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Introduction

First of all, let me fix my terminology and set-up. I will
always be working over an algebraically closed ground field k. We

will be concerned almost entirely with projective varieties over Xk

(although many of our results generalize immediately to arbitrary
projective schemes). By a projective variety, I will understand

a topological space X all of whose points are closed, plus a sheaf
GX of k-valued functions on X isomorphic to some subvariety of P
for some n., By a subvariety of EJl, I will mean the subset

~

X c Ep(k) defined by some homogeneous prime ideal %a c k[Xo,' X ),

’'n
with its Zariski-topology and with the sheaf GX of functions from X
to k induced locally by polynomials in the affine coordinates. Note
that our varieties have only k-rational points — no generic points.
In this, we depart slightly from the language of schemes., Note too
that a projective variety can be isomorphic to many different
subvarieties of . An isomorphism of X with a subvariety of yi

will be called an immersion of X in EP,

Let me begin with an elementary but somewhat startling result:

Definition: For all 4, the d-ple immersion of P is the morphism:

s PP —a D, N=1{(g4q)-1

d

given by:
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of0) o)
Bd(ao"“’an) = (a PIPY - )
(o) (N) '
where a‘'~/,...,a runs through the (n+l)-tuples a = (ao,---,an),
Buch that ai > 0, mi = d, and
n o
aa = -rT aii )
i=0

Theorem 1: Let X C P be a subvariety, and let dO be the degree of X.
For all 4 > do’ consider the new projective embedding:

X c B d >,

Then the subvariety of Ep so obtained is an intersection of quadrics.*

Proof: Let r = dim X. Por all linear spaces L of dimension
n-r-2, disjoint from X, let HL be the join of X and L, i.e., the
locus of lines joining X and L. HL is a hypersurface of degree ¢ do.

Then it is easy to see that

x= ) H.

LOX=g
In fact, if x € P'-X, let

o - fx) — Pt

When we talk about an r-dimensional subvariety X of B being an
intersection of quadrics, we never mean an intersection of only
n-r quadrics (called usually a "complete intersection”). We just
mean that there is a large set of quadrics Qa, o € S, such that

X = r\Qa. Of course, S can be assumed finite,
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be projection with center x. Then n{X) is an r-dimensional subvariety
of Ep-l so there ekists a linear subspace M C Ep-l A1gjoint ffom
n(X) of dimension (n-1)-r-1. Choose L such that (L) = M. Then
x € H .
Thus X is an intersection of hypersurfaces of degree < do.

Therefore, for all 4 2Ado, X 1is the intersection of those hypersurfaces

of degree d that contain it. But by definition of 841 if Hl c
is a hypersurface of degree d, there is a hyperplane H2 c IPN
such that

H) = ag(n,).

Therefore, there is a linear space K c ®" such that X = sal(K), or

sd(X) =K N sd(np).

To prove the theorem, it remains to check that ad(ngi) is an

intersection of quadrics. This follows from the remark:

For all bo,uo»,bN,

*
(*) There exists-a ,-++,a b,b = b b, whenever
o n 175 x4
L) 0 () ) ()
such that b, = a ald) 4 old) o g\ e

We leave this to the reader.
QED
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I want to make 2 remarks. Suppose by the rank r of quadric
we mean the rank of the corresponding symmetric matrix. Then the
proof of this theorem shows that X is actually an intersection of

quadrics of rank ¢ 4., Suppose we make the definition:

Definition: A subvariety X < " i ideal-theoretically an

intersection of hypersurfaces H --.,Hm if gset-theoretically:

l’

X = Hl N sea [ Hm

and moreover, every X € X has an affine open neighborhood U c "
such that the ideal I(X) of X N U € U is generated by the affine

equations f ,u-,fn of H,,-++,H ,

1 1 n

Lemma: If X is non-gsingular, then X is ideal-theoretically the

intersections of H -u,Hn 1f and only if

1’
n

1) x = 4,
. 1
1=1

2) for all x € X,

n
T = M T
x,X =1 XMy

(the intersection being taken in T, pn here T
}
means Zariski tangent space).

We leave the proof to the reader. Using this, we can then prove a
variant of Theorem 1 to the effect that if X is non-singular, then

sd(x) ig ideal~theoretically an intersection of quadrics.
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81. The cohomological method.

In setting up the concepts of linear systems and ampleness and
in the construction of projective embeddings, we have to make a
choice between > equivalent formulations — that of divisor classes,
of line bundles, or of invertible sheaves. It is well known that
on any variety X, the group of (Cartier) divisors mod linear
equivalence, the group of iine bundles and the group of invertible
sheaves are all canonically isomorphic. For our purposes, it 1is most

convenient to use the sheaves:

Definition: An invertible sheaf L on X is a sheaf of GX-modules,

locally isomorphic to GX itself.

Two such sheaves Ll,L2 can be tensored to form a 3rd L1®L2; GX

itself is an invertible sheaf forming a unit for this multiplication;

-1 1

and for any L, L_l = Hom(L,OX) is an inverse since L@®L =L 8L 6

X"
The s~t of all invertible sheaves, mod isomorphisms, thus forms an
abelian group, called Pic(X);

T(L) or H°(L) will be the vector space of global sections of L.

If s € T(L), and x € X, then via an isomorphism L|ﬁ =6 in some

XlU

neighberhood U of x, we can find a value s{x); and the conditions

s(x) = 0 or s(x) # O are independent of this local isomorphism,
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Definition: The base points of I'(L) are the points x € X such that

for all s € T(L), a(x) = oO.

If I'(L) is base point free, L defines a canonical morphism into
projective space. Let IP (T'(L)) be the projective Qpace of hyperplanes

in (). Then define
4t X ——> @ (T(L))

by AL(x) = {8 € Y(L)|s(x) = 0}.

This is easily checked to be a morphism. More explicitly, let

8,8 -,8, be a basis of T(L). Define:

l,.o

dL: X —> P

by ﬁL(x) = pt. with homog, coord, (so(x),sl(x),'°',sn(x))

Definition: L is very ample if T(L) is base point free and éL is
an immersion (= an isomorphism of X with ﬁL(X)). L 18 ample if L

is very ample for some n > 1.

Write IP for I (T(L)) and suppose L is very ample. Then the

vector space I'(L) is canonically isomorphic to the space of homogeneous

coordinate functions on the projective space P, i.,e,

M) 2 (R 85, (1)).
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symmetric power of T'(L), which we write skr( ), is

And the kth
canonically isomorphic to the space of homogeneous polynomials of

degree k in the homogeneous coordinates on E’,-l e.,

s®r(r) = N(m 6 %))

Thus the vector space of homogeneous polynomials of degree k that

vanish on ﬁL(X) is nothing but the kernel of the canonical map:

s¥r(L) ——s (LX),

A strengthening of the assertion tnat ﬁL(X) is an intersection of

quadrics 18 that its homogeneous ideal is generated by quadrics,

This is the same as asking whether the canonical map:
’

k-2

s r{L) ® Ker[_s21‘(L)—_+ r‘(l._’)] —_— Ker[SkI‘(L) e r(Lk)]_

is surjective for all k > 2
Our basic definition is this:

be coherent sheaves on X, Define

Definition: Let J,Q
GK(3,Q), B (¥F,0) as the xernel and cokernel of the canonical map a

0 —» Q(3,q) —» I(3)8T(g) —=> T(38g) —> & (3,56) —> O.

Thus if L is a very ample invertible sheaf, & (L,L) is the space

(a) of alternating elements of I'(L)®T(L), and (b) of the quadratic

relations holding on éL(X).

—
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Definition: Let L be an ample sheaf on X, Then L is normally

generated if

r)®* )

is surjective, all k > 1.

—

This is clearly equivalent to the condition _S(1%,17) = (0),
i, > 1. Note that if L is normally generated then L is necessarily

very ample too! In fact, consider the 2 morphisms:

_, HT(L"))

The n-ple embedding of the projective space P(V) of hyperplanes for

any vector space V is canonically a map

st P(V) —> P (s},

Moreover, via the surjection

s"I(L) ——— T(L"),

we can identify E(F(Ln)) canonically with a linear subspace of

P (L)), Putting this together, we get a diagram:
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P (T(L

Q
JP(S r(L))

/
P

It i3 easy to check that this commutes, Now for large'n, " s very
ample, hence g n is an immersion, so it follows from the diagram that

éL is an immersion too, i.e., L is very ample,

Definition: Let L be a normally generated invertible sheaf. Then L

is normally presentad if one of the 4 equivalent conditions holds:

(A) Ker[s°T(L)—>T(L2)] @ T(L*%) — Ker[s¥r(L)—sT(L¥)]

is surjective, all %k > 2

(B) & [R(r,1) @ N(1)*?) — xer[I(z)®* —— 1))
1<i<ign
priz;
is surjective, all k > 2.

fafi 4
The above homomorphism maps an element a®b in the (i,_j)th factor

to the element of I‘(L)®k whose ith and jth components are

determined by a, and the rest by b.

(¢) rtly e &(r,1) & r(rI"t) —— & (1t,19)

is surjecrtive, {if 41,j > 1,
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i-l)

s

Here, if Zai««bi € ®R(rL,L) € (L) ® T(L), and ¢ € T(L
4 € T(LJ—l), then we map c ® (Eai®bi) ® d to
Z(a;c) ® (p;a) € T(LY) @ K(r)),

\

(0) & (11,07) @ r(1¥) — Q (u},13%K)

is surjective if i,j,k > 1.

It is8 not so obvious that all these properties are equivalent!'
Thus to see (A)&=> (B), note that & (L,L) € I(L) ® T(L) contains

the alternating tensors, so the image of

® * [R(L,1) & T(L)*"?)
1<i<j<n

in T(L)k contains all the alternating tensors. So the image equals
Ker(r(L)k —_— T(Lk)) if and only if its image in Skf(L) equals

Ker(SkT(L)-——e>T(Lk)). But its image in SRT(L) is the same as the

image of the map in (A). wi)T

(c) = (D) follows immediately using normal generation and

. wWidns

(D)= (C) follows by factoring the map in (C) thus:
e

rittl) e Q (1,1) @ DY) —s ety eR(r, 1)) — R (11, L).

