*) such that s(z) # 0. Since X is quasi-compact, we can cover
X by a finite number of such affine open sets, and we let m to be the least common multiple of
the finite number of exponents n(x).

Since we wish to prove that £" is very ample for sufficiently large n, we may now replace £
by L™ without loss of generality. We are then in the situation when we have a finite number of
global sections si,...,s, of £ which generate £, such that X, is affine for all ¢, and such that
the open sets X, cover X. We abbreviate X, by X;.

Let B; be the affine algebra of X; over A. By assumption X is of finite type over A, so B;
is finitely generated as A-algebra, say by elements b;;. By Lemma 4.1 there exists an integer
N such that for all ¢, j the section sZN b;; extends to a global section t;; of LN, The family of
sections sZN , ti; for all 7, j generates LY since already the sections s, ...,sY generate £V, and
hence they define a morphism

v: X — PY
for some integer M. It will now suffice to prove that 1 is a closed immersion. Let T;, T;; be the
homogeneous coordinates of IP)% ,and put P = IP’% for simplicity. If P; is the complement of the
hyperplane T; = 0 then X; = ¢~ }(P;). The morphism induces a morphism

Vi Xi — Py
which corresponds to a homomorphism of the corresponding affine algebras
A[zk, ij] — Bi7

where zj, z; are the affine coordinates: z, = T}, /T; and zy; = Tj;/T;. We see that z;; maps on
tij/ sf-v = b;; so the affine algebra homomorphism is surjective. This means that 1); is a closed

immersion of X; in P;. Since X is covered by the finite number of affine open sets X1,..., X,
it follows by Corollary I1.3.5 that v itself is a closed immersion. This concludes the proof of
Theorem 5.4. (]

Next we want to investigate the analogous situation when the base Y is not affine.
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PROPOSITION 5.8. Let U be open in X and L ample on X. Then L|y is ample on U.

Proor. By Corollary 5.6, a coherent sheaf F on U has an extension to a coherent sheaf on
X. Global sections which generate this extension restrict to sections of F on U which generate
F on U, so the proposition is immediate. O

Now comes the globalized version of Theorem 5.4.

THEOREM 5.9. Let p: X — 'Y be of finite type with X, Y noetherian. The following condi-
tions are equivalent.

i) There exists a positive integer n such that L™ is relatively very ample for .
ii) There exists an open affine covering {Vi} of Y such that L|,-1y, is ample for all i.
iii) For all affine open subsets V' of Y the restriction L|,-1y is ample.
PRrROOF. The implication (iii) == (ii) is trivial and (i) implies (iii) follows immediately
from Theorem 5.4.
We must show that (ii) implies (i). We have done this when the base Y is affine in Theorem
5.4, and we must globalize the construction. When Y is affine, we could take the immersion of
X into a projective space, but now we must use Py (F) with some sheaf F which need not be

locally free.
Applying Theorem 5.4 to L]|,-1y,, we get coherent sheaves F; on V; and immersions 1;

satisfying ¥7 (O(1)) ~ L"|,-1y,. We first make two reductions. First of all, we may assume the
n; are equal because if n = l.c.m(n;) and m; = n/n; then

Py, (7, = Projy, (Symm(F;))

~ Projy, (@ Symmm"k(}})>
k

= Projy, (Symm (Symm™:(F;)) /1;)  for some ideal I;

C Py, (Symm™i(F;)) .
Replacing F; by Symm™:(F;), we find ¢ (O(1)) = L"|,-1y; for the new ;.

Secondly, v; gives us the canonical surjective homomorphisms
a;: (res )" (Fi) — L1y,
hence
Bi Fy — (resgp)*(ﬁnlwﬂvi) (cf. (1.5.11)).

We may assume that §; is injective. In fact, let F; be the image of F; in (res).(L"|,-1v;).

Then Fj is still coherent because (res).(L"|,-1y;) is quasi-coherent (cf. Proposition II.4.10),
and the morphism 1); factors

P (Vi) = Py (F)) = Py (F).

We now apply Corollary 5.6 to choose a coherent subsheaf G; C ¢.L" such that G;|y, ~ F;. Now
the homomorphism

B: EPGi — p.L"
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defines
a: p* (@g& — L"
(cf. (I.5.11)) and « is surjective because on each V;,
¢ Gilvi — Ly

is surjective. By the universal mapping property of Py, L™ and « define a morphism:

Py (B G:)
N /

I claim this is an immersion. In fact, restrict the morphisms to ¢ ~!(V;). The functoriality of
Proj (cf. §I1.5, Remark h)) plus the homomorphism

Symm(Gilv,) <= Symm(€P G;1v,)
gives us an open set W; C Py (@ G;) and a “projection” morphism:
W, c Py(G))
Py (Gi)
It is not hard to verify that (¢~ (V;)) C W;, and that the following diagram commutes:

X Py (D G;)

U @]
res

e (Vi) —— Winm V)
|

Py, (Gilv;)
lz

Py, (F3)

Since 1); is an immersion, so is res (cf. Proposition 11.3.14), and since this holds for all i, it
follows that v is an immersion. O

A final result explains further why relatively ample is the relative version of the concept
ample.

THEOREM 5.10. Let f: X — Y be of finite type with X, Y noetherian. Let L be relatively
ample on X with respect to f, and M ample on'Y. Then £ & f*MP* is ample on X for all k
sufficiently large.

PRrROOF. The first step is to fix a coherent sheaf 7 on X and to show that for all ny sufficiently
large, there exists no such that
F@ LMo ffM™
is generated by global sections. This goes as follows: because M is ample, Y can be covered
by affine open sets Y;;, with s; € I'(Y, M™1) for suitable m; by Lemma 5.7. Then L|;
is ample by Theorem 5.4. Thus F ® £"1|f_1(ysz_) is generated by sections t;1,...,t;n if ny is
sufficiently large. But by Lemma 4.1, for large my all the sections

may
s; 1
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ny

n2

Ficure III.1

extend from X, to X as sections of F @ L™ ® f*(M™1™2), Let ny = mima. Then this collection
of global sections generates

FL"®Q fr(M™).

There remains to “rearrange the order of the quantifiers”, i.e., to pick an upper bound of
ny/n1 independent of F. The simplest way to do this is to consider the set:

S ={(n1,n2) | LM @ f*(M"?) is generated by global sections}.

Note that:

(a) S is a semi-group;

(b) S D (0) x (no + N) for some ng because M is ample on Y (N is the set of positive
integers);

(c) there exists n{, such that if ny > n|, then

(n1,n2) € S for some no.

For this last part, apply Step I with 7 = Ox.
A little juggling will convince you that such an S must satisfy

S D {(n1,n2) | na > kon1 > no}

for suitable ko, ng (see Figure III.1). Now take any k& > ko (strictly greater). Then I claim
L ® f*MP* is ample. In fact, for any F,

F LM ® ffM™
is generated by its sections for some ni, ne. Then so is
F® LM @ f*M ™2 if (n],nh) € S.

But (n,nk) — (n1,n2) € S if n > 0, so we are OK. This concludes the proof of the theorem. [
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6. Invertible sheaves via cocycles, divisors, line bundles

There is a natural correspondence between the four objects occurring in the title of this
section. We have already met the invertible sheaves. We shall define the other three and
establish this correspondence. We then relate these to Weil divisors.

Basic to all the constructions is the following definition. Let X be a scheme. We define the
subsheaf of units O% of Ox to be the sheaf such that for any open U we have

O%(U) = Ox(U)* = units in Ox(U)
={f € Ox(U) such that f(x) # 0 for all z € U}.

1-cocycles of units. Let X be a scheme and let £ be an invertible sheaf of Ox-modules
or as we also say, an invertible sheaf over X. Let {U;} = U be an open covering such that the
restriction L[y, is isomorphic to Ox |y, for each i. Thus we have isomorphisms

¢i: Llu, — Ox|u;.-
It follows that
pij = 0o ©; " Oxlwinu,) — Oxlwnuy)

is an automorphism, which is O x-linear, and so is given by multiplication with a unit in Ox (U;N
U;)*. We may therefore identify ¢;; with such a unit. The family of such units {¢;;} satisfies
the condition

PijPik = Pik-
A family of units satisfying this condition is called a 1-cocycle. The group of these is denoted
ZYU, O%). By a coboundary we mean a cocycle which can be written in the form f; fj_l, where
fi € Ox(U;)*. These form a subgroup of Z'(U,O%) written BY(U,O%). The factor group
ZYU,0%) /B U, 0%) is called H' (U, O%). If U is a refinement of U, i.e., for each U] € U,
there is a U; € U such that U/ C Uj, then there is a natural homomorphism

HY U, 0%) — H' U, 0%),
(for details, see §VII.1). The direct limit taken over all open coverings U is called the first Cech
cohomology group HY(X, O%).
Suppose

f:L—M
is an isomorphism of invertible sheaves. We can find a covering U by open sets such that on
each U; of U, £ and M are free. Then f is represented by an isomorphism

fi OX|U¢ — OX‘Ui

which can be identified with an element of Ox (U;)*. We then see that the cocycles ¢;; and cpgj
associated to £ and M with respect to this covering differ by multiplication by f; fj_l. This
yields a homomorphism (cf. Definition 1.2)

Pic(X) — HY(X,0%).
PROPOSITION 6.1. This map Pic(X) — HY(X,0%) is an isomorphism.

PRrOOF. The map is injective, for if two cocycles associated with £, M give the same element
in H'(X, O%), then the quotient of these cocycles is a coboundary which can be used to define
an isomorphism between the invertible sheaves. Conversely, given a cocycle ¢;; € Z LU, O%) it
constitutes glueing data in the sense of §1.5 and there exists a unique sheaf £ which corresponds
to this glueing data. O
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Cartier divisors. Let X be a scheme. Let U = Spec(A) be an open affine subset of X. Let
S be the multiplicative subset of elements of A which are not zero-divisors, and let K(U) = S~1A
be the localization of A with this subset. We call K (U), also denoted by K (A), the total quotient
ring of A. If A has no divisors of 0, then K (A) is the usual quotient field.

The association U — K (U) defines a presheaf, whose associated sheaf is the sheaf of total
quotient rings of Ox, and is denoted by Kx. If X is integral, then all the rings Ox (U) for affine
open U can be identified as subrings of the same quotient field K and Kx is the constant sheaf
with global sections K. (K = R(X), the function field of X, in the notation of Proposition
11.2.5.)

We now consider pairs (U, f) consisting of an open set U and an element f € K*(U), where
K*(U) is the group of invertible elements of IC(U). We say that two such pairs (U, f) and (V, g)
are compatible if fg~1 € O(UNV)*, that is, fg~! is a unit in the sheaf of rings over UNV. Let
{(Ui, fi)} be a family of compatible pairs such that the open sets U; cover X. Two such families
are called compatible if each pair from one is compatible with all the pairs from the other. A
compatibility class of such covering families is a Cartier divisor D. As usual, we can say that
a Cartier divisor is a maximal family of compatible pairs, covering X. If f € K*(U) and (U, f)
belongs to the compatibility class, then we say that the divisor is represented by f over U, and
we write D]y = (f). We also say that f =0 is a local equation for D over U.

This amounts to saying that a Cartier divisor is a global section of the sheaf K% /O%. We
can define the support of a Cartier divisor D, and denote by Supp(D), the set of points = such
that if D is represented by (U, f) on an open neighborhood of z, then f & OX. It is easy to see
that the support of D is closed.

A Cartier divisor is called principal if there exists an element f € I'(X, K*) such that for
every open set U, the pair (U, f) represents the divisor. We write (f) for this principal divisor.

Let D, FE be Cartier divisors. Then there exists a unique Cartier divisor D 4+ E having
the following property. If (U, f) represents D and (U, g) represents E, then (U, fg) represents
D + E. This is immediate, and one then sees that Cartier divisors form a group Div(X) having
the principal divisors as subgroup. The group is written additively, so —D is represented by
(U, f~1). We can take f~! since f € K*(U) by definition.

We introduce a partial ordering in the group of divisors. We say that a divisor D is effective
if for every representative (U, f) of the divisor, the function f is a morphism on U, that is,
f € Ox(U). The set of effective divisors is closed under addition. We write D > 0 if D is
effective, and D > F if D — F is effective. Note: although sometimes one also calls D positive,
there are other positive cones which can be introduced in the group of divisors, such as the
ample cone. The word “positive” is usually reserved for these other cones.

REMARK. It may be that the function f is not on Ox(U) but is integral over Ox (U). Thus
the function f may be finite over a point, without being a morphism. If X is integral, and all
the local rings O, for z € X are integrally closed, then this cannot happen. See below, where
we discuss divisors in this context. In this case, the support of D turns out to be the union
of the codimension one subschemes where the representative function f has a zero or a pole.
This difference in behavior is one of the main differences between Cartier divisors and the other
divisors discussed below.

Let D be an effective Cartier divisor. If (U, f) is a representative of D, then f generates a
principal ideal in Ox (U), and this ideal does not depend on the choice of f. In this way we can
define a sheaf of ideals, denoted by Zp. It defines a closed subscheme, which is often identified
with D.
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Two Cartier divisors D, E are called linearly equivalent, and we write D ~ E, if there exists
f eI'(X,K%) such that

D=E+(f)

In other words, D — E is principal. We define the group of divisor classes
DivCl(X) = Div(X) /K% (X)

to be the factor group of Cartier divisors mod principal divisors.

To each Cartier divisor D we shall now associate an invertible sheaf Ox (D) = O(D) as
follows. If {(Uj, f;)} is a covering family of pairs representing D, then there is a unique subsheaf
L of x such that

L(Ui) = O£

This subsheaf is denoted by O(D). Since f; is a unit in Kx (U;), it follows that L(U;) is free of
rank one over O(Uj;), so O(D) is invertible. Zp = Ox(—D) if D is effective.

PROPOSITION 6.2. The association
D — O(D)

is an isomorphism between Cartier divisors and invertible subsheaves of Kx (under the tensor
product).
It induces an injective homomorphism on the classes

0 — DivCl(X) — Pic(X),

where Pic(X) is the group of isomorphism classes of invertible sheaves. In other words, D ~ E
if and only if O(D) = O(E). If X is an integral scheme, then this homomorphism is surjective,
so we have a natural isomorphism

DivCl(X) =~ Pic(X).

PRrROOF. The fact that the map D — O(D) is homomorphic is immediate from the def-
initions. From an invertible subsheaf of x we can define a Cartier divisor by the inverse
construction that we used to get O(D) from D. That is, D is represented by f on U if and only
if O(D) is free with basis f~! over U. If D ~ E, say D = E + (f), then multiplication by f
induces an isomorphism from O(D) to O(E). Conversely suppose O(D) is isomorphic to O(E).
Then O(D — E) is isomorphic to O = Ox, so we must prove that if O(D) ~ O then D = 0.
But the image of the global section 1 € K*(X) then represents D as a principal divisor.

Finally, suppose X integral. We must show that every invertible sheaf is isomorphic to O(D)
for some divisor D. Let

vi: Lly, — Oly,

be an isomorphism and let ¢;; = ¢; o cpj_l € O(U; N U;)* be the associated cocycle. We have
seen already that this constitutes glueing data to define an invertible sheaf. But now we may
view all rings O(U;) or O(U; NUj) as contained in the quotient field K of X since X is integral.
We fix an index j, and define the divisor D by the covering {U;}, and the local equation ¢;;. In
other words, the family of pairs (U;, ;) (with j fixed) is a compatible family, defining a Cartier
divisor D. Then it is immediately verified that O(D) is isomorphic to £. This concludes the
proof. O
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Line bundles. Let L — X be a scheme over X. Let A! be the affine line. We shall say
that L is a line bundle over X if one is given an open affine covering {U;} of X and over each
U; an isomorphism of schemes

fi: Ly, — U; x Al
over U; such that the automorphism
fio f;li (U;N Uj) x Al — (UiN Uj) x Al

over U; N Uj is given by an O(U; N Uj)-linear map. Such a map is then represented by a unit
vij € OU; NUj)*, and such units satisfy the cocycle condition. Consequently, there is an
invertible sheaf £ corresponding to this cocycle.

One defines an isomorphism of line bundles over X in the obvious way, so that they are
linear on the affine line when given local representations as above.

PROPOSITION 6.3. The above association of a cocycle to a line bundle over X induces a bi-
jection between isomorphism classes of line bundles over X and H'(X, O%). If L is an invertible
sheaf corresponding to the cocycle, then we have an isomorphism

L ~ Specy (Symm™(L)).
PROOF. Left to the reader. O

Weil divisors. The objects that we have called Cartier divisors are rather different from
the divisors that we defined in Part I [87, §1C]. In good cases we can bring these closer together.
The problem is: for which integral domain R can we describe the structure of K*/R* more
simply?

DEFINITION 6.4. A (not necessarily integral) scheme X is called normal if all its local rings
O, x are integral domains, integrally closed in their quotient field (integrally closed, for short);
factorial if all its local rings O, x are unique factorization domains (UFD).

In particular, note that:

X factorial =— X normal

(all UFD’s are integrally closed,

see Zariski-Samuel [119, vol. I, Chapter V, §3, p. 261])
X normal = X reduced.

Now the fundamental structure theorem for integrally closed ring states:

THEOREM 6.5 (Krull’s Structure Theorem). Let R be a noetherian integral domain. Then

a) V(non-zero) minimal prime ideal p C R,
R integrally closed <= Ry 1s a discrete valuation ring,

b) R= mp (non-zero) minimal RP
(cf. Zariski-Samuel [119, vol. I, Chapter V, §6]; Bourbaki [27, Chapter 7]).

COROLLARY 6.6. Assume a noetherian domain R to be integrally closed. Let
S = set of (non-zero) minimal prime ideals of R
ZY(R) = free abelian group generated by S.

IfpesS
orde — valuation on K* defined by the valuation ring Ry
P77 de, if T Ry = mazimal ideal, f = 7% .y, u e Ry |
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Then the homomorphism:
ord: K*/R* — ZY(R)
giwen by ord(f) = > _g(ordy f) - p is injective. ord is surjective if and only if R is a UFD.
PrOOF. Everything is a straightforward consequence of Theorem 6.5 except for the last
assertion. This follows from the well known characterization of UFD’s among all noetherian

domains—that the (non-zero) minimal prime ideals should be principal, i.e., that Image(ord) >
the cycle p (cf. Zariski-Samuel [119, vol. I, Chapter IV, §14, p. 238]). O

COROLLARY 6.7. Assume X is a normal irreducible noetherian scheme. Let

S = set of maximal closed irreducible subsets Z ; X

ZY(X) = free abelian group generated by S.

ZY(X) is called the group of Weil divisors on X. If Z € S, let

valuation on R(X) defined by the valuation ring
ordy = , , .
0. x, z = generic point of Z

Then there is a well-defined homomorphism:
ord: Div(X) — Z}(X)

giwen byord(D) = Y s(ordz(f.))-Z (where f, = local equation of D near the generic point z € Z),
and it is injective. ord is surjective if and only if X is factorial.

PrOOF. Straightforward. O

REMARK. Let X be a normal irreducible noetherian scheme with the function field R(X),
and let D be a Cartier divisor on X. Then for f € R(X)*, one has (f) + D > 0 if and only if
feT(X,0x(D)). Thus the set of effective Cartier divisors linearly equivalent to D is controlled
by the space I'(X, Ox (D)) of global sections of the invertible sheaf Ox (D).

Exercise

For some of the notions and terminology in the following, the reader is referred
to Part 1 [87].

(1) A quasi-coherent Ox-module F is said to be locally free of rank r if each point z € X
has a neighborhood U such that there is an isomorphism

(Ox|0)®" = Flu

(cf, Definition 1.5.3). As a generalization of Proposition 6.1, show that such an F may
be explicitly described in terms of H'(X,GL,(Ox)). As a generalization of Proposition
6.3, show that the isomorphism classes of vector bundles over X and those of locally
free Ox-modules are in one-to-one correspondence: Given a locally free Ox-module F
of rank r, let F = Hom(F,Ox) be the dual Ox-module. Let

V(F) = Specy (D Symm™(F)),

n=0

and let 7w: V(F) — X be the projection. 7: V(F) — X is the vector bundle of rank r
over X, and F is the sheaf of germs of sections of 7.
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(2) Prove that the Segre embedding (cf. Example 1.8.11 and Proposition 11.1.2)
G- PZI X7 P%z SN P%ln2+n1+n2

corresponds in Theorem 2.2 to the invertible sheaf O[P;'Zl (1)®z Opzz (1) and the surjective
homomorphism

(OIPJZH )Ga(nﬁ_l) ®z (OIPJZQ )®(n2+1) — OIPJZH (1) ®z Opgg (1)
obtained as the tensor product over Z of the canonical surjective homomorphisms
(Opgl)®(nl+l) — Opm (1)
(Opgz )@(n2+1) — Opgz (1)

(3) Let X be of finite type over R. Prove that if £1, Lo are very ample (resp. ample)
invertible sheaves on X, then £1 ® L9 is very ample (resp. ample). Referred to in the
proof of Theorem VIIL.5.5.

(4) Let k be a field and consider P}.

a) All maximal irreducible subsets of P} are of the form V(f), f € k[Xo,...,X,]
homogeneous and irreducible.

b) All effective Cartier divisors D on P}, considered via (a) above as subschemes of
P}, are equal to V(f), some homogeneous f € k[Xo, ..., X,].

c) Two effective divisors D; = V(f1) and Dy = V(f2) are linearly equivalent if and
only if deg fi = deg f2; hence the set of all effective divisors D given by subschemes
V(f), deg f = d, is a complete linear system; the canonical map

k[Xo, ..., Xn]a — T(Py, Opr(d))

is an isomorphism and Pic(P) = Z, with Opy (1) being a generator.

d) If o: P} — P} is an automorphism over k, then o*(Opy (1)) = Opr(1). Using the
induced action on I'(Py, Opr (1)), show that o is induced by the linear change of
homogeneous coordinates A € GLy41(k).

(5) Work over a field k. Let T C P? be the “triangle” defined by xoz1r2 = 0, a closed
subscheme. Let f: P2\ T — P2\ T be the isomorphism defined in projective coordinates

by
1 1 1
(xog:xp:a9) > | —:—:— |.
rg I1 X2

Let Z be the Zariski closure of the graph of f in P? X Spec(k) P2, a closed subscheme of
P2 X Spec(k) P2, Let p1: Z — P2 be the projection to the first factor of P2 X Spec(k) P2,
thought of as the source of the birational map f. Relate p1: Z — P? to a suitable blow
up of P2
(6) Work over a base field k. Let y be a k-point of P2, and let f: Y — P? be the blow up
of P? with center y. Let E be the exceptional divisor for Y — P2. Let L be a line on
P? passing through y, and let L be the strict transform of L in Y. Let h and e be the
class of f*Op2(1) and Oy (E) in Pic(Y'), respectively.
(i) Show h,e form a Z-basis of the Picard group of Y, with (h-h) =1, (h-e) =0,
(e-e)=—1.
(ii) Prove that an element ah — be in Pic(Y') with a,b € Z is the class of an effective
divisor if and only if a > b > 0.
(iii) Prove that an element ah — be in Pic(Y') is the class of an ample invertible Oy-
module if and only if a > b > 0.
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(iv) Let F := f*Op2(2) @Oy (—E). Show that the linear system |['(Y, F)| is canonically
isomorphic to the linear system of quadrics on P? passing through v, and defines
an embedding t7: Y < P* of Y as a surface of degree 3 in P4.

(v) Show that the linear pencil |T'(Y, f*Op2(1) @ Oy (—F)| is base point free, and de-
fines a fibration g: Y — P

(vi) Let Y; := Projp: (Symm*(Op1 @ Op1(1))), and let g: Y1 — P! be the structure
morphism for Projp: (Symm*(Op:r @ Op1(1))). Show that (g: Y — P!, f*Op2(1))
is isomorphic to (g1: Y1 — PL,0O(1)), where the last term O(1) is the universal
invertible quotient Oy-module of g} (Op1 & Op1(1)) on Y;.

(vii) Which ones among ample invertible Oy-modules are very ample?

(7) Work over a base field k. Let X be a smooth quadric in P3, 2y a k-rational point of X,
and g: X — — > P2 be the projection from zg to a plane disjoint from x(, a rational
map which is regular on X \ {z¢}.

(i) Show that g does not extend to a morphism on X.

(i)

(iii) Determine all P'’s contracted by g.

(iv) Let a: B — X be the blow up of X at xg. Show that the birational map g induces

a morphism 3: B — P2,

(v) Let y1 and 72 be the images in P? of the two lines in X contracted under g. Show
that B is isomorphic to the blow up of P? at y; and ys.

Show that g is a birational map.

(vi) Show that the birational map ¢—':P? - -+ X is given by the linear system of

conics on P? passing through y; and .
(vii) Show that X is not isomorphic to the blow up of P? centered at a closed point.
(8) (Continuation of the previous exercise) Let E be the exception divisor for a.. Let I Uly
be the intersection of X with its tangent plane T}, X at xg, and let E, E5 be the strict
transforms of Iy, la, respectively. Then the total transform on B of [; is F; + E (as
a divisor), ¢ = 1,2. We saw that E; and E» are the two exceptional divisors for the
morphism 8 with B(E;) = y; for i = 1,2. Let h, hy, he be the classes of 8*Op2(1),
a*O(ly), a*O(lz) in Pic(B), respectively. Similarly, denote by e, e;, es the classes of
Op(E), Op(E1) and Op(Es), respectively. So we have 6 elements h, e, e2, hi, ha, €
in Pic(B).
(i) Show that E is the strict transform on B of the line 712 on P2.
(ii) Show that h, e;, ea form a Z-basis of Pic(B), and so do hq, ha, e. These two bases
are related by

€] = hl—e h1 = h—€2
€y = hQ—e hg = h—61
h = hi+hy—e e = h—e —ey

A third Z-basis is {e, e, €2}, and we have
hi=e +e, ho=e +e, h=e +e+te.

The classes e, e, es, h, h1, hy are all effective.
(iii) Verify that the intersection numbers for the elements h1, ho, h, €, e1, e2 are given
by
e-e=ey-ep =e€y-e9=—1,
h'elzh'€2:h1-€1:hg'egzhl'ezhg-ezhl'hl:hz'h2:€1-€2:0,

e1re=er-e=h-h=h-hi=h-hgy=hy1-ha=h1-ea=hg-e1=h-e=1.
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(iii) Show that ae + biej + baes is the class of an effective divisor if and only if a, by, be
are non-negative integers.
Hint: If ae+bieq +boes is the class of an effective divisor D which does not contain
E, El, EQ, then (D . E) > 0, (D . E,L) > 0.

(iv) Deduce that an invertible Og-module 8*Op2(a)@Op(b1 E1+baE2) with a, by, by € Z
is ample if and only if b1 > 0, by > 0 and a — by — bs > 0.

(v) Which among these ample divisors on Op are very ample?

Let k be a field. Let X = Bl (P"), the blow up of P" at a k-rational point y € P",

n>2 Let N=(n+1)(n+2)/2—2. Let ¢': P* — — 5 PN be the rational map defined

by the linear system of quadrics on P" passing through y.

(i) Show that the rational map ¢’ extends to a morphism g: X — PV, which is a

closed immersion.

(ii) Show that ¢*Opn (1) is isomorphic to f*(Opn(2))(—F), where f: X — P" is the
blow up, and E is the exceptional divisor above y.

(iii) Determine h%(X, £L®™), where L is the ample invertible sheaf f*(Opn(2))(—E) on

X.
(iv) Conclude from (iii) that deg(g(X)) = 2" — 1, i.e., g(X) is a subvariety of PV of
degree 2™ — 1.
Let f: Y — P" be the blow up of a linear subspace L = P"2inP*, n>2. Let ECY
be the exceptional divisor for f. Let ¢': P" — — -+ Pl be the linear projection with

center L, a rational map from P" to PL.
(i) Show that the rational map ¢’ extends to a morphism g: Y — P!
(ii) Let Y7 := Projp1(Symm*((’)§1(n_1) ® Op1(1))), let g1: Y1 — P! be the structure
morphism, denote by £ the universal invertible quotient Oy,-module on Y. Show
that the pairs

Y L Pl fFOpa(1)) and (V7 25 P L)

are isomorphic.
(iii) Show that E is identified with the closed subscheme Projpl(Symm*(OIfl(n_l)))
under the isomorphism in (ii). In particular £ = L x P!,
(iv) Show that £ ® Op is isomorphic to pjOr(1), where pr: E — L is the natural
projection.
(v) Show that Ng/y = p;Or(1) @p5O0p1(—1), where N,y denotes the normal bundle
for E <Y, and po: Y 2 L x P! is the projection to P!.
(vi) Show that F := £%2 @ Oy (—FE) is a very ample invertible sheaf on Y.
(vii) Determine the degrees of Y and E with respect to the very ample invertible sheaf
FonY.
Hint: Use (vi) to show that degz(E) =n — 1.
Work over a field k. Let H be a hyperplane in P*, n > 2. Let Z C H be a smooth
hypersurface in H of degree d, d > 2. Let f: X — P™ be the blow up of P" with
center Z, and let Y be the strict transform of H. By the universal property of blow
ups, the Ox-module J := f~17,- Oy, i.e., the ideal in Ox generated by the image of
the sheaf of ideals Z; C Opr for Z C P", is an invertible O x-module isomorphic to the
sheaf “Ox(1)” on X = Projpn(®n>0Z%). Show that Y is isomorphic to H under the
morphism f, and J ®o, Oy is isomorphic to f*Opn(—d) ®p, Oy.
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(12) Work over a field k. Let X be a smooth quadric in P"*!, n > 2. Let x be a k-point of

X,and let p: X — — > P be the linear projection from x. Let 7: B — X be the blow
up of X with center .
(i) Show that the birational map p: X — — - P* induces a morphism f: B — P".

(ii) Let C(z) be the intersection of X with the hyperplane T'(z) C P™ tangent to
X at x. Show that C(z) is a cone over a smooth conic @' in T(x). Moreover,
Q' is mapped isomorphically under the projection p to a smooth quadric @) in a
hyperplane of P™.

(iii) Show that f: B — P" factors through the blow up of Blg(P") of P" with center
@; the resulting morphism f;: B — Blg(P") is an isomorphism.

(iv) Prove the birational map p~!: P" — — + X corresponds to the linear system on
P™ consisting of all quadrics on P" passing through Q.

(13) (Converse to the previous problem) Let @ be a smooth conic in a hyperplane H C P".

Let L be the linear system on P™ consisting of all quadrics passing through Q. Let

7: Blg(P™) — P be the blow up with center @, and let E = 7~1(Q) be the exceptional

divisor in Blg(P").

(i) Show that the rational map corresponding to the linear system L is represented

by a morphism «: P"\ Q — P+,

(ii) Show that a(P" \ Q) is contained in a quadric X C P"+1,

(iii) Show that « extends to a morphism 3: Blg(P") — P*™! and 8*Opn (1) is isomor-
phic to 7*Op2(2)(—E).

(iv) Let D be the strict transform of the hyperplane H in Blg(P"™). Show that a(D)
is a point x € X.

(v) Prove that X is smooth, and the morphism §: Blg(P") — X identifies Blg(P")
as the blow up of X with center x.

(14) Let X = F(a1,...,a,) := Projp Symm* (Opi(ar) & -+ & O]P’l(an))' Assume for sim-

plicity that a1 < as < --- < a,. Let m: X — P! be the structure morphism, so that
X is a family of P"~!"s parametrized by P!. Denote by Ox (1) the universal invertible
quotient Ox-module of

7 (Op1(a1) @ -~ ® Opig,)) -
(i) For every local ring (R, m), let Sg be the set
{(to,tl;azl PXy ... @y) € R"2 | toR+t1R = R, $1R+~'-+1‘nR:R}
modulo the equivalence relation generated by

(to,t1;@1 i @o : .. i xy) ~ (to,t1;pxy t pxe : ...t puy) I E R
(to,t1;21 i@ st xp) ~  (Atg, A3 A%yt A" %xg 1.t A%y, A€ R,

Show that there is a functorial bijection between X (R) and the set Sg for every
local ring (R, m).

(ii) Show that the complete linear system |I'(X, Ox(1))] is base point free if a; > 0 for
alli=1,...,n.

(iii) Suppose that a; > 0 for all i. Show that the complete linear system |I'(X, Ox(1))]
defines an closed immersion ¢p(1): X < PN, where N = ay + -+ +a, +n — 1.
Moreover, under the morphism ¢p (1), every fibre of 7 is embedded into a linear
P?~1 in PV, and b0 (1)(X) is a subvariety of PN of degree ay + ...+ a,. (The
subvariety ¢ (1)(X) is called a rational scroll in PN.)
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(iv) Show that ¢(F(1,1)) is a smooth quadric surface in P3, ¢(F(2,1) is a smooth sur-
face of degree 3 in P4, ¢: F(0,1) — P? is the blow up of a point, and ¢: F(0,2) —
#(F(0,2)) C P3 is the resolution of singularities of the cone over a plane conic
curve in P2,

(v) Suppose that a1 < -+ < ay < b < a1 < -+ < an, b € Z. Show that the
base locus of the complete linear system |I'(X,Ox (1) ® 7*Op1(—b)| is the closed
subscheme

Projp: Symm* (Opi(ar) @ -+ @ Opl(am)) cX
corresponding to the obvious surjection

Symm* (O]}n (a1)®--- @ O]P’l(an)) — Symm” (OlPl (@) ®---@ O]P’l(am)) .






CHAPTER IV

Ground fields and base rings

1. Kronecker’s big picture
For all schemes X, there is a unique morphism:
m: X — SpecZ.

This follows from Theorem 1.3.7, since there is a unique homomorphism
7 Z — T'(Ox).

Categorically speaking, SpecZ is the final object in the category of schemes. SpecZ itself is
something like a line, but in which the variable runs not over constants in a fixed field but over
primes p. In fact Z is a principal ideal domain like k[X] and its prime ideals are (p) or p - Z,
p a prime number, and (0). (cf. Figure IV.1) The stalk of the structure sheaf at [(p)] is the
discrete valuation ring Zgy = {m/n | p { n} and at [(0)] is the field Q. SpecZ is reduced and
irreducible with “function field” R(SpecZ) = Q. The non-empty open sets of SpecZ are gotten
by throwing away finitely many primes p1,...,p,. If m =[] p;, then this is a distinguished open
set:

Spec(Z)m, with ring  Z,, = {% | a,n € Z} .

The residue fields are:
k([(p)]) = Z/pZ

i.e., each prime field occurs exactly once.
If X is an arbitrary scheme, then set-theoretically the morphism

m: X — SpecZ

is just the map
x —> [(chark(z))],

because if 7(z) = y, then we get

Z7]pZ
k(zx) <T)]k(y) =< or
’ Q
v - - -. / ------
(2)] (3)] [(5)] (7] [(11)] Tt e
point

[(0)]
Ficure IV.1. SpecZ
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FIGURE IV.2. A}

hence
chark(z) =p > 0= n(x) = [(p)]
chark(z) = 0 = =w(x) = [(0)].

Thus every scheme X is a kind of fibred object, made up out of separate schemes (possibly
empty),
Z]pZ
X Xgpecz Spec{ or

Q,

of each characteristic! For instance, we can “draw” a sort of picture of the scheme A%, showing
how it is the union of the affine lines A% I and A(b. The prime ideals in Z[X] are:
i) (0),
ii) principal prime ideals (f), where f is either a prime number p, or a Q-irreducible
integral polynomial written so that its coefficients have greatest common divisor 1,
iii) maximal ideals (p, f), p a prime and f a monic integral polynomial irreducible modulo
p.
The whole should be pictured as in Figure IV.2. (The picture is misleading in that A% Ipi for
any p has actually an infinite number of closed points: i.e., in addition to the maximal ideals
(p,X —a),0 <a<p-—1, with residue field Z/pZ, there will be lots of others (p, f(z)), deg f > 1,
with residue fields F,» = finite field with p" elements, n > 1.)
An important property of schemes of finite type over Z is:

ProPOSITION 1.1. Let X be of finite type over Z and let x € X. Then

[ is closed) <= [k(x) is finite].
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PROOF. Let m: X — SpecZ be the morphism. By Theorem 11.2.9 (Chevalley’s Nullstellen-
satz),

x closed = {m(x)} constructible = m(x) closed.

If 7(z) = [(p)], then & € X Xgpecz SpecZ/pZ — call this scheme X,. Then z is a closed point
of X, so by Corollary I1.2.11, z is an algebraic point, i.e., k(z) is algebraic over Z/pZ, so k(z)
is finite. Conversely, if k(z) is finite, let p be its characteristic. Then z € X, and by Corollary
I1.2.11, z is closed in X, and since X, is closed in X, x is closed in X. U

From the point of view of arithmetic, schemes of finite type over Z are the basic objects.
The classical problem in Diophantine equations is always to find all Z- or Q-valued points of
various schemes X (recall Definition 1.6.2). For instance, if f € Z[X, ..., X,], the solutions

f(al,...,an) =0
with a; in any ring R are just the R-valued points of the affine scheme
SpecZ[ X1, ..., X,]/(f)

(see Theorem 1.3.7). Because of its homogeneity, however, Fermat’s last theorem may also be
interpreted via the “plane curve”

V(XP+ X — X)) C P

and the conjecture! asserts that if n > 3, its only Q-valued points are the trivial ones, where
either Xg, X1, or X5 is 0. Moreover, it is for such schemes that a zeta-function can be introduced

formally:
1 —1
1.2 s) = 1—-— , # = cardinalit
points
rzeX

which one expands formally to the Dirichlet series

a
(x(s) = n%
(1.3) =
number of 0-cycles a = > n;x; on X,
Qa. =
" where n; > 0, x; € X closed and dega df > oni#k(x;) is n

This is known to converge if Res > 0 and is conjectured to be meromorphic in the whole
s-plane—cf. Serre’s talk [106] for a general introduction.
But these schemes also play a fundamental role for many geometric questions because of the
following simple but very significant observation:
Suppose X C Af (resp. X C P{) is a complex affine (resp. projective) variety. Let
its ideal be generated by polynomials (resp. homogeneous polynomials) fi, ..., fk.
Let R C C be a subring finitely generated over Z containing the coefficients of
the f;: Then fi,..., fi define Xo C A% (resp. Xo C P}%) such that
a) X = X Xgpec g SpecC
b) Xy is of finite type over R, hence is of finite type over Z.

More generally, we have:

1(Added in publication) The conjecture has since been settled affirmatively by Wiles [117].
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PROPOSITION 1.4. Let X be a scheme of finite type over C. Then there is a subring R C C,
finitely generated over Z and a scheme Xg of finite type over R such that

X = X0 Xspec r Spec C.
PRrROOF. Let {U;} be a finite affine open covering of X and write
Ui = Spec(C[Xl, ce 7Xni]/(fi,17 ceey fz,kz) = Spec Rz

For each 1, j, cover U; NU; by open subsets which are distinguished affines in U; and U; and let
each of these subsets define an isomorphism
Pij: (Ri)gi]’,z = (Rj)gji,l'
The fact that
(Ui)gyy 6 (9,0 C Ui VU5 N Ug € u(Ui)gikJ,,
means that l

1 N . N
(%) [gij,l : ¢z‘j,l(gjk,l’>} = Z Qijkir gikr,  suitable a’s in R;.
l//
Let R be generated by the coefficients of the fj;’s, the ¢g’s and a’s (lifted to C[X]) and of the
polynomials defining the ¢;;;’s. Define

Uio = Spec R[ X1, ..., Xy,]/I; = Spec R; o

where I; = Ker [R[X]| — C[X]/(fi1,---, fir,)], i.e., I; consists of the f;;’s plus enough other
polynomials to make R;q into a subring of R;. Clearly R; = R; o ®r C. Then g;;; is in the
subring R; o and ¢;;; restricts to an isomorphism (R;p)y,., = (Rj0)g;:,> hence ¢ defines:

(Uiao)gij,l — (Ujvo)gji,l :

Let Ui%) = U;(Uip)g,;, and glue Ui%) to U}fg by these ¢’s: the fact that ¢;;; = ¢;; on overlaps is
guaranteed by the fact that R; o C R;. Moreover the identity (x) still holds because we smartly
put the coefficients of the a’s in R, hence points of U;o which are being glued to points of
Uj,o which in turn are being glued to points of Uy o are being directly glued to points of Uy o;
Moreover the direct and indirect glueing maps again agree because R; o C R;. Thus an X( can
be constructed by glueing all the U;o’s and clearly X = X Xgpec g Spec C. U

The idea of Kroneckerian geometry is that when you have X = X Xgpec r Spec C, then (a)
classical geometric properties of X over C may influence Diophantine problems on Xy, and (b)
Diophantine properties of Xg, even for instance the characteristic p fibres of X, may influence
the geometry on X. In order to go back and forth in this way between schemes over C, Z
and finite fields, one must make use of all possible homomorphisms and intermediate rings that
nature gives us. These “God-given” natural rings fo/r\m a diagram as in Figure IV.3 (with various

Galois groups acting too), where the completion @, of the algebraic closure @, of the p-adic

number field @, is known to be algebraically closed, i;, is the completion of the integral closure
i; in Q, of the ring of p-adic integers Z,, the field of algebraic numbers Q is the algebraic
closure of the rational number field Q, and Z/pZ is the algebraic closure of Z/pZ: Thus given
any X — SpecZ, say of finite type, one gets a big diagram of schemes as in Figure IV.4 (where
we have written X for X x Spec R, and R for the algebraic closure or integral closure of R, or

completions thereof.)
In order to use the diagram (1.6) effectively, there are two component situations that must
first be studied in detail:
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non-canonical isomorphism —

(1.5) Cc-—-——=-="=-"=---= Q,
! \@(//’

R U Qp U
Q/ U Z
U Zp/ \» W
\9 (/
Z Z/pZ

FiGure IV.3. The diagram formed by “God-given” natural rings

non-canonical isomorphism

FiGurE IV.4. The big diagram of schemes

1.7. Given
k a field
k = algebraic closure of k
X of finite type over k
consider:

X—X

| ]

Spec% — Speck

where X = X X Spec k Spec k. Compare X and X.

1.8. Given
R a valuation ring
K its quotient field
k its residue field
X of finite type over R
consider:

X X Xo

L1 ]

Spec K —— Spec R +—— Speck

where X, = X Xgpec R Spec K, Xo = X Xgpec g Speck. Compare Xg and X,,.
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We take these situations up in §§2-3 and §34—6 separately. In §VIIL.5b we will give an
illustration of how the big picture is used. The idea will also be used in the proof of Belyi’s
three point theorem (Theorem 1X.2.1).

Classical geometry was the study of varieties over C. But it did not exploit the fact that the
defining equations of a variety can have coefficients in a subfield of C. This possibility leads us
directly to the analysis of schemes over non-algebraically closed fields (1.7), and to the relation
between schemes over two different fields given by (1.8).

2. Galois theory and schemes

For this whole part, fix a field k and an algebraic closure k. We write Gal(k/k) for the Galois
group, and for each scheme X over k, we write X for X X Spec k OPeC k. First consider the action
of Gal(k/k) on k" by conjugation:

1. For o € Gal(k/k)
(a1,...,an) — (oay,...,oap), [

If we identify k" with the set of closed points of A%, then this map extends in fact to
an automorphism of A%:
2. Define opn : A% — A% by

(oan)*: K[ X1, ..., Xn] — E[X1,..., X4]

where
oan(Xi) = Xi ohn(a) =0 'a, ack.

In fact, for all prime ideals p C k[X71, ..., X,],

oan([p]) = [(03)"P)
and if p = (X1 — a1,..., X, — ay,), then since o}, (X; — 0a;) = X; — a;, we find
(ok.)"'p D (X1 —oaq,..., X, — 0ay); since (X1 — oay,..., X, — ca,) is maximal,
(oh)"Ip = (X1 —oar,..., Xy — oay). B
Note that opn is a k-morphism but not a k-morphism. For this reason, opn will
have, for instance, a graph in

A% XSpeck A% = Spec ((E@k %)[Xl,. ey Xp, Y1, ... ,Yn]) ,

but not in A% X Speck A% = A%”. Thus when k = C, o4» will not be a correspondence
nor will it act at all continuously in the classical topology (with the one exception
o = complex conjugation).

3. Now we may also define on as:

oan = lan X oy A} Xgpeck Speck — A} X Speck Speck

where 0,: Speck — Speck is defined by (0)*a = o~ la.

The third form clearly generalizes to all schemes of the form X:
DEFINITION 2.1. For every k-scheme X, define the conjugation action of Gal(k/k) on X to
be:
ox =1lx xo,: X = X, all o€ Gal(k/k).
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- — " g

(Rep k) /p1 (R @y k)/p2

k \k/ R/p

FiGure IV.5

Then oy is not a k-morphism, but rather fits into a diagram:

X —2> X
! ]

Speck SLLIN Spec k.

What this means is that if f € Ox(U) then 0% f € Ox(0x'U) has value at a point = € o,'U
given by:

(2.2) (% f)(@)=07": flox - 2),
i.e., set-theoretically, 0% is not “pull-back” on functions. This can be proven as follows:
f=flox-z)em, ,x=ox(f— flox -2)) em, ¥
— ohf—0l flox -z)€ m, %
= oxfl@)=0"" flox - 2).
I want next to analyze the relationship between X and X. The first point is that topologically
X is the quotient of X by the action of Gal(k/k).

THEOREM 2.3. Let X be a scheme of finite type over k, let
X=X X Spec k Spec k
and let p: X — X be the projection. Then

1) p is surjective and both open and closed (i.e., maps open (resp. closed) sets to open
(resp. closed) sets);

2) Va,y € X, p(z) = p(y) iff v = ox(y) for some o € Gal(k/k);

3) Vo € X, let Z = closure of {x}. Then p~'(z) = the set of generic points of the
components of p~1(Z). In particular, p~1(x) is finite.

PROOF. Since all these results are local on X, we may as well replace X by an open affine
subset U, and replace X by p~!'U. Therefore assume X = Spec R, X = Spec R®, k. First of all,
p is surjective by Corollary I.4.4. Secondly, p is closed because R ®y, k is integrally dependent on
R (cf. Proposition I1.6.5; this is an easy consequence of the Going-up theorem). Thirdly, let’s
prove (2). If p1,p2 C R ®; k are two prime ideals, we must show:

pL1NR=p2NR <= Jo € Gal(k/k), p1=(1r®0)po.

<= is obvious, so assume p;NR = poNR. Call this prime p. Let € be an algebraically closed field
containing R/p. Consider the solid arrows in Figure IV.5. It follows that there exist injective
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k-homomorphisms a1, as as indicated. Then aj(k) and as(k) both equal the algebraic closure
of k in €2, so for some o € Gal(k/k), as = a1 o o on k. But then if x; € R, y; € k:
Y i@y €pa =Y mi-az(y) =0in Q
<= Z x; - ai(o(y;)) =0 in Q

= Z$i®0' Yi) € p1,
o (1g ® 0)pa = p1. Fourthly, p is an open map. In fact, let U C X be open. Then

U= |J ox(U)

oceGal

is also open, and by (2), p(U) = p(U’) and U’ = p~1(p(U")). Therefore X \p(U) = p(X\U’) which
is closed since p is a closed map. Therefore p(U) is open. Finally, let z € X, Z = closure of {z}.
Choose w € p~!(x) and let W = closure of {w}. Since p is closed, p(W) is a closed subset of Z
containing x, so p(W) = Z. Therefore |, g, 0x (W) is Gal-invariant and maps onto Z, so by

(2):

U ox(W)=p 12
oeGal

Therefore every component of p~1Z equals o x (W) for some o, and since they are all conjugate,
the ox (W)’s are precisely the components of p~1Z. (3) now follows easily. O

Suppose now X is a k-variety. Is X necessarily a k-variety?

THEOREM 2.4. Let X be a k-variety and let X = X x; k.
i) Let
L ={z € R(X) | « separable algebraic over k}.

Then L is a finite algebraic extension of k. Let U C X be an open set such that the
elements of L extend to sections of Ox over U. Then the basic morphism from X to

Speck factors:

Speck
and taking fibre products with Spec k, we get:

C

>

U
7l

Spec L ®k k

f'\s‘ \
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Then
t
Leck=]]*
i=1
Spec L @y, k = disjoint union of t reduced closed points P, ..., P,

U = disjoint union of t irreducible pieces U; = f_l

(F)
X = union of t irreducible components X;, with X; = closure(Ui).
This induces an isomorphism of sets:
(Components of X) = Homy(L, k),

commuting with the action of the Galois group Gal(k/k).
ii) If y; = generic point of X;, then y; maps to the generic point of X and

I

t
[10, x =R(X) ek
=1

hence dim X; = dim X for all i, and:

X is reduced <= Oyi < has no nilpotents, for all i
<= R(X) is separable over k.

PROOF OF THEOREM 2.4, (i). Let L1 C L be a subfield which is finite algebraic over k.
Then L; ®y, k is a finite-dimensional separable k-algebra, hence by the usual Wedderburn theo-
rems,

t
L1 ®; = HE, where t = [Ll : ]{?]
=1

and Spec Ly @ k = {P,..., P} as asserted. Elements of a basis of L; extend to sections of Ox
over some open set U, and we get a diagram

Ul C

X
7l
(Pi,....P)}
~

Speck.

Therefore U is the disjoint union of open sets ?;1(3) Therefore X has at least t components,
i.e., components of the closure of ?1—1(3) in X. But X has only a finite number of components,
hence t is bounded above. Therefore L itself is finite over k. Now take Ly = L. The main step
consists in showing that ?_1(3-) is irreducible. In fact

—1 ~ _
[ (B) 2 U Xgpee 1o SPECK

projection on

= U XSpecL Speck, viaL — L®k __th factor | 70

so in effect this step amounts to checking the special case:

k separable algebraically closed in R(X) = X is irreducible.
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The rest of part (i) follows from two remarks: first, by Theorem 2.3, (3), each component of X
is the closure of a component of U; secondly, there is an isomorphism of sets commuting with
Gal:

{Maximal ideals of L ®j, k} = {Kernels of the various projections L ®j, k — k}
= Homg(L, k).

Now consider the special case. If X = U§:1 X, is reducible, we can find an affine open U C X
such that the sets p~1(U) N X; = U; are disjoint. Let U = Spec R, so that

t
HUZ- = Spec R @, k.
i=1

Let ¢; be the function which equals 1 on U; and 0 on the other Uj. Then €' = ¢; for all n and
€ € R® k. Write
6= Bij®vj, Py€Ry;eEk
J
Then if the characteristic is p > 0,

" p" p"
€ =€ —E »Bij ® Vij

and if n > 0, ’y%n € ks = separable closure of k. Thus if p > 0, we find ¢; € R ®; ks too.
Let L, be the ks-subalgebra of R ®j, k that the ¢; generate. The Galois group, acting on X,
permutes the X;; hence acting on R ®x k = I'(][U;, O), it permutes the ¢;. Therefore Ly is a
Gal-invariant subspace of R ®j ks. Now apply:

LEMMA 2.5. Let V be a k-vector space and let W' C V ®y, ks be a ks-subspace. Then

W'=W ®y ks for W' is invariant
some k-subspace W C V under Gal(ks/k) |-

PROOF OF LEMMA 2.5. “==" is obvious. To prove “<=", first note that any w € W’ has
only a finite number of conjugates w”, o € Gal(ks/k), hence > ks - w? is a finite-dimensional
Gal-invariant subspace of W’ containing w. Thus it suffices to prove “<—=”" when dim W’ < co.
Let {eq}tacs be a basis of V and let f1,..., f; be a basis of W’. Write f; = Y ¢ia€a, Cia € ks.
Since the f’s are independent, some ¢ x t-minor of the matrix (c;qo) is non-zero: say (¢ a;)1<i,j<t-
Then W’ has a unique basis f! of the form

fz/ = €qy + Z Cgﬁeﬂ'
BE{a1,...,cn}
Since Vo € Gal, W7 = W, it follows that (f;) = f;, hence (cj5)” = ¢}5, hence cj5 € k, hence
FleV.IEW = S kfl, then W' = W @y ks. 0

By the lemma, Ly = L' ®}, ks for some subspace L' C R. But L’ is clearly unique and since
forall a € L', a- Ly C Lg, therefore a- L' C L’. So L' is a subalgebra of R and hence of R(X)
of dimension ¢, separable over k because L, is separable over k;. Therefore L' = k and ¢t = 1.
This proves Theorem 2.4, (i). O

PROOF OF THEOREM 2.4, (ii). Let U = Spec R be any open affine in X so that p~1(U) =
Spec R® k. Since R C R(X), R®pk C R(X)®y k. Thus if X is not reduced, some ring R®y k
has nilpotents, hence R(X) ®; k must have nilpotent elements in it. On the other hand, if U
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is small enough as we saw above, p~'(U) = [[U;, where U; is irreducible, open and y; € Us;.
Therefore

t
Replacing R by Ry, U by Uy and U; by (U;) > and passing to the limit over f’s, this shows that

t
M ek=]] lm  Ox(@))=]]0,x
=1 distinguished i=1
open sets (U;)

In particular, if R(X) ®; k has nilpotents, so does one of the rings Oyi + and hence X is not
reduced. Now recall that the separability of R(X) over k means by definition that one of the

equivalent properties holds:
Let kP~ = perfect closure of k.

a) R(X) and kP~ are linearly disjoint over k.
b) R(X) ®, kP~ — R(X)P ™ is injective.
¢) R(X) and kP are linearly disjoint over k.
d) R(X) @ k¥ — R(X)P ' is injective.

(cf. Zariski-Samuel [119, vol. I, pp. 102-113]; or Lang [75, pp. 264-265]. A well-known theorem
of MacLane states that these are also equivalent to R(X) being separable algebraic over a purely
transcendental extension of k.)
Note that the kernel of R(X) ® kP
elements in R(X) ®; kP~ : because if a; € R(X), b; € kP
Zazb—OmR - :>Za bpn:OinR(X)

7
= O aeb) =) d"'W e1=0.

Now if N = ideal of nilpotents in R(X) ®y, k, then N is Gal-invariant, so by Lemma 2.5 applied
to k over kP, N = N, ®(kpfoo) k for some Ny C R(X) ®4 kP~ . Hence

—o0

— R(X)P™ ™ is precisely the ideal \/(0) of nilpotent
" then

N # (0) <= Ny # (0) <= Ker (R(X) op kP R(X)P"”) £ (0).
0

COROLLARY 2.6 (Zariski). If X is a k-variety, then X is a k-variety if and only if R(X) is
separable over k and k is algebraically closed in R(X).

COROLLARY 2.7. Let X be any scheme of finite type over k and let p: X — X be as before.
Then for any x € X, if L = {a € k(z) | a separable algebraic over k}, 3 an isomorphism of sets:

p 1z = Homy (L, k)
commuting with Gal(k/k), and the scheme-theoretic fibre is given by:
p~'e = Speck(z) @y k,

hence is reduced if and only if k(x) is separable over k.

Proor. If welet Z = m with reduced structure, then we can replace X by Z and so reduce
to the case X a k-variety, x = generic point. Corollary 2.7 then follows from Theorem 2.4. [
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COROLLARY 2.8. Let X be any scheme of finite type over k and let p: X — X be as before.
Let x € X be a closed or k-rational point. By k-coordinates near x, we mean: take an affine
neighborhood U of p(x), generators fi,..., fn of Ox(U), and then define a closed immersion:

pTU—— A%
N
X
by the functions fi,..., fn. Then
i) #(Galois orbits of x) = [k(p(x)) : ks
ii) The following are equivalent:
a) p~t({p(z)}) = the reduced closed subscheme {x},
b) p(z) is a k-rational point of X,
¢) In k-coordinates, x goes to a point in k™ C A%.
If these hold, we say that x is defined over k.
iii) If k is perfect, these are equivalent to
d) x is a fived point of the Galois action on X.

PROOF. (i) and the equivalence of (a) and (b) are restatements of Corollary 2.7 for closed
points; as for (c), note that the values of the “proper coordinates” at = are fi(x),..., fn(x) and
that k(p(z)) = k(fi1(x),..., fn(x)), hence (b) <= (c). (iii) is clear. O

In case k is perfect, Corollary 2.8 suggests that there are further ties between X and X:
THEOREM 2.9. Let k be a perfect field and p: X — X as before. Then
i) YU C X open,
Ox(U) = {f € Ox(p™'U) | o’ f = £, Vo € Gal(/k)} .
ii) V closed subschemes Y C X
Y is Gal-invariant <= 3 closed subschemesY C X withY =Y @ k

and if this holds, Y is unique, and one says that Y is defined over k.

iii) If v € X and H = {0 € Gal | ox(z) = z}, then k(p(x)) = k(z)".

iv) If Y is another scheme of finite type over k and Y =Y xy, k, then every k-morphism
f: X =Y that commutes with the Galois action (i.e., oy o f = foox, for all o € Gal)
is of the form f x 1 for a unique k-morphism f: X — Y, and one says that f s
defined over k.

PROOF OF (i). Let
FU)={feOx(p'U)|okf=1F foralo}.
Then F is easily seen to be a sheaf and whenever U is affine, say U = Spec R, then
FU)={f€eRerk|(lr®o)f=f, foral o}
= R, since k is perfect
= Ox(U).
Thus F = Ox. O
PROOF OF (ii). Suppose Y C X is Gal-invariant. Then for all open affine U = Spec R in X,
Y Np~'U is defined by an ideal @ C R®y k. Then @ is Gal-invariant so by Lemma 2.5, @ = a®; k

for some k-subspace a C R. Since aa C d for all « € R, it follows that aa C a and so a is an
ideal. It is easy to see that these ideals a define the unique Y C X such that Y =Y x, k. [
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strictly
complex
points

real
points —1

FIGURE IV.6. X = P}

PRrROOF OF (iii). As in Corollary 2.7 above, we can replace X by the closure of p(x) and so
reduce to the case where X is a variety with generic point p(z) and x = x; is one of the generic
points x1,...,z; of X. By Theorem 2.4, X is reduced and we have

Hk(%‘) = HR<Y1’) = R(X) @k k =k(p(z)) @k k.

i=1 i=1
Thus
k(p(z)) = {(x’l, N ARS Hk(%) | (2,...,2}) Gal—invariant}
=~ {z} € k(z1) | 2} is H-invariant} .
O
PROOF OF (iv). Left to the reader. O

Note that when Y = one point x, then {z} is defined over k as in Theorem 2.9 above if and
only if it is defined over k as in Corollary 2.8.

When k is not perfect, the theorem is false. One still says “Y is defined over k” if Y =
Y Xgpeck Spec k for some closed subscheme Y C X, and Y is still unique if it exists. But being
Gal-invariant is not strong enough to guarantee being defined over k. For instance, if Y is a
reduced Gal-invariant subscheme, one can try by setting Y’ = p(Y) with reduced structure.
Then Y =Y’ X Spec k Spec k will be a subscheme of X defined over k, with the same point set
asY and Y C Y’ but in general Y’ need not be reduced: i.e., the subset Y is defined over k but
the subscheme Y is not (cf. Example 4 below).

The theory can be illustrated with very pretty examples in the case:
k=R
k=C
Gal(k/k) = {id, *}, * = complex conjugation.
In this case, xx : X — X is continuous in the classical topology and can be readily visualized.

ExXAMPLE. 1. Let X = IP’]%Q, X = IP’}C. Ignoring the generic point, ]P’(lc looks like Figure IV.6.
Identifying conjugate points, ]P’IlR looks like Figure IV.7.

EXAMPLE. 2. Let X = P{ again. Then in fact there are exactly two real forms of Pf:
schemes X over R such that X xg C =2 X. One is ]P’IIR which was drawn in Example 1. The other
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points with 1 points with
k(z) =R k(a:) =C
coming from coming from

maximal ideals maximal ideals
(X —a) (X?+aX +b)
with a2 < 4b

FIGURE IV.7. X =P}

conjugation takes points

to antipodal points

(0,1, —)
FIGURE IV.8. X = V(XZ + X? + X2) C P}

is represented by the conic:

X = V(X3 + X7+ X3) C P2.
Then X is the same conic over C and, projecting from any closed point z € X, we find as in
Part I [87] an isomorphism between X and PL. Since X has in fact no R-rational points at all
(V(ao, a1, az2), a3+a?+a3 > 0!) we cannot find a projection X — PL defined over R. The picture

is as in Figure IV.8, so X is homeomorphic in the classical topology to the real projective plane
S? /(antipodal map) and for all its closed points = € X, k(z) = C.

EXAMPLE. 3. Let X be the curve X7 = Xo(X2 — 1) in PZ. One can work out the picture
by thinking of X as a double covering of the Xy-line gotten by considering the two values
Xo(Xg —1). We leave the details to the reader. One finds the picture in Figure IV.9.

EXAMPLE. 4. To see how X may be reducible when X is irreducible, look at the affine curve
X2+ XE=0
in Ai. Then X is given by:
(Xo+1iX1)(Xo—iX7)=0

and the picture is as in Figure IV.10. If U = X \ {(0,0)}, then U is actually already a variety
over C via

X
p: U — SpecC, p*(a+ib):a+f1-b
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point at oo point at oo
points with k(z) = C

real points

Here —1 < Xp(x) <0
k(z) =R Here Xo(z) > 1
k(z) =R
FIGURE IV.9. X = V(X X, — Xo(X3 — X3)) C P%

FiGure IV.10. X = V(X2 + X?) C A%

and in fact,

(R0, X/ (X3 + XD) || 2R |5 X0, X5 / <<§;>+ 1>

= C[Xo, X5 ']

so U = AL\ {0}:
To go deeper into the theory of one-dimensional varieties over R, see Alling-Greenleaf [12].

To illustrate how X may be reduced and yet have hidden nilpotents, we must look in char-
acteristic p.

EXAMPLE. 5. Let k be an imperfect field, and consider the hypersurface X C P} defined by
a X+ +a,XP =0, a;€k.
In k, each a; will be a p-th power, say a; = v, so X cC IP’% is defined by
(boXo + -+ - + bpXy)?P = 0.

Thus X is a “p-fold hyperplane” and the function > b; X;/ X is nilpotent and non-zero. However,
provided that at least one ratio a;/a; ¢ kP, then > a;X? is irreducible over k, hence X is a k-
variety: Put another way, the hyperplane L : Y b, X; = 0 in ]P)% is “defined over k” as a set in
the sense that it is Gal-invariant, hence is set-theoretically p~!(p(L)) using p: IP’% — P} but it

is not “defined over k” as a subscheme of P? unless b;/b; = (a;/a;)"/? € k all i, ;.

Before leaving this subject, I would like to indicate briefly the main ideas of Descent theory
which arise when you pursue deeply the relations between X and X.
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If you look at Theorem 2.9, (ii) as expressing when a quasi-coherent sheaf of ideals
TcC O is defined over k, it is natural to generalize it to arbitrary quasi-coherent
sheaves of modules. The result is (assuming k perfect): given a quasi-coherent sheaf
F of Og-modules, plus an action of Gal(k/k) on F compatible with its action on O,
i.e., Vo € Gal, U C X isomorphisms

0’9_—2 F — ?(O')_(I(U))
such that
oc(a) - o(b) = o%(a-b), a€ Ox(U),b e F(U)

(1)} =0 @ or¥, o,7¢€ Gal

and commuting with restrictions, then there is one, and up to canonical isomorphism,
only one quasi-coherent F on X such that (i) F = F ®¢, O and (ii) the Gal-
action on F goes over via this isomorphism to the Gal-action o£(b® a) = b ® o%a on
F ®py Ox. More precisely, there is an equivalence of categories between the category
of pairs (F, JJU:) of quasi-coherent sheaves on X plus Gal-action and the category of
quasi-coherent F on X.

The whole set-up in fact generalizes to a much bigger class of morphisms than p: X —
X:

DEFINITION 2.10. Given a morphism f: X — Y, a quasi-coherent sheaf F on X is
flat? over Y if for every x € X, F, is a flat Of(@),y-module. f itself is flat if Ox is
flat. f is faithfully flat if f is flat and surjective.

Grothendieck has then proven that for any faithfully flat quasi-compact f: X — Y,

there is an equivalence of categories between:
a) the category of quasi-coherent sheaves G on Y,
b) the category of pairs (F,«), F a quasi-coherent sheaf on X and « being “descent
data”, i.e., an isomorphism on X xy X:
o piF =5 pyF

satisfying a suitable associativity condition on X xy X Xy X and restricting to

the identity on the diagonal A: X — X xy X.
In the special case f = p, k perfect, it turns out that descent data « is just another
way of describing Galois actions. A good reference is Grothendieck’s SGA1 [4, Exposé
VI3,
The final and most interesting step of all is the problem: given X over k, classify the set
of all possible X’s over k plus k-isomorphisms X X Spec k Speck = X, up to isomorphism
over k. Such an X is called a form of X over k and to find an X is called descending
X to k. If k is perfect, then (cf. Exercise below) it is easy to see that each form of X
over k is determined up to k-isomorphism by the Galois action {ox | o € Gal(k/k)} on
X that it induces. What is much harder, and is only true under restrictive hypotheses
(such as X affine or X quasi-projective with Gal also acting on its ample sheaf L, cf.
Chapter III) is that every action of Gal(k/k) is an effective descent data, i.e., comes
from a descended form X of X over k. For a discussion of these matters, cf. Serre [103,
Chapter V, §4, No. 20, pp. 102-104]. All sorts of beautiful results are known about
k-forms: for instance, there is a canonical bijection between the set of k-forms of IP)%

2We will discuss the meaning of this concept shortly: see §4.
3(Added in publication) See also FAG [3].
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and the set of central simple k-algebras of rank n? (cf. Serre [105, Chapter X, §6, p.
160]).

3. The frobenius morphism

The most remarkable example of the theory of Galois actions is the case:

k =TF,, the finite field with ¢ elements, ¢ = p”

E = U Fqn
n=1
Gal(k/k) = pro-finite cyclic group generated by the frobenius
f:k—k f(z)=2%

f is the only automorphism of a field that is given by a polynomial! This has amazing conse-
quences:

DEFINITION 3.1. If X is any scheme in prime characteristic p, i.e., p = 0 in Oy, define a
morphism
ox: X — X
by
a) set-theoretically, ¢ x = identity,
b) VU and Va € Ox(U), define ¢%a = a”.

DEFINITION 3.2. If X is a scheme of finite type over k = Fy, X = X Xgpeck Speck, then:

i) Note that f},: Speck — Speck (in the notation at the beginning of §2) is the automor-
phism (cZ)SpeCE)_”, hence the conjugation fx: X — X defined in Definition 2.1 above

1S
v

Ix x (d)SpecE)_ :
We write this now fiith: X — X
ii) Set-theoretically identical with this morphism will be a k-morphism called the geometric
frobenius

B = 6o (L x 0 )

= ¢VX X 1SpeCE: Y—)Y

In other words, there are two morphisms both giving the right conjugation map: an au-
tomorphism f&#ith which does not preserve scalars, and a k-morphism £5°" which however is
not an automorphism. For instance, look at the case X = A}. All morphisms A% — A% are

described by their actions on k[X7, ..., X,] and we find:

Al e — a
(faffth> { ‘ "1, an automorphism of k[X1,..., X,)]
a +— af
. q _ —
(fiiom)* { Xio—= X , a k-homomorphism of k[X,..., X,] into itself,
a — a

where a € k. This means that completely unlike other conjugations, the graph of fx = f)g(eom is
closed in X X Speck X. Corollary 2.8 gives us a very interesting expansion of the zeta-function

of X in terms of the number of certain points on X:
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For every v > 1, we say that a closed point x € X is defined over Fy if any of
the equivalent conditions hold:
i) In Fy-coordinates, x corresponds to a point of (Fgv)" C A%,
ii) k(p(x)) C Fgv (p: X — X is the projection in Theorem 2.3),
iii) f%(x) =z, i.e., = a fixed point of the morphism f¥.
(Apply Corollary 2.8 to k D Fpv and to X — (X xp, Fgv).) The set of all these points we call
X (Fgv). Then if
N, = #X(Fyp),
I claim that formally:

3.3.
Cx(s) =Zx(q7°),

az >
oX ( Ny-t”—1> dt
Zx

v=1

Zx(0) = 1.

where Zx (t) is given by

ProoF. If M, = number of x € X with k(x) = Fg, then each such point splits in X into v
distinct closed points which are in X (Fu) if v | p. Thus

N,=> v-M,.

vlp
By definition:
00 1 —M,
exto) =TT (1- )
v=1 q
so if we set -
Zx(t) = [ -
v=1
then (x(s) = Zx (¢~ *). Moreover
dZx = —ptv!
_— = d 1 Z - _My . : dt
7o = o Zx) = (M) T

1 o]
= EZVMV(t”—i—tQ”—i—t?’”—i—--‘)dt
v=1

1 [o.¢]
:EZNM-t“-dt.
pn=1

As an example, if X = AI’F‘q, then

hence

Therefore by (3.3)
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and

() =1]] (1_1713) = Co(s —n)

p p

if o(s) is Riemann’s zeta-function

From this, an easy consequence is:
PROPOSITION 3.4. For all schemes X of finite type over Z, Cx(s) converges if Re(s) > 0.

IDEA OF PROOF. First reduce to the case X affine and then by an affine embedding, reduce
to the case of A™ using the fact that the Dirichlet series (1.3) for (x has positive coefficients
majorized by those for (gn. U

If X is a scheme over a field F, again, a celebrated theorem of Dwork [36] states that Zx is
a rational function! If we then expand it in terms of its zeros and poles:

N

H(l - Ozz't)

Zx(t)="5——— @B €C
[T —sit)
=1

it follows immediately that

W7y & (A N ) »
“x [ N
Zx yz:l (’i:l ;

and hence:
M N
N,=) B/ =) o
i=1 i=1

It seems most astonishing that the numbers N, of rational points should be such an elementary
sequence! Even more remarkably, Deligne [34] has proven Weil’s conjecture that for every i,

’ai‘7 |ﬁz‘ € {1>q1/27q7q3/27 s ,qdimX}'

I would like to give one very simple application of the fact that the frobenius fx = f)g(eom has
a graph:

PROPOSITION 3.5. Let X be an Fy-variety such that X = IP%. Then X has at least one

Fy-rational point.*

PROOF. If X has not F,-rational points, then fx: X — X has no fixed points. Let I' C
X x7X be the graph of f§”". Then 'NA = ), A = diagonal. But now X x3 X IP% XE[F% and
via the Segre embedding this is isomorphic to a quadric in IP’%. In fact, if Xo, X7 (resp. Yo, Y1)
are homogeneous coordinates, then

. PLx. PL P2
s: PLxzPL — P3

4We will see in Corollary VIIL.1.8 that this implies X = P}, too. See Corollary V1.2.4 for a generalization of
Proposition 3.5 to P™ over finite fields.
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via
(Xo, X1) x (Yo,Y1) —— (XoYo, XoY1, X1Yp, XiV1).

I I I I
Zo  Zv  Zo  Zs

The image of s is the quadric Q = V(ZyZs—Z1Z>). But the point is that s(A) = QNV (Z1—Z2),
SO s maps ]P% Xz IP%\ A isomorphically onto an affine variety W = QN []P’%\ V(Z1 — Z3)]. So if
I'NA =0, we get a closed immersion

PL=T — W

of a complete variety in an affine one. But quite generally a morphism of a complete variety I
to an affine variety W must be a constant map. If not, choose any function a € I'(Ow ) which
is not constant on the image of I' and consider the composition

I — W A CPL
I' complete = image closed = image is one point or the whole IP%. Since a is not constant

on the image of ', the first is impossible and since oo ¢ image, the second is impossible. U

There are many other classes of varieties X which always have at least one rational point over
a finite field IF,: for instance, a theorem of Lang says that this is the case for any homogeneous
space: cf. Theorem VI.2.1 and Corollary VI.2.5.

4. Flatness and specialization

In this section I would like to study morphisms f: X — S of finite type by considering them
as families {f~!(s)} of schemes of finite type over fields, parametrized by the points s of a “base
space” S. In particular, the most important case in many applications and for many proofs is
when S = Spec R, R a valuation ring. Our main goal is to explain how the concept “f is flat”,
defined via commutative algebra (cf. Definition 2.10), means intuitively that the fibres f~1(s)
are varying “continuously”.

We recall that flatness of a module M over a ring R is usually defined by the exactness

property:
DEFINITION 4.1. M is a flat R-module if for all exact sequences
N1 — N2 — N3

of R-modules,
M ®r N1 — M ®r No — M ®gr N3

1s exact.

By a simple analysis it is then checked that this very general property is in fact implied by
the special cases where the exact sequence is taken to be

0—a—R

(a an ideal in R), in which case it reads:
For all ideals a C R,
a®pr M — M

18 injective.
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For basic facts concerning flatness, we refer the reader to Bourbaki [27, Chapter 1]°. We list a
few of these facts that we will use frequently, with some indication of proofs:

PRrROPOSITION 4.2. If M is presented in an exact sequence
00— Ny — Ny —M—0
where Ny is flat over R (e.g., N2 is a free R-module), then M is flat over R if and only if
Ni/aN; — No/aNo
is injective for all ideals a C R.

This is seen by “chasing” the diagram:

0 Kernel?

1 b

Cl®RN1 4>N1 4>N1/CIN1 —0
! 1 !

00— a®r No —— Ny —— No/aNy —— 0

! ! -

Kernel? — a ®g M —— M —— M/aM —— 0

1 1 !
0 0 0

To link flatness of stalks of sheaves with flatness of the module of sections over an affine
open set, we need:

ProrosiTION 4.3. If M is a B-module and B is an A-algebra via i: A — B, then:
M is flat over A <= Vp prime ideals in A, M @4 Ay is Ap-flat.
<= Vp prime ideals in B, if po =i '(p), then M, is Ay, -flat.
< The Shean on Spec B is flat over Spec A (Definition 2.10).

PROPOSITION 4.4.
a) If M is an A-module and B is an A-algebra, then

M flat over A= M ®4 B flat over B.

5(Addcd in publication) It would be worthwhile to point out that for an R-module M, the following are
equivalent:
(i) M is flat over R.
(ii) (See, e.g., Bourbaki [27, Chap. I, §2.11, Corollary 1], Eisenbud [38, Corollary 6.5], Matsumura [78,
Thoerem 7.6] and Mumford [86, Chap. III, §10, p. 295].) For elements m1,...,m; € M and a1,...,a; €
R such that Zézlaimi =0, thereexist mj; e M (j=1,...,k)and by € R (i =1,...,5;5=1,...,k)
such that

k l
2 : l 2 :
mq; = bijm]- and bijai = 0.
j=1 i=1

(iii) For any R-homomorphism a: F — M from a free R-module F of finite rank and for any finitely gen-
erated R-submodule K C Ker(a), there exist a free R-module F’ of finite rank and R-homomorphisms
B: F — F" and v: F' — M such that @ = yo 8 and that K C Ker(f).

The equivalence of (i) and (ii) is an easy consequence of Bourbaki [27, Chap. I, §2.11, Lemma 10]. In (iii),
we may assume K to be generated by a single element. Then its equivalence to (ii) is obvious.

From this equivalence, we easily deduce that every flat R-module M is a (filtered) direct limit of free R-
modules of finite rank, a result due independently to V. E. Govorov (1965) and D. Lazard (1964). (cf. Eisenbud
[38, Theorem A6.6])
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b) If F is a quasi-coherent sheaf on X and we consider a fibre product diagram:

X xy Z 2 X
|,
zZ—"—y
then (cf. Definition 2.10)
F flat over Y = p*F flat over Z.

c) Especially
f flat = g flat.

PRrRoOPOSITION 4.5.

a) M flat over A = for all non-zero divisors a € A, M 5 M is injective.
b) If A is a principal ideal domain or valuation ring, the converse is true.

The point of (a) is that A -+ A injective implies M —+ M injective.

PROPOSITION 4.6.

a) If M is a B-module and B is an A-algebra, where A, B are noetherian and M is finitely
generated then

M flat over A= Vp C B, an associated primes of M,
p N A is an associated prime of A.

b) f: X — Y a morphism of noetherian schemes, F a coherent sheaf on X, then
F flat over Oy = f(Ass(F)) C Ass(Oy).
Especially, f flat, n € X a generic point implies f(n) € Y is a generic point.

In fact, if pg :=p N A ¢ Ass(A), then there exists an element a € pgAp, which is a non-zero
divisor. Then multiplication by a is injective in M, hence p ¢ Ass(M).

PROPOSITION 4.7. If F is a coherent sheaf on a scheme X, then
F flat over Ox <= F locally free.
PRrOOF. For each z € X, there is a neighborhood U of  and a presentation
03 -2 on Ly Fly — 0.

Factor this through:
0 —K—0y — Flg —0

We may assume that r is minimal, i.e., 5 induces an isomorphism
k(z)" 25 Fy/my Fo
By flatness of F, over O, x,
0— Ky/m, Ky — k(2)" — Fyp/myF, — 0

is exact. Therefore K, /m;K, = (0) and K is trivial in a neighborhood of = by Proposition 1.5.5
(Nakayama). O

Another important general result is that a large class of morphisms are at least flat over an
open dense subset of the image scheme:
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THEOREM 4.8 (Theorem of generic flatness). Let f: X — Y be a morphism of finite type
between two irreducible reduced noetherian schemes, with f(nx) = ny. Then there is a non-
empty open U C'Y such that res f: f~1U — U is flat and surjective.

PROOF. We can obviously replace Y by an affine open piece, and then covering X by affines
Vi,..., Vi, if res f: V; N f71U; — U; is flat, then res f: f~Y(OU;) — N U; is flat. So we may
assume X = Spec B, Y = Spec A, and we quote the very pretty lemma of Grothendieck. O

LEMMA 4.9 (SGA 1 [4, Exposé IV, Lemme 6.7, p. 102]). Let A be a noetherian integral
domain, B a finitely generated A-algebra, M a finitely generated B-module. Then there exists a
non-zero f € A such that My is a free (hence flat) Ay-module.

