## On the Kodaira Dimension of the Siegel Modular Variety

### by David Mumford

Gothic H

Let  $A_g$  represent the quotient of Siegel's upper half-space  $A_g$  of rank g by the full integral symplectic group  $Sp(2g, \mathbb{Z})$ : this is known as Siegel's modular variety, or as the moduli space of g-dimensional principally polarized abelian varieties (called p.p.a.v. below).  $A_g$  has been shown to be a variety of general type (i.e., Kodaira dimension = dimension) for various g's: Freitag [F1] proved this first if  $24 \mid g$ ; Tai [T] proved this recently for all  $g \geq 9$ . On the other hand,  $A_g$  is known to be unirational for  $g \leq 5$ : Donagi [D] for g = 5, Clemens [C] for g = 4, classical for  $g \leq 3$ . The purpose of this paper is to refine Tai's result, showing:

# Theorem: $A_q$ is of general type if $g \ge 7$ .

Note that this leaves only the Kodaira dimension of  $\frac{A}{6}$  still to be determined. We shall use results of Freitag and Tai in a crucial way, but the idea of the proof is a direct adaption of the proof [H-M] by Harris and the author that  $\frac{M}{2}$  is of general type if  $g \geq 25$ , g odd. In that proof the divisor  $D_k$  of curves which are k-fold covers of  $\mathbb{P}^1$ ,  $k = \frac{g+1}{2}$ , is shown to be linearly equivalent to

nK-(ample divisor)-(effective divisor).

Here we prove the same thing except that the role of  $\mathbf{D}_k$  is taken by the components of  $N_{\text{O}},$  where

 $N_k = [locus of p.p.a.v. where dim(sing. locus of <math>\theta) \ge k.]$ 

These sets  $N_{\mathbf{k}}^{:}$  were introduced by Andreotti and Mayer [A-M], and studied recently by Beauville [B]. I want to thank Beauville very much for stimulating discussions which led me to this result. At the same time, I would like to raise the question which seems very interesting to me: is there an explicit polynomial in theta constants, or other modular forms constructed from theta series (with quadratic forms and pluri-harmonic coefficients) whose zeroes give No with suitable multiplicities? Although important steps are taken in this direction in Andreotti-Mayer [A-M] and Beauville [B], this is not answered because the "theta nulls"  $C(r,\mu,z)$  are not in general modular forms — they are theta series whose coefficients are not pluri-harmonic; esp. you cannot form a modular form out of the  $\partial^2 \theta / \partial u_k^2$ 's alone without using mixed derivatives  $\partial^2 \theta / \partial u_k \partial u_\ell$  too. Finally, I want to mention the related results of Stillman [S] (based on earlier ideas of Freitag [F2]) which prove A carries holomorphic (4g-6)-forms for  $g \ge 7$ . These results are directly based on the use of theta series.

§1. A partial compactification of the Siegel modular variety.

Satake's compactification  $\frac{A_g}{g}$  of  $\frac{A_g}{g}$  consists, set-theoretically, in the union of (g+1)-strata:

$$\mathbf{A}_{\mathbf{g}}^{\star} = \mathbf{A}_{\mathbf{g}} + \mathbf{A}_{\mathbf{g}-1} + \cdots + \mathbf{A}_{0} \cdot$$

The Kodaira dimension of  $A_g$  is based on pluri-canonical differentials on a desingularization  $A_g$  of  $A_g^*$ . However, Tai has shown that a pluri-canonical differential form with "no poles above  $A_g A_{g-1}$ ", is everywhere regular, so we do not have to study the full  $A_g$ . We will make this precise in a minute. The space we want to work with is a blow-up of  $A_g A_{g-1}$  first introduced by Igusa [I] and studied by the author [M] and by Namikawa [N]. To describe this space geometrically, let us define a rank 1 degeneration of a p.p.a.v. as follows: it is a pair  $(\overline{G},D)$  where  $\overline{G}$  is a complete g-dimensional variety and D is an ample divisor (i.e.,  $\overline{G}$  is to be the limit of a g-dimensional abelian variety and D the limit of its theta divisor).  $\overline{G}$  is constructed as follows:

- 1) let  $B^{g-1}$  be a (g-1)-dimensional p.p.a.v.,  $\Xi \subset B$  its theta divisor
- 2) let G be an algebraic group which is an extension of B by  $\mathbb{G}_{m}$ :  $0 \longrightarrow \mathbb{G}_{m} \longrightarrow G \longrightarrow B \longrightarrow 0.$
- 3) Considering G as a G<sub>m</sub>-bundle over B, let G be the associated IP<sup>1</sup>-bundle:

$$\mathbb{G} \subset \widetilde{\mathbb{G}}$$

$$\mathbb{F}^{1}$$

$$\mathbb{P}^{1}$$

Then  $\widetilde{G}$ -G equals  $\widehat{G}_0 \perp \!\!\! \perp \!\!\! \mid \widetilde{G}_{\infty}$ , the union of 2 sections of  $\widetilde{G}$  over B.

- 4) Then  $\overline{G}$  is to be the non-normal variety obtained by glueing  $\widetilde{G}_0$ ,  $\widetilde{G}_{\infty}$  with a translation by a point b  $\in$  B.
- 5) Note that on G

 $\widetilde{G}_0 - \widetilde{G}_{\infty} \equiv \pi^{-1}(E)$ , E algebraically equivalent to 0 on B  $\equiv \pi^{-1}(E - E_{b_1})$ , for a unique  $b_1 \in B$ .

Thus

$$\mathfrak{S}_0^{-1}(\mathfrak{S}_{\mathbf{b}_1}) \equiv \mathfrak{S}_{\infty} + \pi^{-1}(\mathfrak{S}).$$

Let  $\widetilde{L} = \mathfrak{O}_{\widetilde{G}}(\widetilde{G}_{\infty} + \pi^{-1}(\Xi))$ . Via the Leray spectral sequence for  $\pi$ , we see that  $h^0(\widetilde{L}) = 2$  and that  $\widetilde{G}_0 + \pi^{-1}(\Xi_{b_1})$ ,  $\widetilde{G}_{\infty} + \pi^{-1}(\Xi)$  span the linear system  $|\widetilde{L}|$ . Then  $|\widetilde{L}|_{\widetilde{G}_0} \cong \mathfrak{O}_{B}(\Xi)$  and  $\widetilde{L}|_{\widetilde{G}_{\infty}} \cong \mathfrak{O}_{B}(\Xi_{b_1})$ , so if b is chosen to be  $b_1$  (and only then) the line bundle  $\widetilde{L}$  can be descended to a line bundle L on  $\overline{G}$ . Choose such an L and let

D =the unique divisor in |L|.