Next, to prove (C)==5 (B), factor T(L)k —_— T(Lk) as follows:

(L) ®'T(L)k_l onto P(Le) ® T(L)k_g ontg .. onté P(LR)

k-2

To prove (B), it is enough to show that O[] (L,L)®T(L) )] goes onto
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the xernel at each stage of this sequence. Thus it is enough if

141
)

I‘(L)i'l‘SG.(L,L) is mapped onto Ker[F(Li) ® I'(L) — T(L ]. This

last space is GK(Li,L), 80 this ontoness is part of (C).
Finally, to prove (B)== (¢), factor I‘(L)k —_ F(Lk) when kX = 1+],
as follows:

r(L)i+J on;:o I'(Li) ® r(LJ) . OD:O I‘(Li+j),

It follows from normal generation that we get a surjection:

Ker(Bea) onto 3 Ker(B) = @\(Li,LJ).

But Ker(B a) is generated by ©&[R(L,L) ® I‘(I_,)"L-"'J'2

]. The image of
this last space in T(Li)GT(LJ) is tne same as the image of

r(L*"!) eQ (1,1) ® T(z371), 8o (¢) follows.

This at least gives us a nice Qefinition to work with! It seems
easier to prove things about «8 £irst, and then to use these results

to obtain things about & . our first result is:

Theorem 2 (Generalized lemma of Castelnuévo): Suppose L is an awmple
invertible sheaf on a variety X such that T(L) has no base points.
Suppose ¢ is a coherent sheaf on X such that

(s e 1™d) = (0), 1> 1.

Then (a) Hi(3 ® LJ) = (6) 1f 4+ >0, 1> 1

i

and (p)4 (¥ L, L) = (0), i o.
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To motivate this, look at the case of Castelnuovo's original

(%),

iema: X = non-singular curve, Ul,'% divisors on X, & = Gx

L = &x(w). In classical language:

(Z(L) has no _ (j(ﬂ] is base poini)
ase points def free

(Hl(J ® L—l) _ (oj%:i <\|1 - U1 is non—speciai)

Translating the conclusion, we find:

(,8 (G,L) = (O) ) d <‘lU(+l ] _ the minimal sum'>

Al

ot + 1% |

e

Proof of Theorem 2: Use induction on dim(Supp &). If

dim(Supp &) = 0, then choose s € T(L) such that s(x) # O for all

x € Supp(d). Then

T(3) @ (sox) = s (s e 1Y)
k

is an isomorphism, so certainly

rs o r(tty — - (3 e
X

is surjective. Therefore _J (S)Ll) = (0). Also, all groups
H (3 ® anything), i > 1, vanish,
Now suppose we are given an &, and we have proven the theorem

for all ¥*'s with dim(Supp & ) < dim(Supp 3). I claim that there
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is an element s € T'(L) sufficiently "generic" so that for every x € X,

if we choose an isomorphism L|U =g near x, so that s can be

xly

considered as a function, then s is not a O-divisor in the stalk

3x of ¥, To see, recall that by the Noetherian decomposition

theorems, for any coherent &, there is a finite set of
irreducible subsets Z,,.-«,Z C Supp(¥) (including the components
of Supp(3), but possibly including some "embedded components' too)

such that the support of any element
a € I'(u,3)

is a union of some of the sets U N Zi. For each i, not all sections

s € T(L) vanish identically on Z,. Therefore there is an element

s € T(L) not identically zero on any z,. Ifac¢€ I'(u,3), then s must
be non-zero at at least one point x of Supp(a), hence

a ® s € T(Uu, 3@L) is not zero near x. Thus s has the required
property and the map § ——= & ® L, defined by « F—%;a ® g, is
injective.

It is more convénient to use the map & ® L1 —— 3, defined

-

by o +—>a®s. Let &° be the cokernel. Then for all i, we have

exact sequences:

b

i-1 i * & " 0.

(%), o—saer il _ % . 53&”

Note that dim{Supp &*) ¢ dim(Supp ¥). 1In fact, for all i, ®s is

an isomorphism on almost all of Zi’ hence Zi ¢ Supp(ﬁ*). Therefore
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every component of Supp(¥') is a proper closed subset of some
component of Supp(d). By (*)i, we get an exact sequence:

—i-1
) 1>1

wsent) —— wl(arer ) — wlti(seL

Il I
(o) (o)

hence Hi(G*QL-i) = (0), Thus the hypothesis of the theorem is valid
for 3*, 8o by our induction hypothesis, 36 ias the conclusfon. Going

back from ¥ to ¥, use the exact sequence:

mi(ae )y —sul(szer
st ' : rd
The 1 group is (0) by the hypothesis on &; the 3" group is (O)

by the theorem for . so0 the Qnd is (0). Replacing 3 by & ® L,

we continue in this way and prove by induction on 1i+j that
(s e 1I) = (0), i+3> o0, i3> 1.

As for the .£’s, look at the diagram of solid arrows:

-1y & r(1) — 1(3) @ T(L) — T(3*) ® (L) —>0

0 —> (8L
b A
- l - /’/-/'/////7/, ! J
0o —> r(ﬁ)'///// N Il‘(m) —> TI(¥eL) —— o0
i .b |
2 (sert L) ¢ ., $(3,1) ——> §(3%,1) — 0
| |

. 0
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It has exact rows since'H1(3®L_1) = Hl(E) = (0). an3d exact columns

by definition, Define the dotted arrow by o +——= 1&3, Then the
shaded triangle commutes, which proves that the map « is zerxo!
since 4 (3*,L) = (0), it follows that .& (¥F,L) = (0). As we may

‘replace § by & @® Ll, i > 1, the rest of (b) follows too.
QED

A useful remark is that a close examination of this proof shows

a slightly more precise result. Namely, that if n = dim(Supp F);

and if so,;-«,sh € (L) are sufficientiy “generic" elements, then
in fact T(3®L) is spanned by the images of T(3) ® (si‘k), for
k

0 < i < n.

Theorem 3: Let L be an ample invertible sheaf on an n-dimensional.

variety X. Suppose T{L) has no base points and

rt(rd) = (o), 1> 1, 33 1.
rhen §(1t,13) = (0)if 1 > n+l, j > 1.

In particular, if 1 > n+l, Li is ample with normal generation, hence

—

very ample.

Proof: Apply Theorem 2 to & = Ln+l. It follows that

A(L,L) = (0), if i > n+l. Explicitly T(z}) ® (1) —> r(zt*l)

is surjective if i > n+l. Composing these maps,
i) ® I.‘(L)j ———e>P(Li+J) is surjective if i > n+l. Therefore

(L >
i+j)

F(Li) ® T(LJ)-———9 (v is surjective too, if 1 > n+l,
QED
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preliminary result:

If O

6-lemma : > 31 >

31(31)'= (0) — then for all invertible sheaves L there is an exact

sequence:
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3
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>0 is an exact sequence

0 —>® (3,,1) —R(3,,L) —R(F,,L)—>L (F,L)—L4(3,,L)—4(3;,L).

Algo, even if T(32) ——e»T(ﬁB) is not surjective, the 19t 3 terms

form an exact sequence.

Proof:

0 5@ (31) e (5,00

|

|

- - sw -

Look at the diagram of solid arrows:

3
B:L)'“ﬂ\
\

N\ \

0 —> T(F,)er(r) — T(3,)®1(L) — T(FPr(L) —> o)

et e |

——

-~ NV

: 0 —> T(F L) — T(F0L) —

\ J
A | (3,,1)

!

o)

N

4

r(

7

~V

3_er)
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The rowa and columns are exact, by hypothesis, By the go-called
"gerpent" argument, you get an exact sequence indicated by the

dotted arrows. QED

We apply this to prove:
Theorem 4: Let L and M be ample invertible sheaves on a projective
variety X, let & be a coherent sheaf on X, and assume:
i) T(r), T(M) have no base points,
i) W N gerten™y = (o) if 1,13 1.
Then the natural map:
K (3,L) ® T(M) —— K(F &M, L

is sur jective.
[One can also check that the hypotheses imply that
H¥(deL em™) = (0) if x > 1, ik > 0, j+k > 0, i4j+k > -1,

Therefore the hypotheses are stable under the substitution

J—> FOL or ¥ ®M, However, we may as well stick to the
simplest case of the theorem, ]

Proof: As in Theorem 2, we use induction on dim(Supp 3).

If dim(Supp ) = 0, we get the diagram:
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1 1 O
R (3,1) ® T(m) 5 (38, L) = R(F,L)
I a
} !
T'(F)®T(L)®T (M) s, T( G )OT(L) ~ I(F) @ (L)
8
r(aer) irm) w(miw) I(3 e 1)

<N

where the isomorphisms # and Yy are obtained by choosing a section
s € I'(M) non-zero at all points of Supp(¥), hence an isomorphism
of M and QX in a neighborhood or Supp(#). B8 and vy induce an

isomorphism a. But in the map on the top row, if pe(R (3 ,L), then

pgs € R (Y.L )® (M) is taken to pé& & (3,L), so this map is sur-
jective. This proves, the theorem when dim(Supp 3 y=0.

In the general case, choose a good section s € I'(M) as in the

proof of Theorem 2 go as to obtain an exact sequence:

- R8s
0 —> FOMT > 3 B 50

with dim(Supp 3*) < dim(Supp ¥). We obtain exact sequences:
H1+J-l(3®L_l®M-J) -—-)Hlﬂ_l(&*m.'l@M"J) —_— H“J(:}@L'l@n-z'J"l).

