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Inventiones math. 5, 317334 (1968)

Deformations and Liftings
of Finite, Commutative Group Schemes*

Frans OORT (Amsterdam) and Davib MUMFORD (Cambridge, Mass.)

1. Introduction
Consider the following problems:

(A) Given a field k, a finite k-group scheme N, and a ring R with
a surjective ringhomomorphism R — k. Does there exist a finite, flat
R-group scheme N such that Ny=N ®gk? (If so, we say that N is
obtained from N by reduction mod m, where m=Ker(R — k), or, we
say that N is a lifting of N, to R.)

(B) Given a field k£ (of characteristic p>0), and a finite k-group
scheme N,. Does there exist a ring R (integral domain of characteristic
zero) with a reduction R — k, and a finite, flat R-group scheme N such
that Ny N @ k?

The answers to (A) and to the weaker question (B) are negative in
general. However if in (B) moreover is given that N, is a commutative
finite group scheme, the answer is affirmative; it is the aim of this paper
to give a proof of this fact via deformation theory of finite group schemes
in characteristic p>0. As a byproduct we obtain a proof for the fact
that any finite, local group scheme can be embedded into a formal
Lie group with coefficients in the same field, on the same number of
parameters.

Example (— A). Let k be a field of characteristic p>0 (e.g. the prime
field k=F,), and let R be a ring with a reduction R— k=R/m, such that
p-1¢m? (an “unramified” situation) (e.g. R=W,, (k), so W, (F,)=Z,, the
ring of p-adic integers, or R = W,, (k)/p®). Let No=a,, ,,i.e. No=Spec(k []),
t?=0, and the group law is defined by so: E;— Eq® Ey, Eq=k[1],
with s4(1)=1 ® 1 + 1 ® 1; we claim that in this case the answer to problem
(A) is negative. Suppose R to be local (localize if necessary), and suppose
N as indicated could be found; then N=Spec(E), E=R[c], where
0’=a,6+:-+a,_, 6?~ " with g;em; the group law would be given by
some ringhomomorphism s: E— E®g E, so

S(O')=O'®1+1®G’+Zb,—j0'i®0'j, b;;em;
* This work was partially supported by NSF grant GP 3512.
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318 F. Oort and D. Mumford:

as (so)’=s(c¥), we obtain:
p(c®c” '+--+a*'®0)=0 (modm? - EQE),
which is a contradiction.

Remark. In the previous situation, by a result of Tate (cf. [13]),
we know that «, can be lifted to R (e.g. R is a complete local ring) if
and only if peR admits a factorization p=ab, with aem, and bem.

Example (—B). Let R be an integral domain of characteristic zero,
and let N=Spec(E) be a finite R-group scheme such that E is a free
R-module of rank p? (where p is a prime number). Then N is commuta-
tive. This can be seen as follows: let L be an algebraic closure of the
field of fractions of R; we know that N ®g L is reduced (cf. [1], foot-
note on p.109; cf. [9], lecture 25, theorem 1; cf. [11]), so by group
theory it follows that N ® L, and hence that N is commutative. This
shows that any non-commutative group scheme of rank p? cannot be
lifted to characteristic zero. It is easy to give an example: take the kernel
of the Frobenius homomorphism of a suitable non-commutative linear
group. For example, let N, be given by: k is a field of characteristic p,
and for any k-algebra B,

Ny (B)={the multiplicative group of matrices (g f ),

so Ny=Spec(E,), E,=k[1, p] with t7=1, p?=0, with sy(1)=1® 1 and
So(p)=p®1+1@ p.

2. Liftings of Deformations

The first example makes it clear that in order to lift a finite (local,
unipotent) group scheme to characteristic zero, in general one has to
allow ramification at p; but it is difficult to obtain directly from N,
the information “how much ramification” is needed. Therefore we solve
the problem B in the commutative case via deformation theory in
characteristic p>0. The following lemma is a special case of a general
principle: that specializations of liftable “objects” are liftable.

Lemma (2.1). Assume we are given rings: AcK «%— R, where R is
a characteristic zero local domain, t: R— R/m=K its residue class map,
and A a subring of K, and that we are given finite free group schemes
ver these rings
over these ring N, M, M

! ! !
Spec(4) < Spec(K) — Spec(R),
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where M,=N,®, KM ®g K. Write R'={xeR|n(x)eA}; there is a
finite free group scheme N — Spec(R') such that Ny=N ®g A and
M=N ®g R.

