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On the Kodaira Dimension of the Siegel Modular Variety

by David Mumford

Let 4§g represent the quotient of Siegel's upper half-space
Jh}é of rank g by the full integral symplectic group Sp(2g, Z):
this is known as Siegel's modular variety, or as the moduli space
of g-dimensional principally polarized abelian varieties (called

p.p.a.v. below). A_ has been shown to be a variety of general type

(i.e., Kodaira dimension = dimension) for various g's: Freitag
[F1] proved this first if 24|g; Tai [T] proved this recently for
all g > 9. On the other hand, .ég is known to be unirational for
g < 5: Dona%il [D] for g = 5, Clemens [C] for g = 4, classical for
g < 3. The purpose of this paper is to refine Tai's result,

showing:

Theorem: Ag is of general type if g > 7.

-

Note that this leaves only the Kodaira dimension of ﬁﬁ still
to be determined. We shall use results of Freitag and Tai in a
crucial way, but the idea of the proof is a direct adaption
of the proof [H-M] by Harris and the author that ﬂg is of general
type if g > 25, g odd. 1In that proof the divisor Dk of curves
which are k-fold covers of IPl, k = 2%1 , is shown to be linearly
equivalent to

nK-(ample divisor)-(effective divisor).

Here we prove the same thing except that the role of Dk is taken

by the components of No’ where



Nk =[}ocus of p.p.a.v. where dim(sing. locus of ©) 3.k]

These sets Ni were introduced by Andreotti and Mayer [A-M , and
studied recently by Beauville [B]. I want to thank Beauville
very much for stimulating discussions which led me to this
result. At the same time, I would like to raise the question
which seems very interesting to me: is there an explicit
polynomial in theta constants, or other modular forms constructed
from theta series (with quadratic forms and pluri-harmonic
coefficients) whose zeroes give No with suitable multiplicities?
Although important steps are taken in this direction in
Andreotti-Mayer [A-M] and Beauville [B], this is not answered
because the "theta nulls" C(r,u,z) are not in general modular
forms — they are theta series whose coefficients are not
pluri-harmonic; esp. you cannot form a modular form out of the
2%9/0u’
Finally, I want to mention the related results of Stillman [S]

's alone without using mixed derivatives 329/auk3uL too.

(based on earlier ideas of Freitag [F2]) which prove Ag
T2
carries holomorphic (4g-6)-forms for g > Wp These results are

directly based on the use of theta series.



§1. A partial compactification of the Siegel modular variety.

Satake's compactification A; of Ag consists,

set-theoretically, in the union of (g+l)-strata:

* 3 o & o o °
The Kodaira dimension of w@g is based on pluri-canonical
differentials on a desingularization .K; of ﬂ:. However,
Tai has shown that a pluri-canonical differential form with "no

poles above -ég LA ", is everywhere regular, so we do not have

g-1
to study the full i;. We will make this precise in a minute.
The space we want to work with is a blow-up of ‘ég,ggg_l first
introduced by Igusa [I] and studied by the author [M] and by
Namikawa [N]. To describe this space geometrically, let us

define a rank 1 degeneration of a p.p.a.v. as follows: it is a

pair (G,D) where G is a complete g-dimensional variety and D
is an ample divisor (i.e., G is to be the limit of a g-dimensional
abelian variety and D the limit of its theta divisor). G is

constructed as follows:

c B its

(9]

1) let B9"! be a (g-1)-dimensional p.p.a.v.,
theta divisor

2) let G be an algebraic group which is an extension of B by Gm:

0 >Gm > G -»> B > 0.
3) Considering G as a Gm-bundle over B, let G be the

associated ]Pl-bundle:



G ¢ G
il 1

\/m
B

Then G-G egquals ébilﬁm, the union of 2 sections
of G over B.
4) Then G is to be the non-normal variety obtained by

o~

glueing Go,ﬁ; with a translation by a point b € B.
5) Note that on @

n-l(E), E algebraically equivalent to 0 on B
-1,

8,-&,

m E-Ebl)' for a unique b, €B.

