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Math. Ann. 181, 345—351 (1969)

A Note of Shimura’s Paper
“Discontinuous Groups and Abelian Varieties”

D. MUMFORD

Recently, there has been considerable discussion of families of abelian
varieties parametrized by quotients of bounded symmetric domains by arith-
metic subgroups. An exposition of this material can be found in the papers of
Shimura, Kuga, Satake and myself in [1]. Subsequently in vol. 168, p. 171 of
this journal, Shimura analyzed closely certain families of this type and showed
that the abelian varieties in these families are characterized, surprisingly,
by the existence of certain non-holomorphic endomorphisms. Furthermore,
he says at the end of his paper (p. 199) that it does not seem that these families
fall into the class which I constructed in [1c], which have the following
property: they can be grouped into finite sets of families, i.e., families over a
base space which is a finite union of varieties V; = I';\D;, such that the abelian
varieties 4, in any one of these coarser families are exactly characterized by
the rational (p, p)-forms on their powers A, x -+ x A, *.

The purpose of this note is to clarify the relationship of the different types
of families of abelian varieties. First, we recall the most general type
& ={X(x)| x € V}, as defined by Kuga. Second, we note which of these families
are “of Hodge type”, i.e., defined by my procedure. Thirdly, we prove that one
of Kuga’s families is of Hodge type if and only if it contains one abelian variety
X (x,) of CM-type. As a corollary, it follows that Shimura’s families in [2] are
indeed of Hodge type, contrary to his guess. Lastly, we will give another
example of a family of Hodge type not characterized by its ring of endo-
morphisms.

§ 1. Kuga’s Families

Actually, we slightly generalize his definitions, for the sake of our applica-
tion. We start with:

(1) a rational vector space V of dimension 2g,
(2) alattice LCV,
(3) a non-degenerate skew-symmetric 4: V x V—-Q, integral on L x L,

* In the terminology of [1c], note that I showed that the Hodge group of an abelian variety
was determined by these rational (p, p)-forms. But my families are given by the various different
Hodge types, where a Hodge type is given by a Hodge group G, plus a conjugacy class of 1-dimen-
sional tori T C G; where, however, the conditions on T imply that only a finite number of conjugacy
classes of T’s can be used to form a Hodge type.




346 D. Mumford:

(4) an algebraic group G, defined over @,
(5) a faithful symplectic representation

2:G-Sp(V, A)

defined over Q,

(6) an arithmetic subgroup I'C G such that o(I) preserves the lattice L.

We are interested in complex structures on V ® R so as tomake V ® R/L
into a complex torus. We find it convenient to adopt the following method of
describing possible complex structures: let T = {zeC||z| =1}, regarded as a
1-dimensional algebraic group over the reals R. Then, all complex structures
on ¥ ® R define a homomorphism of algebraic groups over IR:

o:T->GL(YV)

via ¢(e’’) = mult. by €® in ¥ ® R. Conversely, any such homomorphism puts
a complex structure on ¥ ®R, hence makes V®IR/L into a complex torus,
which we shall call X,,. Furthermore, if ¢ satisfies the Riemann conditions
(@) @(T)CSp(V, A), and (b) A(x, (i) x)>0 all xe V¥, x+0, then X, is an
abelian variety, with a canonical polarization induced by A. Now we want
a family of abelian varieties X (x) parametrized by points xe V=TI \G%/K2
for a certain maximal compact subgroup K of G9. In particular, the identity
in GR defines a double coset I'- e K2 which is a base point 0 of this base
space V. Our family can be regarded as a family of perturbations of the “base
abelian variety” X (0) over 0. So as our next piece of data, we assume an arbi-
trary X (0) is given:

(7) a complex structure @,: T—Sp(V, 4)C GL(V) such that Jo=¢o(D)
satisfies:

Ax,Jyx)>0, all x%+0 in V.

Now, to every point g € G2, let

the polarized abelian variety V ® IR/L, with complex}

X(2)=X ygr00-060)-1 = -
®)=X oo et0-1 {structure 0(8)* @0 " e(g)~", Riemann form 4

If K ={ge Gy |o(g)po = ®00(g)}°, then X(g) depends obviously only on the
image of g in the coset space G3/KR. Moreover, the automorphism o(y) of V
sets up isomorphisms of the abelian variety X(g) with X (yg) for all ge GY.
Therefore X(g) depends only on the image x of g in I'\GS/K and we may
write for simplicity X (x), instead of X (g).

We still want to ensure that G3/K is a bounded symmetric domain and
that {X(x)} is a holomorphic family of abelian varieties. This is guaranteed
by imposing on the data (1)—(7) the following condition (which is the integrated
form of Satake’s original condition (H, )):

(H}) 0(G) isnormalized by ¢(T).