We now define

(1.1)  $\bar{A}_g^{(1)} = \begin{cases} \text{coarse moduli space of p.p.a.v.}(A, \theta) \text{ of } \\ \text{dimension g and their rank 1 degenerations} \end{cases}$ 

As first shown by Igusa, this space exists, is a quasi-projective variety, and is essentially the blow-up of the open set  ${}^{\lambda}_{g} \coprod {}^{\lambda}_{g-1}$  in  ${}^{\lambda}_{g}$  along its boundary  ${}^{\lambda}_{g-1}$ .  $\overline{{}^{\lambda}_{g}}$  is the union of  ${}^{\lambda}_{g}$  and a divisor  ${}^{\lambda}$  parametrizing the rank 1 degenerations. Via the map

$$(\overline{G},D) \longleftrightarrow (B,\Xi)$$

the divisor  $\Delta$  is seen to be fibred:

(1.2) 
$$\delta \downarrow \qquad \text{fibres B/Aut(B,E)} .$$

Analytically, we may consider  $\overline{A}_g^{(1)}$  to represent precisely the degenerations of the abelian variety  $A_{\Omega(t)}$  with period matrix  $\Omega(t)$  when:

$$\lim_{n\to\infty}\Omega_{\text{ll}}\xrightarrow{-\infty} \qquad \qquad \qquad \} \quad \text{as } t\xrightarrow{-\infty}0 \quad .$$
 and  $\Omega_{\text{ij}}$ , i >1 or j >1, have finite limits

Then  $B = \frac{B}{\Omega}(1)$ , where  $\Omega^{(1)}$  is the lower right block of the limit

$$\Omega(0) = \begin{pmatrix} i \omega & \omega \\ \hline i \omega & \Omega^{(1)} \end{pmatrix}$$

and b is the image of the vector  $\vec{\omega} = (\Omega_{12}(0) \Omega_{13}(0), \dots, \Omega_{1g}(0))$  in  $B_{\Omega(1)}$ . To find D, we must translate  $\theta_{\Omega(t)} \subset A_{\Omega(t)}$  as  $t \longrightarrow 0$ .

Thus

$$\theta_{\Omega(t)} = \left\{ \text{zeroes of } \theta(z,\Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i t n \Omega(t) n + 2\pi i t n \cdot z} \right\}.$$

Translate  $\theta_{\Omega(t)}$  by b(t), the image of  $(\frac{\Omega_{11}(t)}{2}, 0, \dots, 0)$ :

$$T_{b(t)}(\Theta_{\Omega(t)}) = \left\{\text{zeroes of } \sum_{e} \pi_{i}(n_{1}^{2}-n_{1})\Omega_{11}(t) \cdot e^{\prod_{i} \sum_{i} n_{i}n_{i}\Omega_{i}(t) + 2\pi_{i}t} n_{z}\right\}.$$

Then  $e^{\pi i (n_1^2 - n_1)\Omega_n(t)} \longrightarrow 0$  unless  $n_1 = 0$  or 1, hence the limit is

where  $z^{(1)}=(z_2,\cdots,z_g)$  is the analytic coordinate on  $B_{\Omega}(1)$ . Interpreting  $e^{2\pi i z_1}$  as the algebraic coordinate in the fibre  $E_m$  of G, and E as the zeroes of  $O(z^{(1)},\Omega^{(1)})$ , this is immediately seen to be D if L is suitably defined.

Next, let  $\overline{\mathbb{A}}_g^{(1)}, 0$  be the open set in  $\overline{\mathbb{A}}_g^{(1)}$  parametrizing those pairs  $(A, \theta)$  or  $(\overline{G}, D)$  whose automorphism group is the minimal one,  $\{\pm 1\}$ . More precisely, the only non-trivial automorphism of A (or  $\overline{G}$ ) mapping  $\theta$  (resp. D) to itself is of the form  $x \longmapsto -x+a$ , some  $a^*$ . Then  $\overline{\mathbb{A}}_g^{(1)}, 0$  is locally isomorphic

We have not normalized  $\Theta$  and D to be symmetric. On the other hand, we have not fixed an origin either, so the pairs  $(A,\Theta)$  and  $(A,\Theta_C)$  are isomorphic by translation by c, and define the same point of  $\overline{A}_q^{(1)}$ .

to the universal deformation space of  $(A,\theta)$  (or  $(\overline{E},D)$ ), hence is a smooth of dimension g(g+1)/2. Analytically,  $A_g^0$  is the open subset of  $A_g$  of points which are images of  $\Omega \in \mathcal{M}_g$  whose stabilizer in  $Sp(2g,\mathbb{Z})$  are just (+1). Likewise, using the analytic description of  $\overline{A}_g^{(1)}$  in Ash et al [A-M-R-5],  $\overline{A}_g^{(1)}$ , 0 is the open subset of  $\overline{A}_g^{(1)}$  of points which are images of points in  $\overline{A}_g^{(1)}$  whose stabilizer in the normalizer of the first boundary component is just (+1). (Compare Tai [T],  $\S$ ). This set includes, in particular, those  $\overline{G}$  constructed from a  $(B, \overline{E}) \in \overline{A}_{g-1}^0$  and a point  $b \in B$  not of order 2. We are now in a position to state one of the main results of Tai's paper [T], in the form in which we need it:

Theorem 1.4 (Tai). If 
$$g \ge 5$$
, then

a) codim  $(\overline{\underline{A}}_g^{(1)} - \overline{\underline{A}}_g^{(1)}, 0) \ge 2$ 

b) 
$$\Gamma(\widetilde{\mathbb{A}}_{\mathbf{q}}, \emptyset(nK)) = \Gamma(\overline{\mathbb{A}}_{\mathbf{q}}^{(1)}, 0, \emptyset(nK)), \underline{\text{if }} n \geq 1.$$

This means that a pluri-canonical differential with no poles on  $\overline{\mathbb{A}}_g^{(1)}$ , 0 is everywhere regular on a full desingularization  $\widetilde{\mathbb{A}}_g$  of  $\mathbb{A}_g^*$ .

The second result we need is the calculation of  $\operatorname{Pic}(\mathbb{A}_g^0)$ . This follows from the theory of Matsushima, Borel, Wallach and others on the low cohomology groups of discrete subgroups of Lie groups. In particular, the results of Borel [Bo] imply that for any subgroup  $\Gamma \subset \operatorname{Sp}(2g,\mathbb{Z})$  of finite index:

 $H^*(\Gamma,\mathbb{Q}) \equiv \mathbb{Q}[C_2, C_6, C_{10}, \ldots] \ , \ \text{in degrees} \ \leq g-2 \ .$  In particular:

$$H^2(\underline{A}_g, \mathbb{Q}) \cong H^2(\mathrm{Sp}(2g, \mathbb{Z}), \mathbb{Q}) \cong \mathbb{Q} \quad \text{if } g \ge 4$$
.

