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A NEW APPROACH TO COMPACTIFYING 
LOCALLY SYMMETRIC VARIETIES 

By DAVID MUMFORD 

SUPPOSE D IS a bounded symmetric domain and I' c Aut (D) is a 

discrete group of arithmetic type. Then Borel and Baily [2] have 
shown that DIP can be canonically embedded as a Zariski-open 
subset in a projective variety Dir. However, Igusa [6] and others 
have found that the singularities of D/F are extraordinarily 
complicated and this presents a significant obstacle to using 
algebraic geometry on D/P in order to derive information on 
automorphic forms on D, etc. Igusa [7] for D = E2  and 9N, 
(En  = Siegel's n x n upper half-space) and F commensurable with 
Sp(2n, Z), and Hirzebruch [4] for D = SJJ21  x Ei  and F commensurable 
with SL(2, R) (B = integers in a real quadratic field) have given 
explicit resolutions of Dir. Independently, Satake [9] and I 
working in collaboration with Y. Tai, M. Rapaport and A. Ash 
have attacked the general case, using closely related methods. The 
purpose of this paper is to give a very short outline of my approach. 
It builds in an essential way on the construction of -torus 
embeddings". a theory which has been published in the Springer 
Lecture Notes [8] (by G. Kempf, F. Knudsen, B. Saint-I)onat and 
myself; some of which has been worked out independently by 
M. Demazure [3] and M. Hochster [5]). We intend to publish full 
details of the present research as soon as possible in a sequel 
"Toroidal Embeddings II" to the Notes [8]. At the present time, 
however, we cannot claim to have written down complete proofs of 
our "Main Theorem" and although I definitely believe it is true and 
not difficult, it is more accurate to describe the ideas below only 
as a suggested approach to the problem of constructing a non-singular 
compactification of D/F. 

1. Let us look first at the familiar case: 
D =9n1  
r = SL(2, Z). 
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We know that Dir C via the elliptic modular function j and 

adding one point j 	co, we get the unique non-singular compac- 
tification : 

c D/1-' 

11 	11 
C c CP'. 

However, let me describe a way of glueing in the point at co that 

will suggest generalizations: 

STEP a. Factor the map 9J1, —*C as follows 

9311 	 C 

II 	 11 
{co 'Tin w >0} {11)<11<1} 

 

bEZ} c SL (2,Z), then 
01 

where 	e2"i  ' . If r0 	( - 

 

SI; 9Jt1/I1o. 

STEP b. Partially compactify A*, by adding the origin 

AI cA,-----{ *1<1 }. 

STEP C. Note that if 

El(c) - to Im w > C , 

then if c is large enough. S L(72, Z)-equivalence in Ei  reduces, 

in 97t1(c), to 1-'0-equivalence: 

w1,a)2 n1(c) 	1 
y E ro. 

wl -. y(c0 2), y ESL(2, Z) 

Now Tit 1(c) maps to A:, where 

4----- 1 ° < 1 C< b} 

b = e-2", 

and (*) says: 

(*) 

res 	: 	C is injective. 
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STEP d. This gives us the situation: 

C 

(Interior of closure of On in A1) = Ab  

It is easy to see that CP' is nothing but the union of C and 

Ab, glued on A:. 

2. Let us look next at how this procedure can be generalized to 

the n x n Siegel case : 

D =c1R„ = LI L2 n x n complex symmetric matrix, 

Im fl positive definite , 

F = Sp(2n; Z). 

Actually, it is usually more convenient to replace Sp(2n, Z) by a 

subgroup of finite index, or else to allow V-manifold-type singulari-

ties on DIP and DR', because of the elements of finite order in r 

which need not act freely. We will ignore this technicality. Of 

course, these V-manifold singularities can also be resolved: but that 

involves a totally different set of problems. 

STEP a': Factor 91/1. 	591„/F as follows: 

931. 	Z —0- Kg 

II 

z 
Z n x n complex symmetric matrix, Zij  0 
and—log I Zij  I positive definite 

where Z° 
 = e2"(110. If ro 0 

I " B
4

) 

then 

B e lin(Z) 
c and symmetric J 	' 
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STEP b': Note that is an open set in the algebraic torus group: 

o 	= z  Z 	n °symmetric 
zt; 

(the group law being componentwise multiplication). The generali-
zation of z in the first case is now given by the theory of equiva-
riant torus embeddings which we must now summarize 

Torus embedding theory : 

T = an algebraic torus of dimension n, i.e., z- (C*)", 

N = ni(T) a free abelian group of rank n, NR  = N R, 

Nc =NOC so that 

T = Ne/N (via exp : Nc 	T), 

M = Hom(N, Z) 24 [the group of characters X: T 

If a elf, write X": 	C* for the associated character 
write < x, a > for the pairing of MR  and NR. 