PROOF OF LEMMA 4.9. 6 Let K be the quotient field of A, so that B ®4 K is a finitely
generated K-algebra and M ® 4 K is a finitely generated module over it. Let n be the dimension
of the support of this module and argue by induction on n. If n < 0, i.e., M ®4 K = (0),
then taking a finite set of generators of M over B, one sees that there exists an f € A which
annihilates these generators, and hence M, so that My = (0) and we are through. Suppose
n > 0. One knows that the B-module M has a composition series whose successive quotients
are isomorphic to modules B/p;, p; C B prime ideals. Since an extension of free modules is
free, one is reduced to the case where M itself has the form B/p, or even is identical to B, B
being an integral domain. Applying Noether’s normalization lemma (Zariski-Samuel [119, vol.
2, Chapter VII, §7, Theorem 25, p. 200]) to the K-algebra B ® 4 K, one sees easily that there
exists a non-zero f € A such that By is integral over a subring A¢[ty,...,t,], where the ¢; are
indeterminates. Therefore one can already assume B integral over C' = A[ty,...,t,], so that it
is a finitely generated torsion-free C-module. If m is its rank, there exists therefore an exact
sequence of C-modules:

0—C"—B—M —0

where M’ is a torsion C-module. It follows that the dimension of the support of the C ® 4 K-
module M’ ®4 K is strictly less than the dimension n of C' ® 4 K. By induction, it follows that,
localizing by a suitable f € A, one can assume M’ is a free A-module. On the other hand C™
is a free A-module. Therefore B is a free A-module. O

In order to get at what I consider the intuitive content of “flat”, we need first a deeper fact:

PROPOSITION 4.10. Let A be a local ring with mazimal ideal m, and let B = A[Xq, ..., X,]p
where p N A =m. Let
K--5L--5M
be finitely generated free B-modules and B-homomorphisms such that vou = 0. If

K/mK — L/mL — M/mM

is exact, then
K—L—M

is exact and M/v(L) is flat over A.

PROOF. Express u and v by matrices of elements of B and let Ay be the subring of A
generated over Z by the coefficients of these polynomials. Let A1 = (A¢)mna,- Then A; is a
noetherian local ring and if By = A1[X1, ..., Xn]pna,[x], We may define a diagram

Ky 5 Ly 25 My

6Repr0duced verbatim.
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over By such that K — L — M arises from it by ®p, B or equivalently by ®4, A and then
localizing at p. Let my =mnN Ay, ky = A;/my, k = A/m. Then

Kl/lel — Ll/mlLl — Ml/mlMl

is exact because K/mK — L/mL — M/mM is exact and arises from it by ®g, k (i.e., a non-
exact sequence of kj-vector spaces remains non-exact after ®y, k). Now if we prove the lemma

for Ay, By, Ki, L1 and My, it follows for A, B, K, L and M. In fact M;/vi(L1) flat over A;
implies
M/v(L) = [(Mi/v1(L1)) ®4, Alg (S = multiplicative system A[X]\ p)

is flat over A; and from the exact sequences:

K, — L — v (L) —0

0 — vi(L1) — My — My /vi(Ly)) — 0
we deduce by ®4, A and by localizing with respect to S that
K — L— (vi(L1) ®4, A)g — 0
0 — (vi(L1) ®a, A)g — M — M/ (vi(L1) ®a, A)g — 0

are exact, (using again M;/v1(Ly) flat over Ay!), hence K — L — M is exact. This reduces
the lemma to the case A noetherian. In this case, we use the fact that B noetherian local with
m C maximal ideal of B implies

ﬁmn-P:(O)
n=1

for any finitely generated B-module P (cf. Zariski-Samuel [119, vol. I, Chapter IV, Appendix,
p. 253]). In particular

DL

m" - (L/u(K)) = (0)

Il
i

n

or

[e.9]
((m"L + u(K)) = u(K).
n=1
So if z € Ker(v) and = ¢ Image(u) we can find an n such that x € m"™ - L 4+ u(K), but
r¢m"t L4+ u(K). Let x = y+u(z),y € m™- L, z € K. The (u,v)-sequence induces by
®m"/m"*1 a new sequence:

mnK/mn+1K u—”> an/mn+1L * mnM/anrlM
(m"/m™") @, K/mK —— (m"/m" ™) @ L/mL —— (m"/m"*1) @, M/mM.
The bottom sequence is exact by hypothesis. On the other hand y maps to an element y €
m"L/m" L such that v,(7) = 0. Therefore € Imageu,, i.e., y € u(m"K) + m" 1L, hence

r € u(K) + m"'L — contradiction. This proves that the (u,v)-sequence is exact. Next, if
a C A is any ideal, the same argument applies to the sequence:

(%) K/a-K — L/a-L — M/a-M
of B/a - B-modules. Therefore all these sequences are exact. But from the exact sequences:

K—L— L/u(K) —0
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0— L/uw(K) — M — M/v(L) — 0,
we get in any case exact sequences:

K/a-K — L/a-L — (L/u(K))®4 A/a — 0

(%)
(L/u(K)) ®a Afa — M/a- M —s (M/v(L)) @4 Afa — 0

so the exactness of (x) implies that (xx) is exact with (0) on the left too, i.e., by Proposition 4.2
M/v(L) is flat over A. O

COROLLARY 4.11. Let A be a local ring with mazimal ideal m, and let B = A[Xq, ..., X,]p
where pNA=m. Let f1,..., fxr € B. Then

Y syzygies S5 G, f; =0 in B/mB,
B/(f1,..., fr) is a flat A-algebra <= | 3 syzygy 25:1 9ifi=01n B
with g; lifting g;.

PROOF. <= : Since B/mB is noetherian, the module of syzygies over B/mB is finitely
generated: let

> giufi=0, 1<I<N
be a basis, and lift these to syzygies
> giufi=0.

Define homomorphisms:
BN . B B
u(ay,...,an) = (Z 91,101, - - -, ng,lal)
v(ay,...,a) = Zaifi.
Then v o u = 0 and by construction
(B/mB)N % (B/mB)* % B/mB

is exact. Therefore B/v(B*¥) = B/(fi,..., fx) is A-flat by Proposition 4.10.
= : Define v as above and call its kernel Syz, the module of syzygies so that we get:

0 — Syz — B* % B — B/(f1,..., fx) — 0.
Split this into two sequences:
0— Syz — B¥ — (f1,..., fr) — 0
0— (fi,-.., fx) — B — B/(f1,..., fxr) — 0.
By the flatness of B/(fi,..., fx), these give:
Syz /m - Syz — (B/mB)* — (f1,..., fx) @3 B/mB — 0
0— (f1,...,fx) ®p B/mB — B/mB — B/(mB + (fi,..., fr)) — 0,

hence
Syz /m - Syz — (B/mB)* - B/mB — B/(mB + (f1,..., fr)) — 0
is exact. Since Kerv = syzygies in B/mB, this shows that all syzygies in B/mB lift to Syz. O

Putting it succinctly, flatness means that syzygies for the fibres lift to syzygies for the whole
scheme and hence restrict to syzygies for the other fibres: certainly a reasonable continuity
property.

The simplest case is when R is a valuation ring. We give this a name:
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DEFINITION 4.12. Let R be a valuation ring, and let n (resp. o) be the generic (resp. closed)
point of Spec R. Let f: X — Spec R be a flat morphism of finite type (by Proposition 4.5, this
means: Ox is a sheaf of torsion-free R-modules). Then we say that the closed fibre X, of f is
a specialization over R of the generic fibre X,.

Note that the flatness of f is equivalent to saying that X, is scheme-theoretically dense in
X (Proposition I1.3.11). In fact, if you start with any X of finite type over R, then define a
sheaf of ideals Z C Ox by:

Z(U) = Ker (Ox(U) — Ox, (UNXy)) .

Then as in Proposition I1.3.11 it follows easily that Z is quasi-coherent and for all U affine,
Z(U) is just the ideal of R-torsion elements in Ox (U). If Ox/Z is the structure sheaf of the
subscheme X C X, then

a) )?n =X,
b) X, is a specialization of X,,.
To give some examples of specializations, consider:

ExaMPLE. 1.) If X is reduced and irreducible, with its generic point over 7, then X, is
always a specialization of X,.

EXAMPLE. 2.) Denote by M the maximal ideal of R with the residue field k = R/M. The
quotient field of R is denoted by K. If f(Xi,...,X,) is a polynomial with coefficients in R and

f is the same polynomial mod M, i.e., with coefficients in k, then the affine scheme V' (f) C A}
is a specialization of V (f) C A% provided that f # 0. In fact, let X = V(f) C A% and note that
R[X1,...,X,]/(f) is torsion-free.

ExAMPLE. 3.) If X is anything of finite type over R, and Y, C X,, is any closed subscheme,
there is a unique closed subscheme Y C X with generic fibre Y,, such that Y, is a specialization
of ;). (Proof similar to discussion above.)

It can be quite fascinating to see how this “comes out”, i.e., given Y;,, guess what Y, will be:

EXAMPLE. 4.) In A%( with coordinates x, y, let Y}, be the union of the three distinct points
(0,0), (0,a), (ev,0), aeM, a#0.

Look at the ideal:
I = Ker (R[x,y] N K@K@K)

where ¢(f) = (£(0,0), f(0, ), f(a,0)). I is generated by
zy, w(z—a), yly—a),
hence reducing these mod M, we find
Y, = Specklz,y]/ (2%, zy, y°)
the origin with “multiplicity 3”. For other triples of points, what Y,’s can occur?
EXAMPLE. 5.) (Hironaka) Take two skew lines in A%
Iy defined by z =9y =0
lo defined by 2 =0, r =, (o€ M,a#0).
Let Y, = [ Ul. To find Yy, first compute:
I =Ker (R[z,y,z] — T'(O) ®T(O,)) .
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embedded component

Xy X,

Ficure IV.11. Specialization of two skew lines

One finds I = (zz,yz,z(x — ), y(x — ). Reducing mod M, we find
Xo = Speck[x, Y, Z]/(HZ’Z, Yz, xza xy)

Now

V(@ zy, 2z, y2) = (2,y2)
which is the ideal of the two lines I} = V(x,y) and I, = V(z, z) which are the limits of I; and Iy
individually. But since
(@®, 2y, 22,y2) = (2,y2) N (2,9, 2)*

it follows that X, has an embedded component where the two lines cross. The picture is as in
Figure IV.11.

5. Dimension of fibres of a morphism

We would like to prove some general results on the dimensions of the fibres of a morphism.
We begin with the case of a specialization:

THEOREM 5.1 (Dimension Theorem). Let R be a valuation ring with quotient field K, residue
field k = R/M, let S = Spec R, and let X be a reduced, irreducible scheme of finite type over S
with generic point over n. Then for every component W of X,:

dim X, = dim W
i.e., trdegy R(X) = trdeg;, R(W).

PRrOOF. First of all, we may as well replace X by an affine open subset meeting W and not
meeting any other components of X,. This reduces us to the case where X = Spec A and X, is
irreducible (hence v M - A prime).

Next, the inequality dim X, < dim X, is really simple: because if » = dim X,,, then there
exist t1,...,t, € A such that t;,...,¢. € A/v/M - A are independent transcendentals over k.
But if the ¢; are dependent over K, let

Z cat® =0

be a relation. Multiplying through by a suitable constant, since R is a valuation ring, we may
assume ¢, € R and not all ¢, are in M. Then > ¢,t" = 0in A/v/M - A is a non-trivial relation
over k.

To get started in the other inequality, we will use:
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LEMMA 5.2. Let k C K be any two fields and let X be a k-variety. Then if X XgpecpSpec K =
XiU---UXy,
dimX =dimX,;, 1<:i<t.

PrOOF OF LEMMA 5.2. If K is an algebraic extension of k, this follows from Theorem 2.4
by going up to k and down again. If K is purely transcendental over k, let K = k(... tq,...).
Then if A is any integral domain containing k& with quotient field L,

A®r K = (A]...,ta, ... localized with respect to K \ (0))

is another integral domain and it contains K and has quotient field L(...,tqs,...). It follows
that in this case X Xgpecr Spec K is reduced and irreducible and

R(X Xgpeck Spec K) = R(X) (..., tqa,...).

Therefore
dim (X Xgpeck Spec K) = trdegy ;. yR(X)(... tas. )
= trdeg;, R(X)
= dim X.
Putting the two cases together, we get the general result. O

LEMMA 5.3. Let R be any local integral domain (neither noetherian nor a valuation ring!),
S = Spec R, 1,0 € S as above. Let X be reduced and irreducible and let w: X — S be of finite
type. Assume m has a section 0: S — X. Then dim X, = 0 = dim X,, = 0.

PrOOF OF LEMMA 5.3. We can replace X by an affine neighborhood of o(0) and so reduce
to the case X = Spec A for simplicity. On the ring level, we get

hence
A=R®I, wherel =ZKerc".

Consider the sequence of subschemes
Y, =SpecA/I" C X

\ S./

If 21,..., 2z, generate A as a ring over R, let z; = a; + v;, a; € R, y; € I. Then y{'---y/m
with 0 < > r; < n generate A/I™ as a module over R. Being finitely generated over R at all, it
follows by Nakayama’s lemma that if z1,..., 2, € A/I" generate (A/I") @ (R/M) over R/M,
they generate A/I™ over R. Thus

(%) dimy(A/I") ®g k = (minimal number of generators of A/I")

Now given any O-dimensional scheme Z of finite type over a field L, then Z consists in a

finite set of points {P,..., P}, and the local rings Op, z are artinian. Then in fact Z =
Spec (H§:1 Op,, Z), hence is affine and a natural measure of its “size” is
degy Z = dim; I'(Oz).
def

In this language, (*) says degy(Yy)o > degy (Yr),. But (Y5,), C X, and X, is itself 0-dimensional,
S0
degy, X, > degy(Yn)o = deg(Yn)y-
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This bound shows that (Y,), = (Yn41)y, if n>> 0. On the other hand, (Y7,), is the subscheme of

X, consisting of the single point z = o(n) and defined by the ideal my X, Thus mj X, = m’x‘}ln

if n > 0 and since Oy x, is noetherian, this means m’, X, = (0) if n > 0. Thus Oy, x, is in fact
finite-dimensional over K, hence

dim X,, = trdeg; R(X,)
= trdegy Oy x,
=0.

LEMMA 5.4. Lemma 5.3 still holds even if a section doesn’t exist.

PROOF OF LEMMA 5.4. Choose z € X, let S" = Spec O, x, and consider

X xg 8
(]
g

where 0 = (i,1g/), i: Spec O x — X being the canonical inclusion. Let X’ be an irreducible
component of X xg 5" containing o(S’) with its reduced structure. Then

dim X, = 0 = dim X, = 0 by Lemma 5.2
= dim X{7 =0 by Lemma 5.3
= dim X,, = 0 by Lemma 5.2.

O

Going back to Theorem 5.1, we have now proven that dim X, = 0 <= dim X,, = 0. Sup-
pose instead that both dimensions are positive. Choose t € A such that t € A/VM - A is
transcendental over k and let

R' = (RJ[t] localized with respect to S = R[t] \ M - R[t]).
This is a new valuation ring with quotient field K (t) and residue field k(t) and 7 factors:

X =——— Spec A +—Spec As = X'

| |

=\ Spec R[t] +———Spec R’

J

Spec R

Since t is transcendental in both Ax and A/ M - A, 7 takes the generic points of both X, and
X, into the subset Spec R’ of Spec R][t], i.e., they lie in X’. Now As being merely a localization of
A, X' has the same stalks as X. Therefore R(X;) = R(X) and R(X,) = R(X,) and considering
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X' over S’ = Spec R':
dim X, = trdeg ) R(X)
= trdegr R(X) — 1
=dimX, -1
dim X, = trdegy;) R(X,)
= trdeg;, R(X,) — 1
= dim X, — 1.
Making an induction on min(dim X, dim X,), this last step completes the proof. O

The dimension theorem (Theorem 5.1) has lots of consequences: first of all it has the following
generalization to general morphisms of finite type:

COROLLARY 5.5. Let f: X — Y be a morphism of finite type between two irreducible reduced
schemes with f(generic point nx) = generic point ny. Then for all y € Y and all components
W of f~H(y):

dim W > trdegg(y) R(X) = dim L (ny).
If f is flat over'Y, equality holds.

PROOF. We may as well assume f~!(y) is irreducible as otherwise we can replace X by an
open subset to achieve this. Let w € f~!(y). Choose a valuation ring R:

Owx C RCR(X)
with
m,, x C maximal ideal M of R.

Now form the fibre product:
X+——X'

f l Jf !
Y +<—— Spec R.
Note that f’ has a section o: Spec R — X' induced by the canonical map Spec R — Spec O, x —
X (as in Lemma 5.4). Break up Xj into its irreducible components and let their closures in X'
with reduced structure be written X, ..., X One of these, say X(!) contains the image of

the section o:
X+—X > x@

v

Y < Spec R
Let 0, € Spec R be its closed and generic points: the various fibres are related by:
Xél) = component of X, X, = ftmy) X spec R(Y) Spec K
Xcgl) - Xc/)v X(/) = f_l(y) X Spec R(Y) Spec R/M

Then:
dim f~!(y) = dim(all components of X/), by Lemma 5.2

> dim(any component of X(V)
= dim Xél), by Theorem 5.1
= dim f~'(ny), by Lemma 5.2.
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Now if X is flat over Y, then X’ is flat over Spec R, hence
X' =xOy...uxm®

(otherwise, let U C X’ be an open affine disjoint from | J X® and if U = Spec A, then Spec(A®r
K)="U, =0, so A is a torsion R-module contradicting flatness). Therefore

X' =xMu...uxm
hence for at least one i, X(gi) = a component of X! and
dim £~ (y) = dim XV
= dim X,(f)
= dim f~ ! (ny).

Combining Corollary 5.5 and Theorem 4.8 (generic flatness), we get:

COROLLARY 5.6. Let f: X — Y be as in Corollary 5.5. Then there is an integer n and a
non-empty open U C'Y such that for all y € U and all components W of f~(y), dim W = n.

Combining these results and the methods of Part I [87, (3.16)], we deduce:

COROLLARY 5.7. Let f: X — Y be any morphism of finite type with Y noetherian. Then
the function

z +— max{dim W | W a component of f~*(f(z)) containing x}

1S upper semi-continuous.

Another consequence of Theorem 5.1 is that we generalize Part I [87, (3.14)] to varieties
over any ground field k:

COROLLARY 5.8. Let k be a field and X a k-variety. If t € I'(Ox) and
V(it)={z e X |tx)=0} & X,
then for every component W of V(t),
dim W = dim X — 1.
PROOF. Let t define a morphism:
T: X — A}

Then either T'(generic point) = generic point, or T'(generic point) = closed point a. In the
second case a # 0 and v(t) = () so there is nothing to prove. In the first case, R = O 41 is a
valuation ring and making a base change:

Xe—X
| |-
A}f +——— SpecR
we are in the situation of the dimension theorem. Now R(X) = R(X’), so
dim (X;7 over quotient field of R) = trdegy,) R(X)
= trdeg, R(X) — 1
=dimX -1
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while W is a component of 771(0), hence of 7=!(0) and satisfies:
dim(W over residue field of R) = trdeg;, R(W)
=dim W.
]
(Note that we have not used Krull’s principal ideal theorem (Zariski-Samuel [119, vol. I,
Chapter IV, §14, Theorem 29, p. 238]) in this proof.)
Up to this point, we have defined and discussed dimension only for varieties over various

fields. There is a natural concept of dimension for arbitrary schemes which by virtue of the
above corollary agrees with our definition for varieties:

DEFINITION 5.9. If X is a scheme, then

. largest integer n such that there exists a chain
dim X = ; . c c c
of irreducible closed subsets: () # Zy SO s - 5ZnCX
If Z C X is an irreducible closed set with generic point z, then
. largest integer n such that there exists a chain
codimy Z = ; . .
or of irreducible closed subsets: Z =205 21 G-+ S Z, C X

codimy z
From the definition, one sees immediately that VZ irreducible, closed:
dim Z 4 codimy Z < dim X.

But “<” can hold even for such spaces as Spec R, R local noetherian integral domain! This
pathology makes rather a mess of general dimension theory. The definition ties up with dimen-
sion in local ring theory as follows: if Z C X is closed and irreducible, and z € Z is its generic
point, then there is a bijection between closed irreducible Z’ O Z and prime ideals p C O, x.
Therefore:

codimy Z = Krull dim O, x

where the Krull dim of a local ring is the maximal length of a chain of prime ideals: cf. Zariski-
Samuel [119, vol. IT, p. 288], or Atiyah-MacDonald [20, Chapter 11]. Moreover, in this language,
Krull’s principal ideal theorem (Zariski-Samuel [119, vol. I, Chapter IV, §14, Theorem 29, p.
238]) states:
If X is noetherian reduced and irreducible, f € I'(Ox), f # 0, then for all components W
of VI(f),
codimx W =1,

which generalizes Corollary 5.8.

COROLLARY 5.10. Let k be a field and X a k-variety. Then the two definitions of dimension
agree. More precisely, for every maximal chain

0W#£20C2:G -G Zn=X

we have:
trdeg, R(Z;) =14, 0<i<n.
In particular, X is “catenary”, meaning that any two mazximal chains have the same length.

Therefore for all Z C X closed irreducible, with generic point z:

dim Z + codimyx Z = dim X
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or
trdegy k(z) + Krulldim O, x = dim X.

Proor. Note on the one hand that a minimal irreducible closed subset Zj is just a closed
point Zy = {20}, hence R(Zy) = k(z) is algebraic over k by Corollary I1.2.11. On the other
hand, a maximal proper closed irreducible subset Z ; X can be analyzed by Corollary 5.8. Let
U C X be an affine open set meeting Z and let f € Ox(U) be a function 0 on ZNU and 1 at
some closed point 2’ € U\ (UN Z). Then

ZNUCV(f) U,

hence ZNU Cc W S U, some component W of V(f), hence Z C W & X. By maximality of Z,
Z =W, hence
trdeg, R(Z) = trdeg;, R(W)
= trdeg, R(X) — 1, by Corollary 5.8.

These two observations prove Corollary 5.10. O

COROLLARY 5.11. Let R be a Dedekind domain with an infinite number of prime ideals and
quotient field K and let m: X — Spec R be a reduced and irreducible scheme of finite type over
R with 7(nx) = ng, the generic point of Spec R. Then every mazimal chain looks like:

V#2021 S Z, GV G G =X
where

a) Z, C mY(a) for some closed point a € Spec R and trdegy(q) R(Zi) =4, 0<i<r
b) m(Yr41) 3 nr and trdegi R(Yiy1) =14, r < i <n.

In particular n = trdegy R(X), X is catenary and
dim X =1+ trdegy R(X).

PRrROOF. This goes just like Corollary 5.10. By Chevalley’s Nullstellensatz (Theorem I1.2.9)
a closed point Zy = {zp} of X lies over a closed point a of Spec R and k(zg) is algebraic over
k(a). And maximal proper closed irreducible Z & X fall into two cases:
Case i): Z, # 0, so Z; & X, is a maximal closed irreducible subset and so trdegy R(Z) =
trdegy R(X) — 1;
Case ii): Z, =0, so Z C 7 !(a) in which case Z must be a component of 7~!(a). Then by the
Dimension Theorem (Theorem 5.1), trdegy,) R(Z) = trdegx R(X). O

An important link between flatness and dimension theory is given by:

PROPOSITION 5.12. Let f: X — Y be a flat morphism of noetherian schemes and let x € X,
y = f(x). Then:
i) Spec O, x — Spec O,y is surjective,
ii) codimx(x) > codimy (y).

Moreover if f is of finite type, then
iii) for all open sets U C X, f(U) is open in'Y .

The proof is straightforward using the fact that for all Z C Y
res f: fY(Z) — Z

is still flat, and applying Theorem I1.2.9 (Chevalley’s Nullstellensatz) and Proposition 4.6.



152 IV. GROUND FIELDS AND BASE RINGS

6. Hensel’s lemma

The most important situation for specialization is when the base ring R is a complete discrete
valuation ring, such as Zj, or k[[t]]. One of the main reasons why this case is special is that Helsel’s
lemma holds. This “lemma” has many variants but we would like to put it as geometrically as
possible:

LEMMA 6.1. (Hensel’s lemma)”. Let R be a complete local noetherian ring, S = Spec R and
m: X — S a morphism of finite type. Suppose we have a decomposition of the closed fibre:

X, =Y, UZ,, Y,, Z, open, disjoint
Y, = {y} a single point

Then we can decompose the whole scheme X :

X=YUZ, Y, Z open disjoint
Y = Spec B, finite and integral over R

so that Y, = closed fibre of Y, Z, = closed fibre of Z.

PROOF. Let U C X be an affine open subset such that U N X, = {y}. Let U = Spec B, and
consider the ideal

o
N = m M"™ . B, where M = maximal ideal of R.

n=1

Now O, x is a localization By of B and since M - B, C p - By, by Krull’s theorem (cf. Zariski-
Samuel [119, vol. I, Chapter IV, §7, p. 216)):

o0 oo
N-Byc [\ M" - Byc () (0By)" = (0).
n=1 n=1
Therefore, 3f € B\ p such that f- N = (0). Now replace B by its localization By and U by
Uy. Using this smaller neighborhood of Y, we can assume (72 ; M" - B = (0). Now recall the
algebraic fact:

If B is a module over a complete local ring (R, M) such that:
a) 2y M" - B = (0)
b) B/M - B is finite-dimensional over R/M,
then B is a finitely generated R-module (Zariski-Samuel [119, vol. II, Chapter
VIII, §3, Theorem 7, p. 259]).
Since Spec B/M - B = U, = Y, consists in one point, dimg/; B/MB < +o0c and (a) and (b)
hold. Therefore B is integrally dependent on R, and by Proposition 11.6.5, resw: U — S is a
proper morphism. It follows that the inclusion i:

N
S

is proper, hence U = Image(i) is closed in X. Therefore if we set Y = U, Z = X \ U, we have
the required decomposition. O

"The lemma is also true whenever Y, is proper over S: cf. EGA [1, Chapter III].
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Note that in fact, since B is integrally dependent on R, all its maximal ideals contract to
M C R; since Spec B has only one point, namely y, over the closed point [M] € Spec R, this
means that B has only one maximal ideal, i.e., B is local. Therefore:

B=0,x.

COROLLARY 6.2 (Classical Helsel’s lemma). Let R be a complete local noetherian ring with
maximal ideal M and residue field k = R/M. Let f(T) be a monic polynomial over R and let f
be the reduced polynomial over k. Factor f:

N n
f=11Is
i=1

where g; are distinct, irreducible and monic. Then f factors:

f=11#
i=1

with f; = g.*.

PrOOF. Apply Hensel’s Lemma 6.1 to X = Spec R[T]/(f(T)).
Then X, consists in n points [(g;)] € Af, hence X decomposes into n disjoint pieces:

X:O&
i=1
X; = Spec R[T]/q;
(Xi)o = Spec k[T1]/(g;")-

If d; = deg(g}"), then 1,7, ...,T%~1 generate the R-module (R[T]/a;) @r k = k[T]/(g}"), hence
by Nakayama’s lemma, they generate R[T]/a;. Therefore T% ¢ E?":_ll RT7 in R[T]/a;, or a;
contains a monic polynomial f; of degree d;. Then

a) f; € (¢;"), and since both are monic of the same degree, f; = g},
b) [] fi is everywhere zero on X, so [[ fi € (f), and since both are monic of the same

degree, [ fi = f

It follows easily that a; = (f;) too, so that the decomposition of X into components and of f
into factors are really equivalent! O

COROLLARY 6.3. Let R, M, k, S = Spec R be as before. Then for all finite separable field
extension k C L, there is a unique flat morphism 7: X1, — S of finite type® such that

(%) (X1L)o is reduced and consists in one point x
k(z) = L, X1, connected.

In fact for all p: Z — S of finite type and o where:

Z, = one point z, Z connected

()

a: L < k(2) is k-homomorphism,

there exists a unique S-morphism
f: Z — XL
such that f(z) =z and f*: k(xz) — k(2) is equal to c.

8In fact, w: X1, — S is étale in the sense to be defined in §V.3.



154 IV. GROUND FIELDS AND BASE RINGS

PROOF. To construct Xy, write L = k[X]/(f(X)), lift f to a polynomial f of the same
degree over R and set X = Spec R[X]/(f(X)). We prove next that any X flat over S with
property (*) has the universal property of Corollary 6.3 for all p: Z — S satisfying (*x*). This
will prove, in particular, that any two such Xp’s are canonically isomorphic.

Consider

P2 X L Xg Z — 7.

a induces a section @ of py over {z}.

Spec L x g Speck(z)—— X xg Z

(Spec a,l)T J{

Speck(z) = {z}—— Z.
By Hensel’s Lemma 6.1, Z = Spec R', R’ a finite local R-algebra, hence Hensel’s Lemma 6.1
applies with S replaced by Z too: e.g., to ps. It follows:
X1 X Z =W UW, (disjoint)
Wi Npyt(z) = Imagea
Wi = Spec R”, R a finite local R’-algebra.

But ps is flat so R” is flat over R’, hence free (since R’ is local and R” is a finite R'-module).
By assumption

(Xr), = SpecL,
so py () = Spec(L ® k(2)).
Now L separable over k implies that L ®jk(z) is a separable k(z)-algebra — in particular it has
no nilpotents. Thus:
py () N W7 =2 Speck(z)
hence R @ k(z) 2 k(z) and R” @ k(z) has one generator. Therefore R” is free over R’ with
one generator, i.e., W1 =2 Z. This means that o extends uniquely to a section o of ps:

X1 Xg Z
/;>/”WJ30
Speck(z)—— Z '
and f = p1 o o has the required properties. O

COROLLARY 6.4. Let R be a complete discrete valuation ring, S = SpecR, m: X — S a
morphism of finite type with X reduced and irreducible. Then:

Xy = one point = X, = zero or one point.

This corollary allows us to define a very important map, the specialization map (to be used
in §V.3):
DEFINITION 6.5. Let X be of finite type over R: Let
Max(X,) = set of closed points of X,
Max(X,) = set of closed points of X,.

Let
Max(X,)° = set of x € Max(Xj,) such that z is not closed in X.
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Max P N Max P

FIGURE IV.12. Specialization map for }P’}%

Let
sp: Max(X,)? — Max(X,)
be the map
T — @ N X,

(apply Corollary 6.4 to {z} with reduced structure; hence #({z} N X,) = 0 or 1). Note that
)

if X is proper over S, then Max(X,) = Max(X,)° since 7({z}) must be closed in S, hence
{z} N X, #0.

The spaces Max(X;,)° are the building blocks for the theory of “rigid analytic spaces” over
K — cf. Tate [112].

EXAMPLE. X = AL. Then
Max(Ak) = set of conjugacy classes of algebraic elements over K
Max(Ak)° = those algebraic elements which are integral over R
MaX(A}C) = set of conjugacy classes of algebraic elements over k

and sp is the map:

if 2" + a1z '+ -+ a, = 0 is the irreducible equation for z, then sp x is a root
of the equation 2" + @2 ' +-- -+ @, =0, @ = (a; mod M).
More succinctly, R defines an absolute value
on K making X into a complete topological field, via
lu-7"| =c", (some fixed c € R, ¢ > 1
all w € R*, m = generator of M).
Then this absolute value extends to K and Max(AL)° is the unit disc:
{z up to conjugacy | |z| < 1}.

On the other hand, if X = P}, then Max(P}) consists in {co} plus Max(A}). And now
since ]P’}% is proper over S, sp is defined on the whole set Max(]P’}(). It extends the above sp on
Max(A}-)°, and carries oo as well as the whole set

Max(Ak) \ Max(Ak)° = {z up to conjugacy | |z| > 1}
to oo in Max(P}). It looks like Figure IV.12
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PROPOSITION 6.6. The map
sp: Max(X,)® — Max(X,)
18 surjective.
The proof goes by induction on dim X,. If X, = 0, use Hensel’s Lemma 6.1. If x € Max(X,)
and dim X, > 1, choose f € m, x with f # 0 on any component of X,,. Consider the subscheme

V(f) in a suitable neighborhood of z and apply Krull’s principal ideal theorem (Zariski-Samuel
[119, vol. I, Chapter IV, §14, Theorem 29, p. 238]). We leave the details to the reader.

Exercise—Addition needed

(1) If k is perfect, show that each k-form of X is determined up to k-isomorphism by the
Galois action {ox | 0 € Gal(k/k)} on X that it induces.

(2) In the situation of the previous problem, show that the k-forms of X over k up to
k-isomorphism are in one-to-one correspondence with an appropriately defined set

HY (Gal(k/k), Autz(X))

of “I-group cohomology classes” of the Galois group Gal(k/k) with respect to its natural
action on the group Autz(X) of k-automorphisms of X.



CHAPTER V

Singular vs. non-singular

1. Regularity

The purpose of this section is to translate some well-known commutative algebra into the
language of schemes — as general references, see Zariski-Samuel [119, vol. I, Chapter IV and
vol. II, Chapter VIII] and Atiyah-MacDonald [20, Chapter 11]. Consider:

a
b

= local ring
= its maximal ideal

) O
) m
) k=0/m
) m
) &

)

o,

, a vector space over k

m2
e ) @22, m"/m"*1 a graded k-algebra generated over k by m/m?.

LEMMA 1.1 (Easy lemma). If (°2, m™ = (0), then gr(O) integral domain = O integral
domain.

PROOF. If not, say 2,y € O, zy =0,  # 0, y # 0. Then z € m' \ m'*!, y € m!" \ m"+! for
some [, I; let T € m'/m*!, 5 € m! /m"*! be their images. Then Z -7 = 0. O
f) Krull dim O = length n of the longest chain of prime ideals:
po;m ;Ct"';cépnzm
g) If O is noetherian, then recall that

dim O = least n such that 3x1,...,2, €m, m=/(21,...,2,)
OR = degree of Hilbert-Samuel polynomial P defined by
P(n) =1(O/m™), n>0. (I denotes the length.)

DEFINITION 1.2. Note that by (g)!, dimg m/m? > dim O. Then O is regular if it is noetherian
and equivalently,
gr(O) = symmetric algebra generated by m/m?
OR
dimy, m/m? = dim O.
Note that
O regular = O integral domain

by the Easy Lemma 1.1.

DEFINITION 1.3. Let X be a scheme, x € X. Then

mg /m = Zariski-cotangent space at x, denoted T, x
ef

Hom(m, /m2, k(z)) = Zariski-tangent space at x, denoted T x.
€:

LSince if Z1,...,T, € mspan m/m? over k, then by Nakayama’s lemma, they generate m as an ideal, hence
dim O < n.

157
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e

Ficure V.1. Disembodied tangent vector

Note that we can embed T}, x as the set of k(x)-rational points in an affine space over k(z):

T,x = Spec(Symm*(m; /m3)) = A

non-canonically

if n = dimy(,) m, /m2 and Symm* = symmetric algebra.
In some cases, the tangent space at a point x € X has a pretty functorial definition: Suppose
X is a scheme over a field k and x is a k-rational point. Then

set of all morphisms 7 such that
Spec kle]/(€2) ——— X

Tx,X = ~
Speck

commutes and Image 7 = {x}

In fact, by Proposition 1.3.10, the set of such 7 is isomorphic to the set of local k-algebra
homomorphisms:

7 Opx — kle]/(€%).
Then 7*(m, x) C k- € and 7* (mi’X) = (0). Since O, x is a local k-algebra with residue field k:
Om,X/m:ZU,X =k mx,X/mgzg,X7
hence 7* is given by a k-linear map
resT": mzx/mix — k€

and any such map defines a 7*. But the set of such maps is T}, x. Because of this result, one
often visualizes Spec k[e]/(¢?) as a sort of disembodied tangent vector as in Figure V.1.

Given a morphism f: X — Y, let x € X and y = f(x). Then f induces maps on the Zariski
tangent and cotangent spaces:

i) f*: Oyy — Oy x induces a homomorphism of k(z)-vector spaces:
dfy: (my,Y/mz,Y) Si(y) k(T) — Mg x /M7 x
ii) Dualizing, this gives a morphism
dfz: Tox — Tyy Qpyk()

(where " on ® comes in only in case myy/ mz y is infinite dimesional! — in which
case T,y has a natural linear topology, and one must complete T, y ®y(,) k(z), etc.)

DEFINITION 1.4. The tangent cone to X at z is TC, x = Spec(gr(O,, x)). Since gr(Og x)
is a quotient of the symmetric algebra Symm(m,/m?2), we get a closed immersion:

TCx’X C Tx,x.

DEFINITION 1.5. x is a regular point of X if O, x is aregular local ring, i.e., if TC, x = T, x.
X is regular if it is locally noetherian and all its points are regular.
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We will see in §4 below that a complex projective variety X is regular at a point « if and only
if it is non-singular at x as defined in Part I [87, Chapter I]. Thus the concept of regularity can
be viewed as a generalization to arbitrary schemes of the concept of non-singularity (but n.b.
the remarks in §4 below on Sard’s lemma and the examples). Many of the concepts introduced
in Part I [87] for non-singular varieties go over to general regular schemes. For instance, a basic
theorem in commutative algebra is that a regular local ring is a UFD (cf. Zariski-Samuel [119,
vol. II, Appendix 7]; or Kaplansky [64, §4-2]). As we saw in §II1.6, this means that we have a
classical theory of divisors on a regular scheme, i.e.,

X regular =

{ Group of Cartier divisors } ~ { Group of cycles formed from irreducible }

Div(X) on X ~ | codimension one closed subsets

More generally, it is on a regular scheme X that there is a good intersection theory of cycles
whatever their codimension. Recall that a closed irreducible subset Z C X is said to have
codimension r if the local ring O,, x at its generic point 7z has Krull dimension 7: hence if
z € Z is any point, the prime ideal

p(Z) CO.x

defining Z has height r (i.e., since, by definition, height(p(Z)) = length of greatest chain of
prime ideals:

=p(Z),

0)CpoSp S-S
= 0,,x).- Then another basic theorem in

which equals the Krull dimension of (O, x)(z)
commutative algebra is:

1.6.

If O is a regular local ring, p1,p2 C O are
prime ideals, and p’ is a minimal prime ideal
Algebraic form containing p1 + po, then

height(p’) < height(p;) + height(p2)

(Serre [101, p. V-18]).

Geometrically, this means:

1.7.

If X is a reqular scheme, and Z1,Zy C X are
irreducible closed subsets, then for every
component W of Z1 N Zy:

codim W < codim Z; + codim Zs.

Geometric form

Moreover, when equality holds, there is a natural concept of the intersection multiplicity
of Z; and Zy along W: see Serre [101, Chapter V|. This is defined using the functors Tor;
and allows one to define an associative, commutative, distributive product between cycles which
intersect properly (i.e., with no components of too high dimension). (See also §VIL.5.) There
is, however, one big difficulty in this theory. One of the key methods used in Part I [87] in our
discussion of intersections in the classical case of X over SpecC is the “reduction to the diagonal
A”: instead of intersecting Z1, Z2 in X, we formed the intersection of Z1 Xgpecc Z2 and A in
X Xgpecc X, and used the fact that A is a local complete intersection in X Xgpecc X. This
reduction works equally well for a regular variety X over any algebraically closed field k, and
can be extended to all equi-characteristic X, but fails for regular schemes like A7 with mixed
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characteristic local rings (residue field of characteristic p, quotient field of characteristic 0). The
problem is that the product

2
A7" = Aj Xspecz A7

has dimension 2n 4 1 which is less than 2(dim A7) = 2n 4 2: for instance, at the point P € A7
where X; = --- = X,, = 0 over [p] € SpecZ, the cotangent space to A7 has a basis

dXq,...,dX,, dp.
And at the point (P, P) € A2, if we let X; and Y; be coordinates in the two factors,
dXq,...,dX,,dYy,...,dY,, dp

is a basis of the cotangent space. Thus it is not like a product in the arithmetic direction. One
finds, e.g., that Z;, Zy C A7 may intersect properly, while Z1 Xgpecz Z2, A C A%” don’t; that
Z1, Z3 may be regular while Z7 Xgpecz Z2 is not. Nonetheless, Serre managed to show that
intersection theory works except for one property: it is still unknown whether the intersection
multiplicity i(Zy, Zo; W) is always positive!?

For intersection theory on non-singular varieties of arbitrary characteristic, see Samuel [95].
A basic fact from commutative algebra that makes it work is the following:

PRrROPOSITION 1.8. Let R be a regular local ring of dimension r, with mazimal ideal m,
residue field k and quotient field K. Let M be a finitely generated R-module. Then there is a
Hilbert-Samuel polynomial P(t) of degree at most r such that

P(n)=1(M/m"M) ifn>0. (I denotes the length.)

Let

t'r
P(t) = e— + lower terms.
r!

Then
e =dimg (M @ K).

Proof left to the reader.

2. Kahler differential

Again we begin with algebra: let B be an A-algebra:

2(Added in publication) Let P and @ be prime ideals in a regular local ring such that R/(P + Q) has finite
length (hence dim(R/P) + dim(R/Q) < dim(R)). Serre defined the intersection number to be

[e3)

X(R/R,R/Q) := ) (1) lengthy Tor;'(R/P, R/Q),

i=0
and conjectured

e (non-negativity) x(R/P,R/Q) > 0,

e (positivity) x(R/P, R/Q) > 0 if and only if dim(R/P) + dim(R/Q) = dim(R).
Serre proved the assertions when R contains a field (equi-characteristic case) using reduction to the diagonal. For
the mixed characteristic case, the vanishing (the “only if” part of the positivity conjecture) was proved in 1985

by Roberts [93] and independently by Gillet-Soulé [41]. The non-negativity conjecture was proved by O. Gabber
in the middle of 1990’s. The positivity conjecture in the mixed characteristic case is still open.
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2.1.
Qp/a d:ffree B-module on elements db, for all b € B,

modulo the relations:
d(b1 + bg) = dby + dby
d(bibe) = by - dbg + by - dby,
d(a) =0, foralla € A.
In other words, the map
d: B— Qp/a
is an A-derivation and (£2p/4,d) is universal — i.e., for all B-module M and all maps

D:B— M

such that
D(b1 + b2) = Dby + Dby

D(biby) = by - Dby + by - Dby
Da=0, all a € A,
there is a unique B-module homomrophism ¢: Qg4 — M such that D = ¢ o d.
PropPOSITION 2.2. If
I =Ker(B®a B> b ®by—> bibs € B),
then 1/I? is a (B ® 4 B)/I-module, i.e., a B-module, and
QB/Agf/IZ (as B-module).

d goes over to the map
B——1

b——1b—-b® 1.

161

PROOF. I) check that b — b® 1 —1® b is an A-derivation from B to I/I?. Therefore it

extends to a B-module homomorphism Qp 4 — /1 2,

II) Define a ring £ = B @ Qp/4, where B acts on Q5,4 through the module action and
the product of two elements of Qp/4 is always 0. Define an A-bilinear map B x B — E by

(b1,b2) — (b1b2,b1db2). By the universal mapping property of @ , it factors
BxB-—Bo,B-5E

and it follows immediately that ¢(I) C Qp/4. Therefore #(I%) = (0) and ¢ gives ¢: I/I? —

Qp/a-
IIT) These maps are easily seen to be inverse to each other.

Some easy properties of {2 are:
2.3. If B and C are A-algebras, then:
Qpaac)/c = pa@aC.
24. If a C B is an ideal then there is a natural map
a/a? —— Qp/a ®@p (B/a)
G———da®1

and the cokernel is isomorphic to Q(p/q)/a-

O



162 V. SINGULAR VS. NON-SINGULAR
2.5. If B is an A-algebra and C is a B-algebra, then there is a natural exact sequence
QB/A ®p C — QC/A — QC/B — 0.

EXAMPLE. 1: Let A =k, B = k[X1,..., X,]. Then Qg4 is a free B-module with generators
dXy,...,dX,, and

n

Jg

dgzZaXi -dX;, allgeB.
=1

More generally, if
B = k[le"‘7Xn]/(f17”- 7fm)a
then Qp /4 is generated, as B-module, by dXj,...,dX,, but with relations:

— Of; _
$i=> gx X =0,

j=1
EXAMPLE. 2: What happens when A and B are fields, i.e., Qg = 7. The dual K-vector
space Homp (g, K) is precisely the vector space Dery (K, K) of k-derivations from K to K.
Then it is well known:
a) Dery(K, K) = (0) <= K/k is separable algebraic.
b) If {fa}acs is a transcendence basis of K over k and K is separable over k(... fa,...),
then a k-derivation D can have any values on the f, and is determined by its values

on the f,’s.
c) If characteristic k = p, then any k-derivation D kills k- KP. If p* = [K : k- K?] and we
write K = k:Kp(bi/p, e ;/p), (b; € k- KP), and a; = bg/p, then a k-derivation D can

have any values on the a; and is determined by its values on the a;’s.
We conclude:
a') Qg = (0) <= K/k is separable algebraic.
(More generally, if R is a finitely generated k-algebra, then it is not hard to show that
Qr/i = (0) <= R is a direct sum of separable algebraic field extensions.)

b') If K is finitely generated and separable over k, then Vfi,..., f, € K,

[ dfy,...,df, are } [ fi,..., fn are a separating transcendence }

a basis of Qg y, basis of K over k

¢’) If K is finitely generated over k and char(K) = pand p® = [K : k-KP|, then Vfi,..., fs €
K

Y

fi,..., fs are a p-basis of K over k, PN dft,...,dfs are a
ie, K=k -KP(f1,...,fs) basis of Qg /y, ’

It follows easily too that if f1,..., fs are a p-basis then Derys, . 1) (K, K) = (0), hence
K is separable algebraic over k(f1,..., fs). Thus

s > trdeg;, K

with equality if and only if K is separable over k.
For details here, cf. for example, Zariski-Samuel [119, vol. I, Chapter 2, §17].
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FicUurE V.2. Crossing lines

EXAMPLE. 3: Let A =k, B = k[X,Y]/(XY). Then by Example 1, dX and dY generate
Qg4 with the one relation XdY +YdX = 0.

Consider the element w = XdY = —YdX. Then Xw = Yw = 0, so the submodule M
generated by w is kw, a one-dimensional k-space. On the other hand, in /M we have XdY =
YdX =0,s0 Q/M = B-dX & B-dY. Note that B-dX = Qg /;, where Bx = B/(Y)) = k[X];
likewise, B-dY = Qp,_ ;. That is, the module of differentials on Spec B (which looks like that in
Figure V.2) is the module of differentials on the horizontal and vertical lines separately extended
by a torsion module. (One can even check that the extension is non-trivial, i.e., does not split.)

All this is easy to globalize. Let f: X — Y be any morphism. The closed immersion
A X — X xy X

“globalizes” the multiplication homomorphism §: B ® 4 B — B. Let Z be the quasi-coherent
Ox xy x-ideal defining the closed subscheme A(X). Then 7?2 is also a quasi-coherent O X xy X~
ideal and Z/Z? is a quasi-coherent Ox xy x-module. It is also a module over Ox, x/Z, which
is Op(x) extended by zero. As all its stalks off A(X) are 0, T/I? is actually a sheaf of
(A(X), Oa(x))-modules, quasi-coherent in virtue of the nearly tautologous:

LEMMA 2.6. If S C T are a scheme and a closed subscheme, and if F is an Og-module,
then F is a quasi-coherent Og-module on S if and only if F, extended by (0) on T'\ S, is a
quasi-coherent Op-module on T .

DEFINITION 2.7. 2x/y is the quasi-coherent O x-module obtained by carrying T /72 back to
X by the isomorphism A: X — A(X).

Clearly, for all U = Spec(B) C X and V' = Spec(A) C Y such that f(U) C V, the restriction
of Qx,y to U is just 2p/4. Therefore we have globalized our affine construction.
The following properties are easy to check:

2.8. The stalks of Qx/y are given by:

Qxv)e = (Qo, v j0,y)  (ify=f(@)).
2.9.
Qxxsy))y = Qx5 ®og Oy

2.10. If Z C X is a closed subscheme defined by the sheaf of ideals T C Ox, then 3 a
canonical map:

(*) T/1? — Qx)y ®ox Oz

ar—da®1

and the cokernel is isomorphic to 7,y .
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2.11. If X is of finite type over Y, then dx,y is finitely generated.

2.12. If F is a sheaf of Ox-modules, then
Homoy (2x )y, F) = {sheaf of derivations from Ox to F over Oy} .

(2.10) allows us to compare the Zariski-cotangent space at x € X and x/y. In fact, if you
let Z = {z} with reduced structure, and look at the stalks of (x) at z, you get the k(z)-linear
homomorphism:

m,/m2 —— (Qx/v)z o, v k(z)

a—————da®1
and the cokernel is
(Qz/v)e = Q)0 = Qo) uiy)-
Moreover m,, - O, is in the kernel since da = 0, Va € O,. Now in reasonably geometric cases

such as when X and Y are of finite type over an algebraically closed k, and x and y are closed
points, then k(z) = k(y) = k, 50 Qi) /k(y) = (0); and it turns out that the induced map

T*hffl(y) = mx/(mi + my, - Oz) — (QX/Y)z ®Oz ]k(x)

T

is injective too, i.e., the quasi-coherent sheaf {1x/y essentially results from glueing together the
separate vector spaces m;/(m2 +m, - O,) — which are nothing but the cotangent spaces to the
fibres f~!(y) at various points z.

To prove this and see what happens in nasty cases, first define:

DEFINITION 2.13 (Grothendieck). If K D k are two fields, let
Ti e = Ker(Qyz @k K — Qgz)
called the module of imperfection.
This is a K-vector space and its dual is
{space of derivations D: k — K} /{restrictions of derivations D: K — K}

which is well known to be 0 iff K is separable over k (cf. Zariski-Samuel [119, vol. I, Chapter
I1, §17, Theorem 42, p. 128]).

THEOREM 2.14. For all f: X - Y and all z € X, if y = f(x), there is a canonical 5-term
exact sequence:

0= T, xoo, , k) /) — Tk@)/k) — Ta 1) — Qxyy @0, x k(@) — Qo)) — 0,

where

k(y) .
T (0 x 0, , k) k() = KX (Qu«(w/z Du(y) k(#) — Lo, x®0, , k1))/Z D0s x k(w)> :

PROOF. By (2.9), none of the terms change if we make a base change:

X fHy)

7| |

Y +—— Speck(y).
Therefore we may assume Y = Speck, k =k(y) a field. But now (Q2x/y). = Qo, /& and note
that if R = O, x/m?2
Qo, x/k Ok(z) = Qg k()
(by (2.4) applied with a = m2). We are reduced to the really elementary:
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LEMMA. Let R be a local k-algebra, with mazimal ideal M, residue field K = R/M. Assume
M? = (0). There is a canonical exact sequence:
Trp — M — Qpjp, @r K — Qg — 0.
PROOF OF LEMMA. By (2.4) we have an exact sequence:
M -5 Qg @r K — Qg7 — 0.

Now by Cohen’s structure theorem (Zariski-Samuel [119, vol. II, Chapter VIII, §12, Theorem
27, p. 304]), as a ring (but not necessarily as k-algebra), R = K @ M. Using such a direct
sum decomposition, it follows that the projection of R onto M is a derivation of R into the
K = R/M-module M, hence it factors:

projection

R M

I

Qr/z ®@r K

It is easy to see that 8 o «a = 17 and this proves that « is injective! Now the homomorphism
k — R gives rise to an exact sequence /7 ® R — Qp/z — Qg — 0, hence to:

0
d
M

1
Qyz @k K —— Qpjz Or K —— Qg Ok K —— 0

1
85°90/

d
0

It follows from this diagram that there is a natural map from Ker (€27 @1 K — Qg/z), ie.,
Y g/, to M and that the image is Ker(M — Qg /;, ® K). This plus (2.4) proves the lemma. [J

O

COROLLARY 2.15. Ifk(x) is separable algebraic over k(y), then
mx/(mi +my - Oy) — Qx/y ®o, k(z)
is an isomorphism.

EXAMPLE. 4: A typical case where inseparability enters is:
Y = Speck, k imperfect and a € k\ kP
X =Al x = point corresponding to prime ideal (P —a) C klt]
i.e., # = point with coordinate a/?.
Then
k(z) = k(a'/?)
m,/m2 = (free rank one k(z)-module generated by t¥ — a)
Qx )y ®o, k(z) = (free rank one k(x)-module generated by dt)
and the map works out:

m,/m2 —— € Qx )y ®o, k()

P —ar—— L(tP —a)-dt =0
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hence is 0.

An interesting example of the global construction of 2 is given by the projective bundles
introduced in Chapter III:

ExXaMPLE. 5: Let S be a scheme and let £ be a locally free sheaf of Og-modules. Recall
that we constructed m: P(£) = P(€)s — S by P(E£) = Projg(Symm* &). Let K be the kernel of
the canonical homomorphism «:

0—K—71€% OP(S)(l) — 0.
Then I claim:

2.16.
Qpey /s = K(—1) = Homo, ¢, (Opg) (1), K).

We will prove this locally when S = Spec R is affine and £ is free, leaving to the reader to
check that the isomorphism is independent of the choice of basis hence globalizes. Assume

&= éOS‘ti'
=0

Let
U; = open subset P(E)q,
to tn
= SpecR|—,...,—]|.
pec |2, %

To avoid confusion, introduce an alias e; for ¢; in

7€ = D Ope
=0

leaving the #; to denote the induced global sections of Op(g)(1). Then

ale;) = t;, 0<i<n
and K = Ker(a) has a basis on Uj:
t.
ei—t—lej, 0<i<m,i#j.
J

Therefore K(—1) has a basis on Uj:
1 ®e —t;®e;

2 b
¢

U(ey/slv, = D O, -d (t) :
=0

Define 3: Q]P’(g)/S’U]- — K:<_1)’Uj by

(4(5)) -
f(5) ="

0<i<n,i#j

On the other hand

t; ®el t ®e]

Heuristically, if we expand

then f is given by the simple formula
ﬁ(dtl) = €;

which makes it clear why the definition of 5 is independent of the choice of basis.
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REMARK. (Added in publication) (cf. Example 1.8.9) For a locally free Og-module £ and a
positive integer r, let m: Grass"(£) — S be the Grassmannian scheme over S, whose Z-valued
points for each S-scheme Z are in one-to-one correspondence with the Oz-locally free quotients
Oz ®oy & =+ G — 0of rank r. Let a: 7€ — Q — 0 be the universal quotient with Q a locally
free Ograsst(e)-module of rank r. Let K = Ker(a) so that we have an exact sequence

0— K —71€-2%9—0.

Then generalizing the case » = 1 in (2.16) above, we have
QGrrassT((‘,')/S = HomOGrassr<g)/s (Qa IC)

3. Smooth morphisms

DEFINITION 3.1. First of all, the canonical morphism:

X =SpecR[X1,..., Xnir|/(f1y s [r)

7|

Y =SpecR

is called smooth of relative dimension n at a point x € X whenever the Jacobian matrix evaluated

Ofi
<8X] ((L’)) 1<i<lr

1<j<ntr

at x:

has maximal rank, i.e., . Secondly, an arbitrary morphism f: X — Y is smooth of relative
dimension n at a point x € X if there exist affine open neighborhoods U € X, V C Y of x and
y such that f(U) C V and 3 a diagram:

Uc¢ Spon Spec R[X1, ..., Xnir)/(f1s--oy fr)
ros fl immersion lg
Ve open Spec R

immersion
with g of above type, i.e., rk((0f;/0X;)(x)) = r. f is smooth of relative dimension n if this
holds for all x € X. f is étale if it is smooth of relative dimension 0.
REMARK. (Added in publication)

(1) The smoothness of f: X — Y at x € X does not depend on the choice of the presen-
tation

ofi
Spec(R[X1, ..., Xnir|/(f1,--, fr)) with 1k (3)]; (93)) =7

See, for instance, the proof of Proposition 3.6 below.
(2) Smooth morphisms are flat as will be shown in Proposition 3.19 below. An alternative

proof can be found in Mumford [86, Chap. III, §10, p. 305]. Theorem 3’ there states:
Let f: X — Y be a morphism of finite type. Then f is smooth of
relative dimension k if and only if f is flat and its geometric fibres are
disjoint unions of k-dimensional non-singular varieties.

This statement will be given in this book as Criterion 4.8 below. The proof of flatness

in Mumford [86, Chap. III, §10] successively uses the following ([86, Chap. III, §10, p.

297]):
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Let M be a B-module, and B an algebra over A. Let f € B have
the property that for all maximal ideals m C A, multiplication by f is
injective in M/mM. Then M flat over A implies M/fM flat over A.

This very concrete definition has lots of easy consequences:

PrOPOSITION 3.2. If f: X — Y 14s smooth at x € X, then it is smooth in a neighborhood U

of x.

PRrROOF. If in some affine U C X where f is presented as above, d is the r X r-minor of
(0fi/0X;) which is non-zero at x, then f is smooth in the distinguished open subset Us of
U. O

PROPOSITION 3.3. If f: X — Y is smooth of relative dimension n, then for allY' —'Y, the
canonical morphism
XxyY —Y'
is smooth of relative dimension n. In particular,
i) for ally €Y the fibre f~1(y) is smooth of relative dimension n over k(y),
ii) if Y = Speck, Y' = Speck, k an algebraic closure of k, then
X smooth over k = X = X X Speck Spec k smooth over k.
PROOF. Obvious. O

ProrosiTION 34. If f: X — Y and g: Y — Z are smooth morphisms at x € X and
y = f(x) €Y respectively, then go f: X — Z is smooth at x.

ProoF. Obvious. (]

PRrROPOSITION 3.5. A morphism f: X — Y is smooth of relative dimension n at x if and
only if it factors in a neighborhood U of x:

U—syxar Py
m/
X

where g is étale.

Proor. “if” follows from the last result. As for “only if”, it suffices to consider the case
X =Spec R[X1,..., Xnyrl/(f1, -, fr), Y = Spec R. Say det ((0fi/0Xn+;)),<; j<, # 0. Let the
homomorphism

R[Xl, . ,Xn] — R[Xl, .. .,XnJrr]/(fl, .. .,fT)
define g. Then g is étale near x and f =pjog. O

PropPOSITION 3.6. If f: X — Y is smooth of relative dimension n at x € X, then 3 a
neighborhood U of x such that Qx/y|uv = O%|v. Especially, if f is étale, then Qx/y | = (0).

ProOOF. It suffices to show that if S = R[X1,..., Xp4.]/(f1,..., fr) and 6 = det(0fi/0X;)1<i j<r,
then (Qg/r)®s S5 is a free Ss-module of rank n. But Qg is generated over S by dX1,...,d X,

with relations Z?i{(@fi/(?Xj)de =0, 1 <i<r. Writing these relations

" Of; = afi

dX; = —
ox; 57, 0%,

dX;
j=1
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and letting (&;;)1<ij<r € My(Ss) be the inverse of the matrix (0f;/0X;)i<i j<r, it follows that
in (Qs/r) ®s Ss,
T r+n Of
Xm:*ZAZ fli'ain‘dXﬁ 1<i<r
=1 j=r+1
and that these are the only relations among the dX;’s. Therefore dX,11,...,dX,+, are a free
basis of (2g/r) ®s Ss. O

DEFINITION 3.7. If f: X — Y is smooth, let © x/y = Home, (2x,y, Ox), called the relative
tangent sheaf of X over Y. Note that it is locally free and if x € X, y = f(z) and k(z) is separable
algebraic over k(y), then

(Ox/y)z @k(x) 2T, y-1(,), the Zariski-tangent space to the fibre.

Moreover, by (2.12), ©x/y is isomorphic to the sheaf Derp, (Ox, Ox) of derivations from Ox
to itself killing Oy-.

Note moreover that according to the proof of Proposition 3.6, X can be covered by affine
open sets U in which there are functions X, ..., X, such that:

1) any differential w € Qx/y(U) can be uniquely expanded
UJ:Zai-dXi, a; EOX(U),
i=1

2) any derivation D € ©x/y(U) can be uniquely expanded

= 0

(0/0X; dual to dX;).

When Y = SpecC, it is easy at this point to identify the sheaves {2x,c and ©x /¢ with the
sheaves of holomorphic differential forms and holomorphic vector fields on X with “polynomial
coefficients”; or alternatively, with the sheaves of polynomial sections of the cotangent vector
bundle and tangent vector bundle to X. We will discuss this in §VIII.3.

I would like to examine next the relationship between the local rings O, x and O,y when
there is smooth morphism f: X — Y with f(z) = y. When there is no residue field extension,
the completions of these rings are related in the simplest possible way:

PropoSITION 3.8. If f: X — Y is smooth of relative dimension n at x and if the natural
map:
k(y) = k(z), where y = f(x)

is an isomorphism, then the formal completions are related by:

~ ~

Oz x 2Oy y|lt,...,ta]].
PrOOF. The problem being local, we may assume

X = SpeCR[le ey Xn-i-r]/(fh (ERE f?“)
Y =Spec R, R local ring, y = closed point of Y,

Afi
with det ( (a:)) # 0.
an 1<i,j<r
Now if = [p], p C R[X1,..., Xntr], then we have inclusions:

k(y) = R/(RNp) C R[X1,..., Xnyr]/p Ck(2).
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Since all these are equal, Jay, ..., a1, € R such that X; —a; € p; more succinctly, x is the point
over y € Y where X1 = a;,..., Xptr = aptr. Then p D (pNR+ (X1 — a1, ..., Xpntr — Gnyr))
and in fact equality must hold because the ideal on the right is already maximal. Now we
may as well change coordinates replacing X; — a; by X; so that z is at the origin, i.e., p =
pNR+ (X1,...,Xpn4r). Now if Z =Y x A" we have

Ox,X g(/):E,Z/(fl) DRI fr)7
O,z =localization of O,y [X1, ..., X,4,] at the

maximal ideal myy + (X1,..., Xp4p),

hence
@x,X = Ax,Z/(fla-“afr)a
Oz = Oy y[[X1,. .., Xnirll.

Using the hypothesis that f is smooth at x, everything now follows (with R = @y,y[[Xl, oo Xl
Y = X,4i) from:

THEOREM 3.9 (Formal Implicit Function Theorem). Let R be a ring complete in the a-adic

topology for some ideal a C R. Suppose fi,...,fr € R[[Y1,...,Y.]] satisfy

a) fi(0) €a

b) det(0f;/0Y;)(0) € R*.
Then there are unique elements g; € a, 1 < i < r, such that

a) Y; — g; € ideal generated by f1,..., fr in R[[Y]]

b) fi(g1,...,9-) =0,1<i<r;
equivalently, (a) and (b) say that the following maps are well-defined isomorphisms inverse to
each other:

inclusion

R<— R[[Ylv s 7}/;“”/(.]017 .- wfr)'
substitution
h(Y)—h(g)
PRrOOF OF THEOREM 3.9. The matrix (0f;/0Y;)(0) is invertible in M, (R), so changing co-
ordinates by its inverse, we may assume

fi =a; +Y; + (terms of degree > 2 in Y'’s).
Then making induction on 7, it is enough to show 3g(Y1,...,Y,_1) so that:

canonical map

R[[Yh SRR }/7’—1]] -« R[[Yla s 7YTH/(fT)

substitution
of g for Y;

are well-defined inverse isomorphisms. Letting R’ = R[[Y1,...,Y,—1],d =a-R+(Y1,...,Y,_1),
we reduce the proof to the case r = 1! We then have merely the linear case of the Weierstrass
Preparation Theorem: f(0) € a, f/(0) = 1, then 3 a unit v € R[[Y]] and a € a such that
fY)=u(Y)- (Y —a). This is proven easily by successive approximations:
aj] = 0
Ap+1 = Qp — f(an)

a= lim a,.
n—oo
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One checks by induction that f(a,) € a”, hence f(a) = 0. Making the substitution Z =Y — a,
9(Z) = f(Y+a) has no constant terms, so g(Z) = Z-g(Z),so f(Y) = g(Y —a) = (Y —a)-g(Y —a).
Let u(Y) = g(Y — a). Since g(0) = f'(a) = f'(0) (mod a), u(0) € R*, hence u € R[[Y]]*. O

U

Unfortunately, there is no such simple structure theorem for (/Q\x X as @yyy—algebra in general.
If k(x) is separable algebraic over k(y), then one can still say something: let

O = the unique finite free @y,y—algebra with (5/my7y6 = k(x)

as defined in Corollary IV.6.3. Note that Spec@ is, in fact étale over Spec Oy y: if k(z) =
k(y)[T]/(f(T)) and f lifts f and has the same degree, then

0 = O,y [T)/(f(T))
and
(Image in O/m,yO of f’(T)) = F(T) 0

since k(x) is separable over k(y). Then it can be proven that

Orx 2 O[lth, ..., ta]].
If X is étale over Y, this follows directly from the universal property Corollary IV.6.3 of O. In
general, choose the lift f of f to have coefficients in O,y and replacing Y by a neighborhood of
Yy, we get a diagram:

X 21— Spec Ox[T]/(f(T)) = X’

T

Y «—— Spec Oy [T)/(f(T)) = Y’

There is one point y' € Y/ over y € Y and k(y') = k(z); then we get a point 2’ € X’ over z and
y' as the image of

Speck(z) — Spec (k(z) @k k(y)) — X xy V' = X,
Applying Proposition 3.8 to the smooth ¢’ and the étale ¢, we find:

OZNX = 01«17}(/ = Oy/’y/“tl, e ,th = O[[tl, e ,tn]].
At any point of a smooth morphism, there is a simple structure theorem for gr O, x as
gr O, y-algebra, hence for TCx , as a scheme over TCy:

PROPOSITION 3.10. If f: X — Y is smooth at x of relative dimension n and y = f(x), then
gr Oy is a polynomial ring in n variables over gr(Oy) ®k k(z) — more precisely, 3tq,...,t, €
m,/m2 such that

mY /my ! = @ @ (mé/méfl Rk(y) k(a:)) St

=0 (multi-mdices)
a, |a|l=r—1

Thus
TCX,:I) g TCy,Y XSpeck(y) Aﬁ(df)

PrROOF. There are two cases to consider: adding a new variable and dividing by a new
equation. The first is:

LEMMA 3.11. Let x € Y x A, let t be the variable in A' and let y = p1(z) € Y. Note that
Pt (y) = Aﬂlg(y). Fither:
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1) x is the generic point of Aﬂi(y) in which case my =m, - Oy, k(z) = k(y)(t) and

(myy /my ™) @y k() = my/mi

18 an isomorphism,
2) x is a closed point of Aﬂlg(y) in which case 3 a monic polynomial f(t) such that m, =

m, - O, + f - Oy, k(x) 2 k(y)[t]/(7), and

@ <(m§,/m§,+1) ®lk(y) k(m)) . {/ N m”/mV—H

=0
is an isomorphism (here fi = image of f in my/m2).
ProoF OoF LEMMA 3.11. In the first case,
O, = localization of O,[t] with respect to prime ideal m, - O,t].

Then m, is generated by m, - Oy[t], hence by m,, and:

mY /my = ( 7/ (my - Oy[t])wl) ®0ylt) Oa
o~ (( V/ml/"r].) ]k( )[ ]) Ro W] O,
s () 1 (K] S, 02
(m

1/
3/
I/
y

1

my ) @y k(y) ()

Taking v = 0, this shows that k(z) = k(y)(t) and putting this back in the general case, we get
what we want.
In the second case,

O, = localization of O,[t] with respect to maximal ideal p
where p = inverse image of principal ideal (f) C k(y)[t],
f monic and irreducible of some degree d.
Lift f to a monic f € Oy[t]. Then p = my - Oy[t]+ f- Oy[t], hence my =p-Op = my, - Oy + f- O,
Now since p is maximal, O, [t]/p*+t! =5 O,/m’*! for all v, hence p?/p*+! =5 mZ/mZ+l. On
the other hand, O,[t]/(f**!) is a free Oy-module with basis:

Loty 00t T L Y

In terms of this basis:

m d—1
m/ fl/+1 @ @my fm—l . tz”
=0 i=1
hence
v d-1 .
p? fprl e @@ (m /ml+1) St
=0 =0
Now k(x) = k(y)[t]/(f) = @1: k(z) - t*, so in this direct sum decomposition,

d—

,_.

( z+1) v=l g = ( y/mlH) Dy k() - vl

and (2) follows. O

s
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By induction, Proposition 3.10 follows for the case X =Y x A", f = p;. Now every smooth
morphism is locally of the form:

X =V(fi,.-.., fr) CY x A™" : call this scheme Z

p1
Y
Consider the homomorphism:
my 7/ (mi,z +my - Ox,Z) — Qz/y ®o, k(z).

QZ/Y is a free Oz-module with basis dX7,...,dX,+, and the canonical map takes:

n—+r
afi
2 )
fmodm2 , — z; ox,
]:

-dX;.

By smoothness, the images of the f; in {25/ ® k(z) are independent over k(z), hence the f; in

m, z/ (mg 7+ my - Oy Z) are independent over k(z). Proposition 3.10 now follows by induction

on r using:

LEMMA 3.12. Let O1 — O3 be a local homomorphism of local rings such that gr Os is a poly-
nomial ring in r variables over gr O1. Let f € my have non-zero image in mg/ (m% +my - 02).
Then

gr(Oa/f - O2) = gr(0s)/ f1-gr(O2)  (f1 = image of f in my/m3)

and is a polynomial ring in r — 1 variables over gr O;.

PROOF OF LEMMA 3.12. By induction, gr(Qy/f-O2) is the quotient of gr Qs by the leading
forms of all elements f - g of f-Oy. If g € mh\ ml2+1

hypothesis on f means that f; can be taken as one of the variables in the presentation of gr Oy as
+2
2

, its leading form g is in mb/m5™. The

a polynomial ring, hence f is a non-zero-divisor in gr Q. Therefore f1-g # 0, i.e., f-g ¢ m
and the leading form of f - g is equal to fi -g. Thus gr(Oy/f - O2) = (grO2)/f1 - gr O as
required. O

O
COROLLARY 3.13. If f: X = Y is smooth at x of relative dimension n and y = f(x), then
dfy: Tyy @k k(x) — T, x  is injective,
hence dfy: Ty x — T 7y(§>k(y)k(:c) is surjective.

COROLLARY 3.14. If f: X — Y is smooth at x and y = f(x) is a regular point of Y, then
x is a reqular point of X.

COROLLARY 3.15. If a K-variety X is smooth of relative dimension n over K at some point
x € X, then n =dim X.

PRrROOF. Apply Proposition 3.10 to the generic point n € X. O

COROLLARY 3.16. If f: X — Y is smooth of relative dimension n, then its fibres f~(y) are
reduced and all components are n-dimensional.

Proor. Combine Lemma 1.1, Proposition 3.3 and Corollary 3.14. (]
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COROLLARY 3.17. If f: X — Speck is smooth at x € X and we write:

O{L‘,X = k[Xla cee vXn+T]P/(f1a .- 'afT)

as usual, then the module of syzygies
T

D gifi=0,  gi€k[X],
=1

is generated by the trivial ones:
(fi) - fi+(=fi)-fi=0, 1<i<j<m

PROOF. Let B = k[X1,..., X,4]p and K = B/p - B. We have seen in the proof of Propo-
sition 3.10 that gr B is a graded polynomial ring over K in which f,,...,f, € pB/(pB)? are
independent linear elements. We apply:

LEMMA 3.18. Let A be any ring. Over A[Ty,...,T,], the module of syzygies
T
ZQiTi =0, gi € A[T]
i=1
is generated by the trivial ones:

(T;) - T, + (-T;) - T; = 0, 1<i<j<r

(Proof is a direct calculation which we leave to the reader.)
Therefore we know the syzygies in gr B! Now let Syz be the module of all syzygies:

0 — Syz— B" - B

U(ala ces 7a7‘) = Zazfz

and let Triv be the submodule of Syz generated by the “trivial” ones. Now

() »"(B"/ Triv) = (0)

v=1
SO
o0
Triv = () (0" B)" + Triv).
v=1

Therefore if Syz 2 Triv, we can find a syzygy (g1,...,9,) with g; € p” B such that for no trivial
syzygy (hi,...,h;) are all g; + h; € p**1B. Let g; = image of g; in p* B/p**1B. Then

Z g;fi =0

is a syzygy in gr B. By Lemma 3.18,

i-th J-th
place plaﬁe
G120 = > @0, fj o —Ffir..,0).
1<i<j<r
Lifting the @;; to B, this gives a contradiction. O

Combining Corollary 3.17 with Proposition IV.4.10 now shows (See Proposition VIL.5.7 for
a strengthening.):
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PROPOSITION 3.19. Let f: X — Y be a smooth morphism. Then f is flat and for every
rxeX, if

Orx = Oy (X1, Xogrlp/(f1o - fr)

as usual, then the module of syzygies:
T
Y gifi=0,  gi€O,y[X],
i=1

is generated by the trivial ones.
ProoF. Let A =0, y, B =0, y[X], and apply Proposition IV.4.10 to the sequence:
Brr-b/2 %, pr *y B
ulcoag, ) ==Y frra+ Y firam,..)
I<i i<l

v(ag,...,ap) = Zaifi.

By Corollary 3.17, it is exact after ®o, , k(y) so it is exact as it stands and Coker v is A-flat. [

In fact, it can be shown? that if f: X — Y is any morphism which can be expressed locally
as

Spec A[X1,..., X0y /(f1,..., fr) — Spec A

where all fibres have dimension n, then f has the two properties of Proposition 3.19, i.e., f is flat
and the syzygies among the f; are trivial. Such a morphism f is called a relative local complete
intersection. The property of the syzygies being generated by the trivial ones is an important
one in homological algebra; in particular when it holds, it implies that one can explicitly resolve
B/(f1,..., fr) as B-module, i.e., give all higher order syzygies as well: we will prove this later
— §VIL5.

An interesting link can be made between the concept of smoothness and the theory of
schemes over complete discrete valuation rings (§IV.6). In fact, let R be a complete discrete
valuation ring, S = Spec R, k = R/M, K = fraction field of R. Let

f: X—S
be a smooth morphism of relative dimension n. Consider the specialization:
sp: Max(X,)? — Max(X,)

introduced in §IV.6. Let x € X, be a k-rational point. Then the smoothness of f allows one to
construct analytic coordinates on X near x, so that

I

open n-dimensional polycylinder in A%
{x € Max(A%) | |pi(z)| < 1, all i}.

sp ' ()

1.e.

I

30ne need only generalize Corollary 3.17 and this follows from the Cohen-Macaulay property of k[ X1, ..., Xx]:
cf. Zariski-Samuel [119, vol. II, Appendix 6].
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4. Criteria for smoothness

In this section, we will present four important criteria for the smoothness of a morphism f.
The first concerns when a variety X over a field k£ is smooth over Spec k. But it holds equally
well for any reduced and irreducible scheme X of finite type over a regular scheme Y':

CRITERION 4.1. Let Y be a regular irreducible scheme and f: X — Y a morphism of finite
type. Assume X is reduced and irreducible and that f(nx) = ny. Let r = trdeggy)R(X).
Then Vx € X

a) dimy,) (Qy)y Qo, k(z)) >r
b) equality holds if and only if f is smooth at x in which case the relative dimension must
be v and Qx/y = O in a neighborhood of x.

PRrROOF. Let n € X be its generic point. Then

(Qx/v)n = QR /R(Y)-

This R(X)-vector space is dual to the vector space of R(Y')-derivations from R(X) into itself.
But by Example 2 in §2, the dimension of this space is > trdeggy)R(X). Now since f is of
finite type, Qx/y is a finitely generated Ox-module, hence by Proposition 1.5.5 (Nakayama),
Ve e X

dimy ) (Qx/y @ k(z)) > dimp(x)(Qx/y )y > trdegry) R(X) = 7.
Now if f is smooth at any = € X, it is smooth at 1 and then by Corollary 3.15 its relative
dimension must be 7, hence 2x/y = O near z, hence

Now assume conversely that r = dimy,, (Q x/y ® k(x)) To prove f is smooth at =, we
replace X and Y by affine neighborhoods of  and y, so we have:

X = SpecR[Xl,.. . ,Xn]/(fl,. . .,fl)
Y = Spec R.
Then

Qx/y

o @(’)X -dX; modulo relations Z 0 -dX; =0, 1<i<|
i=1 =1 0X;

hence

Qe x/v @k(z)

= @k(m) -dX; modulo relations Z O (x)-dX; =0, 1<i<]
et st 0X;

The matrix (0f;/0X;) is known as the Jacobian matrix for the above presentation of X. It
follows that

ofi
dimy () (Qx/y @ k(z)) =n —rk (a){,j (x)) .

Therefore in our case (0f;/0X;(x)) has rank n — r. Pick out f;,,..., fi,_, such that

Afi o
rk(an(x)>—n r
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and hence define _
X = SpecR[Xl, . 7Xn]/(fi17 .. 7fin7'r)'
Then we get a diagram
X—— X
N
f y !

and find that fv is smooth of relative dimension r at z. But then by Corollary 3.14, O_ ¢ is

a regular local ring. In particular it is an integral domain and X has a unique component X,
containing x. By Corollary 3.15 applied to the generic point of X,,

r = trdeggy) R(X,).

In other words, both O_ § and its quotient O, x = O, /(other f;’s) are integral domains of
the same transcendence (iegree over R(Y')! This is only pbssible if they are equal (cf. Part I [87,
Proposition (1.14)]). So O, x = O, %, hence X = X in a neighborhood of z and X is smooth
over Y at z. O

COROLLARY 4.2 (Jacobian Criterion for Smoothness). If in the situation of Criterion 4.1,
Y =SpecR, X = Spec R[X1,...,X,]/(f1,--., f1), then

f is smooth atx(z)rk((?ifj(m)) =n-—r.

COROLLARY 4.3. In the situation of Criterion 4.1,

R(X) is separable
] <= | (resp. separable algebraic)
over R(Y)

dz € X such that
f is smooth (resp. étale) at x

ProOOF. If f is smooth somewhere, it is smooth at 7; and the criterion at 7 is:
dim (vector space of R(Y')-derivations of R(X) to R(X)) = trdeggy) R(X).
By Example 2 in §2, this is equivalent to R(X) being separable over R(Y). O

COROLLARY 4.4. If f: X — Y is étale, then for all y €Y, the fibre f~1(y) is a finite set of
reduced points each of which is Spec K, K separable algebraic over k(y).

PRrOOF. Proposition 3.3 and Corollary 4.3. (]

COROLLARY 4.5. In the situation of Criterion 4.1 if v € X, y = f(x), then f is smooth over
Y at z if and only if the fibre f~1(y) is smooth of relative dimension r over Speck(y) at x (n.b.
one must assume the two r’s are the same, i.e., dim f~!(y) = trdegg(y) R(X) ).

A slightly more general version of Criterion 4.1 is sometimes useful:

CRITERION. 4.1% Let Y be a reqular irreducible scheme and let f: X — Y be a morphism
of finite type. Let
X=X1U---UX;

be the components of X and assume f(nx,) =ny, 1 <i <t. Let
r= 1211'121: (trdegR(Y) R(X@red)) .