The lSt and 3rd groups are O by hypothesis, so the 2nd is also. This
shows that ¥ satisfies the hypotheses of the theorem too. So by

x .
the induction hypothesis, & (¥ ,L) ® T(M) —> K (F @M, L) is

sur jective. Moreover, by Castelnuovo's lemma (Theorem 2), applied to
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-1 ~1
, )

5@ MY and L, S(FeuM L) = (0) and Hl(3®M = (0).
Applying the 6-lemma, we deduce that:

11y — R (3,1) —— R (F,L) — 0

0o —> R(3®M
is exact., Now consider the diagram of sBolid arrows:

O—)@/(3®M_1,L) ® T(M) —R(3,1)® T(M)—> R (F*,1)® I'(M)—>

l - ///// //// // "J/*

o —— R(2,n) > R (3eM, L) — R (3 M, L)

Tf you define the dotted arrow by al——=>a & s, it is8 clear that
the shaded triangle commutes, Therefore Im(a) < Im(B) and using

the surjectivity of <y, the surjectivity of 8 follows.
QED

To apply this Theorem, we need another result:

Proposition: Let & Dbe a coherent sheaf, and L, M invertible

sheaves on X. If
a) R(I,L) @ (M) —> K (3 @M, L) is surjective
b) _$(3,L) = (o),

then

c) K(a3M) ® I‘(L) —— R(3 ® L, M) is surjective.

Proof: Use the diagram:
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0 o
A Y

(1) 9./6{(3,»4) —L 5 K (L3, N

0o — R (L,3)8r (M) — T(L)®¥(3)®F(M) —-B-——» T(L®3) @ T'(M)

s
v v

0 —>Q(L, 3 ®M)——3T(L) ® N(38M) — > T(L &3 e )

By assumption, o and B are surjective, "Chasing" the diagram, one

sees quickly that ¥ is sur jective too.
QED

—_—

Theorem 5: Let L be an ample invertikle sheaf on an n-dimensional
variety X. Assume:

1) TI(L) is base point free,

1) wtdy = (o) 12 1,53 1.

Then it follows that: \

R (t,0d) e riy — R i, o)

is surjective, if i > n+2, j,k > 1. In particular, if 1 > n42,

Li is ample with normal presentation.

Proof: By Theorem 4,

i+l

& (1t,1) @ T(1) — & (1,1
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is surjective, if i > n+2, Tterating, we find that:
K (Li,L) e r(t))y — R (Li+j,L)

is surjective, if 1 > n+2, J > 1. Since & (Li,L) = (0), 1> n+2

—

apply the Proposition to prove that:

K (Li,LJ) ® I'(L) — K (L”l,LJ)

is surjective, if 1 > n+2, j > 1. Iterating again, we get the

required assertion.
QED
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82, The case of curves.

For the whole of this section, X will be assumed to be a
non-singular complete curve of genus g. We want to strengthen
the results of 81 in this case. We need some more concepts and
definitions. A divisor (Jl 18 a formal linear combination Z‘nixi
of points of X.*® For all divisors (Ul , 6(Ul) is the invertible
sheaf of functions f which are regular except at the xi's, and at

X have at most an n,-fold pole, 1f n, > 0, or must have at least

i

a.(-ni)—fold zero if n, < 0. A fact that we need is that if an

i S
invertible sheaf L has a section 8 with zeroes erectly at X0ttt X
of multiplicities Dyyeee,n, then L = &( (1), with (1 = En.x,. If
L is an invertible sheaf, L(Ul) stands for L @ &(U()., Q will he

the sheaf of regular differentials on X.

Theorem 6: Let L,M be invertible sheave- on X such that
deg L > 2g+1, deg M > 2g. Then .§ (L,M) = (0).

Proof: Let d = deg L. Ul 18 to be a positive divisor of

degree d-(g+l) which will be chosen later. Then L{- Ul is naturally
a subsheaf of L, and we get an exact sequence:

¥*

0 —> L(-U1) > L > L -0

where Supp L* = Supp Ul . The 1st requirement on U1 is that
Hl(L(-UI)) = (0). Assuming for the moment that (/{ has this

property, by the 6-lemma of 81, we get
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A (L(-U0),M) —— L (L,M) —— _&(L* M)

But it is well known that if K is an invertible sheaf on X with
deg K > 2g, T(K) has no base points. In particular, T(M) uas no
base points, and Supp(L*) is O-dimensional, So\by Castelnuovo's
lemma, £ (L*,M) = (0).

Next, apply the Riemann-Roch theorem to L(-61):

/.

aim HO(L(-01)) = deg L(~01) - (g=1) + @im H'(L(- (7))

= 2.

Thus T{L(-(1)) is a "pencil" and the pnd requirement on Ul is that
it 1s base point free., Finally we want to apply Castelnuovo's lemma

to deduce that _£ (L(-Ut),M) = (0). For this we need only that
Hh (M @ L(-00)™h) = wh(m @ LTH0D)) = (o).

This is the Brd requirement on Cﬂ Putting all this together, it
will follow that _X (L,M) = (0).

Can we find an U{ with these 3 properties? Since Ul consists
in d-(g+l) > g points all of which can be chosen arbitrarily, it is
well known that for a suiﬁaﬁle choice of Ul , 8(0U1) will be
isomorphic to any invertible sheaf K of degree d-(g+1). Now the
set of all invertible sheaves K of degree d-{(g+l) forms a projective
variety J, which .is exactly the Jacébian of X except that J does not

have any natural base point on it to serve as. the origin. It suffices
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to find a K such that

i) H(r®x™) = (o)

ii) for all x € X, dim H(L ® K'l(_x)) = 1

iii) Hl(M 2Ll e K) = (0).

Now if (i) is false, Qim Bo(L & K'l) > 2 by Riemann-Roch, hence

(ii) will be false for all x! Therefore it is enough to check (ii)

and (iii) for all x., But by Riemann-Roch,
1
(

dim HO(L®K-1(-X)) > 1 ¢=== dim Hl(L®K~ -x)) > ©

== dim H°(0®L'1@K(x)) > 0

LR 2 ] t
> tH yl’ ,yg_2 such tha

ae Lt e K(x) & @(zyi)

@ 3 yl’ ¢ & » ,yg_g SU.Ch that

K=Oe L~l(x - Eyi).

We have only g-l variable points here, so the locus of K’s not
satisfying (ii) has dimension at most g-l. Similarly if

deg M = e + 2g, we find:
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1 1

Mot e k) £ (0) e r(ae M T oL @K ¥ (0)

 d 3 yl,. o ,yk wher e
1 1
)

k:deg(ﬂ@M_ ® L ® K

such that

1 1

OeM - ®1L ® K~

~ 6
o(By,)

RS 3 yl,---,yk such that

1

K=0eM"™ ®L(-Iy ).

Again there are at most g-1 variable points here, so the locus of K’s
not satisfying (iii) has dimension at most g-1. Since dim J = g,
almost all K’s do satisfy (ii) and (iii). Thus an an with the

required properties exists. QED

Corollary: If L is an invertible sheaf of degree > 2g+l, then L is

ample with normal deneration.

If the argument in the above proof is traced through, it is not

hard to show that it proves the following:

3 8,18, € T(L)

3 t € T(M) such that

[k.s1 f T(M) +.k.s2 Oi{I‘(M) + T(L) & k.t]

—> T(L ® M)

is sur jective,



- 56 -

D, Mumford

Our argument 1is essentially the same as the classical argument used
to prove that if X is not hyperelliptic, then Q is normally generated
(See Hensel-Landsberg). We can paraphrase this argument in our
language as follows:

We begin as before with an exact sequence:

0 —— Q(~U1) > Q > ¥ —— 0

where we now assume that ({ is a positive cycle of degree g-2.
In order to apply the 6-lemma, it is not necessary that

Hl(ﬂ(—ﬁn)) = (0)., In fact, it is enough if:

1
(

i) Hl(O(-UT)) —— H (0) is an isomorphism.

This is the lSt requirement on (Ul . We then deduce as before that
A (a(-0y,0) — & (0,0) — £ (a%,0)

ig exact. Since [(Ql) has no base points, we know.that-g (Q*,Q) = (0)
by Castelnuovo's lemma, By the Riemann-Roch theorem, it follows as
before that T'(Q(-Ul)) is a pencil and our ond requirement is that it
is base point free. Unfortunately, we cannot apply Castelnuovo's
lemma to prove K (Q(-(1),0) = (0), since Hl(ﬂ ® O(-(ﬂ)_l) = Hl(G@T))
is never (0). We use instead a direct computation of dimensions to
prove 4 (Q(-0),0) = (0)! Let s,,8, be a basis of T(O(-01)). Look
at the map:
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2
T(0)s, ® T(N)a, = > T(O°(-0))
\\—wﬂ—/ "
dim = 2g . dim = 2g-1

(The dimension on the right is computed by the Riemann-Roch theorem. )
We want a to be surjective. But the kernel will be isomorphic to

the spaces of pairs w € T(Q) such that wl®s = ~w ® ., Since

1 2 2

8y and 8, have no common zeroes, this implies that o

zeroes '52 of 8

w
1’2
1 13 zero at the

i.e., w =7 ® g_where N € F(O(-?é)). Then &

2’ 1 2 2

ig8 necessarily -n@sl, so

Ker(a) = T(Q(-lz)).

Since 0(}2) S 0(~01), it follows that

dim Ker{a) = dim T(Q 0\0(-(ﬂ)-l)
= Aim T(&(0T))

= dim HYQ(=00)) = 1.

Therefore a is surjective, hence .4 (0,0) = (o).

Now let Q(-01) = K, K is a sheaf of degree g, and conversgely
every sheaf K of degree g such that dim I'(K) > 2 has the property
dim F(OSK-l) > 1 by Riemann~Roch, hence nex~t = 8(U1), some UT,
hence K £ Q(-U1), some Ul . Therefore we have proven:

Theorem 7: If X carries an invertible sheaf K of degree g such that

T(K) is a base point free pencil, then £ (0,0) = (0).
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The existence of such a K is not hard to show whenever X is not
hyperelliptic, but we omit this. The proof that (0,0i) = (0)
if i > 2, is even easier.

itleorem A for the vanishing of £ is definitely the best
possible unless further restrictions are placed on L and M. For
.example, if . = Q(P+Q), then although I is ample and I'(L) has no
base points, éL(P) = éL(Q), so L is not very ample. Since_L2 is
very ample, there must be sections s € T(Lg) such that s(P) = O,
s(Q) # 0, hence s ¢ Im(T(L) ® T(L)). Therefore 4 (L,L) # (0)!

We now go on to results about R for curves. I don't think,

unfortunately, that my results here are best possible, I shall prove:

Theorem 8: Let L,M,N be invertible sheaves on X such that

deg L > 3g+l, deg M, deg N > 2g9+2. Then

& (L,M) ® T(N) —— & (! ® N M)
is surjective.