Proof. Let Ny=Spec(E,), M,=Spec(F,), M =Spec(F). Then F,x~
E,®,K=>F ®g K. ldentify E, with the corresponding subset of F,,
and identify F, with the corresponding quotient of F, so E,c F, «™—F.
Each of these three is a free module of rank d, say, over either 4, K
or R, and has the structure of a bialgebra. Let E={xeF|n'(x)eE,},
and choose a basis {b,, ..., b;} of E, over k; let a;eF satisfy n'(a;)=b;;
one checks easily that E is a free R’-module with basis {a,, ..., a,}.
Moreover, one can also check

i) that the identity 1 of F is in E,

ii) E is closed under multiplication in the ring F,

iii) the comultiplication F— F ®g F carries E in E ®g E,

iv) the augmentation F— R carries E in R/,

v) the inverse F— F carries E to E.

Therefore N =Spec(E) is a finite free group scheme over R’ with
all the required properties.

Actually, what we need:

Corollary (2.2). Let A=k be a field, and let N, be a finite k-group
scheme; this group scheme can be lifted to characteristic zero if and
only if for some field extension k< K (or for every field extension kc K ),
N, ® K can be lifted to characteristic zero.

The “if” part follows from (2.1). The “only if” part for example is
an easy consequence of the place extension theorem (cf. EGA 0y, 10.3.1).

Corollary (2.3). Let k<« A=K be ringhomomorphisms, and let
N, =Spec(Ey) be a finite free A-group scheme such that N, ®, K can
be lifted to characteristic zero. Then N, ®, k can be lifted to characteristic
zero.

If Ny=N ®g A, then N ®, k=N ®p A ®, k=N @g k.

3. Moduli of Rigidified Local Group Schemes

It is clear that in general the moduli functor for finite group schemes
is not representable.

Example. Let char(k)=p>0, take B=k[T], and define a B-bialgebra
by E=B[1] with =Tt and s(t)=t1®1+1®t; for any field K>k
and for any teSpec(B)(K) with t=0 (i.e. for any k-algebra homomor-
phism ¢: B— K such that ¢(T)+0) E, is the bialgebra of a reduced

22+
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group scheme, isomorphic to Z/p in case K is algebraically closed,
while E, is the bialgebra of the group scheme «,.

However by an obvious rigidification of the underlying scheme of
the group schemes we can obtain a moduli space. In order to see that
any finite group scheme admits a nice deformation we would like to
know that this moduli space is irreducible. It is easy to see it is connected,
and by imposing extra conditions we can actually obtain a variety.

First we recall the following fact, due to Dieudonné and Cartier.
Let N be a finite local k-group scheme, where k is a perfect field; N=
Spec(E). Then there exist integers vy, ..., v, and an isomorphism

E=K[Xy, ..., X, (XPPO0, | XPewOm)

(cf. SGAD, Exp. V1l,, 5.4; we are writing p exp(a)=p” for typographical
reasons); in this case we say that E admits a truncation type v=(vy, ..., v,,).

By the way, the following example shows that in general a finite
local group scheme over an imperfect field does not admit a truncation
type: let ack, a¢k?, E=k[X,Y]/(X"’,XP—aY), and s(X)=X®1+
19X, s(Y)=Y®1+1QY.

Notation. Let a=(ay,...,,) be a set of non-negative integers; we
write X* for
X=X x - x Xpm

(with X?=1), and we denote by |a|=0,+ - +0,,.

Definition. Let p be a prime number, v=(v,, ..., v,) a set of positive
integers, and y=X* a monomial in m variables, where a=(a, ..., ).
We say that p satisfies the condition (Pv); for 1<i<m, if there exists
an index j such that

j a} . pvi gpv]'
or, equivalently (X*PP™ is in the ideal generated by XJ7®PCv
XEe®0tm) We say that a polynomial in X, ..., X,, satisfies (Pv); if is
can be written as a sum of monomials which all satisfy condition (P v);.
We say that a polynomial in the variables X;® X;, 1<j<m, 1<k=m,
satisfies condition (Pv); if it can be written as a sum

Zﬂlr®,u2t
t

where u, and u,, are monomials such that for each index ¢t either yu,,
or u,, satisfies (Pv),. Analogous definition for a polynomial in the
variables X; ® X, ® X;.

Remark. Let B be an integral domain of characteristic p, and let
N =Spec(E) be a finite B-group scheme, E=B[ 1, ..., 1,,] with T7*P0) =,
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1<i<m; the comultiplication is denoted by s: E-EQ®E. As s is a
ringhomomorphism it follows that (st,)?**"?=0, so s(t;) is a poly-
nomial in t;® 1, which satisfies condition (Pv);. The same for the
polynomials y(z;), where y: E— E defines the inverse.