In all

An immediate corollary\* is:

Theorem 1.5 (Borel et al):  $Pic(A_g^0) \otimes Q \cong Q.\lambda$ , if  $g \ge 4$ , where  $\lambda$  is the line bundle on  $A_g^0$  defined by the co-cycle  $det(C\Omega+D)$ .

Corollary 1.6: 
$$\operatorname{Pic}(\overline{A}_{g}^{(1)}, 0) \otimes \mathbb{Q} \cong \mathbb{Q}\lambda + \mathbb{Q}.\delta$$

where  $\delta$  is the divisor class of the boundary  $\Delta$ .

In terms of these generators, a standard result is:

Proposition 1.7. 
$$K_{\frac{1}{2}g}(1), 0 \equiv (g+1)\lambda - \delta$$
.

For a proof, see for instance Tai [T], §1 Another fairly standard result that we need is:

Proposition 1.8. Let (B,E) be a (g-1)-dimension p.p.a.v. whose automorphism group is (+1). Consider the 2-1 map

$$\phi: (B-B_2) \longrightarrow \overline{A}^{(1)}, 0$$

<u>defined by</u>  $\phi(b) = \underline{\text{the pair}} (\overline{G}, D) \underline{\text{constructed from }} (B, \Xi) \underline{\text{with}}$ 

plus 
$$H^2(\underline{A}_g^0, \underline{Q}) \cong H^2(\underline{A}_g, \underline{Q}) \cong \underline{Q}$$
.

<sup>\*</sup> If  $\frac{\widetilde{A}_g}{\underline{A}_g}$  is a smooth compactification of  $\underline{\underline{A}}_g^0$  , then use:

glueing via b. Then

$$\phi^* (\emptyset_{\overline{A}_{q}}^{(1)}, 0(\Delta)) \cong \emptyset_{B}^{(-2\Xi)}.$$

<u>Proof</u>: Let's construct over B the family of  $(\overline{G},D)$ 's made up with all possible b's. To do this, let P be the Poincaré bundle over B×B, trivial on e×B, B×e. Then P\* = P-(O-section) serves as the universal family of G's. Let  $\overline{P} \supset P$  be the associated  $\mathbb{P}^1$ -fibre bundle, and

$$\mathfrak{P} = \overline{\mathbb{P}}/(b_1,b_2,0) \sim (b_1,b_1+b_2,\infty) \,.$$

Then the projection on the first factor:

$$p_1: p \longrightarrow B$$

is the universal family of  $\overline{G}$ 's. The deformation theory of such a  $\overline{G}$  gives an exact sequence:

$$0 \longrightarrow H^{1}(\overline{G}, \underline{T}^{0}(\underline{\emptyset}_{\overline{G}})) \longrightarrow T^{1}(\overline{G}) \longrightarrow H^{0}(\operatorname{Sing} \overline{G}, \underline{T}^{1}(\underline{\emptyset}_{\overline{G}}))$$

$$H^{0}(B, N_{0} \otimes N_{\infty})$$

where  $N_0, N_\infty$  are the normal bundles to the locus of double points of  $\overline{G}$ . For one  $\overline{G}$ , made up starting from a line bundle L over B, completed at  $\infty$  and glued by translation by  $b \in B$ ,

$$N_0 \otimes N_\infty \cong L \otimes T_b^*(L^{-1})$$
.

Note that L must be algebraically equivalent to 0, hence  $T_b^*L^{-1} \cong L^{-1}$ , hence  $N_0 \otimes N_\infty \cong \mathfrak{O}_B$ . Thus  $H^0(B,N_0 \otimes N_\infty) \cong k$ . This one-dimensional vector space represents the normal bundle to  $\Delta$  in  $\overline{A}_g$  at the point  $(\overline{G},D)$ . Doing this now for the whole family  $\mathfrak{P} \longrightarrow B$ ,  $N_0 \otimes N_\infty$  is the line bundle on B×B given by

$$P \otimes T^*(P^{-1})$$
where  $T(x,y) = (x,x+y)$ .

Then the normal bundle to  $\Delta$ , pulled back to this family, is

which is the same as the restriction of  $P\otimes T^*P^{-1}$  to  $B\times e$ , i.e.,  $\delta * (P^{-1})$ , where  $\delta (x) = (x,x)$ . Since P, along the diagonal of  $B\times B$  is  $\emptyset (2E)$ , this proves the Proposition.

52. The divisor  $N_0$  and its class in  $Pic(\overline{A}_g^{(1)})$ .

Andreotti-Mayer [A-M] defined the important subsets  $N_k$  in  $\mathbf{A}_{\sigma}$ :

(2.1) 
$$N_k = \{(A, \Theta) \mid Sing \Theta \neq \emptyset \text{ and } dim(Sing \Theta) \geq k\}$$
.

Andreotti and Mayer prove by using the Heat equation for that  $N_0 \not\equiv A_g$ , but it is not easy to estimate the dimension of  $N_k$  in general. Nowever, we are interested only in codimension 1 and we must at least check that none of the  $N_k$ ,  $k \geq 1$ , have codimension 1 components. This follows by an elaboration of

Andreotti-Mayer's arguments using the heat equation:

Lemma 2.2. The codimension of  $N_1$  (hence of  $N_2, N_3, \cdots$ ) in  $A_g$  is greater than 1.

Proof: We use the heat equation

$$(2\pi i) (1+\delta_{\alpha\beta}) \frac{\partial \Theta}{\partial \Omega_{\alpha\beta}} = \frac{\partial^2 \Theta}{\partial z_{\alpha} \partial z_{\beta}}$$
.

a matrix

If the lemma were false, we could find  $\overline{\Omega}$ , a smooth analytic hypersurface  $g(\Omega)=0$  defined in a neighborhood of  $\overline{\Omega}$  and containing  $\overline{\Omega}$ , and a vector-valued function

$$\hat{f}(\Omega,t) \in \mathbb{C}^g$$

defined in a neighborhood of  $\overline{\Omega}$  and for  $|\mathsf{t}|$  small, such that

We may assume that for each  $\Omega$ ,  $t \longmapsto \overrightarrow{f}(\Omega,t)$  is part of an algebraic curve  $C_{\Omega} \subset A_{\Omega}$ . Note that the lemma is obvious if g = 2 and if  $g \ge 3$ , then the codimension of the locus of non-simple abelian varieties is greater than 1. Therefore we can also assume that the abelian variety A is simple. It follows that the set of differences  $x-y,x,y \in C_{\overline{\Omega}}$  generates A, hence the set of differences  $x-y,x,y \notin C_{\Omega}$ , generates A for  $\Omega$  near  $\overline{\Omega}$ . Therefore, for no  $\Omega$  near  $\overline{\Omega}$  is there a vector  $\overrightarrow{a}$  such that

$$\frac{\partial}{\partial t}(\vec{a} \cdot \vec{f}) = (\vec{a} \cdot \frac{\partial \vec{f}}{\partial t}) = 0, \text{ all } t.$$

We prove by induction on d that:

(\*)<sub>d</sub> If 
$$|\alpha| = d$$
, then  $\left(\frac{\partial^{\alpha} \theta}{\partial z_{1}^{\alpha_{1}} \cdots \partial z_{g}^{\alpha_{g}}}\right)$  ( $f(\Omega,t), \Omega$ )  $\equiv 0$  whenever  $g(\Omega) = 0$ .