Then for all x € X :

a) dimy,) Qx/y ®o, k(z) >
b) equality holds if and only if f is smooth of relative dimension r at x.
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In some cases, we can give a criterion for smoothness via Zariski-tangent spaces (as in the
theory of differential geometry):

CRITERION 4.6. Let f: X — Y be as in the previous criterion. Assume further that k(x) is
separable over k(y). Then

x 1s a reqular point of X and

' th at v <=
[ is smooth at x dfe: Tox — Tyy @) k(x) is surjective

PROOF. “ =" was proven in Corollaries 3.13 and 3.14. To go backwards, use the lemma:

LEMMA 4.7. Let X be a noetherian scheme and X' C X a closed subscheme. Suppose
z € X' is a point which is simultaneously reqular on both X and X' and suppose r = dim O, x —
dim O, x/. Then 3 a neighborhood U C X of x and fi,..., f, € Ox(U) such that the ideal sheaf
T C Ox defining X' is given by

T
Iy =) fi-Ox
i=1
and moreover fq,..., f, € my x/m2 - are independent over k(z).

PRrROOF OF LEMMA 4.7. We know O, x/ = O, x /Z,, hence
gr(Og x1) = gr(O,, x) /(ideal generated by leading forms of elements of 7).

Both “gr” are graded polynomial rings, the former in m + r variables, the latter in m variables
for some m. This is only possible if the ideal of leading forms is generated by r independent
linear forms fi,..., f,. Lift these to f1,-.., fl € I, hence to fi,..., fr € Z(U) for some open
UcCX. New Y fi- Oy x C I, so we get three rings:

Ovx 25 Oux/ S fi Osxt —2% O x/Te = Oy x.

These induces:

r(or) r(3)
ar(Op x) — 5 g1 (O xt) 3 fi - O x) — s g1(On x1).

But by construction, Ker(gr(8) ogr(a)) C Ker(gr(a)), so gr(53) is an isomorphism. Then f is an
isomorphism too, hence Z,, = ) f; - O, x. Now because X is noetherian, the two sheaves Z|¢s
and Y f; - Ox|y are both finitely generated and have the same stalks at : hence they are equal
in some open U’ C U. O

Now whenever f: X — Y is a morphism of finite type, Y is noetherian, z € X is a regular
point and y = f(x) € Y is a regular point, factor f locally:

X:V(fl,.. fl — Y xA"=Z

\/

and note that Oy x = O, z/(f1,..., fi) where O, x and O, 7 are both regular. It follows from
Lemma 4.7 that in some neighborhood of 2, X = V(f1,..., fs) where fy,..., fs € mx,z/miz
are independent. Now df, surjective means dually that

(my/m2) O (y) k() mg x /m2

|| ~

ez [ (2, + S0, T k()
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is injective. This implies that fq,..., f, are also independent in m, 7/ (mgzC z+my, - O 7). Since
k(z) is separable over k(Y'), Ty (s /k(y) = (0), hence

mg z/(m2 7 +my - Orz) — Qz/y Qo, k()
is injective by Theorem 2.14. Therefore finally dfy,...,dfs € Qz/y ®0, k(x) are independent,
which is precisely the condition that V' (fi,..., fs) is smooth over Y at z. O

The most important case for these results is when Y = Speck, X a k-variety. There are
then in fact two natural notions of “non-singularity” for a point x € X.
a) x a regular point,
b) X — Speck smooth at z.

Our results show that they almost coincide! In fact:
x a regular point <= z a smooth point, by Corollary 3.14
and if k(x) is separable over k, then:
x a regular point <= x a smooth point, by Criterion 4.6.

But by the Jacobian Criterion 4.2, if k = algebraic closure of k, and X = X X Spec k Speck and
7 € X lies over x, then
x smooth on X <= T smooth on X.

Putting this together:
x regular on X <= x smooth on X
<= 7 smooth on X
<= 7 regular on X.

The pathological situation where these are not all equivalent occurs only over an imperfect field
k and is quite interesting. It stems from the geometric fact that over an algebraically closed
ground field in characteristic p, Sard’s lemma fails abysmally:

ExaMPLE. Let k be an algebraically closed field of characteristic p # 0. There exist mor-
phisms f: A7* — A7 such that every fibre f~!(x) (2 closed point) is singular.
a) f: Al — Al given by f(a) = a”. Then if b € A} is a closed point and b = aP, the
scheme-theoretic fibre is:
f7H(b) = Speck[X]/(XP — b)
= Spec k[X]/(X — a)P
>~ Spec k[X']/(X'P), (if X' =X —a)
none of which are reduced. Similarly, the differential
dfi Ta,Al — Tap7A1
is everywhere 0 and f is nowhere étale.
b) f: A? — Al given by f(a,b) = a®> — bP. Then if d € A} is a closed point and d = c?,
the scheme-theoretic fibre is:
F71(d) = Spec k[X, Y]/(X? = Y7 — d)
= Speck[X,Y]/(X? — (Y +¢)P)
>~ Speck[X,Y']/(X2-Y'"), Y =Y +ec

Thus the fibre f~!(d) is again a k-variety, in fact a plane curve, but with a singularity
at X =Y’ =0 as in Figure V.3:
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1f

Py Y Al

Ficure V.3. Every fibre is singular.

c¢) Now if ¢ is the coordinate on A}, then R(A}) = k(t): a non-perfect field of characteristic
p. Consider the generic fibre f~1(n) of the previous example. It is a 1-dimensional k(t)-
variety equal to:

A2 X 51 Spec k(t) = Spec k[X, Y] @y k(t)
— Speck()[X, Y]/(X2 — ¥P — 1)

i.e., it is the plane curve X2 = YP+t. But now t ¢ k(¢)P, so this curve is not isomorphic
over k(t) to X? = (Y')P. In fact, k[X,Y] ®yp k(t) is a localization of k[X,Y], so the
local rings of f~!(n) are all local rings of A? too, hence they are all regular, i.e., f~!(n)
is a regular scheme! But the Jacobian matrix of the defining equations of this curve is:

d
X
0
Yy
so all 1 x 1-minors vanish at the point x = V(X,Y? +t) € f~1(n). Thus f~!(n) is not
smooth over k(t) at x.

(X2 -YP —t)=2X

(X2 -YP—1t)=0

The third and fourth criteria for smoothness are more general and do not assume that the
base scheme Y is regular.

CRITERION 4.8. Consider a finitely presented morphism f: X — Y. Take a point v € X
and let y = f(x). Then

f is flat at x and the fibre

; th at © <
f is smooth at x f~Yy) is smooth over k(y) at x.

PROOF. = was proven in Propositions 3.3 and 3.19. To prove the converse, we may
assume Y = Spec A, X = Spec A[X1,...,X,]/(f1,-.., fr). Then let x = [p], where p is a prime
ideal in A[X7,...,X,] and let ¢ = pN A and k = (quotient field of A/q) = k(y). Note that the
fibre f~1(y) equals

Speck[X1, ..., Xnl/(f1s-- s fr)-
If s is the dimension of f~!(y) at x, it follows that

rk (5)"; @;)) =n—s.
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Thus n — s < r and renumbering, we may assume that:

of;
lgi%%tn—s <8X] (CC)) 7é 0

Consider the diagram:

X =SpecA[X]/(f1,...,fr) C SpecA[X]/(f1,- ) fn-s) =X’
ﬁat“ /@h at )
Spec A

Then the fibres: f~1(y) C (f')~!(y) over y are both smooth of dimension s at x, hence they are
equal in a neighborhood of z. I claim that in fact X and X’ are equal in a neighborhood of z,
hence f is smooth at z. To prove this, it suffices to show

(flu" . 7f7") : A[X]P = (fl)' . 'afn—s) : A[X]P
or, by Nakayama’s lemma, to show
(fla"‘vfr)'A[X]P _
(flv"wfn—s)'A[X]P Aqk_(O)

But consider the exact sequence

0 —s (fla”'va)'A[X]P _ A[X]P _ A[X]P 0.

(fla'”vfn—S)‘A[X]P (flv'”vfn—s)‘A[X]P (flﬂ”’va)'A[X]P

NH NH

O%X/ O:B,X
The last ring is flat over A, so
(f17 s 7f7”) ) A[X]p
0 ®a, k—
<f17~--afn—s)'A[X]p !
A[X], A[X],
— ®a, k ®a, k —0
(firs frms) - A[X] 7 (fro fr) - AIX]p 0
~|| ~||
O (1) Ou.=1(w)
is exact. But O, (p1y-1y) =, O,.f-1(y), S0 the module on the left is (0). O

COROLLARY 4.9. Let f: X — Y be a finitely presented morphism. Then for all x € X,
y = f(z),
f is flat at z, the fibre f~1(y) is reduced

s €tale at x <=
J is élale at 2 at © and k(x) is separable algebraic over k(y).

The last criterion is a very elegant idea due to Grothendieck. It is an infinitesimal criterion
involving A-valued points of X and Y when A is an artin local ring. We want to consider a
lifting for such point described by the diagram:

Spec A/I L}{ X

n Y- lf

Spec A T Y
1
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This means that we have an A-valued point ¢ of Y and a lifting 1y of the induced (A/TI)-valued
point (I is any ideal in A). Then the problem is to lift ¢; to an A-valued point ¢ of X extending
1g. The criterion states:

CRITERION 4.10. Let f: X — Y be any morphism of finite type where Y is a noetherian
scheme. Then f is smooth if and only if:

For all artin local rings A, ideals I C A, and all A-valued points ¢1 of Y and
(A/I)-valued points 1y of X such that:

f o1y = restriction of ¢1 to Spec A/I
there is an A-valued point ¥y of X such that

fot1r=¢

1o = restriction of Y to Spec A/I.

(See diagram.)

f: X — Y satisfying the lifting property in Criterion 4.10 is said to be formally smooth in
EGA [1, Chapter IV, §17]. This criterion plays crucial roles in deformation theory (cf. §VIIL5).

PROOF. Suppose first that f is smooth and g, ¢1 are given. Look at the induced morphism

fi:
X1 =X Xy Spec A

,[pl
il
SpecA/I ¢ Spec A
which is smooth by Proposition 3.3. Then vy defines a section 1, of fi over the subscheme
Spec A/I of the base which we must extend to a section of f; over the whole of Spec A. Let

y € Spec A be its point and let € X be the image of ¢,. Then k(z) = k(y), so by Proposition
3.8

~

Oz x, 2 Allt1, ..., t]].
If the section vy is given by
(o)"(t:i) = a; € A/
choose a; € A over @;. Then define a section ¢} of f; by
(1)*(t:) = ai.
Now suppose f satisfies the lifting criterion. Choose x € X. We will verify the definition of
smoothness directly, i.e., find a local presentation of f near z as

Spec R[Th, ..., T,/ (f1,..., fi) — SpecR
where det(0f;/0X;) # 0. To start, let f be presented locally by
Spec R[Th,...,T,]/I — Spec R

and let

r= dimk(m) (QX/Y & k(l‘)) .
We may replace X by Spec R[T1,...,T,]/I and Y by Spec R if we wish. Since Qx/y @ k(=) is
generated by dT1,...,dT, with relations df =0, f € I, we can choose fi,..., fn—r € I such that

Qx/y @ k(z) = (@ k(z) de)/ (df1,...,dfn—r)
i=1
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and in particular

Ofi
det <8Tj (x)) # 0.
This allows us to factor f locally through a smooth morphism:

X— X, = SpeCR[Tl,. --aTn]/(fl’---yfn—r)

f}l//

where f; is smooth at z and
(4.11) QXl/Y ® lk(x) — QX/Y & ]k({L')
is an isomorphism.

We now apply the lifting property to the artin local rings A, = O, x,/ m; v, and the ideals
I,=ILnN m"}(ll +m} y , where Iy is the image of I under

R[Tl, N ,Tn] — R[Tl, N ,Tn]/(fla .. .,fnfr).

We want to define by induction on v morphisms r,,:
Spec Ow,X/m;,X(ﬁ X

n PP Jf

Spec Oy x, /my; x, —— X3 —>f Y
1

which extend each other. Given r,, r, plus the canonical map

Spec Oy x, /(11 + m;fxll) = Spec Ox,X/ij;(l — X
induce a map

Spec Oq x, /(I Ny x, +myly) — X.

(This is because Oy, x, /(I NmY  + m;'&}l) can be identified with the subring of (O, x, /(11 +
mg;(ll)) ® Oy x, /mgVCX1 of pairs both members of which have the same image in O, x,/(I1 +
m; x,)-) Apply the lifting property to find r,,41. Now the whole family {r, } defines a morphism
r:

Spec 63:,)(1

ey
X \X1
Y
which is in effect a retraction of a formal neighborhood of X in X; onto X, all over Y. Ring-
theoretically, this means

~ ~

Orx, =20, x ©J
and where the R-algebra structure of @ac x, is given by the R-algebra structure of @x x. It
follows that
Qx, v © Opx 2 (Qx)y © Op x) @ (J/J2).
But, then applying (4.11), we find
(J/J?) @ k(z) = (0),

hence by Nakayama’s lemma, J = (0). Thus @x,X1 = @%X, hence Oy x, = Oy x and X = X
in a neighborhood of z. O
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5. Normality

Recall that in §III.6 we defined a scheme X to be normal if its local rings O, x are integral
domains integrally closed in their quotient field. In particular, if X = Spec R is affine and
integral, then

X is normal <= R, integrally closed in R(X), Vp
<= R integrally closed in R(X)

(using the facts (i) that a localization of an integrally closed domain is integrally closed and (ii)
R = ﬂp R,.) An important fact is that regular schemes are normal. This can be proven either
using the fact that regular local rings are UFD’s (cf. Zariski-Samuel [119, vol. I, Appendix 7];
or Kaplansky [64, §4-2]) and that all UFD’s are integrally closed (Zariski-Samuel [119, vol. I, p.
261]); or one can argue directly that for a noetherian local ring O, gr O integrally closed =
O integrally closed (Zariski-Samuel [119, vol. II, p. 250]). As we saw in §II1.6, normality for
noetherian rings is really the union of two distinct properties, each interesting in its own right.
We wish to globalize this. First we must find how to express globally the condition:

R= N Ry.
p non-zero minimal prime
(Added in publication) We use the following terminology: A point z of a locally noetherian
scheme X is not an embedded point if the natural map O, x — I'(Spec(O, x) \ {z}) is injective.
Equivalently, = is an embedded point of X if dim(O,, x) > 1 and « is an associated point of O, x.

PROPOSITION-DEFINITION 5.1. Let X be a noetherian scheme with no embedded components
and let x € X be a point of codimension at least 2. Say n1,...,n, are the generic points of the
components of X containing x. The following are equivalent:

a) V neighborhoods U of z, and f € Ox (U\ ({z}n U)), there is a neighborhood U' C U
of © such that f extends to f' € Ox(U’).
a’)
Om,X = m Oy,X

yeX with

16@
Ay

(all these rings being subrings of the total quotient ring @;_; Oy, x ).

b) Vf € my x with f(n;) # 0 all i, x is not an embedded point of the subscheme V(f)
defined near x.

b') 3f € my x with f(n;) # 0 all i, and x not an embedded point of V(f).

Points with these properties we call proper points; others are called improper®. If all points are
proper, X 1is said to have Property S2.

PROOF. It is easy to see (a) <= (a’), and (b) = (b') is obvious. To see (b') = (a), take
gEOX(U\(mﬂU)>, U affine

and let f € m, x be such t@ V(f) has no embedded components. Then the distinguished open
set Ug of U is inside U \ ({z} NU), hence we can write:
g=a/f", g €0xU).

4This is not standard terminology; it is suggested by an old Italian usage: cf. Semple-Roth [98, Chapter 13,
§6.4].
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We now prove by induction on [ that g,/f' € O, x, starting with [ = 0 where we know it, and
ending at | = m where it proves that g € O, x, hence g € Ox(U’) some U’ C U. Namely, if
I <m,and h = g1/f' € O, x, consider the function h induced by h on V(f) in a neighborhood
of z. Since h = fm~t. g, it follows that h = 0 on V(f)\ ({z} NV (f)), i.e., Supph C {z} NV (f).
Since z is not an embedded component of V(f), h = 0 at z too, i.e., g1 /fT' =h/f € Oz x.

To see (a') = (b), suppose f € m, x, f(n;) # 0 and suppose g € O, x restricts to a
function g on V(f) whose support is contained in {z} NV (f). Then for all y € X with y € {z},
r#y,gis 0in Oyy (), i.e., g € f- Oy x. Then

g/f € ﬂ Oy,X :Oiﬂ,Xa
yeX

1‘6@
TFy
hence g = 0. O

CRITERION 5.2 (Basic criterion for normality (Krull-Serre)). Let X be a reduced noetherian
scheme. Then

a) Vo € X of codimension 1, X is reqular at x

X is normal < { b) X has Property S2.

In particular (a) and (b) imply that the components of X are disjoint.

ProOOF. If X is affine and irreducible, say X = Spec R, then Property S2, in form (a’),
implies immediately:

Vp prime ideal in R : Ry, = m R,.
¢ non-zero minimal prime

acp

Since

the criterion reduces to Krull’s result (Theorem II1.6.5). Everything in the criterion being local,
it remains to prove (a) + (b) = all components of X are disjoint. Let

S ={z € X |z is in at least two components of X},

and let  be some generic point of S. Then O, x is not a domain so by (a), codimz > 2. Then
consider the function e which is 1 on one of the components through x, 0 on all the others.

Clearly
(& E ﬂ Oy’X, € ¢ OZI‘,X
yeX
re{y}
TF#Y
which contradicts S2. Thus S = 0. O

Here is an example of how this criterion is used:

PROPOSITION 5.3. Assume X is a regular irreducible scheme and Y ; X s a reduced and
irreducible codimension 1 subscheme. Then'Y has Property S2.
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PROOF. Let y € Y be a point of codimension > 2 and let f € Oy x be a local equation for
Y. Take any g € my v \ (fOy x Umz’X). Let g be the image of g in O, y, let Z be the subscheme
of X defined by g = 0 near y, and let f be the image of f in Oy,z. Then

y is a proper point of Y <= {y} not embedded component of V(g) C Y
<= {y} not embedded component of V(f,g) C X

<= {y} not embedded component of V(f) C Z
<= y is a proper point of Z.

But Oy 7z = Oy x/g- Oy x is regular (since g ¢ m; ), hence Z is normal at y hence every point
is proper. ]

COROLLARY 5.4. If X is regular, irreducible, Y G X is reduced irreducible of codimension
1, then if Y itself is reqular at all points of codimension 1, Y is normal.

Another application of the basic criterion is:

PROPOSITION 5.5. Let f: Y — X be a smooth morphism, where X is a normal noetherian
scheme. Then'Y is normal (and locally noetherian).

PRrROOF. As X is the disjoint union of its components, we can replace X by one of these and
so assume X irreducible with generic point 7. Note that since O, x = the field R(X), the local
rings of any y € f~1(n) on the fibre f~!(n) and on Y are the same.

a) Y is reduced: in fact f flat implies

f(Ass(Oy)) C Ass(Ox) = {n}.
For for all y € Ass(Oy),
Oyy = Oy -1y

is an integral domain, since f~1(n) is smooth over Spec R(X), hence is regular.
b) If y € Y has codimension < 1, then by Corollary 1V.5.10, f(y) has codimension 0 or
1, hence X is regular at f(y). Since f is smooth, Y is regular at y by Corollary 3.14.
c) If y € Y has codimension > 1, we seek some g € O,y with g(y) = 0, g # 0 on any
component of Y through y, and such that V(g) has no embedded components through
y. There are two cases:

Cl)
fly)=n =0,y = (’)y7f_1(,7) regular, hence normal

=any g € myy, g # 0 has this property
by the Basic Criterion 5.2.

c2) f(y) = z has codimension > 1 in X. But then since X is normal, there is a
g € I'(Uz, Ox), U, some neighborhood of z, such that g(x) = 0, g(n) # 0 and
V(g) has no embedded components. Then f*(g) € I'(f~U,, Oy) is not zero at
any generic points of Y while f*(¢)(y) = 0. Moreover,

V(f*(9)) = V(g) xx Y,
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so V(f*(g)) is smooth over V(g). We get:
y € Ass(Oy(s+(g))) = f(y) € Ass(Oy(y))
= f(y) = generic point of V(g)
=—codimension of f(y) is 1
=X regular at f(y)
=0,y regular, hence normal
=V (f"(g)) has no embedded

components through y.

O
In particular this shows that a smooth scheme over a normal scheme is locally irreducible
and if one looks back at the proof of Criterion 4.1 for smoothness, one sees that it now extends

verbatim to the case where the image scheme is merely assumed normal, i.e., (as generalized in
Criterion 4.17):

CRITERION 5.6. Let X be an irreducible normal noetherian scheme and f: Y — X a mor-
phism of finite type. Assume all components Y; of Y dominate X and let

7 = min trdegg x) R(Y] red)-
ThenVy € Y
a) dimy,) Qy/x ®o, k(y) >
b) equality holds if and only if f is smooth aty of relative dimension r.

ExaMPLE. The simplest way to get non-normal schemes is to start with any old scheme and
“collapse” the tangent space at a point or “identify” two distinct points. To be precise, let

X = SpecR
be a k-variety.
a) If 2 = [m] is a k-rational point, so that R = k 4+ m, consider
Xo = Spec(k + m?).
The natural morphism:
T X — Xy
is easily seen to be bijective, but if f € m\ m?, the f is integrally dependent on k +m?,
but ¢ k+m2. So Xy is not normal.
b) If x; = [m;], i = 1,2 are two k-rational points, let
Ro={f e R| f(z1) = f(x2)}
=k+ mp Nmy
Xy = Spec Ry.
The natural morphism
T X — Xy

is bijective except that z1, xo have the same image. Moreover, if f € R, then f satisfies
the equation:

(X = f(z))(X = f(22)) = a, where a = (f — f(21))(f — f(2)) € Ro.



188 V. SINGULAR VS. NON-SINGULAR

So Xj is not normal. Moreover, one can check that Qx/x, = (0) but 7 is not étale in
this case so this morphism illustrates the fact that Criterion 4.1 does not extend to
non-normal Y’s.

One of the major reasons why normal varieties play a big role in algebraic geometry is that
all varieties can be “normalized”, i.e., there is a canonical process modifying them only slightly
leading to a normal variety. If there were a similar easy canonical process leading from a general
variety to a regular one, life would be much simpler!

PROPOSITION-DEFINITION 5.7. Let X be a reduced and irreducible scheme. Let L D R(X)
be a finite algebraic extension. Then there is a unique quasi-coherent sheaf of Ox-algebra:

Ox C A C constant sheaf L
such that for all affine U:
A(U) = integral closure of Ox(U) in L.

We set
X1, =Specx(A)
d:fum'on of affines Spec A(U),

as U runs over affines in X,

and call this the normalization of X in L. In particular, if L = R(X), we call this the normal-
ization of X. X is normal and irreducible with function field L.

To see that this works, use (I.5.9), and check that if U = Spec R is an affine in X and Uy is
a distinguished open set, then A(Uy) = A(U) ®g Ry. This is obvious.

Note for instance that in the two examples above, normalization just undoes the clutching
or identification: X is the normalization of Xj.

Sadly, normalization is seriously flawed as a tool by the very unfortunate fact that even
for some of the nicest schemes X you could imagine — e.g., regular affine and 1-dimensional
— there are cases where X, is not of finite type over X. This situation has been intensively
studied, above all by Nagata (cf. his book [89] and Matsumura [78, Chapter 12]). We have no
space to describe the rather beautiful pathology that he revealed and the way he “explained”
it. Suffices it to recall that:

5.8.

e X noetherian normal L separable over R(X) = X, of finite type over X.
o X itself of finite type over a field = X, of finite type over X

(cf. Zariski-Samuel [119, vol. I, Chapter V, §4] ).
o X idtself of finite type over Z = X1, of finite type over X

(cf. Nagata [89, (37.5)]).

We conclude with a few miscellaneous remarks on normalization. The schemes Proj R can
be readily normalized by taking the integral closure of R:

PROPOSITION 5.9. Let R = @, Rn be a graded integral domain with Ry # (0) and let

Ky = field of elements f/g, f,g € Ry, for somen, g #0
= R(Proj R).
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Then if t = any fized element of Ry, the quotient field of R is isomorphic to Ko(t). Let Ly O Ky
be a finite algebraic extension and let

S = integral closure of R in Lo(t).
Then S is graded and Proj S is the normalization of Proj R in Lg.
PrROOF. Left to the reader. (]
An interesting relation between normalization and associated points is given by:
PropPOSITION 5.10. Let X be a reduced and irreducible noetherian scheme and let
X — X, X = Specy (A)

be its normalization. Assume m is of finite type hence A is coherent. Then for all y € X of
codimension at least 2:

y s an improper point <= y € Ass(A/Ox).

The proof is easy using the fact that every point of X is proper.
One case in which normalization does make a scheme regular is when its dimension is one.
This can be used to prove:

PRrROPOSITION 5.11. Let k be a field, K D k a finitely generated extension of transcendence
degree 1. Then there is one and (up to isomorphism) only one reqular complete k-variety X with
function field K, and it is projective over k.

PRrROOF. Let R’ C K be a finitely generated k-algebra with quotient field K, let X° =
Spec R and embed X in A7 for some n using generators of RO, Let X0 be the closure of X°
in P} and write it as Proj R’. Let R” be the integral closure of R’ in its quotient field. Then
by Proposition 5.9, X” = Proj R” is normal. Since it has dimension 1, it is regular and has
the properties required. Uniqueness is easy using Proposition 11.4.8, and the fact that the local
rings of the closed points of X” are valuation rings, hence mazimal proper subrings of K. [

6. Zariski’s Main Theorem

A second major reason why normality is important is that Zariski’s Main Theorem holds for
general normal schemes. To understand this in its natural context, first consider the classical
case: k = C, X a k-variety, and x is a closed point of X. Then we have the following two sets
of properties:

N1) X formally normal at z, i.e., @%X an integrally closed domain.

N2) X analytically normal at x, i.e., Oy x an, the ring of germs of holomorphic functions at

x, is an integrally closed domain.

N3) X normal at x.

N4) Zariski’s Main Theorem holds at x, i.e., Vf: Z — X, f birational and of finite type

with f~!(x) finite, then 3U C X Zariski-open with z € U and

res f: f7IU — U
an isomorphism.
Ul) X formally unibranch at x, i.e., Spec <6zx> irreducible.
U2) X analytically unibranch at x, i.e., Spec (O x an) irreducible, or equivalently, the germ
of analytic space defined by X at x is irreducible.

U3) X wunibranch at x, i.e., if X’ = normalization of X in R(X), m: X’ — X the canonical
morphism, then 77! (x) = one point.
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X topologically unibranch at z. (Recall that in Part I [87, (3.9)], an irreducible algebraic
variety X over C was defined to be topologically unibranch at a point z € X (C) if for
every closed subvariety Y ; X and every open subset V 3 z in the classical topology,
there exists a classical open neighborhood U 3 z contained in V' such that U\ (UNY (C))
is connected in the classical topology.)

The Connectedness Theorem holds at z, i.e.,Vf: Z — X, f proper, Z integral, f(nz) =
nx and U C X Zariski-open dense with f~!(y) connected for all y € U, then f~!(z)
is connected too.

6.1. I claim:

i) all properties N are equivalent,
ii) all properties U are equivalent,
iii) N=U.

Modulo two steps for which we refer the reader to Zariski-Samuel [119] and Gunning-Rossi
[54], this is proven as follows:

N1 <= N2 <= N3: We have inclusions:

Oa:,X C Ox,X,an C O:D,X

and
Oz,X,an N R(X) = O%X

~ < total quotient

O, x N . =0
& X ring of Oy x an > @, X,an

(This follows from the fact that if f,g € O, O noetherian local, then f|g in O iff f|g in
O: cf. Part I [87, §1D].) Therefore the implications

~

O, x integrally closed domain = O, x an integrally closed domain

= 0, x integrally closed domain
are obvious. The fact:
O, x integrally closed domain = @x x integrally closed domain

is a deep Theorem of Zariski (cf. Zariski-Samuel [119, vol. IT, p. 320]). He proved this for
all points x on k-varieties X, for all perfect fields k. It was later generalized by Nagata to
schemes X of finite type over any field k or over Z (cf. Nagata [89, (37.5)]). Although
this step appears quite deep, note that if we strengthen the hypothesis and assume
O, x actually regular, then since regularity is a property of gr(O, x) and gr(Og x) =
gr(@% x), it follows very simply that @x x is also regular, hence is an integrally closed
domain!

N1 = Ul: Obvious.
Ul = U2: Obvious because

O:E,X,an/\/@ - 62,X/\/@7

so if the latter is a domain, so is the former.

U2 = U4: See Gunning-Rossi [54, p. 115].
U4 = U5: This was proven in Part I [87, (3.24)] for projective morphisms f. The proof

generalizes to any proper f.
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(Added in publication) The proof uses a basic fact that the proper morphism

f+Z — X induces a topological proper map fc: Z(C) — X (C), that is, the

inverse image of any compact subset of X (C) is compact, hence the image of

any closed subset of Z(C) is closed.
Suppose that f~1(x) were the disjoint union of two non-empty closed subvarieties Y;
and Y. Then there exist disjoint classical open subsets W7 O Y1(C) and Wy D Y3(C)
in Z(C). Let

Vo := X(C)\ f(Z(C) \ (W1 UWy)),

an open neighborhood of z. Since X is topologically unibranch at z, there exists a
classical open neighborhood V of z in Vj such that V N U(C) is connected (with U in
the statement of U5). Since V' C Vj, we get

FHU@) V) C FHV) C WU W,

Since each fibre f~1(y) is connected for y € U(C) NV and f is surjective, we deduce
that

U@ nv clUC)nV)\FZC\NW)U[UEC)NV)\ f(Z(C)\ Wa)],

and the right hand side is a disjoint union of two open subsets of the connected open
subset U(C) NV in the classical topology. Hence one of the two open subsets is equal
to U(C) NV, say

U@ NV f(Z(C)\ W) =U(C)nV.
This implies that f(W3;) NU(C) = (), or equivalently, Wi C f~1(X \ U)(C). This is
impossible because f~!(X \ U) is a proper subvariety of the irreducible variety Z and
W is an open subset of Z(C).

U5 = U3: Let 7: X’ — X be the normalization of X in R(X). 7 is of finite type by
(5.8), hence it is proper by Proposition I1.6.5. 7 is birational, hence an isomorphism
over some non-empty U C X. Therefore U5 applies to m and 7 !(z) is connected.
But since X’ = Spec A, A coherent, 771 (x) = Spec(A,/m; - A;) and A, /m, - A, is
finite-dimensional over C; thus 7~!(z) is a finite set too, hence it consists in one point.

U3 = Ul: Let O;’X be the integral closure of O, x in R(X): it is a local ring and a

finite O, x-module. By flatness of (/Q\QX over O, x, we find
Oux C Oy x ®0, x Oxx

and by finiteness of O, ,
O;yX R0, x (/Q\x,X 2 completion @\/z,X of (9;;7)( in its mg-adic topology.

By N3 = N1, EQ\’:C x is a domain, so therefore @w x is a domain and Ul is proven.

N3 = N4: (Zariski’s Main Theorem) We use the fact already proven that N3 = N1 =
Ul = U5 and prove N3+ U5 = N4. This is quite easy using Chow’s lemma (Theorem
11.6.3). Let f: Z — X be a birational morphism of finite type with f~!(x) finite. Then
we can find a diagram:

C 77C mn
A open 7! P* x X

gl dense
A

f
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where g is proper and birational, Z’ = closure of Z’ in P" x X with reduced structure.
Now if we write f~1(x) = {y1,...,y:}, then since f is of finite type, each y; is open in
f~Y(z) and proper over C. Then if Y; = g~ !(y;), each Y; is open in (f o g)~!(x) and
proper over C. Let h = restriction of ps to Z’. Then (f o g)~!(z) is open in h~1(z),
hence each Y; is open in h~!(z). But being proper over C, Y; must also be closed in
hY(z):
hHe) =YiUu---uY,u (R (2) \ (fog) H(x))

is a decomposition of ~~!(z) into open and closed pieces. So the Connectedness The-
orem implies t = 1 and = ¢ h(Z’\ Z'). But h is proper so h(Z’\ Z') is closed in X.
Replacing X by X \ h(Z’\ Z’), we can therefore assume Z’ = 7/, i.e., Z' is proper over
X. It follows that Z is proper over X, and f~!(z) = one point y.

Next replacing X by a smaller neighborhood U of x and Z by f~}(U), we can
assume Z and X are affine: to see this, let V be any affine neighborhood of y. Since
f is proper, f(Z \ V) is closed. Let U be an affine neighborhood of z contained in
X\ f(Z\V). Then f~Y(U) C V and f~1(U) is affine by Proposition II.4.5.

Now if X = Spec R, Z = Spec R[x1,...,z,], where z; € R(X), consider the mor-
phism [z;]: Z — A} C P{. This induces

([xz}7f> Z— ]P)(%j X Spec(C) X

which is proper since f is proper. Let I'; be its image. Then T'; is closed and (oo, z) ¢ T';.
Therefore there is some expression:

p(t) =amt™ + a1t -+ ag
a; € Oy x
t = coordinate on P&
p(t)=0on T}
t™"p(t) # 0 at (oo, x).

Thus a,, ¢ m, x, and z;, as an element of R(X), satisfies g(x;) = 0. In other words, ; is
integrally dependent on O, x. So x; € Oy x, hence x; € Ox (U;) for some neighborhood
U; of x. It follows that f is an isomorphism over Uy N--- N U,.

N4 = N3: Let 7: X’ — X be the normalization of X in R(X) and apply Zariski’s Main

Theorem with f = 7.

REMARK. (Added in publication) (Chai) It is easy to give an example of a complex algebraic

variety X and a point € X that is unibranch but not normal: Take X = Spec R with
R = C+t2CJt], and let = correspond to the quotient of R by the maximal ideal t?C[t] of R. The
normalization of R is the polynomial ring C[t], and A! — X is a homeomorphism.

Now consider the same situation for general integral noetherian® schemes. N2, U2 and U4

do not make sense, but N1, N3, N4, U1, U3 and U5 do.

We need modify Ub however to read:
U5) The Connectedness Theorem holds at x, i.e., Vf: Z — X, f proper, Z integral, f(nz) =

nx and the geometric generic fibre of f connected (i.e., if @ = an algebraic closure of
R(X), then via the canonical

i: Spec) — X,

Z x x Spec ) should be connected), then f~!(z) is connected too.

®N3 = N4 is proved even for non-noetherian X in EGA [1, Chapter IV, (8.12.10)].
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REMARK. (Added in publication) (Chai) In the statement of U5, one cannot strengthen the
conclusion to “f~1(x) is geometrically connected”. Here is an example: Let Z = Spec C[t], the
affine line over C. Let R + ¢C[t] be the ring of all polynomials ¢(t) € C[t] such that ¢g(0) € R.
We have an isomorphism

a: Rlu,v]/(u? +v?) =5 R, urrt, v /=1t

Let X = Spec R. It is easy to see that C[t] is the integral closure of R in the fraction field C(¢)
of R, f: Z — X is a homeomorphism, and f is an isomorphism outside the closed point x :=
Spec(R/tC[t]) = SpecR. However, f~!(x) = Spec C, which is connected, but not geometrically
connected over z = SpecR.

6.2. Then Zariski (for k-varieties) and Grothendieck (in general) have shown:

Nl=——=N3<——N4

|

Ul =— U3 < {5

but Nagata [89, Appendix Al] has given counterexamples to N3 = N1, U3 = Ul.

(Note that we do have these implications when X is excellent. Examples of excellent rings
are fields, Z, complete local rings and Dedekind domains of generic characteristic 0. Finitely
generated algebras over excellent rings are excellent. )

To prove these implications, first note that N1 = Ul and N3 = U3 are obvious; that
N1 = N3 is proven just as above. Moreover, N4 =—> N3 and U5 = U3 are proven as above,
except that since the normalization 7: X’ — X may not be of finite type, N4 and U5 should be
applied to partial normalizations, i.e., Spec Rlay, ..., a,] — Spec R, a; integrally dependent on
R. Moreger, N3+ U5 = N4 is proven as above. Therefore it remains to prove Ul = U3 and
U3 = Ub5.

Ul = U3: This is an application of Hensel’s lemma (Lemma IV.6.1). If 7—!(z) has
more than one point, it is easy to see that we can find an element a € R(X) integrally
dependent on O, x such that already in the morphism:

7: Spec Oy x[a] — Spec Oy x
7~1(z) consists in more than one point. Consider the three rings:
Oz x C Oy x[a] C R(X).
Tensoring with @w x, we get:

Oz,X C @z,X ®Oz7x OZ,X[O’] C 6$,X ®Oz,X R(X)
Dividing all three rings by their nilpotents, we get

xX/\ﬁC< 2.X ®0, x Oz xla )/\/7C< Oz x @ R(X )/\ﬁ

By U1, @I,X/\ /(0) is a domain, and since R(X) is a localization of O, x, (@xx ® R(X)) /+/(0)

is a localization of (5%)(/\/@, ie.,
(6%)( ® R(X)) /\/@ C quotient field of @mx/\/@

This implies that (C’)z x @O0y x[a ) /4/(0) is a domain hence Spec(@m x ® Oy x[a]) is
irreducible. Now look at

T Spec(@x,X ® Oy x|a]) — Spec @x“X.
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But since 77 !(closed point) = 7~ !(z), which has more than one point, by Hensel’s

~

lemma (Lemma IV.6.1), Spec(O; x ® O, xla]) is not irreducible!

U3 = Us: (i.e., Unibranch implies the Connectedness Theorem.) We follow Zariski’s
idea (cf. Zariski [118]) and deduce this as an application of the fundamental theorem
of “holomorphic functions” (cf. [118, Chapter VIII]. See also “GFGA” in §VIIL.2.):

6.3 (Fundamental theorem of “holomorphic functions”). Vf: Z — X proper, X
noetherian, then f.Ogz is a coherent sheaf of Ox-algebras and for all x € X

Bm(£.07)e/m% - (£.07)s = limT (7 (2), O7/m’ - O7) .

To apply this to the situation of [/JT’), suppose f~1(x) = Wy UWa, W; open disjoint.
Then define idempotents:

e, € F(f_l(az),(’)z/m;j . Oz)
e, =0on Wy, e, =1on Ws.

These define an element € in the limit: approximating this with an element e €
(f«Oz)z mod my - (f.Oz)s, it follows that e = 0 on Wi, e = 1 on Wy. Let e extend to
a section of f,Oz in an affine neighborhood U = Spec R of x.

Next, for all open U C X,

f:0z(U) = T(f7H(U), 0z2) CT(F 7 (1x), Op-1(zy)-

The generic fibre f~!(nx) of f is a complete variety over the field R(X), hence

L=T(f"(x), Op-1())

is a field, finite and algebraic over R(X). Applying the theory of §IV.2, f~1(nx) is also
a variety over L and passing to the algebraic closure R(X) of R(X), we find that the

geometric scheme:

FT(nx) = f'(nx) Xspecr(x) SPec R(X) — Spec R(X)

in fact lies over Spec(L ®g(x) R(X)). All points of the latter are conjugate, so

J~1(nx) maps onto Spec(L ®g(x)R(X)). By assumption f~!(nx) is connected, hence

Spec(L ®gr(x) R(X)) consists in one point, hence L is purely inseparable over R(X).
So we may assume LP' C R(X). In particular e € R(X).

Since f,Oz(U) is a finite R-module, P is integrally dependent on R too. Let R’
be the integral closure of R in R(X) and we can factor the restriction of f to f~(U)
via the function e?':

Z o> flu Spec R/
\ 9/
f res f Spec ReP']
']
X o U Spec R

Since e” takes on values 0 and 1 on f~!(z), it follows that (f')~!(z) consists in at
least two points! But R’ integral over R[epl] so g is surjective by the going-up theorem
(Zariski-Samuel [119, vol. I, Chapter V, §2, Theorem 3, p. 257]).
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An elementary proof that N1 => N4 can be given along the lines of the proof that U1 = U3.
We sketch this: Given f: Z — X as in N4, form the diagram:

7 (Spec@LX) Xx 4 =27

fl Il
X +— Spec@x,x =X’

Decompose Z’ via Hensel’s lemma (Lemma IV.6.1). Then it follows that Z/_ ; has a component
Z" which projects by a finite birational morphism to X’. This means that Z’ = Spec R, where
R’ is a local domain finite over the normal local domain O, x and is contained in the fraction

~

field of O, x. It follows that Z” 5 X’. Hence f’ has a section. Using

~

O%X N R(X) = Ox,Xa
it follows easily that f is a local isomorphism.

REMARK. (Added in publication) (Chai) A local ring R is said to be unibranch if Ryeq is
an integral domain whose integral closure in its fraction field is a local ring. If in addition the
residue field of the integral closure of R..q is a purely inseparable extension of the residue field
of R, then we say that R is geometrically unibranch. A scheme X is said to be unibranch or
geometrically unibranch at a point z if so is the local ring O, x.

Consider the following properties for a pair (X, z), where X is a noetherian integral scheme.

GU3) X is geometrically unibranch at .

GUb5) (Strong form of Zariski’s Connectedness Theorem) For every proper morphism f: Z —
X with Z integral and f(nz) = nx, if the generic fiber of f is geometrically connected,
then f~!(z) is geometrically connected, too.

Then we have the following implications.

N3 GU3 U3
N4 GU5 <= U5

There is yet another statement that Grothendieck calls “Zariski’s Main Theorem” which
generalizes the statement we have used so far. This is the result:

THEOREM 6.4 (Zariski-Grothendieck “Main Theorem”). Let X be any quasi-compact scheme
and suppose
f+Z—X

is a morphism of finite type with finite fibres. Then there exists a factorization of f:
Z(—i> Specy A —— X

where i is an open immersion and A is a quasi-coherent sheaf of Ox -algebras such that for all
affine U C X, A(U) is finitely generated and integral over Ox (U).

The proof can be found in EGA: (in [1, Chapter III, (4.4.3)] for X noetherian f quasi-
projective; in [1, Chapter IV, (8.12.6)] for f of finite presentation; in [1, Chapter IV, (18.12.13)]
in the general case!) We will not use this result in this book. Theorem 6.4 has the following
important corollaries which we will prove and use (for X noetherian):

COROLLARY 6.5. Let f: Z — X be a morphism. Then the following are quivalent:
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a) f is proper with finite fibres,

b) f is finite (Definition 11.6.6), i.e., the sheaf A = f.Oyz is quasi-coherent, for allU C X
affine A(U) is finitely generated as algebra and integral over Ox(U), and the natural
morphism Z — Specy (A) is an isomorphism.

PROOF USING THEOREM 6.4. (b) = (a) is elementary: use Proposition I1.6.5. As for
(a) = (b), everything is local over X so we may assume X = Spec R. Then by Theorem 6.4 f
factors:

Z“—— Spec B —— Spec R.

Since Z is proper over Spec R, the image of Z in SpecB is closed as well as open, hence
Z = Spec B/a for some ideal a. Then f,Oz = B/a = Spec f,Oz. O

COROLLARY 6.6 (Characterization of normalizations). Let X be an integral scheme, Z a
normal, integral scheme and f: Z — X a proper surjective morphism with finite fibres. Then

R(Z) is a finite algebraic extension of R(X) and Z is isomorphic to the normalization of X in
R(Z).

PrOOF. Straightforward. O

COROLLARY 6.7. Let X be a normal noetherian scheme, f: Z — X a proper étale morphism
with Z connected. Then Z is isomorphic to the normalization of X in some finite separable field
extension L D R(X).

ProoF. This reduces to Corollary 6.6 because of Proposition 5.5. O

INDEPENDENT PROOF OF COROLLARY 6.5 WHEN X IS NOETHERIAN. Assume f: Z — X
given, proper with finite fibres. Let A = f,Oz. Then by the fundamental theorem of “holo-
morphic functions” (6.3), A is an Ox-module of finite type, hence A(U) is finitely generated
as algebra and integral over Ox(U) for all affine U. Let Y = Specy.A so that we have a
factorization:

7" Ly
AN
X

Note that Y is noetherian, h is proper with finite fibres and now h,0Oz; = Oy. We claim
that under these hypotheses, h is an isomorphism, which will prove Corollary 6.5. First of
all, h is surjective: in fact h proper implies h(Z) closed and if h(Z) & Y, then h.Oz would
be annihilated by some power of the ideal of h(Z), hence would not be isomorphic to Oy.
Secondly, h is injective: if h~!(y) consisted in more than one point, we argue as in the proof
that U3 = U5 and find a non-trivial idempotent in

@(h*OZ)y/mZ - (heOz)y.

v

But since h.Oz = Oy, this is just the completion @yy which is a local ring. The only idempotent
in local rings are 0 and 1 so this is a contradiction. Thus & is bijective and closed, hence it is a
homeomorphism. Since h.Oz = Oy, h even sets up an isomorphism of the ringed space (Z, Oy)
with (Y, Oy), i.e., Z 2 Y as schemes. O
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(7.2)
Spec O,y +——Spec <6y,Y/N : 6y,Y>
~l
SpeC(Oy/,y/) @) YQ/
Y Y xx Spec R Spec(Oy yr @R K)U - - -
7l | LT _——

X <— Spec @x,X +—Spec @x,X/N =R Y xxSpecK

™~ — ] T

Spec R(X) = {nX} Spec K fil (77X) XSpec R(X) Spec K

FiGUurE V .4

7. Multiplicities following Weil

We can generalize to the case of schemes the concept of multiplicity of a point for a finite
morphism introduced for complex varieties by topological means in Part I [87, (3.12), (4.19)]:

DEFINITION 7.1 (& la Weil). Let X be a noetherian integral scheme, z € X a formally
unibranch point. Let f: Y — X be a morphism of finite type and let y be an isolated point of
f71(z). Then we define mult,(f) as follows: Let R = 6:}0,)(/\/@3 By assumption this is an
integral domain. Let K = quotient field of R. Form the fibre product:

Y Y’

1] !

X < SpecR

Let ¢ € Y’ be the unique point over y. By Hensel’s lemma (Lemma IV.6.1):
Y =Y/ UY] (disjoint)
Y{ = Spec O, y/, being finite over Spec R.
Define
multy f=dimg (Oy/,y/ KRR K) .

If we write down all the schemes that this interesting definition suggests, we get the diagram
in Figure V.4 which needs to be pondered (we let N = /(0) in O, x): This shows that to get
mult, f, we take the generic fibre of f, extend it to the bigger ground field K D R(X), split this
K-scheme into two disjoint pieces in some sense by specializing from 7x to x, and then measure

the size of one of these pieces!
A few comments on this definition:

7.3. [k(y) : k(z)]s divides mult, f, hence we write
multy (f) = k(y) : k(z)]s - multz(f).

PROOF. Let L C k(y) be the subfield of elements separable over k(z) and let O be the finite
étale extension of O, x with residue field L, as in Corollary IV.6.3 (see also §3 of the present
chapter). Then by Corollary IV.6.3, O, y+ is an O-algebra, hence if K is the quotient field of
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0, Oy vy’ @r K is a vector space over K. Therefore [K : K]| mult, f. But

[K : K] = rank of O as free (/9\30 x-module
= [L : k(x)]
= [k(y) : k(z)ls-

7.4. multy f > 1 if and only if Y has a component Y1 through y dominating X (i.e., ny, —
nx)-

Proor. If Y has no such component, there will be some non-zero a € O, x such that
ffa =01in Oyy. Therefore f*a = 0in Oy ys and Oy y @r K = (0). To prove the converse,
use generic flatness (Theorem IV.4.8): there is a non-zero a € O, x such that the localization
(Oy.y)a is flat over (O x)q. Making the base change, it follows that Y7 is flat over Spec R over
the open set R,. But then

mult, f =0 = Oy y' ®r Rq = (0)
—ad=0in0O .y for some [
—a'=01in Oy y/N-O yv (see diagram in Figure V.4)
=—ad" =0in Oy7y for some m
—ad" =0in Oy
=—> no component of Y through y dominates X.
O

7.5. Assume X is formally normal at x and that all associated points of Y lie over nx. Then
multy f = 1 if and only if f is étale at y.

PROOF. If f is étale, then f is flat, hence Y{ — Spec R is flat, hence O, y- is a free R-module
of some rank n. But on the one hand,

n =dimg Oy yr @r K = mult, f
and on the other hand:
n = dimk(x) Oy’,Y’ ®@rk(x) = dimk(x) Oy,ffl(a:)'

But f~!(z) is zero-dimensional and reduced at y because f is étale, hence O, s-11,) = k(y),
hence n = [k(y) : k(z)]. But f étale also implies k(y) separable over k(z), so multy f = 1.
Conversely, if mult, f = 1, then using the notation of the proof of (7.3), Oy y» @ K = K.
Now O is étale over @x x which we have assumed is an integrally closed domain. Therefore @}
is an integrally closed domain. But if a = {a € Oy y'|a-b=0forsomebec R, b# O} then

Oy .y’ /ais an O- algebra, integrally dependent on O and contained in O vy Qp K = K. Thus

Oy yr/a= O. Using generic flatness of f as in (7.4), we find a € O, x such that (O, y-), is flat
l

over R,. Since this means (O, y'), is torsion-free as R,-module, a, = (0) or a' - a = (0), some
[. But now by hypothesis a # 0 at any associated point of Y so

Oyy — Oyy
is injective. Since Y X x Spec R is flat over Y,

a
Oyl7Y, Oy/7Y/
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is injective too. Therefore a = (0), and Oy y+ = O. Therefore

(QY/X)Z/ ®Oy,Y k(y) = (QYl// Spec R) ®Oy/’y/ k(y)
L

1

(QSpec (5/ Spec R) ®(5
= (0)

so Y is étale over X at y by Criterion 4.17. O

The most famous result about multiplicities is the formula n = ) e;f; (cf. Zariski-Samuel
[119, vol. I, p. 287]). In our language, the result is:

THEOREM 7.6. Let f: Y — X be a finite surjective morphism between integral schemes, and
assume X formally irreducible at x. Then if f~1(x) = {y1,...,y}:

R(Y) : R(X)] = Y mult;(f) - k(y) : k(2)].
=1

Proor. This follows immediately from the big diagram in Figure V.4: in fact,

t
Y xx SpecR = U Y/ (disjoint)
i=1

where Y has one closed point y; lying over y; € Y. Then
t
Spec(R(Y) @r(x) K) = ' (nx) Xspeer(x) SPec K = |_J Spec(Oy y7 ©r K),
i=1

hence

Therefore

t
= Zdim}( (Oy«fryil QR K)

i=1

t
= multy, f.
i=1

Exercise—Modifications needed

For some of the notions and terminology in the following, the reader is referred
to Part 1 [87].

(1) When z is a regular point of X, use ‘Exercise 1, §4A ‘ with R = (5%)( to prove that

mult, (f) = e(mgy x - Oyy; Oy y).

Use this to give a second proof of the equality of the “results” of Part I and Part II in
case X is non-singular at x.
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In the definition of mult,(f), say X is any intermediate integral scheme:

X +— x +— SpecR

nx 15 1[(0)]
such that the decomposition of Y” is induced by a decomposition already over X:
Y xx X =Y, UYa.
Let 7 = image of 3/ in 171, T = image of 2’ in X and K = R()?) Then show
mult, f = dimz (O~~ ®o, 5 I?) .

YY1 X

Now if X is of finite type over C, take
X = Spec Oy x an-

Using the fact that Oy yan is a finite O, x an-module, show that ¥ x x X as above
decomposes and that 171 = Spec Oy y,an. Deduce that the multiplicity of (7.1) is equal
to the multiplicity of Part I [87, (4.19)].

Referred to in §VIIL.3 (Kummer theory) Let X be a noetherian scheme with 1/n,( €
I'(Ox), ¢ = primitive n-th root of unity, and consider pairs (7, ¢):

vy e
d
X
7 étale and proper, m = wo ¢, ¢" = 1y and for all geometric points:
A: Speck — X, k algebraically closed,
we assume
Y X x Speck = n points permuted cyclically by ¢ x 1.

We call this an n-cyclic étaleN covering of X. Prove that 3 an invertible sheaf £ on X
and an isomorphism «: £" — Ox such that
Y = Specy A
A=0x oL L@ - @ L
with multiplication
; ; Lt 1+j3<n
Lk — { Litimn i—l—; > n via a.

Hint: Write Y = Specy A (cf. Proposition-Definition 1.7.3) and show that A decom-
poses into eigensheaves under the action of ¢*:

n—1
A=PL, ¢@)=¢" -z, zeLl,(U).
v=0

Use the fact: flat 4 finite presentation over a local ring = free to deduce that the
L, are locally free. Then show by computing geometric fibres that rk £, = 1 and
multiplication induces an isomorphism £; ® L; = Liyjor Litj_n. Show conversely
that for any £, a;, we obtain an n-cyclic étale covering Y. Deduce that if X is a complete
variety over an algebraically closed field k, then:

{Set of n-cyclic étale coverings} = {\ € Pic(X) | nA = 0}.
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(See Theorem VIII.4.2 for the case n = chark.)
(cf. Remark at the end of §2) For simplicity, let S = Spec(k) with a field k. For a finite
dimensional k-vector space E, consider the Grassmannian scheme Grass”(E) over k.
Let

0 — K — Ograss"(m) @k B~ Q — 0

be the universal exact sequence on Grass"(E). A k-rational point x € Grass"(E)
corresponds to an exact sequence of k-vector spaces

0 — K(x) — F — Q(z) — 0,

where IC(z) and Q(x) are the fibres at x of IC and Q, respectively. Using the description
of the tangent space in terms of k[e]/(¢?) in §1, show

Ty Grass™ () = Homy (K(z), Q(z)),
hence

Ty Grass () = Homy(Q(z), K(z)).
(The tensor product £™ of a line bundle £ is denoted £® here, to avoid confusion
with the direct sum £%".) Let X be a noetherian integral scheme, £ an invertible

Ox-module, and f € T'(X,L®") a global section of L% n > 2. Let B C X be the
Cartier divisor defined by f, so that f defines an isomorphism £®" = Ox(B). Let

L := Spec (@mzo £®(*m)) N X, thought of as the total space of the line bundle

over X whose sheaf of germs of sections is £. Denote by T the tautological global
section of 7*L, corresponding to the canonical element

1el(X, % VeL)c Prx,comer)=T(L7L).
m>0
The cyclic covering of order n of X attached to the triple (X, L, f) is by definition the
divisor Y C L of the section T" — 7*f € T(L,7*L®"). Let 7: Y — X be the finite
locally free morphism induced by 7. Let By C Y be the Cartier divisor in Y attached
to the Ty € I'(Y,7n*L), the image in in I'(Y, 7*L) of the tautological section of 7*L.
(i) Show that m,Oy is isomorphic to @ogmgn_lﬁ‘@(_m) as an Ox-module.
(ii) If n is invertible in Oy, then 7: 77 1(Y \ By) — X \ B is finite étale.
(iii) Verify that Bj is the inverse image of B in Y, and we have a natural isomorphism
7L = Oy (By). Consequently 7*Ox (B) = Oy (B1)®™.

(iv) Suppose that n is invertible in Ox and X is smooth over a scheme S. Then the
canonical sheaf Ky/g := €y g for Y//S is isomorphic to 7 (ICX/S ® £®(”*1)).
Work over an algebraically closed field k of characteristic # 2. Let B C P? be a smooth
conic curve defined by a homogeneous quadratic polynomial f(z,y,z2). Let m: Y — P?
be the double cover of P? attached to the triple (P2, Op2(1), f), a smooth projective

surface.

(i) Show that £ := 7*Op2(1) is an ample invertible Oy-module. Moreover the com-

plete linear system |['(Y, £)| is base point free.

(ii) Show that the canonical sheaf Ky := Q% is isomorphic to £&72, and (Ky)? = 8.

(iii) If [ is a line in P? meeting B at two distinct points, then 7~ 1(I) is a smooth curve
in Y and deg(L|-1(;y) = 2.

(iv) If I is a tangent line to B, then 7—({) is the union l; Uls of two smooth curves in
Y meeting transversally at a point. Moreover deg(ﬁ\lz_) =1fori=1,2.

(v) Show that B is isomorphic to P! x P!L.
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Show that dimT(Y,£) = 4, dimT['(Y, £%?) = 9, and dim Symm?(I'(Y, £)) = 10.
Conclude that the image of the morphism ¢,: Y — P3 defined by the complete
linear system |['(Y, £)| is contained in a quadric hypersurface in P3.

Show that ¢, is a closed embedding.

(7) Work over a field k of characteristic # 2. Let B C P? be a smooth curve defined
by a homogeneous polynomial f(z,y,z) of degree 4. Let 7: Y — P2 be the double
cover of P2 attached to the triple (P?, Op2(2), f), a smooth projective surface. Denote
by Bj the ramification locus of 7 in Y. We know by construction that 7 induces

an isomorphism B; —+ B. Moreover the anticanonical sheaf K{‘?*l is ample and
isomorphic to 7*Opz2(1); denote it by L. (Note: It is known that Y is a Del Pezzo
surface of degree 2, i.e., Y Xgpeck Spec k8 is isomorphic to the blow up of P? whose

center is the union of 7 distinct points of P2, no three of which lie on one line and no

six of which line on one conic.)

(i)

Suppose that [ is a line in P? intersecting B transversally at 4 distinct points, i.e.,
[ is not a tangent line to B. Let D; = 7~ 1(I) be the inverse image of [ in Y. Show
that Dy is a smooth curve, degp(Ky) = —2, (D) =2, and D is a curve of genus
1.

Show that the inverse image of any line in P? tangent to B is a singular divisor in
Y. Here the inverse image of a line [ in Y means Spec(Oy /7n*Z - Oy), where T is
the ideal of Op2 which defines the line [.

Suppose that [ is line in P? that is tangent to B at a point g, and [ intersects
B transversally at two points x1 # xo different from xg. Let Dy = ﬂ_l(l) be the
inverse image of [ in Y, and yg, y1, y2 the three points of Dy above zg, x; and
T2, respectively. Show that Ds is an irreducible divisor on Y with (D3)? = 2,
(Ky - D3)y = —2. The curve Dy is smooth at y; and y2, and has an ordinary
double point at yg. Moreover D> is a rational curve.

Suppose that [ is a line in P? that intersects B at a point x¢ with multiplicity 3.
Let D3 = m—!(I) be the inverse image of [ in Y. Show that D3 is an irreducible
rational curve with a cusp, with (D3)? =2, (Ky - D3)y = —2.

Suppose that [ is a line in P? that is tangent to B at two distinct points z; and xs.
Assume moreover that every element of k has a square root. Show that the inverse
image of [ in Y is a union of two smooth curves C; and Cs meeting transversally
at the two points y1, yo above x; and xs, respectively, and the map 7 induces an
isomorphism C; — [ for i = 1,2. We have degg,(£) = ((C1 + Ca) - Ci)y = 1,
degci (ICy) = —1, (Cﬂ%; = —1, (Cl . Cg)y = 2.

Hint: Here is a sample calculation. After a linear change of variables, we may
assume that the equation of the tangent line is y = 0, and the affine equation of
the plane curve B is of the form f(x,y) = yg(x,y) + a(z — b1)?(x — by)?, with
g(z,y) € klx,y], a,b1,by € k, a # 0, by # by, where (x,y) = (b;,0) corresponds to
the point z;. Then over the affine open in question, the inverse image of [ in Y is
Spec (klu, z]/(v® — a(z — b1)?(z — b2)?)).

Suppose that [ is a line in P? that intersects B at a point zq with multiplicity 4.
Show that the inverse image of [ in Y is a union of two smooth rational curves
C1 and Cy on Y meeting at the point yg above xg with multiplicity 2. We have
degc, (£) = ((C1 + Ca) - Cy)y = 1, deg, (Ky) = —1, (Co)y = 1, (C1 - Ca)y =2,

same as in (v).
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Work over a field k of characteristic # 2. Let B C P? be a smooth curve defined by a

homogeneous polynomial f(z,y, 2) of degree 6. Let 7: Y — P2 be the double cover of

P2 attached to the triple (P2, Op2(2), f), a smooth projective surface. Denote by B the

ramification locus of 7 in Y. We know by construction that 7 induces an isomorphism

By — B. Moreover the anticanonical sheaf Ky is trivial. Let £ := 7*Op2(1), an

ample invertible Oy-module of degree 2.

(i) Show that H°(Y,Oy) = (0). (Note: The polarized surface (Y, L) is a K3 surface

of degree 2.)

(ii) Let [ be a line in P2, and let C' := Y xp2 [ be the scheme theoretic inverse image
of [ in Y. Show that if [ intersects B transversally at 6 distinct points, then C' is
a smooth curve of genus 2, and the ramification locus in [ of the projection C' — I
isiNB.

(iii) Notation as in (ii). Discuss all possibilities of the configuration of C, including the
following.

(a) If [ is tangent to B at zp and intersects B at four distinct points x1, xa,
x3, 14 different from zg, then C is irreducible, (C')? = 2, C has an ordinary
double point at the point yo above xg, and the normalization C of Cis a
smooth curve of genus 1. (Write down the j-invariant of C in terms of the
cross ratio of the four points x1, z2, x3, T4 on [.)

(b) If [ is tangent to B at two distinct points z; and x9, and | meets B at two
distinct points x3, x4 other than x; and x9, then C' has two ordinary double
points at the two points y1, yo above x1, x2, and the normalization of C is
a smooth curve of genus 0.

(c) If I is tangent to B at three distinct points z1, x2, z3, then C is the disjoint
union of two smooth rational curves F1, Fo meeting transversally at the three
points y1, y2, y3 above z1, x2, r3, with (E1)? = (E3)? = -2, (B1 - Es) = 3.

(A degenerate case of (c) is: [ meets B at xo with multiplicity four. and at x;
with multiplicity two; then E; meets Fo with multiplicity 2 at y9. A degenerate
case of (a) is: | meets B at zp with multiplicity three and also at three other
distinct points x1, xa, x3; then C' has a cusp at the point yy above xg, and the
normalization of C' is a smooth curve of genus 1.)

(iv) Show that there are only a finite number of complete smooth curves of genus 0 on
the surface Y.

A double siz in P3 is a pair of sextuples of disjoint lines (I1,...,ls), (m1,...,mg) such

that [; Nm; = 0 for all ¢ and [; meets m; at a point if ¢ # j. Find a double six on the

Fermat cubic. (Find the number of all double six’s if you feel adventurous.)

Find all lines on the Fermat cubic surface in P3.

Let X = G(2,4) be the Grassmanina of lines in P3. Let S — X be the tautological

rank two subbundle of the trivial rank four vector bundle on X, and let SV be the dual

of S. Let £ := Symm3(SV) be the third symmetric product of SV, a rank four vector

bundle on X. We want to compute the Chern number ¢4(€), i.e., the pairing of ¢4(&)

with the fundamental class of X. This number is the “expected number of lines” on a

generic cubic surface in P3, because any cubic form f(zg, 21, T2, z3) defines a section s ¥

of £, and the zero locus of this section corresponds to lines in the cubic surface defined

by f(l’o, T1,X2, .%'3).

First we express ¢4(€) in terms of ¢1(SY) and c3(SY). This is an exercise in symmetric

functions in two variables, i.e., we will get a formula for ¢4(Symm?® F) for every rank
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two vector bundle F. Apply the splitting principle: assume that F = £ & L5. Then

c(Symm® F) = (14 3c1(£1)) - (14 2¢1(L1) + 2(L2)) x

X(1+c1(L1) 4+ 2c2(L2)) - (1 + 3e1(L2))
and we get
ca(Symm?® F) = 9¢1(L£1)ea(L2) - (2¢1(L£1) + ca(L2)) - (e1(L1) 4 2¢2(L2)
= 9¢o(F)? + 18¢1 (F)%ca(F)
from the identity
Ot1to(2ty + to)(t1 4 2t2) = I(t1te)? + 18t1ta(ty + t2)2.
Applying the general identity to F = SV, we get
cs(E) = 9¢2(SY)2 + 18¢1(SV) %2 (SY).

To evaluate the Chern number c4(€), first recall that
01(5\/) = 01,0, 02(3v) = 01,1,

where 01 and 01,1 are Schbert cycles on X; see Griffiths-Harris [44]. The rest is an
exercise in the Schubert calculus for G(2,4). There are four Schubert cycles whose di-
mensions are between 1 and 3: 01, 02,0, 01,1, 02,1, of dimensions 3, 2, 2, 1, respectively.
Their products are given by

01,0010 =020+ 011, 010 020 =021, 010 01,1 =021,
020-020=1, o010-021=1, o11-011=1, o209-011=0.
So we get
VA2
CQ(S ) =01,1°01,1 = 1,
V2 V
c1(8V)*ca(SY) =010 010011 =1

and
c1(E) = 9¢2(8Y)? +18¢1(SV)%ca(SY) = 9 + 18 = 27.



CHAPTER VI
Group schemes and applications

1. Group schemes

DEFINITION 1.1. Let f: G — S be an S-scheme. Then G is a group scheme over S if we are
given three S-morphisms:

p: Gxg G— G (“multiplication”)
1 G—G (“inverse”)
e:S—G (“identity”)
such that the following diagrams commute:

a) (“associativity”)

1G»GX,SVG
GXS(GXSG)

K

| G

(GxsG)xs G xig /
G Xg G

b) (“left and right identity laws”)

1g xe
GxgS——GxsG
~|l
G

e \M*G
- o

SxsG—Gxs G
exlg

c) (“left and right inverse laws”)

1Gv><L
GxsG———GxsG

T T
A\ ix1g /

GxgG@ ————GExgG g

G

To relate this to the usual idea of a group, let p: T"— S be any scheme over S and consider
Homg(T, G), the set of T-valued points of G over S! Then:

a’) via u, get a law of composition in Homg(T, G):
Vf,g9 € Homg(T, G), define f - g to be the composition:

Y9 axsa G
(this is associative by virtue of (a)),

b’) via €, get a distinguished element € o p € Homg (T, G) which is a two-sided identity for
this law of composition by virtue of (b),

205
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') via ¢, get a map f + f~1 of Homg(T,G), f~ = vo f, which is a two-sided inverse for
this law of composition by virtue of (c).

Summarizing, (u, €, ) make Homg(T', G) into an ordinary group for every T" over S: For instance,
if S = Speck, then the set of k-rational points of G is a group, and if k is algebraically closed
and G is of finite type over k, this means that the set of closed points of G is a group. If you
think about it, this is really what one should expect: for instance suppose you want to consider
A} as a group via vector addition. If A} = Speck[X1, ..., X,], then for any two k-valued points
P’, P” their sum is defined by:

XZ(P/ + P”) = XZ(P/) -+ XZ‘(P”);
thus if u(P’, P") = P’ + P”, then the pull-back of the function X; is computed via:
1 (X;) = X (u(P', P"))
= Xi(P') + Xi(P")
= (Xjop1)(P', P") + (X; 0 p2)(P', P)
= (P1X; + p5.X;) (P, P").

Thus the law of composition:

AZ X Spec k AZ - Az
Il I
Speck[pi X1, ..., 01 Xn, 05X, ..., p5X5] Speck[ X1, ..., X,]

is defined by p*X; = piX; +p5X;. Similarly, define ¢ and € via t*X; = —X; and €*X; = 0. Now if
n € A} is the generic point, then to try to add 7 to itself, one would choose a point ¢ € A} x A}
such that p1(¢) = p2(¢) = n and define n + 1 to be ©(¢). But, taking n = 1 for instance, then
one could take

generic point of A}f X A]{;
(=4 or
generic point of line pi X = —p5X + a, (a € k).

In the first case, one sees that p(¢) = generic point of A}, and in the second case, u(¢) =
(the point X = a)! The moral is that 7 + 7 is not well-defined.
Another standard group scheme is: define

1
GL,,=S kX1, ... Xpn] | ———
kP < = ] [det(Xv:j)D

pr(Xig) = > pi Xk - ps X

k=1
€' (Xij) = 0ij
b
det(Xi/j/) ’

*(Xy5) = (=1)" . ((4,4)-th minor of (X;))
More elegantly, all the group schemes GL,, ;, (resp. A}}) over various base schemes Speck are
“induced” from one single group scheme GL,, 7 (resp. A7) over SpecZ. One checks readily that
if f: G — S is a group scheme over S, and p: T — S is any morphism, then ps: G xgT — T
is a group scheme over T in a canonical way. And one can define “universal” general linear and
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affine group scheme by:

1
GL,7 =S Z1X11,...,X _—
o = opee ( — ] [det(Xz'j)D
7 = SpecZ[ X1, ..., X,
w*, €, 0" given by the same formulae as before.
(Added in publication)
In terms of the way we defined S-schemes as representable functors (Sch/S)° — (Sets) in
1.8, we can formulate group schemes over S as follows:
Denote by (Groups) the category consisting of groups and homomorphisms of groups. Then
group schemes GG over S are exactly those S-schemes such that the functors hg they represent

are group functors, that is, factor through the functor (Groups) — (Sets) (that sends a group
to its underlying set and a homomorphism to the underlying map)

ha: (Sch/S)° — (Groups) — (Sets).
Here are some examples:

ExXAMPLE 1.2. (cf. Example 1.8.4) G, 5 = Specg(Og[T]) is a commutative group scheme
over S with the additive group

HomS(Z, Ga,S) = F(Z, Oz) for Z € (SCh/S)

and with an obvious homomorphism f*: I'(Z, 0z) — I'(Z’, O4) for every S-morphism f: Z' —
Z.

More generally, we have:

ExXAMPLE 1.3. (cf. Example 1.8.5) Let F be a quasi-coherent Og-module on S. Then the
relatively affine S-scheme
Specg(Symm(F)),

where Symm(F) is the symmetric algebra of F over Og, represents the additive group functor
G defined as follows:

G(Z) =Homp,(Oz ®p4 F,Oz) for Z € (Sch/S)
with the obvious homomorphism
G(f) = f* : Homo,(Fz,0z) = Homo,, (Oz ®og F,Oz) = Homo,, (f*(Oz ®og F), f*Oz)
for f € Homg(Z', Z).
Similarly to Example 1.2, we have:

EXAMPLE 1.4. (cf. Example 1.8.6) G,, s = Specg(Og[T,T7']) is a commutative group
scheme over S with the multiplicative group

Homg(Z, Gy 5) =T1(Z,02)* for Z € (Sch/S),
where the asterisk denotes the set of invertible elements, with the obvious homomorphism
17 T(Z,02)" »T(2,02)"
for each f € Homg(Z', Z).

More generally:
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EXAMPLE 1.5. (cf. Example 1.8.7) Let n be a positive integer.
1
GLy,s = Specg <OS {Tn, ooy I, M]) ;
where T" = (Tj;) is the n x n-matrix with indeterminates 7Tj; as entries, is a relatively affine
S-group scheme representing the multiplicative group functor

HomS(Z, GLn,S) = GLn(F(Z, Oz)), for Z € (SCh/S),

the set of invertible n x n-matrices with entries in I'(Z,Oz), with obvious homomorphisms
corresponding to S-morphisms. Clearly, G, s = GL1 g.

Even more generally, we have (cf. EGA [1, Chapter I, revised, Proposition (9.6.4)]):

EXAMPLE 1.6. (cf. Example 1.8.8) Let £ be a locally free Og-module of finite rank (cf.
Definition 5.3). The multiplicative group functor G' defined by

G(Z) = Autp, (07 ®o, €) for Z € (Sch/S)

with obvious homomorphisms corresponding to S-morphisms is represented by a relatively affine
group S-scheme GL(E). Example 1.5 is a special case with

GL,,s = GL(O%"™).

ExaMpPLE 1.7. For a positive integer n and a scheme S, the “multiplicative group of n-th
roots of unity” p, g is the multiplicative group scheme over S defined by

pns(Z2) ={C€T(Z,02)" [ (" =1}, VZ € (Sch/S)

with obvious homomorphisms corresponding to S-morphisms Z’ — Z. It is represented by the
S-scheme

fin,s = Specg(Oslt]/(t" — 1)).

ExaMPLE 1.8. Let S be a scheme of prime characteristic p (that is, p = 0 in Og, e.g.,
S = Spec(k) for a field k of characteristic p > 0). «, g is an additive group scheme over S
defined by

ap5(Z)={£€l(Z,0z) | & =0}, VZ € (Sch/S)
with obvious homomorphisms corresponding to S-morphisms Z’ — Z. It is represented by the
S-scheme
ap,s = Specg(Os[t]/(t7)).

For v > 2, we can define oy g similarly.

ExaMpPLE 1.9. The relative Picard functor in Example 1.8.12 is the commutative group
functor
Picx/g: (Sch/S)® — (Groups)
defined by
Picy,s(Z) = Coker[p™: Pic(Z) — Pic(X xg Z)] for each S-scheme ¢: Z — S

and the homomorphism f*: Picx,4(Z) — Picx/g(Z’) induced by the inverse image by each
S-morphism f: Z' — Z. The “sheafified” version of the relative Picard functor Picx/s when
representable thus gives rise to a commutative group scheme over S called the relative Picard
scheme of X/S. The reader is again referred to FGA [2, exposés 232, 236] as well as Kleiman’s
account on the interesting history (before and after FGA [2]) in FAG [3, Chapter 9]. See also
Bosch, Liitkebohmert and Raynaud [26] and Mumford [84]. It is not hard to see that

Lie(Picy,;) = H' (X, Ox)
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in the sense to be defined in Proposition-Definition 1.12 below.
Murre [88] gave a general criterion for the representability of commutative group functors
over S = Spec(k) with a field k.

EXAMPLE 1.10. (FGA [2, exposés 195, 221]) Let X be a scheme over S. The automorphism
functor of X/S is the multiplicative group functor G: (Sch/S)° — (Groups) defined by

G(Z) = Autyz(X xg Z), for Z e (Sch/S)

and an obvious homomorphism G(Z) — G(Z') induced by the base extension by each S-
morphism f: Z' — Z.

If it is representable, then the S-scheme representing it is denoted Autg(X) and called the
automorphism group scheme of X/S. It is not hard to see that over a field k,

Lie(Aut; (X)) = H°(X,Ox) = the tangent space of Auty(X) at idy

in the sense to be defined in Proposition-Definition 1.12.
For instance, if X = P%, then Autg(P%) = PGLy41,s (cf. Mumford [83, Chapter 0, §5,
p.20]), where

P% = Projg(Og[Xo, ..., Xn]) =P% x S, PGLys1.g = PGLyyyz xS

PGL,+1 = PGL;, 117 open subset of Proj(Z[Aqo, ..., Ann]) with det(A4;;) # 0.

Matsumura-Oort [79] gave a general criterion for the representability of group functors over
S = Spec(k) with a field k, generalizing the commutative case dealt with by Murre [88].

THEOREM 1.11 (Cartier [28]). Any group scheme G of finite type over a field k of charac-
teristic 0 is smooth, hence, in particular, reduced.

PROOF. We reproduce the proof in [85, Chapter III, §11, Theorem, p.101]. Denote by e € G
the image of the identity morphism e: Spec(k) — G. Obviously e is a k-rational point, that is,
k(e) = k. For simplicity, we denote

0= Oe,Gy m=meq.

By what we saw in §V.4, it suffices to show that O is a regular local ring, since the argument works
for the base extension G' Xgpeck Spec k to the algebraic closure k, and the translation by Spec(k)-
valued points of G' are isomorphisms sending e to the other closed points of G Xgpec Spec k.
Choose 21, ...,T, € m so that their images form a k-basis of m/m2. Thus we obtain a con-
tinuous surjective k-algebra homomorphism from the formal power series ring to the completion

of O:
k[t ..t — O,  alt) = .
As we show immediately after this proof (cf. Proposition-Definition 1.12), the map
Der(O) — Homy,(m/m? k) = T, ¢

sending a local vector field D € Deri(O) at e to the tangent vector of G at e sending f € m to
(Df)(e) is surjective. Hence we can choose D1, ..., D, € Dery(O) such that

Di(xj) = dij-
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The D;’s obviously induce derivations of the completion O so that we get the Taylor expansion
map (k is of characteristic 0!)

B: 0 — k[[t1, ..., tn]]

Fs Z (DTI'”Dan)(e)tTl---t;’L”,

W vl
v; >0
which is a continuous k-algebra homomorphism. f is surjective since 3(x;) = t; mod (t1,...,t,)>.
Consequently, 8 o « is a surjective k-algebra homomorphism of k[[t1, ..., t,]] onto itself, hence

is an automorphism. Thus « is injective as well so that
a: k[[t1,...,t)]] — O,
and O is regular, hence so is O. (]

In general, let G be a scheme over a field k, and e a k-rational point of G. Denote by
Dery(Og) the space of global k-derivations of Og into itself, that is, the space of wvector fields
on G.

Introduce the k-algebra of “dual numbers”
A = E[0]/(6?) = k @ ko.

Then the vector fields D € Dery(Og) are in one-to-one correspondence with the A-algebra
automorphisms

]_N):OG®1€A;>OG®1€A

inducing the identity automorphism modulo § by
D(a+b6) = a+ ((Da) +b)s,  a,be Og.

Likewise, the tangent vectors t € Dery(O, g, k) of G at e are in one-to-one correspondence with
the A-algebra homomorphisms
t: Oe,g QA — A

inducing the canonical surjection O, ¢ — k mod m, ¢ by

t(a+bd) = ale) + (t(a) + b(e))d, a,b e O q.

PROPOSITION-DEFINITION 1.12. Let G be a group scheme over a field k. A wvector field
D € Derg(O¢) is said to be left invariant if

O —2—— 0q

| |+

1®rD
Ocx,c —— Ogx,a

is a commutative diagram. The k-vector space Lie(G) of left invariant vector fields on G is called
the Lie algebra of G. We have a natural isomorphism of k-vector spaces

Lie(G) AN Teg,

where e € G is the image of the identity morphism e: Spec(k) — G.
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PRrOOF. Let
D: Og®p A = O @i A

be the the A-algebra automorphism corresponding to a vector field D € Derg(Og). Then the
left invariance of D is equivalent to the commutativity of the following diagram

G % G x5 Spec A — P @ %) G x 1 Spec A

(*) quA‘/ ‘/MXIA

G X SpecA ————— G X, SpecA,
D

where we use the same symbol D for the (Spec A)-automorphism G xj Spec A —— G x}, Spec A
induced by D: Og @1 A — Og @y, A, ete.
If we denote

D' = proD: G xzSpec A 25 G x Spec A 2L G,
then the commutativity of the diagram (x) is equivalent to
D'z -y,l)=xz-D'(y,l), Va,y € G(Z), Vile (SpecA)(Z) (Z-valued points)
for any k-scheme Z, or equivalently,
D'(z,1) =z - D'(¢,1), Ve € G(Z), Ve (SpecA)(Z)

for any k-scheme Z. If we denote

t=p oDo (e,15): Spec A — G X}, Spec A 2Ny X Spec A 25 G,
then D is the right multiplication by ¢ € G(SpecA). Thus the A-valued points t of G are in

one-to-one correspondence with the automorphisms D of G x; Spec A over Spec A such that the
diagram (x) commutes by the correspondence

ploﬁo(e,lA):z

Thus the left invariant vector fields D € Dery(O¢) are in one-to-one correspondence with the
tangent vectors
t e Derk(Oeyg, k‘) = Te,G-
i

REMARK. When S = Spec(k) with a field k of characteristic p > 0, the additive group
scheme

apr,s = Spec(k[t] /("))
is not reduced with only one point! If n is divisible by p, the “multiplicative group of roots of
unity” p, g is not reduced either. Indeed, if n = p” x n’ with n’ not divisible by p, then

in,s = Spec(k[t]/(t" — 1)) = Spec(k[t]/(t" — 1)"").
DEFINITION 1.13. An S-morphism f: H — G is a homomorphism of group schemes over S
if the map
f(Z): HZ) — G(Z), VZ € (Sch/S)
is a group homomorphism. The kernel Ker(f) is then defined as the group functor

Ker(f)(Z) =Ker(f(Z): H(Z) — G(2)), VZ € (Sch/S)

with obvious homomorphisms corresponding to S-morphisms 2’/ — Z.
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Obviously, Ker(f) is a group scheme over S represented by the fibre product
Ker(f) — S

Ll

HTG,

where €g is the identity morphism for G.