V a = closed convex rational polyhedral cone in NR  
(i.e., a = {x e NR I < x, ai > > 0, 1 < i<N} for some finite 
set of points ai  E M), which are "proper": 
a pos. dim. subspace of NR  

Xo  d'el Spec {C[..., 	aemnr), v = dual of a in MR. 

Then X. is a normal affine variety, T is an open subset of X. and 
the action of T on itself extends to an action of T on X0; moreover 
all such embeddings 1' c X arise like this. Xa  is non-singular if a is 
a simplicial cone generated by a subset of a basis of N. 

{act } = collection of such a's such that every face of a a. is 
some as, and every intersection ax  n as  is a common face, 

Xiao  U Xa., where X„. and X,, are glued along X. amrs  

(which is, in fact, an open subset of each). 
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Then X{a.}  is an irreducible separated normal scheme, locally of 

finite type over C, T is an open subset of X{„cd  and the action of T 
extends; again all such embeddings arise like this (Sumihiro [10]). 

Let N.31  = vector space of real n x n symmetric matrices, 

N„ = lattice of integral ones, 

C. = cone of positive semi-definite matrices. 

Then for all collections (crj, aG, c Not  being closed convex rational 

polyhedral proper cones, fitting together as above, we get 

42 
It can be shown that for all a: 

	

3 x 	U X and a neighborhood 
/3 face of a 	0S 

( S ) ' U of x in X„a  such that U c 

if and only if crc, c 

For this reason, we assume that ac, c C., all a, and define 

= Interior -of closure of Z`° in 40. 

Then 

c 

is the partial compactification of &)„ which we shall use. 

STEP c'. There seem to be several choices for an n-dimensional 

analog of J21(c) but we take : 

1V k e Zn, k 0 (0),} 
3:14,(6) = Ue Kt 

tic. (Im S1)• k > c. 

By Siegel-Minkowski reduction theory, it can be shown that if 

c is large enough, Sp(2n,Z)-equivalence in E. reduces, in 9:11,, (c) , 
not to F0-equivalence but to PI-equivalence; where : 

A B )1A e GL (n, Z), B e 111„ (Z) and 1 
1 '1 - 1 (0 to-1  A-1  B symmetric 

1 C
O
A B A, D E GL (n, Z)i 

n Sp(2n,Z). 

	

k 	D) 	B EM„  (Z) 

Let Zf, = image of 93.1.(c) in 
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Then r1/r. 	(n, Z) acts on the torus a., preserving the open 

subsets X and 	and we get the situation : 

c 

/(111/r0) C 

where the dotted arrow is injective. 

STEP d' : It is now clear how to finish up : we must assume that 

the collection {cr.} satisfies the condition y y e I1/P0, v., 3P such 

that you  = cro  (under the natural action of r1  F. on 	hence 

on N.,R). Then the action ofr1/f0  on a. extends to X{.2}. Define 

(..) = Interior of closure of 	in .2C0,0Z 

and consider 

a,c,/ 	ro) 

and glue ! 

Some comments : First of all, there are many things to check 

in the above procedure, but we will not try to justify them here. 

Secondly, this glueing alone will never give us something compact ; 

but what I do claim is that if you take just enough cf.'s, in the 

sense : 

(a)  

(b)  

Ucr„ = 	Z e N„,R 

Modulo rolo, the set 

Z positive semi-definite with null- } 
space defined over Q 

of oc,'s is finite, 
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then the resulting partial compactification of En/1" does cover the 
entire 0-dimensional boundary component: and moreover it -analy-
tically prolongs" to a compactification 971,4/F of nn/r in the following 
way : 

(a) let 

Z<'„, {oz} = Interior of closure ofn in X (c.), 

(b) require the existence of a map 77.: 

(3: 	C 

• 

• Tf 

Enir c Enir 
where IT is surjective and open and Kix is open and dense in Kg. 