Thus

-1,_ -1,
Gb+ﬂ (:bl) é; + 7 T(2).

Let & = 05(§;+ﬂ-1(5))- Via the Leray spectral

sequence for 7, we see that n% (%) = 2 and that
LI onr Bt |
Gyt (:b1)' G _+m

Then Ifl'é

¢4}

) span the linear system |IL].

. 0p () and pi g, = OB(:bl)’ so if b
is chosen to be bl (and only then) the line bundle
T can be descended to a line bundle L on G. Choose

such an L and let

D = the unique divisor in |L].

We now define

(1.1) 3;1) = {coarse moduli space of p.p.a.v.(3,0) of

dimension g and their rank 1 degenerations .



As first shown by Igusa, this space exists, is a quasi-projective

variety, and is essentially the blow-up of the open set

A LA _X(l) is the union of

g— "g-1
Ag and a divisor A parametrizing the rank 1 degenerations. Via

in A* along its boundary A .
o g y Agy

the map
(G,D) +——— (B,E)

the divisor A is seen to be fibred:

A
(1.2) 61 fibres B/Aut(B,5) .

Ag—l

(1)

Analytically, we may consider Kg to represent precisely the

degenerations of the abelian variety AQ(t) with period matrix

Q(t) when:

Im Qll —_—

as t —0 .
and Qij’ i>1 or 3j>1, have finite limits

Then B = B (1)’ where Q(l) is the lower right block of the limit
Q
Q(0) = il WL )
tw } (L)

A . > e .
and b is the image of the vector w = 652(0)913(0), ,ng(O)) in

B

0 To find D, we must translate en(t)c AQ(t) as t ——> 0.

(1)°



Thus
.t .t .
emt) = {zeroes of Q(z,Q) = nezzgm‘(?#z_m n.z}..
Translate © by b(t) the image of (M’. 0,-++,0):
ﬂ(t) ’ 2 14 14 ’ H

A ) e o Tt

-

—

i n,n.Q, (1:)+21ut
-mi (n-n,)Q,;, (t) -;ﬁ ,g,q_ 1173 J "a}

Then e ®i-n)@u(t) _, o . n, = 0 or 1, hence the limit is

. n,n.Q..(0)+2ni J n, z} u \2n1 In
L prCo \E g) i J J J 3
5:,?”. f((a' preo .[zeroes o Z hhhhh 3<2 (L ”lel 3<2 )}
. es s, EZ
shownthvr (3 13) '
= {zeroes of @ (z(l) ' Q(l)) + e2™2 -9(z(l)+w, Q(l))‘}
where z(l) = (z ...,zg) is the analytic coordinate on B (1)

Interpreting e21lel as the algebraic coordinate in the flbre
€ ©of G, and E as the zeroes of 9(2(1),9(1)), this is
immediately seen to be D if L is suitably defined.

+(1),0

Next, let Ag (1)

be the open set in Ké parametrizing
those pairs (A,0) or (G,D) whose automorphism group is the
minimal one, {+1}. More precisely, the only non-trivial
automorphism of A (or G) mapping © (resp. D) to itself is of

the form x |—— ~x+a, some a*. Then A(l) g is locally isomorphic

*

We have not normalized @ and D to be symmetric. On the other
hand, we have not fixed an origin either, so the pairs (a,0) and
(a, O ) are isomorphic by translation by ¢, and define the same

p01nt of Atl)



to the universal deformation space of (A,0) (or (E,D)), hence is

a smooth of dimension g(g+l)/2. Analytically, 33 is the open

[T S (o A o F

subset of Ag of points which are images of @ €Jb§wﬂﬁhose

stabilizer in Sp(2g,Z) are just (+I). Likewise, using the analytic

z(1) £(1),0
g

description of A ' in Ash et al An-r-5], B is the open

subset of Iél) of points which are images of points in
_ $6 /U0.) whose stabilizer in the normalizer of the first boundary
ig” "Zioy }
component is just (+I). (Compare Tai [T], § ). This set includes,
in particular, those G constructed from a (B,E) € 33_1 and a point
b € B not of order 2. We are now in a position to state one of