ExamMpLE 1.14. If G is a commutative group scheme over S with the group law written
additively, the morphism nidg for any positive integer n defined by

G(Z)5 € nidg(§) =nE=E+---+E€G(Z),  VZ € (Sch/S)
n times

is obviously a homomorphism of group schemes over S. Very often we denote ,G = Ker(nidg).
For example

Hn,S = nGm,S .
There is an important homomorphism peculiar to characteristic p > 0.

DEFINITION 1.15. Let S be a scheme of prime characteristic p (that is, p = 0 in Og, e.g.,
S = Spec(k) with a field k of characteristic p > 0). As in Definition IV.3.1 denote by

¢ps: S — S

the morphism that is set-theoretically the identity map while ¢%(a) = a® for all open U C S
and for all a € I'(U, Og). For any S-group scheme 7: G — S, we have a commutative diagram

ote:

Q

m K

nN+——Q

—
—

O p—

9

¢s

hence a morphism, called the Frobenius morphism,
F:G— GP =GW/9 .= (8, ¢g) x5 G,

where (S, ¢g) denotes the S-scheme ¢g: S — S. By the commutativity of the diagrams involving
@’s, F' is easily seen to be a homomorphism of group schemes over S, and is called the Frobenius
homomorphism.

We define the iterated Frobenius homomorphism

V-G — aq®) = q®/s)
similarly.

ExXAMPLE 1.16. We have

ap s = Ker(F: G, 5 — G((I%)

For the following result, we restrict ourselves to the affine case S = Spec(k) with a commu-
tative ring k with 1 for simplicity.

THEOREM 1.17 (Cartier duality). Let G = Spec(A) be a commutative finite locally free group
scheme over a commutative ring k with 1. Then the group functor

~

G: (k-algebras) — (Groups)
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defined for every k-algebra R by
é(R) = HomR—groupscheme(GRa Gm,R)a
with GR := G Xgpec(k) SPeC(R), Gy, r := Gy X Spec(R)
and an obvious homomorphism @(Rl) — @(Rg) for every k-algebra homomorphism Ry — Ra,
is represented by a commutative finite locally free k-group scheme Spec(A’) with
A= Homk-module(Aa k)

endowed with an appropriate commutative co-commutative Hopf algebra structure over k. There
s a canonical isomorphism

Qn

G =

G is called the Cartier dual of G.

PROOF. Since G = Spec(A) is a commutative finite locally free group scheme over k, the
k-algebra A is a projective k-module of finite rank endowed with the following k-linear maps

(unity) itk— A
(multiplication) m: A A— A
(inverse) T:A— A
(co-unity) e: A=k

(co-multiplication) pu: A — A®; A

satisfying the axioms for a commutative co-commutative Hopf algebra over k.
Let A" := Homy_module(4, k). Dualizing the structure maps for A, we get k-linear maps

(unity) i' k— A
(multiplication) m: A, Al — A
(inverse) ' Al — A
(co-unity) €: A=k

(co-multiplication) p': A" — A’ @ A’
making A’ a commutative co-commutative Hopf algebra over k. Here ¢’ is the transpose of €, m/
is the transpose of u, 7/ is the transpose of 7, €' is the transpose of 7 and p’ is the transpose of
m.

Let G = Spec(A’) be the commutative finite locally free group scheme attached to A’.

For every commutative k-algebra R, we use a subscript R to denote the base-changed objects
like Ap := A®y R, A, = A ®; R = Homp_module(Ar, R) and for morphisms like p/: Ay —
Ay @r Ay, € Ay — R.

The set of R-valued points

G(R) = Homk-alg(A; R) — Homk’-module(Aa R) = HomR-module(ARa R) = AIR
of GG is identified with the set of all $ € A, satisfying the following properties (i) and (ii):

() Ha($) = @ b € Ay @R A
(ii) €x(¢) =1€ R.
(ii') ¢ € (AR)".
Note that (i) says that the R-linear map ¢: Ap — R corresponding to $ € Ay respects mul-
tiplication, while (ii) says that ¢ oir = idg. So (i) and (ii) say that ¢ is a homomorphism of
k-algebras.
On the other hand, the set

I—IOInR—groupscheme(é X Spec(k) SpeC(R)7 Gm x SpeC(R))
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of all R-homomorphisms of R-group schemes from G X Spec(k) Spec(R) to Gy, x Spec(R) is nat-
urally identified with the set of all elements ¢ € A, satisfying the conditions (i) and (ii’).

LEMMA 1.18. Suppose that ¢ € Al, satisfies (i). Then (ii) and (ii') are equivalent. In other
words, one has a natural bijection

G(R) < Homy, groupscheme(G: Gum o) (R).
PROOF OF LEMMA. (ii')==(ii). Applying the identity
(€r ® €R) o g = €g
(corresponding to 1 -1 =1 in AR) to &5\ , we get
€p(0)* = er(d)

Hence e’R(qg) = 1 because e}_—i(qAS) is a unit in A, by (it’). ~

(il)==(il"). Applying the identity (for the inverse in G := Spec(A4%))

mp o (ly @TR) ot = iR o€y

to ¢, we get & - Té(&) =1in A%. So ¢ is a unit in Al O

Applying the above lemma to @, we see that the commutative k-group functor

Homy,_groupscheme (G5 G i)

is representable, and naturally identified with G = Spec(A’) (as schemes at this point). One can
reformulate this as a morphism

cang: G Xgpee(k) G — Gk

obtained from the above lemma applied to the tautological element ngﬁ = id4 € G(A) when
R = A. This morphism corresponds to the k-algebra homomorphism
kKT, T7Y — Ay A,

which sends T' to the “diagonal element” 6 € A ®; A’ that corresponds to id4. Since § also
corresponds to id 4/, the canonical morphism cang is naturally identified with cang. Moreover,
the lemma tells us that

(1) Pra(d) =6@adc A A @p A, 4(0)=i(1)€e A and 0§ -74(5) =1.
The same argument (because § also corresponds to the tautological element in G(A’)) gives
(1‘) HA’((S) =0Qu 0 €EARL ARy A,, €A/(5) :Z',(l) S A/, and 5-TA/(5) =1.

Note that § ® 4 0 is the product of p12(d) and p13(d) in A®y A’ @k A’, and § ® 4/ § is the product
of p13(d) and po3(d) in A ®y A®y A’. The formulas (1) and (f) give the multiplicative inverse of
d in A®y, A, namely, 7/4(0) = 74/(6). More importantly they also show that the canonical map

can: G X Spec(k) é — Gm,k
is bi-multiplicative. O
EXAMPLE 1.19. Let H be an abstract commutative finite group. Write &k for the set of all
k-valued functions on H, and let k[H] be the group algebra of H over k. The delta functions

Sn at h € H form a k-basis of k¥, and we have &, - , = d(x,y)d, for all z,y € H, where §(z,y)
denotes Kronecker’s symbol. The co-multiplication, co-unit and inverse in k¥ are given by

W by Y 6®by, 66,00, Tl 0,
z,yeH, x-y=h
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The group algebra k[H| is best thought of as the convolution algebra of all k-valued measures
on H, where the basis element [h] corresponding to an element h € H is “evaluation at h”. The
co-multiplication, co-unit and inverse are given by

W [z] = [z] @ [2], €:[z] — 1, 7'z~ [—2].
Some samples of the equalities in (1) and (I) are:

Hek[H] (Z%@M) = Z5y®52®[y+z]

rxeH y,2€H

= | gelal -<1®Zéz®1®[4>

yeH z€H

in K @y, k# @y, k[H],

€pr (Z 6z ® [x]) =) 6 =i (1)

zeH xeH
in k¥, and
(Z‘SI@[‘”])' Y| = ) My @z —yl
xeH yeH z,yeH
= (Z 5:;;) ® [0] = ipr g (1)
in k' @y, k[H).

When H = Z/nZ we have Spec(k[Z/nZ]) = Spec(k[T]/(T™ — 1)) = pn, x Spec(k).

EXAMPLE 1.20. Let p be a prime number, k D F, a field, and G = o, = «, X Spec(k) =
Spec(k[X]/(XP)). Let x € A = k[X]/(XP) be the image of X in A. The co-multiplication and
co-unity are determined by

pr—rl+leos and e:x— 0.
Let Y0, Y1, - - -, Yp—1 € A’ = Homy_module (4, k) be the basis dual to {1,z,22,...,2P~}. Then we

have

:U’/:yi'_) Z ya@yi—av yizl‘yla Vizoulu"'vp_]-a yp:(]
0<a<i

Then x — y; establishes an isomorphism A = A’ of Hopf-algebras. The diagonal element

p—1
5:in®y,~ € Ay A
=0
is equal to
2’ ® yp @y

exp(r®@y1) =1+z@y + = Ep(zy),

o T TR o)
where E,(T') is the truncated exponential
T? TPt
E,T)=14+T+ —+ -+ —— € k[T].
»(T) T+ 5+ +(p—1)!€[]

In other words, the formula (z,y) — E(zy) gives an auto-duality pairing

ag X op — Gy



216 VI. GROUP SCHEMES AND APPLICATIONS
which identifies o, with its own Cartier dual.

EXAMPLE 1.21. Let k D F,, be a field of characteristic p. Let
apn = Ker (F”: Gy — Gg{’p) = Spec(k[X]/(X?")).

We have short exact sequences

jn,n+m ,8n+m,m
0 — apn ——— Qpnim ——— apm — 0

for positive integers m, n, where j, n4m is the natural inclusion and 4, m is induced by the
Frobenius homomorphism F™.

Write A := k[X]/(XP") and let z be the image of X in A. Let yo, 1, ..., Ypm—1 be the k-basis
in A’ := Homy_module( A, k) dual to the k-basis 1,x,22,..., 27"~ of A. The co-multiplication on
A is given by

prr—rel+1 .
The co-multiplication, unity and co-unity on A’ are given by
TR Zya@)yi,a, i=0,1,....,p" — 1; i’ 1+ yo, €:yi—=0, Vi>D0.
0<a<s

It is straightforward to deduce from p(z) =2 ® 1 + 1 ® x that
yi=2u2,97 =3lys,. . yf = (- D! g1, =0,
Similarly we have
Yo =jl yjpe and yha =0, Ya=0,1,...,n—1, Vj=0,1,...,p— L.

More generally, for every positive integer ¢« with 0 <4 < p™ — 1, written in p-adic expansion in
the form i = Zogagn—ljapaa

Ja
ypa

Yi = Yjo+jip+-tin_1pn~! = H ]
Ja:

0<a<n—1
So A’ is isomorphic to
k(Zo, Z1, ..., Zna))(Z8,20, 28, ..., ZF )
as k-algebras, such that y,« corresponds to the image of Z, for a = 0,1,...,n—1. The diagonal

element
p"—1
b= a'@yc Ay A 2KX, 2o, 20,..., L)/ (XP", 28, 28, ... 2P _))
=0
can be written in terms of the truncated exponential E,(T) = 1+ T +T?2/2!+---+T?71/(p—1)!
as the image of the polynomial

n—1
0(X,2) =06(X, 20,21, ..., Zn-1) = || BEo(X" - Za)
a=0
in k[X,Zo, Z1, ..., Zn))(XP", 28,27, ..., ZE_}). The group law of the Cartier dual a.—1 of
ayn is completely determined by the polynomial §(X, Z) as follows: Using Zy, Z1,...,Z,—1 as
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the coordinates on @,.—1, the sum of two points in a,» with coordinates z = (2o, 21, . . ., Zn—1)
and w = (wp, w1, ..., w,—1) is the point with coordinates ®(z,w), where
o(Z, W)
= (o(Z, W),...,Pn-1(Z,W))

€ (k[Z07Zh-~-;anlaWOaWh"'7Wn71]/(zg7 W()’"WWT};—I))

pl’

is determined by the equation

nol n—1 n—1
1 B (X7 ®u(2,W)) = [[ By (X" - Za) - [] By (X7 - W)
a=0 a—1 ol
in kX, 20, 21,y Znet, Wo, Wiy oo, W]/ (X7, 25, 2y 1, Wy .., W] _). Notice that

Ey(XZ+XW) = E,XZ)-E,(XW) (mod (X?, 2P, WP)),
but
Ep(X(Zo+Wo) + XP(Z1+ W) 2 Ep(XZo+ XPZy) - Ep(XWy + XPW7)
(mod (X¥°, 28, ZP, WP, WP)).

So the usual “exponential rule” does not hold for the truncated exponential when applied to
rings like k[ X, Zy, Z1, WO,WI]/(XPQ, z8,Z0 WE Wh).

The Cartier dual of the homomorphism B,4m m: Qyn+m — opm induced by F™: x +— zP",

P
the n-th power of the Frobenius, corresponds to the homomorphism
ﬁ;ﬁm’m: kYo, .. Yopm—al/(Y Y1) — Yo, Y]/ (Y, Y )

of Hopf algebras such that
@'H_m’m: Yo,..., Y1~ 0; ﬂ;H_m,m: Ynia—Y, a=0,..m-—1.
Similarly, the natural immersion jp j4m: apn < Qyn+m corresponds to the homomorphism
j;erm: kYo, ..., Y l/(YE, ...,V ) — kYo, .. Yagm—1)/ (VY Y )

of Hopf algebras which sends each Y, to Y, for all a = 0,1,...,n — 1. Using the maps j,’m’mz,
one easily sees that for each positive integer a with 0 < a < n, the a-th component ®,(Z, W) of
the group law comes from a unique polynomial in Fy,[Zo, ..., Z,, Wy, ..., W,] independent of n
whose degree in each variable is < p — 1. For instance

Zo Wi
)

These formulas could most easily be understood in terms of Witt vectors. (See, for instance,
Mumford [84, Lecture 26 by G. Bergman)].)

Qo(Z, W) =Zo+ Wy,  ®1(Z, W)= Z1+W1+Z

EXAMPLE 1.22. An S-group scheme 7: X — S is called an abelian scheme if 7 is smooth
and proper with connected geometric fibres. X turns out to be commutative (at lease when S
is noetherian). (cf. Mumford [83, Corollary 6.6, p.117])

When S = Spec(k) with a field k, an abelian scheme X over S is called an abelian variety
over k. Thus X is a geometrically connected group scheme proper and smooth over k. In this
case, the commutativity is shown in two different ways in Mumford [85, pp.41 and 44]. X is
also shown to be divisible, that is, nidx is surjective for any positive integer n.

When k = C, the set X(C) of C-valued points of an abelian variety X over C turns out to
be a complex torus.
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EXAMPLE 1.23. An algebraic group G is a smooth group scheme of finite type over a field k.
An algebraic group G over k is affine if and only if it can be realized as a linear group, that is,
as a closed subgroup of a general linear group GLj, j.

DEFINITION 1.24. Suppose ¢: H — G is a homomorphism of S-group schemes. A pair
(G/H,r) of an S-scheme G/H and an S-morphism 7: G — G/H is said to be the quotient of
G by H, if it is universal for all pairs (Y, f) of an S-scheme Y and an S-morphism f: G — Y
such that the following diagram commutes:

o(1
G xsH pgo(lgxsd) a
pll lf
Y,
G T )

that is, there exists a unique S-morphism f’': G/H — Y such that f = f'ox. If H is a normal
S-subgroup scheme of G with ¢ the canonical monomorphism so that H(Z) is a normal subgroup
of G(Z) for any Z € (Sch/S), then G/H inherits a unique structure of S-group scheme such
that 7: G — G/H is an S-homomorphism with Ker(w) = H. In this case G/H is called the
quotient group scheme.

We certainly need conditions for the existence of G/H.

e FGA [2, exposé 212, Corollaries 7.3 and 7.4] shows the existence in the case where S
is the spectrum of an artinian ring (in particular, a field): Suppose G is of finite type
and flat over S and that H is an S-subgroup scheme of G with H flat over S. Then
G/H exists with 7: G — G/H flat and surjective. Moreover, the quotient is shown to
commute with base changes S” — S.

e Demazure-Gabriel [35, Chapter III, §3] and SGA3 [6, exposés VI5 and VIg] deal with
the quotient in terms of the “sheafification” of the contravariant functor

(Sch/S) > Z — G(Z)/H(Z) € (Sets).

e (cf. Borel [24, Chapter II, Theorem 6.8]) If G is an algebraic group over a field k and H
is a closed algebraic subgroup over k, then G/H exists (Weil 1955 and Rosenlicht 1956)
and is a smooth quasi-projective (cf. Definition 11.5.8) algebraic variety over k (Chow
1957). See Raynaud [92] for the corresponding results in the case of more general base
schemes S.

More generally, an action G xg X — X of a group scheme G over S on an S-scheme X will
be defined in Definition 2.3 below.

ExampLE 1.25. PGLy41 = GLy+1 /Gy, where G,,, C GLy, 41 is the normal subgroup scheme
of “invertible scalar matrices”.

We just mention the following basic results:

THEOREM 1.26 (Chevally 1953). (See Rosenlicht [94, Theorem 16] and Chevalley [29].A
“modern” proof can be found in Conrad [33].) A connected algebraic group G over a perfect
field k has a closed connected affine normal subgroup L such that G/L is an abelian variety.
Such L is unique and contains all other closed connected affine subgroups of G.

THEOREM 1.27 (Chevalley). (cf. Demazure-Gabriel [35, Chapter 111, §3.5], SGA3 [6, VI,
Theorem 11.17, p.408] and Humphreys [49]) If G is an affine algebraic group and H is a closed
normal algebraic subgroup, then G/H is an affine algebraic group.
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Borel subgroups (cf. Borel [24]) of affine algebraic groups play crucial roles in the classifica-
tion of semi-simple affine algebraic groups. Basic references are Chevalley [31], SGA3 [6] and
Demazure-Gabriel [35].

2. Lang’s theorems over finite fields

We can combine the geometric frobenius morphism (Definition IV.3.2) with ideas of smooth-
ness to give a very pretty result due to Lang [76].

THEOREM 2.1 (Lang). Let k =F,, k = an algebraic closure of k.

a) Let G be a connected reduced group scheme of finite type over Speck and let G =
G Xspeck Speck. Then G will be reqular (smooth over E) and irreducible.
b) Let

fo= 5" G G

be the geometric frobenius morphism (cf. Definition 1IV.3.2). Define a k-morphism
: G — G on closed points by

z— Y(z) =z - fg(x)™!
and in general by the composition:

~ A~ — (gx(efe))
)G = G xg; G ——

G XSpeck G-5aG.
Then v is finite étale and surjective.
c) Moreover the group G(k) of k-rational points of G is finite and if we let each a € G(k)
act on G by right translation R, then
1) Va € G(k), ¥ o Ry = 1
2) Vz,y € G, ¥(z) =¢(y) <= Ja € G(k) such that z = R,(y).

PROOF. According to Theorem IV.2.4, G is reduced because [F, is perfect. Therefore the set
of regular (smooth over k) points U C G is dense (cf. Jacobian criterion in Corollary V.4.2). But
if z,y € G are any two closed points, right translation by ! -y is an automorphism of G taking
ztoy. Soif x € U, then y € U too. Therefore U contains every closed point, hence U = G. But
then the components of G are disjoint. Now the identity point e = Image(e) is a k-rational point
of G, hence it is Gal(k/k)-invariant. Therefore the component G, of G' containing e as well as
G\ G, are Gal-invariant open sets. By Theorem IV.2.3, this implies that G is disconnected too,
unless G = G,. This proves (a).

Next note that f;: G — G is a homomorphism of k-group schemes, i.e.,

commutes. This is because if you write G = G X Spec k Speck, then pu equals /' x 1z where
1 G Xgpeck G — G is multiplication for G; but by definition fg = ¢f, x 13 (if ¢ = p”) and for
any morphism ¢g: X — Y in characteristic p, ¢x o g = g o ¢x (cf. Definition IV.3.1). Then for
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all closed points x € G, a € G(k)
¥ o Ralz) = Yz - 0)
=z-a-fg(x-a)
=x-a-fgla)™ ! fo(z)™?
—z-a-a ' fg(x)!

= ¥(x)

-1

and for all closed points z,y € G:

U(x) =v(y) = folo) ™ =y foly) ™!
=y e=1aly) - fol@)

=y r=1fey 1)

=y !z is Gal(k/k)-invariant

=yl r=acGk)

<= x = Rqy(y) for some a € G(k).
But now for any scheme X of finite type over k, X (k) is finite. The last result shows that the
two closed subsets of G X Speck G, namely

U (Graph of R,) and the fibre product: G xgG
acG(k) SN

—
G G
w\é/¢

have the same closed points. Therefore these sets are equal.! This proves (c).
Now we come to the main point — (b). We prove first that v is étale using Criterion V.4.6:
Vo € G closed, dip,: T G Tw( e is an isomorphism. We use:

LEMMA 2.2. If X is a scheme over k =F, and X=X X Spec k Speck, then the k-morphism
fx = 5" X — X induces the zero map

f%: Qx5 — Qx5
PROOFioF LEMMA 2.2. We may as well assume X affine, say = Spec R. Then X =
Spec(R ®y, k) and fy is induced by the homomorphism
Rerk — Ry k
Zai ® b; —> Za? Q b;.
Therefore
i (4> @b)) = d(> ol @)

= da)) @b+ Y al @ db;
=0.

By Chapter V, this means that for all closed points of x € G,
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is zero. To compute dip,: T, 7 — Tw(x),@ use the identification of T} & with the set of k[6]-
valued points ¢t: Speck[d] — G of G with Image(t) = {x}, where k[d] is the k-algebra of dual
numbers (cf. §1 and §V.1). In terms of this identification, if t € T, & then dy, (t) is nothing but
1 ot. Hence using the group law in the set of k[6]-valued points of G:

dipe(t) =t - £ (£) 7.
But if Oy is the 0 tangent vector at y, i.e.,
Spec k[6] — Speck —> G with image v,
then Lemma 2.2 showed that fx(t) = Og(,), hence
dipe(t) =t Oy ()1, Vt e Ty x.

The map ¢ — t - Og, () is then an inverse to di, so di, is an isomorphism.
Next, 1 is surjective. In fact for all closed points @ € G we can introduce a new morphism
Y@ given on closed points by:

zp(“)(:r) =z-a- fX(a:)*l.

The same argument given for 1 also shows that 1(®) is étale. Therefore 1(® is flat (cf. Corollary
V.4.9) and by Proposition IV.5.12 Image(t)(*)) is open. Therefore

Tmage(1) N Image(y(@)) # 0,
i.e., 3 closed points by, by € G such that
by -fx (b))t =by-a-fx (b))~

Then one calculates immediately that ¢(by ' - by) = a.

Finally 9 is finite: by Exercise (2) in Chapter II (possibly moved to another location?), 3 a
non-empty open U C G such that rest): ¢»~'U — U is finite. But if L, is left translation by a,
then for all closed points a € G, consider the commutative diagram:

_ La _
G————q
wl (0
> LaoBygy-1 >~
G ~ G

It follows that res is finite from L, (1 ~'U) to La(Rg(q)-1(U)) too. Since G is covered by the
open sets L, (v ~1U), 9 is everywhere finite. O

For example, applied to A,lg, the theorem gives the Artin-Schreier homomorphism:
¢ Af — Az
b(a) =z —a
Kery =F, C A%
On G,,(k) = GL1(k), v is the homomorphism

vla) = o
Kery = F; C Gy, (k) = GL1(k),
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while on GLz(k), ¢ is given by:

" a b _(a b ' a? b? !
c d \e d c? d?
1 ad? — bc?  —ab? + ba?
(ad —bc)e \ cd? —dc? —cb? + dal

Lang invented this theorem because of its remarkable application to homogeneous spaces for G
over k. We need another definition to explain this:

DEFINITION 2.3. Let f: G — S plus (p,¢€,¢) be a group scheme and let p: X — S be any
scheme over S. Then an action of G on X is an S-morphism:

0:Gxg X — X
such that the following diagrams commute:
a) (“associativity”)

(GXSG)XS‘XLLX>GX5X

g
: i
Gxs(GxgX)——Gxg X 7
lgxo
b) (“identity acts by identity”)
S XSX ﬂ) G ><5X

A

X—X

NH

COROLLARY 2.4. Let G be a connected reduced group scheme of finite type over k =y and
let X be a scheme of finite type over k on which G acts via . Let ¥ be a set of subschemes of
X=X X Spec k Speck such that:

a) VZ € %, a € G closed, o(a,Z) € %, and V21,75 € ¥, Ja € G closed such that
o(a)(Z1) = Z»'

b) if f?gith: X — X is the frobenius automorphism (cf. Definition IV.3.2), then ¥Z € %,
farith(7) e 3.

Then ¥ contains at least one subscheme Z of the form Z' Xgpeck Speck, Z' a subscheme of X.
PROOF. Start with any Z € ¥ and combine (a) and (b) to write
fF0(7) = 0(a)(Z), a € G closed.
By Lang’s theorem (Theorem 2.1),
a ' =b-fg(b)"t, be G closed.
Now on closed points, £5°™ = farith 5o we deduce
£ (2) = o (£27) (0 (571 (2)),
L5 (a) is short for the automorphism of X:

X = Speck Xgpor X P T xgpp X -2 X.
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hence since o is defined over k:
B (o(b7)(2)) = (B0 (1 (2)
= a(b‘l)(Z ).

Therefore o(b~1)(Z) € ¥ and is invariant under Gal(k/k). So by Theorem IV.2.9, o(b=1)(Z) =
Z" Xspeck Spec k for some subscheme Z’ of X. O

COROLLARY 2.5. Let G, X be as above over k = F,. Assume the group of closed points of
G acts transitively on the set of closed points of X. Then X (k) # 0.

ProOOF. Apply Corollary 2.4 with ¥ = the closed points of X. U

If X is a smooth quadric hypersurface in P?, or a smooth cubic curve in Pi with k =F,, it
can be shown that such a G always exists, hence X has a k-rational point! For some conics in
IP’%, the next corollary tells us more:

COROLLARY 2.6. Let Y be a scheme of finite type over k = F, such that
Y = }P’% over k.

Then
Y =Py over k.

Proor. Take the X in Corollary 2.4 to be Y Xgpecr P. Let X be the set of graphs of
k-isomorphisms from P2 to Y. Let G = GLy41 and let G act on X by acting trivially on YV
and acting in the usual fashion on P} (one should check that this action is a morphism). Recall
that every k-automorphism of P2 is induced by the action of some g € GL,,+1(k) = the closed
points of G (cf. Example 1.10): this shows that the closed points of G act transitively on X. It
follows that the graph I'; of some f: IP’% =Y is defined over k, hence f = f' x 15, where f is
a k-isomorphism of P} and Y. O

REMARK. See Proposition IV.3.5 and Corollary VIII.1.8 for P! over finite fields.

Exercise—Addition needed

(1) Let k be a field, and V' a finite dimensional vector space over k. Let p: GL,, — GL(V)
be a k-linear rational representation of GL, on V, i.e., the homomorphism p is a k-
morphism of group schemes over k. Suppose that v € V is a vector fixed by the
subgroup B of all upper-triangular elements in GL,,. Prove that v is fixed by GLj,.
Hint: The quotient variety GL,, /B is proper over k.






CHAPTER VII

The cohomology of coherent sheaves

1. Basic Cech cohomology
We begin with the general set-up.

(i) X any topological space

U = {Uq}acs an open covering of X
F a presheaf of abelian groups on X.

Define:
(ii)
C(U, F) = group of i-cochains with values in F
= ] FWsn:-—NU).

ap;...,a; €S
We will write an i-cochain s = {s(ao, ..., q;)}, i.e.,
s(ao, ..., ;) = the component of s in F(Uy, N -+ Uy,)-
(iii) 6: CY(U,F) — C*HHU, F) by
i+1
ds(ag,...,ait1) =Y (1) ress(ap, ..., 05, ..., qip1),
j=0
where res is the restriction map

f(Uaﬁ-"ﬁUavﬂ'“ﬁUaiH) —>]—"(Ua0ﬂ--'Uai+1)

and means “omit”. For i = 0, 1,2, this comes out as

s(o) — s(ag) if s € CY

ds(ap, a1, an) = s(ag, ae) — s(ap, a2) + s(ap, ) if s € ct

ds(ag, )

ds(ap, a1, an, a3) = s(a, ag, as) — s(ag, ag, ag) + s(ap, a1, a3) — s(ag, a1, ) if s € C?.
One checks very easily that the composition §2:
ciu, F) -2 o, Fy X 02U, F)

is 0. Hence we define:

225
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s(oBo,0P;) defined here

ref s(Bo, B1) defined here
Ficure VII.1

(iv)
Z\U,F) = Ker [5: C'(U,F) — CH U, F)]
= group of i-cocycles,
B'(U,F) =Image [0: C" (U, F) — C'(U,F)]
= group of i-coboundaries
H'U,F)=Z"U,F)/B"U,F)
= i-th Cech-cohomology group with respect to .
For ¢ = 0,1, this comes out:
HO(U, F) =group of maps o — s(a) € F(Uy,) such that
s(a1) = s(ap) in F(Ugy NUq,)
1(X, F) if F is a sheaf.
HY(U, F) =group of cochains s(ag, ;) such that
s(ap, a2) = s(ap, a1) + s(ag, ag)
modulo the cochains of the form
s(ap, a1) = t(ag) — t(ay).

Next suppose U = {Uq}o and V = {V3}ger are two open coverings and that V is a refinement
of, i.e., for all Vg € V, V3 C U, for some o € S. Fixing amap o: T'— S such that Vg C Uy g),
define

(v) the refinement homomorphism
vefy v H'U,F) — H'(V,F)
by the homomorphism on ¢-cochains:

refg{,V(S)(Bm s 75@) = res S(O'Bo, s O-Bz)

(using res: F(Usp, N -+ NUyp,) = F(Vp, N -+ N V) and checking that 6 o reff; ), =
ref7; |, 04, so that ref on cochains induces a map ref on cohomology groups.) (cf. Figure
VIIL1)
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Now one might fear that the refinement map depends on the choice of o: T — S, but here we
encounter the first of a series of nice identities that make cohomology so elegant — although
“ref” on cochains depends on o, “ref” on cohomology does not.

(vi) Suppose o,7: T — S satisfy Vg C U,3 N U,3. Then
a) for all 1-cocycles s for the covering U,

ref7; , s(ao, 1) = s(oap,001)
= s(oag, Tan) — s(oaq, Tan)
= {s(ocap, Ta) + s(Tap, Ta1) } — s(oar, Taq)
= s(tag, Ta1) + s(oag, Tag) — s(oag, Tag)
= reff;  s(ao, 1) + s(oap, Tap) — s(oar, Ta)
i.e., the two ref’s differ by the coboundary ¢, where

t(a) =ress(oa, Ta) € F(Vy).

More generally, one checks easily that

b) if s € Z'(U, F), then

ref7; ), s —reff; ), s = 0t

where
i—1
t(ao, ey ai—l) = Z(—l)JS(O'Oé(), e, 00, TOG, .. ,Tai_l).
7=0

For general presheaves F and topological spaces X, one finally passes to the limit via ref over
finer and finer coverings and defines:

(vii) !
H'(X,F) = lim H'(U, F).
u

Here are three important variants of the standard Cech complex. The first is called the
alternating cochains:

C. (U, F) = group of i-cochains s as above such that:
a) s(ag,...,an) =0if a; = o for some i # j
b)  s(aro,...,am) =sgn(m) - s(ap,...,q,) for all permutations .

For ¢« = 1, one sees that every 1-cocycle is automatically alternating; but for ¢ > 1, this is no
longer so. One checks immediately that 6(C?,) C C’;fgl, hence we can form the cohomology of
the complex (C;,0). By another beautiful identity, it turns out that the cohomology of the

subcomplex C;, and the full complex C* are exactly the same!

‘ The following proof was modified in publication. ‘
For the proof Serre [99, §3, No. 20, Prop. 2] refers to Eilenberg-Steenrod [37, Chap. VI, §5
and Thm. 6.10] in constructing an endomorphism ' = (%h;) of the cochain complex C* = C*(U, F)

(hence h;6 = §%h;_1 for all i), which is a retract from C* to the subcomplex Cy (ie., 'h, restricts
to the identity on C';,) together with a homomorphism

;. O — O, i=0,1,...
IThis group, the Cech cohomology, is often written H*(X,F) to distinguish it from the “derived functor”

cohomology. In most cases they are however canonically isomorphic and as we will not define the latter, we will
not use the ~
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such that
id — th@' = tk}é + (5%@;1, i1=0,..., with tk'fl =0,

hence h induces the inverse to the canonical homomorphism
H*(complex Cty,) — H'(complex C").

th; and %; are the “transpose” of h; and k; for the chain complex K. built out of the set S of
open sets U,: For all ¢ > 0, let K; be the free abelian group generated by the ordered sequences
(g, ...,qa;) of elements in S with Uy, N --- N Uy, # 0. The boundary map 0: K11 — Kj; is
defined by

i+1
a(a()a s 7ai+1) = Z(_l)](a()a s 75‘;7 B aiJrl)‘
j=0

Endowing S with a total order, define an endomorphism h;: K; — K; by
hi(ao, e ,Odi) =0
if ag, ..., q; are not distinct, while

hi(ao, - -, ;) = sgn(o)hi(ag(); - - - Ao(i))

if ap, ..., q; are distinct and o is the permutation of {0, 1,...,i} such that Ag(0) < Qg(r) <+ <
Qg (4)-

It is easy to show that dh; = h;_10 for all ¢ > 1 so that h = (h;) is an endomorphism of the
chain complex K,. Moreover, the “transpose” ‘h;: C* — C* obviously induces the identity map
on C%, C C* and has the property %;(C?) = C¥,.

Eilenberg-Steenrod [37, Chap. VI, §5] constructs a homotopy

k‘iZKi—>KZ'+1, iZO,l,...
such that
id — h; = 0k; + k;_10, i=0,1,... withk_1=0
as follows: Let
ko = 0.
Fori > 1, let
k’i(ao, e ,ai) = \Ijao ((ld — hi)(ao, . ,Oéi) — ki_la(ao, N ,ai)),

where ¥, is defined as follows: For [ < i — 1 and (fo,...,0) € K; with {fo,...,01} C
{ag,...,q;},
oo (Bos - -+ B1) = (@0, Bos - - -, Bi) € K41
Clearly, we have
a4 (Bo,- -+ 81) = (Bo, -+ B1) = ¥aod(Bo, - - -, Bi)-
We now show

(*) id — h; = Ok; + k;—10
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by induction on ¢ > 0. Note that k_; = ko = 0 and (x) holds for ¢ = 0. For i > 1,
Oki(ag, ..., ;)
= 8\I/a0((id — hi)(ag,...,q;) — ki—10(ag, . . ., ai))
= (id = hi)(o, ..., ;) — ki—10(ag, - . ., @)
T, (8((id — hi)(ao, - .., a5) — ki—18(, . . ,ai)))
= (id—hi)(ao, ..., ;) — ki—10(ag, . - ., ;)
W, ((id ~ hi_1)d(ag, .. ., ;) — Oki_10(ag, - . -, ai)>
= (id - hi)(ao, ..., ;) — ki—10(ap, . .., @;),
since
0ki—10 = ((id — hj—1) — k;—20) 0
by the induction hypothesis.
Here is the explicit formula for ¢ = 1:
(g, 1) if ag = ay
(id — h1)(ap, 1) = ¢ 0 if ap < oy
(a0, 1) + (a1,00)  if ap > an,
hence
ki(ao, 1) = Yy, ((id — h1) (a0, 1) — 0)
(v, g, 1) if ag = g
=< 0 if ag < g

(a0, g, 1) + (ao, a1, ap) if ag > .

Consequently, %;: C? — C! sends s € C? to ks € C! with

s(ao,ao,al) if g =
(k18)(ap, 1) = ¢ 0 if g < ap
s(ap, g, a1) + s(ao, a1, ap) if ag > .

The second variant is local cohomology. Suppose ¥ C X is a closed subset and that the
covering U = {Uy }acs has the property:

X\Y = U U, for a subset Sy C S.
a€Sp

Consider the subgroups:
Cs, (U, F)={s € C'U,F)|s(ag,...,a;) =0if ag,...,0o; € So}.

One checks that (5(0@0) - Cf;gl, hence one can define Hé‘o (U, F) = cohomology of complex
(C%,,6). Passing to a limit with refinements (V, To refines U, Sp if Ip: T" — S such that
Vs C Uy and p(Tp) C Sp), one gets Hy (X, F) much as above.

The third variation on the same theme is the hypercohomology of a complex of presheaves:

Fro0— FO Doy g1y ot g g

(i.e., diy10d; =0, for all 7). If U = {Uy }acs is an open covering, we get a double complex

CcY=cu,F)
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where

81: CY — O ig the Cech coboundary

8g: C9 — C™F1 ig given by applying d; to the cochain.
Then 6109 = §201 and if we set

o — Z O

i+j=n
and use d = 6;+(—1)%y: O — C(+1) a5 differential, then d> = 0. This is called the associated
“total complex”. Define

H"™ (U, F*) = n-th cohomology group of complex (C), d).

Passing to a limit with refinements, one gets H" (X, F*). This variant is very important in the
De Rham theory (cf. §VIIL.3 below).

The most important property of Cech cohomology is the long exact cohomology sequence.
Suppose

0—F — Fo—F3—0

is a short exact sequence of presheaves (which means that
0— FU)— F(U) — F3(U) — 0

is exact for every open U). Then for every covering U, we get a big diagram relating the cochain
complexes:

Lo

0— C U, F1) — CH U, Fp) — C7HU, F3) — 0

o o o

0— CY U, F1) — C' U, F) — C'(U, F3) — 0

o % %

0— CY (U, Fr) — CFY U, F) — CHHU, F3) — 0

S

with exact rows, i.e., a short exact sequence of complexes of abelian groups. By a standard
fact in homological algebra, this always leads to a long exact sequence relating the cohomology
groups of the three complexes. In this case, this gives:

0 — HOU,F1) —HOU, Fo) — HOU, Fs) 5 H' (U, Fy)
— H'U, Fo) — H' U, F3) -5 H* U, Fr) — -
Moreover, we may pass to the limit over refinements, getting:
0 — HO(X,Fy) —H(X, Fy) — H(X, F3) -2 HY(X, Fy)
— HY(X, Fy) — HY(X, Fs) = HX(X, F1) — - .

In almost all applications, we are only interested in the cohomology of sheaves and unfor-
tunately short exact sequences of sheaves are seldom exact as sequences of presheaves. Still, in
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reasonable cases the long exact cohomology sequence continues to hold. The problem can be
analyzed as follows: let

0 —F1 — Fo—F3—0
be a short exact sequence of sheaves. If we define a subpresheaf 75 C F3 by
F3(U) = Image [Fo(U) — F3(U)],
then
0—F —F,—F; —0

is an exact sequence of presheaves, hence we get a long exact sequence:
o HY(X, Fy) — HY(X, Fp) — HI(X,F}) > HTYX, F) — -

Now F3 is the sheafification of F3 so a long exact sequence for the cohomology of the sheaves
F; follows if we can prove the more general assertion:

for all presheaves F, the canonical maps
(%) HY(X,F) — H'(X,sh(F))

are isomorphisms.
Breaking up F — sh(F) into a diagram of presheaves:

0—K-—F———shF—C—0

=
0/ \O

(K = kernel, C = cokernel, 7' = image) and applying twice the long exact sequence for
presheaves, (k) follows from:

(xx) If F is a presheaf such that sh(F) = (0), then H'(X,F) = (0).

The standard case where (%) and hence (%) is satisfied is for paracompact Hausdorff spaces® X:
we will use this fact once in (3.11) below and §VIIL.3 in comparing classical and algebraic De
Rham cohomology for complex varieties. Schemes however are far from Hausdorff so we need to
take a different tack. In fact, suppose X is a scheme (separated as usual) and

0 —F1— Fo—F3—0
is a short exact sequence of quasi-coherent sheaves. Then in the above notations:
Fi(U) = F3(U), all affine U

K(U) =C(U) = (0), all affine U.

2The proof is as follows: We may compute H*(X,F) by locally finite coverings U so let U be one and let
se ! (U,F). A paracompact space is normal so one easily constructs a covering V with the same index set
such that V, C Uy, Va € I. Now for all z € X, the local finiteness of U shows that 3 neighborhood N, of x such
that
a) £ € Uagy N+ NUa;, = No CUqy N---NUy,; and resn, s(ao,...,a;) = 0. Shrinking N,, we can also
assume that N, meets only a finite set of U,’s hence there is a smaller neighborhood M, C N, of =
such that:
b) M, C some V, and if M, N Vg # 0, then M, C V. Let W = {My},ex. Then W refines V and it
follows immediately that refy y(s) =0 as a cochain.
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Now if U is any affine open covering of X, then X separated implies Uy, N --- N U,, affine for
all o, ..., qq, hence C*(U,K) = C*(U,C) = (0), hence H'(U,K) = H'(U,C) = (0). Since affine
coverings are cofinal among all coverings, H'(X,K) = H*(X,C) = (0), hence H (X, F}) =
Hi(X,F3) and we get a long exact sequence for the cohomology of the F;’s for much more
elementary reasons!

What are the functorial properties of cohomology groups? Here are three important kinds:

a) If f: X — Y is a continuous map of topological spaces, F (resp. G) a presheaf on X
(resp. Y), and a: G — F a homomorphism covering f, (i.e., a set of homomorphisms:

aU): GU) — F(fYU)), allopenUCY
commuting with restriction), then we get canonical maps:
(f,a)*: H(Y,G) — H'(X,F),  alli.
b) If we have two short exact sequences of presheaves and a commutative diagram:

0 F1 F2 F3 0

al el o«

0 G Ga gs » 0,

then the d’s in the long exact cohomology sequences give a commutative diagram:

Hi (X, F3) — HIVL(X, Fy)
Oésl lal

Hi(X,Gs) — HH(X,Gy),

(i.e., the H (X, F)’s together are a “cohomological J-functor”).
¢) If F and G are two presheaves of abelian groups, define a presheaf F®G by (FRG)(U) =
F(U)®@G(U). Then there is a bilinear map:

HY(X,F)x H(X,G) — HM(X,F® Q)
called cup product, and written U.

To construct the map in (a), take the obvious map of cocycles and check that it commutes
with d; (b) is a straightforward computation; as for (c), define U on couples by:

(sUt)(ao,...,aiyj) =ress(ag,...,0;) @rest(ag, ..., aqj)

and check that §(sUt) = dsUt+ (—1)’sUét. It is not hard to check that U is associative and
has a certain skew-commutativity property:

) If s; € H* (X, F;), i = 1,2,3, then in the group HF'**2+ks(X 7 @ F» @ F3) we have
(81 U 82) Usg =51 U (82 U 83).

") If Symm? F is the quotient presheaf of F ® F by the subsheaf of elements a ®b—b® a,
and s; € H" (X, F), i = 1,2, then in the group H*7*2(X, Symm? F) we have

s1Usy = (—1)k1k282 U s1.

The proofs are left to the reader.
The cohomology exact sequence leads to the method of computing cohomology by acyclic
resolutions: suppose a sheaf F is given and we construct a long exact sequence of sheaves

0—F —G — G — Gy — -+,

such that:
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a) H(X,Gy) = (0),i>1,k>0.
b) If Kx = Ker(Gg+1 — Gr+2) and Cr = cokernel as presheaf (Gy—1 — Gi) so that K =
sh(Cg), then assume

HY(X,C) = HY(X,K}), i>0, k>0.
Then H!(X,F) is isomorphic to the i-th cohomology group of the complex:
0— Go(X) — Gi1(X) — Go(X) —> -+~

To see this, use induction on i. We may split off the first part of our resolution like this:

i) 0 = F = Gop — Cyp — 0, exact as presheaves.
i) 0= Ko — G1 — G2 — G3 — -+ -, exact as sheaves.

So by the cohomology sequence of (i) and induction applied to the resolution (ii):
a)
HO(X, F) = Ker [H*(Go) — H°(Co)]
=~ Ker [H(Go) — H"(Ko)]
=~ Ker [H°(Go) — H"(G1)]

HY(X,F) = Coker [H°(Gy) — H"(Co)]
=~ Coker [HO Go) — HO(ICO)]
= Coker [H%(Gy) — Ker [H*(G1) — H(G2)]]
>~ [ (the complex H(G.)).

H'(X,F)= H™'(X,Co)
=~ H' (X, Ko)
>~ H'(the complex H(G.)), i>2.
If F is a sheaf, we have seen that H*(X, F) is just ['(X,F) or F(X). H'(X,F) also has a
simple interpretation in terms of “twisted structures” over X. Define
A principal F-sheaf

= a sheaf of sets G, plus an action of F on G
(i.e., F(U) acts on G(U) commuting with restriction)
such that 3 a covering {U,} of X where:
resy,, (G, as sheaf with F-action)
= resy,, (F, with F-action on itself by translation) .

Then if F is a sheaf:
() HYX,F) = {set of principal F-sheaves, modulo isomorphism}.

H' U, F) = {

subset of those principal F-sheaves which are trivial
on the open sets U, of the covering U ’

In fact:
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a) Given G, let ¢o: G|y, — Fly, be an F-isomorphism. Then on U, N Us, ¢q 0
¢§1: ]:]UQQUB — ]:|UQQUB is an JF-automorphism. If it carries the 0-section to
s(a, B) € F(Uy NUg), it will be the map & — x + s(a,3). One checks that s is
a 1-cocycle, hence it defines a cohomology class in H'(U,F), and by refinement in
HY(X,F).

b) Conversely, given o € H'(X, F), represent o by a 1-cocycle s(a, 3) for a covering {U,}.
Define a sheaf G, by

G, (V) = { collections of elements t, € F(V NU,) such that }

resty + s(a, B) =restg in F(VNU, NUp)
Intuitively, G, is obtained by “glueing” the sheaves F|y, together by translation by
s(a, 8) on Uy N Ug.
We leave it to the reader to check that G, is independent of the choice of s and that the
constructions (a) and (b) are inverse to each other. The same ideas exactly allow you to prove:
If Ox is a sheaf of rings on X and O% = subsheaf of units in Ox, then

HY(X,0%) = { set of sheaves of O x-modules, locally isomorphic }

to Ox itself, modulo isomorphism
(ct. §IIL.6)
and
If X is locally connected and (Z/nZ)x = sheafification of the constant presheaf
Z/nZ, then
set of covering spaces 7: Y — X with Z/nZ
HY(X,(Z/nZ)x) = { acting on Y, permuting freely and transitively
the points of each set 7~ 1(z), r € X

2. The case of schemes: Serre’s theorem

From now on, we assume that X is a scheme® and that F is a quasi-coherent sheaf. The
main result is this:

THEOREM 2.1 (Serre). Let U and V be two affine open coverings of X, with V refining U.
Then
resy,y: H' U, F) — H'(V,F)

is an isomorphism.

The proof consists in two steps. The first is a general criterion for res to be an isomorphism.
The second is an explicit computation for modules and distinguished affine coverings. The
general criterion is this:

PROPOSITION 2.2. Let X be any topological space, F a sheaf of abelian groups on X, and U
andV two open coverings of X. SupposeV refinesU. For every finite subset So = {ap,...,ap} C
S, let

Usy = Uay N+ NUq,
and let V]USO denote the covering of Us, induced by V. Assume:

H'(V|s,, Flus,) = (0), all Sp, i > 0.

30ur approach works only because all our schemes are separated. In the general case, Cech cohomology is not
good and either derived functors (via Grothendieck) or a Cech complex@Cech!modifiedmodified Cech complex
(via Lubkin or Verdier) must be used.
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Then refy y: H'(U, F) — H'(V, F) is an isomorphism for all i.

PROOF. The technique is to compare the two Cech cohomologies via a big double complexes:

cr= ] [l 7Wan--NUanVs0---N V).
00, ,0p €S B0y Bg €T

By ignoring either the a’s or the 8’s and taking ¢ in the ’s or a’s, we get two coboundary

maps:

§p: CP4 —s OPtLa

p+1

(518(0[0, <oy Op, ,30, v ,Bq) = Z(—l)js(ao, v ,aj, ey Ozp+1,50, v 7/8q)
j=0

and
§y: CP4 — OPatHL

q+1 ‘ R

525(0&0, s 7Oép750a s 7Bq+1) = Z(—l)]S(Oéo, SRR O‘pvﬂov s 7/8j7 s 7/8q+1)-
7=0

One checks immediately that these satisfy 02 = 83 = 0 and 6162 = d207. As in §1, we get a “total
complex” by setting:

cm — Z o

p+g=n
,9>0

and with d = §; + (—=1)Pdy: CW — C(+1) a5 differential. Here is the picture:

00,24)
d2
0,1 o 1,1
C C
s s [
51 51

02,0

CO’O 01,0
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c?= J] FWanVs NV NVs,)
a€esS
ﬁoﬁfﬁzeT

c'= [] FW0anVsNVa)

a€eS
Bo,B1ET

chl = H F(Uao NUay N Vg, N Vﬁl)

ag,x1 €S
Bo,B1ET

C0 = T[ F(U.NVp)

aesS
peT

C0= T[] FUsyNUsNVp)

ap,a1 €S8
BeT

C= [ FWanUs NVp).

ap,a1,a2€S
BET

We need to observe four things about this situation:

(A)

The columns of this double complex are just products of the Cech complexes for the
coverings V|USO for various Sy C S: in fact the p-th column CP* — CP! — ... is the
product of these complexes for all Sy with #5y = p+1. By assumption these complexes
have no cohomology beyond the first place, hence

the d2-cohomology of the columns

Ker [d3: CP9 —» Cp’qH] / Image [0 crat CcP]

is (0) for allp >0, all ¢ > 0.
The rows of this double complex are similarly products of the Cech complexes for the
coverings U ’VTo for various Ty C T'. Now Vp,, C some Vg C some U,, hence the covering
u |VT0 of Vr, includes among its open sets the whole space V7;,. For such silly coverings,
Cech cohomology always vanishes —

LEMMA 2.3. X a topological space, F a sheaf, and U an open covering of X such
that X € U. Then H'(U,F) = (0), i > 0.

PROOF OF LEMMA 2.3. Let X = U; € U. For all s € Z(U, F), define an (i — 1)-
cochain by:

tlag,...,ai—1) = s((, a0, ..., a—1)
[OK since Us NUqy N -+~ NUq;_, = Uay N---NUq,_,!] An easy calculation shows that
s = dt. O
Hence
the d1-cohomology of the rows is (0) at the (p,q)-th spot, for all p > 0,
q > 0.

Next there is a big diagram-chase —

LEMMA 2.4 (The easy lemma of the double complex). Let {CP4, 81,02}, q>0 be any
double complex (meaning (5% = (5% = 0 and 6169 = 6201 ). Assume that the d3-cohomology:

HJ" = Ker [65: CP1 — CPH1] /Tmage [62: CPI71 — O]
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is (0) for allp >0, ¢ > 0. Then there is an isomorphism:
(51-coh0mology of Hgo) = ((d = 81 + (—1)Pd2)-cohomology of total complez)
1.€.,

{z e CPY | b1z =dox =0} {x € X itjop O | do = O}
{012 | x € CP=LO with doz = 0} {dl‘ |z € iimp CW}

PrROOF OF LEMMA 2.4. We give the proof in detail for p = 2 in such a way that it
is clear how to set up the proof in general. Start with = (220, 21,1,Z02) € > Chi

such that dx =0, i.e.,

i+j=2

0120 = 0; d1w1,1 + 02220 = 0; 61202 — d2w1,1 = 05 dawg2 = 0.

0

[

5
T0,2 —— +y

[s

0
Tl —— +2
7
61
2,0 —— (
Now daxg2 =0 = w02 = 020, for some xg ;. Alter z by the coboundary d(0, —xz1):
we find
x o~ = (2h,2),,0) ( ~ means cohomologous).

But then da’ = 0 = &7}, = 0 = 27, = dax1 for some z19. Alter 2’ by the
coboundary d(z1,,0): we find

x ~a = (:1:’2'70, 0,0)

and dz” = 0 = 0124 ; and 62  are 0. Thus 25 ; defines an element of H} (the complex Hf;g’O).
This argument (generalized in the obvious way) shows that the map:

D (51—cohomology of H (7;2’0> — (d-cohomology of total complex)

is surjective. Now say x99 € C** satisfies 01220 = daw20 = 0. Say (220,0,0) = dz,
x = (r10,20,1) € Zi+j:1 C" . e,

T2,0 = 01271,0; —0221,0 + 01Z0,1 = 0; 270,17 = 0.

0
Js
61
0,1 — *y

Then d22091 = 0 = x0,1 = d220,0, for some . Alter x by the coboundary —dzg:
we find
x~x = (mg,o, 0)
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and dz’ = (120,0,0). Then daz} 4 = 0 and d127 = 20, i.e., 220 goes to 0 in the
d1-cohomology of H§2’0. This gives injectivity of ®. O

If we combine (A), (B) and (C), applied both to the rows and columns of our double complex,
we find isomorphisms:

HJ (total complex C)) = Hj: (the complex Ker d; in C’"O)
= Hy, (the complex Kerd; in CO") .

But
Ker (6: C™0 — ™) = [ FUan---NUa,) =C"U,F)
QQ,y...,0n €S
Ker ((51: con —>C1’n) = H F(VgN---NVp,)=C"(V,F),
607"'7Bn€T
so in fact

H? (total complex C<->> >~ {"(U, F)

It remains to check:

(D) The above isomorphism is the refinement map, i.e., if s(ap, ..., ay) is an n-cocycle for
U, then s € C™0 and reff; s € C%" are cohomologous in the total complex. In fact,
define t € C"~1) by setting its (I,n — 1 — [)-th component equal to:

tl(a07 s O, BOa s 76717171) = (_1)l I.eSS(O‘Oa s O, 0—607 R 70—/8717171)-
Thus a straightforward calculation shows that dt = (ref7; , s) — s.
This completes the proof of Proposition 2.2. O

Now return to the proof of Theorem 2.1 for quasi-coherent sheaves on schemes! The second
step in its proof is the following explicit calculation:

PROPOSITION 2.5. Let Spec R be an affine scheme, U = {Spec Ry, }ier a finite distinguished
affine covering and M a quasi-coherent sheaf on X. Then H*(U, M) = (0), all i > 0.

PRrROOF. Since M(Spec Ry) = My and (), j, Spec Ry, = Spec R([Ter ) the complex of Cech
relo
cochains reduces to:

HMfi — H M(fio'fil) — H M(fio'fil'fig) —r
iel Q0,01 €1 10,01,i2€1

Using the fact that the covering is finite, we can write a k-cochain:

; 3 Mig,...ig
m(io,...,0) = 7, Mig,..i, €M
( ) (flo . fzk)N 10 1k
with fixed denominator. Then
j ; st MMlig in,..ipt1 k+1 Mg, ig
((5m)(20,...,zk+1) = — _|_..._|_(_1) _ W0tk
(fllfzk)N (f10f12flk+1)N (fzonk)N

io MVin,eipgr — fi]:fmio,iz,mikﬂ +ot <_1)k+1 N Mig,....ik
(fio T fik+1)N

If dm = 0, then this expression is 0 in M(fio"'fik+1)’ hence

N’ N N k+1 N _
(fio " finyr)™ | fig Mirsemsingr — iy Migyinyeinsr T+ (1) fil, Mg, i | =0
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in M if N’ is sufficiently large. But rewriting the original cochain m with N replaced by N + N’,

we have
!

m(i07 e 7ik) = miow,i?\/—&-N” m’LO (flo ’ 'flk)N/ml(), Tk
(fio - fir) !
so that
N+N' N+N' k+1 ¢(N+N’ _ :
) fig U mi e — £ stz o H (GO =0 in M.
Now since
Spec R = USpec Ry, = U Spec R(f.]V+NI)’
it follows that 1 € (.. .,fZNJrN/, ...), l.e., we can write
N+N'
1= Zgi : fz *
el
for some g; € R. Now define a (k — 1)-cochain n by the formula:
n(ig, ..., lg—1) = 7
’ ’ (fZOflk 1)N+N
nzO: -t - Zgl ml 300 e--s0
lel
Then m = dn! In fact
k -~ .
; Mgy e ooy ljyeey Uk
(on)(ig, ..., 1 Z = -
Jry (fio e fip e fy ) NN
1 k
= ; JfNJrN/ am
(fio "’fik>N+N ]ZO ZEZI lzo,...lj, i
1 N+N/
— 7 g1 jf TTL
(fio"'f N-I—N IEZI gZO 1,i0,.. ,Z], ik
1 N N/
= ] \N+N’ Zglfz * m’/io,...,ik (by (*))
(Fia- Fi) NV 2

%07 Sk N+N’
(fzo flk N+N’ Zglf

lel
= m(io, ey Zk)

O

COROLLARY 2.6. Let X be an affine scheme, U any affine covering of X and M a quasi-
coherent sheaf on X. Then H'(U, M) = (0), i > 0.

PRrROOF. Since the distinguished affines form a basis for the topology of X, and X is quasi-
compact, we can find a finite distinguished affine covering V of X refining 4. Consider the
map

refyy: H'(U, M) — H'(V, M).
By Proposition 2.5, H/(V, M) = (0) all i > 0, and H'(V|yy ,M|y,) = (0) for all i > 0 and
for all finite intersections Ug, = Uy N -+ N Uy, (since each Vg NUsg, is a distinguished affine in
Us, too). Therefore by Proposition 2.2, refy;y is an isomorphism, hence H*(U, M) = (0) for all
t>0. O
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Theorem 2.1 now follows immediately from Proposition 2.2 and Corollary 2.6, in view of the
fact that since X is separated, each Ug, as a finite intersection of affines, is also affine as are the
open sets Vg N Ug, that cover it.

Theorem 2.1 implies:

COROLLARY 2.7. For all schemes X, quasi-coherent F and affine covering U, the natural
map:
H'U,F) — H'(X,F)

is an isomorphism.

The “easy lemma of the double complex” (Lemma 2.4) has lots of other applications in
homological algebra. We sketch one that we can use later on.
a) Let R be any commutative ring, let M M, M® be R-modules, choose free resolutions
F_(l) — M® and F_(z) — M@ ie., exact sequences

—FM PV s FY S D
—F® —FY . 5 F® LY M® 0

where all F j(i) are free R-modules. Look at the double complex C;; = Fl-(l) QR Fj(z),
0 <1, 7 with boundary maps

d(l): Ci,j — Cz'_lyj
d(2): Ciyj — Ci,j—l
induced by the d’s in the two resolutions. Then Lemma 2.4 shows that
H, (total complex C.,) = H,(complex F,(l) R M(2))
~ H, (complex MY @p F_(z)).
Note that the arrows here are reversed compared to the situation in the text. For
complexes in which d decreases the index, we take homology H,, instead of cohomology
H™. Tt is not hard to check that the above R-modules are independent of the resolutions
F_(l)7 F_(z). They are called Tor (MM, M®)). The construction could be globalized: if

X is a scheme, FN), F?) are quasi-coherent sheaves, then there are canonical quasi-
coherent sheaves Tor9x (FW), F2)) such that for all affine open U C X, if

U = Spec R
FO = M),
then
TorOx (FO, FO)|y = Tor2(M M| M)

I want to conclude this section with the classical explanation of the “meaning” of H!(X, Ox),
via so-called “Cousin data”. Let me digress to give a little history: in the 19th century Mittag-
Leffler proved that for any discrete set of points «; € C and any positive integer n;, there is a
meromorphic function f(z) with poles of order n; at «; and no others. Cousin generalized this to
meromorphic functions f(z1,...,z,) on C" in the following form: say {U;} is an open covering
of C" and f; is a meromorphic function on U; such that f; — f; is holomorphic on U; N U;. Then

there exists a meromorphic function f such that f — f; is holomorphic on U;. We can easily pose
an algebraic analog of this —

a) Let X be a reduced and irreducible scheme.
b) Let R(X) = function field of X.
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c) Cousin data consists in an open covering {Uy,}tacs of X plus f, € R(X) for each «
such that
fa — fg € F(Ua N UB,O)(), all o, 8.
d) The Cousin problem for this data is to find f € R(X) such that

f_fa EF(UOHOX)7 all «,

i.e., f and f, have the same “polar part” in U,.

For all Cousin data {fa}, let gog = fo — f3 € I'(Ua NUp, Ox). Then {gs} is a 1-cocycle in
Ox for the covering {U,} and by refinement, it defines an element of H'(X, Ox), which we call
ob({fa})(= the “obstruction”).

PROPOSITION 2.8. ob({fs}) = 0 iff the Cousin problem has a solution.

PrOOF. If ob({fa}) = 0, then there is a finer covering {V, }aer and hy € I'(V,, Ox) such
that if 0: T'— S is a refinement map, then

ha - h,@ =TresSgoa,cf = I'GS(fo-a - faﬂ)
(equality here being in the ring I'(V,, N V3, Ox)). But then in R(X),

ha - foa = hﬂ - foﬁa

i.e., foa — ha = F is independent of . Then F' has the same polar part as f,o in V,. And
for any x € U,, take B so that x € Vj too; then since fo — fop € Oy x, it follows that
F—fo=F—fs8)+ (fop— fa) € Og x, i.e., F has the same polar part as f, throughout Uy, so
F' solves the Cousin problem. Conversely, if such F' exists, let hy = fo — F; then ho — hg = gag
and ho € I'(Uq, Ox), i.e., {gap} = 6({ha}) is a 1-coboundary. O

3. Higher direct images and Leray’s spectral sequence

One of the main tools that is used over and over again in computing cohomology is the
higher direct image sheaf and the Leray spectral sequence. Let f: X — Y be a continuous map
of topological spaces and let F be a sheaf of abelian groups on X. For all ¢ > 0, consider the
presheaf on Y

a) Ur— HY(f~Y(U),F), YU CY open
b) if U C UQ, then

res: H'(f 1 (Uz), F) — H'(f1(U1), F)
is the canonical map.

DEFINITION 3.1. R!f,(F) = the sheafification of this presheaf, i.e., the universal sheaf which
receives homomorphisms:

HY(fY(U),F) — R'f.F(U), allU.

PROPOSITION 3.2. If X and Y are schemes, f: X — Y is quasi-compact and F is a quasi-
coherent Ox-module, then R'f.(F) is a quasi-coherent Oy -module. Moreover, if U is affine or
if i =0, then

H'(f~Y(U),F) — R'f(F)(U)

is an isomorphism.
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PROOF. In fact, by the sheaf axiom for F, it follows immediately that the presheaf U +—
HO(f~Y(U),F) = F(f~1(U)) is a sheaf on Y. Therefore H*(f~1(U),F) — Rf,.F(U) is an
isomorphism for all U. The rest of the proposition falls into the set-up of (1.5.9). As stated there,
it suffices to verify that if U is affine, R = T'(U,Ox) and g € R, then we get an isomorphism:

H'(f71(U),F) ®@r Ry = H'(f ' (U,), F).

But since f is quasi-compact, we may cover f~1(U) by a finite set of affines {V4,...,Vy} = V.
Then f~1(Uy) is covered by

{V) o) (W)} = Vg0
which is again an affine covering. Therefore
H(f7H(U),F) = H(C(V, F))
H'(f71(Uy), F) = H'(C' V10, F))-

The cochain complexes are:

Ci(]}j}‘): H }-(Vaom'”mvai)
1<ag,...,a; <N
Ci(v‘ffl(Ug)v-F) = H J:((Vao)f*gm"’m(vai)f*g)'

1<ag,...,a; <N

Since if S =T (Vo N---N V4, Ox):

]:((Vao)f*g n---nN (Vai)f*g) EF(Vag N NVa,) ®s Sfeg

ZF(VayN---NVy,) ®r Ry,
it follows that
C'Vlf-1w,), F) =2 C'(V,F) @r Ry
(since ® commutes with finite products). But now localizing commutes with kernels and
cokernels, so for any complex A* of R-modules, H(A') ®g Ry = H'(A* ®g Ry). Thus
H'(f~1(Uy), F) = H'(f~'(U), F) ®r Ry

as required. O

COROLLARY 3.3. If f: X — Y is an affine morphism (cf. Proposition-Definition 1.7.3) and
F a quasi-coherent Ox-module, then

R f.F =0, Vi > 0.

A natural question to ask now is whether the cohomology of F on X can be reconstructed
by taking the cohomology on Y of the higher direct images R’ f,F. The answer is: almost. The
relationship between them is a spectral sequence. These are the biggest monsters that occur in
homological algebra and have a tendency to strike terror into the heart of all eager students. 1
want to try to debunk their reputation of being so difficult?.

DEFINITION 3.4. A spectral sequence E5? = E™ consists in two pieces of data’:

4(Added in publication) Fancier notions of “derived categories and derived functors” have since become
indispensable not only in algebraic geometry but also in analysis, mathematical physics, etc. Among accessible
references are: Hartshorne [55], Kashiwara-Schapira [65], [66] and Gelfand-Manin [40].

53ometimes one also has a spectral sequence that “begins” with an ET?. Then the first differential is
dy?: EY —s Ef“’q

and if you set EE9 = (Ker d®?)/(Image d®~"9), you get a spectral sequence as above.
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R
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N
dz ~

FiGure VII.2
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(A) A doubly infinite collection of abelian groups EY?, (p,q € Z, p,q > 0) called the initial
terms plus filtrations on each EY?, which we write like this:

B = 7875 2815 78 5 . 5 BY S B S BY = (0),

also, let

plus a set of homomorphisms d? that allow us to determine inductively

zr1 = () z¢
T

By =B,
T

from the previous ones ZF?, BF:

(cf. Figure VIIL.2).

. p+r,q—r+1 +r,g—r+1
drd: 7P —s EP /BPHTa

The d’s should have the properties

i) BP? c Ker(d), ZPT™17"+ 5 Image(d??) so that d induces a map

Pq | RPY p+r.g—r+1 ; pp+r,g—r+1
VA /BT — 7 /B,, .

This sub-quotient of E5? is called EF?.
ii) d* = 0; more precisely, the composite

Dq Dq p+r,g—r+1 p+r,qg—r+1 p+2r,q—2r+2 p+2r,q—2r+2
Zr /Br —>Zr /Br _>Zr /Br

1s 0.

iil) ZP, = Ker(dP?); Bfi;’qfrﬂ = Image(d??). This implies that E

mology of the complex formed by the EF?’s and the d,’s!
(B) The so-called “abutment”: a simply infinite collection of abelian groups E™ plus a
filtration on each E™ whose successive quotients are precisely the groups E%" 7 =

2B | BT

E" = FO(ETL) 5 Fl(En) 5 TR 5 Fn(En) S5 FnJrl(En) — (0)

~Ey"

>l ~p7°

Pq
Br—i—l

1 is the coho-

To illustrate what is going on here, look at the terms of lowest total degree. One sees easily
that one gets the following exact sequences:

a) EY0 =~ pO,
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b) 0 — EM0 — Bl — gt 2, g20 _, B2,
c¢) For all n, one gets “edge homomorphisms”

and
n 0,n O,n |
E" — E)' — Ey
i.e.,
E'I’L
07n /
E,

n,0
E2

THEOREM 3.5. 8 Given any quasi-compact morphism f: X — Y and quasi-coherent sheaf F
on X, there is a canonical spectral sequence, called Leray’s spectral sequence, with initial terms

B = HP(Y, RUf,F)
and abutment E" = H"(X,F).

PROOF. Choose open affine coverings U = {Uq }qes of Y and V = {V3}ger of X and consider
the double complex introduced in §2 for the two coverings f~!(U) and V of X:

cr= ] I 7' Uspn-- 0 f e, nVs NN V3.
@g,...,ap€S Bo,....,04€T
Note that all the open sets here are affine because of Proposition 11.4.5.

Now the g-th row of our double complex is the product over all By, ..., 3, € T of the Cech
complex C*(f~YU)N Vg N---N Vs,, F), ie., the Cech complex for an affine open covering of
an affine Vg N---N Vs, . Therefore all the rows are exact except at their first terms where their
cohomology is [, 5 F(Vg,N---NVp,), Le., C4(V, F). Hence by the easy lemma of the double
complex (Lemma 2.4),

1)
H"(total complex) = H"(C*(V,F))
~ ["(X, F).

But on the other hand, the p-th column of our double complex is the product over all v, ..., o €
S of the Cech complex C*(V N f~1(Upy N -+ N Uy,),F). The cohomology of this complex at
the g-th spot is HI(f 1 (Uae N - NUa,), F) which is also the same as RIf, F(Uay N -+ N Ug,).
Therefore:

2) [vertical d2-cohomology of p-th column at (p,q)] =[],  a,es BU«F(UagN:--NUq,).
But now the horizontal maps d;: CP4 — CPT14 induce maps from the [§2-cohomology
at (p,q)-th spot] — [da-cohomology at (p + 1, ¢)-th spot] and we see easily that

~

3) [g-th row of vertical cohomology groups] ~ Cech complex C*(U, R1f,F). There-

as complex

fore finally:
4) [horizontal d;-cohomology at (p, q) of vertical do-cohomology group| = HP(Y, R?f,F)!

Theorem 3.5 is now reduced to:

6Theorem 3.5 also holds for continuous maps of paracompact Hausdorff spaces and arbitrary sheaves F, but
we will not use this.
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LEMMA 3.6 (The hard lemma of the double complex). Let (CP4,61,02) be any double com-
plex. Make no assumption on the §o-cohomology, but consider instead its d1-cohomology:

ED? = HY (HL(C™)).

Then there is a spectral sequence starting at EY? and abutting at the cohomology of the total
complex. Alternatively, one can “start” this spectral sequence at

EP = H:SJQ (CP*) = (cohomology in vertical direction)

with di being the maps induced by 81 on 82-cohomology’. Also, since the rows and columns of a
double complex play symmetric roles, one gets as a consequence a second spectral sequence with

B = HY, (H}, (C))
or
EV? = H{ (C*?) = (cohomology in horizontal direction),
abutting also to the cohomology of the total complex.
A hard-nosed detailed proof of this is not very long but quite unreadable. I think the reader
will find it easier if I sketch the idea of the proof far enough so that he/she can work out for

himself/herself as many details as he/she wants. To begin with, we may describe EY? rather
more explicitly as:

{x € CP9 | §x = 0 and 012 = doy, some y € CPTLI~11
52(Cp,q—1> + (51{%‘ € Cr—1la ’ dox = 0}

The idea is — how hard is it to “extend” the do-cocycle z to a whole d-cocycle in the total
complex: more precisely, to a set of elements

Pq _
By =

y € cprlat Soy1 = 12
Yy € CPT2472 doy2 = 011
etc. etc.

so that d(z £y; £y2 £ ---) = 0 (the signs being mechanically chosen here taking into account
that d = §; + (—1)Pd2). See Figure VII.3.

Define Z& to be the subgroup of E5? for which such a sequence of y;’s exist; define Z5? to
be the set of z’s such that such y; and yo exist; define Z}? to be the set of z’s such that such
Y1, y2 and y3 exist; etc.

On the other hand, a Jo-cocycle x may be a d-coboundary in various ways — let

wy € P14,y € CP=24-1 }

B?? = image in E2? of ¢ x € CP4
3 & 2 51w1 =, 52’(01 = 5111)2, 5271)2 =0

Bi? = image in E5? of {x e cPi

w1, wo as above, w3 € CP~3472 }
hwy =z, dowy = d1wa, dows = w3, dawz =0

etc.

(cf. Figure VII.4)

"More precisely, to construct the spectral sequence, one doesn’t need both gradings on € C?? and both
differentials; it is enough to have one grading (the grading by total degree), one filtration (Fi = @p>k C??) and

the total differential: for details cf. MacLane [77, Chapter 11, §§3 and 6].
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0
5
QI 5.
T —s 21
621 N
Y1 —— 29
5QI .
Y2 —
d,x!
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/
51 /
Yr—1 —— Zr—1 /
/
5] 5.
Yr—1 +—(7)
Ficure VII.3
0

U2
w2 —— U1
o1
[
W] ——
01

FiGgure VII.4

As for &&1. zP1 Ef+r’q_r+l/B,’3+T’q_r+l, suppose x € CP4 defines an element of Z, i.e.,
Jy; € optba=t gy € OPtr=1a L guch that Sayip1 = 61yi, @ < r — 1; Sy; = d1z. Define

dY(z) = S1yr-1.

This is an element of CP+74~ "+ killed by §; and &2, hence it defines an element of E¥ +rg-rtl /BY +ra-rtl
At this point there are quite a few points to verify — that d,. is well-defined so long as the im-

age is taken modulo B, and that d, has the three properties of the definition. These are all
mechanical and we omit them.
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Figure VII.5

Finally, define the filtration on the cohomology of the total complex:
Kerdin ., CP1
d (Zp+q:n—1 Cpg)

which can be represented by a d-cocycle

F¥(E™) =those elements of

with components z,, € C*?, x,, =0if p <k

(cf. Figure VIL.5). The whole point of these definitions, which is now reasonable I hope, is the
isomorphism:

FPE"/FPTIE" = zPn—p /| pPn—p,
The details are again omitted. O

An important remark is that the edge homomorphisms in the Leray spectral sequence:

a) H™(Y, f.F) = Ey° — E" = H*(X, F)

b) H"(X,F) = E" — Ey" = HO(Y, R"f..F)
are just the maps induced by the functorial properties of cohomology (i.e., the set of maps
fF(U) — F(f~1(U)) means that there is a map of sheaves “f,F — F with respect to f” in an
obvious sense and this gives (a); and the maps H*(X, F) — H"(f~'U,F) — R"f.F(U) for all
U give (b)). This comes out if V is a refinement of f~1(/) by the calculation used in the proof
of Theorem 3.5.

PROPOSITION 3.7. Let F be a quasi-coherent Ox-module. If f: X — Y is an affine mor-
phism (cf. Proposition-Definition 1.7.3), then

HP(X,F) — HP(Y, . F),  Vp.
PROOF. Leray’s spectral sequence (Theorem 3.5) and Corollary 3.3. (]

COROLLARY 3.8. Let F be a quasi-coherent Ox-module. If i: X — Y is a closed immersion
of schemes (cf. Definition 3.1), then

HP (X, F) = HP(Y,i.F), Vp.

REMARK. If X is identified with its image i(X) in Y, i,F is nothing but the quasi-coherent
Oy-module obtained as the extension of the Ox-module F by (0) outside X.
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A second important application of the hard lemma (Lemma 3.6) is to hypercohomology and
in particular to De Rham cohomology (cf. §VIIL.3 below). Let F* be any complex of sheaves on
a topological space X. Then if ¢/ is an open covering, H" (U, F*) is by definition the cohomology
of the total complex of the double complex C%(U, FP), hence we get two spectral sequences
abutting to it. The first is gotten by taking vertical cohomology (with respect to the superscript

q):
EY=HYU,FP) = E" =H"(U,F)
(with @}? the map induced on cohomology by d: F? — FPT1).
Passing to the limit over finer coverings, we get:
(3.9) EY = HY(X,FP) = E" = H"(X, F").

The second is gotten by taking horizontal cohomology (with respect to p) and then vertical
cohomology. To express this conveniently, define presheaves Hb.e(F*) by

Ker(FP(U Frliu
HE(F)(U) = er( (_1) — )
Image(FP~1(U) — Fr(U))
The sheafification of these presheaves are just:
1
H(F) = Ker(FP t) FPth
Image(FP~1 — FP)

but Hbye will not generally be a sheaf already. The horizontal cohomology of the double complex
CUU,FP) is just C9(U, Hbre) and the vertical cohomology of this is HI(U, Hbye), hence we get
the second spectral sequence:

BN = HP (U, HE,o(F)) = B = H'(U, F).

pre

Passing to the limit over U, this gives:

(3.10) EN = HP(X,HY (F)) = E" = H"(X, F").

pre

In good cases, e.g., X paracompact Hausdorff (cf. §1), the cohomology of a presheaf is the
cohomology of its sheafification, so we get finally:

(3.11) B = HP(X, HU(F)) = E" = H*(X, F).

4. Computing cohomology (1): Push F into a huge acyclic sheaf

Although the apparatus of cohomology of quasi-coherent sheaves may seem at first acquain-
tace rather formidable, it should always be remembered that it is really only fancy linear algebra.
In many specific cases, it is no great problem to compute it. To stress the flexibility of the tools
available for computing cohomology, we present in a fugal style four calculations each using a
different method.

A standard approach for cohomology is via a resolution of the type:

0 —F —=Iy—5L —Ih— -

where the Ij,’s are injective, or “flasque” or “mou” or at least are acyclic. (See Godement [42]
or Swan [110].) Sheaves of this type tend to be huge monsters, but there has been quite a bit
of work done on injectives in the category of sheaves of Ox-modules on a noetherian X (see
Hartshorne [55, p. 120]). We use the method as follows:
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LEMMA 4.1. IfU C X is affine and i: U — X the inclusion map, then for all quasi-coherent
F on U, i,.F is acyclic, i.e., HP(X,i,F) = (0), allp > 1.