We fix k, a field of characteristic p>0, and v=(v,, ..., v,,), a set of
positive integers; C=C, denotes the category of k-algebras. Define a
functor £,=%": C— Ens by:

2 (B)={all cocommutative B-bialgebra structures on B[z, ...,7,]=E,
such that s(t;) are polynomials satisfying condition (Pv), for
I<ism},

where 7P =0 for 1<i<m, and where the augmentation ideal of E
is generated by 1,,...,1,. Note that a B-bialgebra F can correspond
to various elements of X(B), as there may exist several isomorphisms
F=B[1,..., Tl

Theorem (3.1). We fix k, and v=(v,,...,v,,) as before; the functor
2: C— Ens is represented by a k-algebra U, and there exists an integer n
such that U~k[T,,...,T,].

It is easy to see that X is representable; however the first step of
the proof will be more complicated as we want to obtain information
for late use.

Proof, first step: X is representable. Consider all combinations
(i, a=(ay,...,0p), B=(Py,...,Bn) such that 1<i<m, 0=Zo;<pexp(v),
0<p;<pexp(v,), and such that the monomial 7*® t* satisfies condition
(Pv); (i.e. either (z%)P**?=0, or (t#)?**("?=0), and such that |«[>0
and |B|>0; let A=k[...,Y;,4,...], and let F=A[1,,...,1,] with
PPtd—=( 1 <i<m. Then we are given an A-algebra homomorphism

s: F>F@,F

b,
’ s(t)=1,@1+1@1;+ ) ¥, s @7
o p

(s is a ringhomomorphism because of the conditions (Pv);, but this
is not the point where these conditions are used essentially). Let p,,
Uy, ... be all non-zero monomials of the form *® t* ®1"; we write
I's=(s®1)-s—(1®5s)-s, and

(FS)(T;')=ZHU#1, I1=ism,
j
with H;;eA; let pcA be the ideal generated by these polynomials,

and by the symmetry relations:
p=(""Hij3"'9""Yi,a,ﬂ_Yi,B.a"")'A'
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We define U=A/p, and E=U[z,,...,1,]. It is clear that s induces a
coassociative comultiplication

s: E-EQuE,

defined by
S(Ii)='l'i® 1+ 1®Ti+ Z yi,,‘ﬂ 1u®Tﬁ,
a, B

where y; , s=Y; , s mod p. Clearly the pair (U, E) represents the functor
Q,, ,=Q defined by:

Q(B)={all cocommutative coassociative B-algebra homomorphisms
s: E— E ®g E, where E=B[1,,...,1,], such that s(x)=x® 1+
1®x (mod a®a), a=(ty, ..., T, - E, and such that s(t;) satisfies
condition (Pv);, for 1<i<m}.
The following lemma asserts that X (B)-= Q(B):

Lemma (3.2). Let B be a ring in which p-1=0, let E=B[tq,...,Tp]
with tP**00 =0, 1 <i<m, and with augmentation ideal a=(ty, ..., 1,,) - E.
Let s: E—~E®gE be a B-algebra homomorphism such that

s(x)=x®1+1®@x (mod a® a)

for all xea (i.e. the augmentation is a left- and a right-coidentity), and
such that s(t;) satisfies condition (Pv); for 1<i<m. Then there exists
a unique B-algebra homomorphism y: E— E such that m(y ® 1) s(x)=0
for all xea (where m: E®g E— E is the multiplication).

Proof. We define y,(r;)= —1;; thus we have defined a B-algebra
homomorphism y,: E— E having the property

m(y; ®1)s(x)ea?  for all xea,

and it is unique modulo a? among all having this property. Suppose
for some N>1 there is given a B-algebra homomorphism yy: E—~E

such that M ®1) s(x)= py (x)ca™+1 for all xea,

and such that yy(t;) satisfies condition (P v); for 1<i<m. It is easy to
see that py(t;) satisfies condition (Pv);; thus

W+1(t)=w () — o (7o), I<sism,
defines a B-algebra homomorphism yy,,: E—E; it is clear that
My 41 ®1) s(z)ea 2 for 1gism,

and it is readily verified that if y’ also has the property m(y'®1) s(x)ea™ *2
for all xeaq, and y'(t;))— v+, (r)ea *! for all i, then y'(x)=yy,(x) (mod
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a¥*2) for all xea. Thus the construction of y and its uniqueness follow
by induction as al”!=0.

Thus the ring U and the bialgebra structure on E represent the
functor 2~€Q, and the first step of the proof is concluded. Let W=
Spec(U); consider the point 0eW(k) defined by y; , 40, i.e. s(t;)=
7;®1+1®1; and y(r;)= —1;; that is the point corresponding to the
rigidified group scheme o, e,y (vy) X *** X U exp(vm) -

The crucial part of the proof of the theorem is: OeW(k) is a non-
singular point of W (note that this is false if W were the moduli space
of all rigidified group schemes, say of a fixed rank, not necessarily local;
note that this is also false if W were the moduli space of all rigidified
local group schemes, not all the v; equal, and not imposing the extra
conditions (Pv),). This we can show in two ways. It can be deduced
from results of Lazard about formal group laws; this will be done in
the next section. We could also have used the group-cohomology as
described in SGAD, Exp. III, especially p. III. 42/43, Theorem 3.5 (also cf.
[81), and using a result of G. Efroymson, which says that H, ....(N, G,)=0
(trivial action of the commutative finite group scheme N on the additive
linear group G,) (proved in his Harvard thesis, 1966, later generalized
into a structure theorem about the cohomology ring H" (N, G,), not yet
published).