Thirdly, the resulting space is not necessarily non-singular. How-
ever, if the oz's are chosen satisfying : 

(c) vac, az  is the set of positive linear combinations of matrices 
A1,..., Ak n Nn, which are part of a basis of the free abelian 
group N„, 

and if Sp(2n, Z) is replaced by a subgroup I' of finite index without 
elements of finite order, then we get a non-singular compactification 
of nn/r. Even without these two conditions, the singularities are 
quite mild, e.g., rational (and if the oz's are merely simplicial cones, 
the singularities are V-manifolds). Fourthly, an objection may be 
raised that there is still a huge amount of freedom in the choice of 
the oz's, leading to a whole family of non-singular compactifications 
rather than one best possible one. This in fact discouraged me for 
several years and made me think the theory was not useful (the 
simplest case I know where this non-uniqueness seems really basic 
is E4). But I believe now that this non-uniqueness is a fact of life 
of higher-dimensional birational geometry and that for many 
applications, this class of compactifications is just as usable as one 
canonical one would be. 



218 	 D. MUMFORD 

3. Finally, and with many more gaps, let me sketch how I believe 
this procedure extends to the general case : 

D = any bounded symmetric domain, 
F = an arithmetic subgroup of Aut(D). 

Assume for simplicity that F has no elements of finite order. 

STEP a". For every rational boundary component F, we get groups: 

Aut(D)° j N(F) j U(F) 

where 

  

 

N(F) = g e Aut(D°) gF = F} 

  

U(F) = center of unipotent radical of N(F) : 
this is just a real vector space under addition. 

Let F0  = F n U(F) : a lattice in U(F) and F1  = F n N(F). 

We factor D 	D/F via : 

D --÷ Diro  --÷ Dyi  —*- D/F. 

STEP b": To describe D relative to F suitably, embed D in D, 
its compact dual, so that the complexification Gc  of Aut(D)° acts 
on D. Moving D around only by U(F), we get an intermediate 
open set : 

D c U(F)c • D 

This gives us a description of D as a Siegel Domain of 3rd kind 
as follows : I claim 

U(F)c• D li(F)c  x t(F) 

for some complex vector bundle p .6f (F) –> F over F itself (the 
isomorphism being complex analytic and taking the action of ('(F)c  
on the left to translations in the 1st factor on the right), and that 
this isomorphism restricts to: 

u E C(F) 	h(x)} 

 

for some open convex cone C(F) c U(F) and real analytic map 
h :e(F) 	11(F). Let T(F) -- U(F)c/F0  : this is an algebraic 
torus group over C. We get 
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DIF 0  c (U(F)c •D)Iro  T(F) x e(F). 

We now choose a collection {a.) of rational polyhedral cones in 

C(F) and note that these define, by our general theory, an embedding 

T(F) c 

Define 

(D/r.) 40.)  Interior of closure of 1)/r0  in X 	x dr(F). {a.) 

STEP c". If y e C(F) and K c F is a compact set, let 

D(y, K) 	(u,x) IM u E C(F) h(x) 	y, p(x) E K 1. 

  

Then, I believe, for all ti, if c i8 large enough, the composition 

D(c,K)/F2 	 D/F 

is injective. 

STEP d". Assume now that the collection {oz}satisfies the conditions: 

(a) v y E ri/ro, and voci, ya. = some as; and modulo .this 

action, there are only finitely many cf.'s. 

(b) C(F) c Ua3  c C(F). 

It requires proof at this point that such {o.} exist — this seems quite 

likely. Define 

(D(c, loiro) to.)  = Interior of closure of D(c,K)/F0  in 

X sc2)  X e (F) 

and consider : 

D(c, 

D/F 

(D(c, K)/rdi.cili(r1/110) 

and glue ! The whole set-up is summarized in the figure overleaf. 



D(c /To  C__.4„, DIro  C 	>  T (F) x (F) 

D(e) C_.4. D 	 U(F)c • D 

	l

I 	 I 

 leap 	 lexp 

TORUS 
LEVEL (Dovro,.., 	 x.(r) 

V 
[CD(c)/roh..„)/(rdrOl RD/r014..)/(Nro)1 

D(c)11", 	D r, 

MODULI 
LEVEL 

 

	\ 	 

  

D/T 

DOMAIN 
LEVEL 
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Summary of spaces 

STEP e". Finally, if we let F range over the finite set of r-inequi-
valent rational boundary components, we must check that if suitably 
compatible collections {0.0 are chosen for each F, then these partial 
compactifications are compatible in the sense that they are all part 
of one big compact Hausdorff space D/T containing DR' as an open 
dense set (this DR' being uniquely determined by these requirements) 
and such that there are even unramified maps it in the diagram 

c (DIro) 

1r 

c Dff 



tThis definition is a slight modification of that used in [8] to allow 2 faces of the 
same polyhedra to be identified. Thus 	(48, 

is allowed, as well as the previously allowed : 
S, 

8, (bottom) 

84  (top) 
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The compatibility of the {aJ's can be expressed as follows : 

Say F1, F2  c D are 2 rational boundary components and F1  c F2. 