PROOF. In fact, for V C X affine, i~1(V) = UNV is affine, so the presheaf V s HP(i =1V, F)
is (0) on affines (p > 1). Thus RPi,F = (0) if p > 1. Then Leray’s spectal sequence (Theorem
3.5) degenerates since

EP* = HP(X,R%,F) = (0), ¢q>1.
Thus F§? = E! =~ EPT4 and the edge homomorphism
H?(X,i,F) — HP(U,F)

is an isomorphism. Since HP(U, F) = (0), p > 1, the lemma is proven. O

If F is quasi-coherent on X, and ¢: U — X is the inclusion of an affine, there is a canonical
map:

¢: F — i.(Flv)
via
FV) = FUNV) 26 (Fly)(V), VopenV,

which is an isomorphism on U. We can apply this to prove:

PROPOSITION 4.2. Let X be a noetherian scheme and F a quasi-coherent sheaf on X. Let
n = dim(Supp F), i.e., n is the mazimum length of chains:

200G 721G G Zp C Supp(F), Z; closed irreducible.

Then HY(X,F) = (0) ifi > n.

PRrOOF. Useinduction on n. If n = 0, then Supp F is a finite set of closed points {x1,...,zx}.
For all 7, let U; C X be an affine neighborhood of x; such that z; ¢ U;, all j # i; let {Ug}ger be
an affine covering of X \ {z1,...,xn}. Then {Uy,...,Un}U{Ug} is an affine covering of X such
that for any two distinct open sets Uy, Uy in it, Uy N Uy N Supp F = (). Thus C*(U, F) = (0),
i > 1, and hence H'(X,F) = (0), i > 1.

In general, decompose Supp F into irreducible sets:

SuppF =51 U---USnN.
Let U; C X be an affine open set such that
UinS; #0
UinS;=0, allj#i.
Let i : Uy — X be the inclusion map, and let
Fie = ik (Fluy,)-

As above we have a canonical map:

N
FL PR
k=1
given by:
N N
FV) =S PFUNV) = | @ik (Flu,) | (V).
k=1 k=1

Concerning ¢, we have the following facts:
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a) If i # j, U; N U; N Supp F = 0, hence F(U; N Uj) = (0). Therefore if V' C U,

N
P FUnV) = FUynV) = F(V).
k=1
Therefore ¢ is an isomorphism of sheaves on each of the open sets Uy.
b) If VNS, = 0, then VN U, N SuppF = 0 so Fr(V) = F(U,NV) = (0). Thus
Supp Fr, C Sk.
c) Each Fj is quasi-coherent by Proposition 3.2, hence K; = Ker ¢ and Ko = Coker ¢ are
quasi-coherent.

Putting all this together, if i = 1,2
Supp C; C (S1U---USN) \ (open set where ¢ is an isomorphism)

N
C U(Sk \ Sk NUyg).
k=1

Therefore dim Supp K; < n, and we can apply induction. If we set K3 = F/K1, we get two short

exact sequences:

0 —Ki —F —K3z3—0

N
0—>K3—>@fk—>162—>0,
k=1

hence if p > n:

HP(X,Ky) —— HP(X,F) —— HP(X,K3)
Hby induction

(%) (0) (0)

H by induction || by Lemma 4.1

HPY(X, Ky) — HP(X,K3) — GB]kV:l HP(X, F).

This proves that HP(X,F) = (0) if p > n. O

5. Computing cohomology (2): Directly via the Cech complex

We illustrate this approach by calculating H* (P, O(m)) for any ring R. We need some more
definitions first:
a) Let R be a ring, f1,...,f, € R. Let M be an R-module. Introduce formal symbols
Wi, .- .,wn such that
wi Awj = —wj A wi, w; ANw; = 0.
Define an R-module:
Kp(fla-'-yfn;M): @ M'wil/\---/\wip.
1< <ig < <ip<n
Define
d: KP(fui, .., fus M) —> KPFH(f1, o fos M)

dm = <i fiw¢> Am.

i=1
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Note that d?> = 0. This gives us the Koszul complex K*(f1,..., fu; M):
0— K(f); M) — K'((f); M) — - ——= K"((f); M) —0

M D M- w; M-wi A Awy,

b) Now say R is a graded ring, f; € Ry, is homogeneous and M is a graded module.
Then we assign w; the degree —d;, so that »_ fiw; is homogeneous of degree 0. Then
K*(f1,..., fn; M) is a complex of graded modules with degree preserving maps d. We
let K*(f1,..., fn; M)? denote the degree 0 subcomplex, i.e.,

Kp(fl, .. .,fn;M)O = @ MdilJr“'erip CWip A A Wi,

iy < <ip
c) Next compare the Koszul complexes K*(f{,..., f¥; M) for various v > 1. If we write
KP(fe M) = @ Mol n e
1< <dp

and set
(V) f(V ) (V+V’)

then we get a natural homomorphlsrn

KP(fY, .. fY M) — KP(frHY o fotvs M)

n
which commutes with d.
The point of all this is:

ProposITION 5.1. If R is a graded ring, f; € Rg,, 1 < i < n, M a graded R-module,
U; = (ProjR)ys,, U = {Uy,...,Uy,}, then there is a natural isomorphism:

Cgltl(u M)Nthp(fi/?af'rI:?M)ov le,

under which the Cech coboundary 6 and the Koszul d correspond.

PRrROOF. We have

1
crltuMy= @ MU,N---NU;,)
11 <...<ip
0
= @ (M)
11 < <ip

and

i (000 = @) tim [l el

11<...<ip Y
_ @ lim M. . (V)/\”,/\ ()
= M My (diy +--4diy) * Wi Wiy -
1< <ip YV

Define a homomorphism:

oyt 87 Nl 001
by taking wj(-y)

ring S, any S-module N and g € S, N, = direct limit of the system

to 1/ fi. This clearly commutes with the limit operation in v and since for any

multiplication by g N multiplication by g N multiplication by g

N
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it follows that
@My(dil'f'"'dip)wi(f) A A wi(:) = (Mfil‘“fip)o'
We leave it to the reader to check that ¢ and d correspond. O

The complex {KP} goes down to p = 0 while {CP~'} only goes down to p = 1. We can
extend {CP~1} one further step so that it matches up with { K?} as follows:

£

0 Mo Cglt(uﬂj\\j) C;lt(uvﬁ) T
H H H
0 — lim (K0)0 — lim (K1)° — limy (K?)° — .
where ¢ is the composite of the canonical maps:
My —s T'(Proj R, M) —s C%, (U, M).
What we need next is a criterion for a Koszul complex to be exact:

ProPOSITION 5.2 (Koszul). Let R be a ring, fi,...,fn € R and M an R-module. If fs is
a non-zero-divisor in M/(f1,..., fs—1) - M for 1 < s <t, then the complex K*(f1,..., fn; M) is
exact at K5(f1,..., fn; M) for 0 <s<t—1.

PROOF. To see how simple this is, it’s better to take the first non-trivial case and check it,
rather than getting confused in a general inductive proof. Take ¢ = 3 and check that

d d
@Mwi—> EBMWi1/\Wi2 — @ Mw;, N wiy N wiy
7 11 <i2 11 <t2<13

is exact. Write an element 7 of the middle module as

n
N =mwi N\ws +wi A <Z niwz) + Z Pijwi N\ wj.

i=3 2<i<j

Assume dn = 0. Looking at the coefficient of wy A ws A ws, it follows

fsm = fans — fipas € (f1, f2) M.

Therefore by hypothesis m = fiq1 + faqa, ¢i € M. Replace n by n — d(quw2 — gawi) and
the coefficient m becomes 0. Assuming we have any n with m = 0, look at the coefficient of
w1 Awa Aw;, i > 3. It follows
Jani = fipes € 1 M.
Therefore n; = f1g;, ¢; € M. Replace n by n —d(>_;"_ 5 giw;) and now all the coefficients m, n;
are 0. Assuming we have any n with m = n; = 0, look at the coefficient of wi Aw; Aw;, 2 <7 < j.
It follows that
fipi; =0
whence by hypothesis p;; = 0, hence 7 = 0. This idea works for any t. U

Combining the two propositions, we get:

PROPOSITION 5.3. Let R be a graded ring generated by homogeneous elements f; € Ry,
1 <i<mn. Let M be a graded R-module. Fiz an integer t and assume® that, for every v, and
every s, 1 < s <t, f¥ is a non-zero-dwisor in M/(f{,..., fV_1)- M. Then
a) Ift > 1, My — I'(Proj R, M(d)) 18 injective for all d.
b) Ift > 2, My — I'(Proj R, M(d)) is an isomorphism for all d.

8A closer analysis shows that if this condition holds for v = 1, it automatically holds for larger v.
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¢) Ift >3, Hi(Proj R, M(d)) = (0), 1 <i <t —2, for all d.

This follows by combining Propositions 5.1 and 5.2, taking note that we must augment the
Cech complex C*(U, M(d)) by “0 — My —” to get the lim of Koszul complexes (and also using
the fact that a direct limit of exact sequences is exact).

COROLLARY 5.4. Let S be a ring. Then

a)
S-module of homogeneous polynomials
f(Xo,..., X)) of degree d

is an isomorphism for all d € 7Z,
b) H(PY, Opi(d)) = (0), foralld€ Z, 1 <i<1—1.

(P, Opi(d))

PROOF. Apply Proposition 5.3 to R = S[Xo,..., X;|,n=10+1, f; = X;—1,1 <i<[+1and
M = R. Then in fact multiplication by X ; is injective in the ring of truncated polynomials:

1) R

R/(Xg,. ., X

so Proposition 5.3 applies with t = n. O

On the other hand, for any quasi-coherent F on P s, using the affine covering U; = (IP)ZS) X;s
0 <1 <, we get non-zero alternating cochains C’Zﬂt (U, F) only for 0 < i < [. Therefore:

(5.5) HY{(PL, F) = (0), 4> 1, all quasi-coherent F.

If we look more closely, we can describe the groups H'(Pk, Opi(d)) too. Look first at the
general situation R, (f1,..., fn), M

e (U, M)
= CnoN U, M) /6(C )

alt alt

H" (U, M) = H"(C:

= MU N---NU,) ZresM(U1ﬂ~-ﬁi,...,ﬂUn)

= ()’ /3 ()

Thus in the special case:

H' (P, Opi(d)) =elements of degree d in the S[Xj, ..., X;]-module

l
S[Xo, .-, Xil(7 ;) Z S[Xo,-» Xl x,)

5.6
(5.6) ~S-module of rational functions
D CapunaXp® o X
a; <—1
Sai=d
In particular H'(Opi(d)) = (0) if d > —1 — 1. It is natural to ask to what extent this is a
canonical description of H! — for instance, if you change coordinates, how do you change the

description of an element of H' by a rational function. The theory of this goes back to Macaulay
and his “inverse systems”, cf. Hartshorne [58, Chapter III].
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Koszul complexes have many applications to the local theory too. For instance in Chapter
V, we presented smooth morphisms locally as:

X = SpecR[Xl, e 7Xn+T]/(f17 .- -»fr)
|
Y = Spec R

and in Proposition V.3.19, we described the syzygies among the equations f; locally. We can
strengthen Proposition V.3.19 as follows: let x € X, y = f(x) so that

Orx =0y Xi,.. .. Xngrlp/(f1o- - fr)
for some prime ideal p. Then I claim:
K ((f),0pv[X1,. ..., Xnirlp) — Oz x — 0
is a resolution of O, x as module over Oy [X1,..., Xp4r]p. This follows from the general fact:

PROPOSITION 5.7. Let R be a reqular local ring, M its mazimal ideal and let f1,..., fr € M
be independent in M/M?. Then

0— K°((f),R) — -+ — K"((f),R) — R/(f1,..., fr) — 0

18 exact.
Proor. Use Proposition 5.2. O

Proposition 5.7 may also be applied to prove that if R is regular, fi,..., f, € M are inde-
pendent in M/M?, then:

Tor®(R/(f1,. .\ fu) R/ (fext, - fn)) = (0), i>0.

(cf. discussion of Serre’s theory of intersection multiplicity, §V.1.)

6. Computing cohomology (3): Generate F by “known” sheaves

There are usually no projective objects in categories of sheaves, but it is nontheless quite
useful to examine resolutions of the type:

=& — & — & —F —0

where, for instance, the &; are locally free sheaves of Ox-modules (on affine schemes, such &;
are projective in the category of quasi-coherent sheaves).

Let S be a noetherian ring. We proved in Theorem II1.4.3 due to Serre that for every
coherent sheaf F on ]P’f9 there is an integer ng such that F(ng) is generated by global sections.
This means that for some mg, equivalently,

a) there is a surjection
O];;;O — F(no) — 0
or
b) there is a surjection
(’)Pls(—no)mo — F — 0.
Iterating, we get a resolution of F by “known” sheaves:

w0 = Opt (=n1)™ — Opi (—1)™ — F — 0.

We are now in a position to prove Serre’s Main Theorem in his classic paper [99]:
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THEOREM 6.1 (Fundamental theorem of F.A.C.). Let S be a noetherian ring, and F a
coherent sheaf on IP’IS. Then
1) HY(PY, F(n)) is a finitely generated S-module for alli >0, n € Z.
2) Ing such that H (P, F(n)) = (0) if i > 1, n > ny.
3) Every F is of the form M for some finitely generated graded S[Xo, ..., X;|-module M ;
and if F = M where M is finitely generated, then Iny such that M, — HO(IF’{g,]:) is

an isomorphism if n > nq.

PrOOF. We prove (1) and (2) by descending induction on i. If ¢ > [, then as we have
seen H'(F(n)) = (0), all n (cf. Proposition 4.2). Suppose we know (1) and (2) for all F and
1> 19 > 1. Given F, put it in an exact sequence as before:

0—§¢— (’)st(—nl)”? — F — 0.
For every n € Z, this gives us:
0—G(n) — O]st(n —n1)" — F(n) — 0,

hence
H®(Opi (n —m1))" — H*(F(n)) — H**(G(n)).
By induction H*1(G(n)) is finitely generated for all n and (0) for n >> 0 and by §5, H' (Opg (n—
n1)) is finitely generated for all n and (0) for n > 0: therefore the same holds for F(n).
The first half of (3) has been proven in Proposition 111.4.4. Suppose F = M. Let R =
S[X(), e 7Xl] and let
P R(-ns) — B R(-me) — M — 0

B [}
be a presentation of M by twists of the free rank one module R. Taking N, this gives a
presentation of F:
(6.2) &y O (—ng) — & Opt (—ma) — F — 0.
B «

Twisting by n and taking sections, we get a diagram:

(63) @,8 Rn*nﬁ Rnfma Mn 0

: o

D3 L(Op, (n — 1)) —— B I'(Opt (0 — ma)) —— HO(F(n)) —— 0

with top row exact, but the bottom row need not be so. But break up (6.2) into short exact
sequences

0—— G —— BaOp(=Ma) — F ——0
0—H—— D Op(-15) — G ——0.

Choose n1 so that
H'(G(n)) = H'(H(n)) = (0), n>n.
Then if n > ny

0 —— H(G(n)) —— Do H(Opt (n — ma)) —— HO(F(n)) — 0
0 —— HO(H(n)) —— Do H(Opt (n — 1)) —— HO(G(n)) —— 0

are exact, hence so is the bottom row of (6.3). This proves (3). g
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COROLLARY 6.4. Let f: X — Y be a projective morphism (cf. Definition 11.5.8) with Y a
noetherian scheme. Let L be a relatively ample invertible sheaf on X. Then for all coherent F
on X:

1) R'f.(F) is coherent on Y.
2) Ing such that R f.(F @ L&) = (0) ifi > 1, n > np.
3) Iny such that all the natural map

Ff(FoLe) — Fo Lo
s surjective if n > ny.

PROOF. Since Y can be covered by a finite set of affines, to prove all of these it suffices
to prove them over some fixed affine U = Spec R C Y. Then choose n > 1 and (sg,...,sk) €
D(f~1(U),L£%") defining a closed immersion i: f~1(U) < P%. Let X' C PX be the image of 4,
and let F, £’ be coherent sheaves on P}, (0) outside X’ and isomorphic on X’ to F]| -1y and
L|s-1(). By construction Ox/(1) = (L')®". Then applying Serre’s theorem (Theorem 6.1):

1) Rif.(F)|ly = (HI(X',F')) is coherent.
2) For any fixed m,

R fu(F @ L9y 2= (X' F' @ (L))
HY (X' (F & (L£)2™ W)

(
(

= (0), if v > 1.
f

Q

Apply this for m =0,1,...,n — 1 to get (2) of Corollary 6.4.

3) For any fixed m,
Fr R F @ L2 gy = HOX, F oo (£)207) @ Ox
= HO(X', F' ® (L')*™(v)) ®r Ox
and this maps onto F' @ (L)®™ if v > 1.
Apply this for m =0,1,...,n — 1 to get (3) of Corollary 6.4. O

Combining this with Chow’s lemma (Theorem I1.6.3) and the Leray spectral sequence (The-
orem 3.5), we get:

THEOREM 6.5 (Grothendieck’s coherency theorem). Let f: X — Y be a proper morphism
with Y a noetherian scheme. If F is a coherent Ox-module, then R'f.(F) is a coherent Oy -
module for all i.

PROOF. The result being local on Y, we need to prove that if Y = Spec S, then H*(X, F) is
a finitely generated S-module. Since X is also a noetherian scheme, its closed subsets satisfy the
descending chain condition and we may make a “noetherian induction”, i.e., assume the theorem
holds for all coherent G with Supp G ; Supp F. Also, if Z C Oy is the ideal of functions f such
that multiplication by f is 0 in F, we may replace X by the closed subscheme X', Ox = Ox /Z.
This has the effect that Supp F = X. Now apply Chow’s lemma to construct

X/
V
X with 7 and f o 7w projective

g

Y
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where res7: 771 (Uy) — Up is an isomorphism for an open dense Uy C X. Now consider the
canonical map of sheaves a: F — 7. (7*F) defined by the collection of maps:

aU): FIU) — 7* F(rU) = o (x*)(U).

F coherent implies 7*F coherent and since 7 is projective, m,(7*F) is coherent by Corollary
6.4. Look at the kernel, cokernel, and image:

0 =K —F —— 5 m(r*F) = Ky — 0.

NS

F/K1

O/' \0

Since « is an isomorphism on Uy, Supp K; C X \ Uy ; X. Thus H’(K;) are finitely generated
S-modules by induction. But now using the long exact sequences:

H'™Y(Ky) —— H'(F/K1) — H'(m.7"F)
+

|
finitely generated
|

H"ZKIQ) —— HY(F) —— H'(F/Ky)

it follows readily that if Hi(m,m*F) is finitely generated, so is H*(F). But now consider the
Leray spectral sequence:
HP(Rim,(n*F)) = B} = E" = H"(m*F)
———
finitely generated S-module

because X’ is projective
over Spec S.

If ¢ > 1, then Rim.(7*F)|y, = (0); and since 7 is projective, R, (7*F) is coherent by Corollary
6.4. Therefore by noetherian induction, HP(RIm,(7*F)) is finitely generated if ¢ > 1. In other
words, we have a spectral sequence of S-modules with E™ (all n) and EY? (¢ > 1) finitely
generated. It is a simple lemma that in such a case Ego must be finitely generated too. (]

7. Computing cohomology (4): Push F into a coherent acyclic one

This is a variant on Method (1) taking advantage of what we have learned already — that
at least on Pfg there are plenty of coherent acyclic sheaves obtained by twists. It is the closest
in spirit to the original Italian methods out of which cohomology grew. For simplicity we work
only on P} (and its closed subschemes) for £ an infinite field for the rest of §7.

Let F be coherent on P}. Then if F(Xo,...,X,) is a homogeneous polynomial of degree d,
multiplication by F defines a homomorphism:

F = F(d).

If d is sufficiently large, H'(P?, F(d)) = (0), i > 0, and the cohomology of F can be deduced
from the kernel K1 and cokernel s of F' as follows:

0K —>F——— Fd) —Ky—0

N

F/K1

0/ \0
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(7.1) — H{(Ky) — HY(F) — H(F/K1) ————— H*HY(K) ——

-1
HI7Y(KCy), if i > 2
HO(Ky)/HO(F(d)), if i = 1.

This reduces properties of the cohomology of F to those of Xy and o which have, in general,
lower dimensional support. In fact, one can easily arrange that F' is injective, hence K1 = (0)
too. In terms of Ass(F), defined in §I1.3, we can give the following criterion:

PROPOSITION 7.2. Given a coherent F on P}, let Ass(F) = {z1,...,2¢}. Then F: F —
F(d) is injective if and only if F(xy) # 0, 1 < a <t (more precisely, if v, ¢ V(X,,), then the
function F/XZ is not 0 at x,).

PROOF. Let U, = PP\ V(X,,). If (F/X¢ )(z,) = 0, then F/X¢ =0 on {z,} NU,. But
ds € F(U,) with Supp(s) = {z,} N Uy, so (F/XZ)N s =0if N > 0. Choose N, so that
(F/X2 )Ne . g0 but (F/XZ )Netl. 5 =0. Then

P (}({;)N 5= 0 in F(d)(U,)

so F' is not injective. Conversely if F'(z,) # 0 for all a and s € F(U) is not 0, then for some a,
Sz € Fu, ismot 0. But F/X? is a unit in O,,, so (F/XZ ) s,, #0, 50 F - 54, # 0. O

Assuming then that F' is injective, we get
H{(F) —=—— HI"Y(K,) if i > 2
(7.1%)
HY(F) —=— H°(Ky)/ Image H°(F(d)).

It is at this point that we make contact with the Italian methods. Let X C P} be a projective
variety, i.e., a reduced and irreducible closed subscheme. Let D be a Cartier divisor on X and
Ox (D) the invertible sheaf of functions “with poles on D” (cf. §II1.6). Then Ox (D), extended
by (0) outside X, is a coherent sheaf on P} of Opn-modules (cf. Remark after Corollary 3.8) and
its cohomology may be computed by (7.1%).

In fact, we may do even better and describe its cohomology by induction using only sheaves
of the same type Ox(D)! First, some notation —

DEFINITION 7.3. If X is an irreducible reduced scheme, ¥ C X an irreducible reduced
subscheme and D is a Cartier divisor on X, then if Y ¢ Supp D, define Try D to be the Cartier
divisor on Y whose local equations at y € Y are just the restrictions to Y of its local equations
at y € X. Note that:

Oy(TI“y D) = Ox(D) ®0X Oy.

Now take a homogeneous polynomial F' endowed with the following properties:

a) X ¢ V(F) and the effective Cartier divisor H = Trx (V(F")) is reduced and irreducible,
b) no component D; of Supp D is contained in V(F).

It can be shown that such an F' exists (in fact, in the affine space of all F’’s, any F outside a
proper union of subvarieties will have these properties). Take a second F’ with the property

c) HZV(F)
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and let H' = Trx (V(F")). Start with the exact sequence
0 — Ox(—H) — Ox — Oy —0
and tensor with Ox (D + H'). We find
0—Ox(D+H —H) — Ox(D+ H') — Og(Try D+ Tryg H') — 0.
But the first sheaf is just Ox (D) via:

Ox (D) 2V o (D + B — H)
and the second sheaf is just Ox(D)(d) and the whole sequence is the same exact sequence as
before:
multiplication
by F
(74) 00— Ox(D) —2"— Ox(D)(d) Ko 0
multiplicationJN Nlmultiplication
by F/F’ ~ ~ by F/F’
00— Ox(D—i—H/ — H) ﬁoX(D+H/) —_— OH(TTHD+TFHH/) — 0
natura.

inclusion

Thus K2 ~ Oy(Try D + Try H'). This inductive precedure allowed the Italian School to
discuss the cohomology in another language without leaving the circle of ideas of linear systems.
For instance

H'(Ox(D)) = Coker [H*(Ox(D + H')) — H*(Op(Try D + Try H'))]
space of linear conditions that must be imposed

=~ | on an f € R(H) with poles on Try D + Try H' before
it can be extended to an f € R(X) with poles in D + H’

Classically one dealt with the projective space | D+ H'|x of divisors V(s), s € H*(Ox(D+ H')),
(which is just the set of 1-dimensional subspaces of H*(Ox (D + H'))), and provided dim X > 2,
we can look instead at:

{ subset of |D + H'|x of divisors

Try
—— | Trg D + Tryg H’
FE with H ¢ Supp E } [ Tra D+ T H'lu

Et Tryg E.

Then
dim H'(Ox (D)) =codimension of Image of Try, called

the “deficiency”of Try |D + H'|x.

We go on now to discuss another application of method (4) — to the Hilbert polynomial.
First of all, suppose X is any scheme proper over k and F is a coherent sheaf on X. Then one

defines:
dim X ' '
X(F) = Y (=1) dimy H'(X, F)
(7.5) =

= the Euler characteristic of F,

which makes sense because the H® are finite-dimensional by Grothendieck’s coherency theorem
(Theorem 6.5). The importance of this particular combination of the dim H*’s is that if

0—F1 — Fo— F3—0



260 VII. THE COHOMOLOGY OF COHERENT SHEAVES

is a short exact sequence of coherent sheaves, then it follows from the associated long exact
cohomology sequence by a simple calculation that:

(7.6) X(F2) = x(F1) + x(F3).

This makes x particularly easy to compute. In particular, we get:

THEOREM 7.7. Let F be a coherent sheaf on P}. Then there exists a polynomial P(t) with
deg P = dim Supp F such that

X(F(v)) =P(v), alvelZ.
In particular, by Theorem 6.1, there exists an vy such that
dim H(F(v)) = P(v), ifvEZ, v> .
P(t) is called the Hilbert polynomial of F.

PrOOF. This is a geometric form of Part I [87, (6.21)] and the proof is parallel: Let L(X)
be a linear form such that L(z,) # 0 for any of the associated points z, of F. Then as above
we get an exact sequence

()—>]-"i>]-'(1)—>g—>()
for some coherent G, with
Supp G = Supp F NV (L)
hence
dim Supp G = dim Supp F — 1.
Tensoring by Opn (1) we get exact sequences:

(7.8) 00— F(l) —F(l+1) —G(l) —0

for every | € Z, hence
X(F(+1)) = x(F(1) +x(G(1)).
Now we prove the theorem by induction: if dim Supp F = 0, Supp F is a finite set, so Supp G = ()
and F(I) = F(I+1) for all I by (7.8). Therefore x(F (1)) = x(F) = constant, a polynomial of
degree 0! In general, if s = dim Supp F, then by induction x(G(1)) = Q(I), @ a polynomial of
degree s — 1. Then
MF(+1) = x(FD) = QM)

hence as in Part I [87, (6.21)], x(F (1)) = P(l) for some polynomial P of degree s. O

This leads to the following point of view. Given F, one often would like to compute
dimy I'(F): for F = Ox (D), this is the typical problem of the additive theory of rational func-
tions on X. But because of the formula (7.6), it is often easier to compute either x(F) directly,
or dimy I'(F(v)) for v > 0, hence the Hilbert polynomial, hence x(F) again. The Italians called
X(F) the virtual dimension of I'(F) and viewed it as dimI'(F) (the main term) followed by an
alternating sum of “error terms” dim H*(F), i > 1. Thus one of the main reasons for computing
the higher cohomology groups is to find how far dim I'(F) has diverged from x(F).

Recall that in Part I [87, (6.28)], we defined the arithmetic genus p,(X) of a projective
variety X C P} with a given projective embedding to be

Pa(X) = (=1)"(P(0) = 1)
where P(x) = Hilbert polynomial of X, r = dim X.

It now follows:



7. COMPUTING COHOMOLOGY (4): PUSH F INTO A COHERENT ACYCLIC ONE 261
COROLLARY 7.9 (Zariski-Muhly).
pa(X) = dim H"(Ox) — dim H" }(Ox) + -+ + (—1)" "t dim H'(Ox)
hence po(X) is independent of the projective embedding of X .

PROOF. By Theorem 7.7, P(0) = x(Ox) so the formula follows using dim H°(Ox) = 1
(Corollary 11.6.10). O

I'd like to give one somewhat deeper result analyzing the “point” vis-a-vis tensoring with
O(v) at which the higher cohomology vanishes; and which shows how the vanishing of higher
cohomology groups alone can imply the existence of sections:

THEOREM 7.10 (Generalized lemma of Castelnuovo and syzygy theorem of Hilbert). Let F
be a coherent sheaf on P;. Then the following are equivalent:

i) HI(F(~i) = (0), 1 <i<n,
ii) H(F(m)) = (0), if m+i>0,i>1,
iii) there exists a “Spencer resolution”:

0— Opn(—n)™ — Opn(—n+ 1)1 — --- — Opn(—1)"" — Opl, — F — 0.
If these hold, then the canonical map
H°(F) ® H%(Opn (1)) — H(F(1)
is surjective, | > 0.

Proor. We use induction on n: for n = 0, P}’ = Speck, F = k™ and the result is clear.
So we may suppose we know the result on P;'~!. The implication (ii) = (i) is obvious and
(iii) == (ii) follows easily from what we know of the cohomology of Opn(l), by splitting the
resolution up into a set of short exact sequences:

0— Opn(—n)™ — Opn(—n+ 1) — Fng — 0

So assume (i). Choose a linear form L(X) such that L(z,) # 0 for any associated points z, of
F, getting sequences

0—Fl-1)25 F1) —G(1) — 0, allleZ

where G is a coherent sheaf on the hyperplane H = V(L). In fact G is not only supported on H
but is annihilated by the local equations L/X; of H: hence G is a sheaf of Og-modules. Since
H= ]P’Z_l, we are in a position to apply our induction hypothesis. The cohomology sequences
give:

— HY(F(—i)) — HY(G(—i)) — HY(F(-i—1)) —.

Applying this for ¢ > 1, we find that G satisfies (i) also; applying it for ¢ = 0, we find that
HO(F) — H°(G) is surjective. Therefore by the theorem for G,

H%(G) ® H*(On(l)) — H(G(1)
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is surjective. Consider the maps:

HO(F) @ HO(Opn (1)) — HO(F(1))

] &

H°(G) @ H(Op (1)) — H°(G(1)).

We prove next that « is surjective for all [ > 0. By Proposition II11.1.8, HY(Op(I)) is the space
of homogeneous polynomials of degree [ in the homogeneous coordinates on H: therefore each
is obtained by restricting to H a polynomial P(Xy,...,X,) of degree [ and H°(Opn(l)) —
H°(Op (1)) is surjective. Therefore « is surjective. It follows that if s € H°(F(l)), then §(s) =
YN, @70y, Uy € HY(G), v, € H°(Og(1)); hence lifgint %, to u, € HY(F), 14 to v, € HO(Opn (1)),
s — Y uy®v, lies in Ker 8. But Ker 8 = Image of HY(F (I — 1)) under the map ®L: F(I—1) —
F(I) and by induction on I, anything in H(F(I — 1)) is in H*(F) ® H°(Opn (I — 1)). Thus

5= > ug®u, = (Zu; ® q/q) ©L, e HF), v, e H(Op(l—1)).
Thus
s = Zuq ® vq + Zu; ® (vg ® L), where v, ® L € H°(Opn (1))

as required.
Next, note that this implies that F is generated by H°(F). In fact, if x € P}, z ¢ V(X;),
and s € F,, then X]l~ -5 € F(l)g. For 1> 0, F(l) is generated by H°(F(l)). So

Xk s e HO(F(1)) - (Opn),

[
(H(F) ® HO(Opn(1))) - (Opn),

ie.,
Xj-s= Zuq ®vg-ag, uq € H'(F), vg € HY(Opn(l)), ag € (Opn),
hence
s = Z Ug @ X! Qq

H]/—’

E(O[P’")z
We can now begin to construct a Spencer resolution: let sq,...,s,, be a basis of H O(F) and
define

Op — F —0

by

70

(a1y...,ap,) — Zaqsq.

q=0
If Fj is the kernel, then from the cohomology sequence it follows immediately that F; (1) satisfies
Condition (i) of the theorem. Hence F7(1) is also generated by its sections and choosing a basis
t1, ...ty of HO(F1(1)), we get the next step:

Opn — F1(1) — 0

T1
(@1,...,ap) — Zaqtq
q=1
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hence
Opn(—1)"t —— Oph — F — 0.
~., 7
F1
0 / \ 0
Continuing in this way, we derive the whole Spencer resolution. It remains to check that after

the last step:
0— fn+1 — O[Pn(—n)rn — Fn — 0,

the sheaf F,, ;1 is actually (0)! To prove this, we compute H'(F,,41(l)) for 0 <i <n, 0 <1< n,
using all the cohomology sequences (*),, associated to:

0 — Fmt1 — Opn(—m)™ — Fp — 0.

We get:
a) Ho(Fni1(1)) by (0 (0) (using injectivity of H*(F™) — HY(F,(n)) when [ = n)
b)
by (0 (0) if { =n (using surjectivity of
Y (¥)n
HO(O™) — H°(Fn(n)))
HY(Fpi1) ~ HYF,() = (0) ifl<n (using injectivity of
by (#)n by (*)n—1
HY(O™=1) = HY(Fp-1(n —1))
when | =n —1)
x)
H"(Fopa(l) = HNF(l) =
(Fn+1(D) by (o (Fn(D)) by (o
- = HY(F()
by (%)2
= if { > 1 (using surjectivity of
by (+)1
HO(O(1 = 1)) — HO(F(1))
~ H%F) = (0) ifl=1 (using injectivity of
by (%)1 by (+)o

HO(Or0) — HO(F)).

So all these groups are (0). Thus x(F,+1(l)) = 0, for n 4+ 1 distinct values I = 0,...,n. Since
X(Fn+1(1)) is a polynomial of degree at most n, it must be identically 0. But then for I > 0,
dim HY(F11(1)) = x(Fus1(1)) = 0, hence H°(F,41(1)) = (0) and since these sections generate
Fo+1(D), Fntr1(l) = (0) too. O

8. Serre’s criterion for ampleness

This section gives a cohomological criterion equivalent to ampleness for an invertible sheaf
introduced in §IIL.5. We apply it later to questions of positivity of intersections, formulated in

terms of the Euler characteristic.
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THEOREM 8.1. Let X be a scheme over a noetherian ring A, embedded as a closed subscheme
in a projective space over A, with canonical sheaf Ox(1). Let F be coherent on X. Then for
alli >0, H(X, F) is a finite A-module, and there exists an integer ng such that for n > ng we
have

HY(X,F(n)) =0 foralli>1.

Proor. We have already seen in Corollary 3.8 that under a closed immersion X < P’ the
cohomology of F over X is the same as the cohomology of F viewed as a sheaf over projective
space. Consequently we may assume without loss of generality that X = P”,, which we denote
by P.

The explicit computation of cohomology H*(P, Op(n)) in Corollary 5.4 and (5.6) shows that
the theorem is true when F = Op(n) for all integers n. Now let F be an arbitrary coherent
sheaf on P. We can represent F in a short exact sequence (cf. §6)

0—G¢G—=E—F—0

where £ is a finite direct sum of sheaves Op(d) for appropriate integers d, and G is defined to
be the kernel of £ — F. We use the cohomology sequence, and write the cohomology groups
without P for simplicity:

— HY(E) — HY(F) — H'TY(G) —

We apply descending induction. For i > r we have H*(F) = 0 because P can be covered by
r + 1 open affine subsets, and the Cech complex is 0 with respect to this covering in dimension
> r+1 (cf. (5.5)). If, by induction, H**1(G) is finite over A, then the finiteness of H'(€) implies
that H(F) is finite.

Furthermore, twisting by n, that is, taking tensor products with Op(n), is an exact functor,
so the short exact sequence tensored with Op(n) remains exact. This gives rise to the cohomology
exact sequence:

— HY (E(n)) — HY(F(n)) —» HYG(n)) —

Again by induction, H**}(G(n)) = 0 for n sufficiently large, and H*(€(n)) = 0 because of the
special nature of £ as a direct sum of sheaves Op(d). This implies that H'(F(n)) = 0 for n
sufficiently large, and concludes the proof of the theorem. O

THEOREM 8.2 (Serre’s criterion). Let X be a scheme, proper over a noetherian ring A. Let
L be an invertible sheaf on X. Then L is ample if and only if the following condition holds: For
any coherent sheaf F on X there is an integer ng such that for all n > ng we have

H{(X,FQLY)Y =0 foralli>1.

PROOF. Suppose that £ is ample, so L% is very ample for some d. We have seen (cf. Theorem
I11.5.4 and §I1.6) that X is projective over A. We apply Theorem 8.1 to the tensor products

FFRL,..., FeoLi!

and the very ample sheaf £¢ = Ox (1) to conclude the proof that the cohomology groups vanish
for ¢ > 1.

Conversely, assume the condition on the cohomology groups. We want to prove that L is
ample. It suffices to prove that for any coherent sheaf F the tensor product F ® L™ is generated
by global sections for n sufficiently large. (cf. Definition II1.5.1) By Definition I11.2.1 it will
suffice to prove that for every closed point P, the fibre F ® L" @ k(P) is generated by global
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sections. Let Zp be the ideal sheaf defining the closed point P as a closed subscheme. We have
an exact sequence

0— IpF — F — FRK(P) — 0.

Since L™ is locally free, tensoring with £™ preserves exactness, and yields the exact sequence
0 —=ZpFRL" — FRL — FRk(P)RL" — 0
whence the cohomology exact sequence
HY(Fo L") — H(FokP)® L") —0
because H!(ZpF ®L™) = 0 by hypothesis. This proves that the fibre at P of F® L" is generated
by global sections, and concludes the proof of the theorem. U
9. Functorial properties of ampleness

This section gives a number of conditions relating ampleness on a scheme with ampleness
on certain subschemes.

PRrROPOSITION 9.1. Let X be a scheme of finite type over a noetherian ring and L an invertible

sheaf, ample on X. For every closed subscheme Y, the restriction L|y = L ®p, Oy is ample
onY.

Proor. Taking a power of £ we may assume without loss of generality that £ is very ample
(cf. Theorem II1.5.4), so Ox(1) in a projective embedding of X. Then Ox|y = Oy (1) in that
same embedding. Thus the proposition is immediate. O

Let X be a scheme. For each open subset U we let NVil(U) be the ideal of nilpotnet elements

in Ox(U). Then Nil is a sheaf of ideals, and the quotient sheaf Ox/MNil defines a closed
subscheme called the reduced scheme X,oq. Its sheaf of rings has no nilpotent elements. If F is
a sheaf of Ox-modules, then we let

Fred = F/NF where N = Nil.
Alternatively, we can say that Freq is the restriction of F to X,eq.

PROPOSITION 9.2. Let X be a scheme, proper over a noetherian ring. Let L be an invertible
sheaf on X. Then L is ample on X if and only if Lieq s ample on X, eq.

ProoF. By Proposition 9.1, it suffices to prove one side of the equivalence, namely: if L,eq
is ample then £ is ample. Since X is noetherian, there exists an integer r such that if N' = Nil
is the sheaf of nilpotent elements, then N = 0. Hence we get a finite filtration

FONFON*FO---DN'F=0.
For each i =1,...,r — 1 we have the exact sequence
0 — N'F —=NT1F - NIF/N'F—0
whence the exact cohomology sequence
HP(X,N'F® L") — H(X,NT'Fo L") — H(X, N F/IN'F)o L").

For each i, N~ ' F /N F is a coherent Ox /N -module, and thus is a sheaf on X,.q. By hypothesis,
and Theorem 8.2, we know that

HY (X, NT'F/IN'F)® L") =0
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for all n sufficiently large and all p > 1. But N*F = 0 for i > r. We use descending induction
on i. We have
HY (X, N'F® L") =0 forallp>0,i>r,
and n sufficiently large. Hence inductively,
HP(X,N'F® L") =0 forallp>0

implies that HP(X,N*"1F ® £") = 0 for all p > 0 and n sufficiently large. This concludes the
proof. O

PROPOSITION 9.3. Let X be a proper scheme over a noetherian ring. Let L be an invertible
sheaf on X. Then L is ample if and only if L|x, is ample on each irreducible component X; of
X.

PROOF. Since an irreducible component is a closed subscheme of X, Proposition 9.1 shows
that it suffices here to prove one implication. So assume that L|x, is ample for all i. Let Z;
be the coherent sheaf of ideals defining X;, and say ¢ = 1,...,r. We use induction on r. We
consider the exact sequence

0 —1F —F—F/LF —0,
giving rise to the exact cohomology sequence
HY (X, ZFe L") — HY(X, F® L") — HP(X,(F/TW.F) @ L").
Since L|x, is ample by hypothesis, it follows that
HY(X (F/TWF)® L") =0
for all p > 0 and n > ng. Furthermore, Z; F is a sheaf with support in Xo U---U X,., so by
induction we have
HY (X, L F® L") =0
for all p > 0 and n > ny. The exact sequence then gives
HY( X, FL") =0
for all p > 0 and n > ng, thus concluding the proof. O

PROPOSITION 9.4. Let f: X — Y be a finite (cf. Definition 11.6.6) surjective morphism of
proper schemes over a noetherian ring. Let L be an invertible sheaf on Y. Then L is ample if
and only if f*L is ample on X.

PRrROOF. First note that f is affine (cf. Proposition-Definition 1.7.3 and Definition I1.6.6).
Let F be a coherent sheaf on X, so f.F is coherent on Y. For p > 0 we get:
HP(Y, fo(F)© L") = HP(Y, fo(F @ (f7£)"))
=HP(X, Fo (f*L)")
by the projection formula® and by Proposition 3.7.

ILet f: X — Y be a morphism, F an Ox-module and £ an Oy-module. The identity homomorphism
f L — f*L induces an Oy-homomorphism £ — f.f*L. Tensoring this with f.F over Oy and composing the
result with a canonical homomorphism, one gets a canonical homomorphism

This can be easily shown to be an isomophism if £ is a locally free Oy-module of finite rank, giving rise to the
“projection formula”
f*f@Oy L ;> f*(f@@x f*ﬁ)
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If £ is ample, then the left hand side is 0 for n > ng and p > 0, so this proves that f*L is
ample on X.
Conversely, assume f*£ ample on X. We show that for any coherent Oy-module G, one has

HP(Y,G® L") =0, Vp>0andn>0

by noetherian induction on Supp(G).
By Propositions 9.2 and 9.3, we may assume X and Y to be integral. We follow Hartshorne
[56, 84, Lemma 4.5, pp. 25-27] and first prove:

LEMMA 9.5. Let f: X — Y be a finite surjective morphism of degree m of noetherian integral
schemes X and Y. Then for every coherent Oy-module G on Y, there exist a coherent Ox -
module F and an Oy -homomorphism &: fo F — G®™ that is a generic isomorphism (i.e., £ is
an isomorphism in a neighborhood of the generic point of V).

PROOF OF LEMMA 9.5. By assumption, the function field R(X) is an algebraic extension
of R(Y) of degree m. Let U = Spec A C X be an affine open set. Since R(X) is the quotient
field of A, we can choose si,..., s, € A such that {s1,...,s,} is a basis of R(X) as a vector
space over R(Y). The Ox-submodule # = >, Oxs; of the constant Ox-module R(X) is
coherent. Since s1,...,s, € HY(X,H) = H*(Y, f.H), we have an Oy-homomorphism

m
n:O?m:ZOyein*H, ei—rs; (i=1,...,m),
i=1
which is a generic isomorphism by the choice of s1,..., $y. If a coherent Oy-module G is given,
7 induces an Oy-homomorphism

& H' = Homo, (fH,G) — Homo, (Oy™,G) = G,

which is a generic isomorphism. Since H' is an f,Ox-module through the first factor of Hom
and f is finite, we have H' = f.F for a coherent Ox-module F. (]

To continue the proof of Proposition 9.4, let G be a coherent Oy-module G. Let F be
a coherent Ox-module as in Lemma 9.5, and let K and C be the kernel and cokernel of the
Oy-homomorphism &: f,(F) — GP™. We have exact sequences

0 — K — fuF —>Image({) — 0

0 — Image(¢) — G — C — 0.

K and C are coherent Oy-modules, and Supp(K) & Y and Supp(C) & Y, since £ is a generic
isomorphism. Hence by the induction hypothesis, we have

HP(Y,K® L") =HP(Y,C® L") =0, Vp >0 and n > 0.

By the cohomology long exact sequence, we have

~

HP(Y, (f«F) ® L") ——— HP(Y,Image(£) ® L") —— HP(Y,G @ L™)O™
|
HP(X, F & (f*L)")

for all p > 0 and n > 0, the equality on the left hand side being again by the projection formula.
HP(X,F® (f*L)") =0 for all p> 0 and n > 0, since f*L is assumed to be ample. Hence

HP(Y,G® L") =0, Vp > 0 and n > 0.
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PROPOSITION 9.6. Let X be a proper scheme over a noetherian ring A. Let £ be an invertible
sheaf on X, and assume that L is generated by its global sections. Suppose that for every closed
integral curve C' in X the restriction L|c is ample. Then L is ample on X.

For the proof we need the following result given in Proposition VIII.1.7:

Let C’ be a geometrically irreducible curve, proper and smooth over a field k.
An invertible sheaf £’ on C’ is ample if and only if deg £ > 0.

PROOF. By Propositions 9.2 and 9.3 we may assume without loss of generality that X is
integral. Since L is generated by global sections, a finite number of these define a morphism

p: X — P

such that £ = ¢*Op(1). Then ¢ is a finite morphism. For otherwise, by Corollary V.6.5 some
fiber of ¢ contains a closed integral curve C. Let ¢(C) = P, a closed point of P’. Let f: C' — C

be a morphism obtained as follows: C” is the normalization of C' in a composite field k(P)R(C)
obtained as a quotient of

k(P) @iy R(C),
where k(P) is the algebraic closure of k(P). (C’ is regular by Proposition V.5.11, hence is
proper and smooth over k(P).) Since L|¢ is ample, so is L' = f*£ by Proposition 9.4. But
then deg £’ > 0 by Proposition VIII.1.7, while £ = f*£ = f*¢*Op(1). This contradicts the
fact that ¢(C) = P is a point. Hence ¢ is finite. Propositions 9.2, 9.3 and 9.4 now conclude the

proof. O

10. The Euler characteristic
Throughout this section, we let A be a local artinian ring. We let
X — Spec(A4)

be a projective morphism. We let F be a coherent sheaf on X.

By Theorem 8.1, the cohomology groups H'(X,F) are finite A-modules, and since A is
artinian, they have finite length. By (5.5) and Corollary 3.8, we also have H*(X,F) = 0 for i
sufficiently large. We define the Euler characteristic

[e.9]

XA(X, F) = xa(F) =Y _(~1)"length H'(X, F).
=0

This is a generalization of what we introduced in (7.5) in the case A = k a field. As a general-
ization of Theorem 7.7, we have:

ProrosiTioN 10.1. Let
0—F —F—F"—0

be a short exact sequence of coherent sheaves on X. Then
Xa(F) = xa(F) + xa(F").
ProOF. This is immediate from the exact cohomology sequence
— H?(X,F) — H?(X,F) — HP(X,F") —
which has 0’s for p < 0 and p sufficiently large. cf. Lang [75, Chapter IV]. O

We now compute this Euler characteristic in an important special case.
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ProprosITION 10.2. Suppose P =P". Then
n+r n+r)n+r—1)---(n+1
wnonty = (M 47) = e )+ 1)

r!
PRrOOF. For n > 0, we can apply Corollary 5.4 to conclude that
x4(Op(n)) = length H°(P, Op(n)),

for alln € Z.
r

which is the number of monomials in Ty, . .., T, of degree n, and is therefore equal to the binomial
coefficient as stated. If n < —r — 1, then similarly by (5.6), we have

Xk (Op(n)) = (—1)"length H" (P, Op(n)).

From the explicit determination of the cohomology in (5.6) if we put n = —r —d then the length
of H"(P,Op(n)) over A is equal to the number of r-tuples (qo,...,q,) of integers ¢; > 0 such
that Y ¢; = r + d, which is equal to the number of r-tuples (g, ...,q,) of integers > 0 such
that > ¢} = d — 1. This is equal to

(d—i—kr) _(_1),ﬂ<nj7~).

Finally, let —r < n < 0. Then H*(P,Op(n)) = 0 for all i > 0 once more by Corollary 5.4 and
(5.6). Also the binomial coefficient is 0. This proves the proposition. O

Starting with the explicit case of projective space as in Proposition 10.2, we can now derive
a general result, which is a generalization of Theorem 7.7 in the case A = k a field.

THEOREM 10.3. Let A be a local artinian ring. Let X be a projective scheme over Y =

Spec(A). Let L be an invertible sheaf on X, very ample over Y, and let F be a coherent sheaf
on X. Put

Fn)=FL" forneclZ.
i) There exists a unique polynomial P(T) € Q[T such that
xA(F(n)) = P(n) for alln € Z.

ii) For n sufficiently large, xa(F(n)) = length H°(X, F(n)).
iii) The leading coefficient of P(T) is > 0.

ProOOF. By Theorem 8.1 we know that
H'(F(n))=0 fori>1and n large.

Hence y 4(F(n)) is the length of H(F(n)) as asserted in (ii). In particular, x4(F(n))is >0
for n large, so the leading coefficient of P(T) is > 0 if such polynomial exists. Its uniqueness is
obvious.

To show the existence, we reduce to the case of Proposition 10.2 by Jordan-Hé6lder techniques.
Suppose we have an exact sequence

0—F —F—F —0.

Taking the tensor product with £ preserves exactness. It follows immediately that if (i) is true
for 7/ and F”, then (i) is true for F. Let m be the maximal ideal of A. Then there is a finite
filtration

FOmFOm’FO--Dm'F =0.

By the above remark, we are reduced to proving (i) when mJ = 0, because m annihilates each
factor sheaf m/ F/m/T1F.
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Suppose now that mF = 0. Then F can be viewed as a sheaf on the fibre X, where y is the
closed point of ¥ = Spec(A). The restriction of £ to X, is ample by Proposition 9.1, and the
cohomology groups of a sheaf on a closed subscheme are the same as those of that same sheaf
viewed on the whole scheme. The twisting operation also commutes with passing to a closed
subscheme. This reduces the proof that x4(F(n)) is a polynomial to the case when A is a field
k. Thus we are done by Theorem 7.7. U

When A = k is a field, the length is merely the dimension over k. For any coherent sheaf F
on X we have by definition
d

X(F)=> (-1)'dim; H(X, F),
i=0
where d = dim X. By Theorem 7.7, we know that
P(n) = x(F(n))

is a polynomial of degree e where e = dim Supp F.

REMARK. (Added in publication) As a part of the results on cohomology and base change,
Grothendieck showed in EGA [1, Chapter III, Theorem 7.9.4] the following:

Let f: X — Y be a proper morphism of noetherian schemes, and F a coherent
Ox-module flat over Y. Then

Y 5y x(Xy, Fy) = ) (=1) dimyy H' (X, F,)
=0
is locally constant, where
Xy = X xy Spec(k(y)) a scheme over k(y)
Fy = F Roy., k(y) an Ox,-module.

For the proof, see also Mumford [85, Chapter II, §5].

11. Intersection numbers

Throughout this section we let X be a proper scheme over a field k. We let
X = Xk-

THEOREM 11.1 (Snapper). Let L1, ..., L, be invertible sheaves on X and let F be a coherent
sheaf. Let d = dim Supp(F). Then there exists a polynomial P with rational coefficients, in r
variables, such that for all integers ny,...,n, we have

Pny,....n.) =x(L' @@ L' @ F).
This polynomial P has total degree < d.

PROOF. Suppose first that Lq,..., L, are very ample. Then the assertion follows by induc-

tion on 7 and Theorem 7.7 (generalized in Theorem 10.3). Suppose X projective. Then there

exists a very ample invertible sheaf £y such that £oL, ..., LoL, are very ample (take any very
ample sheaf, raise it to a sufficiently high power and use Theorem I11.5.10). Let

Q(no,n1,...,ny) = x (L5’ @ (LoL1)" @ -+ @ (LoLr)" @ F).
Then
P(ni,...,n.) =Q(—ny — - —np,ny, ..., nyp)

and the theorem follows.
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If X is not projective, the proof is more complicated. We follow Kleiman [70]. The proof
proceeds by induction on d = dim Supp(F). Since the assertion is trivial if d = —1, i.e., F = (0),
we assume d > 0.

Replacing X by the closed subscheme Specy (Ox/ Ann(F)) defined by the annihilator ideal
Ann(F), we may assume Supp(F) = X. The induction hypothesis then means that the assertion
is true for any coherent Ox-module F with Supp(F) & X, i.e., for torsion Ox-modules F.

Let K be the abelian category of coherent O x-modules, and let K’ € Ob(K) consist of those
F’s for which the assertion holds. K’ is obviously exact in the sense of Definition 11.6.11. By
dévissage (Theorem I1.6.12), it suffices to show that Oy € K’ for any closed integral subscheme
Y of X. In view of the induction hypothesis, we may assume Y = X, that is, X itself is
integral. Then by Proposition I11.6.2, there exists a Cartier divisor D on X such that £; =
Ox (D) and that the intersections Z = Ox(—D) N Ox as well as J = Ox(D) N Ox taken
inside the function field R(X) are coherent Ox-ideals not equal to Ox. Obviously, we have
J =Z®0Ox(D) =7 ® L. Tensoring the exact sequence 0 -+ Z — Ox — Ox/Z — 0 (resp.
0—=J — Ox = Ox/J — 0) with £ (resp. £L]*™1), we have exact sequences

0——ZI®L L L1 ®(Ox/T) ——0
|

0—JLm——rm ™t — 7l o (0x/T) — 0.

Thus tensoring both sequences with £52 ®---® L7 and taking the Euler characteristic, we have
XL @ L3 @@ L)) = X(LP T @ Ly @ @ L))
=X(LV Ly @ @ Ly @ (0x/T) = x(L T Ly @ 0 L1 ® (0x/T)).

The right hand side is a polynomial with rational coefficients in n1,...,n, of total degree < d
since Ox/Z and Ox/J are torsion Ox-modules. Hence we are done, since x(£5? ® --- @ L]'")
is a polynomial in ng,...,n, of total degree < d by induction on r. O

We recall here the following result on integral valued polynomials.

LEMMA 11.2. Let P(z1,...,x,) € Q[z1,...,2,] = Q[z] be a polynomial with rational coeffi-
cients, and integral valued on Z". Then P admits an expression

. . T+ 11 T, + 1
P(xl,...,xr):Za(zl,...,zr)< i )( Tir T>
where a(iy, ..., i,) € Z, the sum is taken for iy, ... i, >0,

<x¢¢> _ @t ti-n (@)

; A if i > 0,

and the binomial coefficients is 1 if i =0, and 0 if i < 0.

ProOOF. This is proved first for one variable by induction, and then for several variables by
induction again. We leave this to the reader. O

LEMMA 11.3. The coefficient of ny---n, in x(L]* @ --- @ LI @ F) is an integer.
PrOOF. Immediate from Lemma 11.2. O

Let us define the intersection symbol:
(L1.Lo...L,.F) = coefficient of nq - - -n, in the polynomial
XL ®--- @ LY @ F).

LEMMA 11.4.
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(i) The function (L ...Lr.F) is multilinear in Lq,...,L,.
(i) If ¢ is the coefficient of n” in x(L™ ® F), then

(L.L...L.F)=rlc (L is repeated r times.)
Proor. Let £, M be invertible sheaves. Then
XLTOMMRLE @+ QLY Q@F) =anng---ny +bmng---ny + -+
with rational coefficients a, b. Putting n = 0 and m = 0 shows that
a=(LLy...L..F) and b= (M.Ly...L,.F).
Let m = n = ny. It follows that
(LOM).Ly...L,.F)=(LLy...Lo.F)+ (MLo...L..F).

Similarly, (£7'.Ly... L. F) = —(L.Lo...L..F). This proves the first assertion.
As to the second, let P(n) = x(L£".F) and

Q(ni,...,n.) = x(LY ... L. F).

Let O be the derivative, and 0q,...,0, be the partial derivatives. Then the second assertion
follows from the relation

- 0,Q(0,...,0) = " P(0).
O

The next lemma gives the additivity as a function of F, in the sense of the Grothendieck
group.

LEMMA 11.5. Let

0 —F —F—F —0
be an exact sequence of coherent sheaves. Then
(L1... Lo F)=(Ly... Lo F)+ (Ly... L. F").
PRrOOF. Immediate since the Euler characteristic satisfies the same type of relation. O

REMARK. (Added in publication) Let X be a proper scheme over an algebraically closed
field k. For a connected noetherian scheme T' over k, consider the scheme X := X Xgpecr) 7'
over T and a coherent Oy-module F that is flat over T'. For any closed point ¢t of T, we have a
family of coherent Ox-modules F; on &; = X. By what we remarked at the end of §10,

X(X, Fp) is independent of ¢.
Consequently for invertible sheaves £;,..., L, on X, we have

(L1.Lo. .. L. Ty) is independent of ¢.
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12. The criterion of Nakai-Moishezon

Let X be a proper scheme over a field k.
Let Y be a closed subscheme of X. Then Y is defined by a coherent sheaf of ideals Zy, and

Oy = Ox /Iy

is its structure sheaf. Let Di,...,D, be divisors on X, by which we always mean Cartier
divisors, so they correspond to invertible sheaves £1 = Ox(D1),...,L, = Ox(D,). Suppose Y
has dimension r. We define the intersection number

(D1.Ds ... D,.Y) = coefficient of n - - - n, in the polynomial
XL RLE @@L @ Oy).
(D"Y)=(D...D.Y), where D is repeated r times.
LEMMA 12.1.
(i) The intersection number (D1.Ds...D,.Y') is an integer, and the function
(Dl, .. .,Dr) — (Dl .. DTY)
s multilinear symmetric.
(ii) If a is the coefficient of n" in x(L™ ® Oy ), and L = Ox (D), then (D".Y) = rla.

ProOF. This is merely a repetition of Lemma 11.4 in the present context and notation. [J

REMARK. (Added in publication) Let X be a proper scheme over an algebraically closed
field k. For a connected noetherian scheme T" over k, consider the scheme X := X Xgpecn) T’
over T and its closed subscheme ) that is flat over T" with r-dimensional fibres. We thus have a
family of r-dimensional closed subschemes ); of Xy = X parametrized by closed points ¢ of T
By what we remarked at the end of §11, we see that

(D1.Ds ... Dy Yy) is independent of .

REMARK. Suppose that Y is zero dimensional, so Y consists of a finite number of closed
points. Then the higher cohomology groups are 0, and

(Y) = x(Oy) = dim H'(Y, Oy) > 0,

because H°(Y, Oy ) is the vector space of global sections, and is not 0 since Y is affine. One can
reduce the general intersection symbol to this case by means of the next lemma.

LEMMA 12.2. Let Lq,..., L, be invertible sheaves on X such that L is very ample. Let D
be a divisor corresponding to L1 such that Dy does not contain any associated point of Oy . Let
Y’ be the scheme intersection of Y and Dy. Then

(D1...D..Y) = (Ds...D,.Y").
In particular, if D1, ..., D, are ample, then
(Dy...D..Y)>0.

PROOF. If Zy is the sheaf of ideals defining Y, and Z; is the sheaf of ideals defining Dy, the
(Zy,Z,) defines Y N D;. By §II1.6 we know that Z; is locally principal. The assumption in the
lemma implies that we have an exact sequence

(*) 0—>11®O)/—>Oy—>0yﬁ[)1—>0.
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Indeed, let Spec(A) be an open affine subset of X containing a generic point of Y, and such that
D is represented in A by the local equation f = 0, while Y is defined by the ideal I. Then the
above sequence translates to

0— fFA®R A/l — A/l — A/(I,f) — O
which is exact on the left by our assumption on f.
But 7; = [:1—1 by the definitions. Tensoring the sequence () with
LT'®---0L",
taking the Euler characteristic, and using the additivity of the Euler characteristic, we get
(Dy...D..Y)ny---n, — (Dy...D,.Y)(ny — 1)ng - - - n, + lower terms
= (Dy...D..Y")ny---n, + lower terms.

This proves the lemma. U

The intersection number (D".Y) was taken with respect to the scheme X and it is sometimes
necessary to include X in the notation, so we write

(Dl...Dr.Y)X or (ﬁlﬁrY)X

On the other hand, let Z be a closed subscheme of X. Then we may induce the sheaves to Z to
get El’Z, cos Lyl 7.

LEMMA 12.3. Let Y C Z C X be inclusions of closed subschemes. Suppose Y has dimension
r as before. Then

(L1...L,.Y)x =(L1]z.. . Lr|2.Y)z.
PROOF. In the tensor products
L@@ L ® Oy

we may tensor with Oz each one of the factors without changing this tensor product. The
cohomology of a sheaf supported by a closed subscheme is the same as the cohomology of the
sheaf in the scheme itself (cf. Corollary 3.8), so the assertion of the lemma is now clear. O

THEOREM 12.4 (Criterion of Nakai-Moishezon). Let X be a proper scheme over a field k.
Then a divisor D is ample on X if and only if (D".Y') > 0 for all integral closed subschemes Y
of dimension r, for all r < dim X.

PRrROOF. Suppose D is ample. Replacing D by a positive multiple, we may assume without
loss of generality that D is very ample. Let £ = O(D), and let £ = f*Op(1) for a projective
embedding f: X — P over k. Abbreviate # = Op(1). Then the Euler characteristic

XL ® - @ L @ Oy)
is the same as the Euler characteristic
Xe(HM @ - @ H™ ® Oy)

where Oy is now viewed as a sheaf on P. This reduces the positivity to the case of projective
space, and D is a hyperplane, which is true by Lemma 12.2.

The converse is more difficult and is the essence of the Nakai-Moishezon theorem. We assume
that (D".Y') > 0 for all integral closed subschemes Y of X of dimension r < dim X and we want
to prove that D is ample. By Propositions 9.2 and 9.3, we may assume that X is integral
(reduced and irreducible), so X is a variety.

For the rest of the proof we let £ = O(D).
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By Lemma 12.3 and induction we may assume that L|z is ample for every closed subscheme
Zof X, 7 #X.

LEMMA 12.5. For n large, H°(X, L") # 0.

PrROOF OF LEMMA 12.5. First we remark that y(£") — oo as n — oo, for by Lemma 12.1
(i),
X(L") = an® + lower terms
where d = dim X, and rla = (D?.X) > 0 by assumption.
Next, we prove that H*(L") ~ H* (L") for i > 2 and n > ng. Since X is integral, we can
identify £ as a subsheaf of the sheaf of rational functions on X. We let

I=L"'N0Ox.

Then 7 is a coherent sheaf of ideals of Ox, defining a closed subscheme Y # X. Furthermore
T ® L is also a coherent sheaf of ideals, defining a closed subscheme Z # X. We have two exact
sequences

0——7Z ——0x — 0y —0

0—I®L—0x —0z7—0.
We tensor the first with £ and the second with £*~1. By induction, H*(L"|y) = H (L") =

0 for ¢ > 1 and n > ng. Then the exact cohomology sequence gives isomorphisms for ¢ > 2 and
n > ng:
HY (T ® L") ~ HY(L") and HY (I ®L®L"Y) ~ HY(LMY.
This proves that H* (L") ~ H*(£L" ') for i > 2. But then
dim H°(L™) > x (L") — oo,

thus proving the lemma. O

A global section of L™ then implies the existence of an effective divisor E ~ nD, and since the
intersection number depends only on the linear equivalence class (namely, on the isomorphism
class of the invertible sheaves), the hypothesis of the theorem implies that (E".Y) > 0 for all

closed subschemes Y of X. It will suffice to prove that F is ample. This reduces the proof of
the theorem to the case when D is effective, which we now assume.

LEMMA 12.6. Assume D effective. Then for sufficiently large n, L™ is generated by its global
sections.

PROOF OF LEMMA 12.6. We have £ = O(D) where D is effective, so we have an exact
sequence
0— L' —0x—0p—0.

Tensoring with £ yields the exact sequence
0— L' — L —L'p —0.
By induction, £"|p is ample on D, so H*(L"|p) = 0 for n large. The cohomology sequence
H°(L™) — HO(L™|p) — HY(L" ') — HY(L™) — H'(L"|p)

shows that H'(L"~!) — H'(L") is surjective for n large. Since the vector spaces H'(L") are
finite dimensional, there exists ng such that

HY (L") — HY(L™) is an isomorphism for n > ny.
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Now the first part of the cohomology exact sequence shows that

HO(L™) — H°(L™|p) is surjective for n > ng.
Since L"|p is ample on D, it is generated by global sections. By Nakayama, it follows that £"
is generated by global sections. This proves Lemma 12.6 U

We return to the proof of Theorem 12.4 proper. If dim X = 1, then (D) > 0, X is a curve,
and every effective non-zero divisor on a curve is ample (cf. Proposition VIII.1.7 below).

Suppose dim X > 2. For every integral curve (subscheme of dimension one) C' on X, we
know by induction that £"|c is ample on C. We can apply Proposition 9.6 to conclude the
proof. O

Exercise—Modifications needed

Bezout’s Theorem via the Spencer resolution.

(1) If C is any abelian category, define

free abelian group on elements [X], one for each
isomorphism class of objects in C, modulo relations

K°C) = | [Xa] = [X1] + [X3] for each short exact sequence:
0—->X1 —>Xo—>X3—>0
in C.

If X is any noetherian scheme, define
Ko(X) = K°(Category of coherent sheaves of Ox-modules on X)
K°(X) = KY(Category of locally free finite rank sheaves of Ox-modules).

Prove:
a) 3 a natural map K%(X) — Ko(X).
b) K°(X) is a contravariant functor in X, i.e., V morphism f: X — Y, we get
f*: KO%Y) — KY(X) with the usual properties.
¢) K%(X) is a commutative ring via
[€1] - [&2] = [&1 ®ox &
and Ko(X) is a KY(X)-module via
€] [F] = [€ ®ox FI.

d) Ko(X) is a covariant functor for proper morphisms f: X — Y via

o0

F(FD) =D (-D"[RB"f.F).

n=0
(2) Return to the case where k is an infinite field.
a) Using the Spencer resolution, show that

K°(P}) — Ko(P})

is surjective and that they are both generated by the sheaves [Opn(1)], | € Z.
Hint: On any scheme X, if

0—F —& —& —0

is exact, & locally free and finitely generated, then F is locally free and finitely
generated, and locally on X, the sequence splits, i.e., &1 = F @ &.
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b) Consider the Koszul complex K*(Xo, ..., Xn; k[ Xo, ..., X,]). Take " and hence
show that [Opn(l)] € K(P}) satisty

n+1
() S (") 0m +mll =0, ez,

v=0 v
hence K9(P?) is generated by [Op« (v)] for any set of s of the form vy < v < vy+n.
Show that [Orv], 0 < v <n, L = a fixed linear space of dimension v, generate
Ko(P}).
c) Let
g _ ( eroup of rational polynomials P(t) of degree <n
"\ taking integer values at integers

free abelian group on the polynomials
= t
P,(t) = ( > 0<v<nm
v

Prove that
[F] — Hilbert polynomial of F
defines
Ko(Py) — Shy.
d) Combining (a), (b) and (c), show that KO(P?) — K (P?).
e) Using the result of Part I [87, §6C] show that if Z C P} is any subvariety, of
dimension r and

gv = pa(Z “Hy--- Hrfz/)
= arithmetic genus of the v-dimensional
linear section of Z, (1 <wv <)
d = deg Z, then in Ko(P}):
[Oz] =d-[Opr] + (1 = d = g1)[Opr—1] + (91 + 92)[Opr—2]+
A+ (=1)"(gr—1 + 9)[Opo].
(3) Because of (2), (d), Ko(IP}) inherits a ring structure. Using the sheaves Tor; defined
in §2 as one of the applications of the “easy lemma of the double complex” (Lemma

2.4), show that this ring structure is given by

n

(%) [Fu) - [Fa] =D (=1)[Tori(Fy, Fo)).

i=0
In particular, check that Tor; = (0) if ¢ > n. (In fact, on any regular scheme X, it can
be shown that Tor; = (0), i > dim X; and that (%) defines a ring structure in Ky(X)).
Next apply this with 771 = Ox,, /2 = Ox,, X1, X2 subvarieties of P} intersecting
properly and transversely at generic points of the components Wy, ..., W, of X1 N X3
(cf. Part I [87, §5B]). Show by \ Ex. 2, §5D27?7 |, that if i > 1,

dim Supp(Tori(Ox,, Ox,)) < dim X7 N Xs.

Combining this with the results of (2), show Bezout’s Theorem:

(deg X1) - (deg X3) = ) deg ;.
=1
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Hint: Show that [Opr] - [Ops] = [Opr+s—n]. Show next that if i > 1
[Tori(Ox,,Ox,)] = combination of [O:] for t < dim(X; N X3).



CHAPTER VIII

Applications of cohomology

In this chapter, we hope to demonstrate the usefulness of the formidable tool that we devel-
oped in Chapter VII. We will deal with several topics that are tied together by certain common
themes, although not in a linear sequence. We will start with possibly the most famous theorem
in all algebraic geometry: the Riemann-Roch theorem for curves. This has always been the
principal non-trivial result of an introduction to algebraic geometry and we would not dare to
omit it. Besides being the key to the higher theory of curves, it also brings in differentials in
an essential way — foreshadowing the central role played by the cohomology of differentials
on all varieties. This theme, that of De Rham cohomology is discussed in §3. In order to be
able to prove strong result there, we must first discuss in §2 Serre’s cohomological approach to
Chow’s theorem, comparing analytic and algebraic coherent cohomologies. In §4 we discuss the
application, following Kodaira, Spencer and Grothendieck, of the cohomology of ©, the sheaf
of vector fields, to deformation of varieties. Finally, in §§2, 3 and 4, we build up the tools to
be able at the end to give Grothendieck’s results on the partial computation of 71 of a curve in
characteristic p.

1. The Riemann-Roch theorem

As we discussed in §VIL.7, cohomology, disguised in classical language, grew out of the
attempt to develop formulas for the dimension of:

HO(Ox (D)) = {

(See also the remark in §II1.6.)

Put another way, the general problem is to describe the filtration of the function field R(X)
given by the size of the poles. This one may call the fundamental problem of the additive theory
of functions on X (as opposed to the multiplicative theory dealing with the group R(X)*,
and leading to Pic(X)). Results on dim H°(Ox (D)) lead in turn to results on the projective
embeddings of X and other rational maps of X to P”, hence to many results on the geometry

space of 0 and non-zero rational functions f on X
with poles at most D, i.e., (f)+ D >0 ’

and classification of varieties X.
The first and still the most complete result of this type is the Riemann-Roch theorem for
curves. This may be stated as follows:

THEOREM 1.1 (Riemann-Roth theorem). Let k be a field and let X be a curve, smooth and
proper over k such that X is geometrically irreducible (also said to be absolutely irreducible,

i.e., X Xspeck Speck is irreducible with k = algebraic closure of k). If > n;P; (P; € X, closed
points) is a divisor on X, define
deg(Y_niPi) =) nilk(P,) : K.
Then for any divisor D on X:
1) dimy H*(Ox (D)) — dimy, H}(Ox (D)) = deg D — g + 1, where g = dimy, H*(Ox) is the
genus of X, and

279
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2) (weak form) dimy H'(Ox (D)) = dimy, HO(Qﬁqk(—D)).

The first part follows quickly from our general theory like this:

PROOF OF 1). Note first that H°(Ox) consists only in constants in k. In fact H°(Ox) is
a finite-dimensional k-algebra (cf. Proposition 11.6.9), without nilpotents because X is reduced
and without non-trivial idempotents because X is connected. Therefore H%(Ox) is a field L,
finite over k. By the theorey of §IV.2, X smooth over k& = R(X) separable over k = L

separable over k; and X xj, k irreducible == k separable algebraically closed in R(X) = L
purely inseparable over k. Thus L = k, and (1) can be rephrased:

X(Ox (D)) = deg D + x(Ox).
Therefore Part (1) of Theorem 1.1 follows from:
LEMMA 1.2. If P is a closed point on X and L is an invertible sheaf, then
X(£) = X(L£(=P)) + [k(P) : k].
ProoF oF LEMMA 1.2. Use the exact sequence:
0 — L(—P) — L — L R0, k(P) — 0

and the fact that £ invertible = £ ®0o, k(P) = k(P) (where: k(P) = sheaf (0) outside P,
with stalk k(P) at P). Thus

X(£
( (0), the result follows. O

and since HO(k(P)) = k(P), H'(k

= X(£(=P)) + x(k(P))
) =

O

To explain the rather mysterious second part, consider the first case k = C, D = Zle P
with the P; distinct, so that deg D = d. Let z; € Op, x vanish to first order at P;, so that z; is
a local analytic coordinate in a small (classical) neighborhood of P,. Then if f € H°(Ox (D)),
we can expand f near each P; as:

f= % 4 function regular at P;,
Zj
and we can map
H°(Ox(D)) —— ¢

f——(a1,...,aq)
by assigning the coefficients of their poles to each f. Since only constants have no poles, this
shows right away that
dim H°(Ox (D)) < d + 1.

Suppose on the other hand we start with ay, ..., aq € C and seek to construct f. From elementary
complex variable theory we find obstructions to the existence of this f! Namely, regarding X as
a compact Riemann surface (= compact 1-dimensional complex manifold), we use the fact that if
w is a meromorphic differential on X, then the sum of the residues of w at all its poles is zero (an
immediate consequence of Cauchy’s theorem). Now Qﬁ( e is the sheaf of algebraic differential
forms on X and for any Zariski-open U C X and w € Qﬁ(/(c(U), w defines a holomorphic
differential form on U. (In fact if locally near x € U,

w = Zajdbj, aj, bj c OI’X
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then a;, b; are holomorphic functions near  too and ) | a;db; defines a holomorphic differential

form: we will discuss this rather fine point more carefully in §3 below.) So if w € T'(Q% /(C) then
write w near P; as:
w = (bj(w) + function zero at P;) - dz;, b;(w) € C.
If f exists with poles a;/z; at P;, then fw is a meromorphic differential such that:
d
fw=a; bj(w)- iy (differential regular at F;),
Zi
hence
resp, (fw) = a; - bj(w)
hence
d d
Z resp,(fw) = Zai-bi(w)
i=1 i=1
This is a linear condition on (ay,...,as) that must be satisfied if f is to exist. Now Assertion

(2) of Theorem 1.1 in its most transparent form is just the converse: if > a; - b;(w) = 0 for every
we'(Q X/(C) then f with polar parts a;/z; exists. How does this imply (2) as stated? Consider
the pairing:

€ x HO(S ) — ¢

((a;),w) ——— > a; - bi(w).
Clearly the null-space of this pairing on the HO(Qk/C) -side is the space of w’s zero at each P, i.e.,

HO(Qﬁ(/C( 3" P;)). We have claimed that the null-space on the C?%-side is Image H*(Ox (3 P)).
Thus we have a non-degenerate pairing;:

(C/ mmage HO(Ox (3 P))) x (HO(@ o)/ HO (@ e (= Y- P))) —

Taking dimensions,
() d—dimH(Ox(}_ P))+1=dim H(QY ) — dim H*(Qx,c(— > _ P)).

Now it turns out that if Z?Zl P; is a large enough positive divisor, H!(Ox(>_ P;)) = (0) and

HO(Qk/C( Y>> P;)) = (0) and this equation reads:

d—x(0x(>_ P))+1=dim H(Q ),

and since by Part (1) of Theorem 1.1, x(Ox (3. P;)) = d—g+1, it follows that g = dim H° (Qk/(c)

Putting this back in (), and using Part (1) of Theorem 1.1 again we get
g —dim HO(Q (=D P)) =d+1-x(0x(D>_R)) —dim H (0x(D | P))
=g—dim H'(Ox()_P))
hence Part (2) of Theorem 1.1.
A more careful study of the above residue pairing leads quite directly to a proof of Assertion
(2) of Theorem 1.1 when k& = C. Let us first generalize the residue pairing: if D; and Dy are

any two divisors on X such that Dy — D; is positive (Dj, D2 themselves arbitrary), then we get
a pairing:

<@ OX(D2)z/0X(D1)m> x H(Q)c(=D1)) — C
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as follows: given (f,) representing a member of the left hand side (f, € Ox(D2);) and w €
HO(Q}(/C(—Dl)), pair these to ) res;(f, - w). Here f, - w may have a pole of order > 1 at z,
but res, still makes good sense: expand

+o0
fow = ( Z cnt") dt
n=—N

where ¢ has a simple zero at z, and set res, = c_1. Since

— oy

(taken around a small loop around z), c_; is independent of the choice of t. Note that if
fh € fo+ Ox(D1)g, then fl-w — fir-w € QL hence res;(flw) = res,(fow). If Dy = Y P,
D; = 0, we get the special case considered already. By the fact that the sum of the residues of
any w € Qﬁ( X)/C is 0, the pairing factors as follows:

@, Ox(D2)s/Ox (D), H*(Q/c(=D1))

lmage H(Ox (D2))  HO@ o(-D)

(residue pairing)

It is trivial that this is non-degenerate on the right: i.e., if w € H° (Q}(/C( IN\H?(Q X/C( Dy)),
then for some (f,), res;(f,w) # 0. But in fact:

THEOREM 1.3 (Riemann-Roch theorem (continued)). (2)-strong form: For every Dy, Do
with Dy — D1 positive, the residue pairing is non-degenerate on both sides.

PROOF OF THEOREM 1.3. First, note that the left hand side can be interpreted via H!’s:
namely the exact sequence:

00— Ox(Dl) — Ox(Dg) — @Ox(Dg)/Om(Dl) — 0,

where Ox(D32),/Ox(D1), is the skyscraper sheaf at x with stalk O,(D3)/O,(D;), induces an
isomorphism

D, 0:(D2)/0:(D1)
ImageH(f(OX(Dg)l) =~ Ker [Hl((’)X(D1)) — Hl((’)X(D2))} )

Now let D9 increase. Whenever Dy < D) (i.e., D) — Dy a positive divisor), it follows that there

are natural maps:

D, Ox(D2)z/Ox(D1)s D, Ox(D3)z/Ox(D1)s
Image HO (OX (D2)) injective Image HO (OX (Dé))

and
HO(Qﬁ(/C( D)) HO(Qk/(C( Dy))
HO(QX/(C( DQ)) surjective HO(QX/C( Dlz))
compatible with the pairing. Passing to the limit, we get a pairing:

D zex R(X)/Ox(D1)s

closed HO Ql -D C.
R(X) (embedded diagonally) @x/e(=D1) —

It follows immediately that if this is non-degenerate on the left, so is the original pairing. Note
here that the left hand side can be interpreted as an H': namely the exact sequence:
0 — Ox(D1) — R(X) — @D R(X)/Ox(D1); — 0,

const ant
sheaf zeX
closed
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where R(X)/Ox(D1), is the skyscraper sheaf at z with stalk R(X)/Ox (D), induces an
isomorphism:

D zex R(X)/Ox(D1)x
closed R(X) %’HI(OX(Dl))'

Thus we are now trying to show that we have via residue a perfect pairing:

H'Y(Ox(D1)) x H*(Qyc(~=D1)) — C.