4. Finite Group Schemes and Buds

First we recall some definitions and results to be found in a paper
by Lazard, cf. [5]. Let m and r be positive integers, R a ring (commuta-
tive, and 1eR), and

f: R[X,,....,X,]J=E—>EQ®gE

an R-algebra homomorphism; we say that f defines an r-bud (“r-
bourgeon”) on m parameters, with coefficients in R if (we write (f®1) - f—

A®f)-f=rf):

rHX=0 (mod degree r+1) for 1<is<m
(degree means total degree in the variables X;®1,...,1® X,,); f and
g define the same r-bud if and only if f(X,)=g(X,) (mod degree r+1)
for 1<i<m (cf [5], p.381, Definition 13.1); a system f, f,,... such
that f, is an r-bud on m parameters, and such that f, and f,,, define
the same r-bud is called a formal Lie group on m parameters. We write

A, (R)=A(R)={all cocommutative r-buds (“r-bourgeons abéliens”) on
m parameters with coefficients in R};

clearly we have thus obtained a covariant functor 4,, , defined on the
category of commutative rings with identity; if fe4,, ,(E) and ¢: E— R
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is a ring homomorphism we write (4 ¢)(f)e4,, ,(R) for the r-bud over
R obtained from f, applying ¢. Lazard has proved:

(i) (cf. [5], pp.394—399, and previous pages). Let

N (m, r)=N=m((r;m)—m-—1);

there exists a universal
EeAn,(4), A=Z[T,....Typmnl.
i.e. (4,, F) represents the functor 4, ,, or: the map
RHom(4,,R)= 4,, ,(R)

defined by ¢+ (A @)(F) is bijective for every R.

(ii) The natural restriction map A4, ,.;(R)— 4, ,(R) is surjective
if R is without integral torsion (cf. [5], p.396, Lemma 15.2), hence,
by (i), this map is surjective for every R; it corresponds to the inclusion map

A=Z[T,....Tymnl A+ 1=Z[T}; ..., Tygm,r+ 1))
such that FeA,(4,)cA4,(4,,+,) and F €A, ,(A,,,) define the same
r-bud.

(iii) Suppose f, and f,., define the same r-bud on m parameters
with coefficients in R; (A¢,)(E)=f, and (A @, ,,)(E.,)=/f4+,; then the
diagram A, Ao,

@r Pr+t

R
A={JA4,=Z[T, T, ...]

represents the functor of all formal Lie groups on m parameters (cf.
[5], p-397, Theorem 15.1); in particular, any r-bud on m parameters
can be extended to a formal Lie group on m parameters with coefficients
in the same ring.

commutes. Hence

Suppose we fix k, a field of characteristic p>0, a positive integer m,
and positive integers v,,...,v,. We choose an integer r so that

™=

r=z3-

(pexp(v)—1).

]

1

We consider only rings R containing k, in particular p-1=0 in R. We
restrict the functor A to the category of k-algebras; for such rings we
define a functor 4 by: A —AcA

A(R)={feA,, ,(R) such that f(X) satisfies condition (Pv); for 1=i<m}.

m,r, v
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For feA(R), we define p(f) by
o(N)()=f(X;) mod(XPexPC) XPexp(vm)).

because of the conditions (Pv); we thus obtain an R-algebra homo-
morphism (!)
p(f): ESEQrE, E=R[t,...,Tn],

where t7°®?=0, 1 <i<m, and because of the choice of r it follows that
I's)(x)=0, 1sism,

so p(f)eR(R) (in the notation introduced in Section 3). So we have
the following morphisms of functors (defined on k-algebras):

r2Q,,=Q—4,,,cA

m,r, v m,re

Proposition (4.1). We fix k, m, vy, ..., v, and r23.) (pexp(v)—1)
as before. The functors
A,4,Q: C— Ens

are representable, say by L, D, and W. The schemes D and W (and also L)
are isomorphic to affine spaces over k. In suitable coordinates the mor-
phism p: D— W is given by a projection

D=Spec(k[T;,...,T,, T}, ..., T,]) = Spec(k [T}, ..., )= W;
in particular, for every Ro>k the map p: D(R)— W(R) is surjective.
In order to deduce these facts from Lazard’s results, we need the

following tools:

Lemma (4.2). Let
f(Xy)= Z Qi a,p X*® X"
a, B

be polynomials with coefficients in a ring R with p-1=0, such that f(X)
satisfies condition (Pv);, 1<i<m; then (f®]1) f(X,), and also (1® f)
f(X)), can be written as a sum of monomials satisfying condition (P v);.