From this we deduce immediately:

Corollary: Let L be an invertible sheaf on X such that deg L > 3g9+l.

Then L is normally presented,

Proof of the Theorem: We shall use the following lemma:

Lemma: For all invertible sheaves N on X such that deg N > 2942 and

F(N) has no base points, there is a decomposition:

= ®@ +00 @
N = N, N, x> 2
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where

(1) deg N, = g+, 1 <1< k-1

g+l < deg Nk < 2g9+1,

(2) T(Ni) has no base points.

(3) 1f 3, (resp. J°) is the varlety of invertible sheaves
of deqree = degree N, (resp. deg N, - deg Ne), then
for all open sets U, © Ty u* c 0%, we may assume

N1 € Ul
N, ® N;l € u*

Proof: If deg N < 2g+l, then let k = 1, N1 = N, Now suppose

deg N = e + (g+l), g+l < e ¢ 2g+l. Then k = 2 and we must decompose

—

— = = TJ
N NlGNe, deg Nl g+l, deg N2 e, Let J2 be the variety of

invertible sheaves of degree = e, Let Vi c Ji be the set of

invertible sheaves K such that Hl(K) = (0) and T(K) has no base

points. It is well known that V, is open and non-empty. Consider

i

the maps:

' -1
: ®
f Jl-————%»Jg, given by Nl —> N Nl

g: J1 —_— J¥, given by Nll————e>Ni ® N-l

If identity points are chosen arbitrarily on J J¥, then all these

12952

varieties are canonically the same, and are nothing but the jacobian

of X. Then in terms of the group law on the jacobian f becomes a map
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of the form x +——> a-x, and g is of the form x +—— 2x+b. Thus

both £ a ' g are surjective. In particular, f-l(VE) and g-l(U*)
are non-empty. Now choose N, € U, N vy N le(
-1

N2 =N ® Nl .,  r(hen Nl and N2 have all the required properties.

If k > 2, :he proof is similar, but even simpler.

V2) n g‘l(U*), and let

QED

To prove Theorem 8, begin by decomposing the N in the Theorem

by the method of the lemma. It clearly will suffice to prove:

M)

® ®...8 @ T ® ® ... ®
& (L N N,, M) (Ni+l)——)@\.(L Ny N,y

i,
is surjective, for every i with O ¢ 1 < X-1. Checking degrees here,

we fina that we have reduced the Theorem to:

(A) 1If T(N) has no base points, g+l < deg N < 2g+1,

deg M > 2g+2,and deg L - deg N > 2g, then

&(L,M) ®@ r(N) —_— > (R,(L @ N, M)

is surjective,

We now want to apply the Proposition in 8] to interchange M and N
in (A)., Since Hl(LQN'l) = (0), hence 4 (L,N) = (0), (A) is implie~
by:

(B) 1f T(N) has no base points, g+l < deg N ¢ 2g+l,

deg M > 2g9+2, and deg L - deg N > 2g, then

&(L)N) @ r(M) —_— R(L ®MJ N)

is surjective,.
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Now decompose M by the method of the lemma. To prove (B) it will

suffice to prove:

(i) K (L,N) @ rLMl) — KR (L ® M, N) surjective

(ii) G{(LSMI,N) ® T(Mz) — R (L ® My ® M,, N} surjective

(k) K(r @M &..0M ., N) @T(M)—>R(LOM & &M, N)

sur jective.

We want to apply Theorem 4 to prove these facts. Since T(N) and

T(Mi) are base point free, we need only  check:
(1) wirexten) - (o)
(ii) Hl(L entey ® M;l) = (0)
- -1
(k) strenl e My ®-c@M @ M) = (0),
Now deg(L®N—l®MIl) > 2g-(g+1l) = g-1, so if Ml lies in a suitable

open subset of the Jacobian, (i) will hold. Seconély,
deg(L®N~l®Ml®M£l) > 29 + (g+l)~(2g+l) = g, so if My @ Mgl lies
in a suitable open subset of the Jacobian, (ii) will hold. Since
the lemma allows us to choose M, and Ml®M;1 in any open sets,

(i) and (ii) can be achieved. As for the rest, if, for instance,

k> 3,

deg(LﬁN"18M18M28M;l) > 2g + (g+1) + (g+l) - (2g+1) = 2g+1

so {i11) is automatic. The same holds for all the rest. Thus {(B)

is proven, hence {A), hence the Theorem. OED

S TR N

NIRRT
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€3, Abelian varieties: the method of theta-groups.

By definition, an abelian variety 1s a projective variety with

a structure of a group such that (x,y)b——e»x+y and x ——> -x are

morphisms XxX —» X and X. —— X respectively. We first recall

various basic facts about invertible sheaves on such varieties.

(1.)

ad A
For every X, there is a 2"% abelian variety X, called its
A
dual, and an invertible sheaf P on XxX, called the Poincare
=8 = 6. hi i
sheaf such that Plxx{o] - Pl[o]xﬁ %, which is

characterized by the non-degeneracy propertieg:

A
c S ;G
(a) I1If 2z ©€ X is a subscheme such that PIsz X xz* then
Z = {0] with reduced structure,
' "z C©X i h P|_~ =6 th
(p) .2 ©€X is a subscheme such that P|Z T en

Z = {0} with reduced structure,.

If Pic(X) ir the group of all invertible sheaves on X, ther«
is a subgroup Pic®(X) characterized by the property:

L € Pic®(X) <==>T:L 1, all x € X

A
where T : X —> X is the map Tx(y) = x+y. For all a € X,

let P_ = P| an invertible sheaf on X. Then for

a xx[a)l’

A
all a €X, P_€ Pic®(x), and a +—>P_ defines an
isomorphism of groups:

X ~ pico(x).
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(1I1.) For all invertible sheaves L on X, and x,y € X,

*

L ®L Zr* o 1¥L,
X4y X Y

Therefore TzL @ L7t € Pic®(4) and there is a unigue

A
homomor phism ﬁL: X —> X characterized by:

L ® 17t
X

P
g, (x)
-(Iv.) The Riemann-Roch theorem for abelian varieties asserts:

if L = 8(D), D a divisor on X, then

x(L) = (p%)/g! = £v/deg BL

If this number is not O, L is said to be non-degenerate.

Then there is exactly one 1, called the index of L, for

which H (L) # (0). 1In particular, if L is ample, then

dim T(L) > o,

=
=
b

L) = (0), i > 1.

These facts.are all more or less well known, Detailed prcofs can be
found, for example, in my book "Abelian Varieties", to be published
by Oxford University Press in the series "'Tata Inﬁtitute Studies in
Mathematics." We require, in addition, another invariant of invertible

sheaves, which I call its theta-group. We treat this group first

set-theoretically:
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Definition: Q(L) = the set of all pairs (x,d), where x € X and

B: L ——e>T:L is an isomorphism,

The group law is given by:

(x,8) + (y,¥) = (x+y, T4 + ¥)
XY, TP

L_L%T*LT—Y’Z‘>T*.L

7 Ty X+y

It is ezsy to see that if k(L) = ker(éL), then this groups fits into

an exact sequence:

1 > k* i%»Q(L) ——E—-> K(LY —— 1
if i(A) = (0, mult. by A),
YT(X,;‘) = X.

Moreover, i(k*) commutesa with everything in Q(L); If, instead of
using inverti.le sheaves, we spoke of line bundles, G{L) Qould be
just the group of automorphisms of L that cover translations of X,
Or if we use the language of divisors and divisor classes, then:

Q(®x(D)) = the set of pairs (x,f), £ € k(X), such that

e b (£)

o=
X
((£) = divisor of poles and zeroes of f).

The group law in this version is:

(x,£)  (y,9) = (x+y, T;f'g):
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This group is well known in one case: if L € Pic?(x). 1In

"this case, 4. = 0, 80 K(L) = X and Q(L) is an extension:

L

1 > x* > G(L) > X > 1.

Serre has studied this case, and has shown that Q(L) is abelian,

has a natural structure of algebraic group itself, and that
L — Q(r)

defines an isomorphism:

pic®(x) — Ext (X, G ).

One can describe the non-commutativity of G(IL) conveniently
as follows: look at the commutators xyx—ly—l, Since X(L) is

~1 =1
abelian, n(xyx "y )

= 1, and xyx_ly_l € Xx*. Moreover, since
x* < center (Q(L)), if we alter x or y by an element of k¥,

xyx—ly-l does not change., Therefore there is a map:

e K(L) x K{L) ——> X~

such that xyx_ly-l = e{mx,my), all  x,y € G(L).

It is easy to check that e is bi-multiplicative and skew-symmetric,

In trgating characteristic p, we need more than a set-theoretic
group Q(L) we need a full group scheme G(L). This is defined by
asking that the S-valued points of Q(L), for every scheme S/k should

be functorially isomorphic to the groups of palrs (x,4), where x is
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an S-valued point of X, and if T i XXS ——>XXS ig translating
by x, then
g: L ® 63 -——-—)T;(L ® os)
is an isomorphism. It fits into an exact sequence of group schemes:

1 > G 1 > G(L)—— K(L) ———> 1

where T is smooth and surjective, and Gm is the kernel of ¢§L in
the category of group schemes, For details, see the last 8 of my

+ book on Abelian Varileties,
The theta-group §(L) acts in a natural way -on the cohomology

groups Hi(L). In fact, if (x,4) € G(L), then define the automorphism

of Hi(L):
: ¥ . i,
Ui, d)’ BN (1) —:—> Hi(T;L) < Hm(’é) HY(L).

This gives a representation of (L) and it works equally well for
group schemes or for ordinary groups.
I propose to divide the rest of this section in half: I shall
look first in characteristic 0O, where énly the set-theoretic G(L)’e
are needed, and prove a theorem for thesé; I will then discuss the
extension to characteristic p. !
So let char(k) = 0 now. First we need some pure group theory:

Let K be a finite abelian group, and let ¢ be a central extension:

1 — %" 5 G > K S 1.
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call G non-degenerate if k* is exactly the center of §. Then if §

is non-degenerate:

(1)

L ~ | * N
explicitly, G has the form G & x" x A x A, where A is

N
a finite abelian group., A = Hom(A,k*), and multiplication 1is
(N %,8)-(H,y,m) = (Wn(x), x+y, £47).