the main results of Tai's paper [T], in the form in which we need

dntel
Theorem 1.4 (Tai). If g > 5, then
a) codim (B'V-x(1)0) 5 o
;g g il
== £(1),0
b) r(ﬁg,@(nx)) = Tr@E;'T,0(mK), if a2 L.

This means that a pluri-canonical differential with no poles on

Iél)'o is everywhere regular on a full desingularization ‘Kg
of A,
g _ . . 0
The second result we need is the calculation of Pic(ﬁg) . This

follows from the theory of Matsushima, Borel, Wallach and others on the
low cohomology groups of discrete subgroups of Lie groups. In parti-
cular, the results of Borel [Bo] imply that for any subgroup
I' < Sp(2g,Z) of finite index:
H* (T ,@) = Q[CZ, CG’ clO""] , in degrees < g-2 .
In particular:

2 2 ~ .
H ’ & H 2 ,Z ’ e f =
) (sp(2g9,%2),0) £ Q@ if g = 4



An immediate corollary* is:

Theorem 1.5 (Borel ¢t al): pic(:_\g)@a;, =z @A ,#4qz4,

where A is the line bundle on A; defined by the co-cycle

det (CQ+D) .

Corollary 1.6: Pic(Kél)’OJ@Q-:—; @A+ @5

where &6 is the divisor class of the boundary A.

In terms of these generators, a standard result is:

Proposition 1.7. Ki(l)tp = (g+l)A-6.
o-g =

For a proof, see for instance Tai [T],§1 . Another fairly

standard result that we need is:

Proposition 1.8. Let (B,EZ) be a (g-l)-dimension p.p.a.v. whose
automorphism group is (+1). Consider the 2-1 map
i e =(1),0
g: (B B2) —_— -.%‘g

defined by ¢g(b) = the pair (G,D) constructed from (B,Z) with

* If A is a smooth compactification of ﬂg , then use:

- res 0
oQ6; — Picd e@ —» FicA el

I r :

2,3 2.0
°Qd; — H A, —» E R 0

plus Hz(_i_;',_g,m) & Hz(_g';kg,m) zq.



glueing via b. Then

* . = X
81 (0_(1),(8)) 0, (-28).
g e
Proof: Let's construct over B the family of (G,D)'s made

up with all possible b's. To do this, let P be the Poincaré bundle
over BxB, trivial on exB, Bxe. Then P* = P-(0O-section) serves
as the universal family of G's. Let P o P be the associated

®l-fibre bundle, and
Then the projection on the first factor:

Pq: g ——B

is the universal family of G's. The deformation theory of such

a G gives an exact sequence:

0 — (T, 12(gg) — 1@ ——u(sing T, T'(gg))
I

0
H™ (B,N,

eN_)
where No'Nw are the normal bundles to the locus of double points

of G. For one G, made up starting from a line bundle L over B,

completed at « and glued by translation by b € B,

~ Ky -
N QNw =L8Tb(L

1
0 )



1

1

ne

X -
Note that L must be algebraically equivalent to 0, hence TbL

®N_) = k. This one-dimensional

~
=

hence N ®N_ o Thus HO(B,N

0 BT 0
vector space represents the normal bundle to A in Eé at the
point (G,D). Doing this now for the whole family § ——B,

NOON°° is the line bundle on BxB given by

1

PO TP )

where T(x,y) = (x,x+y).
Then the normal bundle to A, pulled back to this family, is

Py *(peT*(P'l))
’

which is the same as the restriction of peT*p~ L to Bxe, i.e.,
6*(P-1), where §&8(x) = (x,x). Since P, along the diagonal of BxB
is 0(2%), this proves the Proposition. QED

(1)

§2. The divisor N and its class in Pic(gg

0 )3

Andreotti-Mayer [A-M] defined the important subsets Nk

in :
Ay

(2.1) = {(A,0)|Sing ©@ ¥ ¢ and dim(Sing 6) > k} .