Proof.
(f®1 f(X)= Zﬂai,a.ﬁ{n [Z 49,8 Xy@X&]a’} ®XP= z’;ai,a.ﬂQi,a,ﬂ'

It suffices to consider each Q; , ; separately; either X* satisfies con-
dition (Pv);, and we are done, or there exists an index e such that
o, - pexp(v)=pexp(v,), so p exp(n+v;)=p exp(v,) with a,=p", and n=0;
in that case

Qiap= {2 a,,.s XX x ()} ®XP
={{Y [a.,,s X’ ®X*]”"} x ()} @ X*;
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for each (e, y, 5) there exists an index d such that y, - p exp(v,}=p exp(v)),
or 8- pexp(v,)2pexp(vy), hence

P’ Ya-pexp(vi)2vs- pexp(v)Zpexp(vy),

or the same with d,, and (Q; , 5?7 is divisable by (X, ® 1 ® 1)P=Pt*a),
respectively divisable by (1® X, ® 1)P***"9) and the lemma is proved.

Lemma (4.3). Let R be a ring, M an ideal in R, and beR so that
M -b=0. Let E=R[X,,...,X,,], and g: E->EQ®E so that

gX)=X;®1+1®X; (mod M -EQ®E).

Let P=bX*® X? be a monomial such that X* and X* do not satisfy
condition (Pv); (for some fixed index i); then (g®1)(P), and also
(1® g)(P), can be written as a sum of monomials none of which satisfy
condition (P v);.
Proof.
E®)(P)=b-g(XH@X*=b-{[[ X;®1+1® X))} ® X*
j

as M -b=0, and the lemma is proved.

Let k be a field, W a k-algebraic scheme, and we W(k). The following

statements are known to be equivalent:
(i) w is a non-singular point on W,

(ii) the local ring O of w on W is a regular local ring, i.e. its com-
pletion @ is a formal power series ring O=k[e, ...,e,1;

(iii) (Grothendieck’s criterion, cf. SGA, III.3.1 and I1.5.10) for every
local artinian k-algebra R, maximal ideal M, and any ideal IcR so
that M - I=0, the map W(R),, — W(R/I), is surjective (we write W(R),,
for the set of morphisms W Spec(R) with (W— Spec(R) — Spec (k))=w).

Lemma (4.4). Let p: D—> W be a morphism of k-algebraic schemes,
and deD(k) a non-singular point on D; suppose the tangential map

Px’ tpa=twpw
to be surjective. Then p(d)=we W(k) is a non-singular point on W.

Proof.Let ey, ..., e,e Oy, be choosen in such a way that their residues
modulo m? form a k-base for m/m?, where m is the maximal ideal of
Ow,,. We obtain:

kl[ela EAAE en]] — @mw—l') @D,d;

as the tangential map p, is surjective, the images of the e;’s are linearly
independent modulo the square of the maximal ideal of @ ,; as d is




Deformations and Liftings of Finite, Commutative Group Schemes 327

a non-singular point this implies that the composition ¢ - 7 is injective;
thus 7 is injective (and it is also surjective), so @"{w is a formal power
series ring, hence weW(k) is a non-singular point, and the lemma is
proved.

Elimination Lemma (4.5). Let A=k[T,,...,Ty], and H,, ..., H;eA.
Suppose given positive integers w(T,),...,w(Ty) such that H,,...,H,
are homogeneous polynomials in the weighed variables T,,...,T, (i.e.
we write w([[ T,)=). w(T,); if p, and p, are monomials occuring with
non-zero coefficients in some H;, then w(u;)=w(u,)). Suppose H,(0)=
0=H,(0)="---=H,(0), such that 0 is a non-singular point of V=_Spec(A4/
(Hy, ...,H,,)A). Then we can renumber the variables, and we can choose
0=<nZN so that

A/H,, ..., H)A=kK[T, ...,T.].

Proof. Suppose (Hy, ..., H)A+0 (otherwise the conclusion is ob-
vious); in that case at least one of these polynomials has a linear term:
if not, we would have

(Hla "',Hd)AC(Tiz, 57—;7;a 5TNZ)A=b7
SO
Spec(A/b)= V T Al =Spec(k[T,, ..., Ty]),

a contradiction with the fact that OeV(k) is non-singular. So let
Hd=CTN+G, CEk, C+0

so that T does not appear in the linear term of G (renumber the variables
and the polynomials if necessary); as w(T;) are positive integers for all i,
it follows that Gek[T,,...,Ty_,]. We write

i
Gi=H,(Tyy .., Ty, = G(T; ...,TN_I)), i1<i<d,

and clearly
A/(Hb ’Hd);k[T‘l’ "'5TN—1]/(G1’ ---,Gd—l)

(the variable Ty is eliminated); moreover it is clear that the polynomials
G,,...,G,_, are homogeneous in the weighed variables Tj,...,Ty_;
thus the lemma is proved by induction on 4.