G has a unique irreducible representation V in which k¥
acts by its natural character., All such representations
» * A
are sums of V with itself. For X xAxA, this representatic..
can be realized by:

V = k-=valued functions on A

U(A,x,ﬁ)f (v) = N e(y)-£(x+y), V £ev.

If H <SG is an abelian subgroup such that H N k" = {1},
then we can decompose the irreducible representation V in
(2) according to the characters of H:

vV = @ V
NEI]

Then each V, is non-empty, and if Q' is the centralizer

of H in Q, then

Q' /(M%) ox|x € n)

acts on V is again a non-degenerate extension, and VA

)\’

is its irreducible representation,
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This is all elementary group theory and is easy enough to prove.

(See my paper "On the equations. defining abelian varieties",

L o

Inv. Math., vol, 1). The key result is:

Theta-s8tructure theorem: If L is non-degenerate of index i, then

Q(L) is a non-degenerate extension and Hi(L) i8 its unique irreducible

representation, with k¥ acting naturally.
We now prove in characteristic 0O:
Theorem 9: Let L ba an ample invertible sheaf on an abelian variety X.
- R A
Then for all o,B € X, all n,m > 4
n m
L7 ® ® p = .
S P, L 5) (o)

Proof: We require the preliminary fact:

Lemma: Let L and M be invertible sheaves on an abelian variety

such that I(L) ¥ (o), T (M} # (0), and L ® M is ample. Then
Z T(L@Pa) ® 1‘(M®p__a) —> T(LoM)
aeX

18 surjective.

Proof of lemma: If W is the image, let us show that W is

invariant under the action of Q(L®M). Note that Lf x € XK{L®M),
then

B (<) + () = B gy(x) = 0.

Therefore if B = a + ﬁL(x) = a - dM(x),
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™L®p )L ® [T*L®L"1] ® p
X o X a
= ® : ®
LR (x) " a
L
SLe Pg
and _
T™*Mep )Mo [T*MeMI]ep
X - X =
M ® ®
MEPL(x) " P
M
SMerp 5 -
Thexefore we get a diagram:
® ® ® N
(L P_) (M p_a) > T(L® )
o
A
X

T;l 'r:l
T(T;(LGPa) )@I‘(T;(Mw_a) y——— F(T;(LGM))
Sl

I S|
r(Lep,) ® I(u®r_,) > T(LeM)

In other words, under the action of an element (x,d) € G(L®M)

on T(L®), the image of T(L®Pa) ® I‘(M®P_d) i8 taken into the image
Therefore W is Q(L®M)~invariant.

of I‘(L@PB) ® T'(M®p B).
Now since [I(L®M) is Q(L®M)-irreducible, either W = (0) or
W= I'(L®). But if s € T(L), s ¥ 0 and t € T(M), t #¥ O, then
so W ¥ (0). QED

s® € I(L8M) is not O:



- 70 -
D. Mumford

Returning to the theorem, we use the lemma to reduce the proof

of the theorem to the special case n = m = 4. 1In fact, coneider the
diagram:

n ; m~1 a n+m-1
ZQT(L @pu)or(L ®p5w)®r(mp_w)~__—a) Z (L ®p )®I‘(L®p_’y)

N veR a+B+y

b c

n-Hm
®
4> F(L Pa+a)'

n m
(1L ®pa) QII‘(L sps)

By the lemma, ¢ is surjective. By induction on n and m, a is
sur jective. Therefore d is surjective.

Now assume n = m = 4, We must show that the map:

4 4 8
T: T(L ®Pa) ® T(L ®PB) — (L @pa+8)

is surjective. We need first some simple remarks. One is that If

L is any non-degenerate gheaf, then there is a natural isomorphism:
Q(L®Pu) e g(L), all a € X.
In fact, consider the diagram:

1
1———>k*~—-——>Q(Pa) ——— X —— 1
A U
P~

SSk(L)

Since kX is a divisible group, and Q(Pa) is abelian, it is easy to

check that there is a homomorphism pa such that ﬁ‘pa = 14" In other

*¥1f 0—>A—> B—>C —>0 is an extension of abelian groupsg, then it
splits whenever A is divisible.
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words, the extension Q(Pa) splits over K(L). Then for all
(x,6) € Q(L), where g: L-——e»T;L is an isomorphism, we get an

i somorphism

gor_(x)

L®°P
a

*
®
%TX(L pd),

hence an element (x,ﬁcpa(x)) € (L @ Pa).

The second remark is that T i8, in a certain senee, Q(Lu)—lineax.

*n fact, define ©&: Q(Lu) °

—> Q(L7) by .

6(x,8) = (x,6°°)

8

®2
where g : L —-—)T:L8 is just @ ® £,

Note that & fits into a diagram:

1 > k* >Q(Lu) — K(Lu) ——1
ApAE 5 n
v
1 5 K* >Q(L8') > Ii(La) — 1
N
¥

Now choose splittings:

by K2 ——4(2,)
K(Lg)-~——%>Q(P

P 8)

induce a 5rd splitting:

8

and let pa,ps

: X(L7) —— GQ(p ).

a+8

Use to define isomorphisms (L

Pa?PgsPoyn - a
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and Q(LB) = Q(L8®Pa+ﬁ)' Then it is immediate that via &, 7T is

Q(L“)-linear.

4 :
The next step is to split Q(L ') over X2, the group of points

of X of order 2:

n y
By T k) —s
~ 9]

P~
~ X
2

1 —s k* —— Q(L

As in the case of Q(Pa), this is possible if we check that the
subgroup ﬂﬁl(xg) is abelian. But K(Lq) = Ker(g 14) = Ker<u=én),
L

Lu).

so x € K(Lu) if and only if 4x € X(L). In particular, X), € K(
Therefore, if XX, € X2 and Xy = 2y2, Yo € Xu, and
eL)_}(xl)xg) = eLu(xl)QYQ)

= e -(2}{ JY)
LU 1292

it

e ,(0,y,) = 1.
4(0:¥5

Thus ﬂ—l(xg) is abhelian and p exists, We may now decompose all

3 vector spaces under the action of the abelian group p(Xe):

I‘(L4®P ) = ®. E
a £LEeX 4
2 N
4
r(L'®,)= &, F,
B LER
2
I‘(L8®P Y= &G
a+p R4
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since T isg, in particular, X,-linear.

Vot T ® F <
Note that (E‘ m) G 5

4+4m’

Next, I claim that in Q(La), B(Q(Ln)) is the cent-alizer of

5(p(x,)). Since S(Q(Lu)) is exactly the inverse image ﬂ”l(K{Lu))

8), and since e g computes the commutstoes in Q(Ls), this is

L
equivalent to saying: V x € K(LS)

in Q(L

Y

(3 x €x(x') e e glx,y) - 1 .

L
8 ; L! zi

But {if y € X, then vy € K(L )&= 2y € P, ). 3&dince X is divisible,

K(L') = 2'K(L8). Therefore, if we abbreviate K(La) = K, (%) comes down

to the assertion:
(*%) V x € K, X € 2K &= e(x,y) = 1, all y € K such that 2y = O,

Since Q(LB) is a non-degensrate extension)e is a non-degenerate
skew-symmetric form on K, and (*¥) ia clearly true.

We can now apply the )rd set of statements about non-degenerate
extensiong that we listed above. We deduce:

1) that each EgsFy,G, 15 non-empty,

2) that G, {8 an irreaucible G(Q(Lu))—module.
Tne theorem now follows. By (1), choose s € E,, t € F, with,

s £ 0, t # 0. Then T(g®t) is the section &®t ot L8 ®@p which

a+87
is not zero. So the image of 1 contains at least one non-zero
element of G,, for each 4, But the image of T is {nvariant under

B(Q(Lq)), so by {(2), it contains all of G,. Thus 7 is surjective,

QED
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Now consider the case char(k) = p # 0. To make the proof work
we must use the full group scheme Q(L). Firgt we need some theory

about group schemes § which are central extensions of the type:

1 >a — G — K > 1

where K is a finite commutative group scheme, AS before, we call § l

non-degenarate if Gm is the full scheme-theoretic center of §

(1.e., ¥ S-valued points x of §, if x commutes with all S'-valued
points y of Q@ for all $'/S, then x should be a point of Gm). There

is no simple structure theorem for such §’s, However, they do satisfy:

(2*) G has a unique irreducible repreéentation V in which
Gm acts by its natural character. All such representations
are sums of V with itself;

(3') If H < § is an abelian subgroupscheme such that

H N a = {1} scheme-theoretically, and if Ry = F(SH)

regarded as a representation of H (the "regulax

representation”), then V E'Rg for some m as an H-space.

In particular, for all characters AN: B —> Gm’ the

elgenspace V. <V for A i8 non-empty. Moreover, if

A
Q' is the scheme-theoretic centralizer of H in G, then
-1
)

G /{n(x) -x|x € H]

acts on V is again a non~degenerate extension, and Vk

7\’

is its irreducible representation,
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Note that in (3') v 2 &,, but if char(k) |order (H), it is possible
that Vv ? evx. In compensation, we have the extra fact, V S'RE.
Next, we still have:

Theta-structure theorem: If L 1s non-degenerate of index i, then

Q(L) is a non-degenerate extension and Hi(L) is its unique irreducible
representation, with Gm acting naturally.
The proofs of these facts are, unfortunately, not yet published,

Now let's generalize the proof of Theorem 9-to char(p).

(I.) The lemma remains true. However to prove it, it is necessary
to show that for all rings R/k, all R-valued points a of
G(Le&M), the automorphism of the R-module I'(L®M) i:R induced
by o takes WRR into itself., This follows as before provided

that we first prove the following:

A
For all R~valued points a of X, if Pa is the invertible
sheaf (1% )™P on XxSpec(R), then the image of the map:
* M(p*Lep ) ® *M® *

F(L®M)% R

is vontained in w % R.