It follows easily from (H}) that G is reductive, that K9 is a maximal compact
subgroup of Gg, that G/K§, is a Hermitian symmetric space, and finally that
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the map induced by z:

G /K8 — Sp(V, A) / (centrahzer) _ Siegel’s upper

of @, = half-plane

is holomorphic. The resulting family {X(x) | x € '\G2/KR} glued together into
a complex analytic fibre system of abelian varieties over the base space
I'\G2/K$ will be denoted by Z(G, 0, @,).

Notice that the base point in Kuga’s families is arbitrary. For any g, € G2,
we can replace @ by @) =0(go) - @0 * 0(go) ", and obtain the same family as
before, but with a different base point X (0).

§ 2. Hodge Groups and CM-Type
We continue to assume that the data (V, L, 4) is given. Suppose
@:T->Sp(V, A)

is any complex structure on ¥V ® R satisfying the Riemann positivity condition,
so that the corresponding X, is an abelian variety.
Definition. The Hodge group Hg(X,) of X, is the smallest algebraic sub-

group of Sp(V, A) defined over @ and containing ¢(T). Recall that Hg(X,,) is
always reductive, with compact center, and semi-simple part of Hermitian type.

Definition. If id.: Hg(X,)—Sp(V, A4) ist just the inclusion map, then the
families

2 (Hg(X,), id., ¢)

are called the families of Hodge type.
These are exactly the families constructed in [1c].

Definition. An abelian variety X over € is of CM-type if X is isogenous
to a product X, x --- x X, is simple abelian varieties and there are fields K;
CHom(X;, X;)® Q such that [K;:@Q]=2dimX; (in which case, [K;:Q]
=2dim X; and K; = Hom(X;, X)) ® Q).

The following is well known ([3], § 5):

Proposition. X is of CM-type if and only if Hom(X, X)®Q contains a
commutative semi-simple Q-algebra R such that [R:Q]22dim X, and if R
exists, [R:Q]=2dim X.

Yet another characterization of CM-type is:

Proposition. X, is of CM-type if and only if Hg(X,) is a torus algebraic
group.

Proof. Any endomorphism of X, has a natural representation as an endo-
morphism of V over Q, and it is easily seen that for any ¢,

Hom(X,, X,)®Q={ge Hom(V, V) | g9 =g} .
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Since Hg(X,,) is generated by Im(¢) and by its conjugates over @, it follows that:
Hom(X,, X,)®Q= {ge Hom(V, V)q |gg'=g'g, all g'e Hg(X,)}. (%)

Now suppose that X, is of CM-type. Let R be the commutative semi-simple
Q-algebra given by the previous proposition. Then via the above isomorphism
it follows that Hg(X,) commutes with a maximal commutative semi-simple
subalgebra R’ of Hom(V, V). But therefore Hg(X,) C units of R, hence Hg(X,)
is itself commutative, hence it is a torus algebraic group. Conversely, if Hg(X,)
is a torus algebraic group, then as a subgroup of GL(V) it is diagonalizable.
Therefore, the commutator of Hg(X,) in Hom(V, V). and hence in Hom(V, V)
contains maximal commutative semi-simple subalgebras R’. Since for all such
R, [R":Q]=dim V=2dimX,, this implies by (x) that X, is of CM-type.

QED.

§ 3. The Theorem

Theorem. a) Every family & (Hg(X,), id., ¢) of Hodge type contains abelian
varieties of CM-type.

b) If Z(G, e, p,) contains a member of CM-type, then Z (G, o, ¢,) is iso-
morphic to a family of Hodge type.

Proof. It is well known that for any algebraic group G over Q, G, is dense
in GR. This implies that for such groups G, every Gg-conjugacy class of maximal
algebraic tori in G, defined over IR, contains tori defined over Q. Namely, let
T, CG be a maximal torus defined over R. If a€(Ty)y is a regular element,
then T, is the centralizer of 4, and a has an open neighborhood U C G{ such
that the centralizer of any a’e U is a conjugate of T,. If ' e Un Gy, then the
centralizer of @’ is a conjugate of T, defined over @, as required. Now apply
these results to Hg(X,). Let K = centralizer of @(T), regarded as an algebraic
subgroup of Hg(X,) defined over IR. Then K has at least one maximal algebraic
torus T, CK defined over R ([1¢€], p. 26). Since @(T) Ccenter(K), o(T)CT;.
Moreover, if T is any torus in Hg(X,) containing T, then T will centralize
@(T), hence T; CK, hence T{=T,: ie., T, is a maximal algebraic torus of
Hg(X,) too. By our first remark, there are elements g € Hg(X,), such that
T,=gTig™! is defined over Q. But then T,>g¢(T)g™!. Therefore
T, > Hg(X,,,-1), and so Hg(X,,,-1) must be an algebraic torus. Therefore
Xge4-1 is of CM-type and this proves (a).