Then 
U(F1) U(F2) and C(F2) 7.1 face of C(F2). 

Then we require that the set of cones a5(2)  c C(F2) be exactly 
the set a ci")  n C(F 2). 

4. In order to express more clearly what our compactification 
depends on, and to relate it to the theory of toroidal embeddings 
([8], Ch. II), it is convenient to introduce the following interesting 
abstract cone : 

= (1 I  C(F))/I' =  I I  (c(F)Ir n N(F)) 
rat. boundary r-equiv. classes 
Comp. F 	of rat. F 

where y E I' acts on[ 	IC(F) by the natural maps C(F) 	C(yF) 
F 

for all F. To express the structure that E has, we use the definition. 

DEFINITION. A 'conical polyhedral complex's is a topological space 
X, plus a finite stratification {SO of X, (if., a partition of X into 
disjoint locally closed pieces S,, such that each g: is a union of various 
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Ss's), plus for each a a finite-dimensional vector-space V. of real-

valued continuous functions on 8„ such that : 

(a) if n. — dim V. and f t , 	, 	is a basis of V., then 

(f,) : 	 is a homeomorphism of S,, with an open 

convex polyhedral cone C. c R", 

(b) (fi) -' extends to a continuous surjective map 

(fi)-' 

mapping the open faces Cr of cf. (= closed faces less 

their own faces) homeomorphic,olly to the strata Ss  in §„ 

and inducing isomorphisms 

	

res co)  (lin. fens. on Rn2) 	)  V0. 

Now for each compatible set of decompositions {a„, F}, E becomes 
a conical polyhedral complex : just take the 8.'s to be the images 
of the sets (a,"„--faces of a2, 5.). In particular, this makes E into a 
topological space with piecewise-linear structure; these structures 
are easily seen to be independent of the choice of {a„,F}'s. Note that 
conversely, the structure (S., Vci) of conical polyhedral complex on 
E determines the fa.,Frs: they are just the closures of the connected 

.1 
components of the inverse images in the various C(F)'s of the strata 
S.. We shall call the structures {S„, V.} on E that arise from choices 
of fa.,Fls, admissible conical polyhedral subdivisions of E. 

Moreover z has even more structure : it contains the abstract 
"lattice" 

Ez = (1-1C (F) n 
F 

(here regard C(F)c U(F)c Attt (D)°, so that C(F) n I' makes sense), 
which plays the role of the set of orders of approach to co in DIP. 

In fact, let 

R. S. (D/P)= set of analytic maps p: A* -÷ Dif 
without essential singularity at 0 E A I • 

(R. S. is short for "Riemann surface" as used by Zariski in higher-
dimensional birational geometry). We get a natural surjective map: 
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ord : R. S. (DT) Ez  

by the procedure: lift p  to H 	D, H = {z1Im z > 0), 
such that 

'qi(z)mod r = p(e2'iz) 

hence for some yo  E : 

+ 1) = YAz), 
	V z e H. 

Then yo  can be shown to lie in C(F) for some F, hence it determines 
an element of Ez. 

We can now state the main result we hope to prove : 

MAIN THEOREM (?). Let D be a bounded symmetric domain, 
c Aut D° an arithmetic group without elements of finite order, 

and E the piecewise-linear topological space defined by D and 1' 
as above. Then there is a map 

  

toroidal embeddings 
Dircmr,  where 
DIP is a compact 
algebraic space 

Admissible conical 
polyhedral subdivisions 

.} of E 

 

  

   

such that if E(Dir) is the conical polyhedral complex associated by the 
theory in [8] to this toroidal embeddingt , there is a unique isomorphiSm 

making the diagram 

R. S. (D/r) 

o'6" 

  

   

 

E(D11') 

tin general, D/r c D II' may be a toroidal embedding with self-intersection, 
however, it is without twisting in the sense that for all strata T, the branches of 

— D/r through T are not permuted by going around loops in T. This makes it 
possible to associate a complex of the type defined above to this embedding by a 
generalization of the procedure in ([8], Ch. II). 

• 
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commute. The map is a functor in the sense that if (subd)1  is finer 
than (subd)2, then (D/P)('> dominates (DIr)(2). An integrality condi-
tion on the subdivision {S,,, V} characterizes which DIr's are non-
singular (see p. 11 above). 

I also expect that certain convexity properties of the subdivision 
imply Mr projective. 
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