Pirst 1f R is a finitely generated integral domain over X,
then the intersection of the maximal ideals in R is (0): so to

" prove that an element x € T(L&M) % R is8 in W % R for such an R,
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it suffices to show that for all homomorphisms €: R —> X,
the image 1 ® g(x) € T(LeM) is in W. And this is just a
case of (*) for a k-valued point of X, i.e., it is part
of the hypothesis. But since X is an integral scheme of
finite type over k, for any R, and any R-valued point a of X,
a is induced by an R'~valued point B of X via a homomorphism
R'* —3 R, with R' an integral domain finitely generated

over k. And i1f (*) is true for B, it follows immediately

for a, This proves (*) in general.

Once the lemma is proven, Theorem § 1s reduced to the case

n =m= 4 exactly as before.

Next, lsomorphisms Q(L) ¥ G(L ® Pu)’ a € Q, L non-degenerate,
can be set up exactly as before. We need only the well-known

lemma :

Lemma: If O }Gm — § >K —> O ig an abelian

extension, and K i3 a finite group scheme, then G = Gm X K,

Moreover, we get a homomorphism of group schemes
8 Q(Lu) — Q(LB) exactly as before, and T turns out

again to be Q(Lu)—linear.

Now, if char(kx) % 2, the rest of the proof works over k

without alteration: Q(Lu) splits over X,, the vector spaces

4 4 8

(L ®Pa), (L OPB), (L ®Pa+6) split into eigenspaces, and
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we apply statement (3') about the group theory of non-degenerate
G’s. However, if char(kx) = 2, X,, the kernel of multiplication
by 2, is never a reduced group scheme, We can still split Q(Lu)

over X, and 5(Q(L4)) is still the centralizer of B(Q(Xe)) in

2)
Q(L8

), but since the representations of X, are not completely

2
reducible,

>}
1‘(Lq ® p ) 4 &, E, , etc,
o LEX

2

We must finish the proof in a new way. Let W = image of T, Let

L 8

w— < T(L
8

® Pa+B)* be the space of linear maps that kill W, Assume

1 : .
< I'(u nence Wo ¥ (0) Now W and hence W is invariant

i

, 4
under the action of G(L '), hence of the action of p(X

@
au+B)’

2). Therefore

&q¢ contains an eigenvector for at least one character 4 € R . Let

2
G: - T(L8 @ Pa+8)* be the eigenspace for the character 4, Now

T(L8® Pa+B)* is an irreduclble representation space for the opposed
group to Q(L8), i.,e., with multiplication reversed, and in this
representation Gm acts by its natural character. Therefore applying
statement (3') to this opposed group, it follows that Q: is

4, o, . 4 *
G(L ' )~irreducible. Therefore W— D G, .

il
Now we must construct something inside W. By (3') for G(L ),

4 4
I'(1.'® P,) contains a non-zero p(X,)-invariant t. For all s € T(L
v . ,

[

8

s # 0, the element T(s®t) € I'(L™ ® Pa+8) is not zero, so T defines

@ ),
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an isomorphism of T(L ®Pa) ® s with a subspace W_CW. 2As a

representation space for p(x2), W_ is therefore isomorphic to

4
(L 5

i8 an injective object

of X Since R

2

-~

representations of X2, it follows that:

2'

F(L8 ® p

i

{ w
a+B) vo ®

where W 1is also Xg—invariant. Now the

eigenvectors for every character of X,
r.

* . ’ .
X € wo which is an eigenvector for the

8

linear map on (L ® aa+8) that is zero

x4 0o0onv, ie., x ¢ wt,

QDQ), hence to R, where R2 denotes the regular representat’on

in the category of

dual space to R, contains
[

go there is an element

character 4. Extend x to a

r~
on W

Then x € GI, but

This 1is a contradiction.
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8., Abelian varieties: the method of the variable pencil.

First of all, we need some more results about the index of
invertible sheaves. Foxr proofs of these results, see my boosk an

Abelian Varieties and the appendix to this paper by George Kempf.

Definition: Let L be a degenerate invertible sheaf on an abelian

O

variety X, Let XK = K(L) , the connected component of K(L), Y = X/K,

and m: X —> Y the canonical map. Then there is a non-degencrate
A
sheaf M on Y such that L ¥ p_® m*M, some a € X (cf. appendix). Ve

define index (L) to be the interval:
(index (M), index (M) + dim K],
The following result is proven in the appendix;

Proposition: If i § index (L),ythen 1 (L) = (0).

Now suppose iI. and M are 2 invertible sheaves on X, and.L is ample,
Consider the collection of sheaves LP&M? and the polynomial:

P(p,q) = x(LP & uT),

The following theorem is proven in 816 of my book and in the appendix

to this paper:

a € R, o

Theorem: If g = dim X, then there are Qs g 1

LR IR
> ay e

such that

g
Px,y) = TT (x-ay).
i=1
“orerser, for all p,g € Z, q > 0, if Gy Ty = %,
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B '
ai > g - ai+k+l' then

index (LP @ M%) = [1, 14k].

The precise result that we need is slightly stronger. I want
to assume only that T(L) # (b) (i.e., L = ﬂ*Lo for some

n: X —> X/K, L ample on X/K). 1In this case, I claim:

Theorem: Suppose L and M are 2 invertible sheaves, T'(L) # (0) and

M non-~degenerate. Then

P(x,y) = T 7T (x-a,y) - yo ¥
1=1

for some r and some ai € M with al > e > ar' For N >> 0, let
N
1 = i ® ) X =15 e= =
i_ = index (L"® M), Then for all p,q, q > 0, 1if T T p/q,
154
Gy > g2 %iaxeyr then

index (LP ® M3) = [1 + 1,1 +% +1].

This theorem is deduced easily from the lSt one, by
X P Pl. g
introducing an ample L1 and considering all the sheaves L @ml @M

P1

and the polynomial: P(p,pl,q) = x(1P ® L,” ® M9y,

We omit this step.

The purpose of this section is to prove:

Theorem 10: Let X be an abelian varilety, L an ample invertible gheaf

and n > 4 an integer. Ln defines an immersion:

g, X — ™ (T(L™)) .
L
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Then g n(x) is ldeal-theoretically an intersection of quadrics of
L

rank < U,
Proof: First, let's construgt a set of gquadrics containing

P n(x). Once and for all, fix p and q, p,q > 2, such that n = p+q.
L 2
Consider the map:

r(L? o pa) ® T(L9 ® p_a) —%F(Ln).

If 5 € T(Lp®Pa), t € P(LqWP_a), let the induced section s®t of

n . .
T(L') be denoted <s,t> to prevent a confusion of notation. Tnen

for all s , we get ! sections of L

p F
108, € TiLhee ), t ¢, I‘(chbp_a)

2
<81’tj , i, =1land 2. 1In T(L n), we get an identity:

<5,,t.> ® (s_,t > = <Sl’t2> ® ;sg,tl>.

AR S 2’2
Therefore
n n
= 7 ~N N - .
g ,to,8,,¢t \51’t1’®<82’t2’ <sl,t2>®<sg,tl) e & (",LM).
177172772
If Q. ¢ & ¢ is the quadric in B’(T(Ln)) defining by. 9y ¢ g5 £~ O
17172772 10872855,

then we will actually prove:

P n(X) is the ideal-theoretic intersection -of the quadrics

(*)

Q for all a,si,t

Sl‘tl‘s2’t2 i

For most of this proof, we will deal with the fact that P n(X) is
L

the set-theoretic intersection of these quadrics. At the end, we

will indicate the easy extension of the method to proof that g n(X)
L

15 also an ideal-theoretic intersection.
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The first step is to translate (*) into an assertion on X

itself, not involving B{T(L")). The points of P (T(L")) correspond

A n .
to non-zero linear maps 4: T(L') —— k, modulo scalars, Fix one

such 4. Then it is easy to see that the point defined by 4 lies on

Q if and only if
sl)tllsgl

) . . )
(<s,,t.>) 4(<52,t2>) (<sl,t2>) (<Ee’ l>).

1’71
Moreover, it is elementary linear algebra that this holds for all

s if and only if there are linear maps:

. o) —
n,: (L P-a) > K

such that:

L{cs,t>) = m (s)'n (t), all s € F(Lp®Pa)

t € F(L%p‘_d).

On the other hand, what does it mean to say that the "point" & is

in # n(X)? This means that there is a point x € X, and an isomcrphism

L e GY near x, Such that, evaluating sections by this isomorphism:

4(s) = a(x), all s € T(Ln).
Thus (*) comes down to the ajsection:

n)-—> k is a non-zero linear map; such that for all

If 4: T(L
A
a € X, there exist linear maps m_: F(Lp®Pa)——§ X,

)
(%% ) . T(p%p i y——= % for which 4(<s,t>) = mQIS),na(t), then for

some x € X, 4(s) = s(x) all & € T(L").




D. Mumford

In order to prove (**), the basic idea is to treat all o

simultaneously, i.e., to put the ma’s andg na’s together into a

gsingle homomorphism., In fact, consider the invertible sheaves:
- ~
p"l’Lp ®P and szq ept on x xX.

These have the property:

* P g ~ Pep | *1 dgp~t ~19 @
.plL p|><><(OL) L Pa’ plL P Xxx(a) L P—a
Define _ % Po,
Ep - p2J*(PlL P)

Hl).

P = *1 dep
L

Since the higher cochomology groups of LPG’JPOL, Lq@%P_a are zero, Ep

and F are locally free sheaves on S such that

. ~ P , _ o~ e
£p®k(a) = T(L®p_); quk(a) r(r'er ).