Since  $\theta(z,\overline{\Omega})$  does not vanish identically as a function of z, this is a contradiction. In fact, to prove this it will suffice to apply:

$$\text{If } \eta(\Omega,z) \text{ satisfies the heat equation and } \\ \eta(\vec{f}(\Omega,t),\Omega) \equiv 0 \\ \\ \left(**\right) \\ \frac{\partial \eta}{\partial z_k}(\vec{f}(\Omega,t),\Omega) \equiv 0 \\ \end{aligned} \right\} \text{ whenever } g(\Omega) = 0$$

then

$$\frac{\partial^{2} \eta}{\partial x_{k} \partial z_{k}} (\dot{f}(\Omega, t), \Omega) \equiv 0 \qquad \text{whenever } g(\Omega) = 0$$

to all the partial derivatives of  $\theta$  in turn. To prove (\*\*), differentiate the first relation with respect to  $\Omega$ . We find that if  $\omega_{\mathbf{k}l}$  satisfies  $\sum \omega_{\mathbf{k}l} \partial g/\partial \Omega_{\mathbf{k}l}(\Omega) = 0$ , then  $\Omega + \varepsilon \omega$  is tangent to the hypersurface  $g(\Omega) = 0$ , hence

$$0 = \eta(\hat{\mathbf{f}}(\Omega + \varepsilon \omega, t), \Omega + \varepsilon \omega)$$

$$= \varepsilon \left\{ \sum_{k,a,b} \frac{\partial \eta}{\partial z_{k}} (\hat{\mathbf{f}}(\Omega, t), \Omega) \cdot \frac{\partial f_{k}}{\partial \Omega_{ab}} \cdot \omega_{ab} + \sum_{a \leq b} \frac{\partial \eta}{\partial \Omega_{ab}} (\hat{\mathbf{f}}(\Omega, t), \Omega) \cdot \omega_{ab} \right\}$$

$$= \frac{\varepsilon}{4\pi i} \sum_{a,b} \frac{\partial^{2} \eta}{\partial z_{a} \partial z_{b}} (\hat{\mathbf{f}}(\Omega, t), \Omega) \cdot \omega_{ab}.$$

Therefore

$$\frac{\partial^2 \eta}{\partial z_a \partial z_b} (\mathring{f}(\Omega, t), \Omega) = \phi(\Omega, t) \cdot (1 + \delta_{ab}) \cdot \frac{\partial g}{\partial \Omega_{ab}} (\Omega)$$

with some factor  $\emptyset$ , for all  $\Omega$  near  $\overline{\Omega}$ , all small t. Now differentiate the second relation in (\*\*) with respect to t. We find:

for all a, 
$$\sum_{b} \frac{\partial^{2} \eta}{\partial z_{a} \partial z_{b}} \stackrel{+}{(f(\Omega, t), \Omega)} \cdot \frac{\partial f_{b}}{\partial t} (\Omega, t) \equiv 0 \quad \text{whenever } g(\Omega) = 0.$$

If  $\phi(\Omega,t) \equiv 0$  when  $g(\Omega) = 0$ , we are done. If not, we find by substitution that

for all a, 
$$\sum_{b} (1+\delta_{ab}) \frac{\partial g}{\partial \Omega_{ab}}(\Omega) \cdot \frac{\partial f_{b}}{\partial t}(\Omega,t) \equiv 0 \quad \text{whenever } g(\Omega) = 0,$$

i.e.,

$$(***) \qquad (\overset{\rightarrow}{c}(a) \cdot \frac{\partial f}{\partial t}) = 0$$

where

$$c(a)_b = (1+\delta_{ab})\frac{\partial g}{\partial \Omega_{ab}}(\Omega)$$
.

For some a,  $\vec{c}(a) \neq 0$  since  $g(\Omega) = 0$  is a smooth hypersurface. But we saw that (\*\*\*) did not occur, so thus completes the proof.

In the other direction, Beauville [8], Remark 7.7 proved\*:

Proposition 2.3 (Beauville): N<sub>0</sub> has codimension 1 in A<sub>q</sub>.

<sup>\*</sup>The result is stated only for g = 4; however the argument works without any modification for all g.

His proof also uses an elaboration of the techniques of Andreotti-Mayer — in this case their technique for deriving "explicit" equations for the  $N_k$ . (It might be thought that this Proposition could be proven from general principles, but I don't see how, without specific information, one could have excluded the possibilities that some component of some  $N_k$ , k > 1, was not in the closure of  $N_0 - N_1$ .)

We want now to consider the closure  $\overline{N}_0$  of  $N_0$  in  $\overline{A}_g^{(1)}$ , and to give multiplicities to its components. To do this, we would like to use the "universal family" of pairs (A,0),  $(\overline{G},D)$  over  $\overline{A}_g^{(1)}$ . However, even generically these pairs still have an automorphism group of order 2, so a universal family need not exist. However,  $\overline{A}_g^{(1)}$  admits a "covering"  $U_{\alpha} \longrightarrow \overline{A}_g^{(1)}$  such that over  $U_{\alpha}$  there are flat, proper families



consisting of abelian varieties and rank 1 degenerations thereof, and such that p is locally the universal deformation space of its fibre  $(\overline{G}_s, D_s)$ . Outside  $\Delta \cap U_{\alpha}$ ,  $\overline{G}_{\alpha}$  will be smooth over  $U_{\alpha}$ ; over points of  $\Delta \cap U_{\alpha}$ ,  $\overline{G}_{\alpha}$  itself will still be smooth, but at the double points of the fibres, p will look like the universal local deformation space:

$$\hat{\mathbb{O}}_{G_{\alpha}} \cong \mathbb{C}[[z_{1}, z_{1}', z_{2}, \cdots, z_{g-1}, t_{2}, \cdots, t_{g(g+1)/2}]]$$

$$\hat{\mathbb{O}}_{U_{\alpha}} \cong \mathbb{C}[[t_{1}, t_{2}, \cdots, t_{g(g+1)/2}]]$$

$$t_{1} = z_{1} \cdot z_{1}' .$$

On  $\overline{G}_{\alpha}$ , define the subsheaf of the tangent sheaf  $T_{\text{vert}}$  to be the kernel:

$$0 \longrightarrow T_{\text{vert}} \longrightarrow T_{\overline{G}_{\alpha}} \longrightarrow p^*T_{U_{\alpha}}.$$

Note that  $T_{\text{vert}}$  is locally free of rank g (at double points of the fibres,  $T_{\text{vert}}$  is spanned by  $z_1 \partial/\partial z_1 - z_1' \partial/\partial z_1'$ ,  $\partial/\partial z_2$ , ...,  $\partial/\partial z_g$ ). Using a local equation  $\delta = 0$  of  $D_{\alpha}$ , and interpreting sections of T as derivations, define:

$$T_{\text{vert}} \xrightarrow{\alpha} > \emptyset(D_{\alpha})/\emptyset$$
 $D \longmapsto D\delta/\delta$  (independent of  $\delta$ ).