This pairing is known as “Serre duality”. To continue, suppose

I @ R(X)/Ox(D1). — C

rzeX
closed

is any linear function. Then | = ) [,, where
lz: R(X)/Ox(D1), — C

is a linear function. Now if ¢, has a simple zero at x, and n, = order of x in the divisor D,
then let

e, =1,(t,"), allveZ.

Note that ¢, = 0 if v < —n,. Then we can write [, formally:

l(f) = resg(f - wa)

where
+o0

dt
Wy = Z et - Tx

v=—ngz+1 x

is a formal differential at x; in fact
Wy € Q}X(_Dl)m

This suggests defining, for the purposes of the proof only, pseudo-section of Q}((—Dl) to be a
collection (wz)zex, closed, Where wy € Q4 (—Dy), are formal differentials and where

Z resg(f -wy) =0, all f e R(X).

zeX
closed

If we let ITIO(Q}((—Dl)) be the vector space of such pseudo-sections, then we see that

Drex R(X)/Ox(Dr)e
Lose H°(Q%(—-D;)) — C
is indeed a perfect pairing, and we must merely check that all pseudo-sections are true sections
to establish the assertion. Now let D; tend to —oo as a divisor. If D] < Dy, we get a diagram:

H°(Qk(=D})) c HY(Q4(-D}))
U
H°(Qy(=D1)) © HYQY(-Dy))
and clearly:
H°(Q (=D1)) N HY(Q (=D1)) = H* (U (—D1)).
Passing to the limit, we get:

Q%{(X) jc & Q%a(X) JC
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where
set of meromorphic pseudo-differentials, i.e.,
ﬁ%&(x)/c = { collections of w, x € 2, x ®o, R(X) such that
Yoaresy(f-wy) =0, all feR(X)

It suffices to prove that Q! = Q. But it turns out that if D} is sufficiently negative, then —D]
is very positive and

HY QX (=DY)) = H°(Ox (DY) = (0).

Thus
dim HY(Q% (=D})) = deg QL —deg D} —g+1
dim HO(Q (= D})) = dim H' (Ox (DY)
=—degD|+g—1
hence

dimc (ﬁo(g}((fp’l)) /HO(Q}((fD’l))> —2g—2—degQk (independent of D).

Thus dimg¢ (ﬁh(X)/C/Q%X(X)/(C) < 400. But ﬁ%{(x)/(c is an R(X)-vector space! So if Q! 20
then dim¢ ?21/91 = +00. Therefore Q! = Q! as required. (]

All this uses the assumption & = C only in two ways: first in order to know that if we define
the residue of a formal meromorphic differential via:

+00
res( Z cnt”dt> =c_q,
n=—N

then the residue remains unchanged if we take a new local coordinate ¢ = ait + ast®> + - -,
(a1 # 0). Secondly, if w € Q%l(X)/k’ then we need the deep fact:

Z res, w = 0.

zeX
closed

Given these facts, our proof works over any algebraically closed ground field k& (and with a
little more work, over any k at all). For a long time, only rather roundabout proofs of these
facts were known in characteristic p (when characteristic = 0, there are simple algebraic proofs
or one can reduce to the case k = C). Around the time this manuscript was being written,
Tate [111] discovered a very elementary and beautiful proof of these facts: we reproduce his
proofs in an appendix to this section. Note that his “dualizing sheaf” is exactly the same as our
“pseudo-differentials”.
We finish the section with a few applications.

COROLLARY 1.4. If X s a geometrically irreducible curve, proper and smooth over o field
k, then:

a) For all f € R(X), deg(f) = 0; hence if Ox(D1) = Ox(D2), then deg D1 = deg Ds.

This means we can assign a degree to an invertible sheaf L by requiring:
deg L =degD if L= Ox(D).
b) If deg D < 0, then H°(Ox (D)) = (0).
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PROOF. Multiplication by f is an isomorphism Ox — Ox((f)), x(Ox) = x(Ox((f))),
so by Riemann-Roch (Theorem 1.1), deg(f) = 0. Secondly, if f € H°(Ox (D)), f # 0, then
D +(f)>0,so0

deg D = deg(D + (f)) > 0.

O

COROLLARY 1.5. If X is a geometrically irreducible curve, proper and smooth over a field k
of genus g (g d:fdim HY(Ox)), then:
€

a) dimy HO(Qﬁ(/k) =g, dimy, Hl(Qk/k) =1,
b) If K is a divisor such that Qk/k >~ Ox(K) — a so-called canonical divisor — then

deg K = 2g — 2.
PrOOF. Apply Riemann-Roch (Theorem 1.1) with D = K. U

COROLLARY 1.6. If X is a geometrically irreducible curve, proper and smooth over a field k
of genus g, then deg D > 2g — 2 implies:
a) H'(Ox(D)) = (0)
b) dim H°(Ox (D)) =degD — g+ 1.

PrOOF. If Qg(/k > Ox(K), then deg(K — D) < 0, hence HO(Qﬁ(/k(—D)) = (0). Thus
by Riemann-Roch (Theorem 1.1), H'(Ox(D)) = (0) and dim H°(Ox (D)) = x(Ox(D)) =

degD — g+ 1. O

ProproSITION 1.7. | Added| Let X be a geometrically irreducible curve proper and smooth
over a field k. An invertible sheaf L on X is ample if and only if deg L > 0.

PROOF. We use Serre’s cohomological criterion (Theorem VII.8.2). Note that the coho-
mology groups HP for p > 1 of coherent Ox-modules vanish since dim X = 1 (cf. Proposition
VII.4.2). Thus we need to show that

for any coherent Ox-module F one has H'(X,F ® L") =0, n>0

if and only if deg £ > 0.
Let 7 = 1k F, i.e., the dimension of the R(X)-vector space F, (n = generic point). Then
we claim that F has a filtration

OcFkhcHC--CFa1CF=F
by coherent O x-submodules such that
Fo = torsion Ox-module
F;/Fj—1 = invertible Ox-module for j =1,...,7.

Indeed, O, x for closed points x are discrete valuation rings since X is a regular curve. Thus
for the submodule (F;)or of torsion elements in the finitely generated O, x-module F,, the
quotient F, /(Fz)tor is a free Oy x-module. Fp is the O x-submodule of F with (Fp)z = (Fz)tor
for all closed points x and F/Fy is locally free of rank r. X is projective by Proposition V.5.11.
Thus if we choose a very ample sheaf on X, then a sufficient twist of F/Fy by it has a section.
Untwising the result, we get an invertible subsheaf M C F/Fy. Let F; C F be the Ox-
submodule containing Fy such that F;/Fy O M and that (F/Fp)/M is the Ox-submodule of
torsions of (F/Fy)/M. Obviously, Fi/Fy is an invertible submodule of F/Fy with F/F; locally
free of rank r — 1. The above claim thus follows by induction.
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Since H'(X, Fo ® L") = 0 for any n again by Proposition VII.4.2, the proposition follows if
we show that

for F invertible one has HY(X,F ® L") =0, n>>0

if and only if deg £ > 0. But this is immediate, since the cohomology group vanishes if deg(F ®
L") =deg F + ndeg L > 2g — 2 by Corollary 1.6, (a). O

REMARK. |Added | Using the filtration appearing in the proof above, we can generalize
Theorem 1.1 (Riemann-Roch), (1) for a locally free sheaf £ of rank r as:

dimy, H(X,€) — dimy, H'(X, €) = deg(/\ &) + r(1 - g).

REMARK. Let X be a curve proper and smooth over an algebraically closed field k£, and £
an invertible sheaf on X. We can show:

o If deg L > 2g, then L is generated by global sections.
e If deg L > 2g + 1, then L is very ample (over k).

COROLLARY 1.8. If X is a geometrically irreducible curve smooth and proper over a field k
of genus 0, and X has at least one k-rational point x (e.g., if k is algebraically closed; or k a
finite field, cf. Proposition IV.3.5), then X = IP’}C.

PrOOF. Apply Riemann-Roch (Theorem 1.1) to Ox(z). It follows that
dimy, H°(Ox (x)) > 2,
hence 3f € H(Ox(x)) which is not a constant. This f defines a morphism
flr X — P}

such that (f')~1(co0) = {x}, with reduced structure. Then f’ must be finite; and thus O, x is a
finite O, p1-module such that

0007][»1 /moo7p1 e Ox,X/(mOOJP:l . OCLX)
I [

k k(z)

|

k

is an isomorphism. Thus O, x = Oy p1, hence f is birational, hence by Zariski’s Main Theorem
(§V.6), f’ is an isomorphism. O

COROLLARY 1.9. If X is a geometrically irreducible curve smooth and proper over a field k
of genus 1, then Q%{/k >~ Ox. Moreover the map

points x € X of degree 1 on X

X (k) = { set of k-rational } { invertible sheaves L }

T Ox ()
is an isomorphism, hence if vog € X (k) is a base point, X (k) is a group via x+y = z if and only
if

Ox () ® Ox(y) = Ox(2) @ Ox(x9).
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PROOF. Since H° (Qﬁ(/k

) # (0), Qﬁ(/k =~ Ox (D) for some non-negative divisor D. But then
deg D =2g —2 =0,

so D =0, i.e., Q%{/k = Ox. Next, if £ is an invertible sheaf of degree 1, then by Corollary 1.6,
H'(L) = (0), hence by Riemann-Roch (Theorem 1.1), dimy H°(£) = 1. This means there is a
unique non-negative divisor D such that £ = Ox (D). Since deg D =1, D = z where z € X (k).
Finally, the invertible sheaves of degree 0 form a group under ® , hence so do the sheaves of
degree 1 if we multiply them by:
(L M) — LOM R Ox(—x0).

This proves that X (k) is a group. ]

In fact, it can be shown that X is a group scheme (in fact an abelian variety) over k (cf.
§VIL.1) with origin z¢: especially there is a morphism

He: X XSpeckX — X

inducing the above addition on X (k): see Mumford [85, Chapter I, p. 36], and compare Part I
(87, §7D].

COROLLARY 1.10. If ©x = Hom(Q2,Ox) = Ox(—K) is the tangent sheaf to X, then its
cohomology is:

g=20 g=1 g>1
dim H°(©x) 3 1 0
dim H'(©x) 0 1 3g—3

In fact, the three sections of ©® when X = P,lg come from the infinitesimal section of the
3-dimensional group scheme PGLy; acting on P}; the one section of © when g = 1 comes from
the infinitesimal action of X on itself, and the absence of sections when g > 1 is reflected in the
fact that the group of automorphisms of such curves is finite. Thus three way division of curves,
according as g = 0, g = 1, g > 1 is the algebraic side of the analytic division of Riemann surfaces
according as whether they are a) the Gauss sphere, b) the plane modulo a discrete translation
group or ¢) the unit disc modulo a freely acting Fuchsian group; and of the differential geometric
division of compact surfaces according as they admit a metric with constant curvature K, with
K>0,K=0,or K <O0.

For further study of curves, an excellent reference is Serre [103, Chapters 2-5]. Classical
references on curves are: Hensel-Landsberg [59], Coolidge [32], Severi [107] and Weyl [116]".

What happens in higher dimensions??

The necessisity of the close analysis of all higher cohomolgy groups becomes much more
apparent as the dimension increases. Part (1) of the curve Riemann-Roch theorem (Theorem 1.1)
was generalized by Hirzebruch [62], and by Grothendieck (cf. [25])? to a formula for computing
X(Ox (D)) — for any smooth, projective variety X and divisor D — by a “universal polynomial”
in terms of D and the Chern classes of X; this polynomial can be taken in a suitable cohomology
ring of X, or else in the so-called Chow ring — a ring formed by cycles Y n;Z; (Z; subvarieties
of X) modulo “rational equivalence” with product given by intersection. For this theory, see
Chevalley Seminar [30] and Samuel [96].

L(Added in publication) See also Iwasawa [63].

2(Added in publication) There have been considerable developments on Kodaira dimension, Minimal model
program, etc. See §IX.1

3(Added in publication) See also SGA6 [9] for further developments.
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Part (2) of the curve Riemann-Roch theorem (Theorem 1.1) was generalized by Serre and
Grothendieck (see Serre [99], Altman-Kleiman [13] and Hartshorne [55]) to show, if X is a
smooth complete varietie of dimension n, that

a) a canonical isomorphism e: H"(X, Q}/k) =5 k, and
b) that — plus cup product induces a non-degenerate pairing

H'(X,0x(D)) x H" (X, 2% (—D)) — k
for all divisors D and all i.

Together however, these results do not give any formula in dim > 2 involving H?’s alone. Thus
geometric applications of Riemann-Roch requires a good deal more ingenuity (cf. for instance
Shafarevitch et al. [108]).

Three striking examples of cases where the higher cohomology groups can be dealt with so
that a geometric conclusion is deduced from a cohomological hypothesis are:

THEOREM 1.11 (Criterion of Nakai-Moishezon). Let k be a field, X a scheme proper over k,
and L an invertible sheaf on X. Then

L is ample, i.e., n > 1 and Y reduced and irreducible

a closed itmmersion subvarieities Y C X of

#: X = PN such that — positive dimension,

¢*(Opn (1)) = L7 X(L"® Oy) = 00 as n — o0

(This is another form of Theorem VII.12.4. See also Kleiman [69]).

THEOREM 1.12 (Criterion of Kodaira). Let X be a compact complex analytic manifold and
L an invertible analytic sheaf on X. Then

[ £ can be defined by transition functions {fas} 1

X is a projective for a covering {Uy} of X, where
variety and L is < | |fapl* = 9a/95, ga positive real C* on U, and
an ample sheaf on it (0?10g 9o /02:0%;) (P)

| positive definite Hermitian form at all P € Uy |
(For a proof, cf. Gunning-Rossi [54].)
THEOREM 1.13 (Vanishing theorem of Kodaira-Akizuki-Nakano). Let X be an n-dimensional
complex projective variety, L an ample invertible sheaf on X. Then
HY(X, Q% ®L)=(0), ifp+qg>n.
(For a proof, cf. Akizuki-Nakano [11].)

Appendix: Residues of differentials on curves by John Tate

(Added in publication)

We reproduce here, in our notation, the very elementary and beautiful proof of Tate [111].
Here is the key to Tate’s proof: Let V be a vector space over a field k. A k-linear endomor-
phism 6 € Endg (V) is said to be finite potent if 6™V is finite dimensional for a positive integer
n. For such a 6, the trace
Try (09) ek
is defined and has the following properties:
(T1) If dimV < oo, then Try () is the ordinary trace.
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(T2) If W C V is a subspace with 6W C W, then
Try (6) = Trw (6) + Tryw ().
(T3) Try(F) = 0 if 6 is nilpotent.
(T4) Suppose F' C Endg(V) is a finite potent k-subspace, i.e., there exists a positive integer
n such that 6; 003 0---086,V is finite dimensional for any #,...,60, € F. Then
Try: F — k is k-linear.
(It does not seem to be known if
Try (0 + 60) = Try (0) + Try (0")
holds in general under the condition 6, § and 6 + ¢’ are finite potent.)

(T5) Let ¢: V! — V and ¢: V — V' be k-linear maps with ¢ o ¢p: V' — V finite potent.
Then ¢ o ¢: V' — V' is finite potent and

Try(¢o¢) = Try (¢ o §).
(T1), (T2) and (T3) characterize Try (6): Indeed, by assumption, W = 6"V is finite dimen-
sional for some n. Then Try (0) = Try (6).
For the proof of (T4), we may assume F' to be finite dimensional and compute the trace on
the finite dimensional subspace W = F™V.
As for (T5), ¢ and 1 induce isomorphisms between the subspaces W = (¢ o ¢)"V and
W' = (¢ 0 ¢)"V' for n > 0, under which (¢ o ¢)|y+ and (¢ o 9))|w correspond.

DEFINITION 1. Let A and B be k-subspaces of V.

e A is said to be “not much bigger than” B (denoted A < B) if dim(A + B)/B < oc.
e A is said to be “about the same size as” B (denoted A ~ B) if A < B and A > B.

PROPOSITION 2. Let A be a k-subspace of V.
(1) E={6 € Endg(V) | A < A} is a k-subalgebra of Endy (V).
(2) The subspaces
Ey={0 € Endg(V) |0V < A}
Ey ={0 € Endg(V) | 0A < (0)}
Ey=FE NEy;= {9 € Endk(V) | oV < A,0A < (0)}
are two-sided ideals of E with E = E1 + Eo, and Ey is finite potent so that there
s a k-linear map Try: Fy — k. Moreover, E, Fy, FEy and Ey depend only on the
~-equivalence class of A.
(3) Let ¢, € Endg (V). If either (i) ¢ € Ey and ¢ € E, or (ii) ¢ € E1 and ¥ € Es, then
(¢, 9] :==¢goyp —pod € Ey
with Try ([, 6]) = 0.
PROOF. (1) is obvious. As for (2), express V as a direct sum V = A @ A’, and denote by
e: V- A, &:V — A the projections. Then idy = ¢ + & with ¢ € Ey and € € E», so that

6 = 0z + 0’ for all # € E. Obviously, 6; o 62V is finite dimensional for any 61,60y € Fy. (3)
follows easily from (T5). O

THEOREM 3 (Abstract residue). Let K be a commutative k-algebra (with 1), V' a k-vector
space which is also a K-module, and A C V a k-subspace such that fA < A for all f € K.
(Hence K acts on V through K — E C Endg (V') with the image in E of each f € K denoted
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by the same letter f, where E, Ey, Ey and Ey are defined with respect to the present A as in
Proposition 2.) Then there exists a unique k-linear map

Res) : Q}(/k — k
such that for any pair f,g € K, we have

Res}y(fdg) = Trv([f1. 1))
for fi,g91 € E such that

i) f=f1 (mod E), g = g1 (mod E»)
ii) either fi € E1 or g1 € Ey.

The k-linear map is called the residue and satisfies the following properties:
(R1) ResY, =ResY if VO V' D A and KV’ =V'. Moreover, Res} = Res", if A~ A’
(R2) (Continuity in f and g) We have
fA+ fgA+ fg?A C A = Res{(fdg) = 0.

Thus ResY (fdg) = 0 if fA C A and gA C A. In particular, Res, =0 if ACV is a
K-submodule.
(R3) For g € K and an integer n, we have
n>0
ResY (¢"dg) =0 if or
n < —2 and g invertible in K.
In particular, Res" (dg) = 0.
(R4) If g € K is invertible and h € K with hA C A, then
Res} (hg~'dg) = Tr 4 (anga)(h) — Trga/canga) (h).
In particular, if g € K is invertible and gA C A, then
Resy (9~ 'dg) = dimy,(A/gA).
(R5) Suppose B C V is another subspace such that fB < B for all f € K. Then f(A+ B) <
A+ B and f(ANB) < AN B hold for all f € K, and
Res! + Resh = Res! B+ Res' 5 -

(R6) Suppose K' is a commutative K -algebra that is a free K-module of finite rank r. For a
K-basis {x1,...,2.} of K', let

V=K@gVDA=> z0A
=1

Then f'A" < A’ holds for any f' € K', and the ~-equivalence class of A’ depends only
on that of A and not on the choice of {z1,...,z,}. Moreover,

Resy, (f'dg) = Res (Trgyi f)dg),  Vf € K', Vg € K.

PROOF OF THE EXISTENCE OF RESIDUE. By assumption, we have f,g € ' = F1+F>. Thus
f1 and g¢; satisfying (i) and (ii) can be chosen. Then [fi,¢1] € E1 by (ii), and [f1,91] = [f, 9]
(mod Es) by (i) with [f, g] = 0 by the commutativity of K. Thus [fi,g1] € E1 N E2 = Ey and
Try ([f1, 91]) is defined. By Proposition 2, (3), it is unaltered if f; or g; is changed by an element
of Fs as long as the other is in E1. Moreover by (T4), Try ([f1,¢1]) is a k-bilinear function of f
and g. Thus there is a k-linear map

B: K@y K — k  such that 8(f ® g) = Trv([f1,91])-
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‘We now show that

B(f@gh)=pB(fg@h)+B(fh®g), Vfg.heK,

hence r factors through the canonical surjective homomorphism

c:K®kK—>Q}(/k, c(f ®g) = fdg.
Indeed, for f,g,h € K, choose suitable f1,g1,h1 € F1 and let (fg)1 = fig1, (fh)1 = h1f1 and
(gh)1 = g1h1. Then we obviously have

[f1, 91h1] = [f1g1, ha] + [R1f1, g1].

We use the following lemma in proving the rest of Theorem 3:
LEMMA 4. For f,g € K, define subspaces B,C' CV by
B=A+gA
C=BnfYA)n(fg) (A ={veB|fvcAand fgv € A}.
Then B/C' is finite dimensional and
Res)y (fdg) = Trpc([ef, 9));

where £: 'V — A is a k-linear projection.

ProOF. B/C is finite dimensional, since B/{v € B | fv € A} and B/{v € B | fgv € A} are
mapped injectively into the finite dimensional space (A+f A+ fgA+fg>A)/A. Moreover, e f € Fy
and ef = f (mod E3), hence Res{(fdg) = Try([ef, g]). On the other hand, [ef, g] = efg — gef
maps V into B, and C into 0, since fg = gf. Thus the assertion follows by (T2), since
Try = Try/p+Trp,c + Tre. O

PROOF OF THEOREM 3 CONTINUED. (R1) follows easily from Lemma 4, since B,C C V.

As for (R2), we have B = C' in Lemma 4.

To prove (R3), choose g1 € Ey such that g1 = g (mod Ey). If n > 0, we have ResY (¢"dg) =
Try ([g7, g1]) = 0 since g7 and g; commute. If g is invertible, then g=2 "dg = —(g~")"d(g™ 1),
whose residue is 0 if » > 0 by what we have just seen.

For the proof of (R4), let f = hg~! and apply Lemma 4. We have [¢f, g] = eh — 1h, where
g1 = geg~ ! is a projection of V onto gA. Since both A and gA are stable under h, we have

Res} (fdg) = Tr(argay/(anga)(eh) — Trayga)/(anga)(geg™ " h)

and we are done by computing the traces through A +9gA4 > A D> ANgAand A+gADgAD
AN gA, respectively.

To prove (R5), choose projections e4: V — A, ep: V — B, earp: V- A+ B, egnp: V —
AN B such that

€A+ EB =€44+B +€4nB-
Then [e4f,g] and [ea+Bf,g] belong to
F={0eFE|0V <A+ B,0(A+B) < A 0A<(0)},

which is finite potent, since 61 o 03 o 3V is finite dimensional for any 6,,02,03 € F. Since
eaf € B, eaf = f (mod Es), eaypf € By and eqypf = f (mod E3), one has

Res, (fdg) — Resy, 5(fdg) = Trv([eaf,g])) — Trv([eatnf, g])
=Try([(ea — ea+B)f. 9))
= Try([(eanB —€B)f,9]),
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which, by a similar argument using
F':={0 € Endy(V) |0V < B,0B < AN B,§(AN B) < 0},

equals Res"p(fdg) — Resk(fdg).
As for (R6), a k-endomorphism ¢ of V’/ can be expressed as an r X r matrix (¢;;) of endo-
morphisms of V' by the rule

@(ijéévj) :in@)@ijvja for v; € V.
J ij

If F C Endg(V) is a finite potent subspace, then ¢’s such that ¢;; € F for all i,j form a
finite potent subspace F’ C Endy(V’). We see that Try/(¢) = Y. Try(pi;) for all ¢ € F' by
decomposing the matrix (y;;) into the sum of a diagonal matrix, a nilpotent triangular matrix
having zeros on and below the diagonal, and another nilpotent triangular matrix having zeros
on and above the diagonal. For f' € K', write f'z; = . x;fi; with fi; € K. Let e: V — A be
a k-linear projection and put ¢/(3°, z; ® v;) = >, x; ® ev;. Then ¢’: V' — A’ is a projection,
and
[f'e, glij = [fije, 9.

We are done since Trg /i f = >, fu- O

We are now ready to deal with residues of differentials on curves.
Let X be a regular irreducible curve proper over a field k, and denote by X the set of closed
points of X. For each z € X let
A, = @w,X = m,, x-adic completion of O, x
K, = quotient field of A,.
Define
Resx: Qﬁ(X)/k’ — k
by
Resx(fdg) :ReSA;c(fdg)v fageR(X)7

which makes sense since k(z) = A;/m, xA, is a finite dimensional k-vector space so that
Ay ~ mz xA; for any n € Z and that for any non-zero f € K, we have fA, < A, since
fA; =m] A, for some n.

THEOREM 5.
i) Suppose x € Xy is k-rational so that A, = k[[t]] and K, = k((t)). For
f= Z ayt’, g= Z but' € K,
v>>00 u>00

we have
Res,(fdg) = coefficient of t=1 in f(t)g'(t)
= Z payby,.
v+pu=0
ii) For any subset S C Xo, let O(S) = (\,e5 Oz, x C R(X). Then
R(X
ZResx(w) = Reso((s)) (w), Yw € Q%{(X)/k.
z€eS
In particular

Z Resz(w) =0, Yw € Q%{(X)/k,.
reXp
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iii) Let p: X' — X be a finite surjective morphism of irreducible reqular curves proper over
k. Then

> Resy(f'dg) = Res,((Trr(x/m(x) f)dg)
z'Ep~ ()
if '€ R(X'), g € R(X) and z € Xy, while
Res,(f'dg) = Resw((TrK;//Kz fdg)
if € Xy with p(a') =z, f' € K., and g € K,. (K., is the quotient field of the
my x-adic completion A!, of Oy x7.)

PROOF. (i) By the continuity (R2), we may assume that only finitely many of the a, and
b, are non-zero. Indeed, express f and g as

f=01(t) + o2(t)

g =1(t) + 9a(t)
in such a way that ¢1(t) and () are Laurent polynomials and that ¢2(t),92(t) € t" A, for
large enough n so that

P1(t)Pa(t) + 2 ()Y (8) + P2(t)Us(t) € A
Then fdg = f(t)g'(t)dt, and only the term in ¢! can give non-zero residue by (R3). By (R4)
we have
Res'? (t'dt) = dimg k(z) = 1.

(Note that in positive characteristics it is not immediately obvious that the coefficient in question

is independent of the choice of the uniformizing parameter t).
For (ii), let

AS:HA:I)

€S

!/
Vs = H:L‘ES Ka
={f=(fe)| fo € Ky, Vx € S and f, € A, for all but a finite number of x}.
Embedding R(X) diagonally into Vg, we see that R(X) N Ag = O(S). By (R5) we have

V. V. Vi Vs
Res % + ResRS(X) = Resos(s) + Res(li(X)JrAS) .
ResES(X) = 0 by (R2), since R(X) is an R(X)-module. We now show Vs/(R(X) + Ag) to be

finite dimensional, hence Res!3 = 0 by (R1). It suffices to prove the finite dimensionality
(R(X)+As)

+Ag
when S = X because of the projection Vx, - Vs. Regarding R(X) as a constant sheaf on X,
we have an exact sequence

0 — Ox — R(X) — R(X)/Ox = @ K./As — 0,

v vy
where K, /A, is the skyscraper sheaf at x with stalk K,/A,. The associated cohomology long
exact sequence induces an isomorphism

VXO/(R(X) +AX0) ;> Hl(X7 OX)7

the right hand side of which is finite dimensional since X is proper over k. To complete the
proof of (ii), it remains to show

ResXSS (w) = ZResm(w), Yw = fdg.
zes
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Let S’ C S be a finite subset containing all poles of f and g. We write

VS = VS\SI X H K:p
xes’
AS = AS\S! X H Aa:
zes’
By (R5) and (R1),

Vo g7
Resxss (fdg) = ResAi\\il (fdg) + Z Res,(fdg).
xS’

Resxi\\ssll(fdg) = 0 and Res,(fdg) = 0 for z € S\ S’ by the choice of S’. The last assertion in
(ii) follows, since

O(Xo) = (] Owx = H(X,0x)
z€Xo

is finite dimensional over k so that O(Xj) ~ (0) and Resg)({gfo) =0 by (R1).
To prove (iii), regard the function field R(X”) of X’ as a finite algebraic extension of R(X).
Then (iii) follows from (R6), since the integral closure of O, (resp. A;) in R(X") (resp. K.,) is

a finite module over O, (resp. A;). O

Recall that X is the set of closed points of an irreducible regular curve X proper over k.
Each z € X determines a prime divisor on X, which we denote by [z]. Thus a divisor D on X
is of the form

D = Z nglz], with n, = 0 for all but a finite number of x.
z€Xo
We denote ord, D = n,.

Let
/
V= VXO - HrEXO KI

A=Ax, = [] 4=
z€Xg

For a divisor D on X, let

V(D)= {f=(fz) €V ]ord; fy > —ord; D, Vo € Xo}.
Then by an argument similar to that in the proof of Theorem 5, (ii), we get

H'(X,0x (D)) = V/(R(X) + V(D).
Let
Jr(x) e = {A € Homg(V, k) [ A(R(X) + V(D)) =0, 3D divisor}
= lim Homy,(H'(X, Ox (D)), k),
D

which is nothing but the space of meromorphic “pseudo-differentials” appearing in §1.
Jr(x)/k is a vector space over R(X) by the action

(GN(f) =Agf), VYgeR(X), Vf=(fa) €V,
since obviously (g\)(R(X)) = 0, while (g\)(V((g) + D)) = 0.
As in §1, let us assume X to be smooth and proper over k and geometrically irreducible.
Then R(X) is a regular transcendental extension of transcendence degree one so that the module
Q%{( X)/k is a one-dimensional vector space over R(X). Moreover, for any x € Xy, the stalk
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Qﬁ(/kw is a free O, x-submodule of Q%{(X)/k of rank one. If ¢, is a local parameter at x so that

my x = 0, x, then each w € Q%{(X)/k can be expressed as
w = hdty, for some h € R(X).

Let us denote ord, (w) = ord,(h), which is independent of the choice of the local parameter t,.
We then denote

(W)= ) ordy(w)[a],

z€Xg

which is easily seen to be a divisor on X.
For any divisor D, one has

H(X, Q% ) (=D)) = {w € Qpxy i | (W) > D}
and
Qg (x)k —QH (X, Q. (=D)).
The abstract residue gives rise to an R(X)-linear map

defined by
= Z Resx(fzw)a Vw € Q]I_Z{(X)/k;a Vf= (fx) eV
zeXp
This makes sense, since o(w)(R(X)) = 0 by Theorem 5, (ii), while o(w)(V (D)) = 0 for D = (w)
by (R2).

For any divisor D, we see easily that ¢ induces a k-linear map
op: H(X, Q% (—=D)) — Homy(V/(R(X) + V(D)), k) = Homy(H' (X, Ox (D)), k).

THEOREM 6 (Serre duality). As in the Riemann-Roch theorem (Theorem 1.1), let X be a
curve, smooth, proper and geometrically irreducible over a field k. Then

is an isomorphism, which induces an isomorphism
op: H'(X, Q% (=D)) — Homy(V/(R(X) + V(D)), k) = Homy,(H" (X, Ox (D)), k),

for any divisor D. Consequently, (2)-strong form of the Riemann-Roch theorem (Theorem 1.3)
holds, giving rise to a non-degenerate bilinear pairing

H(X, QY ) (=D)) x H'(X,Ox (D)) — k.
In particular, Part (2) of Theorem 1.1 holds.
To show that ¢ and op are isomorphisms, we follow Serre [103, Chapter II, §56 and 8§].

LEMMA 7.

PrOOF. Suppose A, \' € Jr(x)/x were R(X)-linearly independent. Hence we have an injec-
tive homomorphism
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There certainly exists D such that A\(V(D)) =0 and X' (V(D)) = 0. Fix x € X and let P = [z].
For a positive integer n and ¢g,h € R(X) with (¢9) + nP > 0 and (h) + nP > 0, we have
(gA+ hX)(V(D — nP)) = 0. Thus we have an injective homomorphism

HY(X,0x(nP)) ® H*(X,Ox(nP)) 3 (g,h) — g\ + hX € Hom,(H (X, Ox (D — nP)), k).
Hence we have
(%) dim H' (X, Ox(D — nP)) > 2dim; H*(X, Ox(nP)).

The right hand side of (x) is greater than or equal to 2(ndeg P — g + 1) by Theorem 1.1, (1).
On the other hand, again by Theorem 1.1, (1), the left hand side of (x) is equal to

—deg(D —nP) +g—1+dimy H*(X,Ox(D — nP))
= ndegP+ (g —1—degD) + dimy H(X,Ox (D — nP)).

However, one has deg(D —nP) < 0 for n > 0, hence H(X, Ox(D —nP)) = 0 by Corollary 1.4,
(b). Thus (*) obviously leads to a contradiction for n > 0. O

To continue the proof, we need to consider the base extension X' = X X Spec(k) Spec(k’) with
respect to a finite extension &’ of k. By assumption, X’ is proper and smooth over &’ and we
obviously have a canonical commutative diagram

Q%{(X’)/lﬂ/ —>0— JR(X/)/]{:/

oo

K @ Qg oy e ——— K @k JR(x) /e

The base extension D' = D Xgpec(r) Spec(k’) of a divisor D on X induces

O_/

HOX', 0%, 30 (= D') ——2 Homy (H (X', Ox/(D')), K)

k'®oc
K @p HO(X, Q% 1 (=D)) — 78 ¥ @, Homy(H' (X, Ox (D)), k).

LEMMA 8. Under the R(X)-linear map
we Q%{(X)/k belongs to HY(X, Qﬁg/k(—D)) if o(w)(V(D)) = 0.

PRrROOF. Otherwise, there exists y € X such that ord,(w) < ord, D. Replacing k by a finite

extension k/, we may assume y to be k-rational so that k(y) = k. Let n = ordy(w) + 1, hence
n <ordy D. Define f = (f;) € V by

Jo=0 ifz#vy
fy =1/t (ty being a local parameter at y).

Obviously, Res,(f,w) = 0 for x # y, while
ordy (fyw) = ordy ((1/t;)w) = —n + ordy(w) = —1,

hence o(w)(f) = Resy(fyw) = 1 # 0 by (R4). Since n < ordy(D), one has f € V(D), a
contradiction to the assumption o(w)(V (D)) = 0. O
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REMARK. (Added in publication) (Chai) Without resorting to any base extension of k, we
can prove the lemma as follows: Pick a k-morphism « from an open neighborhood U of y to
A' = Spec k[s] which is étale at y. Let z = a(y) and L = k(s). Write w = ha*ds, h € R(X),
and ord,(h) = n. We need to show that there exists an element f, € K, with ord,(f,) = —n—1
such that Resy(fyhds) # 0. We know that Trg, ;7 (Ay) = A, because « is étale at y, so that
by Theorem 5 (iii) it suffices to exhibit an element ¢g. € L, such that ord,(¢g.) = —1 and
Res;(g.ds) # 0. Let ¢(s) be a monic irreducible polynomial in k[s] corresponding to the closed
point z € A}, and let d = deg(g(s)). Then everything follows from the formula

Res, Z a_is(s) ds | =bg_1, a_1(s) = Z bjsj

1<i<N q(s)’ 0<j<d—1

for local residues at z of rational differentials, where each a_;(s) is a polynomial in k[s] of degree
at most d — 1. This formula can be proved either by direct computation using Tate’s definition,
or using the residue theorem and computing

— Resso Z a_i@) ds | =bg_1,
1<i<N q(s)’

because z and oo are the only poles.

PROOF OF THEOREM 6. o is injective, for if o(w) = 0, then w € H°(X, Qﬁf/k(—D)) for all
D by Lemma 8, hence w = 0.

o is surjective, since o is a non-zero R(X)-linear map with dimg(x) < 1 by Lemma 7.
Moreover, op is surjective, for if A € Jr(x)/, satisfies A(V(D)) = 0, then there exists w €
Q%{(X)/k with o(w) = A. We see that w € H(X, Qk/k(—D)) by Lemma 8. O

REMARK. (Added in publication) (Chai)

(1) The classical style of treating algebraic curves via valuations and adeles (as in the book by
Chevelley, following a 1938 paper by Weil written in German) amounts to, in modern language,
considering one-dimensional irreducible regular scheme X of finite type proper over a field k.
Let K := R(X) be the function field of X. We may and do assume that k is algebraically closed
in K. Then X can be recovered from K by considering discrete valuations on K that are trivial
on k.

In general, the scheme X may not be smooth over k. There are two potential problems.
First, the field K may not be separable over k, i.e., K/k(z) is not a finite separable extension
for any = € K; equivalently, Spec K may not be smooth over Speck. An example: k = F(u,v),
with u, v transcendental over a field F' D IF, and K is the fraction field of k[z, y]/ (2P — uy? —v).

Even when K/k is a regular extension (i.e., K/k is separable and k is algebraically closed in
K), the morphism X — Speck may still be non-smooth. An example: k D F,, a ¢ kP, p odd,
and K is the fraction field of k[z,y]/(y* — 2P + a). Then X is the algebraic curve containing
Spec klx,y]/(y?> — 2P + a) as an affine open set, with Spec k[x,y]/(y?> — 2P + a) regular but not
smooth over k. Note that the genus of K is (p — 1)/2, while the genus of K - k'/? over k!/P
is 0. (Whenever X is not smooth over k, the phenomenon “genus change under constant field
extension” occurs—see Artin [15, Chap. 15].)

(2) Tate’s definition of residue gives a K-linear map o: Q}(/k — Jg/g- This map is an
isomorphism if K/k is separable (hence regular) as shown in Theorem 5, while it is identically
zero if K is not separable over k. This last assertion follows from Theorem 5, (iii). For any
r € K transcendental over k, K is inseparable over k(z), hence Trg i(,) is identically zero.
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Sheafification of the map o gives an Ox-linear map
ox: Q%{/k — JX/Im

where Jy/j, is an invertible O x-module, while Qﬁ( Ik is an invertible Ox-module if and only if X
is smooth over k.

We have seen that the map ox is identically zero when K/k is not separable. When X
is not smooth over k, the map ox is never injective (since Qﬁ( Ik has torsion), and it may not
be surjective either. Consider the case where K is the fraction field of k[z,y]/(y? — 2P + a),
with a ¢ kP and p odd. Let Py be the closed point of X corresponding to the principal ideal
yklz,y]/(y* — 2P + a) of k[z,y]/(y* — 2P + a). Then the image of ox is Jx,,(—Fo) as can be
checked by an easy computation using Theorem 5, (iii).

[Here is the proof: Let O" be the completed local ring at Py, and let O be the completion
of the localization of k[x] at the principal ideal generated by zP — a. The maximal ideals of
these two discrete valuation rings are generated by y and zP — a, respectively. Then the sheaf
of continuous differentials Q%,), /k is generated by dx and dy, with the relation ydy = 0. Hence
ox,p,(dy) = 0, and the image of o, p, is determined by Theorem 5, (iii). An easy computation
shows that Tro/o(y~'0') = O, while Tro/o(y20") = (2P — a) O]

2. Comparison of algebraic with analytic cohomology

In almost all of this section, we work only with complex projective space and its non-singular
subvarieties. We abbreviate P¢ to P" and recall that the set of closed points of P" has two
topologies: the Zariski topology and the much finer classical (or ordinary) topology. By (P" in
the classical topology) we mean the set of closed points of P" in the classical topology and by
(P™ in the Zariski topology) we mean the scheme P¢ as usual. Note that there is a continuous
map

e: (P" in classical topology) — (P" in the Zariski topology).

We shall consider sheaves on the space on the left. The following class is very important.

DEFINITION 2.1. The holomorphic or analytic structure sheaf Opn o on (P™ in the classical
topology) is the sheaf:

Opn an(U) = ring of analytic functions f: U — C.
If U C P" is an open set, then a sheaf 7 of Opn yn-modules on U is called a coherent analytic
sheaf if the following conditions are satisfied:
e F is locally of finite type: for all z € U, there exists a (classical) open neighborhood
U, C U of x and a surjective homomorphism
O[g}l,an‘Uz - ‘F‘Uz
of Opn an-modules on Uy,

e for any open set V' C U and any homomorphism

h:Ofpn V_>]:’V

an]
of Opn_an|v-modules, Ker(h) is locally of finite type.
For basic results on coherent analytic sheaves, we refer to Gunning-Rossi [54]. Among the
standard results given there are:

(2.2) If ¢: F — G is an Opn an-module homomorphism of coherent analytic sheaves on some
U, then Ker ¢, Image ¢ and Coker ¢ are coherent; thus the coherent analytic sheaves
on U form an abelian category.
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(2.3) If U C P¢ is a polycylinder in some affine piece and F is coherent on U, then
H (U, Fly) = (0), i > 0, and F|y is generated as Opn zn-module by H(U, F|y).
(2.4) If X C U is a closed analytic subset, then the sheaf Zx of analytic functions vanishing
on X is coherent. If F is coherent, then {x € P™ | F, # (0)} is a closed analytic subset.
Now if F is an algebraic coherent sheaf on P{, one can define canonically an associated analytic
coherent sheaf F,, as follows: for all classical open U, let:

Fan(U) = submodule of ] (Opnan), ®0pn , Fo
xelU
consisting of families {s,} satisfying the following condition:

for all € U, classical neighborhood U; of xz and a Zariski
neighborhood U; of z, fi € Opn an(U1) and t; € F(Us) such that
Sz:Zfi®ti, e U NUs.

This looks a bit cumbersome but, in fact, it is the natural way to define f*F for any morphism

x

f of ringed spaces, and sheaf of modules F on the image space. In the present situation, one
has Fan = €*F. An elementary calculation gives the stalks of Fyy:

(fan)z = (OIP’",an)x ®O]p>n7x Jr:c

Also, F —— Fan is obviously a functor, i.e., any Oprn-homomorphism ¢: F; — F» induces
®an: Flan — F2an. We now invoke the basic fact:

LEMMA 2.5 (Serre). C{X,...,X,}, the ring of convergent power series, is flat as a module
over C[X1,...,X,].

PROOF. In fact, the completion O of a noetherian local ring O is a faithfully flat O-module
(Atiyah-MacDonald [20, (10.14) and Exercise 7, Chapter 10]), hence C[[X1,...,X,]] is faith-
fully flat over C{Xy,...,X,} and over C[Xy,..., Xp](x,,. x,)- Hence VM — N — P over
ClX1,...,Xnl

M — N — P exact = M ® C[[X]] = N ® C[[X]] = P ® C[[X]] exact
= MeC{X} > N®C{X} > P®C{X} exact.
O

COROLLARY 2.6. F —— Fay, 1s an exact functor from the category of all Opn-modules to the
category of all Opn an-modules.

Proor. If F — G — H is exact, then by Proposition IV.4.3
Fang — Gang — Hanya
is exact for all x, hence Fan — Gan — Han is exact. O
COROLLARY 2.7. If F is a coherent algebraic sheaf, then Fay, is a coherent analytic sheaf.

The proof is left to the reader.
Note that covering the identity map

e: (P" in the classical topology) — (P" in the Zariski topology)

there is a map €*: F — F,, of sheaves. This induces a canonical map on cohomology H*(F) —
H'(Fan)-
Our goal is now the following fundamental theorem:

THEOREM 2.8 (Serre). (Fundamental “GAGA”* comparison theorem)

4Short for “géométrie analytique et géométrie algébrique”
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i) For every coherent algebraic F, and every i,
H'(P" in the Zariski topology, F) = H'(P" in the classical topology, Fan)-

ii) The categories of coherent algebraic and coherent analytic sheaves are equivalent, i.e.,
every coherent analytic F' is isomorphic to Fan, some F, and

HomO]pn (‘F7 g) = HomO]pn’an (‘Fa.lh gan) .

REMARK. (Added in publication) The statement of Serre’s GAGA theorem (Theorem 2.8)
holds also when the underlying variety is replaced by a scheme proper over C, by an argument
using Chow’s lemma and noetherian induction similar to that in the proof of Grothendieck’s
coherency theorem (Theorem VII.6.5).

We will omit the details of the first and most fundamental step in the proof (for these we
refer the reader to Gunning-Rossi [54, Chapter VIII A]). This is the finiteness assertion: given
a coherent analytic F, then dim¢c H'(P", F) < 400, for all i. The proof goes as follows:

a) Forall C > 1,0<i<mn, let
X.
x ¢ V(X;) and ‘X](x)

)

Ui,C = {IE cP”

<C,O§j§n}.

b) Then ;- , Ui,c = P" so we have an open covering Uc = {Up.c,- - ,Un,c'} of P™.

c) Note that each intersection U;; ¢ N --- N U;, ¢ can be mapped bihilomorphically onto
a closed analytic subset Z of a high-dimensional polycylinder D by means of the set
of functions X;/X;,, 0 < j < n, 1 <[ < k. Therefore, every coherent analytic F on
Ui,.cN---U;, ¢ corresponds to a sheaf 7' on Z and, extending it to D\ Z by (0) outside
Z, a coherent analytic 7/ on D. Then

H' Uy, cN-Uyc,F) 2 H(Z,F)= H(D,F) = (0), i > 0.
d) Therefore by Proposition VII.2.2 it follows that
HY(P", F) = H'(Uc, F)
and that the refinement maps (for C > C’' > 1):
refg, ot C*(Ue, F) — C'(Uer, F)

induce an isomorphism on cohomology.
e) The key step is to show that the space of sections:

FUi,cn-Uc)

is a topological vector space, in fact, a Fréchet space in a natural way; and that all
restriction maps such as

FUisc N+ Uio) — FUi e N Ui o)
are continuous, and that restriction to a relatively compact open subset, as in
F(Ui,cn-Uyc) — FU,cr N Uppor)  (C>C)
is compact. This last is a generalization of Montel’s theorem that

ros: holomorphic functions on holomorphic functions on
C | disc |z| < C disc |z| < C'

is compact. It follows that C*(Uc, F) is a complex of Fréchet spaces and continuous
maps, and that refzac, is compact.
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f) By step (d),

ref +4

Z'Uc, F) & CHUer) —— Z'(Ucr, F)

(a,b) ——— refacl a+db

is surjective. A standard fact in the theory of Fréchet spaces is that if
«, B: Vi — ‘/2

are two continuous maps of Fréchet spaces, with « surjective and S compact, then a4+ (3
has closed image of finite codimension. Apply this with o = ref 4§, § = — ref and we
find that Coker(§) = H*(Ucr, F) is finite-dimensional.

The second step in the proof is the vanishing theorem — if F is coherent analytic, then
for i > 0, m > 0, H(P", F(m)) = (0). (Here F(m) = F ®@0pn
prove this by induction on n, the complex dimension of the ambient projective space, since it
is obvious for n = 0. As in §VIL.7, we use the ®L: F(m) — F(m + 1), where L = > ¢; X; is a
linear form. This induces exact sequences:

Opn an(m) as usual.) We

,an

(2.9) 0—Gr(m) — F(m) ——— = F(m+1) —Hr(m) —0
I e
(m)

7
0/ \O

where both G;, and #, are annihilated by L/X; on P\ V(X;). Therefore they are coherent
analytic sheaves on V(L) = P! and the induction assumption applies to them, i.e., Imq(L)
such that
HY(P",Gr(m)) (0) , :
. ’ fm> L), 1<i<n.
HE ) = ) TRtk isrsn
t

The cohomology sequence of (2.9) then gives us:

111

®L: H'(P", F(m)) — H'(P", F(m + 1)), m >mo(L).

In particular, dim H*(P"*, F(m)) = Nj, independent of m for m > mg(L). Now fix one linear
form L and consider the maps:

@F: H'(F(mo(L))) — H'(F(mo(L) + d))

for all homogeneous F' of degree d. If Ry is the vector space of such F’s, then choosing fixed
bases of the above cohomology groups, we have a linear map:

Ry — vector space of (N; x N;)-matrices
F ——— matrix for QF.

Let I; be the kernel. It is clear that I = Y 37, I; is an ideal in R = €, R4 and that
dim Ry/I4 < Nf. Thus the degree of the Hilbert polynomial of R/I is 0, hence the subscheme
V(I) C P" with structure sheaf Opn /T is 0-dimensional. If V/(I) = {z1,..., 2}, it follows that
the only associated prime ideals of I can be either

m,, = ideal of forms F' with Fi(z;) =0,1<i <t

or

(Xo,- .., Xy).
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By the primary decomposition theorem, it follows that
t
15 (Xo,..., Xp)® N[ m
i=1
for some dy, . ..,d;. Now fix linear forms L; such that L;(z;) = 0. Let

t
F = Lmax(do,mg(Li)—mo(L)) . HLdl
i

i=1

On the one hand, we see that F' € I, hence ®F on H'(F(mg(L))) is 0. But on the other hand,
if my = max(do, mo(L;) — mo(L)), then ®F factors:

H'(Flmo(L)) 5 -+ 5 HU(F(mo(L) +m)

By B H(F(mo(L) +ma+ Y di))
which is an isomorphism. It follows that H*(F(mg(L))) = (0) as required.

The third step is to show that if F is coherent analytic, then F(v) is generated by its sections
if v > 0. For each x € P", let m, = sheaf of functions zero at x, and consider the exact sequence:

0—— my - F(v) F(v) Fw)/my - Fv) —0
|
(mg - F)(w).

There exists v, such that if v > v,, then H(m, - F(v)) = (0), hence H*(F(v)) — H°(F(v)/m, -
F(v)) is onto. Let G be the cokernel:

HO(‘F(VJ»‘)) ®c OIP’",an — f(Vz) — G — 0.
Then G is coherent analytic and
gr/mm -Gr = }—(V)x/ (m:p : f(y)a: + ImageHO(F(V)) = (0)

Therefore by Nakayama’s lemma, G, = (0) and by coherency, 3 a neighborhood U, of = in which
G = (0). Tt follows that F(v,) is generated by HY(F(v,)) in U, and hence F(v) is generated by
H°(F(v)) in U, for v > v, too! By compactness P" is covered by finitely many of these U, s,
say Uy, - -, Uz, Then if v > max(v,,), F(v) is generated everywhere by HO(F(v)).

The fourth step is to show that

H%(Opn an(m)) = vector space of homogeneous forms of
degree m in Xop,..., X,

just as in the algebraic case. We do this by induction first on n, since it is clear for n = 0; and
then by a second induction on m, since it is also clear for m = 0, i.e., by the maximum principle
the only global analytic functions on the compact space P™ are constants. The induction step
uses the exact sequence:

0 — Opn an(m — 1) EX% Opn gn (M) — Opn-1 gn(m) — 0
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which gives:

Polynomials in Polynomials in Polynomials in
0—— Xo,--.,Xp -5 Xgy ooy X — X0y, Xp_1 —0
of degree m — 1 of degree m of degree m
l - | l

0 —— HO(Opn an (m — 1)) ——"— HO(Opn an(m)) ——— HO(Opn-1 an(m)).

“Chasing” this diagram shows the required assertion for Opn 4, (m).
The fifth step is that every coherent analytic F' is isomorphic to Fay, some coherent algebraic
F. By the third step there is a surjection:

(’)IEZ’an — F'(mo) — 0
for suitable ng and mg, hence a surjection:
Opn an(—mo)" — F' — 0.

Applying the same reasoning to the kernel, we get a presentation:

O]}Dn@n(—ml)”l i) OP",an(_mO)nO — F —0.

Now ¢’ is given by an (ng X nj)-matrix of sections gi);j of Opn an(m1 —myg), hence by an (ng x nj)-
matrix Fj; of polynomials of degree mi — mg. Thus the Fj; defines ¢, with cokernel F:

O]pm(—ml)nl i) O[pm(—mo)no — F — 0.

By exactness of the functor G — Gy, it follows that 7' = F,,. Using the same set-up, we can
also conclude that H(F(m)) & H(Fan(m)) for m > 0. In fact, twist enough so that the H!
of the kernel and image of both ¢ and ¢ are all (0): then the usual sequences show that the two
rows below are exact:

HO(Opn(m —mq)™) ——— HO(Opn(m — mg)™) —— HY(F(m)) —— 0
! 8 8
HO(O]P’",an(m — ml)nl) B HO(OP",an(m - mO)nO) E— HO(‘Fan(m)) —0.
Thus H(F(m)) — H°(Fan(m)) is an isomorphism.
The sixth step is to compare the cohomologies of F(m) and F,,(m) for all m. We know that
for m > 0, all their cohomology groups are isomorphic and we may assume by induction on n
that we know the result for sheaves on P"~!. We use a second induction on m, i.e., assuming

the result for H'(F(m + 1)), all 4, deduce it for H*(F(m)), all i. Use the diagram (2.9) above
for any linear form L. We get

H=YF(m+1)) — H™ (Hy(m)) — H'(F(m)) — HY(F(m + 1)) — H'(H(m))

! ! ol ! !
H™ Y Fan(m+ 1)) — H™ (Hpan(m)) — H' (Fp an(M)) — H (Fan(m + 1)) — H (Hp an(m))

and
H'"N(Fp(m)) —— H(Gr(m)) — H'(F(m)) — H'(Fp(m)) —— H''(Gr(m))
1 1 l 1 1
H~Y( /L,an(m)) - Hi(gL,an(m)) — H'(Fan(m)) — HY( /L,an(m)) - HHI(QL,an(m))'

By the 5-lemma, the result for H(F(m + 1)) and H* " }(F(m + 1)) implies it for H*(F} (m)).
And the result for H(F} (m)) and H*=(F} (m)) implies it for H*(F(m)).
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The seventh step is to compare Hom(F,G) and Hom(F,y, Gan). Presenting F as before, we
get:

Hom(F,G) = Ker [Hom(Opx (—mo)™, G) =% Hom((’)pn(—ml)"l,g)}

>~ Ker | H*(G(mg)™) ®—F”> Ho(g(ml)”l)]

& Ker | HO(Gan (mo)™) 2% HO(gan<m1>”1>]

= Ker [Hom(Opn an(—10)™, Gan) <% Hom(Opn an(—m1)™ , Gan)

= Hom(]:ana gan)'
O

COROLLARY 2.10. A new proof of Chow’s theorem (Part I [87, (4.6)]): If X C P" is a closed
analytic subset, then X is a closed algebraic subset.

Proor. If X C P"is a closed analytic subset, then Zx C Opn 4, is a coherent analytic sheaf,
s0 Ix = Jan for some coherent algebraic J C Opn. So X = Supp Opn a4y /Zx = Supp Opn /T is
a closed algebraic subset. O

COROLLARY 2.11. If X1 and Xo are two complete verieties over C, then every holomorphic
map [: X1 — Xo is algebraic, i.e., a morphism.

PRrROOF. Apply Chow’s lemma (Theorem I1.6.3) to find proper birational 71 : X{ — X7 and
w1 X5 — Xo with X! projective. Let I' C X; x Xo be the graph of f. Then (m; x m2) ' C
X1 x X} is a closed analytic subset of projective space, hence is algebraic by Chow’s theorem.
Since 71 x 7y is proper, I' = (m1 x m2)[(m1 X m2)71T] is also a closed algebraic set. In order to
see that it is the graph of a morphism, we must check that p;: I' = X is an isomorphism. This
follows from:

LEMMA 2.12. Let f: X — Y be a bijective morphism of varieties. If f is an analytic
isomorphism, then f is an algebraic isomorphism.

PROOF OF LEMMA 2.12. Note that f is certainly birational since #f~(y) = 1 forally € Y.
Let x € X, y = f(x). We must show that f*: Oy, — Ox, is surjective. The local rings of
analytic functions on X and Y at x and y and the formal completions of these rings are related
by:

*

Oy, — L L0,
l P l
(OY,an)y —_— (OX,an)w

Lol
Oyy —— Ox..

Now f7, is an isomorphism by assumption. If a € Ox ,, write a = b/c, b, c € Oy, using the fact
that f is birational. Then

f2, isomorphism = Ja’ € (Oyan)y With b=c-d’
— be Oy, Nec- Oy,

But for any ideal a C Oy, a = OyyNa- @Kyv so b€ c-Oyy,ie., ac Oyy. O
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COROLLARY 2.13 (Projective case of Riemann’s Existence Theorem). Let X be a complex
projective variety’. Let Y be a compact topological space and

7Y — (X in the classical topology)

a covering map (since Y is compact, this amounts merely to requiring that 7 is a local homeo-
morphism). Then there is a unique scheme Y and étale proper morphism w:Y — X such that
there exists a homeomorphism p:

T

(X in the classical topology).

Q

Y

(Y in the classical topology)

hs)

PRrROOF. Given }7, note first that since 7 is a local homeomorphism we can put a unique
analytic structure on it making 7 into a local analytic isomorphism. Let B = 7.(Og): this is a
sheaf of Ox an-algebras. Now every x € X has a neighborhood U such that 7 1(U) = disjoint
union of [ copies of U; hence B|y = @221 Ox,an as a sheaf of algebras. In particular, B is a
coherent analytic sheaf of Ox an,-modules. Recall that we can identify sheaves of Ox an-modules
with sheaves of Opn ,-modules, (0) outside X and killed by multiplication by Zx. Therefore by
the fundamental GAGA Theorem 2.8, B = B, for some algebraic coherent sheaf of O x-modules
6. Multiplication in B defines an Ox ay-module homomorphism

p: B®oy . B— B,
hence by the GAGA Theorem 2.8 again this is induced by some O x-module homomorphism:
v: BRoy B — B

The associative law for p implies it for v and so this makes 8 into a sheaf of Ox-algebras.
The unit in B similarly gives a unit in 8. We now define Y = Specy (B), with 7: Y — X the
canonical map (proper since 8 is coherent by Proposition 11.6.5). How are Y and Y related?
We have

i) a continuous map ¢: Y — (closed points of X)
ii) a map backwards covering (:

¢*: B — (sheaf of continuous C-valued functions on Y)
such that Vz € Y and VI € Be(a)
¢Cf(z) = f(¢(=)),
defined as the composite
BU) — BU) — O};’an(%_lU) — [continuous functions on 7 1U].
These induce a continuous map:

n:Y — (closed points of )

5The theorem is true in fact for any variety X and finite-sheeted covering 7*: Y™ — X, but this is harder, cf.
SGA4 [7, Theorem 4.3, Exposé 11], where Artin deduces the general case from Grauert-Remmert [43]; or SGA1
[4, Exposé XII, Théoréme 5.1, p. 332], where Grothendieck deduces it from Hironaka’s resolution theorems [61].
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{f€Bew | ¢ flx) =0}
My (@) - Be(a)

n(z) = point corresponding to maximal ideal

via the correspondence
71 (¢(2)) S maximal ideals in Be(y)/Me(z) - Be(a)-

Now 7 has the property
2.14. Vf € Oy (V), the composite map
Y (V) L (closed points of V') RN
is a continuous function on n~ (V) (in the classical topology).

But a basis for open sets in the classical topology on Y is given by finite intersections of the
sets:

V' Zariski open, f € Oy(V), let
Wyse={x €V |z closed and |f(x)| < €}.

Because of (2.14), n~}(Wy,) is open in Y, ie., 7 is a continuous map from Y to (Y in the
classical topology). Now in fact 7 is bijective too. In fact, if U C X is a classical open so that
771(U) = (disjoint union of n copies of U) and B|y = @é:l Ox an|U, then for all z € U,

l
B.jm, - B, = PC
i=1

and the correspondence between points of 771(x) and maximal ideals of B,/m, - B, given by
y+— {f | f(y) = 0} is bijective. On the other hand, since B, = B, ®0, , (Ox,an)z, it follows that
By /my - By =B, /m, -B,. Thus 7 is a continuous bijective map from a compact space Y to (Y
in the classical topology). Thus 7 is a homeomorphism. Finally B, is a free (Ox an)z-module,
hence it follows that B, is a free Ox z-module: Hence 7: Y — X is a flat morphism. And the
scheme-theoretic fibre is:

71'_1(1:) = Spec B, /m, - B,
& Spec B, /my - B,
l
2 Spec @ C =l reduced points.
i=1

Thus 7 is étale.
As for the uniqueness of Y, it is a consequence of the stronger result: say

Yy Yy
N
X

are two étale proper morphisms. Then any map continuous in the classical topology:

(Y1 in the classical topology) N (Y3 in the classical topology)

with o 0 f = 71 is a morphism. To see this, note that m; are local analytic isomorphisms, hence
f is analytic, hence by Corollary 2.11, f is a morphism. O
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This Corollary 2.13 implies profound connections between topology and field theory. To
explain these, we must first define the algebraic fundamental group WTlg<X ) for any normal

noetherian scheme X% We have seen in §V.6 that morphisms:

Y — X
Y normal irreducible
(a)

7 proper, surjective, 7! (z) finite for all ,
7 generically smooth

are uniquely determined by the function field extension R(Y) D R(X), which is necessarily
separable; and that conversely, given any finite separable K O R(X), we obtain such a 7 by
setting Y = the normalization of X in K. In particular, suppose we start with a morphism:

mY — X
(b) Y connected
7 proper and étale.

Then Y is smooth over a normal X, hence is normal by Proposition V.5.5. Being connected,
Y is also irreducible. Thus Y = normalization of X in R(Y’). Now choose a specific separable
algebraic closure R(X) of R(X) and let

G = Gal(R(X)/R(X)), the Galois group
= lim Aut(K/R(X))
K

where R(X) C K € R(X), K normal over R(X) with [K : R(X)] < 4o0.

As usual, G, being an inverse limit of finite groups, has a natural structure of compact, totally
disconnected topological group. One checks easily” that there is an intermediate field:

—_—

R(X) Cc R(X) Cc R(X)
such that for all K C R(X), finite over R(X):

the normalization Yx of X —
in K is étale over X } — K CR(X).

6N0rmality is not necessary and noetherian can be weakened. For a discussion of the results below in more
general case, see SGA1 [4, Exposés V and XII].
"This follows from two simple facts:

a) K1 C K», Yk, étale over X —> Yk, étale over X,
b) Yk, and Yk, étale over X = Yk, .k, étale over X.

To prove (a), note that we have a diagram
YK2 — YKl — X.

Now Yk, étale over X = Qy, /x = (0) = Qy,, /v, = (0) = Yk, étale over Yk, by Criterion 4.1 for
smoothness in §V.4. In particular, Yk, is flat over Yk, hence if y» € Yk, has images y1 and x in Yk, and X,
then Oy, is flat over Oy, , hence m; - Oy, N Oy, = my - Oy, . Thus

Oy, /My - Oy, C Oy, /my - Oy, = product of separable field extensions of k(x)

hence Oy, /mg - Oy, is also a product of separable field extensions of k(z). This shows Qy, /x ®k(y1) = (0),
hence by Nakayama’s lemma, QYK1/X = (0) near y1, hence by Criterion 4.1 for smoothness in §V.4, Yk, is étale
over X at yi1.

To prove (b), note that Yx, Xx Yk, will be étale over X, hence normal. We get a morphism

[
YKI‘K2 — YK1 X x YK2

and if Z = component of Yx, X x Yk, containing Image ¢, then ¢: Yk,.x, — Z is birational. Since Z is normal
and the fibres of ¢ are finite, ¢ is an isomorphism by Zariski’s Main Theorem in §V.6.
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Note that because of its defining property, R(X) is invariant under all automorphisms of R(X),
i.e., it is normal over R(X) and its Galois group over R(X) is a quotient G/N of G. By Galois
theory, the closed subgroups of finite index in G are in one-to-one correncepondence with the
subfields K C R(X) finite over R(X). So the closed subgroups of finite index in G/N are in

one-to-one correspondence with the subfields K C R(X) finite over R(X), hence with the set
of schemes Yi étale over X. It is therefore reasonable to call G/N the algebraic fundamental
group of X, or ﬁflg(X):

—_~—

(2.15) 8(X) = Gal(R(X)/R(X)).

Next in the complex projective case again choose a universal covering space 2 of X in the
classical topology. Then the topological fundamental group is:

71°P(X) = group of homeomorphisms of Q over X,

and its subgroups of finite index are in one-to-one correspondence with the compact covering
spaces Y dominated by (2:

0—Y -5 X,
which give, by algebraization (Corollary 2.13), connected normal complete varieties Y, étale over
X. This must simply force a connection between the two groups and, in fact, it implies this:

THEOREM 2.16. Let X be a normal subvariety of P¢ and let

TP(X) = Yglﬂ‘{OP(X)/H, over all H C ©i°P(X) of finite index
H

= “pro-finite completion” of m;"?(X).

Then ﬂOp (X) and wiflg(X) are isomorphic as topological groups, the isomorphism being canonical
up to an inner automorphism.

PROOF. Choose a sequence {H,} of normal subgroups of 7} of finite index, with H, 4 C
H,, such that for any H of finite index, H, C H for some v. Let W}OP/H,, = G, and let H,
define Y,, — X. Then

/\top ~ 1:
T =limG,
<

and G, = group of homeomorphisms of Y, over X.

Algebraize Y, to a scheme Y, étale over X by Corollary 2.13. Then the map }7,,+1 — Y, comes
from a morphism Y, ;1 — Y, and we get a tower of function field extensions:

o +—R(Y,41) «— R(Y)) +— - +— R(X).
Note that
Autg vy (R(Y))) = Autx (V,) = Autx (V) = G,
and since #G,, = degree of the covering (Y, — X) = [R(Y,) : R(X)], this shows that R(Y,) is
a normal extension of R(X). The fact that Y, = Yg(y,) is étale over X shows that R(Y,) is

P

isomorphic to a subfield of R(X). Now choose an R(X)-isomorphism:

P

¢: | JR(Y,) — R(X).
v=1
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It is easy to see that ¢ is surjective by going backwards from an étale Y — X to a topological
covering Yx — X and dominating this by 2. So we get the sought for isomorphism:

m* = lmG,
= lim Gal(R(Y,)/R(X))

—_—~—

=~ Gal(R(X)/R(X))

~ alg
_— 7T1 .

The only choice here is of ¢ and varying ¢ changes the above isomorphism by an inner auto-

morphism. O

As a final topic I would like to discuss Grothendieck’s formal analog of Serre’s fundamental
theorem. His result is this:
Let R = noetherian ring, complete in the topology

defined by the powers of an ideal I.
Let X — Spec R be a proper morphism.

Consider the schemes:
X = X Xgpec R SPec R/I”Jrl

i.e.,
XO C e C XTL C e C X
SpecR/I ¢ e c SpecR/I""t ¢ ....-. c SpecR

Define: a formal coherent sheaf F on X is a set of coherent sheaves F,, on X,, plus isomor-

phisms:
Jrn—l = fn ®0Xn OXn_l'
Note that every coherent F on X induces a formal Fi,, by letting
Ffor,n = Jr®(9x OXn-

Then:

THEOREM 2.17 (Grothendieck). (Fundamental “GFGA”® comparison theorem)

i) For every coherent algebraic F on X and every i,

H'(X,F) = lim H'(Xy, F)

where F,, = F ®o, Ox,,.
ii) The categories of formal and algebraic coherent sheaves are equivalent, i.e., every formal
F' is isomorphic to Fior, some F, and

Homox (.7:, g) = Formal Homox (ffor, gfor).

The result for H? is essentially due to Zariski, whose famous [118] proving this and apply-
ing it to prove the connectedness theorem (see (V.6.3) Fundamental theorem of “holomorphic
functions”) started this whole development. A complete proof of Theorem 2.17 can be found in
EGA [1, Chapter 3, §84 and 5]°.

8Short for “géométrie formelle et géométrie algébrique”.
9(Added in publication) Illusie’s account in FAG [3, Chapter 8] “provides an introduction, explaining the
proofs of the key theorems, discussing typical applications, and updating when necessary.”
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Here we will prove only the special case:

R complete local, I = maximal ideal, k = R/I
X projective over Spec R

(which suffices for most applications)!’. If X is projective over Spec R, we can embed X in PR
for some m, and extend all sheaves from X to P’y by (0): thus it suffices to prove Theorem 2.17
for X =P

Before beginning the proof, we need elementary results on the category of coherent formal
sheaves. For details, we refer the reader to EGA [1, Chapter 0, §7 and Chapter 1, §10]; however
none of these facts are very difficult and the reader should be able to supply proofs.

2.18. If A is a noetherian ring, complete in its I-adic topology and U, = Spec A/I"*!, then
there is an equivalence of categories between:

a) sets of coherent sheaves Fy, on Uy, plus isomorphism
]:nfl = -7:n ®0Un OUn,1
b) finitely generated A-modules M
given by:
M =1mI(U,, F,)
% n n

Fn = M/I"H1M.

In particular, Category (a) is abelian: [but kernel is not the usual sheaf-theoretic kernel
because My C Mo does not imply My /I" 1My C My /T M.

2.19. Given A as above, and f € A, then

Ap =lm Ap/I" - Ay = Lim(A/I"A)

n

s flat over A.

COROLLARY 2.20. The category of coherent formal sheaves {F,} on a scheme X, proper
over Spec R (R as above) is abelian with

Coker[{F,} — {Gn}] = {Coker(F, — Gn)}n=01,..

but
Ker[{Fn} — {Gn}] = {Hn}
where for each affine U C X:
Ha(U) = H(U)/I"HH(U)
H(U) = Ker @fn(U) — l'&ngn(U)
n n

PROOF OF COROLLARY 2.20. Applying (2.18) with A = Hm Ox, (U) we construct kernels

of {Fnlu} — {Gnlu} for each affine U as described above. Use (2.19) to check that on each

distinguished open Uy C U, the restriction of the kernel on U is the kernel on Uy. U

10(Added in publication) See the remark at the end of this section.
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2.21. If A is any ring and
0—K,—L,— M, —0
are exact sequences of A-modules for each n > 0 fitting into an inverse system

0— Kn+1 — Ln+1 — Mn+1 —0

Ll

0—K,—L,— M, —0
and if for each n, the decreasing set of submodules Image(K, 1 — K,) of K, is stationary for
k large enough, then
0 — lim Ky, — lim L, — lim M;, — 0
n n n
18 exact.

PROOF OF THEOREM 2.17. We now begin the proof of GFGA. To start off, say F = {F,}
is a coherent formal sheaf on P7. Introduce

oo
grR = @ I"/I"*1 . a finitely generated graded k-algebra
S = Spec(gr R) :  an affine scheme of finite type over k
oo
gr F = @ I" - F,: a quasi-coherent sheaf on P}

Note that gr F is in fact a sheaf of (@oo, I"/I"!) @ Opr-modules and since
(In/fn+1) R Fo — I"-F,

is surjective, gr F is finitely generated as a sheaf of (D5, I"/I"™) @ Oppr-modules. In other

words, we can form a coherent sheaf gr F on

Specg <<@ I"/I"H) ®(’)[pnkn> = Pg.

n=0

Moreover,
HY(P?, gr F) = @Hq 7 F).

This same holds after twisting F by the standard invertible sheaf O(l), hence:
HIPY, ar (1) @HQ T Fa(D)).

But since gr R is a noetherian ring, the left hand side is (0) if [ > Iy (for some lp) and ¢ > 1.
Thus:
HAPG I - Fo(l) = (0), if ¢ > 1, n >0, 1> o,

Now look at the exact sequences:
0—I" - Fo(l) — Fp(l) — Fro1(l) — 0.
It follows from the cohomology sequences by induction on n that:
H (PR, Fu(l)) = (0), if ¢ > 1,
and HY(PR, Fn (1)) — HO(PR, F,,_1(1)) surjective for all n. > 0, 1 > ly.



312 VIII. APPLICATIONS OF COHOMOLOGY

The next step (like the third step of the GAGA Theorem 2.8) is that for some Iy, {F,(I)} is
generated by its sections for all [ > [y: i.e., there is a set of surjections:
(2.22) Oy [T+ - O — Fo(1) — 0
commuting with restriction from n + 1 to n. To see this, take I > Iy so that Fy(l) is generated
by its sections for [ > [y. This means there is a surjection:

Oppn — Fo(l) — 0.

By (2.21), this lifts successively to compatible surjections as in the third step of the GAGA

Theorem 2.8. In other words, we have a surjection of formal coherent sheaves:

(2.23) O (—Dtor — {Fn}-

Next, as in the fourth step of the GAGA Theorem 2.8, we prove
l'&lH%Opgg(l)/I"“ - Opr (1)) & (R-module of homogeneous forms of degree /)

= H°(Opy (1))
This is obvious since Opm(l) JI L Opn(l) is just the structure sheaf of P} , where R, =
R/I™! . R. Then the fifth step follows GAGA in Theorem 2.8 precisely: given {F,}, we take
the kernel of Corollary 2.20 and repeat the construction, obtaining a presentation:

By the fourth step, ¢ is given by a matrix of homogeneous forms, hence we can form the algebraic
coherent sheaf:

F = Coker |¢: O (—h) — O]Q%’(—lo)]

and it follows immediately that F, = F/I""1 . F ie., {F.} = Fror.
The rest of the proof follows that of GAGA in Theorem 2.8 precisely with HY9(F,y,) replaced
by Jim HY(F/I"L. F), once one checks that

F— lim HY(F/I" - F)

is a “cohomological §-functor” of coherent algebraic sheaves F, i.e.,if 0 > F -G — H — 0is
exact, then one has a long exact sequence

0 — lim HO(F/I" - F) — lim H*(G/I" - G) — lim HO(H/I" - H)

n n

g&lnﬂ'l(f/[n.f)_) ...... _

But this follows by looking at the exact sequences:
0— F/(FNI"-G) —G/I" -G — H/I"-H —0.
By (2.21), the cohomology groups
I'&an(]:/(}'ﬂ I"-G))

lim H(G/I" - G)
lim H9(H/I" - H)

fit into a long exact sequence (since for each n, the n-th terms of these limits are finitely generated
(R/I™ - R)-modules, hence are of finite length). But by the Artin-Rees lemma (Zariski-Samuel
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[119, vol. II, Chapter VIII, §2, Theorem 4’, p. 255]), the sequence of subsheaves F N I" -G of F
is cofinal with the sequence of subsheaves I" - F: in fact Jl such that for all n > I:

" Fcrnl"-g=1r"'(rnr-gcr.r.

Therefore

lim HY(F/(F N I" - G)) = lim H(F/I" - F).

n n

O

COROLLARY 2.24. Every formal closed subscheme Yio, of X (i.e., the set of closed subschemes
Y, C X, such that Y,_1 =Y, Xx, Xn—1) is induced by a unique closed subscheme Y of X (i.e.,
Y,=Y xx X,).

COROLLARY 2.25. Every formal étale covering mw: Yo, — X (i.e., a set of coverings mp: Yy, —
Xy, plus isomorphisms Y1 =Y, Xx, Xn—1) is induced by a unique étale covering m:Y — X
(i.e., Yn 2Y xx X, ).

In fact, it turns out that an étale covering my: Yo — Xy already defines uniquely the whole
formal covering, so that it follows that w?lg(Xo) = ﬂ?lg (X): See Corollary 5.9 below.!! Another
remarkable fact is that the GAGA and GFGA comparison theorems are closer than it would
seem at first. In fact, if R is a complete discrete valuation ring with absolute value | |, note
that for A'R:

lim HO (AR i1y, Oam) =lm(R/ T [X1, ., X

n
= ring of “convergent power series” g caX®
where ¢, € R and |co| — 0 as |a] = oo.

This is the basis of a connection between the above formal geometry and a so-called “rigid” or
“global” analytic geometry over the quotient field K of R. For an introduction to this, see Tate
[112].

REMARK. (Added in publication) (Chai) Grothendieck’s GFGA theorem (Theorem 2.17) is
proved here when X is projective over a complete local ring R and [ is the maximal ideal of R.
The proof for the case X proper over any complete noetherian ring (R, I) follows from the case
X projective over (R, ) again by an argument using Chow’s lemma and noetherian induction
similar to that in the proof of Grothendieck’s coherency theorem (Theorem VII.6.5).

The assumption here that I is the maximal ideal makes the Mittag-Leffler condition auto-
matically satisfied and simplifies the proof.

Grothendieck’s original proof of GFGA (Theorem 2.17) does not seem to have been pub-
lished. The folklore is that the original proof uses downward induction on the degree of co-
homology as in Serre’s proof of GAGA theorem (Theorem 2.8). In the published proof in
EGA [1, Chap. III, §4.1], the degree is fixed, and the Artin-Rees/Mittag-Leffler type conditions
are deduced from the finiteness theorem for proper morphism applied to the base change of
f: X — Spec R to the spectrum of the Artin-Rees algebra €;° I”.

Mumford’s proof of the GAGA theorem (Theorem 2.8) does not use downward induction
on the degree of cohomology, but uses downward induction on the integers d and m for P? and
F(m). In Mumford’s proof here of the GFGA theorem (Theorem 2.17), the required uniform

11(Added in publication) See §5 for other applications of GFGA in connection with deformations (e.g.,

Theorem 5.5 on algebraization). See also Illusie’s account in FAG [3, Chapter 8].
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vanishing is proved by the usual vanishing theorem applied to the associated graded ring gr(R) =

@2020 IV/IUJrl.
It might be of interest to note that this trick of base change to the associated graded ring
also gives a proof that the projective system

(Hi (‘Fn))nEN

attached to any compatible family (F,)nen of coherent Oy, -modules satisfies the Mittag-Leffler
condition and that the topology induced on the projective limit

lim H(F,)

is equal to the [-adic topology on Mn H'(F,) without the assumption that I is the maximal
ideal. With this additional ingredient, Mumford’s proof of the GFGA theorem (Theorem 2.17)
becomes valid for a general open (not necessarily maximal) ideal I in a complete noetherian
local ring R. The detailed proof for

the finiteness of

@Hi(I"}"n) as an (@ I"/I"1)-module for i = ig and g + 1
n=0 n=0
implies the uniform Mittag-Leffler/Artin-Rees for

(H'(Fn)) for i = i and ig + 1

neN

can be found in EGA [1, Oy, 13.7.7] (with correction). Here is a sketch of the spectral sequence
argument for the proof:
For any triple of natural numbers p, ¢ and n, define

ZP'P(HY(Fy)) = Image (H'(IPF, /I F,) — H'(IPF, /IPT' F))
BPP(H)(Fy,) = Image (H' ' (IP"" 1 F, /TP F,) — H'(IPF, /TP F))

Note that H!(IPF,/IPTLF,) = H'(IPF,) for Vn > p. For each fixed n we have natural isomor-
phisms

THAF) BT (HA(F)
ZETPHAF)  BETTTTH(E)

)

(0) = BY' " P(H*(Fn)) € BY P(H(Fn)) C -+ C BY P (H(Fy))
= By (H(Fa)) = -+ = BRIV (H(Fy)
C ZBIP(H (Fp)) = -+ = Z00 0 (H(F))

= 20N (H (F) € 207 (H (F) € - C 2N (H(Fy)) = H'(IPFy /P Fy),

and isomorphisms
Image (H'(IPF,) — H'(F,))  ~ ZE TP (H (Fp))
Image (H'(IP11F,) — Hi(F,)  BRP(H(Fy))’

which comes from the map between cohomology long exact sequences associated to the map

O Ipfn J—"n f]:n/IpFn%O

| | J

0 —— IPF,/IPPF, — F,/IPT\F, —— Fo /[IPF, —— 0
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between short exact sequences. If we fix p and r, then we have
= BPUP(H (Fpi2)) — BETP(H(Fpi)) — BYP(H(Fp))
and
o ZPTP(H (Fpart)) = ZBUP(H (Fpar)) = Z27P(H (Fpar—1)).
Denote by BY""P(H*(Fs)) and ZP" P(H*(Fso)) the respective projective limits, and let
ZP P (H(Fao))
BYTP(H (Fuo))

P (H (o)) =

We record here that
in the r-direction for r>n—p+1

ZP4(H* ili
P (H (Fn)) - stabilizes { in the n-direction for n>p+r—1

and

. Y . -
BPYU(H*(F,)) stabilizes { Tn the r-direction for r >p+1

in the n-direction for n > p.