N
Andreotti and Mayer prove by using the Heat equation for

that N0 ¥ A, but it is not easy to estimate the dimension of

g

Nk in general. Nowever, we are interested only in codimension 1

and we must at least check that none of the Nk' k > 1, have

codimension 1 components. This follows by an elaboration of

0

L

-1

[
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Andreotti-Mayer's arguments using the heat equation:

Lemma 2.2. The codimension of N, (hence of N,,Nj,*-*) in Ag is

greater than 1.

Proof: We use the heat equation

2
. 3 B 3“6
(2mi) (1+8 ) =
aB BRaB BzaazB
a matrix

If the lemma were false, we could findA Q, a smooth analytic
hypersurface g(Q) = 0 defined in a neighborhood of ® and

containing §, and a vector-valued function

t(a,t) € o
defined in a neighborhood of §Q and for |t| small, such that

e£(a,t),Q)

"
o

} whenever g(Q) = 0.

mn
o
-

%%L(§(Q,t),9) l<kz<g
K

We may assume that for each Q, t f———>%(9,t) is part of an

algebraic curve C9 c AQ. Note that the lemma is obvious if

g =2 and if g > 3, then the codimension of the locus of non-simple
abelian varieties is greater than 1l. Therefore we can also assume

that the abelian variety A_  is simple. It follows that the set
Q
of differences x-y,x,y €C_ generates A_, hence the set of
Q Q
differences x-—y,x,yeCQ, generates As‘z for © near Q. Therefore,

for no Q near § is there a vector a such that
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o
]

3 (7. - 2
et £) (2 0, all t.

We prove by induction on 4 that:

3%
e 00 azag
g

(*)d 1f |a| = 4, then (a R
21

) (E(Q,t),n) = 0 whenever g(f) = 0.

Since © (z,%) does not vanish identically as a function of z, this
is a contradiction. In fact, to prove this it will suffice to

apply:

If n(Q,z) satisfies the heat equation and

n(E(Q,t),0) =0

whenever g(Q) = 0
>
(*%) 30(£(a,t),0) 20
k
then
52 z
2 0__(£f(Q,t),Q) =0 whenever g(Q) = 0
Bxkazz

to all the partial derivatives of @ in turn. To prove (**),
differentiate the first relation with respect to §. We find

that if w , satisfies Jw,,99/89, ,(Q) = 0, then Q+ew is

tangent to the hypersurface g(Q) = 0, hence

&>
0 = n(f(Q+ew,t),Q+ew)

of

on ,z= k ) %
e{ ;A (F(,0),0) nten, + ] 220(F(0,8),0) 0
X,a,b azk anab ab agpagab ab

]

2
2 n__(Z(q,t),0)
—— z ——— ? ’ uw -
4mi a’b.azaazb ab



Therefore
2
LN (E - : .. 3D
seaey (£ (8)0) = B(R,8) - (146,,) mi;(m

with some factor @, for all Q near &, all small t. Now

differentiate the second relation in (**) with respect to t.

We find:
32n -+ afb
for all a, ) 3o oz (£(R,8),2)5=(2,t) = 0 whenever g(@) =0
b za zb t

If ¢g(Q,t) =0 when g(f2) = 0, we are done. If not, we find by

substitution that

of
) b = .
for all a, g(1+6ab)§§§;(g)°at (2,t) = 0 whenever g(Q) = 0,

loe-’

->
(*4%) (c(a)-35) = 0
where

= 29

c(a)b (1+6ab)aQ ().
ab

For some a, c(a) # 0 since g(f) = 0 is a smooth hypersurface.