Let

$$Sing_{vert} D_{\alpha} = subscheme of D_{\alpha}$$
 where  $\alpha$  is zero.

Thus  $Sing_{vert} D_{\alpha}$  is defined locally by g equations and has codimension at most g. Set-theoretically:

- (2.4)  $p(Sing_{vert} D_{\alpha}) = set of points whose fibres are of 3 types

  1) fibre is <math>(A, \theta)$ , A abelian variety,

  and  $\theta$  singular
  - 2) fibre is  $(\overline{G},D)$  and D has a singularity in G
  - 3) fibre is  $(\overline{G},D)$  and the divisor  $\overline{D} = D.(\overline{G}-G)$  on  $\overline{G}-G$  is singular.

To see this at fibres of type  $(\overline{G},D)$ , at points of  $\overline{G}$ -G, expand  $\delta$  in a power series in  $z_1,z_1',z_2,\cdots,z_g$ , t's: then the origin lies in Sing<sub>vert</sub>  $D_{\alpha}$  if and only if

$$\delta \in (z_1, z_1, z_1 z_j, (2 \le i, j \le g), t_i)$$
,

i.e., if and only if  $\delta=0$  is singular in  $\mathbb{C}[[z_2,\cdots,z_g]]$ . The sets  $p(\operatorname{Sing}_{\operatorname{vert}}D_{\alpha})$  patch together into a subset  $\overline{N}_0$  of  $\overline{A}_g^{(1)}$ . (We shall see shortly that  $\overline{N}_0=\overline{N}_0$ .)

Let us work out which  $(\overline{G},D)$  arise in cases (2) and (3). Let G be the extension:

$$0 \longrightarrow G_m \longrightarrow G \longrightarrow B \longrightarrow 0.$$

Then  $\overline{G}-G\cong B$  and  $D.(\overline{G}-G)$  is the theta divisor of B, called E at the beginning of this section. Thus if  $\pi:\Delta\longrightarrow A_{g-1}$  is the natural projection, case (3) contributes  $\pi^{-1}(N_0(A_{g-1}))$  to  $N_0$ . As for case (2), if translation by  $b\in B$  is used in glueing together  $\overline{G}$ , then a local equation of D at any point of G is of the form

$$f(x,z) = \delta_p(x) + z \cdot \delta_{p+b}(x+b)$$

Here  $\delta_P$  (resp.  $\delta_{P+b}$ ) are local functions on B near p (resp. P+b) which define the non-zero section of  $\mathfrak{O}_B(\Xi)$  near P (resp. P+b), and z is a vertical coordinate on G in a local splitting  $G \cong G_m \times B$ . (We may use the analytic equation (1.13) if we want.) Taking derivatives of f, we see that:

$$f(x,z) = 0$$
 is singular  $\Rightarrow$  P, P+b  $\in \Xi$  and either  $\Xi$  has the same tangent plane at  $x = P$ , some  $z \in \mathbb{C}^*$  at P,P+b, or is singular at both pts.

Looking at points  $(\overline{G},D)$  not already covered in case (3), this shows that  $\widehat{N}_0$  contains the set of pairs  $(\overline{G},D)$  such that  $E\subset B$  is smooth and  $E \not= B$  are tangent somewhere. If E is smooth, let

$$\gamma_{\rm R} \colon E \longrightarrow \mathbb{P}^{g-2}$$

be the "Gauss map" associating to each  $P \in E$ , the tangent plane  $T_{P,E}$ , as a point of  $IP(T_{O,B}^*)$ . Then E and  $E_b$  are tangent at P if and only if  $\gamma_B(P) = \gamma_B(P+b)$ . Thus for any principally polarized abelian variety (B,E) with smooth E we may define

$$c(B,E)$$
 = locus of points x-y, where  $\gamma_B(x) = \gamma_B(y)$   
= locus of points x such that  $E,E_x$  are  
tangent somewhere.

Then in the description (2.4):

$$\widetilde{N}_0 \cap \Delta \cong \left[ \bigcup_{(\overline{G},D)} c(B,\Xi) \right] \cup \left[ \delta^{-1}(N_0 \text{ for } A_{g-1}) \right].$$

Next, the method of Andreotti-Mayer-Beauville extends to rank 1 degenerations, to prove that  $\tilde{N}_0$  is a divisor. For abelian varieties A, their technique is to map A to  $\mathbb{P}^{2^g-1}$  by  $|2\theta|$ , i.e., explicitly by the theta functions

$$\Theta_{\mu}(z,\Omega) = \sum_{\mathbf{n} \in \mathbb{Z}^g} e^{2\pi i^{t}(\mathbf{n}+\mu)\Omega(\mathbf{n}+\mu)+4\pi i^{t}(\mathbf{n}+\mu)\cdot z}.$$

Call this  $\phi: A \longrightarrow \mathbb{P}^{2^{g}-1}$ .