Proof of Proposition (4.1). We proved that Q is represented by W
in Section 3, by the results of Lazard we know A is representable, and
it is easy to see that A is representable (cf. below). The point 0eD(k)
is defined by fed(k), f(X;)=X;®1+1® X;; first we show that this
is a non-singular point on D. Let R be a local artinian k-algebra, with
maximal ideal M, and let I =R be an ideal such that M - I=0; we write
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R’'=R/I. By Grothendieck’s criterion it suffices to show that
D(R)o—D(R’),

is a surjective map. Thus given f'ed(R')o=D(R’)y, we would like to
construct feA(R), so that f'= f(mod(I - EQE)) (where E=k[X|, ...,
X,.]); by the result of Lazard we know that A is represented by a non-
singular scheme (in fact affine space of dimension N (m, r)), so for
f'ed(R")o<= A(R'), there exists a ge A(R), so that
f'=g (mod I - EQR E).
We know that
X=X, ®1+1® X; (mod M - EQ E),

as we work in the point 0eD (k)< L(k); we write
g(X)=f(X)+c(X),

where ¢(X;) consists of monomials none of which satisfy condition
(Pv);, and f(X;) consists of monomials which satisfy condition (P v);.
We claim that

rf)=0 (mod degree r+1),

i.e. fed(R)y; in fact let
f(X,)=XI®1+1®X,+Zai’a,ﬂX"®Xﬂ,
@ p

c(X)=Y b; . s X*® X*;
a, B

then a; , ;eM and b; , sel. Using M -1=0, we obtain:

E®egX)=[/®1 f(X))]
Y b s X*@X @1+ @1 (X b; 4 5 X*® XP)].
a, f a, B

By (4.2) the first term in square brackets can be written as a sum of
monomials all satisfying condition (Pv);; by (4.3) the second term
can be written as a sum of monomials none of which satisfy condition
(Pv);. Thus the equation (I'g)(X;)=0(mod degree r+1) proves, by
sorting out all (P v);-monomials, that

rfx,=0 (mod degree r+1),

thus fe A(R),, and we have proved that OeD(k) is a nonsingular point
on D.

Next we show that OeW is a non-singular point on W. Let R=k[¢],
with &2=0. We know that 5 o=4(k[e]),, hence by (4.4) it suffices
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to show that py: A(k[e])o— Q(k[e])o

is a surjective map. Hence we are given
s: ESE®E, E=R[t,...,7Tn],
S(Ti):l'i®1+1®1[+8'Zci,a,p Ta@’[ﬂ’ Ci,a,ﬁEk,

satisfying (P v); and (I" s)=0, and we have to construct an r-bud f satisfy-
ing again the conditions (P v); extending s. We choose

fX)=X,@1+1@X;+e-Y ¢; , s X" @ X”;
as ¢2=0, we obtain
D fX)=X,®1R1+1RX;®1+1®1® X,
+e-Y . XX ®1
te ) Cap{[[(GR1+1@ X)) @ X,
j

with

in each of these terms the.exponent of X; is smaller than p exp(v;), thus
I's=0 proves that (I'f)(X;)=0. Thus feA(R),, and certainly p(f)=s,
and we have shown the tangential map p, to be surjective; as 0OeD
is a non-singular point we conclude by (4.4) that 0e W is non-singular.

Now we prove that D and W are isomorphic to affine spaces over k.
Let A’ be the set of pairs («, f) with a=(xy, ..., a,), f={F1,..., Bn) SO
that 1<|¢| and 1=<|f| and |&|+|B|=r; let A" be the set of triples (a, §, y)
with 1|, 1=|B]|, 1=<]y], and |a|+|B|+|y|=r. Let Q" be the set of
pairs (a, f) with 1<|a| and O<a;<pexp(v) for 1=<j<m, and 1Z|f]
and 0= B, <pexp(vy) for 1<k<m; let Q" be the set of triples (a, B, 7)
with 1<|a| and 0<a;<pexp(v)), etc. Consider

FX)=XQ1+1®X,;+ Y T, , s X*Q@ X*,
a, B
summation taken over all («, f)e 4’, respectively summation taken over
all (a,P)eQ’; we write k[A"], resp. k[R'], for the polynomial ring

k[...,T; 4p,...], 1=i<m and (a,P)ed’, resp. 1=<i<m and (a,f)eQ".
We define polynomials H; ek[47], resp. H; , 5 ,€k[Q] by

i, B,y
(FF)(X;')= Z Hi, Xa®Xﬂ®X7-

o, B,y
Clearly the scheme D, resp. W, is defined by the equations

Ti0ps=T pa all 1<i<m and (o, f)eA’, resp. (a, fle’;
T, . 3=0 if X*® X? does not satisfy (Pv);;
hap =0, all 1=i<m, and (o, B, y)ed”, resp. (a, B, y)ef2”.