But we saw that (***) did not occur, so thus completes the proof.

In the other direction, Beauville [P], Remark 7.7 proved*:

0

Proposition 2,3 (Beauville): N, has codimension 1 in Ag.

*
The result is stated only for g = 4; however the argument works
without any modification for all g.

13
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His proof also uses an elaboration of the techniques of Andreotti-
Mayer — in this case their technique for deriving "explicit"

equations for the N (It might be thought that this Proposition

k.
could be proven from general principles, but I don't see how,
without specific information, one could have excluded the possibilities

that some component of some Nk' k > 1, was not in the closure of

NO-Nl.)

We want now to consider the closure ﬁo of No in’ Kél),

and to give multiplicities to its components. To do this, we

would like to use the "universal family" of pairs (A,0),(G,D)
3(1)

—

over . However, even generically these pairs still have

an automorphism group of order 2, so a universal family need not

+=(1) < (1)
ks

exist. However, admits a "covering" Ua —_— ég such

that over Ua there are flat, proper families

Dy '© By

P

U
o

consisting of abelian varieties and rank 1 degenerations thereof,
and such that p is locally the universal deformation space of its
fibre (§S,Ds). Outside A n U , Eu will be smooth over U ; over
points of A n U, Ea jtself will still be smooth, but at the
double points of the fibres, p will look like the universal local

deformation space:



n

'
m[[zl'zl'zz"'"zg-l’tz’—'”'tg(g+1)/2”

u = CllEy ettt ity(gany 2l

On Ga, define the subsheaf of the tangent sheaf T l to be

the kernel:

*
0 '—»Tvert —-:»TEa —p TUU. .

Note that T
vert

is locally free of rank g (at double points of

15

. ” 1 ]
the fibres, T is spanned by zla/azl-zla/azl, 8/322, ,B/BZg).

vert

Using a local equation 6§ = 0 of Da' and interpreting sections of

T as derivations, define:

o .
ammt > O(Da)/o

D +—— D§/¢ (independent of §).

Let

Sing, .+ Du = gubscheme of Da where a is zero.

Thus is defined locally by g equations and has

Sing l Da
codimension .at most g. Set-theoretically:
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(2.4) p(Singmzt.Qa) = set of points whose fibres are of 3 types
l) fibre is (A,0), A abelian variety,
and © singular
2) fibre is (G,D) and D has a singularity
in G
3) fibre is (G,D) and the divisor

D = D.(G-G) on G-G is singular.

To see this at fibres of type (G,D), at points of G-G, expand §
in a power series in zl’zi'ZZ"’°’zg' t's: then the origin lies
in Sln%ertDa if and only if

8 € (zy,25, 232, (24,3 29), &),

i.e., if and only if § = 0 is singular in E[[zz,-~-,zg]]. The sets

) patch together into a subset NO of Aél). (We shall
.)

p(sing .. D,

see shortly that NO = ﬁo

Let us work out which (G,D) arise in cases (2) and (3). Let

G be the extension:

Then G-G = B and D.(G-G) is the theta divisor of B, called E

at the beginning of this section. Thus if 17: A ——> Ag-1 is
the natural projection, case (3) contributes ﬂ-l(No(ag_l)) to No.
As for case (2), if translation by b € B is used in glueing
together G, then a local equation of D at any point of G is of

the form

f(x,z) = Gp(x) + z-6p+b(x+b)
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Here &E(resp. 6P+b) are local functions on B near p (resp. P+b)
which define the non-zero section of 0 () near P (resp. P+b),
and 2z 4is a vertical coordinate on G in a local splitting

G = € x B. (We may use the analytic equation (1.13) if we want.)