They define a linear subspace  $L_{\Omega} \subset \mathbb{P}^{2^g-1}$  of codimension g+l by

(2.5) 
$$\frac{\partial^{2} \theta_{\mu}(0,\Omega) \cdot x_{\mu} = 0}{\partial^{2} e_{\mu}^{2}} (0,\Omega) \cdot x_{\mu} = 0, \quad 1 \leq i \leq g$$

and prove

(2.6) 
$$\phi^{-1}(L_{\Omega}) = \text{Sing } \Theta,$$

hence

$$(A,0) \in \mathbb{N}_0 \iff L_\Omega \cap \phi(A) \neq \phi$$
 
$$\iff \text{Chow form of } \phi(A) \text{ varieties at Plücker } Coord \text{ of } L_\Omega$$

Now if Im  $\Omega_{\{1\}} \longrightarrow \infty$ , the limit of  $\phi(A)$  is  $\phi(\overline{G})$ , where  $\phi$  is defined by the  $2^g$  "theta functions"

$$\theta_{\mu}(z^{(1)},\Omega^{(1)}) + u^{2}\theta_{\mu}(z^{(1)}+\omega,\Omega^{(1)}) \\ u\theta_{\mu}(z^{(1)} + \frac{1}{2}\omega,\Omega^{(1)})$$
  $\mu \in \frac{1}{2} \mathbb{Z}^{g-1}/\mathbb{Z}^{g-1}$ 

(where, as above, G is a  $\mathbf{G}_{m}$ -bundle over B,  $\Omega^{(1)}$  = period matrix of B,  $\overline{\mathbf{G}}$  is glued via  $\omega$ ,  $\mathbf{z}^{(1)}$  is the coordinate on B, u the coordinate on  $\mathbf{G}_{m}$ ). The basic theta identity on which the proof of (2.6) is based becomes

$$[\theta(\mathbf{x}+\mathbf{y}) + \mathbf{u}\mathbf{w}\theta(\mathbf{x}+\mathbf{y}+\mathbf{\omega})] \cdot [\theta(\mathbf{x}-\mathbf{y}) + \frac{\mathbf{u}}{\mathbf{w}}\theta(\mathbf{x}-\mathbf{y}+\mathbf{\omega})] =$$

$$[\theta_{\mu}(\mathbf{x}) + \mathbf{u}^{2}\theta_{\mu}(\mathbf{x}+\mathbf{b})] \cdot \theta_{\mu}(\mathbf{y}) + \mathbf{u}\mathbf{w}\theta_{\mu}(\mathbf{x}+\frac{\mathbf{\omega}}{2}) \cdot [\theta_{\mu}(\mathbf{y}+\frac{\mathbf{\omega}}{2}) + \frac{1}{\mathbf{w}^{2}}\theta_{\mu}(\mathbf{y}-\frac{\mathbf{\omega}}{2})]$$

$$\mathbf{u} \in \frac{1}{2}\mathbb{Z}^{g-1}/\mathbb{Z}^{g-1}$$

The limit of  $L_O$  is the linear space

(2.8) 
$$\sum \mathcal{C}_{\mu}(0,\Omega^{(1)}) \cdot x_{\mu} + 2\sum \mathcal{C}_{\mu}(\frac{\omega}{2},\Omega^{(1)}) \cdot y_{\mu} = 0$$

$$\sum \frac{\partial^{2} \mathcal{C}_{\mu}}{\partial z_{1}^{2}}(0,\Omega^{(1)}) \cdot x_{\mu} + 2\sum \frac{\partial^{2} \mathcal{C}_{\mu}}{\partial z_{1}^{2}}(\frac{\omega}{2},\Omega^{(1)}) \cdot y_{\mu} = 0$$

$$\sum \mathcal{C}_{\mu}(\frac{\omega}{2},\Omega^{(1)}) \cdot y_{\mu} = 0 .$$

(The last equation comes from the  $2^{\frac{nd}{d}}$  derivative of (2.7) with respect to  $w \partial/\partial w$ ; these equations are not the exact analogs of the (2.5) because, in passing to the limit, we have renormalized the origin.) Then it follows from (2.7) exactly as in Andreotti-Mayer-Beauville that

$$\emptyset^{-1}(L_{\Omega}) = \left(\begin{array}{c}
\text{singularities of D in G plus singularities} \\
\text{of } \overline{D} \cdot (\overline{G} - G) \text{ in } \overline{G} - G
\end{array}\right)$$

hence

This proves that  $\tilde{N}_0$  is a divisor.

On the other hand, it is clear that for all B,  $c(B,E) \not\equiv B$  and for generic B,E is smooth: hence  $\widetilde{N}_0 \cap \Delta \not\subseteq \Delta$ . Thus  $\widetilde{N}_0$  must be the closure  $\overline{N}_0$  of  $N_0$ . Incidentally, this proves that c(B,E) is always a divisor in B. At the same time, we can now give multiplicities to the components of  $\overline{N}_0$ . I think the Andreotti-Mayer-Beauville equation gives artificially large multiplicities, and want, instead, to assign multiplicities via the local description of  $\overline{N}_0$  in  $U_{\alpha}$  as  $p(\operatorname{Sing}_{\operatorname{vert}}D_{\alpha})$ . Let  $\overline{N}_0'$  be the maximal open set of points of  $\overline{N}_0$  such that for all  $\alpha$ 

p: 
$$Sing_{vert}D_{\alpha} \longrightarrow (\overline{N}_0 \cap U_{\alpha})$$

is <u>finite</u> over  $\overline{N}_0'$ . Because  $N_1$  has codimension at least 2,  $\overline{N}_0'$  is dense in  $\overline{N}_0$ . Then over  $\overline{N}_0'$ 

$$\dim(\operatorname{Sing}_{\operatorname{vert}}D_{\alpha}) = \dim N_0$$

hence

$$0 \longrightarrow \mathfrak{x}_{1} \xrightarrow{f} \mathfrak{x}_{0} \longrightarrow \mathfrak{p}_{\star}(\mathfrak{O}_{\operatorname{Sing}_{\operatorname{vert}^{D}_{\alpha}}}) \longrightarrow 0$$

and det f gives a local equation for  $\overline{N}_0$   $\cap D_\alpha$ , and this assigns multiplicities to  $\overline{N}_0$ . Next, we want to break  $\overline{N}_0$  up into 2 pieces: the first piece is

(2.9) 
$$\theta_{\text{null}} = \left\{ (A, \Theta) \middle| \begin{array}{c} \text{if } \Theta \text{ is normalized to be symmetric about e,} \\ \text{then } \Theta \text{ has a singularity at a point of order 2} \end{array} \right\}$$

It is easy to see that:

$$\theta_{\text{null}} \cap \Delta = \left[ \bigcup_{\text{all } \overline{G}(D)} 2_{B}(\overline{D}) \cup \left[ \delta^{-1}(\theta_{\text{null}} \text{ for } A_{g-1}) \right] \right]$$

where we note that (assuming E is symmetric too) c(B,E) contains the "obvious" component:

$$2_{\mathbf{B}}(\mathbf{E}) = \{2\mathbf{x} \mid \mathbf{x} \in \mathbf{E}\}$$

because  $\gamma(-x) = \gamma(x)$ , all  $x \in \Xi$ .