For each i and 7, the direct sum

D BY P(H (Fx))

p=20
has a natural structure as a graded (€D,>( 17/ P+1)_submodule of D,>0 H {(I? F,) and increases
with 7. Since @5, H'(IPF,) is finitely generated over @, IP/IP*!, the increasing chain
of submodules €P, - BP'TP(H*(Fa)) stabilizes for r > (i), where r(i) is a positive integer
depending on 4. (This is where the properness assumption is used.) So the differentials d'? = 0
for all p, ¢ with p+ ¢ =149 — 1 and all » > r(i — 1). Hence the decreasing chain of submodules
D,>0 ZP'P(H*(Fa)) stabilizes for r > r(i — 1). Let ro be the maximum of 7(0), (1), ..., r(d),
where d = dim(X/ Spec(R/I)).
Since the graded (€D, I?P /1Pt 1)-modules

@B’” P( @Zw P(H(Fs)) and @EZM P(H(Fa))
p=>0 p>0 p>0

are finitely generated, we have:

(1) BRUH (Foo)) — BRI (H (Foo)) — - — im BP(H (F))  Yp,q,

(2)  ZRH (Foo)) < Z (H(Foo)) +— - — Im ZPI(H (o)) Vp, g,
(3) there exists a positive integer py such that
) . — 17
I Z5H (Foo)) = ZH(H (Fe)), VP = po
a( _ 1,
I+ BRi(H (Foo)) = B H(H (Fos)), P > o
) . — 17
I+ ERi(H(Foo)) = EESV(H (Fos)), VD > po.
From (1) and the stabilization range for ZFY(H (F,)), we see that
2R (F,) = 281 (H ()

if p<po, n>p+ro—1andr>rg Note that the family (Z7(H"(Fp))), ne
both directions r and n, and the transition maps are injective for n > p. Hence we see from (3),
(2) and (%) that

(4) ZPUH (Fp)) — ZPUH (Fxo)) ifn>p+ro—1andr > 7o,

N 18 projective in
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and
(5)  BYU(H(Fn)) = BYI(H (Fx)) ifn>pandr>ro.

It is not difficult to deduce from these the following;:
(6) (uniform Mittag-Leffler)

Image (Hi(fn+ro_1) — HZ(]-"n)) = Image (Hl(fm) — HZ(]-"n)) forall m >n 479 — 1.
(7) For each 4, the topology on H*(F) := im H (F,) induced by the projective limit coincides
with the I-adic topology on H*(Fu).
3. De Rham cohomology

As in §2 we wish to work in this section only with varieties X over C. For any such X, we
have the topological space (X in the classical topology) and for any group G, we can consider
the “constant sheaf Gx

GX(U):{

b

on this:

functions f: U — G, constant on each
connected component of U.

It is a standard fact from algebraic topology (cf. for instance, Spanier [109, Chapter 6, §9]; or
Warner [114]) that if a topological space Y is nice enough — e.g., if it is a finite simplicial
complex — then the sheaf cohomology H*(Y,Gy) and the singular cohomology computed by G-
valued cochains on all singular simplices of Y as in Part I [87, §5C] are canonically isomorphic.
One may call these the classical cohomology groups of Y. I would like in this part to indicate the
basic connection between these groups for G = C, and the coherent sheaf cohomology studied
above. This connection is given by the ideas of De Rham already mentioned in Part I [87, §5C].

We begin with a completely general definition: let f: X — Y be a morphism of schemes.
We have defined the Kéhler differentials 2x/y in Chapter V. We now go further and set:

k
Ql)“(/y (Ef/\(QX/Y)’ i.e., the sheafification of the pre-sheaf

k
U~ /\ of the Ox (U)-module Qx/y(U).

One checks by the methods used above that this is quasi-coherent and that

k
Q])C(/Y(U) = /\ over Ox (U) of Qx,y(U) for U affine.
In effect, this means that for U affine in X lying over V affine in Y:

Q])c(/y(U) =free Ox (U)-module on generators dgi A - - - A dg,
(9; € Ox(U)), modulo

a) d(gi +g1) A Ndgr = dgy A Ndgg +dgy A -+ A dg

b) d(g1g1) A -+ ANdgr = gidgy A -+~ Ndge + gidgy A - -+ A dgg
c) dger A+ ANdger, = sgn(e) - dgi A - -+ Adgy (e =permutation)
)

d) dgst Ndga A+ Ndg =01if g1 = go
d) dgy N+~ Ndgp, =0 if g1 € Oy(V)
The derivation d: Ox — Qx/y extends to maps:

d: Qlj(/y — Q';;%/ (not Ox-linear)
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given on affine U by:
d(fdgy \--- Ndge) = df Ndgy A+ Ndgk,  f,gi € Ox(U).
(Check that this is compatible with relations (a)-(e) on QF and Q*¥+1 hence d is well-defined.)

It follows immediately from the definition that d? = 0, i.e.,

Dyjy: 0 — Ox -5 Oy -5 0% -5 -

is a compler. Therefore as in §VIL.3 we may define the hypercohomology H'(X, 5% /Y) of this

complex, which is known as the De Rham cohomology Hip(X/Y) of X over Y. Grothendieck
[45], putting together more subtly earlier ideas of Serre, Atiyah and Hodge with Hironaka’s
resolution theorems [61] has proven the very beautiful:

THEOREM 3.1 (De Rham comparison theorem). If X is a variety smooth (but not necessarily
proper) over C, then there is a canonical isomorphism:

Hig(X/C) = HY((X in the classical topology), Cx).

We will only prove this for projective X referring the reader to Grothendieck’s elegant paper
[45] for the general case. Combining Theorem 3.1 with the spectral sequence of hypercohomology
gives:

COROLLARY 3.2. There is a spectral sequence with

Eiaq = H(X, Q};(/(c)

and d}? being induced by d: QP — QP abutting to HY((X in the classical topology),C). In
particular, if X is affine, then

{closed v-forms}

{exact v-forms) = HY((X in the classical topology),C).

To prove the theorem in the projective case, we must simply combine the GAGA comparison
theorem (Theorem 2.8) with the so-called Poincaré lemma on analytic differentials. First we
recall the basic facts about analytic differentials. If X is an n-dimensional complex manifold,
then the tangent bundle T’x has a structure of a rank n complex analytic vector bundle over X,
i.e.,

Tx ={(P,D)| PeX, D: (Oxan)p — C a derivation over C centered at P}
(cf. Part I [87, SS1A, 5C, 6B]). Thus if U C X is an open set with analytic coordinates z1, ..., zp,
then the inverse image of U in T'x has coordinates

(P,D)+— (21(P),...,2n(P),D(21),...,D(z))

under which it is analytically isomorphic to U x C". We then define the sheaves QFf . of
holomorphic p-forms by:

P
Q% . (U) = {holomorphic sections over U of the complex vector bundle /\(T)*()}

(Here E* = Hom(F,C) is the dual bundle.) Locally such a section w is written as usual by an
expression
w= Z Ciy,ip@2iy N-o - N2y, Ciy iy € Oxan(U),
1<i1 <-<ip<n
and we get the first order differential operators:

. OPp ; p+1
d'QX,an QX,an
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given by
p+1

/L7 7Z1 7Z
dw = > > (-1 ’f“—l B gy A Nz
0z,

1< <+ <zp+1<nk 1
The map (w,n) — w A 1 makes @ O X.an into a skew-commutative algebra in which d is a
derivation.

LEMMA 3.3 (Poincaré’s lemma). The sequence of sheaves:
d d
0 — Oxan —>Qxan —>Qxan — = Q% — 0

is exact, except at the 0-th place where Ker(d: Ox an — Q§<7an) 1s the sheaf of constant functions
Cyx.

For an elementary proof of this see Hartshorne [57, Remark after Proposition (7.1), p. 54].
(See also Wells [115, Chapter II, §2, Example 2.13, p. 49] as well as the proof of the Dolbeault
Lemma in Gunning-Rossi [54, Chapter I, §D, 3. Theorem, p. 27].)

Now if X is a variety smooth over C, an essential point to check is that the general functor
F = Fan of §2 takes the Kihler p-forms Q% X/C to the above-defined sheaf of holomorphic p-forms
ngan. This is virtually a tautology but to tie things together properly, we can proceed like this.
For the sake of this argument, we write QI)){,alg for Kéahler differentials on the scheme X, parallel
to Q% ,, defined above:

a) For all U C X affine, B, Q% ¢(U) is the universal skew-commutative Ox (U)-algebra
with derivation (i.e., the free algebra on elements df, f € Ox(U), modulo the standard
identities); since @ 934 X.an(U) is another skew-commutative algebra with derivation
over Ox(U) (via the inclusion Ox(U) C Oxan(U)), there is a unique collection of
maps:

Qg(,alg(U) — ng,an(U)
commuting with A and d.
b) From a general sheaf theory argument, such a collection of maps factors through a map
of sheaves of Ox an-modules (on X in the classical topology):

(QZ))( alg) — Q_I;(,an :

c) If z1,..., 2, € my, induce a basis of mx,m/m_%(x, then we have:

QXalg @OX:E Zi

hence
p
(QX,alg)x = @ OX@ : dZil AR dzip,
1<i; < <ip<n.
hence
p = - DY .
(QX’alg> an.,r - @ (OXzan)x dZZl A A dzlp'
T 1< < <ip<n
While z1, ..., z, are local analytic coordinates near x, so

1<ip < <ip<n
too! So we have the following situation: with respect to the identity map

€: (X in the classical topology) — (X in the Zariski topology)
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we have a map backwards from the De Rham complex (2, d) of the scheme X to the analytic
De Rham complex (€2 ,,,d) of the analytic manifold X. This induces:

a) a map of hypercohomology
H!(X in the Zariski topology, 5% /(C) — HY(X in the classical topology, Dy an)

and

b) a map of the spectral sequences abutting to these too:

algebraic B analytic £

| |
HY(X in the Zariski topology, QZ))(/(C) H?(X in the classical topology, Qg(,an)'

But by the GAGA comparison theorem (Theorem 2.8), the map on F7?’s is an isomorphism.
Now quite generally, if
EYM — E”
EM — EV
are two spectral sequences, and
P ERY — qu
B B
are homomorphisms “compatible with the spectral sequences”, i.e., commuting with the d’s, tak-

ing F1(E") into F(E") and commuting with the isomorphisms of EZ with FP(EPT4)/FPH1(Erta),
then it follows immediately that

¢P? isomorphisms, all p,q = ¢" isomorphisms, all v.

In our case, this means that the map in (a) is an isomorphism.

Now compute H” (X in the classical topology, Q'X,an) by the second spectral sequence of hy-
percohomology (cf. (VIL.3.11)). Since X in its classical topology is paracompact Hausdorff, we
get (cf. §VII.1)

Ker (d: O — Q4"
H? | X in the classical topology, sheaf

= H"(X, Uy an)-
Image (d: Qi an) 7

By Poincaré’s lemma (Lemma 3.3), all but one of these sheaves are (0) and the spectral sequence
degenerates to an isomorphism:

H"(X in the classical topology, Cx) = H"(X in the classical topology, Q .,)-

This proves Theorem 3.1 in the projective case.
In the projective case and more generally for any complete variety X, the spectral sequence
of Corollary 3.2:
EM = H9(X, QZ)?(/(C) —> HY(X in the classical topology, C)

simplifies quite remarkably. In fact the Theory of Hodge implies:

Facr. I: All &%°s are 0.
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This implies that

H(X, Q% o) = EX = p-th graded piece: FP(HPY) /FPHY(HPYY) of HPTI(X,C).

Note that HPT9(X,C) & HP19(X,Z) ® C, hence there is a natural complex conjugation z — T
on HP(X,C).

Fact. II: In HPT(X,C), F4t1(HPt4) is a complement to the subspace FP(HP1Y).

This implies that HP™4 splits canonically into a direct sum:

H'(X,C)= & H

ptg=v
p,q=>0

such that
a) He» = TP,
b) FP(HPTY) = ®p’2p HP 4
Combining both facts,
HPY >~ (X, Qé’(/(c)
hence

(3.4) H"(X,C)= P HI(X,0% 10)-

ptra=v

Fact. III: If we calculate HY (X, C) by C differential forms, then

set of cohomology classes representable by forms w
of type (p,q), i.e., in local coordinates z1,. .., zp,
Hp7q [ —
w = Z Ci1,...,ip,j1,...,jqdzi1 VANERRIVAN dzip A del VANEERIVAN d?jq

1<i) < <ip<n
1<51<...<jg<n

(See Kodaira-Morrow [72]).

4. Characteristic p phenomena

The theory of De Rham cohomology in characteristic p is still in its infancy'? and rather
than trying to discuss the situation at all generality, I would like instead to fix on one of the
really new features of characteristic p and discuss this: namely the Hasse-Witt matrix. To set
the stage, if X is a complete non-singular variety over a field k of characteristic p > 0, then the
De Rham groups

H"(X, )
are finite-dimensional k-vector spaces which usually behave quite like their counterparts in char-
acteristic 0 and are “reasonable” candidates for the cohomology of X with coefficients in k'3,
For instance, if X is a complete non-singular curve of genus g, then

dim HY(Ox) = dim HO(QY) = g,  dimH'(Qy) = 2¢

12(Added in publication) There have been considerable advances, since the original manuscript was written.
See the footnote at the end of this section.

I3 There are some cases where their dimension is larger than the expected n-th Betti number B,, and there
are also cases where the spectral sequence

HY(QP) = H" ()
does not degenerate. This is apparently connected with the presence of p-torsion on X. And if X is affine instead
of complete, these groups are not even finite-dimensional.
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in all characteristics. However the De Rham groups have a much richer structure in characteristic
p even in the case of curves. The simplest examples of this are the Frobenius cohomology
operations:

F: H'(X,0x) — H"(X,0Ox),
X = any scheme in which p-Ox =0
given by
F({aig,..in}) = {ay, i}

on the cocycle level. Note that if X is a scheme over k, chark = p, so that H"(X,Ox) is a
k-vector space, then F' is not k-linear; in fact F(a - x) = of - F(z), Va € k, x € HY(Ox). Such
a map we call p-linear. Expanded in terms of a basis of HY(Ox), F' is given by a matrix which
is called the v-th Hasse- Witt matiriz of X. p-linear maps do not have eigenvalues; instead they
have the following canonical form:

LEMMA 4.1. Let k be an algebraically closed field of characteristic p, let V be a finite-
dimensional vector space over k and let T: V — V be a p-linear transformation. Then V has a
unique decomposition:

V=V;saV,
where
a) T'(Vy,) C Vi, and T is nilpotent on V,,.
b) T(Vy) C Vi and Vs has a basis eq, ..., e, such that T'(e;) = e;. Furthermore,

{eeVs|Te=¢e} = {Zmiei | m; € Z/pZ}.
PROOF. Let V; = ()2, ImageT” and V,, = (J,—; KerT". Since dimV < +oo, Vi =
ImageT”, V,, = Ker T" for v > 0. Now if v > 0:
reVNV,—=T"2=0and e =T"y

— Ty =0

— Ty =0

= z=0
and since dimV = dimKerT" + dim Image 7", it follows that V = Vi @ V,,. Then Ty, is
nilpotent and T'|y, is bijective. Now choose x € V; and take v minimal such that there is a
relation

Tz = apr + a1 T(x) + -+ a, 1T ().
If ag = 0, then
T 'z =diz+-- +a, T ?(z)
and v would not be minimal. Now try to solve the equation:
Tz 4+ A 1T Hz)) = Xz + - + A1 TV H2).
This leads to
/\];_1 sag — )\0
MN4+N_car=M
)\17:_2 + )\lpi—l cAy—1 = )\llfl'

By substitution, we get:

v v—1 v—1 v—2
)\llj_]_ ‘aZOJ +)\113_1 'aﬁj ++Allj_1 s Ay—1 _>\V—1 :0
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which has a non-zero solution. Solving backwards, we find \,_o,..., A9 as required, hence an
x € Vg with Tx = z. Now take a maximal independent set of solutions eq, ..., ¢; to the equation
Ter =z IfW => k-e;, then T: W — W is bijective, hence T': V5/W — V, /W is also bijective.
tw g Vs, the argument above then shows 37 € V;/W such that TZ = z. Lifting T to = € V,
we find

T =x+ Z )\iei.
Let p1; € k satisfy p? — p; = A;. Then e = o — Y pse; also lifts T but it satisfies Tejq = ej41.
This proves that e; span V. O

We can apply this decomposition in particular to H'(X,Ox) and we find the following
interpretations of the eigenvectors:

THEOREM 4.2. Let X be a complete variety over an algebraically closed field k of character-
istic p. Consider F acting on HY (X, Ox). Then:

a) There is a one-to-one correspondence between {a € H'(Ox) | Fa = a} and pairs
(7, ¢): o
d
X
7 étale, proper, mo ¢ = w, ¢ = idy, such that Vx € X closed, #7 1 (x) = p and ¢
permutes these points cyclically: we call this, for short, a p-cyclic étale convering!?.
b) If X is non-singular, there is an isomorphism:

{a € HY(Ox) | Fa =0} = {wec HY(QY) |w = df, some f € R(X)}.

PRrROOF. (a) Given o with Foo = a, represent o by a cocycle {f;;}. Then Fa is represented
by { Z’;} and since this is cohomologous to a:

fij = fi;+9i — g
gi € Ox(Uy).
But then define a sheaf A of Ox-algebras by:
Alv, = Ox[ti]/(fi)
filt)) =t] —ti+gi
and by the glueing:
ti =1t + fij
over U; N U;. Let Y, = Specx(A). Since (df;/dt;)(t;) = —1, Y, is étale over X. Since A
is integral and finitely generated over Oy, Y, is proper over X (cf. Corollary I1.6.7). Define
Pa: Yo = Yy by
Po(ti) =t + 1.
For all closed points x € U;, let a be one solution of /' —t; + g;(z) = 0. Then 7~ *(z) consists of

the p points t; = a,a + 1,...,a + p — 1 which are permuted cyclically by ¢,. Finally, and this
is where we use the completeness of X, note that Y, depends only on «:

if fi; = fij+hi—hy
and  fl; = (fi;)? + gi — g;

1A‘Compalre the statement of (a) and the proof with Exercise (3) in Chapter V, which treats the Kummer
theory of n-cyclic étale coverings for n not divisible by char(k).
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is another solution to the above requirements, then
g9i — g5 = fi; — (fiy)"
= fij =[5+ hi = hyj = (hi = hy)”
= (gi + hi — bi) = (gj + hj — hY),
hence
gi=gi+thi—hl+&  £eT(Ox).

Thus & € k, hence £ = n — P for some n € k and we get an isomorphism
Ox[ti/(f] = ti + gi) —— Ox[ti]/ ()P — t; + g})

t; 1 t;—(hi—i-n).

We leave it to the reader to check that (Ya, ¢a) = (Y3, ¢3) only if o = .

Conversely, suppose 7: Y — X and ¢: Y — Y are a p-cyclic étale covering. By Proposition
I1.6.5, Y = Specy A, A a coherent sheaf of Ox-algebras.

Now 7 étale = 7 flat = A, is a flat O, x-module. A finitely presented flat module over
a local ring is free (cf. Bourbaki [27, Chapter II, §3.2]), hence A, is a free O, x-module. In fact

Ax/mm,X A = F(Oﬂ'_l(x)) = @ k(y)
yen1(z)
so A, is free of rank p, and the function 1 € A,, since it is not in m; x - A;, may be taken as
a part of a basis. Moreover, ¢ induces an automorphism ¢*: A — A in terms of which we can
characterize the subsheaf Ox C A:

Ox(U)=A{fc AU) | ¢"f = [}
In fact for all closed points x € X, we get an inclusion:

Oa:,X/mx,XC—> Ax/mx,X : Ax
| |
k(z) L(Or-1())
|
@yewfl(m) k(y)

and clearly k(z) is characterized as the set of ¢*-invariant functions in @, ¢ -1, k(y). Soif U
is affine and f € A(U) is ¢*-invariant, then

(+) fe ) [OxU)+mex- AU

zeU
closed

But if U is small enough, Al has a free basis:

p
Aly = Ox|v ® ) Oxlu - e;

i=2
and if we expand f = fi + Y 0, fi - €;, then (*) means that fi(z) = 0,2 < i <p, Vo €U
closed. By the Nullstellensatz, f; = 0, hence f € Ox(U). Let x € X be a closed point and let
7 z) = {y, dy,...,¢" Ly}. We can find a function e, € A, such that e,(y) = 1, ex(¢'y) =0

1<i<p-1. Then
o Tre, = Zf:_g(gbi)*em satisfies ¢*(Tre,) = Tre, and has value 1 at all points of 77 !(z),
hence is invertible in A,.
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o Set )
—

TregC Z;Z

A small calculation shows that ¢*(f;) = fr + 1 and f.(¢'y) = i. Let g = f» — f¥. Then
¢* gz = gz, hence g, € Oy x. Define a homomorphism

)\:):: O:B,X [tx]/(tg —tz + gx) — Ax

to fz-

Note that since f, has distinct values at all points ¢y, f, generates

p—1

=0

hence by Nakayama’s lemma, A, is surjective. But as A; is a homomorphism of free O, x-
modules of rank p, it must be injective too. Now A, extends to an isomorphism in some

neighborhood of x and covering X by such neighborhoods, we conclude that X has a covering
{U;} such that

Alu, =2 Ox|u,[ti] /(8] — ti + gi),  gi € Ox(Uy).
Over U; NUj, ¢*(t; — tj) = t; —t;, hence t; = t; + fij, fij € Ox(U;NUj). Then
fi = 1y = (ti = t5) = (ti = 1;)"
= 9i — 95,
so a = {f;;} is a cohomology class in Ox such that F'a = a. This completes the proof of (a).
(b) Given a with Fa = 0, represent a by a cocycle {fi;}. Then
5= 0i— 0
g9i € Ox(U;)
hence dg; = dg; on U; NU;. Therefore the dg;’s define a global section w, of Q}( of the form df,
feR(X). If
fzy fij +hi —h;
(fij)p =g;— gj
is another solution to the above requirements, then
Qg - 9} = (fi/j)p
= fii + 1y —nY
= (g9i +h7) = (gj + 1)
hence
gi=githi+§  £eT(0x)=k
Thus dg, = dg; and w, depends only on «. Conversely, if we are given w € I'(Q}), w = df,

f € R(X), the first step is to show that for all x € X, w = df, for some f, € O, x too. We use
the following important lemma:

LEMMA 4.3. Let X be a smooth n-dimensional variety over an algebraically closed field k,
and assume 3z1,...,z, € I'(Ox) such that

ey = @OX dzi.
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Consider Ox as a sheaf of O%-modules: Ox is a free O%-module with basis consisting of
monomials [ 2, 0 <a <p-—1.

Another way to view this is to consider the pair Y = (X, O%.) consisting of the topological
space X and the sheaf of rings O%.: this is a scheme too, in fact it is isomorphic to X as scheme
— but not as scheme over k — via:

identity: X —F vy
p-th power: Ox —— Of = Oy.
Thus Y is in fact an irreducible regular scheme, ant it is of finite type over k, i.e., a smooth

k-variety. Now
identity: X — = X
inclusion: Oy = OI)’( — Ox
induces a k-morphism
X —Y
which is easily seen to be bijective and proper. Thus m,Ox is a coherent Oy-module, and we
are asserting that it is free with basis [, 27, 0 < a; <p— 1.
PROOF OF LEMMA 4.3. To check that [] 2z generate 7,.Ox, it suffices to prove that for all
closed points x € Y, [] 2" generate (m,Ox)z/mgy - (7:Ox ), over k. But identifying O,y with
Oi,x, myy = {f?| f € my x}: write this m[f]x Then

(F*OX)x/m:L‘,Y : (W*OX)x = Om,X/m[ﬁ]X ’ Ox,X-

Let a; = z(x) and y; = z; — a;. Then yi,...,y, generate m, x and @QX = klly1,---,yn]] by
Proposition V.3.8. Thus

(meOx)a/May - (eOx)a = k[[y1, -, yall/ (W7, -, yn)
and the latter has a basis given by the monomials [y, 0 < a; < p — 1, hence by []z",
0<a;<p-—1.
But now suppose there was a relation over U C X:

Z b - 2%=0, ca € Ox(T) not all zero.

a=(ai,...,an)
0<a;<p-—1

Then for some closed point z € U, ¢, (z) # 0 for some «, hence there would be relation over k:
Z Ca(z)? - 2%=0

a=(a1,...,an)
0<a;<p-1

in (W*@X)m/mxyy . (W*@X)x. But the above proof showed that the z® were k-independent in
(W*Ox)x/ma;,y . (W*OX)I. [l

To return to the proof of Theorem 4.2, let z € X, f € R(X) and suppose df € (Qk/k)x
Write f = g/h?, g,h € Oy x, and by Lemma 4.3 expand:

g= E b2, {z1,...,2n} a generator of m, x.

a=(a1,...,an)
0<a;<p-—1
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Then
" Co \P
5] (R C P I
=1\ a=(ai,...,an)
0<a;<p—1
hence

1
g Aot g =hP by, b e Oy x.
(e nctn)
0<a; <p—1
0<ay

Expanding b; by Lemma 4.3, and equating coefficients of 2%, it follows that ch € hP - Oi y if
g > 0. Since this is true for all [ = 1,...,n, it follows:

g:c€0,...,0)+hp'fma fa GO%)Q
Therefore
df = d(g/h*) = dfs.

Now we can find a covering {U;} of X and f; € Ox(U;) such that w = df;. Then in U; NUj;,
d(fi—f;) =0, hence f; — f; = gfj, gij € O(U;NUj) (prove this either by Lemma 4.3 again, or by
field theory since d: R(X)/R(X)? — Qﬁ(/k is injective and O, N R(X)P = OF by the normality
of X). Then {g;;} defines « € H'(Ox) such that Fo = 0. This completes the proof of Theorem
4.2. U

The astonishing thing about (b) is that any f € [R(X) \ k] must have poles and in charac-
teristic 0,

f ¢ Oux = df & (Upp)a

In fact, if f has an I[-fold pole along an irreducible divisor D, then df has an (I 4+ 1)-fold pole
along D. But in characteristic p, if p | [ then the expected pole of df may sometimes disappear!
Nonetheless, this is relatively rare phenomenon even in characteristic p.

For instance, in char # 2, consider a hyperelliptic curve C. This is defined to be the
normalization of P! in a quadratic field extension k(X,+/f(X)). Explicitly, if we take f(X) to
be a polynomial with no multiple roots and assume its degree is odd: say 2n + 1, then C' is
covered by two affine pieces:

C1 = Speck[X,Y]/(Y? — f(X))

Cy = Spec k[X,Y]/(Y? - g(X))
where

X=1/X
?’ — Y/Xn+1
g9(X) = (X)*™*2. f(1/X).
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Then consider w = dX/Y":
On Cy:2YdY = f(X)-dX, so
w=dX/Y =2dY/f(X) and since Y, f'(X)
have no common zeroes, w has no poles.
On Cy: 2YdY = ¢'(X) - dX, and one checks
w=—(X)"1dX /Y = —2(X)"1dY /¢'(X) and since
37, g’()A(1 ) have no common zeroes, w has no poles.
But now say
f(X)=h(X)?+ X.
Then f/(X) =1, so w = d(2Y) is exact!
The area of characteristic p De Rham theory is far from being completely understood.

For further developments, see Serre [102, p.24] (from which our theorem has been taken),
Grothendieck [46] and Monsky [80, p.451]'°.

5. Deformation theory

We want to study here some questions of a completely new type: given an artin local ring
R, with maximal ideal M, residue field k = R/M and some other ideal I such that I - M = (0),
we get
Spec R D Spec R/I D Speck.

Then

a) Suppose X is a scheme smooth and of finite type over R/I. How many schemes Xy
are there, smooth and of finite type over R, such that X =2 Xy Xgpec R Spec R/17

X2 B X1

l 1
Spec R > Spec R/I

Such an Xs we call a deformation of X1 over R.
b) Suppose X2, Y2 are two schemes smooth and of finite type over R, and let X; =
X2 Xgpecr Spec R/I, Y1 = Y5 Xgpecr Spec R/I. Suppose fi: X1 — Y; is an R/I-
morphism. How many R-morphisms fo: Xo — Y5 are there lifting f;7
In fact the methods that we use to study these questions can be extended to the case where the
X’s and Y'’s are merely flat over R or R/I (this is another reason why flat is such an important
concept). We can state the results in the smooth case as follows:
In case (a), let Xo = X1 Xgpecr/r Speck. As in §V.3, let

Ox, = 'HO?TL(Q&U/]{:, Ox,)
= sheaf of k-derivations from Oy, to Ox,

be the tangent sheaf to Xy. Then

a;) In order that at lease one Xy exist, it is necessary and sufficient that a canonically
defined obstruction a € H?(Xy,Ox,) @ I vanishes. (o will be denoted by obstr(X7)
below.)

15(Add in publication) There have been considerable developments since the manuscript was written. See,
for instance, Chambert-Lior [53], Astérisque volumes [51], [52] on “p-adic cohomology” related to “crystalline

cohomology” initiated by Grothendieck [46].
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a;i) If one Xy exists, consider the set of pairs (Xo,¢), with X5 as above and ¢: X, =,
X2 Xgpec R Spec R/ an isomorphism, modulo the equivalence relation

(Xo,¢) ~ (X5,¢') if Jan R-isomorphism Xo % X4

such that

YX1gp/1 ,
X9 Xspec R Spec R/1 XY Xgpec R Spec R/ 1

\X/

1

commutes.

Denote this set Def(X;/R): then Def(X;/R) is a principal homogeneous space over

the group H'(Xy,Ox,) @ I: i.e., the group acts freely and transitively on the set.
a;ij) Given two smooth schemes X7 and Y; over R/I and a morphism over R/I:

f1:X1 —)Yl

the obstructions to deforming X; and Y; are connected by having the same image in
H?*(Xo, [*Oy,) @y I

ObStI'(Xl) € HQ(X(), ®X0) ®p I dfo

I H*(Xo, fOy,) @ I

obstr(Y:) € H2(Yo, Oyy) @k I 70
where fo = f1 ®p/r k: Xo — Yo and dfy: Ox, — f;Oy, is the differential of fo.

In case (b), let Xo = X1 Xgpec r/15peCk, Yo = Y1 Xgpec r/rSpeck and let f1 induce fo: Xo —
Yy. We have:

b;) In order that at least one lifting fo exist, it is necessary and sufficient that a canonically
defined obstruction « € H'(Xy, f3Oy,) ®j I vanishes.

bii) If one lifting fo exists, denote the set of all lifts by Lift(f;/R). Then Lift(fi/R) is a
principal homogeneous space over the group H°(Xj, f5Oy,) @k 1.

biii) The action of H'(Xy,Ox,) ®k I on Def(X;/R) is a special case of the obstructions
in (i): namely, if X9, X} are two deformations of X; over R, then the element of
H'(Xo,0x,) ® I by which they differ is the obstruction to lifting 1x,: X7 — Xj to a
morphism from X5 to XJ.

biy) Given three schemes and two morphisms:

PPN TNy
the obstructions to lifting compose as follows: if
o = (obstruction for f1) € H'(Xy, f;Oy;)
8 = (obstruction for g1) € H'(Yy, g502,)
v = (obstruction of g; o f1) € H'(Xy, (go o f0)"©z,)
then
v = dgo(a) + f5(B)
where dgg: Oy, = 950z, is the differential of gg.
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Note, in particular, what these say in the affine case'®

Affine a) If X is affine, 3! deformation Xy of X; smooth over R.
Affine b) If X and Y} are affine, then every f; lifts to some fo: Xo — Y5 and if Xy = Spec Ay,
Yy = Spec By then these liftings are a principal homogeneous space under:

I'(Xo, f3Oy,) @k I = Dery(By, Ag) @y 1.

If one is interested only in the existence of a lifting in (b), then the smoothness of Xy is
irrelevant and one can prove:

Lifting Property for smooth morphisms: : If X5, Y5 are of finite type over R, Y5
smooth and X affine, then any fi: X7 — Y7 lifts to an fo: Xo — Y5.

Variants of this lifing property have been used by Grothendiek to characterize smooth mor-
phisms (cf. “formal smoothness” in Criterion V.4.10, EGA [1, Chapter IV, §17] and SGA1 [4,
Exposé III]). Our method of proof will be to analyze the deformation problem in an even more
local case and then to analyze the patching problem via Cech cocycles. In fact if Z is smooth
over Spec R, then we know that locally Z is isomorphic to U where

U = (Spec R'[X1,..., Xunyi]/(f1,. .., fl))g

1
Spec R/

where in R'[X1,..., Xp4i]

afz _ /
lgdfjtgl <8Xn+j) -h =g, some h € R'[X].

Let’s call such U special smooth affine schemes over R’.

STeP. I: If X is a special smooth affine over R/I, then 3 a deformation Xs of X; over R
which is again a special smooth affine.

Proor. Write X1 = (Spec(R/I)[X]/(f)), as above, with det-h = g. Simply choose any
polynomials f;, k' with coefficients in R which reduce mod I to f;, h. Let X = (Spec R[X]/(f")),,
where ¢’ = det’-}'. O

StEP. II: If X5 is any affine over R (not even necessarily smooth) and Y3 is a special
smooth affine over R, then any f;: X7 — Yj lifts to an fo: Xo — Yo.

ProOF. If X5 = Spec Ay and Y5 = (Spec R[X]/(f)), as above, then the problem is to define
a homomorphism ¢9 indicated by the dotted arrow.

Ao/I - Ay <2 (R/T)X],/(f).

If we choose any element a; € Az which reduce mod I to ¢1(Xj), then we get a homomorphism
¢5: R[X], — A

161t is a theorem that for any noetherian scheme X, X affine <= X,.q affine (EGA [1, Chapter I, (5.1.10)]).
Hence in our case, Xo affine <= X, affine <= X affine.
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by setting ¢5(X;) = a; (since ¢4(g) mod I - Az equals ¢1(g) which is a unit; hence ¢4(g) is a
unit in As). However ¢4(f;) = fi(a) may not be zero. But we may alter a; to a; + da; provided
da; € I - As. Then since I? = (0), ¢4(fi) changes to

n—+l 8f
fila + da) = fi(a) +j§::1 aXZj (a) - daj.

Ofi
X,
Ofi
aXnJrj

of;
ox @

Note that since da; € I- Ay and I-M = (0), (a) - da; depends only on the image of

in k[X]. Multiplying the adjoint matrix to < > by h, we obtain an (I x [)-matrix
1<i,j<I

(hij) € k[X] such that

j=1
Now set
da; =0, 1<j<n
!
Santj = —g(a)™' Y hjgfola), 1<j<I
qg=1
Then:
Loay, !
fila +da) = fila) = }  5——(a) (@)Y hjefy(a)
n+j nt q=1
l
= fila) = g(a) ™Y fola) - g(a)diq
q=1

=0.

Therefore if we define ¢o by ¢2(X;) = a; + da;, we are through. O

STEP. III: Suppose X5 and Y5 are affines over R, Xs = Spec As, Yo = Spec Bs. Ay =
Ao/M - Ay, By = By/M - By. Let fa: Xo — Y5 be a morphism and let f; = resx, fo. Then
Lift(f1/R) is a principal homogeneous space over

Dery(Bo, I - Ag).
PROOF. We are given a homomorphism ¢;: B; — A; and we wish to study
L ={¢2: By — Ay | ¢pa mod I = ¢1},
which we assume is non-empty. If ¢o, ¢, € L, then ¢, — ¢ factors via D:

o4—0
Bs > As
U
By/M By -2 51 A,

[
By

One checks immediately that D is a derivation. And conversely for any such derivation D,
¢po € L= ¢o+D € L. O
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STEP. IV: Globalize Step III: Let X9, Y5 be two schemes of finite type over R. Let fo: Xo —
Y2 be a morphism, and let f; = resx, fo. Then Lift(fi/R) is a principal homogeneous space
over
(X2, Hom(f5 Sy, sy, I - Ox))-
(Note that I - Oy is really an Ox,-module).

PrOOF. Take affine coverings {U,}, {Va} of X2 and Y3 such that fo(U,) C V,. If Uy =
Spec Aga), Vo = Spec Béa), fl(a) =resy, f1, then as in Step III,

Lift( fl(a)/ R) = principal homogeneous space under Derk(B(()a) - Aéa))
I
1 ple)
HomBéa)(QBéa)/k,I A5
I
(@) (@)
HomAéa)(Q;éa)/k ®B(()o¢) Ay’ T A7)

|
F(Uaa Hom(fékQ%/O/k, I- OXQ))'

Therefore on the one hand, one can “add” a morphism fo: X5 — Yo and a global section D of
Hom ( fg Q%,O Ik I-Ox,) by adding them locally on the U,’s and noting that the “sums” agree on
overlaps U, N Ug. Again given two lifts f, f5, their “difference” fo — f5 defines locally on the
U,’s a section D, of ’Hom(ng%/O/k, I-Ox,), hence a global section D.

Note that if Y is smooth over k, Q%/O Ik is locally free with dual Oy, hence

Hom(fé‘Q%,o/k,}") = f4Oy, ®oy, F for any sheaf F;
and if X5 is flat over R, then I-Ox, = I®;Ox,. Thus case (bj) of our main result is proven! O
STEP. V: Proof of case (b;): viz. construction of the obstruction to lifting f: X; — ¥7.7

PROOF. Choose affine open coverings {U, }, {Va} of Xo, Y5 such that

° fl(Ua) CcV,
e V, is a special smooth affine.

Then by Step II, there exists a lift f2(a): Uy — V,, of resy, f1. By Step III, res féa) :UaNUg —
Va N Vg and res fQ(ﬁ ). Us NUg — V, N V3 differ by an element
Do € T'(UsNUg, fiOy, @ I).
But on U, NUg N U, we may write somewhat loosely:
Dag+ Dg, = [res fQ(O‘) — res 2(5)] + [res fg(ﬁ) — res 2(7)]
() ()

=res fy ' —r1es fy

(Check the proof in Step III to see that this does make sense.) Thus
{Da,@} S Zl({Ua}v ngYo Rk I)

Now if the lifts f2(a) are changed, this can only be done by adding to them elements F, €
I'(Ua, fiOy, ®g I) and then D,g is changed to Dyg + Eo — Eg. Moreover, if the covering {U,}

17Note that we use, in fact, only that Y3 is smooth over R and that the same proof gives the Lifting Property
for smooth morphisms.
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is refined and one restricts the lifts f2a) , then the cocycle we get is just the refinement of D,g.
Thus we have a well-defined element of H'(Xj, f3©y, @k I). Moreover it is zero if and only if
for some coverings {Us}, {Va}, Dag is homologous to zero, i.e.,

Doz,b’ = Ea - E,B? Ea € F(UOH fS@YO Ok I)'

Then changing fQ(O‘) by F, as in Step III, we get féa)’s, lifting fq such that on U,NUsg, A;a)—fgﬁ) is

represented by the zero derivation, i.e., the f;a)’s agree on overlaps and give an fo lifting f;. U
The assertion (biy) is a simple calculation that we leave to the reader.
SteP. VI:  Proof of (a;) and (bji) simultaneously.

PROOF. Suppose we are given X; smooth over Spec R/I and at least one deformation Xy
of Xy over R exists. If Xo, X} are any two deformations, we can apply the construction of
Step V to the lifting of 1x,: X; — X; to an R-morphism Xy — X}, getting an obstruction in
H'(Xo,0x,) ® I. This gives us a map:

Def(X1/R) x Def(X1/R) — H'(Xo,Ox,) @i I
which we write:
(X, X') — X — X',
The functorial property (bi,) proves that:
(*) X -X)+ X' -X")=(X-X").

Moreover, X — X' =0 = X = X': because if 1x, : X1 — X lifts to an R-morphism f: Xo —
X}, f is automatically an isomorphism in view of the easy:

LEMMA 5.1. Let A and B be R-algebras, B flat over R. If ¢: A — B is an R-homomorphism
such that

¢: A/I-A= B/I-B
is an isomorphism, then ¢ is an isomorphism.

(Proof left to the reader.)

If we now show that V deformation X and Vo € H'(X, Ox,) ® I, 3 a deformation X}
with X} — X9 = «, we will have proven that Def(X;/R) is a principal homogeneous space over
H'(Xo,0x,) ® I as required. To construct X}, represent a by a Cech cocycle {D;;}, for any
open covering {U;} of Xa, where

Dij S F(Ui N Uj,@XO Rk I).
As in Step IV, we then have an automorphism of U; N U; (as a subscheme of X»):
1UmUj + Dij: U, N Uj —U; N Uj.

X/ is obtained by glueing together the subschemes U; of X3 by these new automorphisms
between U; NU; regarded as part of U; and U; NU; regarded as part of U;. The cocycle condition
D;; + Dj; = Dy, guarantees that these glueings are consistent and one checks easily that for this
X}, X} — Xo is indeed a. O

STEP. VII: Proof of (a;): viz. construction of the obstruction to deforming X; over R.
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PROOF. Starting with X1, take a special affine covering {U; 1} of X;. By Step I, U; 1 deforms
to a special affine U; o over R. This gives us two deformations of the affine scheme U; 1 NUj
over R, viz. the open subschemes

jUi2 C Uiz
Z’Uj,g C Ujg.
By Step VI, these must be isomorphic so choose
bij: jUi2 — iUjo.

If we try to glue the schemes U; 2 together by these isomorphisms, consistency requires that the
following commutes:

iUj2 N U2
U2 N Uiz iUk 2N iUk 2.
res ik

But, in general, (res ¢;;) o (res ¢ir) ™' o (res ¢jx) will be an automorphism of ;Uj2 N xUj 2 given
by a derivation D;;;, € I'(U; N U; N Uy, O©x, @k I). One checks easily (1) that D;j; is a 2-
cocycle, (2) that altering the ¢;;’s adds to the D;j, a 2-coboundary, and conversely that any
D; ;. cohomologous to Dy, in H2({U;},0x, ® I) is obtained by altering the ¢;;’s, and (3) that
refining the covering {U;} replaces D;ji, by the refined 2-cocycle. Thus {D;j;} defines an element
a € H*(Xy,0x, @ I) depending only on Xi, and « = 0 if and only if Xy exists. U

STEP. VIII Proof of (aj;).

PRrROOF. Given X1, Y7 and f, take special affine coverings {U; 1}, {Vi1} of X; and Y] such
that f(U;1) C Vi1. Deform U;; (resp. Vi1) to Ui (resp. Vi2) over R. By Step II, lift f to
fi: Uia — Vi 2. Consider the diagram:

res f;
Ui ————— jVio

¢z’]i "/’ijl
res f;

iUj2 —— iVja.

It need not commute, so let
(res fj) o ¢ij = ij o (ves fi) + Fyj
where Fj; € T'(U; N Uj, f5Oy, ® I). It is a simple calculation to check now that if the ¢;;’s
define a 2-cocycle D;jj, representing obstr(X;) and the 1);;’s similarly define E;j;, then
dfo(Dijr) — fo Eiji = Fij — Fir, + Fjp,.
O

This completes the proof of the main results of infinitesimal deformation theory. We get
some important corollaries:

COROLLARY 5.2. Let R be an artin local ring with maximal ideal M and residue field k and
let I C R be any ideal contained in M. If X is a scheme smooth of finite type over Spec R/I
such that H*(Xo,0x,) = (0) — e.g., if dim Xg = 1 — then a deformation Xs of X1 over R
exists.
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PROOF. Filter I as follows: I > MI > M?*I > --- > MYI = (0). Then deform X;
successively as follows:

l ! !
SpecR/I < SpecR/MIc cSpec R/M'Ic -+ SpecR

using case (a;) of each stage to show that XY) can be deformed to a XfH_l). Set X9 = X{V). U

COROLLARY 5.3. Let R be an artin local ring with residue field k and let X be a scheme
smooth'® of finite type over R. Let Xg = X XSpec R Opeck and let

fo: Y[) —>X0

be an étale morphism. Then there exists a unique deformation Y of Yo over R such that fy lifts
to f: Y = X.

PROOF. Let M be the maximal ideal of R. Deform Yj successively as follows:

Yo C Y: c c Y1

fol fll flill

Xo c X3 c e c X1 c e C X
Speck  c Spec(R/M?)c cSpec(R/M")c -~ C SpecR

where X;_; = X xspeCRSpec(R/Ml). Because fy is étale, dfy: Oy, — fiOx, is an isomorphism.
Therefore at each stage, the existence of the deformation X; of X;_; gurantees by (aji) the
existence of a deformation Y} of ¥;_;. Then choose any Y, and ask whether f;_; lifts. We get
an obstruction a:

H1<Y07 @YO) Xk (Ml/Ml+1) 4;0> Hl(YOa f(>)k®X0) Xk (Ml/Ml+1)'

Then alter the deformation Y, by df; Y(), giving a new deformation Y;. By functoriality (by),
fi—1 lifts to f;: Y7 — X and by injectivity of dfy this is the only deformation for which this is
SO. U

The most exciting applications of deformation theory, however, are those cases when one can
construct deformations not only over artin local rings, but over complete local rings. If the ring
R is actually an integral domain, then one has constructed, by taking fibre product, a scheme
over the quotient field K of R as well. A powerful tool for extending constructions to this case
is Grothendieck’s GFGA Theorem (Theorem 2.17). This is applied as follows:

DEFINITION 5.4. Let R be a complete local noetherian ring with maximal ideal M. Then a
formal scheme X over R is a system of schemes and morphisms:

X, X, e X, e
Spec(R/M) — Spec(R/M?) — - -+ — Spec(R/M"™ 1) — - Spec R

18A more careful proof shows that the smoothness of X is not really needed here and that Corollary 5.3 is
true for any X of finite type over R. It is even true for comparing étale coverings of X and X;.q, any noetherian
scheme X (cf. SGA1 [4, Exposé I, Théoréme 8.3, p. 14]).
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where Xy, 1 = X Xgpec(r/mmt+1)Spec(lR/M™). X is flat over R if each X, is flat over Spec(R/M"™+1).
If X is a scheme over Spec R, the associated formal scheme X is the system of schemes
Xpn = X Xgpec g Spec(R/M™ 1) together with the obvious morphisms X, — X, 1.

THEOREM 5.5. Let R be a complete local noetherian ring and let X = {X,} be a formal
scheme flat over R. If X is smooth and projective over k = R/M, and if H*(Xo,Ox,) = (0),
then there exists a scheme X smooth and proper over R such that:

~

X =X.

PROOF. Since X is projective over k, there exists a very ample invertible sheaf Ly on Xj.
By Exercise (3) in Chapter I1I, £§ is very ample for all n > 1; by Theorem VIL.8.1, H*(L}) = (0)
if n > 0. So we may replace Lo by L2 and assume that H'(Ly) = (0) too. The first step is to
“lift” Ly to a sequence of invertible sheaves £,, on X, such that

Ly =Ly ®0Xn+l Ox,, all n > 0.

To do this, recall that the isomorphism classes of invertible sheaves on any scheme X are
classified by H(X, O%). Therefore to construct the £,’s inductively, it will suffice to show that
the natural map:
HY(X,,0%) — H' (Xn-1,0%, )
(given by restriction of functions from X, to X,_1) is surjective. But consider the map of
sheaves:
exp: M"-Ox, — O,
ar—1+a.

Since M"-M"™ = 0 in Oy, , this map is a homomorphism from M"™ Oy, in its additive structure
to O% in its multiplicative structure, and the image is obviously Ker (O}n — (’)j(nq), ie., we
get an exact sequence:

0— M"-0x, =% O, — O, _, — L
But now the flatness of X,, over R/M"™*! implies that for any ideal a C R/M"™+!,
a QR pmn+1 Ox, — a-0x,
is an isomorphism. Apply this with a = M™/M"*1:
M™. OX,L = (Mn/Mn+l) ®R/Mn+1 OX,L

= (M"/M™™) @p (R/M) @gpmn Ox,)

~ (Mn/Mn-i-l) Rk OXO

=~ O, if vy = dimy, M /M
Therefore we get an exact sequencelgz

0— O — 0%, — 0%, , — 1
hence an exact cohomology sequence:
HY(O%,) —— H'(O%, ) —" H*(Ox,) ™.

I
(0)

Note that all X,, are topologically the same space, hence this exact sequence makes sense as a sequence of
sheaves of abelian groups on Xj.
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This proves that the sheaves £,, exist.
The second step is to lift the projective embedding of Xg. Let sg,...,sy be a basis of
I'(Xo, Lo), so that (Lo, so, ..., sn) defines a projective embedding of Xy in P]kv. I claim that for

each n there are sections sén), cee s%) of £,, such that via the isomorphism:

*Cn—l = En ®0X'n OXn_l = En/Mn : *Cny

Sz(n—l)

(n)

= image of s; . To see this, use the exact sequence:

0— M"- L, — L, —Lyp1—0
and note that because £, is flat over R/M"*! too,
M"™- Ly = (M"/M™™) @p 1 Ln
= (M™/M™ ) @par (R/M) @gypmer Ln)
= (M"/M™) @ Lo,

hence we get an exact cohomology sequence:

HO(Ly) —— HO(Loy) — HY(Lo)®¥n.
|

(0)
inductively on n. Now for each n, (L’n,s(()n), .. ,35\7)) defines a

(n)

This allows us to define sin
morphism

On: Xp — Pé\[R/Mn+l)
such that the diagram:

Xn_l Em— ]P)Aé\][%/Mn)

| !

X —— Plajpmiy

commutes. I claim that ¢, is a closed immersion for each n. Topologically it is closed and
injective because topologically ¢, = ¢g and ¢q is by assumption a closed immersion. As for
structure sheaves, ¢;, lies in a diagram:

0 —— (M"/M" ) @ Opy —— Oy Opy 0

lle@d% ld’i J 1

0—— (M"/M") ®, Ox, —— Ox, ——— Ox,_, —— 0.

Since ¢ is surjective, this shows ¢; _; surjective = ¢, surjective. So by induction, all the ¢,
are closed immersions.

Finally, let ¢, induce an isomorphism of X, with the closed subscheme Y, C ]Pé\}% M-

Then the sequence of coherent sheaves {Oy, } is a formal coherent sheaf on P¥ in the sense of
§2 above. By the GFGA theorem (Theorem 2.17), there is a coherent sheaf F on PY such that

Oy, 2 F ®@p (R/M™)

for every n. Moreover since {Oy, } is a quotient of the formal sheaf {OPN " }7 F is quotient
(R/M™T2)

of Opn, i.e., F = Oy for some closed subscheme Y C PV. Therefore since:

X, 2 Y, 2Y Xgpee g Spec(R/M™ ),
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it follows that ¥ = X. O

COROLLARY 5.6. Let R be a complete local noetherian ring and let X = {X,,} be a formal
scheme flat over R. If Xg is a smooth complete curve, then X = X for some X smooth and
proper over R.

PROOF. By Proposition V.5.11, X is projective over k and because dim Xo = 1, H?(Ox,) =
(0). O

COROLLARY 5.7. (Severi?® -Grothendieck) Let R be a complete local noetherian ring and
let Xo be a smooth complete curve over k = R/M. Then X has a deformation over R, i.e.,
there exists a scheme X, smooth and proper over R such that Xo = X Xgpec R Speck.

Proor. Corollaries 5.2 and 5.6. O

An important supplementary remark here is that if for simplicity X is geometrically irre-
ducible (also said to be absolutely irreducible), i.e., XoXgpec xSpec k is irreducible (k = algebraic
closure of k), then H!(Ox) is a free R-module such that

H'(Ox) @R k2= H'(Ox,)
H'(Ox)®r K = H'(Ox,)
(K = quotient field of R, X;, = X Xgpec r Spec K).
Since the genus of a curve Y over k is nothing but dimy H'(Oy), this shows that genus(X,) =
genus(Xp). The proof in outline is this:
a) Xo Xgpeck Speck irreducible and Xy smooth over k implies k& algebraically closed in
R(X), hence k algebraically closed in H%(Ox,). Thus
k= H°(Ox,).
b) Show that there are exact sequences

0—— M"-Ox, — Ox,, — Ox,,_, —— 0.
|
Srn
Ox.
¢) Show by induction on n that if g = dimy H*(Ox,), then R/M"*! =5 HO(Oy,) and
H'(Oy,) is a free (R/M™*!)-module of rank g such that

HY(Ox, ,) = HY(Ox,)/M™ - H (Oy,).

d) Apply GFGA (Theorem 2.17) to prove that H'(Oy) is a free R-module of rank g such
that H(Oy,) = H (Ox)/M" ! . HY(Ox) for all n.
e) Use the flatness of K over R to prove that

H'(Ox,) = H'(Ox) ®p K.

Corollary 5.7 is especially interesting when k is a perfect field of characteristic p and R
is the Witt vectors over k (see, for instance, Mumford [84, Lecture 26 by G. Bergman]), in
which case one summarizes Corollary 5.7 by saying: “non-singular curves can be lifted from
characteristic p to characteristic 0”. On the other hand, Serre [104]*! has found non-singular
projective varieties X over algebraically closed fields k£ of characteristic p such that for every

20Modulo translating Italian style geometry into the theory of schemes, a rigorous proof of this is contained
in Severi [107, Anhang]. This approach was worked out by Popp [91].
2L(Added in Publication) See also Illusie’s account in FAG [3, Chapter 8].
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complete local characteristic 0 domain R with R/M = k, no such X exists: such an X is called
a non-liftable variety!
One can strengthen the application of deformation theory to coverings in the same way:

THEOREM 5.8. Let R be a complete local noetherian ring with residue field k and let X be a
scheme smooth?? and proper over R. Let Xo = X Xspec kR Speck and let

Jo: Yo — Xo

be a finite étale morphism. Then there exists a unique finite étale morphism
Y —X

such that fo is obtained from f by fibre product Xgpec g Speck.

Proor. By Corollary 5.3 we can lift fo: Yo — Xg to a unique formal finite étale scheme
F:Y — X, ie, Y ={Y,}, F = {f,} where f,: Y, — X, is finite and étale, where X, =
X Xspec g Spec R/M™ ! and the diagram:

Yn e Yn+1
fnl lfn#»l
Xn —_— Xn+1

commutes (the inclusion Y,, — Y11 being part of the definition of a formal scheme )). If
An = fnx(Oy,), then

Specy, (An) =Y,
= n+1 XX,L+1 Xn

Oxn)

hence A, = A,+1 ®0x, ., Ox,. Therefore {A,} is a coherent formal sheaf on X, hence by
GFGA (Theorem 2.17) there is a unique coherent sheaf A on X such that A, = A®p, Ox,
for all n. Using the fact that

HOHIOX (A ®OX ~A7 A) = Formal HOHI(’)X (-Afor ®OX -Afor’ Afor)

= Specy, (.An+1 ®0x, .,

and similar facts with A® A® A, we see immediately that A is a sheaf of commutative algebras.
Let Y = Specx(A), and let f: Y — X be the canonical morphism. f is obviously proper and
finite to one. Moreover since for all z € Xy, A, ; is a free O, x,,-module, it follows immediately
that A, is a free O, x-module, i.e., f is flat at x. And fo étale implies Qy/x ®oy k(z) = (0),
hence (Qy,x ). = (0) by Nakayama’s lemma. Therefore by Criterion V.4.1, f is étale at . Since
this holds for all z, f is étale in an open set U C X, with U D Xy. But X proper over Spec R
implies that every such open set U equals X. Thus f is étale. Finally if f': Specy A" — X is
another such lifting with A, = Ap, then by GFGA (Theorem 2.17) there is a unique isomorphism

On: An i)A;L

of Ox, -algebras inducing the identity Ag = Aj,. Then these ¢, patch together into a formal
isomorphism Agp; — Af,,, which comes by GFGA (Theorem 2.17) from a unique algebraic
isomorphism ¢: A — A'. O

22As mentioned above, Corollary 5.3 is actually true without assuming smoothness and hence since smooth-
ness is not used in proving this result from Corollary 5.3, it is unnecessary here too.
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COROLLARY 5.9. In the situation of Theorem 5.8, there is an isomorphism of pro-finite
groups:
T8 (Xo) < i (X)

canonical up to inner automorphism.

Proor. If f: Y — X is any connected covering, i.e., f finite and étale, then by fibre
product xx Xo, we get a covering fo: Yy — Xo. Note that Y| is connected (if not, we could
lift its connected components separately by Theorem 5.8, hence find a disconnected covering
f1:Y" — X lifting fo, thus contradicting the uniqueness in the theorem). By Theorem 5.8 every
connected covering fp: Yy — Xp, up to isomorphism, arises in this way. Moreover, if R(Y) is
Galois over R(X), then we get a homomorphism:

Gal(R(Y)/R(X)) = Aut(Y/X) — Aut(Yy/Xo) = Gal(R(Yp)/R(Xo))

which is easily seen to be an isomorphism. Now fix separable algebraic closures R(X)* of R(X)

—_—~— P

and R(Xp)* of R(X)), and let R(X) C R(X)*, R(Xy) C R(X()* be the maximal subfields such
that normalization in finitely generated subfields of these is étale over X or over Xy. Now write

R(X) as an increasing union of finite Galois extensions L, of R(X); we get a tower of coverings
Y, =

X)); choose inductively in n isomorphisms:

normalization of X in L,; let Z,, = Y7, X x X (this is a tower of connected coverings of

R(Z,) = K, C R(Xo).

—_—

It follows readily that | J K,, = R(Xj), and that
8 (X) = lim Gal(L, /R(X))
= lim Gal(Ky /R (X))
= 7' (Xo).
U

This result can be used to partially compute 71 of liftable characteristic p varieties in terms of
71 of varieties over C, hence in terms of classical topology. This method is due to Grothendieck
and illustrates very beautifully the Kroneckerian idea of §IV.1: Let

k = algebraically closed field of characteristic p,

R = complete local domain of characteristic 0 with R/M = k,
K = quotient field of R,
K = algebraic closure of K.

Choose an isomorphism (embedding?):
K

Il

C.
Let
X = scheme proper and smooth over R,
Xo = X Xspec g Speck : we assume this is irreducible,
X, = X Xgpec r Spec K,
Yn = X XSpecR Spec K : we assume this is irreducible,

Xﬁ =X XSpec R Spec C.
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THEOREM 5.10. There is a surjective homomorphism
1 1
WTg(Xn) — 1 °(Xo)
canonical up to inner automorphism, and hence, fizing an isomorphism K ~ C, a surjective
homomorphism:
AP (X)) — 18 (Xo).

PROOF. By Theorem 2.16 and Corollary 5.9, it suffices to compare 7} (Y ) and 7!8(X).
Let © D R(X,) be an algebraic closure. Note that

(X
) R(Y) =R(X,)
ii) R(X,) = R(X,) ®k K is algebraic over R(X,), hence (2 is an algebraic closure of
R(X,) too.
Thus we may consider the maximal subfields of €2 such that the normalization of any of the
schemes X, X, and Yn is étale. Note that:

iii) L C Q finite over R(X), normalization of X in L étale over X = normalization of
X, in L étale over X,

iv) Ko C K finite over K, normalization of X, in R(X;) ®k Ko is X, Xspec K SPec Ko
which is étale over X,.

Thus we get a diagram

where
Q1 /R(X,)) = maximal extension étale over X,
1 /R(X,) = maximal extension étale over X,

22/R(X;) = maximal extension étale over X

ie.,
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we get homomorphisms:

11— r8(X,) — 78(X,) — Gal(K/K) — 1

R

8 (X)

To finish the proof of Theorem 5.10, we must show that ¢ is surjective. A small consideration
of this diagram of fields shows that this amounts to saying:

vi) Qo @k K — Q is injective; or equivalently (cf. §IV.2) K is algebraically closed in Q.

If this is not true, then suppose L C K is finite over K and L C . Let S be the integral closure
of R in L. Then X Xgpecr SpecS is smooth over Spec.S, hence is normal; since R(X Xgpec R
SpecS) = R(X) ®k L, X Xgpecr SpecS is the normalization of X in R(X) ®x L. Now
f: SpecS — Spec R is certainly not étale unless R = S: because if [M] € Spec R is the closed
point, then (a) by Hensel’s lemma (Lemma IV.6.1), f~1([M]) = one point, so (b) if f is étale,
the closed subscheme f~1([M]) is isomorphic to Speck, hence (c) f is a closed immersion, i.e.,
R — S is surjective. But then neither can g: X Xgpec r Spec S — X be étale because I claim
there is a section s:

X

J

Spec R

5

s

e —

hence g étale implies by base change via s that f is étale. To construct s, just take a closed
point € Xy, let @1,...,a, be generators of m, x, in the regular local ring O, x,, lift these to
ai,...,a, € my x and set Z = Spec (Oy x/(ai,...,ay,)). By Hensel’s lemma (Lemma IV.6.1), Z
is finite over R, hence is isomorphic to a closed subscheme of X. Since the projection Z — Spec R
is immediately seen to be étale, Z — Spec R is an isomorphism, hence there is a unique s with
Z = Image(s). O

At this point we can put together Parts I and II to deduce the following famous result of
Grothendieck.

COROLLARY b5.11. Let k be an algebraically closed field of characteristic p and let X be a
non-singular complete curve over k. Let g = dimy, H'(Ox), the genus of X. Then

dai,...,ag,b1,...,b5 € ”Tlg(X)

satisfying:

11 131
(%) arbiay by ---agbga, byt =e

and generating a dense subgroup: equivalently Trzlﬂg(X) is a quotient of the pro-finite completion
of the free group on the a;’s and b;’s modulo a normal subgroup containing at least ().

ProOOF. Lift X to a scheme Y over the ring of Witt vectors W (k), and via an isomorphism
of C with (embedding into C of?) the algebraic closure of the quotient field of W (k) (see, for
instance, Mumford [84, Lecture 26 by G. Bergman]), let ¥ induce a curve Z over C. Note
that ¢ = dimc H!'(Oz) by the remark following Corollary 5.7. By Part I [87, §7B], we know
that topologically Z is a compact orientable surface with g handles. It is a standard result in
elementary topology that 7r§°p of such a surface is free on a;’s and b;’s modulo the one relation
(*). Thus everything follows from Theorem 5.10. O
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What is the kernel of 7¥'8(X,) — 7*(X()? A complete structure theorem is not known,
even for curves, but the following two things have been discovered:

a) Grothendieck has shown that the kernel is contained in the closed normal subgroup
generated by the p-Sylow subgroups: i.e., if H is finite such that p t # H and W?Ig (X,) —
H is a continuous map, then this map factors through TI'TIg (Xo).

b) If you abelianize the situation, and look at the p-part of these groups, the kernel tends
to be quite large. In fact

lg ~~ 1 lg] ~ 2

8 (X,)/ |:7T;fg,7rifg:| = H Z;% x Ty

primes [

while

i (X0)/ [}, =®] = [] 2 x 2 < T,

I#p

where 0 < r < g and Tp, T, are finite groups, (0) in the case of curves. In fact,
Shafarevitch has shown for curves that the maximal pro-p-nilpotent quotient of leg(Xo)
is a free pro-p-group on r generators.

Going back now to general deformation theory, it is clear that the really powerful applications
are in situations where one can apply the basic set-up: R — R/I (I - M = (0)) inductively and
get statements over general artin rings and via GFGA (Theorem 2.17) to complete local ring.
In the two cases examined above, we could do this by proving that there were no obstructions.
However even if obstructions may be present, one can seek to build up inductively a maximal
deformation of the original variety X¢/k. This is the point of view of moduli, which we want to
sketch briefly.

Start with an arbitrary scheme Xy over k. Then for all artin local rings R with residue field
k, define

the set of triples (X, ¢, m), where

m: X — Spec R is a flat morphism

and ¢: X Xgpec g Speck = Xpis a
k-isomorphism, modulo (X, ¢, m) ~ (X', ¢/, ")

Def(Xo/R) _ ) if 3 an R-isomorphism #: X =5 X’ such that

1
0}1; et X Xgpec R Speck el X' Xspec R Speck
the deformations \

@ %
of Xy over R X,
L commutes. )
Note that

R — Def(Xo/R)

is a covariant functor for all homomorphisms f: R — R’ inducing the identities on the residue
fields. In fact, if (X, ¢, 7) € Def(Xo/R), let

X" = X Xgpecr Spec R/
7' = projection of X’ onto Spec R/

¢’ = the composition:

~ ¢
X' Xgpec rr Speck = (X Xspec r Spec R') Xspec 7 Speck = X Xgpec r Speck — Xo.

Then (X', ¢/, ") € Def(X(/R') depends only on the equivalence class of (X, ¢, 7) and on f. One
says that X’/R’ is the deformation obtained from X/R by the base change f. What one wants
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to do next is to build up inductively the biggest possible deformation of Xy so that any other is
obtained from it by base change! More precisely, suppose that R is a complete noetherian local
ring with maximal ideal 9t and residue field :3/9t = k. Then we get a sequence of artin local
rings R, = R/M" L. Then, by definition, a formal deformation X of Xy over R is a sequence
of deformations X, and closed immersions ¢,:

X, < X, X,
Jn ¢n 11 d)l lo

SpecR+— ---«—— Spec R,, «— Spec R,,_1 +— -+ +—— Speck

where ¢, induces an isomorphism:
Xn1 — Xy XSpec Rn Spec Ry_1.

Note that if S is artin local with residue field k, R — S is a homomorphism inducing identity on
residue fields and X' /9 is a formal deformation, we can define a real deformation X' x gpec 1 Spec S
by base change, since R — S factors through R, if n is large enough. Then a formal deformation
X /R is said to be versal or semi-universal if:

(1) every deformation Y of Xy over S is isomorphic to the one obtained by base change
X Xgpecst Spec S for a suitable a: R — 5, and

(2) if the maximal ideal N C S satisfies N2 = (0), then one asks that there be only one «
for which (1) holds.

(2") X /M is universal if v is always unique. It is clear that a universal deformation is unique
if it exists, and it is not hard to prove that a versal one is also unique, but only up to
a non-canonical isomorphism.

A theorem of Grothendieck and Schlessinger [97] asserts the following:

a) If X is smooth and proper over k, then a versal deformation X'/ exists and there is
a canonical isomorphism:

chark = 0: Homy(9/MM? k)
chark =p: Homg(9M/(MM2 + (p)), k)

b) If H°(X(,0x,) = (0), then X' /R is universal.
c) If H?(X(,0x,) = (0), then

chark =0: R E[[t,...,t,)], n=dimH'(Xo,Ox,)
chark = p, k perfect : R =W (k)[[t1,...,ts]], n=dimH (X, Ox,).

A further development of these ideas leads us to the global problem of moduli. Starting with
any Xo smooth and proper over k, suppose you drop the restriction that R be an artin local
ring and for any pair (R, m), R a ring, m C R a maximal ideal such that R/m = k you define
Def(Xy/R) to be the pairs (X, ¢) as before, but now X is assumed smooth and proper over
Spec R. If moreover you isolate the main qualitative properties that Xy and its deformations
have, it is natural to cut loose from the base point [m] € Spec R and consider instead functors
like:

} >~ H'(Xo,0x,).

set of smooth proper morphisms f: X — S such that
Mp(S) =< all the fibres f~1(s) of f have property P,
modulo f ~ f/if 3 an S-isomorphism ¢g: X —— X’
where S is any scheme and P is some property of schemes X over fields k. Provided that P
satisfies: [if X/k has P and k&’ D k, then X Xgpeck Speck’ has PJ, then Myp is a functor in S,
Le., given g: S" — S and X/S € Mp(s), then X xg 5" € Mp(S’).
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For instance, take P(X/k) to mean

dim X =1
H(X,0x) =5k
dimy H(X, Ox) = g;

then 9Mp is the usual moduli functor for curves of genus g. The “problem of moduli” is just the

question of describing MMp as explicitly as possible and in particular asking how far it deviates

from a representable functor. The best case, in other words, would be that as functors in 5,

f)ﬁP(S) =

Hom(S, Mp) for some scheme Mp which would then be called the moduli space. For

an introduction to these questions, see Mumford et al. [83].

(1)

Exercise

Let X be a normal irreducible noetherian scheme and let L O R(X) be a Galois
extension such that the normalization Y7, of X in L is étale over X. Let w: Y, — X
be the canonical morphism. Let G = Gal(L/R(X)). Then G acts on Y7, over X: show
that for all y € Yz, if x = 7(y), then:
a) G acts transitively on 71 (z).
b) If G, C G is the subgroup leaving y fixed, then G, acts naturally on k(y) leaving
k(z) fixed.

c) k(y) is Galois over k(z) and, via the action in (b),

) an
Gy, = Gal(k(y) /k(z)).

—_—
[Hint: Let n = [L: R(X)]. Using the fact that L ®g(x) L = L x --- x L and that
Y: Xx Yz is normal, prove that Y; xx Y = disjoint union of n copies of Y;. Prove
that if G acts on Y7, X x Y7, non-trivially on the first factor but trivially on the second,
then it permutes these components simply transitively.]
Note that the first part of the GFGA theorem (Theorem 2.17) would be trivial if the
following were true:

X a scheme over Spec A
F a quasi-coherent sheaf of Ox-modules
B an A-algebra.
Then for all 4, the canonical map
H'(X,F)®a B — H'(X Xgpec 4 Spec B, F @4 B)
is an isomorphism. Show that if B is flat over A, this is correct.
Using (2), deduce the more elementary form of GFGA:
f: Z — X proper, X noetherian
F a coherent sheaf of Ox-modules.
Then for all ¢, and for all z € X,

m R fo(F)o/ (mf - R fo(F)a) = LH’ ), F/ml - F).



CHAPTER IX

Applications

1. Mori’s existence theorem of rational curves

(Added in publication)

In this section X is a smooth projective variety over an algebraically closed field & of char-
acteristic p > 0. For simplicity, we omit k and Spec(k) from tensor products over k, X/k, fibre
products over Spec(k), etc.

The highest nonzero exterior power

dim X
Kx =detQ"¥ = A 0k

is an invertible Ox-module called the canonical sheaf. The canonical divisor Kx is the divisor
on X defined up to linear equivalence by

Kx = Ox(Kx).
The tangent sheaf ©x = Homo, (2%, Ox) thus gives rise to
det Ox = Ox(—Kx) = Ky

We already encountered canonical divisors in the Riemann-Roch theorem for curves in §VIII.1.

The canonical sheaf and divisor play pivotal roles especially in birational geometry. As
a nontrivial application of what we have seen so far, we prove the following theorem, which
provided a breakthrough in higher-dimensional birational geometry since the 1980’s:

THEOREM 1.1 (Mori). (Mori [81, Theorem 5|, Mori [82, Theorem 1.4], Kollar-Mori [74,
Theorem 1.13]) Let X be a smooth projective variety over k with a closed irreducible curve
C C X such that

(Kx.C) > 0.
Then for any fized ample divisor H on X, there exists a rational curve l on X such that
(KX (K5.0)
(HI) — (H.O)
Here a rational curve is an irreducible and reduced curve proper over k with the normalization
P!, while (£.C) denotes the intersection number of an inverstible sheaf £ and a curve C' defined
in §VIL.11.

Why is a rational curve so important? As in §II1.3, consider the blow up of a smooth variety

Z over k along a closed smooth subvariety Y C Z of codimension r > 2 defined by an ideal sheaf
I

dimX +1> (K) >0  and

n: 7' =Bly(X) — Z.

Since Y is supposed to be smooth, hence is a local complete intersection, Z/Z? is Oy-locally
free of rank r. Thus by Theorem IIL.3.5, the ezceptional divisor

YY) =2 ' xzY =Py(Z/1°)

345
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is a P~ !-bundle over Y, hence contains lots of rational curves in the fibres that are contracted
to points by 7.

In particular when Z is a smooth surface and Y = {z} is a closed point, the exceptional
curve 771 (z) = P! is contracted to the point z by 7.

Mori’s result was the starting point of looking for rational curves that can be contracted.

Mori produces a rational curve out of a given curve C' in the theorem via the “bend and
break” technique. To do so, he needs the following nontrivial result on deformation of morphisms,
which combine what we had in §1.8 and §VIIL5.

We work over S = Spec(k) with an algebraically closed field k. For simplicity, we omit
subscripts S and k for /k, xg, ®j, etc.

Let V be a projective variety over k, while W is a smooth quasi-projective variety over k.

By Grothendieck’s theorem (Theorem 1.8.14), there exists a locally noetherian scheme Hom(V, W)
over k parametrizing morphisms from V to W, that is, for any locally noetherian k-scheme T, the
set Hom(V, W)(T') of its T-valued points is canonically isomorphic to the set of T-morphisms
VxT—-WxT.

Fixing a morphism f: V — W, let us consider its infinitesimal deformations. For an artin
local k-algebra R, denote by m its maximal ideal (hence R/m = k) and let I be an ideal of R
such that mI = 0.

Given an infinitesimal deformation f; over Spec(R/I) of f, we would like to see if it lifts to
an infinitesimal deformation f, over Spec(R), that is,

Hom(V, W)(Spec(R)) —— Hom(V, W)(Spec(R/I)) —— Hom(V, W)(Spec(k))
for—————-—-——-——~- > fi f

In the description of §VIIL.5, we are in the situation:

Vo =V x Spec(R) — LN W x Spec(R) = Ws

U U
Vi = V x Spec(R/T) —5 W x Spec(R/I) = Wi
U U
Vo=V d W= W

As we saw in b;) and by ), the obstruction for lifting f; to fo lies in
HYV, f*ow)® 1.

If the lifting exists, then the set Lift(f;/R) of all liftings is a principal homogeneous space over
HO(V, frfow) @ 1.

In Mori’s applications, we have an additional information: Fix a closed immersion j: Z — V
and a morphism (: Z — W, and consider a morphism f: V — W whose restriction to Z is (,
that is, f o j = (. The subfunctor of Hom(V, W), defined by

Hom(V,W;()(T) :=={g: V x T — W x T | T-morphism with go (5 x id) = ¢ x id}

for k-schemes T, is represented by a closed subscheme of Hom(V, W) obtained as the fibre
product of the natural restriction morphism Hom(V, W) — Hom(Z, W) and the morphism
Spec(k) = Hom(Z, W) corresponding to ( € Hom(Z, W)(Spec(k)).

In terms of the ideal sheaf 7z on V defining the subscheme Z, we have an exact sequence

0—Z; — Oy — Oz — 0.
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Tensoring the locally free Oy-module f*Oy,, we obtain an exact sequence
0 — Iz ®o, [fOW — [ Ow — ("Ow — 0,
hence the associated cohomology long exact sequence
0 —H(V.Zz ®o, [*Ow) — H(V. f*Ow) — H(Z,("Ow)
— H'(V, Iz ®0, f*Ow) — H (V. f*Ow) — HY(Z,(*Ow) — -

Given f; € Hom(V, W; ()(Spec(R/I)), the obstruction for lifting it to fo € Hom(V, W;()(Spec(R))
lies in HY(V,Zz ®0,, f*Ow), since the image in Hom(Z, W)(Spec(R/I)) of fi, regarded as an
element of Hom(V, W)(Spec(R/I)), is ¢ x id, which is lifted to ¢ x id € Hom(Z, W)(Spec(R)).
When f; is liftable to Spec(R), the set of all liftings is a principal homogeneous space over
H(V,Zz®0, f*Ow), since the liftings as elements of Hom(V, W)(Spec(R)) have to be mapped

to ¢ x id € Hom(Z, W)(Spec(R)).

PROPOSITION 1.2 (Mori). (cf. Mori [81, Proposition 2|) Let k be an algebraically closed field.
For a projective variety V. over k and a smooth quasi-projective variety W over k, consider
a k-morphism f: V. — W whose restriction to a closed subscheme j: Z — V is ( = fo
j: Z — W. Then the tangent space of H := Hom(V,W;() at its point [f] corresponding to
f € Hom(V, W;()(Spec(k)) is given by

Tu = H' (V.2 ®v f*Ow),
while the dimension of H at [f] satisfies
dim H > 1°(V,Z; @0, f*Ow)—h'(V,Iz ®o, f*Ow).

Here, h'(V,Zz ®0, f*Ow) is the customary notation for the dimension of H (V,Zz ®0,
f*Ow ) as a vector space over k.

PROOF. For the first assertion, apply what we have seen to the situation R = k[e] with
g2 =0 and I = ke (cf. Definition V.1.3).
To prove the second assertion, let us simplify the notation as

O = OH’[f], m:= mH,[f].

There certainly exists a formal power series ring A over k with maximal ideal M such that the
m-adic completion O is of the form

O=A/a, with M?>a.
For any positive integer v > 2, consider the canonical surjective homomorphism
A/(Ma+ M") — O/m” = A/(a+ M")
whose kernel (a + M")/(Ma -+ M) is killed by M. The canonical surjection
p1: 0O=A/a— O/m” = A/(a+ M")

corresponds to f; € H(Spec(A/(a+ M"))). Thus by what we have seen above, the obstruction
for lifting f1 to fo € H(Spec(A/(Ma+ M"))), hence the obstruction 1 for lifting ¢ to

w2: O=A/a— A/(Ma+ M"),
lies in v

a+ MY
HYWV,T * _—

e R e

In terms of a basis {t1,...,1%,} of HY(V,Z7 ®0,, f*Ow), the obstruction is of the form

V=101 QT+ Q@Tg + -+ + 1y ®T,
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for the residue classes 71, . ..,7, modulo Ma+ M" of r1,..., 7 €Ea Ca+M" =a+ (Ma+ M").
This obstruction thus lies in

+ Ma+ MY
Hl T * (7’1, 7Ta) .
(V7 A ®OV f (—)W) & ( Ma n My

Hence there exists a lifting
H(Spec(A/((r1,...,7qa) + Ma+ M"))) > f5 — f1 € H(Spec(4/(a + M"))),

or equivalently, there exists a homomorphism a: O — A/((r1,...,7¢) + Ma+ M") such that
the diagram

A/(Ma+ M") —» A/((r1,...,rq) + Ma+ M") —» O/m” = A/(a + M")

. ///ﬂ//”
(@] TA/a

is commutative. Obviously « is surjective, since a C M?. Hence there exists a k-algebra
automorphism o of A such that the diagram

A—» A/((r1,...,rq) + Ma+ M") —» A/(a+ M") = O/m"

A—» AJa=0

is commutative. We automatically have (M) = M. By the commutativity of the diagram, we
have r — o (r) € a+ MV for any r € A. In particular, r — o(r) € a+ M for all r € 0~ (a). Thus
o~ 1(a) C a+ MY, hence a C o(a) + M”. Again by the commutativity of the diagram, we thus
have

o(a) C(r1,...,rq) + Ma+M" C (r1,...,rq) + Mo(a) + M".