Taking derivatives of £, we see that:

P, b € = and
<= either E has the same tangent plane
= *
at x =P, some 2z €L at P,P+b, or is singular at both pts.

f(x,z) = 0 is singqular

Looking at points (G,D) not already covered in case (3), this shows
that ﬁb contains the set of pairs (G,D) such that £ < B is

smooth and B ,E are tangent somewhere. If Z is smooth, let

b

YB: g —_— ]Pg-?‘

be the "Gauss map" associating tc each P € E, the tangent plane

*
P,E’ 0,B

if and only if YB(P) = YB(P+b)- Thus for any principally polarized

T as a point of IP(T ). Then E and E,, are tangent at P

-

abelian variety (B,E) with smooth £ we may define

c(B,E

locus of points x-y, where YB(x) = vg(y)

locus of points x such that E,Ex are

tangent somewhere.

Then in the description (2.4):

'fq'onA"=' iU

-1
¢ (B,E U‘,(S (N, for A ).
(E'D) ] 0 :Cfg-l]
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Next, the method of Andreotti-Mayer-Beauville extends to

rank 1 degenerations, to prove that ﬁb is a divisor. For
291

abelian varieties A, their technique is to map A to TP by

|20], i.e., explicitly by the theta functions

6 (z,0) = ]} ';\Zﬂit(nw)Q(n+u)+41rit(n+u).z

. 29-1
Call this g: A —>1IP .

29

They define a linear subspace LQ c Ir . of codimension g+l by

zeuwsu-§1=o

(2.9) 2
328 (0,2 -x, =0, 1

32.2
i

|A

'.l
|A
[Te]

and prove
(2.6) g ~“(Ly) = 8ing o,

hence

(r,0) € N > Lgr\ B(R) # &

0

<> Chow form of g(B) varieties at Pllicker

Coord of LQ

Now if Im 9" ——>», the limit of #(A) is g(G), where ¢ is

defined by the 29 "theta functions"

Qu(g(l),g(l)) + uzeu(z(l)+m,n(l)) 1

-1, 9g-1
=9
(1) . 1 (1) He 2 &
UQAZ +Tm9 )



19

(where, as above, G is a Gm-bundle over B, Q(l) = period matrix of

B, G is glued via w, z(l) is the coordinate on B, u the coordinate
on & ). The basic theta identity on which the proof of (2.6) is

based becomes

[B(x+y) +uw B(x+y+w)] » [O(x-y) +o Olx-y+uw)] =

(2.7)
2 W w, 1 :
) [911 (x)+u 911 (x+b) ] -Qu (y) +uw9‘J () - [911 (y-l-f) "W-ou ty- %’)} :

UE?g_l/Eg'l

The limit of LQ is the linear space

_ (1), . w o(1), . _
ZGu(o,Q )X+ 2 6,(z.2 ")y, =0

%0y 0 o) %0
(2.8) ) ;—Zﬁ(o,n )X + 2] ;—21‘- 7, 270)y, =0
2. '
1 1

wu(ﬂ,sz(l))-sz‘1 =0

(The last equation comes from the o0d derivative of (2.7) with respect
to wa/dw; these equations are not the exact analogs of the (2.9
because, in passing to the limit, we have renormalized the origin.)
Then it follows from (2.“7) exactly as in Andreotti-Mayer-Beauville
that
¢'1(LQ) = singularities of D in G plus singularities
( of D¢ (G-G) in G-G )

hence

(Chow form of g(G) 18) &= (G,D) ¢ N..
Zero at LQ

This proves that ﬁo is a divisor.
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On the other hand, it is clear that for all B, c(B,E)‘% B and
for generic B,E is smooth: hence Nb na = A . Thus NO must be

the closure ﬁo of Nj. Incidentally, this proves that c(B,Z) is

always a divisor in B. At the same time, we can now give
multiplicities to the components of F%. I think the Andreotti-
Mayer-Beauville eguation gives artificially large multiplicities,

and want, instead, to assign multiplicities via the local description

of N, in U, as p(Sing D). Let ﬁa be the maximal open

0 vert o

set of points of ﬁo such that for all o

p: Sing _..D. — (N, nUa)