There is a natural pairing:

E S .M = (L") @ 64,
ngz . >pg,*(pl ) (L) & 6

This is the globalized form of the individual pairings

T‘(Lpﬁbpa) ® r(L%p a) — T(L™). In order to go further, we need:

Lemma 1: If 4: T(Ln) ——> k satisfies the condition of (**), then for
all a, &4 does not vanish identically on the image of

r<Lp@pa) ® T(1%p_ ) in (L"),
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We will prove the lemma later. Assuming this, we next globalize
the m, and n, as follows: I claim there is an lnvertible sheaf K on
A
X and sur jective homomorphisms:

m: E —>K
- P

n: F ——5K
q .
such that the diagram:
n

E 2F 5 T ® 6A
P q (L )k X
lm@n 14@1

-1 A

KK —> O

commutes, To see this, consider the composite map:

n el
® T & 06 6
Ep Fq — (L) $ p > 04

It induces a map of locally free sheaves:

' )
m': Ep ———> Hom (Fq, 52)

By the hypothesis in (**), this map, after taking ®k(a), is always
of rank O or 1; by lemma 1, it never has rank O. Therefore, its
image is an invertible subsheaf K of ggm(Fq,@f)which is locally a
direct summand. m gives a sur jective homomorphism m: E ——> K,

On the other hand, the inclusion of K in EET(Fq'QQ) induces a

sur jection:

-1

- = & ® — YN =
n: Fq Hom(ﬂgm(Fq, Q>’ Q) —> Hom(XK, X) X

It is clear that the sheaf K and the homomorphisms m,n make the

diagram above commute.
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To motivate the next steps, let's imagine that (**) is true

and see what K, m, and n ought to turn out to be. For all x € X,

. < A
let Q =P 2. Then Q 1is an invertible sheaf on X and, if we
X {x]XX X

pick an isomorphism Lp—:—a-GX in a neighborhood of x, then there is
a natural restriction map:

*1Pep — ——» p*LPe AT A
P L= P > PILRR gk T P )k

A
This induces a map of locally free sheaves on X:

r.: E -———>Ox

which is a global form of the linear maps:

Ep @ x(a) = F(LPQRQ) evaluation at x S .

Similarly there is a map:

wnich is a global form of the linear maps:

F @ x(a) = F(Lq®P' ) evaluation at x .
q -1

Therefore, what we want to prove is:

K ;‘Qx’ for gome x € X

(x-x-*)
and m 18 a multiple of r.. n of 8.

If we prove (*%*) then it follows immediately that 4, as a point of

H(T(Ln)), equals @ n(x). In fact, choosing an isomorphism of L™ and
L
Gx near x, let 4': T(Ln) —> k by the evaluation map

s —> s(x).

e —————————



D, Mumford

Then what (***¥) asserts is that the 2 compcsite homomorphisms:

if’ Bp ©Fq T (L) ¢ 8 ‘IWQI;> 2
differ by a scalar, Say L = A,L', Then on the image of each map
r(tPep ) @ T(L%p_) —— (L"),
L = 2A.4'. By the lemma of 83, these images generate F(Ln), g0

4 = N.4' on all of F(Ln) and the Theorem is proven,
To prove (***) we proceed as follows., First apply Serre

A A
duality to the morphism Py XXX —> X:

r(ﬁ, Hom(Ep,K)) = f(ﬁ, Hom(p (szp®p), K))

2,
A - -
= r(x, RS (ptL PR epkk))
Po

1.

Since all the cohomology groups of the restriction

% -

p ~1
L @ p
pl

- th
p2K,Xx(a] L _, 3re zero, except for the g~ group,

1 % =D -1
R p2,*(plL P

* '
®pyk) = (0), i g
Therefore, we conclude by the Leray spectral sequence that:

A A P -
N(%, sHom(E,K)) = HIOOX, oL e wplK).

Similarly:

- — A - -
T(Q,'Hom(Fq,K l)) Z R (xxx, p;L q@pwpgx l)

A
hence by Serre duality on XxX:
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A - ' A -
T(X, Hom(Fq,K l))* = g9 (xx, p*L @ p7t

® +#*
1 PoK) .

Therefore, we have at our disposal the 2 apparently meagre bits

of information:

N -
HI (XXX, pILm & p L@ p;K) # (0), for m = -p and q.

But, amazingly, these facts turn out to trigger a Rube Goldberg-like
set of cohomological implications that we will describe later, We

summarize this part of the proof for now in:

. N
Lemma 2: Let L be ample on X, K any invertible sheaf on X. If there

exist integers a,b > 2 such that

HY (xR, piLm ®pte pyK) # (0)

for m = -a and b, then, in fact, for all m:
B

i) p'Lt™ @ pTt @ pgK is non-degenerate of index g,
ey

ii)  dim Hg(p;Lm ® p~1

R p* =
PiK) = 1,
., o/A
iii) K € pic (X).
A
But by the theorem of biduality, the invertible sheaf P on XXX makes
: R _ '
X into the dual X of { with Poincaré sheaf still P, Therefore, all
A _ _
sheaves in Pico(x) are isomorphic to Qx’ some x € X, hence K E‘Qx,
some x £ X,
"inally to show that m is a multiple of X and n is a multiple
of S it suffices to prove that
» A ’
dim T(X, Hom(Ep, K)) = 1

A -
dim T(X, Hom(Fq, K l)) = 1,
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But we saw abpve that these dimensions equal

1 *

A -~ —
aim HY (xxX, Pl Pep* @ poK)

A’ —_
and dim H (XX, p;Lq ® pt e p;K)

and these are both 1 by lemma 2, This proves {(*#¥)!

\

We now go on to the lemmas:

Proof of lemma 1l: Suppose # = O on the image of

F(prﬁl) ® F(Lq®P_a). Since 4 is not zero everywhere, and since

r(LPep,) ® r(rL%p generate (L") as B varies, choose a point

5) o)
A
v &€ X such that

¢ 40 on r(Lp®ga+y) R r(L%®p41_Y)

By the hypothesis on 4, 4 on this last space is of the form m@n,
where m i O and n # 0. By the same reasoning, for almost all

A
5 € X,

m£0 on T(LP'®op ) ® T(L ®p_

Q+y+6 5) !

A
and agailn for almost all 5H € X

-1
[ r(19" e ® I'(L @
n£0 on T(L Pt (L P_y_é).

Choose a & for which m £ 0 and n £ O, Then it follows that 4 £ O
on the image in T(Ln) of:

p-1 ® T(1L®p

)]

®p ) © T(L®P_5)] ® [F(Lq-l®Pdm

[(T(L a+vY+b

+6) -y-5

h L. .
But by interchanging the Qnd and ht factors, this image is the same

as the image in T(L") of:
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p~-1 . . : q~lg
[T(L" "®P ) ® T(Lep )] @ [T(L* ey

® Bp
a+y+b ) I‘<I-P—6)J'

-vy-6 +6
The map of this 4-way tensor product into T(Ln) factors through
T(LPGPG) ® F(qup_a), so this contradicts the assumption that

! = O on the image of this space in F(Ln), QED

Proof of lemma 2: Thisg is where we will use the theorem quoted

: . . ‘ ‘ A -1
in the beginning of this section. First we compute Hl(XxXJ P®pIK ).

Apply the Leray spectral sequence:

ut(%, ij2 (P) @ k) = #MI0x, poe pikT).
' 2
But, as is shown in my book, 813
Rip2,*(p) = (0), 1icyqg
R%p, ,(2) = x(0)
Therefore:
H 9 (X, pap;K‘l) = (j); se n
H (X, x(0) ® x ), i . 0O,

l) = (0) if i # g, and is l-dimensional if 1 = g.

1

Hence Hi(xxx, P®p;K_

r

By Serre duality, the same is true of P~ @ p;K. Now consider

the family of sheaves:

M = p*tP ® (Pp™* ® p*K
o.q = P1 ( ® p_K)

and their Euler characteristics:

P(p,q) = x(Mp,qJ
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We know by the above computation and by our hypothesis that:

M non-degenerate, index = g
0,1 .

(1) g € index (“b l)

g € index (M~a,l)

It follows from the Theorem thatIP(x,l) has no zeroes in the open
interval -a < x < b. Byt now P(x,l) is a real polynomial of x such
that
i P has only real zeroes,
it) (o) = (-1)7,
i1i) P has no zeroes with -a < x < L.

iv) P(n) € 2, for all n ¢ Z,
But (i) implies that P has a unique local maximum or minimum between
any 2 zeroes: lec ~t < 0 < B (a,d € ﬂcd be i1ts zeroes of smallest

absolute value. Since -o(< 1 7 B, and |[P(1)]| > 1 = [P(0)]|, P must

have a local maximum or minimum between G and B; since - ¢ -1 </3,

and |p(-1)| » 1 = |p(0)}|, P must also have a local maximum or
minimum between -a and 0. This 13 a contradiction — unless P.if
constant,

Applying the theorem again, it follows that

M non-degenerate
J

]

(11 index (Mp,q)

aim HI(M )
pP,q

g9

1
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 for all p,q € Z, g # 0. This proves (i) and (ii) of the lemma. To

prove (iii), apply the Leray spectral sequence:

5

i -1
3 =gt ® p*K
If . pl,*(P pgl)’ then
i’j T "~ i j N —_—
E2 = Hl(X) Lm ® JJ)L‘::;HJ--PJ(XXX) P;Lm ® P . ® p:K) .
In particular, since L is ample, E;J = (0) if 1>0, m>>0, hence

the speciral sequence reduces to

! o P;K), if m >>0,

L A A X% -
n%(x, L™ @ JJ_ )2 (xxX, p;_Lm ® p

Therefore because of (II) the whole sheaf ,Bj must be zero if j<g . The

speciral sequence now reduces to

i, ~ i A -
HY (X, Lmafig) 2t (xxx, pfL” ® p e oK), & m,

hence

X(Lm ® &) =1, all i,
g

This shows first that Supp(gg) is O-dimensional, since its Hilbert

polynomial is a constant; and second, that dim H°(3g) = 1, hence

3
g

m

k(x), some x € X,

Now recall from EGA, Ch. 3, 87 that the cohomology of P"lﬁp;K
along the fibre [X]XQ of Py is computed from the higher direct images
by a séeééral sequence: |

8
j -1 145, ~1
k(x), R} (PT7@piK))==> u (P )

& *K A
-1 Py 4 P |[x]XX

)
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1s K, and since & = (0), § < g, we find

-1 * A SI -
Since P ~ ® 92K|[x}xx Q. J
]

g-i(o;l ® K) & Torix(k(X),k(#))-

H

Thus Hi(o;lax) ¥ (0), for all i, For i = 0, this gives
F(Q;IQK) # (0), and for 1 = g, this gives (by Serre duality)

-1 ~ o
T(QXQK ) # (0). Therefore X = Q  hence X € Pic (Q). QED

This ~ompletes the proof that 4 n(X) i3 the set-theoretic
L

intersection of the quadrics Q To prove that it is also

.Bl’t t

1°82:%0
ideal~theoretically equal to this intersection, it is enough, as we

remarked in the introduction, to prove that for all x € X, the tangent

space to 6 n(x) at x is the intersection of the tangent spaces to the
L _

quadrics Os N " at x. EquiQalently, lot R = k[é]/(ég): then
1 J .