To prove (b), first replace @, by o(g)@o0(g) ! for a suitable g € G2 so that
the abelian variety X (0) is of CM-type. This does not alter the family Z'(G, g, @)
Let T, = Hg(X,,). This is an algebraic torus, defined over Q. Since T, is generated
by ¢o(T) and its Q-conjugates, all of which normalize 2(G), it follows that T,
normalizes ¢(G). So G* = ¢(G). T, is an algebraic subgroup of Sp(V, 4) defined
over Q, with ¢(G) as a normal subgroup. Note that G* is still reductive since
¢(G)and T, are reductive. In particular, G* = (semi-simple part) - (central torus),
hence G*=¢(G) - (central torus). Therefore, the two collections of complex
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structures:

D {e(®)poe(® " g€ Gr},
(D {gpog™" |ge GX°}

are exactly the same. Moreover, G2/(centr. of ¢,) is canonically isomorphic to
G¥°/(centr. of ¢,). Therefore the 2 families (G, g, p,) and % (G*,id., p,)
(where id.: G*—>Sp(V, A) is the inclusion map) are isomorphic. Finally, let
©=g@og ! where ge G¥° is a generic point of G* over a field of definition of
@o(T). Then Hg(X,) is the smallest Q-rational subgroup of G* containing all
the tori go3g !, g € G*, 6 € Aut(C). Hence Hg(X,) is just the smallest subgroup
of G* (defined over any field) containing all the torig T; g ~*, g € G*. In particular
Hg(X,) is a normal subgroup of G*, defined over @ and containing ¢(T) and
®o(T). Therefore G* = Hg(X,,) - G, where G, commutes with Hg(X,,) and hence
with ¢(T) and with ¢(T). It follows that the sets (I) and (II) of complex struc-
tures are equal to the set:

(I {gpg™"|ge He(X,)p}-
It also follows that G}°/(centr. of @) is isomorphic to Hg(X,)a/(centr. of @),
hence the 2 families Z'(G*, id., ) and % (Hg(X,), id., ¢) are isomorphic. QED.

§ 4. An Example

Since families of abelian varieties which are not characterized by their
endomorphism rings are fairly mysterious, it seems worth-while to present as
an example what seems to be the only family of this type of 4-dimensional
abelian varieties. (In dimensions 1, 2 and 3, all families are characterized by
endomorphisms.)

To define this family, we need an apparently “well-known” construction
for central simple algebras: if LD K is a finite separable extension of degree n,
and D is a central simple algebra over L, with [D : L] = €?, then there is canonical
central simple algebra Cor, (D) over K, with [Cor(D): K] =e", and with a
homomorphism

Nm : D* - Cor x(D)*

of units. It is simply the corestriction map in the cohomology theory of groups
applied to the Brauer group. To construct it, let Q be a separable closure of K
and let ¢,,---,6,: L—Q be the distinct K-isomorphisms from L to Q. Let
D®=D®,(R, 0;) be the central simple Q-algebra obtained by base change
with respect to ;. Then Gal(Q/K) acts on

E= D(1)®___®D(n)

in a natural way, i.e. if T : Q > Q is a K-isomorphism, then 7 g; = g, for some
permutation n, and the maps

d®ard®1(a)
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induce semi-linear-isomorphisms D®= D" hence a semi-linear auto-
morphism of E. Let Cor, (D) be the subalgebra of E left fixed by this action:
this will be a central simple K-algebra such that Corpx(D)®xQ =~ E. Finally
define Nm(d) to be the element

dR®N®---®U®1)

of E, which is clearly in Cory k(D).
Now let K be a totally real cubic number field, and let D be a quaternion
division algebra over K such that

Corgq(D) splits, ie. =~ Mg(Q), (1)
D®qR=K + K + M,(R). @)
Then we get a natural homomorphism:
Nm:D*->GL(8, Q).
Let be the standard involution of D, and let
G={xeD*|x-Xx=1}.

Then G is an algebraic group over @, which is Q-simple, but which by (2),
is a Q-form of the R-algebraic group SU(2) x SU(2) x SL(2, R). Moreover, let
V = Q8; then, via Nm, G has an algebraic representation in V defined over Q,
which is a Q-form of R-representation:

SU(2) x SU(2) x SL(2, R)— SO(4) x SL(2, R)
N )
acting on R* ® R?

Over R, this representation leaves invariant a unique symplectic form (up to
scalars), so there is a unique symplectic form A4 : V x V- Q left fixed by our
Q-representation. Let LC V be any lattice, and I' C G any arithmetic subgroup
preserving L. Finally, let

@o: T->Sp(V, A
be the homomorphism :
©0: T—>SO(4)x SL(2,R) C Sp(V, A)x,

cosf sinf
—sinf@ cosf/’

el 1, ®<
This gives data (1)—(7) as in § 1, and (H?}) is obviously satisfied. Moreover,
since G is Q-simple, ¢(G) is exactly the Hodge group of a generic conjugate
0(@)" @, - e(@)™, so we have a family of Hodge type. Finally, V is an absolutely
irreducible representation of G, so whenever Hg(X,) = e(G), X, has no non-
trivial endomorphisms.
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