is finite over ﬁé. Because Nl has codimension at least 2, ﬁ6
is dense in ﬁo. Then over Né

dlm(SlngvertDa) = dim No
hence

# of equations defining Sing

codim(Slnq tDa) =(}+l vertDa

hence Singmmﬁ:Da is Cohen-Macauley. Therefore, over N

0’
p, (0. ) has a locally free resolution:
-Sing tP .
£
0 —> g, —> g, ——>p, (0. ) ——=0
“1 sy Sing IDa

and det f gives a local equation for ! nD_, and ths assigns mudbiphicities

h V.. 0

Next, we want to break ﬁb up into 2 pieces: the first

piece is
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if © is normalized to be symmetric about e,
(2.9) Oy = {0

n

then © has a singularity at a point of order 2

It is easy to see that:
. -1 ‘
enull G Lll\JED ZB(Q] : [6 (enull 595 i\-g—l)]
’

where we note that (assuming = is symmetric too) c(B,Z) contains

the "obvious" component:

[n
—

2B(E) = {2x|x €
because y(-x) = y(x), all x € E.
If a symmetric © has a singularities at a point x
not of order 2, it is also singular at -x. Thus ﬁo breaks up:

= =%
0 O, u11 * 2-Np

=]

where all multiplicities in the 222 piece are divisible by 2.

We can now state the main result of this paper:

Theorem (2.10): The divisor classes of ﬁb, Bnull' ﬁa are given by:

[Ny = (L - Lol

10 1,0= 2972(2%1)a - 229755

[ﬁsl = [(g+l)! + g_!. - 29-3(29+l)]l - [Lg%'.)_! - 229—6]5 .
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Here is a table for low degrees:

g [ﬁb] [enull] [NS] slope
2 5A- 58 52, - 38 0 —
3 18126 18\ - 26 0 —
4 841106 68\ - 86 8A-6 8

5 480\-606 264\ 326 108A-148 7.71
6  3,240A-4208 1,040A -1286 1,100A-1466 7.53
7 25,200A-3,3606 4,128)\-5128 10,536A-1,4246 7.40

Note that the figures imply ﬁ; =g for g = 2,3 as is well known.

We also see that the divisor class of N* 4is the same as that of

0

the Jacobian locus for g = 4, confirming Beauville's results. The
last column, "slope", refers to the ratio of the coefficient of A
to the coefficient of 6. As soon as this drops below the same

ratio for K, Aeis of general type:

Corollary (2.11). {IFDLx e (Nj]+ gl (g°-4g-17)A .
Proof: Combine 1.7 and 2.10.

Corollary (2.12). if g>17, ‘ég is of general type.

Proof: Combine 1.4 and 2.11.
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§3. Proof of the Theorem.

Now how are we going to prove the Theorem? The formula for
[enulll is immediate, because we know the modular form that cuts

out this divisor, viz.:

£(Q)

T, 6[510,9)
a,bez%/z

t(2a). (2b) even

where

g [a ](0 Q) = z éﬁit(ma)ﬂ(ma).‘,zﬂ.it(n*_a) .b
b’ 59 -

D

Each 9 is a modular form of weight 1/2 and there are 2g-l(zg+l)
"even" pairs a,b so f has weight 2g-2°(29+1), and this is the

coefficient of A. On the other hand, if Im Qll ~—> ®© , we see
1l

. _ . a, _ . . _1 a . N
that if a; =0, lim 9[b] = 1, while if a, = 5 Q[b] is divisible

by

hence it goes to zero. The equation of A is 2™y _ o, ang

there are 22972 weyen" pairs a,b with a, = % (take any
_ 1
---,ag,b , set al =3 and make b1 zero or one-half to

az,bz,

force a,b to be even). Thus f goes to zero like

(ézﬂ\is?} 1\j(22?_$) '

when Im Q3;;— =, hence the coefficient of §.
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It remains to prove the formula for [ﬁol. The value of the

coefficient of ) follows from:

Proposition 3.1: Let

X > 1

EQP

C

be a family of p.p.a.v. over a complete curve C such that every

theta divisor Dt has only a finite number of singularities and

the generic Dn is smooth. Let this family define the morphism

. C—s A.
¢ g

Then

* = (iﬂ%lli + g!)o*A + torsion.