On the other hand, as an easy consequence of the Artin-Rees lemma (cf., e.g., Zariski-Samuel
[119, Chap. VIII, §2, Theorem 4'], or Matsumura [78, Theorem 8.5]) we have

anNMY=M@nM"Y)c Ma,  forv>>0.

Consequently, we have o(a) N M” C Mo(a). Thus the images of r1,...,7, € a C o(a) + M"
modulo Mo (a) + MY generate
ola)+M" _ o(a)

Mo(a)+ MY Mo(a)

Thus 71,...,7, generate o(a) by Nakayama’s lemma, hence o~ 1(r1),...,071(r,) generate a.

Consequently, we get
Krull dim O = Krull dim A/a
> Krulldim A — a

=1V, Iz @0, f*Ow) — W1V, T; @0, f*Ow).

Recall that for a locally free Oy-module £ of rank r = rk € on a scheme Y, we denote

det & := /T\E,

which is an invertible sheaf on Y.
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Let C be a smooth projective curve over k of genus g. As in the Remark immediately after
the proof of Proposition VIII.1.7, the Riemann-Roth theorem says

X(C,E) = deg(det &) + (1 — g)rk &
for any locally free Oc-module €. By the filtration for £ mentioned there, it is easy to see that

det(L£ ®o. €) = LO2™E @0, det £.

COROLLARY 1.3. (Mori [81, Proof of Theorem 4]|) Suppose W is a smooth quasi-projective
variety over an algebraically closed field k, and let f: P! — W be a morphism such that f(0) #
f(00). Denote by j: Z := {0,00} < P! the closed immersion of the reduced subscheme consisting
of two closed points. Then

dimjy Hom(P!, W; f o j) > deg(f* det Oy ) — dim W.
PROOF. In the situation of Proposition 1.2, we have
1z = Op(-2)
and
det (Op1(—2) ®o,, [*Ow) = Op1 (—2dim W) ®¢,, f*det O .
Thus by Proposition 1.2, we have
dimgy Hom (P, W; f o j) > h%(P*, Op1(—2) ®0,, fOw) — h' (P!, Op1 (—2) ®0,, f*Ow)
= x(P!,0p(~2) ®o,, f*Ow)
= deg(det (Op1(—2) ®0,, [*Ow)) + (1 - 0) dim W
= deg(Op1 (—2dim W) ®o,, f*det Ow) + dim W
= —2dim W + deg(f* det O ) + dim W
= deg(f*"Ow) — dim W.
O

COROLLARY 1.4. (Mori [81, Proof of Theorem 5]) Let W be a smooth quasi-projective variety
over k, and C a smooth projective curve over k of genus g. Fiz a closed point Py € C' and denote
by j: Z = {Py} — C the closed immersion of the reduced subvariety consisting of one point.
For a nonconstant morphism f: C — W, we have

dim{s) Hom(C, W; f o j) > deg(f*Ow) — gdim W.
PROOF. In the situation of Proposition 1.2, we have Zzy = O¢(F). Hence
dim{y) Hom(C, W; f o j) > x(C, Oc(—Fo) @0, f*Ow)
— deg(det (Oc(~Fy) ®oc f*Ow)) + (1 - g) dim W
= deg (Oc((—dim W) Py) ®o, f*det Ow) + (1 — g) dim W
= —dim W + deg(f*det O ) + (1 — g) dim W
= deg(f*Ow) — gdim W.
O

For simplicity, let us mean by a curve on X a closed irreducible reduced subscheme of X of
dimension one, unless otherwise specified.
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DEFINITION 1.5. A 1-cycle on X is a finite linear combination
a1Y1 +asYo+ -+ an¥p

of curves Y1,...,Y,, on X with coefficients a1, ..., a;, € Z. It is said to be effective if a; > 0 for
all 7. We denote by Z;(X) the free abelian group of 1-cycles on X.

Recall that for an invertible sheaf £ on X and a closed 1-dimensional subscheme Y C X,
we introduced in §VII.11 the intersection symbol

(L.0y) = (

the coefficient of n in the polynomial
X(X, L" ®o, Oy) in n of degree <1,

which was also denoted (L£.Y) in §VII.12. We denote the intersection symbol for 1-cycles as
above by
(E.a,lYl + -+ amYm) = al(ﬁ.(’)yl) + -+ am(ﬁ(’)ym)

More generally for a coherent Ox-module F with dim Supp(F) = 1, the intersection symbol
(L.F) = the coefficient of n in the polynomial
T\ (X, L' ®0y F) in noof degree < 1
was defined in §VIIL.11.

DEFINITION 1.6. Invertible sheaves £, L’ € Pic(X) are said to be numerically equivalent
and denoted £ = £ if (£.C) = (L£'.C) for any curve C on X. On the other hand, 1l-cycles
Z,7" € Z1(X) are said to be numerically equivalent and denoted Z = Z' if (£.Z) = (L.Z") for
all £ € Pic(X).

PROPOSITION 1.7. The intersection number (L.Z) defines a perfect pairing
(Pic(X)/ =) x (Z1(X)/ =) — Z

between the group Pic(X)/ = of invertible sheaves modulo numerical equivalence and the group
Z1(X)/ = of 1-cycles modulo numerical equivalence. These groups are free Z-modules of finite
rank p = p(X) called the Picard number.

The proof can be found in Kleiman [70, Chapter IV, §1, Propositions 1 and 4].

ProrosiTION 1.8. To every morphism ¢: Y — X from a purely 1-dimensional proper
scheme Y over k is associated a unique effective 1-cycle (9+Y )eycle 0n X such that

(L.(p+Y )eyele) = (L.p:Oy),  for any invertible sheaf L on X,

which is the coefficient of n in the polynomial x(Y,*L™) in n. If Ass(Oy) = {y1,...,y} and
Y is the irreducible subscheme of Y with the generic point y; and Ass(Oy,) = {y;} as in the
global primary decomposition (cf. Theorem 11.3.12), then

(@*Y)cycle = Z length(OYj,yj)[k(yj)Z k(‘P(?/j))]‘P(Yj)red
1<5<1

dim o (Y;)=1
PRrROOF. We proceed in several steps.
(1) Suppose Y is irreducible and smooth, Y’ := ¢(Y) C X with the reduced structure is a
curve, and ¢: Y — Y is the resolution of singularities (i.e., the normalization in the function
field). Then (¢«X )cycte := Y. It suffices to show

(L.0y1) = (L.pOy) = deg(¢™L).
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Indeed, (L.p.Oy) is the coefficient of n in
X(X, L" ®ox 9«Oy) = x(Y, 9" L") = ndeg(¢*L) + x(O),

by the projection formula (cf. the footnote after Proposition VII.9.4) and the Riemann-Roch
theorem (Theorem VIII.1.1). Since the support of the cokernel of the canonical injection Oy —
04Oy is 0-dimensional, the additivity of x (cf. Proposition VII.10.1) implies that the coefficient
in question coincides with the coefficient (£.0y+) of x(X, L" ®o, Oy).

(2) Suppose Y is a reduced and irreducible curve over k and Y’ = ¢(Y) C X with the
reduced structure. Then

((p*Y)cycle = {

It suffices to show that

(L.pOy) = {

0 if dimY’ =0
R(Y): R(Y)]Y’ if dimY’ = 1.

0 if dimY’ =0
R(Y): R(Y)(£.0y/) if dimY’ = 1.

Since the first case is obvious, we assume dimY’ = 1. The left hand side is the coefficient of n
in
X(Xv L ®Vox QO*OY) - X(Yv (P*‘Cn)a

which is the same as the coefficient of n in X(?,U*@*E"), where o: Y — Y is the resolution
of singularities (cf. the proof of (1) above). Thus we may replace Y by Y and assume Y to be
smooth. Then ¢ factors through the resolution of singularities 7: Y’ — Y so that p=moy
with ¢: Y — Y. By the projection formula and the Riemann-Roch theorem for locally free
sheaves (cf. Remark after Proposition VIII.1.7), we have

XY, 9" L") = (Y7, 0" L")
= x(Y",7°L" ®o_, 1-Oy)
= deg(det(n"L" ®0,, ¥:O0y)) + [R(Y): R(Y")]x(O3)
— n[R(Y): R(Y')] deg(r"£) + deg(det 1:.0y) + [R(Y): R(Y)]x(O5).
On the other hand, (£.0y) = (L.m.O3) (by (1)) is the coefficient of n in
X(ifv’, L") = ndeg(r" L) + x(Op).

(3) Suppose Y is irreducible but not necessarily reduced with the generic point y, and
0:Y =Y =¢(Y) C X with the reduced structure on Y’. Then
0 if dimY’ =0
((P*Y)cycle = y ;. . ’
length(Oyy)[R(Yied): R(Y")]Y" if dimY’ = 1.
Since the first case is obvious, we assume dim Y’ = 1, and show
(L.0.0y) = length(Oy ) [R(Yiea): R(Y")](L.0y).

The left hand side is the coefficient of n in x(Y,¢*L™). Denote by n the nilradical sheaf of Oy
so that Oy, , = Oy /n. If we denote v := length(Oy ), then we have a filtration

Oy Dnon?> ... >n” =(0).
By the additivity of x, we obviously have
(£.0:0y) = length(Oy,y)(£L.+Ov,4),

hence we are done by (2).
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(4) In the general case, if Ass(Oy) = {y1,...,y} and Yj is the irreducible subscheme of
Y with the generic point y; and Ass(Oy;) = {y;} as in the global primary decomposition (cf.
Theorem I1.3.12), then we have a surjective homomorphism

l
Oy — Doy,
j=1
with the support of the kernel having dimension less than 1. Thus by the additivity of x, the
coefficient (L.0.Oy) of n in x (X, L™ ®o, p«Oy) = x(Y, ¢*L™) coincides with the coefficient of
n in
l

l
Zx " R0y Oy;) = Y x(Vj,¢L"
=1

where ¢;: Y; — X is the composn:e of ¢: Y — X with the canonical closed immersion Y; — Y.

Thus
l

E‘P*OY :Z

7j=1
and we are done by (3). O
PROPOSITION 1.9 (Bend and break with a fixed point). (Kollar-Mori [74, Corollary 1.7,
Mori [81, proof of Theorem 5]) Let P be a closed point in an irreducible smooth proper curve C,
and f: C — X a non-constant morphism. Suppose there exists a smooth connected curve T, a
closed point tg € T and a morphism p: C xT — X such that
Oloxgtr = f
e({P} xT) = f(P)
¢loxgy # f for general t € T.
Then there exists a closed point t1 in the smooth compactification T of T with t1 ¢ T, and
morphisms 1: Y — T and v: Y — X such that
(f*c)cycle fOT’ t=1o
(fic)cycle +7Z  fort=t,

for a (possibly constant) morphism f': C — X, and a nonzero effective 1-cycle of rational curves
with f(P) contained in the support of Z, where

Y; =7 1(t) =Y x5 Spec(k(t)).

(w*Y;f)cycle = {

In particular,

(f*C)Cyde = (fxic)cycle + Z.

PROOF. ¢: C' x T — X gives rise to a rational map p: C x T--- — X. We first claim that
% is not defined at (P, t1) for some t; € T\ T. Otherwise, we would have a morphism : U — X
from a neighborhood U of {P} x T such that p({P} x T) = f(P), hence by the rigidity lemma
(cf. Remark below), we have = fop; on U with the projection p1: O xT — C, a contradiction
to the assumption.

Let 7: Y — C x T be a succession of point blow ups eliminating the indeterminacy of % (cf.
Remark below) and giving a morphism 1: Y — X. Denote 7 = pgor: Y — C xT — T. We
have 7 1(tg) = C x {to}, while

~L(t1) = (strict transform in Y of C' x {t1}) + (exceptional divisor for ).
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Since {P} x T and C x {t1} intersect transversally, the strict transform in Y of {P} x T (which
is mapped by v to the point f(P)) does not intersect the strict transform in Y of C' x {t1}.
Hence f(P) is contained in the exceptional divisor.

Denote

U= (,m): Y - X xT,

which is a proper T-morphism. For each closed point ¢ € T, denote by the subscript ¢ the base
change with respect to Spec(k(t)) — T. Then

(¥.0y), = Oy,
since for affine open sets U C X and t € V C T we have
Oy (¥71(U x V)) ®oy, k(t) = Oy (v~ (U))
by the flatness of Y over T. Hence by Proposition 1.8

(L (V) eyere) = (£:4:0y;) = (£.(V.Oy)y)

for any invertible sheaf £ on X and for any closed point t € T. We are done by what we
remarked in §VIIL.11, since ¥,Oy is a coherent Oy z-module flat over T. O

PROPOSITION 1.10 (Bend and break with two fixed points). (Kollar-Mori [74, Lemma 1.9],
Mori [81, Proof of Theorem 4]) Let f: P! — X be a morphism such that f(0) # f(c0). Suppose
there exists a smooth connected curve T, a closed point tg € T and a morphism ¢: P' x T — X
such that

Plprsgror = f
©({0} x T) = f(0)
p({oo} x T') = f(o0)
dim (P! x T') = 2.

Then there exists a closed point t1 in the smooth compactification T of T with t1 ¢ T and
morphisms 1: Y — T and v: Y — X such that

(f*]P)l)cycle fO?" t=1p
(%Z)*Y},)cycle = cycle with at least two rational curves
. . . fort =1t.
or with multiple rational curves

In particular, (f*Pl)Cycle 18 numerically equivalent to a cycle with at least two rational curves or
multiple rational curves as components.

PROOF. For the proof by induction, we use a ruled surface ¢: S — T (cf. Remark below)
to compactify py: P x T — T. We denote by Cj (resp. Cs) the section of the ruled surface S
extending {0} x T (resp. {oo} x T).

@: P! x T — X gives rise to a rational map @: S--- — X. We first claim that % is not a
morphism. Otherwise, ® maps the sections Cy and C, to distinct points f(0) and f(co). Let H
be an ample invertible sheaf on X. Then, since dim %(S) = dim (P! x T') = 2 by assumption,
while 3(Cp) and p(Cs) are points, we have

(TH)?2 >0, (FH.Co) =0, (TH.Cx)=0.

By the Hodge index theorem (cf. Remark below), (CZ) < 0 and (C2) < 0 but (Cp.Cs) = 0,
hence P*H, Cy and Cy, are linearly independent modulo numerical equivalence. However, the
Picard number of the ruled surface S is two (cf. Remark below), a contradiction.



354 IX. APPLICATIONS

Let r: Y — S be a succession of point blow ups eliminating the indeterminacy of @ and
giving a morphism 1: Y — X. Denote 7 = gor: Y — S — T. Our proof is by induction on
the number of point blow ups appearing in r.

Let o: S — S be the blow up of P € S appearing as the first blow up in the succession r.
Denote t; = q(P) € T\ T. The irreducible components of m~!(#;) are rational curves, since they
arise either as exceptional divisors or as the strict transform of ¢~ 1(¢;) = P!. Then ¥ (77 1(t1))
is a union of rational curves by Liiroth’s theorem (cf. Remark below).

We are done if ¢)(7~1(¢)) is reducible or non-reduced. Thus we assume

(¥) (Y (t1)) is reduced and irreducible.

We claim that % is defined at the points in ¢~1(¢1) \ {P}. For, if $ were not defined at P’ €
¢ 1(t1) \ {P}, then

D) DY (P) U (PY)),
a contradiction to the assumption (x).

Let E (resp. F) be the exceptional curve for o: S S (resp. the strict transform by o of

q (t1)). Thus

(goo) Ht1)=FUE  with Q:=ENF.
¢: PL x T — X gives rise to a rational map 3: S--- — X. Denote r = 1/ oo with 7/: ¥ — S
being the composite of the point blow ups other than o.

We claim that ¢ is defined at Q = E N F. For otherwise, the blow up of Q would appear in
the succession 7’': Y — S so that every irreducible component of (r')~(Q) has multiplicity > 2
in 771(¢1), a contradiction to the assumption (x).

We have F' = P! with (F?) = —1. Hence by Castelnuovo’s criterion (cf. Remark below) F
can be contracted to a point by ¢’: S — S’ giving rise to another ruled surface ¢': S’ — T (S’
is said to be obtained from S by an elementary transformation.) The resulting rational map
¢S+ — X needs one less point blow ups for the elimination of indeterminacy, since ¢ is
defined along the exceptional divisor F' of o’: S — S. Thus we are done by induction.

The proof of the final assertion is exactly the same as that for Proposition 1.9. O

REMARK. Here are the results used in the proofs of Propositions 1.9 and 1.10 and their
references:

Elimination of indeterminacy of a rational map: Although there are many varia-
tions, here is the one we need (whose proof over C in Part I [87, Chapter 8, §8B,
Corollary (8.8)] works over any k as well): Let ¢: S--- — P™ be a rational map from
a smooth surface over k. Then there exists a sequence

n Tn—1
Snﬂ-—>Sn_1n—>”'ﬂ>S1£>So=S

of point blow ups such that the induced rational map S,, - -- — P is a morphism.

Rigidity lemma: (cf. Mumford [85, Chapter II, §4]) Let U, V, W be varieties over k
with V proper, and ¢: U xV — W a morphism such that ¢(ugx V) = point for a closed
point ug € U. Then there exists a morphism ¢: U — W such that ¢(u,v) = ¢(u) for
all closed points u € U and v € V.

Liiroth’s theorem: (cf., e.g., Hartshorne [58, Chapter IV, Example 2.5.5]) A curve C
(i.e., an irreducible reduced proper scheme over k of dimension one) is a rational curve
(i.e., its normalization in its function field R(C) is P!), if there exists a surjective
morphism ¢: P! — C.

Here is a sketch of the proof. Without loss of generality, we may assume C to be smooth
and show C = PL. If the finite extension R(P') D R(C) is purely inseparable, we show
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1 to be an iteration of the Frobenius morphism F: C' — C®) as in Definition VI.1.15
(see also the proof of Theorem 1.13 below), hence C' = P!. Thus we may assume the
R(P!) D R(C) to be a finite separable extension. Then what was discussed in §V.2-4
gives rise to an exact sequence

0— ¢*Qlc/k — QI%PI/k — QI%PI/C —0

with dim Supp(€2 = 0. If g is the genus of C, then by Corollary VIII.1.5

p/c)
—2 = deg Qp , > deg " Qg = [R(PY): R(O)] deg Qg
= [R(PY): R(C)](29 - 2),
hence g = 0, and we are done by Corollary VIII.1.8.
Hodge index theorem: (cf., e.g., Mumford [84, Lecture 18], Hartshorne [58, Chapter
V, Theorem 1.9]) For a smooth projective surface S, divisors and 1-cycles coincide.
Hence the free Z-module

A= (Pic(S)/ =) = (Z1(9)) =) =2
is endowed with a non-degenerate symmetric bilinear pairing
(. )AXA—Z.

The Hodge index theorem says that its scalar extension to Agr = R’ has one positive
eigenvalue and p—1 negative eigenvalues. More specifically, let h = [H] be the numerical
equivalence class of an ample invertible sheaf on S, hence (h.h) > 0. Then

Agr = Rh @ (Rh)*

with the restriction of (. ) to (Rh): being negative definite.

Castelnuovo’s theorem: (cf., e.g., Hartshorne [58, Chapter V, Theorem 5.7]) Let C be
a smooth rational curve on a smooth proper surface S. Then C = o~ !(P’) for the blow
up o: S — S’ of a smooth proper surface S’ at a closed point P’ € S’ if and only if
(C?) = —1.

Ruled surfaces: (cf., e.g., Hartshorne [58, Chapter V, §2]) Let £ be a locally free sheaf
of rank 2 on a smooth proper curve C. Then the P-bundle S = P(£) over C is called a
ruled surface. Let w: S — C be the projection. By (V.2.16), we have an exact sequence

00— Q]é/c — Og(—1) @y € — O — 0,

where Og(1) is the tautological invertible sheaf, while by what was discussed in §V.2-4,
we have an exact sequence

0 — Qe — Q5 — Q50 — 0.
Hence we have the canonical sheaf formula
Ks = det(Qg) = Os(—2) ®0, 7*(Ke ®0 det €).
A = (Pic(S)/ =) = (Z1(S)/ =) can be shown to be a free Z-module generated by the
numerical equivalence classes [Og(1)] and [f], where f is a fibre of 7. Clearly, we have
(Os(D).f)=1 and (£.f) =0.

Let 0: S — S be the blow up of a point P € S. Let f := 7~ !((P)) be the fibre of 7
passing through P. The total transform of f is

o () =E+F,
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where E = 0~ !(P) is the exceptional divisor and F is the strict transform of f hence
F =Pl Since (E+FE+F)=0, (E.E)=-1and (E.F) =1, we have (F.F) = —1.
Hence by Castelnuovo’s theorem, F' is obtained as the exceptional divisor of a blow up
o'+ S — S It turns out that S is another ruled surface over C' with ¢/ (E) as the fibre
passing through the center of the blow up ¢’. The process of obtaining S’ from S is
called an elementary transformation.

THEOREM 1.11. (Mori [82, Theorem (1.6)]) For a smooth projective curve C of genus g and
a morphism f: C — X, there exists a morphism h: C — X and an effective 1-cycle Z with the
properties
(a) (Kx'(heC)eyele) < gdim X,
(b) every irreducible component E of Z is a rational curve with (Ky'.E) < dim X + 1,
(C) (f*C)cycle = (h*C)Cycle +Z.

PrOOF. Let H be a fixed ample invertible sheaf on X.

(Case g = 0, hence C' = P') We proceed by induction on (H.(fsP!)cycle)-
If (IC)_(l.(f*}P’l)cyCle) < dim X + 1, then take h to be a constant map and Z = (f.C)cycle-
If (K. (fPY)eyele) > dim X + 2, then by Corollary 1.3, H := Hom(P!, X; f o j) satisfies

dim(y H > deg(f*Ky") — dim X > 2,

where j: {0,00} < P! for any pair of distinct points 0,00 € P! with f(0) # f(cc0). The group
of automorphisms of P! fixing 0 and oo, which is the multiplicative group G,,, has a natural
action on H with 1-dimensional orbit G,,[f] through [f]. Since dimH > 2, there exists a curve
(possibly not proper over k) T' C H passing through [f] and T ¢ G,,[f]. The embedding
T — H induces a T-morphism P' x T'— X x T, hence its composite p: P! x T — X with the
projection p1: X x T' — X gives rise to the situation of the “bend and break with two fixed
points” (Proposition 1.10). Hence

(f*Pl)cycle = Zl + Z2

for nonzero effective 1-cycles Z; and Zs with rational curves as components. We are done by

induction, since (H.(fiP)cycle) = (H.Z1) + (H.Z2).

(Case g > 0) We proceed by induction on (H.(f«C)cycle)-
If (K. (fC)eyele) < gdim X, then we just take h = f and Z = 0.
If (Ky'.(f«C)eyele) > gdim X + 1, then by Corollary 1.4, H := Hom(C, X; f o j) satisfies

dim(; H > deg(f*Ky') — gdim X > 1,

where j: {Py} < C for a closed point Py € C. Hence there exists a curve (possibly not
proper over k) T C H passing through [f]. The embedding 7" < H induces a T-morphism
CxT — X xT, whose composite ¢: C'x T — X with the projection p;: X xT — X gives rise
the situation of the “bend and break with a fixed point” (Proposition 1.9). Hence

(f*C)cycle = (f»ic)cycle + Zlv

where f': C — X is a morphism and Z’ is a nonzero effective 1-cycle with rational curves as
components. We are done by induction because of (H.(f.C)cycle) < (H.(fs«C)eycle) as well as by
our earlier result in the case g = 0 applied to each component of Z'. U

DEFINITION 1.12. We denote

Ni(X) = (Z1(X)/ =) @z R,
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which is an R-vector space of dimension p, the Picard number of X (cf. Proposition 1.7). For a
curve C' C X, we denote its image in N1(X) by [C].

THEOREM 1.13. (Mori [82, Theorem (1.4), (1.4.1)]) Suppose k is of characteristic p > 0. For
a fized ample invertible sheaf L on X and ¢ > 0, there exist rational curves ly,...,l,. (possibly
r >0) on X satisfying
(Ky'l) <dimX +1 for i=1,...,r

such that for any effective 1-cycle Z, its numerical equivalence class satisfies

[Z1€ ) Quolli] +{ye Y Quoll]| (Kx'y) <e(Lyy) o,
=1

rex
curves

where Q> denotes the set of nonnegative rational numbers.
ProoF. Let
Do {l rational curves on X }
e(L1) < (Kytl) <dimX +1

Since (L£.0) < (dim X + 1)/e for [ € @, the Hilbert polynomials of [ € ® with respect to £ have
only a finite number of possibilities. (® is a so-called bounded family.) Hence by Grothendieck’s
decomposition (cf. FGA [2, Exposé 221]) of the Hilbert scheme Hilb into the components Hilb%:
corresponding to Hilbert polynomials P, we see that the points of Hilbx corresponding to [ € ®
belong to the union of a finite number of those components Hilb;, which are projective. Thus by
the invariance of intersection numbers under connected flat family of curves (possibly reducible
or non-reduced) on X as in the proofs of Propositions 1.9 and 1.10, we see that ® modulo
numerical equivalence is a finite set. We claim that a complete set {l1,...,[,} of representatives
of ® up to numerical equivalence satisfies the requirements. It certainly suffices to show that
for any smooth projective curve C of genus g and a morphism f: C' — X,

[(feC)eyere] € Y Quoll] +4 y € > Quoll] | (Kx'y) <e(Ly)
=1

rex
curves

(Case g = 0) By Theorem 1.11, C' is numerically equivalent to an effective 1-cycle whose com-
ponents F are rational curves such that (IC)_(l.E) < dim X + 1. We are done, since either E is
in ® or satisfies (K}'.F) < e(L.E).

(Case g > 0) Denote by o: k — k the p-th power automorphism. As in §IV.3 denote by
¢: C — C the p-th power morphism defined by

a) set-theoretically, ¢ = identity,
b) YU and Ya € O¢(U), define ¢*a = aP.

¢ is not a k-morphism, but the Frobenius morphism
C Xspec(k) Spec(o™ 1 k) — C

induced by ¢ is a k-morphism, where Spec(o~!, k) is the k-scheme for the k-algebra (o~ !, k),
which is k regarded as a k-algebra through o—!. Likewise, we define

Cj := C Xgpec(k) Spec(o™, k).

The p-th power morphism ¢ induces a k-morphism m;: C; — C;_1 for each j > 0, with Cp = C.
Starting from fy = f, we inductively find a k-morphism

fi € = X, with  Dj := (fjCj)eyele
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such that
(Ky'.Djs1) < gdim X

pD;] — [Djt1] Z@>o +qYE Z Q>o[T] | (Kx'y) <e(Luy)

rex

curves
for all j > 0. Indeed, applying Theorem 1.11 to f;omj11: Cj11 — C; — X, we get a morphism
fj+1: Cj41 — X such that

(ICX 'Dj+1) < gdim X where Dj+1 = (fj+1*Cj+1)Cycle
((fj 0 mj+1)+Ci41)eycle = Djt1 + Z,

where Z is an effective 1-cycle whose irreducible components E are rational curves satisfying
(K~1.E) < dim X + 1. However,

((fi 0 7j4+1)+Cs1)eycle = PDj,

since (mj4+1+Cj41)cycle = pCj. Hence

p[D;] — [Djt1] Z@>0 ye Y Quolll | (Kx'y) <e(Ly)

rex

curves
by what we have seen in Case g = 0 above. Thus for any positive integer a, we obviously have
a—1

[Do] — p~“[Da] =Y _p~ /' (p[D;] — [Dj11])
=0

€ ZQ>0 +qye D Quoll| (Ki'y) <e(Ly)

Irex
curves

Thus it suffice to show that [D,] belongs to the right hand side for some a > 0, since [Dg] = [C].
We are done if

DJedye > Q]| (Kx'y) <e(Ly)

rex
curves

for some a. Otherwise, we have
(K¥'.D;)  gdim X

(L.D;) < —2— < , for any j.
5 €

Thus (£.Dj;)’s are uniformly bounded above. Hence by the same argument as before on the
finiteness of such bounded family of 1-cycles modulo numerical equivalence, there exist b < ¢
such that [Dy] = [D¢]. Then
(r°7" = 1)[Dy) = p°~°[Dy] — [D]
1
P (p[D5] — [Dj1a])

C

<.
Il
>

€ ZQ>0 J+qv€ D Quoll]| (Kly) <elLy) ¢,

rex
curves

and we are done. O
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Finally we are ready to prove Mori’s theorem on the existence of rational curves. It is note-
worthy that the proof of the result in characteristic zero requires those in positive characteristics.

ProOOF OF THEOREM 1.1.

(Positive characteristic cases = characteristic zero case) First of all, suppose we have proven
the assertion when the characteristic of k is positive. Then the assertion holds in characteristic
zero as well. Here is why:

As in Proposition IV.1.4, we can find a subring R C k finitely generated over Z and a
smooth projective morphism 7: X — S = Spec(k), a m-ample invertible sheaf $ on X and a
closed subscheme € C X flat over S such that their base extensions by Spec(k) — S are X, H
and C, respectively. Indeed, we could express X as a closed subscheme of a projective space
over k defined by a finite set of homogeneous equations. We obtain a subring R C k generated
over Z by these coefficients as well as the coefficients of those homogeneous polynomials needed
to define H and C. Thus we obtain a projective scheme X over R, an invertible sheaf $ on
X and a closed subscheme € whose base extensions by Spec(k) — Spec(R) are X, H and C,
respectively. We then replace R by an appropriate localization to guarantee that X is smooth
over R and € flat over R.

By Grothendieck’s theorem (Theorem 1.8.14), there exists a locally noetherian S-scheme

Homg(PY, X)
representing the functor
locally noetherian S-schemes T+ Homp (P, X xg T).

In fact, it is obtained as an open subscheme of the Hilbert scheme

Hilbp 425

parametrizing flat families of subschemes of Pg X g X: a T-morphism P1. — X x g T is dealt with
as its graph in PL xp (X xg 7).

Denote by Z C Homg (P4, X) the subscheme such that for any morphism Spec(K) — S with
an algebraically closed field K, the base extention Zx parametrizes K-morphisms f: P}{ — Xk
such that

deg(f"Kz,) _ (Kx, €x) _ (K'.0)

dim X +1 > deg(f*K5)),  and deg([ o) — (OxCx)  (HO)

In particular, we have

(dim X + 1)M > deg(f*HK) > 0.

(Kx'.C)

We claim that = is of finite type, hence quasi-projective, over S. Indeed, since the left hand
side of the above inequality is a constant, deg(f*$x) can take only a finite number of positive
integral values. Consequently, the Hilbert polynomial of the graph I'y of f with respect to the
ample invertible sheaf OP}{ (1)®@gHK on IP)}( X kg X can have only a finite number of possibilities.
(I'y’s form a so-called bounded family.) Hence by Grothendieck’s decomposition of Hilb into
components corresponding to Hilbert polynomials (cf. FGA [2, Exposé 221]), we see that Z is
contained in the union of a finite number of these components, which are projective over S.

Denote by {: 2 — S = Spec(R) the structure morphism. Then the fibre of £ over Spec(K) —
S for an algebraically closed field K consists of K-valued points f: P}, — Xk of Ex, which
gives rise to a possibly multiple rational curve (fiPk)cyce = [R(Pk): R(f(P}))]f(Pk) C Xk
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satisfying

(Icgll('(f*lp%()cycle) > (K:;II(Q:K)
(ﬁK'(f*P}()cycle) n (QKQ:K) .

We now claim &: 2 — S = Spec(R) to be surjective. Indeed, if s is a closed point of S, then
the residue field k(s) is of positive characteristic, since R is finitely generated over Z. Hence the
geometric fibre of £ over s is non-empty, since we can take f: ]P’}{ — E C Xk to be the resolution
of singularities of a rational curve E satisfying the required inequalities for the algebraic closure
K of k(s). Thus the image of £ contains all the closed points of S. By Chevalley’s Nullstellensatz
(Theorem I1.2.9), the image thus contains the generic point of S, hence ¢ is surjective.
Consequently, the fibre of £ over the generic geometric point Spec(k) — S is non-empty.
Thus there exists a possibly multiple rational curve ( f*IP’}Q)Cyde on X for some f: Pllﬁ - X=X

dimX +1> (K;;'(f*ﬁb}()cycle) and

satisfying the required inequalities. Obviously, we are done.

(Characteristic p > 0) Let £ be another ample invertible sheaf on X and let e = 1/N for a large
enough positive integer N such that

HN ®0, L7209 s ample.
Then by Theorem 1.13, there exist rational curves [y, ..., [, with
(Ky'l) <dimX +1, fori=1,...,r

such that

for aj,...,a, € Q>0 and

zeQqye Y Qx| (Kx'y) <e(Ly)
I'cx

By the choice of ¢ = 1/N, we have

(H®N R0y [,_Q(H‘C).Z)

0< = (H.z2) — 2e(H.c)(L.z).

Hence

Consequently,

(KxC)  Siai(KEG) + (K?)

(HC) T ai(Hl) + (H.z)
> ai(’C)_(l'li) + 2((7?{{.2)
Yoiai(H.G) + (H.2)

< max {max (K)_(l‘li) L }
= i (Hy) "2(H.O) [

Since (IC;(l.C’) > 1, by assumption, we thus have
(Kx' ) (Kx' 1)

——— < max .

(H.0)

X
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Hence there exists ¢ such that
(K%' -C)
(H.C)

(K1)
(H.li)

<

DEFINITION 1.14. Denote by R>( the semigroup of nonnegative real numbers, and let

NE(X) = 3 Ruo[C]
ccX

curves

= {finite nonnegative linear combinations of [C]’s for curves C' C X}.

The Kleiman-Mori cone NE(X) is defined to be the closure of NE(X) in the usual topology of
N1 (X) = RP.

NE(X) plays pivotal roles in birational geometry. The following theorem implies that NE(X)
is a “strictly convex cone”, that is, it does not contain a straight line.

THEOREM 1.15 (Kleiman’s criterion for ampleness). (Kleiman [70, Chapter IV, Theorem 2
and Proposition 2]|) An invertible sheaf L on X is ample if and only if

(L.z) >0, Vz € NE(X)\ {0}.

This theorem holds even if X is a singular projective variety. The Nakai-Moishezon criterion
(Theorem VII.12.4) plays a crucial role in the proof. (See also Kollar-Mori [74, Theorem 1.18].)

Mori further formulated the existence of rational curves in the following Cone Theorem,
which gives an entirely new perspective even to classical results on nonsingular surfaces including
Castelnuovo’s theorem (cf. Remark immediately before Theorem 1.11) as Mori explains in [82,
Chapter 2].

THEOREM 1.16 (The cone theorem). (Mori [82, Theorem (1.4)]. See also Kollar-Mori [74,
Theorem 1.24]) For any ample invertible sheaf H and any 0 < € € R, there exist rational curves
li,... 0y (possibly r =0) on X satisfying

0< (Ky'li) <dimX + 1, i=1,...,r
such that
NE(X) =Rso[li] + -+ + Rsoll;] + {z € NE(X) | (Ki'.2) < e(H.2)}.
This means that the part
{z € NE(X) | (Ky'.2) = e(H.2)}

of NE(X), if non-empty, is a polyhedral cone spanned by a finite number of eztremal rays R[]
for extremal rational curves I, i.e., rational curves [ satisfying

0< (Ky'l) <dimX + 1.

For the proof, the reader is referred to Mori [82, pp.139-140].

For the Minimal Model Program (also called the Mori Program) in higher dimension, how-
ever, we need to prove an analog for X with “terminal singularities”, since the contraction of
an extremal ray may give rise to varieties with such singularities. In fact, it is essential to
prove an analog even for “projective pairs” (X, A) with “Kawamata log terminal” singularities.
“Relativization” is crucial as well. Entirely different methods are needed in these general cases.
See Kawamata [68] and Kollar [73]. See also Kawamata-Matsuda-Matsuki [67] and Kolldr-Mori
[74, Chapter 3, especially Theorem 3.7], for instance.
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2. Belyi’s three point theorem

(Added in publication)

The following result is due to Belyi [22], [23]:

THEOREM 2.1 (Belyi’s three point theorem). Let C' be an irreducible proper smooth curve
over C. Then C is defined over the field Q of algebraic numbers (that is, C = Cj X Spec(Q) Spec(C)

for some Cqy over Q) if and only if it can be represented as a covering of the projective line ]P’%:
branched only at 0, 1, co.

Let C' and C’ be irreducible curves proper and smooth over an algebraically closed field k,
and f: C' — C' a finite surjective separable morphism. The ramification locus of f is the finite
set of closed points of C' at which f is not étale, and coincides with Supp(£2¢/cv) by Definition
V.3.1 and Criterion V.4.1.

A(f) = f(Supp(Qcycr))

is called the branch locus of f.

REMARK. (Added in Publication) This result is closely related to “dessins d’enfants” intro-
duced by Grothendieck [47]. See, for instance, Luminy Proceedings [50].

PROOF OF THE “ONLY IF” PART OF THEOREM 2.1. We show that if C is an irreducible
curve proper and smooth over Q, then there exists a finite surjective morphism f: C' — P}@ such
that A(f)(@) < {0,1,50}. B

Since the function field R(C) is an extension of Q of transcendence degree 1, choose fy €
R(C) \ Q, which gives a finite surjective morphism

. 1
f(). C—)P@

Without loss of generality, we may assume A(fo)(Q) C P1(Q) contains oo.
We now show the existence of a non-constant polynomial ¢g(t) € Q[¢] such that the composite
morphism

go fo: CAP6$P6
satisfies A(g o fo)(Q) C P}(Q) by induction on
()= Y (ky):Q-1).
yeA(fo)(Q)
There is nothing to prove if §(fy) = 0. If 5(fo) > 0, choose y1 € A(fp)(Q) with n = [k(y1) :
Q] > 1. Let ¢1(t) be the minimal polynomial over Q of y;. We then replace fy with g1 o fp.
Since (g1 0 fo)' = ((91)" © fo) - f§, the new morphism is ramified where g1 or fy is. But since
91(y1) = 0, y1 no longer adds to (g1 o fo), decreasing it by n — 1. But the sum of the degrees

of the zeros of ¢} is n — 1, so 0(g1) < n — 2 and we have 6(g1 o fo) < d(fo).
Thus it suffices to show the following:

LEMMA 2.2 (Belyi). If fi: P}@ — ]P’}@ is a finite surjective morphism with A(f1)(Q) C PY(Q),
then there exists a finite surjective morphism

.l 1
h:Ph — PY

such that A(ho f1)(Q) C {0,1, c0}.
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THE FIRST PROOF OF LEMMA 2.2. We prove the existence of h(t) € Q[t] by induction on

the cardinality #A(f1)(Q).

If #A(f1)(Q) < 3, we choose h to be a linear fractional transformation with coefficients in
Q that sends A(f1)(Q) to {0,1,00}.

If #A(f1)(Q) > 3, we may choose a suitable linear fractional transformation with coefficients

in Q and assume that
— n

A(fl)(Q) 2 {07 17 mﬂ OO}

for positive integers m, n. Let

h(0) =0
h(1) =0
h(min) =1
Thus we have #A(ho f1)(Q) < #A(f1)(Q). _

THE SECOND PROOF OF LEMMA 2.2. By linear fractional transformation with coefficients
in Q we may assume

AF)@) = D2 Ans oo} CPY(Q)
with A\1,...,\, € Z such that

0= <A< < Ay, ng()‘Za"'v)‘n):l‘

Denote the Vandermonde determinant by

1 1 1
A\ o A
w=WA,.. )= A A =TTy - )
S : 7>l
)\?71 )\gfl . )\2—1
Similarly, denote the Vandermonde determinant for each ¢ = 1,...,n by
wi = (1" WAL A ) = CDP T Ty = ),
j>l
§ii

where XZ means A; deleted. It is easy to check that

n

Z ws . w
APV | G (EDY

=1

n
Zwi =0
i=1
n
Z A?ilwi = w.

i=1
Let r; = w;/ ged(wy, ..., wy) € Z and
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Note that > ; 7; = 0. Since

W(t) =~ m _ w/ged(wr,...,wp)
h(t) _;t—)\i_ [Tt =)

the ramification locus of h: IP}@ — IP}@ is contained in {A1,...,\,,00}, while A(R)(Q) C
{0,1,00}. We see that

Then the composite

1 fioml homl
]P’@ — IP’@ — IP’@
has the property A(ho f1)(Q) C {0,1,00}. O

O

PROOF OF THE “IF” PART OF THEOREM 2.1. We show that if ¢': C' — IP%C is a finite cov-
ering with A(g')(C) C {0,1, 00}, then there exists a curve Cp over Q such that C' = Cy Xgpec(0)
Spec(C) = (Co)c-

Here is what we are going to do: We construct a “deformation” f: X — S of C parametrized
by an irreducible affine smooth variety S over Q. Then the fibre over a Q-rational point sq € S
turns out to be Cy we are looking for.

Since C' is projective (cf. Proposition V.5.11), we have a closed immersion C' < ]P’g . In
view of the covering ¢': C' — IF’%: and the Segre embedding (cf. Example 1.8.11 and Proposition

I1.1.2), we have closed immersions
C — IP)(]CV XSpec((C) P(%j — IP%N+1.

Using an idea similar to that in the proof of Proposition IV.1.4, we have a subring R C C
generated over Q by the coefficients of the finite number of homogeneous equations defining C
as well as Pg X Spec(C) }P’}C in IP’(QCN *1 and a scheme X of finite type over R with closed immersions

X < P Xspee(ry PR = PR 1!
such that the base extension by Spec(C) — Spec(R) gives rise to
C = P Xgpee(c) Pt < PEVHL

S = Spec(R) is an integral scheme of finite type over Q. Replacing S by a suitable non-empty
affine open subset, we may assume S to be smooth over Q. Moreover, S is endowed with a
fixed C-valued point Spec(C) — S. Denote the structure morphism of X by f: X — S. By
construction, we have a factorization

f: X -LPy—S
with f and g projective. Moreover, the base extension by Spec(C) — S gives rise to
C = X¢ 2 PL — Spec(C).

We now show the following:
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LEMMA 2.3. There exists a non-empty affine open subset Sy C S such that the restriction
i _ -1 9wl
frXo=f""(5) — Pg, — So

to So satisfies the following conditions:

i) Xy is integral.
i) f: Xo — So is surjective and smooth of relative dimension 1.
i) g: Xo — P}S‘o is étale outside {0,1,00} x So. We may further assume

f(XO \ ({07 1, OO} X SO)) = 5p.

PRrROOF OF LEMMA 2.3.

Proof of (i): Let K be the function field of S so that K is the field of fractions of R and
is a subfield of C. The fibre of f over the generic point ng of S is f~1(ns) = Xk, whose base
extension by Spec(C) — Spec(K) gives rise to the original curve C' = X¢. Hence X is integral.

Let X = J,; X; be the irreducible decomposition with the generic point 7; of X; for each 1.
Let U;’s be mutually disjoint neighborhoods of 1;. Since Xy = f~!(ng) is irreducible, at most
one U; intersects f~!(ng). If none of the n;’s were in f~!(ng), then for each i we would have

f(ni) # ns so that ng ¢ f(n;) and f~1(ns) N f=L1(f(n:)) = 0. Since closed f~1(f(n;)) contains
X;, we would have f~!(ng) N X; = ) for all i, a contradiction. Thus there exists exactly one i

such that 7; € f~!(ng). Hence f~1(ns) C X; and ng ¢ f(X\X;). By Chevalley’s Nullstellensatz
(cf. Theorem I1.2.9) f(X \ X;) is constructible. Thus there exists an open neighborhood Sy of
ns with Sp N f(X \ X;) = 0. Hence f~1(Sy) N (X \ X;) = 0 so that f~1(Sp) C X; is irreducible.
Obviously, we may replace Sy by a non-empty affine open subset.

Let us replace S and X by this Sy and f~1(Sp), respectively so that we may now assume X
to be irreducible.

We next show that there exists a non-empty affine open subset Spec(R;) C S = Spec(R) for
some t € R such that f~!(Spec(R;)) is reduced. Indeed, let X = |J, Spec(4;) be a finite affine
open covering. Since Xx = f~1(ng) is reduced, 4; ®p K is reduced for all i. Obviously, there
exists a non-zero divisor ¢; € R such that A; ® g Ry, is reduced. Letting t = Hl t;, we see that
X xg Spec(R;) = f~1(Spec(R;)) is reduced.

Proof of (ii): Let us replace S and X by Spec(R;) and f~!(Spec(R;)) in (i), respectively
so that we may assume X to be integral with the generic point nx of X mapped by f to ng.

Since X¢ = C'is smooth of relative dimension 1 over C, so is X g smooth of relative dimension
1 over K. By what we saw in §V.3, the stalks of {2x/¢ at points = € f~1(ns) are locally free
of rank 1. Thus we find an open neighborhood U of f~!(ns) such that f: U — S is smooth of
relative dimension 1. Since f is projective, f(X \ U) is closed and does not contain 7g. Hence
So =S\ f(X \U) is an open neighborhood of ng such that f=1(Sp) — S is smooth of relative
dimension 1.

Replacing S and X by this So and f~!(Sp), respectively, we may thus assume f: X — S to
be smooth of relative dimension 1.

Proof of (iii): The base extension of g: X — P% by Spec(C) — Sis ¢': C = X¢ — Pf,
which is étale outside {0,1,00}. Hence the base extension

9k Xk = [ (ns) = P
by Spec(K) — S is étale outside {0, 1,00}. By what we saw in §V.3, we have

Supp(Qx/py) N 1 (1s) € {0, 1,00} x {ns}.
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Figure IX.1

Denote
E=g'({0,1,00} x )

D = the closure of (Supp(QX/]PﬂS) \E) .

Thus ng ¢ f(D \ E), which is constructible again by Chevalley’s Nullstellensatz. Hence ng ¢

f(D\ E) = f(D), and there exists an open affine neighborhood of ng such that Sy N f(D) = 0.

Consequently, f~1(So) N.D =0 so that g: f~!(Sp) — Py, is étale outside {0,1,00} x Sp, and
9: f7H(So) \ E — Py,

is étale.

We may thus replace S and X by this Sy and f~1(Sp), respectively. If f(X \ E) # S, then
since f(X \ E) contains ng and is constructible again by Chevalley’s Nullstellensatz, there exists
an affine open neighborhood Sy of ng such that for Xo = f~1(Sy), we have f(Xqo\ E) = So.
Thus we are in the situation as in Figure IX.1. O

To continue the proof of the “if” part of Theorem 2.1, we denote Xy and Sy obtained in
Lemma 2.3 by X and S, respectively.

Choose a closed point sy € S. Obviously, we have k(sp) = Q. Thus Cy = f~!(sg) is an
irreducible projective smooth curve over Q. We now show

C = Cp Xgp0.() Spec(C)  as algebraic curves,

which would finish the proof of the “if” part of Theorem 2.1.

The base change by Spec(C) — Spec(Q) of what we obtained in Lemma 2.3 gives rise to
fo: Xe 25 P Xspeo(c) Sc — Sc.
We also have two C-valued points of Sc:
to: Spec(C) — S¢  induced by k(sp) = Q — C
t1: Spec(C) — Sc¢  induced by k(ng) = K — C
so that
(fe) ™ (t0) = Co Xgpee(m) SPec(C)
(fe) ') =C.
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As we have explained in §VIIL.2, let us consider the associated complex analytic spaces and
holomorphic maps. For simplicity, we denote
M=Xg, T=5 P(C)=@)™ »=/" v=g&
Thus we have
o M- PYC)x T — T,
where M and T are connected complex manifolds, ¢: M — T is a proper smooth holomorphic

map of relative dimension 1, ¢): M — P!(C)x T is a finite covering unramified outside {0, 1, 00} x
T. We can regard o and ¢; as points of T so that

0 (ty) = (Co XS pec(D) Spec(C))
W_l(tl) — 3,

an

LEMMA 2.4. For any pair of points t,t' € T, one has
e Ht) = oY) as complex manifolds.
As a consequence of this lemma, one has
(Co Xgpee(@) SPec(C))™ = ¢~ (to) =2 ! (1) = O™
In view of a GAGA result given as Corollary VIII.2.11, we have

C’oxsp ec(@) Spec(C) = C as algebraic curves.

Proor orF LEMMA 2.4. For simplicity, denote
P° =PHC)\ {0,1,00},  M°=¢ 1 (P°xT)
so that the restriction of ¥ to M° induces a finite surjective unramifield covering
Vo M° — P° x T.
For each t € T, let
Vo Ht) N M° — P° x {t} = P°

be the restriction of ¢° to the fibre over t.

We claim that for any pair of points ¢,t' € T, there exists a homeomorphism

h:p )N M° — o ()N M°

such that the diagram

el N M —— s oy A Mo

vy po /f/
is commutative.
Before proving this claim, let us continue the proof of Lemma 2.4. Since 17 and v, are finite
unramifield coverings of P°, they are local analytic isomorphisms. Hence

h: o Yt)NM° = o1t ) n M°
is necessarily an analytic isomorphism. Examining h on a disjoint open disc at each point of the
finite ramification loci ¢ =1 (¢)\ (o1 (#)NM°) and =1 (#')\ (¢~ 1(#')NM°®), we see by the Riemann
Extension Theorem that h extends to a unique analytic isomorphism h: ¢~ 1(t) — ¢~ 1(¢).
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It remains to prove the above claim. Since T is path-connected, it suffices to show the claim
for ¢’ in a contractible open neighborhood (e.g., open ball) U of ¢. Denote by g, : ¢~ (U)NM° —
P° x U the restriction of °. Thus we have a commutative diagram

o Ht) N MeC e N U)N M°
w;’l lwa
P° —— 5 P° x {t}—— P° x U.

The finite surjective unramified covering 1), corresponds, in terms of the fundamental groups,
to a subgroup
(e Y (U) N M®°) C m(P° x U)
of finite index. The restriction of this covering to the covering 1y along the fibre corresponds to
a subgroup
(e () N M°) C m (P°).

Since U is assumed to be contractible, the restriction to the fibre induces isomorphisms
m(p(U)NM°) c m(P°xU)
m(e () NMe) < m(P),

hence a commutative diagram

homeo
(e ') NM°)x U ———— o Y (U) N M°

NU.A
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functorial properties of, 232
hyper-, 229
local, 229
of affine scheme, 239
of affine scheme, explicit calculation, 238
of coherent sheaf on projective scheme, 101, 264
of projective space, explicit computation of, 253
of projective space, Serre’s fundamental theorem
on, 255
of scheme, 240
p-adic, 327
Coker, 40
Cokernel, 8
Collapsing of tangent space, 187, 188
Compact
map, 300
Riemann surface, 280
Complete
discrete valuation ring, 154
intersection, local, 95, 345
intersection, relative local, 175
local ring, 152, 334
variety over field, 75
Completion, 292
formal, 169
Complex
affine variety, 47
analytic space, associated, 367
manifold, 367
projective variety, 45, 48
fibre product of, 48
morphism of, 49
scheme of finite type, 122
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torus, 217
variety, 121
Component, 177
Cone theorem, 361
Conjugate Galois action, 124
Connectedness theorem, 309
U5, 192
U5, 190
Constructible subset, 52
Contraction, 346
Convolution algebra, 215
Correspondence, regular, 48, 49
Cotangent space, 201
Cousin
data, 240
problem, 241
Covering map, 305
finite-sheeted, 305
Criterion
for ampleness by Kodaira, 288
for ampleness by Nakai-Moishezon, 274, 288, 361
for ampleness on curve, 285
for ampleness through closed integral curves, 268
for ampleness, cohomological, 26/, 285
for exactness of Koszul complex, 252
for normality by Krull-Serre, 185, 186
for refinement of open covering, 234
for smooth, 338
for smoothness, 36, 176-178, 180, 182, 187, 307
for smoothness, Jacobian, 177
Criterion for
étale, 181
étale morphism, 177
Crystalline cohomology, 327
Cup product, 232, 288
Curve, 349
ample divisor on, 285
proper and smooth, 362
regular complete, 189
very ample divisor on, 286
Cyclic
covering, 201
étale covering, 200, 322

d, 161

De Rham
cohomology, 231, 248, 817
comparison theorem, 317
theory, 230

Dedekind domain, 151

Def, 328

Deficiency, 259

Defined over field
closed subscheme, 130
morphism, 130
point, 130
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Deformation, 327, 364 Double six, 203
formal, 343 Dual numbers, algebra of, 210
infinitesimal, 346 Dual sheaf, 83
semi-universal formal, 343 Duality
theory, 182 Serre, 283, 295
universal formal, 343 Serre-Grothendieck’s generalization of, 288
versal formal, 343 Dwork’s theorem, 137
Degree
of divisor on curve, 279 Easy lemma of double complex, 236, 240, 244, 277
of invertible sheaf on curve, 284 Edge homomorphism, 244, 247
positive, 268 Effective
4, 225 1-cycle, 350
Der, 169 Cartier divisor, 109
Der, 162, 209 Elementary transformation for ruled surface, 356
Derived Elimination
category and functor, 242 of indeterminacy of rational map, 354
functor cohomology, 227, 234 theory, 74, 75
Descent Embedded
data, 134 associated point, 61
data, effective, 134 component, 60
theory, 133 point, 184
Dessins d’enfants, 362 Equi-characteristic, 159, 160
det, 348 Error term, 260
Dévissage, lemma of, 81, 271 Etale
df, 158 covering, 334
df*, 158 cyclic, 200, 322
Diagonal morphism, 64 p-cyclic, 322
Differentiable criterion for, 181
manifold, 11 morphism, 153, 167, 171, 177, 196, 198, 219, 220,
map, 11 334
dim, 150, 157, 249 proper morphism, 305
Dimension Etale morphism
and flat morphism, 148, 151 criterion for, 177
of scheme, 150 Euclid’s lemma, 54
of variety over field, 55 Euler characteristic, 259, 268
theorem over valuation ring, 145 additivity of, 260, 268
upper semi-continuity of, 149 local constancy of, 270
Diophantine equation, 121 Excellent scheme, 193
Direct Exceptional divisor, 345
image Exterior product, 35
quasi-coherent sheaf, 67 Extremal
sheaf, 10, 41, 42 rational curve, 361
limit of free modules of finite rank, 139 ray, 361
sum, infinite, 9
Discrete f, 135
valuation ring, 21, 111 farith 195 9929
Distinguished open set, 2 feeom 1385, 220
Div, 109, 159 F(d), 85, 87
DivCl, 110 fr, 25
Divisible, 217 », 11
Divisor [, 10
Cartier, 109, 159 Factorial scheme, 111
class, 110 Faithful functor, 26
principal, 109 Faithfully flat morphism, 134
Weil, 112 Fermat cubic surface, 203

Double complex, 229, 235 Fermat’s last theorem, 121



Fibre
of blow up, 95
of morphism, 19
of quasi-coherent sheaf, 23
Fibre product, 15
as point set, 18
of affine schemes, 15
of complex projective varieties, 48
of schemes, 33
scheme-valued points of, 28
universality of, 15
Field of algebraic numbers, 362
Field-valued point of scheme over field, 27
Filtration, 243, 245
Final object, 13, 26, 119
Finite
étale morphism, lifting of, 338
module, 78
morphism, 78, 196, 199
surjective morphism and ample, 266
Finite potent
linear endomorphism, 288
subspace, 289
Finite presentation, locally of
quasi-coherent sheaf, 22
Finite type
morphism of, 51
Finite type, locally of
morphism, 51
quasi-coherent sheaf, 22
Finite-sheeted covering map, 305
Finitely presented
graded module, 99
module, 8
morphism, 51
Finitely presented, locally
morphism, 51
Flasque resolution, 248
Flat, 36
formal scheme, 335
module, 138, 168, 270

morphism, 37, 13/, 153, 167, 175, 180, 181, 221,

327
and dimension, 148, 151
intuitive content of, 141
quasi-coherent sheaf, 134, 139
Flatness
generic, 141
of convergent power series ring, 299
Form
of projective space over finite field, 223
over field, 134, 156
over real field, 131
Formal
closed subscheme, 313
coherent sheaf, 309

INDEX

completion, 169
deformation, 343
semi-universal, 343
universal, 343
versal, 343
differential, 283
étale covering, 313
geometry, 313
implicit function theorem, 170
meromorphic differential
residue of, 284
residue theorem for, 284
scheme, 334
associated to scheme, 335
flat, 335
Formally
irreducible, 199
normal, 198
normal: N1, 189
smooth, 182, 329
unibranch: Ul, 189
Fréchet space, 300
Free resolution, 240
Frobenius
arithmetic £271*%0 135, 222
cohomology operation, 321
geometric £8°°™ 1385, 219, 220
homomorphism, 43, 212
homomorphism, iterated, 212
morphism, 212, 355, 357
Fuchsian group, 287
Fully faithful functor, 27
Funct, 27
Function field, 51, 109
Functor
contravariant, 27
covariant, 28
faithful, 26
fully faithful, 27, 28
Grassmannian, 35
Hilbert, 36
relative Picard, 36
representable, 33
Functorial
definition of Zariski-tangent space, 158
properties of cohomology, 232
Fundamental group
abelianized algebraic, 342
algebraic, 308, 339, 340
topological, 308, 340

Ga, 33, 207

GAGA comparison theorem, 299, 305, 313, 367

Gal, 124
Galois
action, 156
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conjugate, 124
quotient by, 125
cohomology, 156
extension, 344
group, 124
T, 38, 64
Iy, 85
Gauss sphere, 287
General linear group scheme, 207
Generated by global sections
coherent sheaf, 88, 102
invertible sheaf on curve, 286
Generic
flatness, 141, 198
geometric fibre, 192
point, 3, 9, 45
Genus, 279, 337
change under constant field extension, 297
Geometric
frobenius, 135, 219, 220
generic fibre, 192
Geometrically
irreducible, 279, 337
unibranch: GU3, 195
Germ
of functions, 11
of sections, 38
GFGA comparison theorem, 194, 309, 313, 334,
336-338, 342, 344
GL, 34, 42, 207
Glueing data, 108
Gm, 34, 207
God-given natural rings, 122
Going-up theorem, 78, 125, 194
gr, 94, 157, 171, 178, 311
Graded
homomorphism, quasi-equal, 98
module
finitely presented, 99
quasi-equal, 97
Graph of morphism, 6/
Grass, 35
Grassmann variety, 35
Grassmannian
functor, 35
scheme, 35, 167, 201
GrModge, 98
Grothendieck’s
coherency theorem, 256, 259, 300, 313
De Rham comparison theorem, 317
decomposition of Hilbert scheme, 357, 359
generalization of Riemann-Roch theorem, 287
GFGA comparison theorem, 194, 309, 313, 334,
336-338, 342, 344
lemma, 141
local constancy of Euler characteristic, 270

theorem on algebraic fundamental group of
curve, 341
theorem on Hom scheme, 346, 359
Grothendieck-Schlessinger’s result on formal
deformation, 343
Group
algebra, 214
functor, 207
scheme, 34, 205, 287
action of, 218, 222
commutative, 33, 34, 36
homomorphism of, 211
quotient, 218
(Groups), 207
GU3: geometrically unibranch, 195
GUb: Zariski’s connectedness theorem, strong form,
195

H, 227
H, 230
H, 227
h, 27
Hard lemma of double complex, 245, 248
Hasse-Witt matrix, 321
Hausdorft, 64
Hpr, 317
height, 159
Hensel’s lemma, 152, 193, 195, 197, 341
classical, 153
Higher direct image
quasi-coherence of, 241
sheaf, 241
under affine morphism, 242
under projective morphism, 256
Hilb, 36
Hilbert
functor, 36
polynomial, 260, 269, 277, 357, 359
scheme, 357
syzygy theorem, 261
Hilbert-Samuel polynomial, 157, 160
Hironaka’s
example, 144
resolution theorems, 317
Hirzebruch’s generalization of Riemann-Roch
theorem, 287
Hodge
index theorem, 355
theory, 319
Holomorphic
differential form, 169
form, 317
map, associated, 367
vector field, 169
Hom, 8, 41
Hom, 37, 214
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Hom closed set, 3, 9
internal, 8 component and ample, 266
Homomorphism formally, 199
Frobenius, 212 geometrically, 279, 337
Homomorphism of group schemes, 211 subvariety, 45
Homotopy, 228 Italian school, 184, 258-260, 337
Hopf algebra, 213 Iterated Frobenius homomorphism, 212
(Hot), 26
J, 294
Hypercohomology, 229 )
Jacobian

spectral sequence for, 248
criterion, 177, 219

matrix, 167, 176, 180
1,2 Jordan-Hélder technique, 269

Identification of points, 187, 188

Hyperelliptic curve, 326

I ion, 57, 63 k, 1,10
mmersion, 57, K. 109
closed, 35, 36, 56, 63
K-group, 276
Leray spectral sequence for, 247 KO 976
Imperfect field, 179 Ko, 276

Imperfection, module of, 164 Kahler differential, 161, 163, 316

Kawamata log terminal singularity, 361
Ker, 40

Kernel, 8, 211

Kleiman’s criterion for ampleness, 361

Indeterminacy

of rational map, 95
Infinite

product of sheaves, 41

sum of sheaves, 41
Initial term, 243
Injective resolution, 248

Kleiman-Mori cone, 361
Kodaira’s criterion for ampleness, 288
Kodaira-Akizuki-Nakano’s vanishing theorem, 288
Koszul complex, 251, 277

criterion for exactness of, 252

Integrally closed, 111
Internal Hom, 8
Interpretation of H', 233
Intersection
multiplicity, 159, 160
number, 160, 273
constancy in flat family, 273, 357

Kroneckerian geometry, 122, 339
Krull dim, 150, 157, 348

Krull dimension, 159

Krull’s

o ) principal ideal theorem, 150, 156
multilinearity and symmetry, 273 structure theorem, 111, 185
theorem, 152

Krull-Azumaya-Nakayama, 23

proper, 159
symbol, 271, 350
additivity, 272

; ) Krull-Serre’s normality criterion, 185, 186
constancy in flat family, 272

Kummer theory, 200, 322
multilinearity, 272

self-intersection, 272 Lang’s theorem
theory, 159 on action of algebraic group over finite field, 222
Inverse image on algebraic group over finite field, 219
of quasi-coherent sheaf, 25 on rational point of homogeneous space over
of sheaf, 42 finite field, 138, 223
Invertible Left invariant, 210
element, 34 Lemma
sheaf, 35, 36, 83, 89, 92, 93 of dévissage, 81, 271
ample, 102 of double complex, easy, 236, 240, 244, 277
ample inherited on closed subscheme, 265 of double complex, hard, 245, 248
ample over affine open, 105 on integral valued polynomial, 271
generated by global sections, on curve, 286 on silly open covering, 236
Poincaré, 36 Leray spectral sequence, 244, 257
relatively ample, 103, 256 for affine morphism, 247
relatively very ample, 102 for closed immersion, 247
Irreducible Lie, 208, 209, 210

absolutely, 279 Lie algebra, 210
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Lift, 328, 346
Lifting
of syzygies for fibre, 143
property for smooth morphism, 329, 331
Line bundle, 111
Linear
algebraic group, 218
equivalence, 110

system, 259
L= L% 91
Local

cohomology, 229

complete intersection, 95, 345

equation, 109

homeomorphism, 305

homomorphism, 11

ring, 10, 157

ring, complete noetherian, 152

ring, regular, 157

ring-valued point of scheme, 27
Locally

closed subscheme, 57

constant, 23

finitely presented, 51

free resolution, 254

free sheaf, 23, 34, 92, 112, 140, 208

noetherian scheme, 37, 50, 50

of finite type

morphism, 51
quasi-coherent sheaf, 22

Long exact cohomology sequence, 230
Liiroth’s theorem, 354

M, 7,69
M(d), 84
M(d), 87
Macaulay’s inverse system, 253
MacLane’s theorem, 129
Map

analytic, 11

differentiable, 11

of presheaves, 37
Matsumura-Oort’s criterion for representability, 209
Max, 55, 154
Maximum principle, 302
Meromorphic pseudo-differential, 284, 294
Metric with constant curvature, 287
Minimal

model program, 361

prime ideal, 111
Mittag-Leftler condition, 313

uniform, 316
Mixed characteristic, 159, 160
Modified Cech complex, 234
Module

flat, 138, 168

of finite presentation, 8
of syzygies, 143, 174, 175
Moduli
functor, 343
problem of, 343
space, 37, 344
Montel’s theorem, 300
Mor, 26
Mori program, 361
Mori’s theorem on existence of rational curves, 345
Morphism
affine, 32
Leray spectral sequence for, 247
diagonal, 64
étale, 153, 167, 171, 177, 196, 198, 219, 220, 334
faithfully flat, 134
fibre of, 19
finite, 78, 196, 199
finitely presented, 51
flat, 37, 134, 153, 167, 175, 180, 181
intuitive content of, 141
Frobenius, 212
from spectrum of local ring, 14
generic flatness of, 141
graph of, 64
locally finitely presented, 51
locally of finite type, 51
of complex projective varieties, 49
of finite type, 51
of schemes, 10
over scheme, 12
Pliicker, 35
projective, 37, 73
proper, 75, 196
quasi-compact, 51, 62, 67
quasi-projective, 37, 73
quasi-separated, 67
scheme-theoretic closure of image of, 62, 82
Segre, 36
separated, 67
smooth, 167, 167, 186
to affine scheme, 12
to Proj, 89, 92
Mou resolution, 248
mult, 197
Multiplicity formula, 199
L, 208
Murre’s criterion for representability, 209

N1, 356

N1: formally normal, 189

N2: analytically normal, 189

N4: Zariski’s main theorem, 189

Nagata’s
pathology on normalization, 188
theorem on normality of completion, 190



NAK, 23
Nakai-Moishezon’s criterion for ampleness, 288, 361
Nakayama’s lemma, 23, 88, 140, 146, 153, 157, 176,
181, 183, 276, 302, 307, 324, 338, 348

NE, 361
nidg, 212
Nil, 265
Noether’s normalization lemma, 141
Noetherian

induction, 53, 81, 256

scheme, 50, 50, 182, 255, 256

locally, 22, 37, 50, 50

space, 4
Non-Hausdorff, 3
Non-singular, 179
Normal

analytically: N2, 189

formally, 198

formally: N1, 189

scheme, 111, 184, 186, 187

subgroup scheme, 218
Normalization

characterization of, 196

of projective scheme, 189

of scheme, 188, 189
Nullstellensatz, 47, 49, 323

Chevalley’s, 52, 121, 151, 360, 365, 366
Numerical equivalence, 350

0,4, 9
O~ 108
Obstruction, 241, 327, 346
Q, 161, 163, 168
QGrass(E)z 167
Qp(ey, 166
Op(1), 84
Op(d), 85, 87
Open

map, 125, 151

set, distinguished, 2
Opposite category, 27
ord, 111

P, 35, 72

P(&), 87

p-adic cohomology, 327
p-basis, 162, 324

p-cyclic étale covering, 322
p-linear map, 321

Pa, 260

Paracompact Hausdorff space, 231, 244, 248, 319
Partition of unity, 3
Patching argument, 16
Path-connected, 368

PGL, 209, 218

¢, 135, 212

INDEX

&, 87
72& 308, 339, 340
7P, 308, 340
Pic, 36, 83, 108
Picard
group, 36, 83
number, 350, 357
scheme, 36
Pliicker morphism, 35
(P™ in the classical topology), 298
(P™ in the Zariski topology), 298
Poincaré’s lemma, 818, 319
Poincaré
invertible sheaf, 36
Point
embedded, 184
proper, 184, 189
regular, 158
Positive degree, 268
Presheaf, 5
map of, 37
of sets, 37
sheafification of, 8, 39
Primary decomposition, 60, 61, 302
theorem, globalized, 62, 350
Principal
divisor, 109
homogeneous space, 328
ideal domain, 140
sheaf, 233
Pro-finite completion, 308
Proj, 35, 68
morphism to, 89, 92
relative, 70
Projection formula, 266, 351
Projective
morphism, 37, 73
higher direct image under, 256
scheme
cohomology of coherent sheaf on, 101, 264
normalization of, 189
space, 35
explicit cohomology of, 253
Projectivity of regular complete curve, 189
Proper
map, topological, 191
morphism, 75, 196, 256, 265, 266
étale, 305
valuative criterion for, 36, 78
with finite fibres, 196
point, 184, 189
Property: S2, 184, 185
Pseudo-differential, 284
Pseudo-section, 283

Quasi-coherent
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assumption, 234
direct image, 67
sheaf, 20
adjointness of inverse image and direct image
of, 25
direct image of, 67
fibre of, 23
flat, 134, 139
higher direct image of, 241
inverse image of, 25
locally of finite presentation, 22
locally of finite type, 22
of algebras, 30
of graded algebras, 70
on affine scheme, 20
rank of, 23
tensor product of, 24
Quasi-compact
morphism, 51, 62, 67
scheme, 50
space, 3
Quasi-equal
graded homomorphisms, 98
graded modules, 97
Quasi-projective morphism, 37, 73
Quasi-separated morphism, 67
Quot, 36
Quotient
by Galois action, 125
group scheme, 218
of group scheme, 218

R: function field, 51, 109
Ramification locus, 362
Rank

of quasi-coherent sheaf, 23

upper semi-continuity of, 23
Rational

curve, 345

curve, extremal, 361

map, indeterminacy of, 95

point, 27, 56

representation of algebraic group, 223
red, 265

and affine scheme, 329

and ample, 265

and étale covering, 334
Reduced

scheme, 50

structure on closed subscheme, 63
Refinement of open covering, 108, 226
Regular, 176-180

complete curve

projectivity of, 189
uniqueness of, 189
correspondence, 48, 49

INDEX

local ring, 157
point, 158
scheme, 158, 184
sequence, 95
Relative
local complete intersection, 175
Picard functor, 36, 208
Picard scheme, 208
tangent sheaf, 169
Relatively ample
invertible sheaf, 103, 105, 106, 256
over affine scheme, 103
Relatively very ample invertible sheaf, 102
Relativization, 361
Representable functor, 33
Res, 290, 292
Residue
abstract, 289
field, 6, 10
of formal meromorphic differential, 284
pairing, 282
theorem
abstract, 292
for compact Riemann surface, 280
for formal meromorphic differential, 284
Resolution
acyclic, 248
flasque, 248
injective, 248
locally free, 254
mou, 248
of indeterminacy of rational map, 95
Spencer, 261
theorems by Hironaka, 317
Retract, 227
Rf., 241
Riemann extension theorem, 367
Riemann’s
existence theorem, projective case, 305
zeta-function, 137
Riemann-Roch theorem, 279, 351
for locally free sheaf, 286, 349, 351
Grothendieck’s generalization of, 287
Hirzebruch’s generalization of, 287
strong form, 282, 295
weak form, 280
Rigid analytic
geometry, 313
space, 155
Rigidity lemma, 354
(Rings), 28
Ruled surface, 355
canonical sheaf formula for, 355

S2: property, 184, 185
Sard’s lemma, 179
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Scheme, 9 theorem
affine, 6, 9 on cohomology of projective space, 255
base, 12 on cohomology on projective scheme, 101, 264
category of, 12 on generation by global sections, 99
cohomology of, 240 on refinement of open covering, 234
dimension of, 150 Serre-Grothendieck duality, 288
excellent, 193 (Sets), 26
factorial, 111 Severi-Grothendieck’s theorem on lifting of
formal, 334 complete smooth curve, 337
formal scheme associated to, 335 Sheaf
functor, 29 ample invertible, 102
Grassmannian, 35, 201 analytic coherent, 298
local ring-valued point of, 27 analytic structure, 298
locally noetherian, 22, 37, 50, 50 associated to greaded module, 69
noetherian, 50, 50, 182 associated to module, 7
normal, 111, 184, 186, 187 axioms, 5
normalization of, 188, 189 coherent, 22
of finite type over complex field, 122 coherent extension of, 103
over field, field-valued point of, 27 generated by global sections, 88, 102
over scheme, 12 direct image, 10, 41, 42
Picard, 36 dual, 83
quasi-compact, 50 formal coherent, 309
rational point of, 27 in Zariski topology, 29
reduced, 50 infinite product of, 41
regular, 158, 184 infinite sum of, 41
relative Picard, 36 inverse image, 42
ring-valued point of, 27 invertible, 35, 36, 83, 89, 92, 93
scheme-valued point of, 27 generated by global sections, on curve, 286
separated, 65 locally free, 23, 34, 92, 112
Scheme-theoretic of algebras, 30
closure of graded algebras, 70
of image of morphism, 62, 82 of groups, 38
of subscheme, 62 of holomorphic differential forms, 169
dense, 144 of holomorphic vector fields, 169
union, 63 of modules, 7
Section of rings, 38
of P(E), 92 of sets, 33, 38
of sheaf, 38 of total quotient rings, 109
Segre embedding, 36, 48, 73, 113, 137, 364 of units, 108
Semi-simple affine algebraic group, 219 Poincaré invertible, 36
Separable, 129, 177, 178 quasi-coherent, 20
algebraic, 126, 127, 177, 181 relative tangent, 169
finite, 153 relatively ample invertible, 103
Separated relatively very ample invertible, 102
assumption, 234 stalk of, 38
assumption from §II.5 on, 67 structure, 4
morphism, 67 stalk of, 6, 10
scheme, 65 Sheafification, 218, 231
Separating transcendence basis, 162 of presheaf, 8, 39
Serre duality, 283, 295 Skew-commutative, 232
Serre’s Skyscraper sheaf, 282, 293
cohomological criterion for ampleness, 264, 285 Smooth, 179, 180
example of non-liftable variety, 338 cubic curve over finite field, 223
GAGA comparison theorem, 299, 305, 313, 317, morphism, 167, 167, 186
319, 367 criterion for, 36, 176-178, 180, 182, 187

intersection multiplicity, 254 formally, 182, 329
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jacobian criterion for, 177
lifting property for, 329, 331
local syzygy for, 254

quadric hypersurface over finite field, 223

Snapper’s theorem, 270
sp, 155
Space
affine, 6
algebraic, 30
moduli, 37
noetherian, 4
projective, 35
quasi-compact, 3
tangent, 36
Spec, 1
relative, 30
Specialization, 175
map, 155
over valuation ring, 144
Spectral sequence, 242, 314, 317
for hypercohomology, 248
Spencer resolution, 261, 276
Stalk, 41
of sheaf, 38
of structure sheaf, 6, 10
Strict transform, 356
Structure sheaf, 4
analytic, 298
stalk of, 10
Subfunctor, 29
Subscheme, 57
closed, 56
locally closed, 57
scheme-theoretic closure of, 62
Subset
constructible, 52
Subvariety
irreducible, 45
Supp, 109, 249
Support
of Cartier divisor, 109
Sylow subgroup, 342
Symm, 33, 72, 158, 207
Symmetric algebra, 33
Syz, 143, 174
Syzygy, 143
for smooth morphism, local, 254
module of, 143, 174, 175
theorem of Hilbert, 261

T, 157

T, 158

7", 157

Tangent
bundle, 317
cone, 158

sheaf, 327, 345
space, 36, 201
collapsing of, 187, 188
Tate’s dualizing sheaf, 284
Taylor expansion, 210
TC, 158, 171
Tensor product
of algebras, universality of, 15
of quasi-coherent sheaves, 24
universality of, 24
Terminal singularity, 361
0, 169, 287, 327, 345
Topological
fundamental group, 308, 340
proper map, 191
unibranch: U4, 190
Topology
faithfully flat quasi-compact, 33
Zariski, 2
Tor, 240, 277
Tor, 159, 240, 254
Total
complex, 230, 235
quotient ring, 109, 184
transform, 355
Tr, 258, 288
Trace, 288
Truncated exponential, 215, 216

Ul: formally unibranch, 189
U2: analytically unibranch, 189
U3: unibranch, 189
U4: topologically unibranch, 190
U5: connectedness theorem, 192
U5: connectedness theorem, 190
UFD, 111, 159, 184
characterization of, 112
Unibranch, 195
analytically: U2, 189
formally: U1, 189
geometrically: GU3, 195
topologically: U4, 190
U3, 189

Uniqueness of regular complete curve, 189

Universal
derivation, 161
element, 33
quotient, 35, 167
Universality
of blow up, 94
of fibre product, 15
of relative Spec, 30
of sheafification, 39
of tensor product
of algebras, 15
of quasi-coherent sheaves, 24



Universally closed map, 75
Unramified, 367
Upper semi-continuity of
dimension, 149
rank, 23
Upper-triangular matrix, 223
T, 164

V,1, 68
Valuation, 111
ring, 140, 189
complete discrete, 154, 175, 313
dimension theorem over, 145
discrete, 21, 111, 285, 297
specialization over, 144

Valuative criterion for properness, 36, 78

Vandermonde determinant, 363
Vanishing theorem

for curve, 285

of Kodaira-Akizuki-Nakano, 288
Variety

complex affine, 47

complex projective, 45, 48

over field, 55, 126

complete, 75

Vector

bundle, 112

field, 210
Very ample divisor on curve, 286
Virtual dimension, 260

Wedderburn’s theorem, 127
Weierstrass preparation theorem, 170
Weil divisor, 112
Weil’s

conjecture, 137

multiplicity, 197

restriction of scalars, 43
Witt vector, 217, 337, 341

Yoneda’s lemma, 32

Z', 112

Z1, 350

Zariski topology, 2
sheaf in, 29

Zariski’s

connectedness theorem, strong form: GU5, 195
fundamental theorem of holomorphic functions,

194, 196, 309
main theorem, 191, 286, 307
N4, 189

theorem on normality of completion, 190

Zariski-cotangent space, 157

Zariski-Grothendieck’s main theorem, 195
Zariski-Muhly’s theorem on arithmetic genus, 261

Zariski-tangent space, 157, 169, 178

INDEX

functorial definition of, 158
Zeta-function, 121, 136
Riemann’s, 137
Zorn’s lemma, 103
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