If a symmetric  $\Theta$  has a singularities at a point x not of order 2, it is also singular at -x. Thus  $\overline{N}_0$  breaks up:

$$\overline{N}_0 = \Theta_{\text{null}} + 2.\overline{N}_0^*$$

where all multiplicaties in the  $2^{\frac{nd}{n}}$  piece are divisible by 2. We can now state the main result of this paper:

Theorem (2.10): The divisor classes of  $\overline{N}_0$ ,  $\theta_{\text{null}}$ ,  $\overline{N}_0^*$  are given by:

$$\begin{split} & [\overline{\mathbb{N}}_0] = (\frac{(g+1)!}{2} + g!) \lambda - \frac{(g+1)!}{12} \delta \\ & [\theta_{\text{null}}] = 2^{g-2} (2^g+1) \lambda - 2^{2g-5} \cdot \delta \\ & [\overline{\mathbb{N}}_0^*] = \left[ \frac{(g+1)!}{4} + \frac{g!}{2} - 2^{g-3} (2^g+1) \right] \lambda - \left[ \frac{(g+1)!}{24} - 2^{2g-6} \right] \delta \quad . \end{split}$$

Here is a table for low degrees:

| g | [N <sub>0</sub> ]              | $[\theta_{	ext{null}}]$        | [N <sub>0</sub> *] | slope |
|---|--------------------------------|--------------------------------|--------------------|-------|
| 2 | $5\lambda - \frac{1}{2}\delta$ | $5\lambda - \frac{1}{2}\delta$ | 0                  |       |
| 3 | 18λ-2δ                         | 18λ - 2δ                       | 0                  | -     |
| 4 | 84 <del>\-1</del> 08           | 68λ - 8δ                       | 8λ-δ               | 8     |
| 5 | 480λ-60δ                       | 264λ -32δ                      | 108λ-14δ           | 7.71  |
| 6 | 3,240 <b>λ−4</b> 20 <i></i> \$ | 1,040λ -128δ                   | 1,100λ-146δ        | 7.53  |
| 7 | 25,200λ-3,360δ                 | 4,128λ-512δ                    | 10,536λ-1,424δ     | 7.40  |

Note that the figures imply  $\overline{N}_0^\star = \emptyset$  for g = 2,3 as is well known. We also see that the divisor class of  $\overline{N}_0^\star$  is the same as that of the Jacobian locus for g = 4, confirming Beauville's results. The last column, "slope", refers to the ratio of the coefficient of  $\lambda$  to the coefficient of  $\delta$ . As soon as this drops below the same ratio for K,  $A_g$  is of general type:

Corollary (2.11). 
$$\frac{(g+1)!}{12} K_{\overline{A}_g}(1) = [\overline{N}_0] + g! (g^2-4g-17) \lambda$$
.

Proof: Combine 1.7 and 2.10.

Corollary (2.12). If  $g \ge 7$ ,  $\frac{A}{mg}$  is of general type.

Proof: Combine 1.4 and 2.11.

### §3. Proof of the Theorem.

Now how are we going to prove the Theorem? The formula for  $[\theta_{
m null}]$  is immediate, because we know the modular form that cuts out this divisor, viz.:

$$f(\Omega) = \begin{cases} \frac{1}{a, b \in \frac{1}{2}\mathbb{Z}^{g}/\mathbb{Z}} & \theta \begin{bmatrix} a \\ b \end{bmatrix} (0, \Omega) \\ t(2a).(2b) & \text{even} \end{cases}$$

where

$$\Theta \begin{bmatrix} a \\ b \end{bmatrix} (0, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i^{t}(n+a)\Omega(n+a) + 2\pi i^{t}(n+a) \cdot b}$$

Each  $\theta$  is a modular form of weight 1/2 and there are  $2^{g-1}(2^g+1)$  "even" pairs a,b so f has weight  $2^{g-2} \cdot (2^g+1)$ , and this is the coefficient of  $\lambda$ . On the other hand, if  $\operatorname{Im} \Omega_{11} \longrightarrow \infty$ , we see that if  $a_1 = 0$ ,  $\lim \theta \begin{bmatrix} a \\ b \end{bmatrix} = 1$ , while if  $a_1 = \frac{1}{2}$ ,  $\theta \begin{bmatrix} a \\ b \end{bmatrix}$  is divisible by

hence it goes to zero. The equation of  $\Delta$  is  $e^{2\pi i\Omega_{11}}=0$ , and there are  $2^{2g-2}$  "even" pairs a,b with  $a_1=\frac{1}{2}$  (take any  $a_2,b_2,\cdots,a_g,b_g$ , set  $a_1=\frac{1}{2}$  and make  $b_1$  zero or one-half to force a,b to be even). Thus f goes to zero like

$$(e^{2\pi i\Omega_{11}})^{(2^{2g-5})}$$

when Im  $\Omega_{11} \longrightarrow \infty$ , hence the coefficient of  $\delta$ .

It remains to prove the formula for  $[\overline{N}_0]$ . The value of the coefficient of  $\lambda$  follows from:

Proposition 3.1: Let

$$\varepsilon \left( \begin{array}{c} X & \Rightarrow & \overline{A} \\ \downarrow & p & \end{array} \right)$$

be a family of p.p.a.v. over a complete curve C such that every theta divisor D<sub>t</sub> has only a finite number of singularities and the generic D<sub>n</sub> is smooth. Let this family define the morphism

$$\phi: C \longrightarrow A_{g}$$

Then

$$\phi^* N_0 \equiv (\frac{(g+1)!}{2} + g!) \phi^* \lambda + \text{torsion}.$$

(Note that such a family exists because codim  $N_1 \ge 2$  and because in Satake's compactification, the whole boundary has codim  $\ge 2$ ). The coefficient of  $\delta$ , on the other hand follows from:

Proposition 3.2: Let (A,0) be a p.p.a.v. Then the divisor class of c(B,0) is given by:

$$c(B,\theta) \equiv \frac{(g+2)!}{6} \cdot \theta$$

together with Proposition 1.8.

To prove 3.1, we use the exact sequence

$$T_{\chi/C} \longrightarrow \sigma_{\chi}(D)/\sigma_{\chi} \longrightarrow \sigma_{\text{Sing}_{\text{vert}}D} \otimes \sigma_{\chi}(D) \longrightarrow 0$$

used to define multiplicities for  $N_0$ . It follows that  $Sing_{vert}$  is the scheme of zeroes of a section of

hence

$$\varphi^* N_0 = p_* (c_g(\Omega_{X/C}^1(n)) \cdot n) .$$

But if  $\mathfrak{X}=p_*(\Omega^1_{\mathfrak{X}/C})$ , then the bundle  $\Omega^1_{\mathfrak{X}/C}$ , being trivial on each fibre of  $\mathfrak{X}$  over C, is isomorphic to  $p^*\mathfrak{X}$ . Moreover, by definition of  $\lambda$ ,