@B,y

H
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Consider (F® 1) F(X,); part of this has the form
YTl GRI+1®X4+) T, X @ X)) @ XP;
J

each term of this sum is of the form
Tas [l (Tz,a,,,‘,Xl'®X“')®X'q

15t=|al

(where the question mark indicates some integer, 1 <?<m, and where
T,,,0=1=1T,,,,); the monomial in the T’s obtained thus has weight

la+181 =1+ X (Al +ml—D=a,

while the corresponding term in the X’s has total degree
YA+ Il +1Bl=a+1;
t t

so each term in the polynomial H;, ; , has weight |a|+|B]+|y|—1.

Thus both D and W are defined by homogeneous equations in the
weighed variables T; , ; and as OeD(k), resp. 0 W(k) are non-singular
points we deduce from the elimination lemma that both D and W are
isomorphic to affine space over k. This finishes the proof of the first
statement of (4.1). Hence Theorem (3.1) is proved, as we have seen
(3.2) that X~Q.

Let ack[ 4], respectively b k[Q2] be the ideal defining D, resp. W.
Renaming the variables we obtain: k[Q]=k[T,,...,Ty] and k[4']=
k[T, ..., Tys Tys1s ---» Ty 1+ ). We have proved already that there exists
a number n, with 0<n<N, so that

k[T, ....,T]=k[T,, ..., Ty]
S
k[T, .7, Ty1/b.
The morphism p: D—W comes from the ringhomomorphism ¢:

k[n,...,TN]C_)k[’Il,...,TN+M]

l l
k[T, ..., T]1=U=k[T,, ..., s}/ —2> k[T, ..., T+ »]/a=B,

Spec(U)=W«*—D=Spec(B),  p="0p;
we are done if we can prove that if we apply the elimination lemma to

ack[T,,...,Ty+p], none of the variables T,...,T, is eliminated: in

that case
k[T,....T]J2U—->Bxk[T,,....T,, Ty+15 -+ s Tnsm]
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for' some m with 0<m<M (renumber the variables if necessary); of
course in that case every R-point of W comes from an R-point of D.
So we have to show: if T; , ;, with («, )€€’ appears in the linear term
of some H;, ; ., with (y,6,e)ed”, then (y,6,e)eQ”; but this is clear:
computing (I' F)(X;) we obtain:

2T X*@XPQ1-Y T, , 1@ X*"®@ X*
Y Tl [ XK;@1+10X,+Y T, s X*®@ X°/} ® X*
I

3 Ts X @K@ 1410 X4 5 T, X ® XV
J

so “T; , s appears in the linear term of H;, ;. and (a, f)eQ’ imply
that (y, 9,¢)eQ”. Thus we have shown that the variables T,.,,..., Ty
can be expressed in the variables T;, ..., T,, that Ty, ,, ..., Ty, » depend
on T,....T,, Ty+y,.--»In+m, and that the variables 7Tj,...,7, cannot

be eliminated. Thus the proof of the proposition is concluded.
Remark. The multiplicative semi-group scheme A} =Spec(k[T])
acts on k[4"] and on k[Q'] (use the weights of the variables). Under
this action D and W are stable, as their defining equations are homo-
geneous in weight. In this way we originally proved W to be connected;
as D—{0}/G,, and W—{0}/G,, are projective schemes, it easily follows
that p: D (k) > W(k) is surjective in case k is an algebraically closed field.

Remark. One could ask for the dimension of W. It is easy to compute
directly the equations for the tangent space at W(k). However we do
not see a formula expressing dim W in terms of m and (v, ..., v,).

Remark. Let V be the k-algebraic scheme such that for every Bok,
V(B)={all commutative B-bialgebra structures on B[ty,...,1,]=E};
then V, =W, and V=W if and only if vj=---=v,,.

5. Conclusions

Corollary (5.1). Let k be a field of characteristic p>0, and let N
be a finite commutative k-group scheme; N can be lifted to characteristic
zero (in the sense of problem (B) of Section 1).