179225
we must prove that for all R-valued points x of P (I(L™)), x is in

ﬁLn(x) if and only if x is in all the quadrics. But such a point x

is defined by a k-linear map 4: T(L") —=R such that Image(4) ¢ k-,

Translating suitably the conditions that x is in g n(X) and in the
L

quadrics, we find that the assertion to be proven comes out as:
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If 4: (L") —= R is a k-linear map with In(4) ¢ x-€, sugh
that for all o € ﬁ, there exist linear maps m, T(Lpﬁpa)——e R
(+%) |
q .
and n_: (L ®p43) —— R for which 4(<s,t>) = ma(s).na(t),

then for some R-valued point x of X, 4(s) = s(x), all s € T{L"),

This is proven by a straightforward generalization of our proof
for k-valued points. Lemma 1 is unchanged and one finds first an

AN
invertible sheaf K on XXSpec(R) and sur jective homomorphisms:

m: E € R ——>K
p k

. :
on X x Spec(R) which glocbalize m, and n . For all R-valued points
A
x: Spec(R) ~—> X of X, define Q_ on XvSpec(R) to be the pull-back of P
W i ] : ®
by x X lﬁ- e get restriction maps L Ep X R — Qx’

8.t Fq ®k R ———4>Q; as before, and (**) reduces as before to:

~

M)

O , for some R-valued point x of X, and m = H-r_,
X bl4
(*»»)
n = v.sX for some units R,V € R,

Fut by our proof for k-valued points, we know already that

- ~ - . : ) ., ©
K] = Qx fox some k~valued point X, of X. Therefore, since Pic
e}

- ] - 3 0y : . . A s
is an "open” sulifunctor of Pic, and since X is the dual of X, it

X

follows immediately that X ?ch for some R-valued point x of X. To

prove the rest of (***) it is only necessary to check that
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r(ﬁ X Spac(R), Hom (Ep,x)) T R

M} x spec(R), Hom (F_,k™1)) &R .

Then since the restriction m of m to X is a non-zero multiple of

¥ , m must be a unit times r i and similarly for n,

X
(o]

As before, we compute:

1

A ~' A - -
T(Xxspec(R), Hom(xp,k)) & rI(xx&xspec(R), pyL Pe pIQP ® 925K)

We can then apply the remark:

If L 18 an invertible sheaf on ZxSpec(R) such that
. , 1
Hi(LIZ) = (0), i £ i_, then at(L) = (0) if L # i_and H °(L) is a

free R-module.

This completes the proof of Theorem 10,
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Appendix*') by George Kempf
Let X be an abelian variety, L an invertible sheaf on

X, ° = connected component of K(L), and p: X —> X/Y the canonical

map.

Theorem 1: (i) If LIY is non-trivial, then H (X,L) = (0), all i.
(ii) If L[Y is trivial, there exists a non-degenerate

invertible sheaf M on X/Y with L = p*M, and if io = index(M):

i i
i(x,L) 2 H °x,M) € H O(Y,GY), all i.

H

Proof: The theorem follows from:

i

LIY for all x € X, and

*
Lemma 1: TXLIY
Lemma 2; Let P ——£—e>z be a principai homogeneocus space (in the flat

topology) with structure group Y, an abelian variety. Then

RTF (6 ) —H(Y,GY)GOGZ_
By Lemma 1, we see that L‘Y € Pic®(Y) and also that

Ll = L!p‘l(p(x)) is isomorphic to L|Y. Now if LIY is non-trivial,

X+Y

then

(0) = (v, 1],) = B (p7H

X L
P( )), lp‘l(p(x)))
for all i (see Mumford, Abelian Varieties, 813). By the theorems on

cohomology and base extension, Rlp*(L) = (0) for all i, The Leray

spectral sequence then implies that H (x,L) = (0) for all i.

% The results in this appendix were independently discovered by C. P, Ramanujam,



- 06 -
G: Kempf

If L is trivial, hence L is trivial, the see-saw
ly : o=1(p(x)) :
principle shows that if M = p (L), then M is an invertible sheaf

such that L = p*(M). This M is clearly non-degenerate, Note that:

R'p, (L) = RYp, (p*M)
;Ri *(G ) M
Pxlx g;/y

~ .. 1
= 6 ®
H (Y, Y) @ M (by lemma 2).

Therefore

al(x/v, ”Yp, (1)) S‘Hi<Y,°Y) ® I (x/v, M),

and this is zero unless j = io’ the index of M., Thus the Leray

spectral sequence shows:

- i
B (x,L) = H
i-1

H O O(v,8,) 8n

IR

Proof of Lemma 1l: If m: XXX —> X is the addition morphism,

we know that w*L ® p;L_l ® pf:,L"l on XXX is trivial when restricted

to YXX, Define s: Y —>YXX by s(y) = (y,x). Then

*, g . —1 %, ~1
L ® &
a0 ot 0 g5
ot 2Lt e o
X Y Y Y
is also trivial. QED

Proof of lemma 2: Since P X P &Y X P, it will suffice

to prove the stronger:
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Sublemma: Given f: X —> S a morphism of schemes /k such that
there exists m: S —=> S where 1 is faithfully flat and

nx(& ,) = O, with the property:

J
3 ¢@,Y and a diagram XgS' - >ka8'

Tk

Sl S|

where Y is8 proper over k. Then we have an isomorphism

i ~ 1

Proof: ﬂ*(ﬁif*(sx)) = le;(Qx since §' —> 65 1ig a flat

s )

S
> ul 6
) 5 H (Y,OY) g g1 because of the

i
base extension and R f-;*(sxxs'

]
existence of . Bacause Hi(Y,G ) 18 finite-dimensional,

Rif;(ﬁx 5 ) is a vector bundle. Hence Rif*(ﬁx) is a vector bundle

because n is falthfully flat, Now we define an isomorphism

1 T~ » 1
R f*(@x) —> 7, R f*(Gx) (since M., = 08)

~ i
= mJH(Y,6,)® 6]
= i Y n
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~

Theorem 2: Let L and M be invertible sheaves on an abelian variety X,

with L ample, Let

PL,M(n) = X(L ®M).

Then (i) all the roots of P are real and dim K(M) ie the

L ,M

multiplicity of O as a root,
(11) counting roots with multiplicities:

Hk(X,M) = (O); if 0 ¢ k¥ < number of positive roots

Hg-k(X,M) = (0), if O ¢ k < number of negative roots.

Proof: The theorem is proven in Mumford, Abelian varieties,

816, for M non-degenerate. It is obvious when M € Pic®(X) because

in this case

P (n) = x(z")

(3).n%
g!

X = K ) K o= X - p¥L. ® p¥
and (M). Now suppose 1%, L = plL; ® piL, and

€ Pica(xl), M, is non-degenerate on X

— L ® #
M lel pEMQ where M 5

1 2

and L, is ample on X Then by the Kidnneth formula,

i i°

(1) (n)-p (n)

p. . (n) =pP
A
L,M L. ,» Ly,M,

! 1’7

and K(M) = K(Ml)XK(Mg){ So in this case the theorem follows from the
above speclal cases and the Kinneth formula.
We ghall reduce the theorem to thias case. Suppoge f: ¥ —> X

ig an isogeny. Then
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(2) Pf*L,f*M(n) =~ deqg f - PL’M(n)

Ly the Riemann-Roch theorem, and dim K(£*M) = dim K(M). Therefore
assertion (i) is invariant under an isogeny. Let Y be the identity
component of K(M) and let 2 bec a complementary subvariety for Y in X
We have an isogeny f: Y. X2 —— X, Now Y T K(E“M) and ({f

M, = f*(M)lY, then as in the vroof of Theorem 1, b & PicO(Y) and M

1 1

is of the form p;Ml ® ngg where M is a non-degenerate invertible

2
sheaf on Z. The next problem is to see that the theorem does not
depend on the ample L. Then we can replace f*L by p;Ll®p;L2 and we
have reduced the proof of (i) to a case where (i) has been proven.
Claim:

1z and P_ have the same number of positive, zero, and
L,M — L', —- S

negative roots {(counted with multiplicity).

Let & (resp. 8') be the smallest positive root of P (resp. P_, ).
L,M L' M
Let a (resp. a') be the number of positive roots of P (resp. P, ).
~ LM LM
Then
a = number of positive roots of P M(t+€), if 0 < € ¢ B
)
1 - It n t P 1 'f O ~ "
a L‘,M(t+€ )y, i < €' < B
g r r
But s’pP. (n + =) =P (n +=
L,M LS 8 s
- (Lns+r ® 145)
= x(L%" @ (LTem®))
- PL,Lr®MS(sn)
= sgP
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So if 0 < % < 0, then LfeM® ig non-degenerate and

= i p
a number of positive roots of L,Lr®Ms

= jindex (Lr®MB).
y N, =1
Now let N be large enough so that (L') ®L ~ is ample and choose r

and 8 80 that 0 ¢ r/s < 6, 0 K 7? < B', Then
a = index (LY&M®)

2 {ndex (((L')N®L-l)r ® L' @ M%) (by Th. for non deg. M)
v
= index ((L') “eM®)

:a'

By sgymmetry, it follows that a = a', The claim is proven similarly
for the multiplicity of O and the number of negative roots.

To prove (1i), we may assume that M = p*N for a non-degenerate
N on X/Y, since otherwise M has no cohomology at all. We have the
commutative diagram:

Y X2 —_

2 ﬂ > X/Y
for some isogeny g. ‘Then g*N i8 non-degenerate and index (g*N) =

index(N). So:

: = b la 2)
number of pos, rts of PL,M number of pos, rts of Pf*L,f*M (py formula 2) |
= number of pos. rtg of PLiz,g*N (py formula 1)
= index g*N (Th in non-deg. case)

= index N, ;

Now (1i) follows from Théorem 1. QED