$$\varphi^*\lambda = c_1(\mathfrak{X}).$$

Thus

$$\phi^* N_0 = p_* (c_g (p^* E \otimes 0_{\mathcal{X}}(D)), D)$$

$$= p_* ((D^g + D^{g-1} \cdot c_1 (p^* E)), D)$$

$$= p_* (D^{g+1}) + p_* (D^g) \cdot c_1 (E) .$$

Now on each fibre  $\mathfrak D$  is  $\Theta$  and  $(\Theta^g)=g!$ , so the second term is  $g!\phi^*(\lambda)$ . To compute the first, we apply the Grothendieck-Riemann-Roch theorem to  $\mathfrak O_{\mathfrak X}(\mathfrak D)$ . Note that

$$p_*(\emptyset_{\mathfrak{X}}(\mathfrak{D})) \stackrel{\sim}{=} \emptyset_{\mathbb{C}}$$

$$R^{i}p_*(\emptyset_*(\mathfrak{D})) = (0), i \geq 1.$$

Thus

$$1 = \operatorname{ch}(p_{\chi}(\mathfrak{O}_{\chi}(\mathfrak{D})))$$

$$= p_{\chi}(\operatorname{ch}\mathfrak{O}_{\chi}(\mathfrak{D}) \cdot \operatorname{Td}(\Omega_{\chi/C}^{1}))$$

$$= p_{\chi}(e^{\mathfrak{D}} \cdot p^{\chi}(1 - \frac{c_{1}(\chi)}{2})), \text{ mod torsion.}$$

In codimension 1 on C, this says

$$0 = p_{\star} \left( \frac{\underline{n}^{g+1}}{(g+1)!} \right) - \frac{c_1(\underline{x})}{2} \cdot p_{\star} \left( \frac{\underline{n}^g}{\underline{g}!} \right)$$

or

$$p_*(\underline{n}^{g+1}) = \frac{(g+1)!}{2} c_1(\underline{\mathfrak{x}}) \mod \text{torsion}.$$

This proves 3.1.

To prove 3.2, it suffices to establish the numerical equilence of the 2 divisors. Namely, this will prove Theorem 2.10, and then Theorem 2.10 will imply Prop. 3.2 as an equality of divisor classes. Let  $C \subset A$  be any curve. We shall calculate  $(C.c(B,\theta))$ . Consider the map

$$C \times \Theta \xrightarrow{m} A$$

$$m(x,y) = x + y .$$

Then  $m^{-1}(\theta)$  is the locus of pairs (x,y) where  $x+y \in \theta$ , i.e., x = y'-y, where  $x \in C, y, y' \in \theta$ . The differential of m gives us a map

whose zeroes are exactly the points (x,y) such that not only is x = y'-y,  $y,y' \in \Theta$ , but also  $T_{y,\Theta} = T_{y',\Theta}$ , i.e.,  $x \in \mathbb{R}$ . Now the above dm can be thought of as a section of

$$p_2^* \Omega_{\Theta}^1 \otimes m^* (N_{\Theta,A}) \otimes \underline{\underline{\sigma}}_{m^{-1}(\Theta)}$$

hence

$$(C.D) = c_{g-1} \left( p_2^* \Omega_{\Theta}^1 \otimes m^* (\emptyset(\Theta)) \otimes \underline{\emptyset}_{m-1} \right).$$

Let  $\theta_1 = \text{pt.} \times \theta$ ,  $\theta_2 = \text{m}^{-1}\theta$  be these divisor classes (mod numerical equivalence) on  $C \times \theta$ . Then

$$(C.\mathbf{D}) = c_{g-1} \left( p_2^* \Omega_{\Theta}^1 \otimes \underline{\mathfrak{g}}(\theta_2) \right) \cdot \theta_2.$$

Using

$$0 \longrightarrow \emptyset(-\Theta)/\emptyset(-2\Theta) \longrightarrow \Omega_{\mathbf{A}}^{1}|_{\Theta} \longrightarrow \Omega_{\Theta}^{1} \longrightarrow 0,$$

we see that

$$c(\Omega_{\Theta}^{1}) = (1-\Theta)^{-1}|_{\Theta} = (1+\Theta+\Theta^{2}+\cdots)|_{\Theta}$$
.

Thus

$$(C.\underline{\mathfrak{D}}) = \theta_1^{g-1}.\theta_2 + \theta_1^{g-2}.\theta_2^2 + \cdots + \theta_2^g.$$

But now

$$(\theta_1^k \cdot \theta_2^{g-k})_{C \times \Theta} = (\mathbf{m}(\theta_1^{k+1}) \cdot \Theta^{g-k})_{A}$$
$$= ((C + \Theta^{k+1}) \cdot \Theta^{g-k})_{A}$$

if  $\div$  is Pontryagin product. By symmetry of  $\theta$ , this is

= 
$$(C.(\theta^{k+1} + \theta^{g-k}))_A$$
  
=  $(C.(k+1)(g-k)(g-1)!\theta)_A$ 

Thus

$$(C.\underline{n}) = (C.\theta) (g-1)! \sum_{k=0}^{g-1} (k+1) (g-h)$$
  
=  $\frac{(g+2)!}{6} (C.\theta)$ . QED

#### References

- [A-M] Andreotti, A., and Mayer, A., On the period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Pisa, 21 (1971).
- [A-M-R-T] Ash, A., et al, Smooth compactification of locally symmetic varieties, Math-Sci Press, 53 Jordan Rd., Brookline, MA, 1975.
- [B] Beauville, A., Prym varieties and the Schottky problem, Inv. Math., 41 (1977), p. 149.
- [Bo] Borel, A., Stable real cohomology of arithmetic groups

  II, in Manifolds and Lie groups, Birkhauser-Boston,

  1981.
- [C] Clemens, H., Double solids, to appear.
- [D] Donagi, R., The unirationality of  $\lambda_5$ , to appear.
- [F1] Freitag, E., <u>Die Kodairadimension von Körpern</u>
  <u>automorpher Funktionen</u>, J. reine angew. Math., <u>296</u>
  (1977), p. 162.
- [F2] Freitag, E., <u>Der Körper der Siegelschen Modulfunktionen</u>, Abh. Math. Sem. Hamburge, 47 (1978).
- [H-M] Harris, J. and Mumford, D., On the Kodaira dimension of the moduli space of curves, to appear in Inv. Math.
- [I] Igusa, J.-I., A desingularization problem in the theory of Siegel modular functions, Math. Annalen, 168 (1967), p. 228.
- [M] Mumford, D., Analytic construction of degenerating abelian varieties, Comp. Math., 24 (1972), p. 239.
- [N] Namikawa, A new compactification of the Siegel space and degeneration of abelian varieties, Math. Ann., 221 (1976).
- [S] Stillman, M., Ph.D. Thesis, Harvard University, 1983.
- [T] Tai, Y.-S., On the Kodaira dimensions of the moduli space of abelian varieties, to appear Inv. Math.