Proof. By (2.2) it suffices to show the result for some Kok; so we
can suppose k to be an algebraically closed field. Then N =Ny, x N,
(cf. CGS, 2.14). As a reduced finite group scheme over an algebraically
closed field corresponds uniquely to a finite group (cf. CGS, 2.16), it
is clear that any separable group scheme can be lifted to characteristic
zero (we know N, ,=Spec(kx:--xk), take any characteristic zero
domain R with a reduction R — k, choose M =Spec(R x --- X R), etc.).
As k is supposed to be algebraically closed, hence perfect, N, admits
a truncation type v=(v,,...,v,), hence by (3.1) there exists a point
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weW(k), where W is an irreducible, smooth k-algebraic scheme, and
a finite, free group scheme M — W, such that N =M, (i.e. the fibre
of M at the point w is isomorphic, as a group scheme, with N,.). Next
we note there exists a point ueW(k) such that

Hpexpvy) X *0° X Aupexp(vm)gMu;

thus the fibre of the morphism M? — W over the point ue W (k) is reduced
(by D we denote the dualizing functor associating with each finite flat
commutative group scheme its linear, or: Cartier, dual; e.g. compare
CGS, p.3). Let L be an algebraic closure of the field of fractions of U,
where W=Spec(U). It follows that the group scheme M} is reduced,
so MP can be lifted to characteristic zero by what is said before, so M
can be lifted to characteristic zero as D commutes with base extension,
so by (2.3) it follows that M ®y k=M, =N, can be lifted to charac-
teristic zero, and the corollary is proved.

Question. Let R, be a local, artinian ring, and let N, be a finite flat,
commutative R,-group scheme. Can we lift N to characteristic zero?
In case the rank of N is prime we can, cf. [13]. However it seems that
the methods developed above do not work if R, is not a field.

Corollary (5.2). Let R be a ring in which p-1=0, and let N =Spec(E)
be a commutative R-group scheme such that E admits a truncation type
E=R[ty,...,T,]), 7™ =0, 1<i<m (e.g. N is any finite, commuta-
tive, local group scheme over a perfect field k=R). There exists a com-
mutative formal Lie group on m parameters with coefficients in R, having
N as a subgroup scheme (i.e. there exists a commutative formal group

f: R[X,,.... X, ] RI[X,,.... X, Yy, ..., Y, 1
inducing the given comultiplication on R[1y, ..., 1,]).

Proof. We take k=F,cR; the R-bialgebra E with its truncation
type defines a point e W(R). We choose a big integer r; by (4.1) there
exists a point deD(R) such that p(d)=e; by the results of Lazard (cf.
the beginning of section 4) any commutative r-bud on m parameters
eeD(R)=4,, ,(R)c 4, ,(R) can be extended to a formal Lie group
on the same number of parameters, with coefficients in the same ring.
Thus the corollary is proved.

Example (constructed by M.Hazewinkel). There exist non-com-
mutative finite local group schemes on m parameters which cannot
be embedded into a formal Lie group on m parameters. Let char(k)=p,
n and m are positive integers, and a,bek. We define

E= k [,r]/(tpexp(n+m))’
sO=1®1+1®t+at” X" +b 7" @17
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The s thus defined is associative; it is not cocommutative if we choose
n+m and a+b; in that case we have a local bialgebra on one parameter,
which cannot be extended to a formal Lie group on one parameter
if k is a field, because every one-parameter formal Lie group over k
is commutative, cf. [6], and [7], Theorem 1, p.253.

Remark. By different methods it was proved that any finite com-
mutative group scheme over any field k can be embedded into an ir-
reducible smooth k-algebraic group scheme G (cf. CGS, 154; cf. [12],
in that case we can even take for k a complete local noetherian ring);
however in general the dimension of G is much bigger than the number
of parameters of N (suppose N to be local); in fact, if the rank of N
is p?, and k is algebraically closed, an imbedding of N into a d-dimensional
group variety was constructed. In general a local finite, commutative
group scheme on m parameters cannot be embedded into a group
variety of dimension m (i.e. N being fixed, none of the formal Lie groups
constructed in 5.2 need to be algebraizable), as is shown by the following

Example. Let k be a perfect field of characteristic p, and let N be
the k-group scheme having as Dieudonné-module W, (k)[E V]/(V—F?,
FY), with i>3; this is a local group scheme on one parameter; it has
rank p', the rank of Ker(p- 1y) is p® and the rank of Ker(Vy) is p. If G
is an abelian variety of dimension one, the rank of Ker(p-1;) is p?,
s0 NcG is excluded. As 04Ker(Vy), the case Nc=G,, is not possible.
As Ker(Vy)F N, we cannot embed N into a one-dimensional unipotent
group-variety G (because any one-dimensional unipotent group variety
is killed by V). Thus the N we have choosen cannot be embedded into
a one-dimensional group variety.

Remark. Let v, <v,<---=Zv,, y,ySu, <<y, with p;=v; for
1<i<m, and v;~v; 2 u;— ; for 1<i<j<m; using the methods exposed
above, one can show that any seQ,(R) can be extended to an element
teQ,(R); taking u,=a=p,=---=p,, and letting a grow, we obtain
again (5.2).
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