(ONO .
(Note that such a family exists because codim N, > 2 and because
in Satake's compactification, the whole boundary has codim > 2).

The coefficient of §, on the other hand follows from:

Proposition 3.2: Let (A,0) be a p.p.a.v. Then the divisor class

of ¢(B,0) is given by:

c(B,0) = 19%2’—! . ®

together with Proposition 1.8.
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To prove 3.1, we use the exact sequence

T —_— ox(n)/mx —_—

X/C

used to define multiplicities for N It follows that Singve il

0° rt

is the scheme of zeroes of a section of

1

X/C(n) e

f )
Ox D

hence
1l

* =
. _ 1 1 5 Fom
But if E = p*(Qx/c), then the bundle Qx/c, being trivial on
each fibre of X over C, is isomorphic to p*E. Moreover, by

definition of ),

oA = c,(E).
Thus
PNy = b (o, (P*EBOL (D)), D)
= p, ((29+297 e (p*E)) .2)
= p, @) + p, @) . (B) .
Now on each fibre 0 is 0 and (og) = g!, so the second term is

gle*()A). To compute the first, we apply the Grothendieck-Riemann-

Roch theorem to ox(n). Note that

)
e

p*(ox(ﬂ))

Rip, (0, (@) = (0), i > 1.
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Thus

1 = chip, (0, (D))
¢ 1
x/C

P Ch O, (D) T (R /)

p*(en.p*(l-siézl)), mod torsion.

In codimension 1 on C, this says

g+l g
_ 1] ci(E) . 1|
0 =pulggrp) - Tz PeiGT)

or

p*(§g+l) = ig%lli‘CIQE) mod torsion.

This proves 3.1l.

To prove 3.2, it suffices to establish the numerical
equiﬁence of the 2 divisors. Namely, this will prove Theorem 2.10,
and then Theorem 2.10 will imply Prop. 3.2 as an equality of
divisor classes. Let C c A be any curve. We shall calculate

(C.c(B,0)). Consider the map

C x 0 —n s

m(x,y) =x+y .

Then m-l(@) is the locus of pairs (x,y) where x+y € 6 , i.e.,
X = y'-y, where x € C,y,y' € 0. The differential of m gives us
a map

dm: pyTy 8 0.3~ —> T
m "~
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whose zeroes are exactly the points (x,y) such that not only is

X = y'_y’ y’yl € 0, but also TYO= Ty"o, i.e-, X € 2- Now the

J
above dm can be thought of as a section of

p;Ql ® m* (N
(0)

e o.-
0 o, .5;-1

hence

_ * 1 _
(c.m) = cg-l(nge @ m*(0(e)) 0—9.,“-1';3)‘ ;

Let 0, = pt.x0, 6, = m-le be these divisor classes (mod numerical

1 2
equivalence) on Cx0. Then

1
- *
(c.m) = cg_l(pzne 8 006,)).6,.
Using
0 —> 0(-0)/0(-20) — gt ot — o 0
R * Alo@ > Yp = )
we see that
1y, _ (1_e-1 - 2 ...
c(fg) = (1-0) o = (140 +0° + ) g
Thus
_ a9-1 g-2 2 _..... g
But now
k .9~k k+l, ,9-k
(67°65 Dexo (n(e1 e ©777)
= ((c } ok*1y.g97ky

A

if + is Pontryagin product. By symmetry of ©, this is

= (c.(e**1 i 97Ky

(C. (k+1) (g-k) (g-1)10), .

Thus g-1
(c.D) = (C.0) (g-1)! k20(k+1)(g-h)
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