[Note: Need to add suitable references to the undated letter from Mumford to Grothendieck and to the Bowdoin lectures, in the first footnote.]

DEGENERATION OF ALGEBRAIC THETA FUNCTIONS ¹

§1. 2-adic theta functions, values in a complete valued field ²

Problem:

Given K: complete algebraically closed valued field; integers \mathcal{O} , residue field $k = \mathcal{O}/\mathfrak{m}$, absolute value $|\cdot|: k^{\times} \to \mathbb{R}_{>0}$, char. $(k) \neq 2$.

Given V: 2g-dimensional vector space over \mathbb{Q}_2 , plus e, e_*, Λ .

²The notes come in two groups, reproduced as two sections. The first section contains the key results on the structure of 2-adic theta functions associated to abelian varieties over a local field. This structure theory is applied in § 2 to 2-adic monodromy of abelian varieties over local fields. Two pages of the original notes are essentially the same as the last section of the Bowdoin lecture notes [???]; they are not reproduced here.

³The notations and results in *Equations defining abelian varieties I, II, III*, abbreviated as [Eq I, II, III] in the footnotes, are used extensively in this set of notes. In particular

$$e: V \times V \longrightarrow \mu_{2^{\infty}}(K)$$

is a skew-symmetric bi-multiplicative non-degenerate pairing from $V \times V$ to the group of all roots of unity whose order is a power of 2, Λ is a maximal isotropic \mathcal{O} -lattice in V, and

$$e_* \colon \frac{1}{2}\Lambda/\Lambda \longrightarrow \{\pm\}$$

is a quadratic character such that

$$e_*(\alpha + \beta) e_*(\alpha) e_*(\beta) = e(\alpha, \beta)^2 \quad \forall \alpha, \beta \in \frac{1}{2} \Lambda.$$

¹This is a lightly edited version of a set of hand written notes by Mumford. It contains an essentially complete proof of the results in the undated letter [???] to Grothendieck, despite the following disclaimer in that letter: 'I say "think" because I haven't written down the details systematically. In fact one should get a rather complete "structure theorem" for these abelian varieties (I hope).' Mumford lectured on these results in the 1967 Summer School at Bowdoin, see paper [???] in this volume. Appendix II in the 1984 Ph. D. dissertation of C.-L. Chai, London Math. Soc. Lecture Notes Series 107, 1985, pp. 237–286 is an adulterated version of the same set of notes.

Given $\Theta: V \to K$, a theta function w.r.t. e, e_* , 4 coarse support $(\Theta) = V.5$

Analyze structure of θ

- (I) All values $\Theta(\alpha)$ are integrally dependent on $\{\Theta(\beta) \mid \beta \in \frac{1}{2}\Lambda\}$. Hence $\max |\Theta(\alpha)|$ exists and is taken on for some $\alpha \in \frac{1}{2}\Lambda$. So multiply Θ by a constant s.t.
 - (a) $\Theta(\alpha) \in \mathcal{O}$ for all $\alpha \in \frac{1}{2}\Lambda$
 - (b) $\exists \alpha \in \frac{1}{2}\Lambda$ with $\Theta(\alpha) \notin \mathfrak{m}$, or equivalently $|\Theta(\alpha)| = 1$.
- : Get a non-zero theta function $\overline{\Theta}(\alpha) := [\Theta(\alpha) \mod \mathfrak{m}] \in k$.
- (II) Say coarse support($\overline{\Theta}$) = $W + \frac{1}{2}\Lambda$, $W \subseteq V$ a $cusp.^7$
- (*) Choose a symplectic translation T of V s.t. $T(\Lambda) = \Lambda$, $e_* \equiv 1$ on $T(W^{\perp}) \cap \frac{1}{2}\Lambda$. Change Λ by this: Then 0 is an $origin^8$ for W. Later, will have to apply T in reverse to the structure Th. we get for Θ .

 \leadsto OK:

$$\overline{\Theta}(\alpha) = e_*(\eta/2) \, e(\eta/2, \alpha) \, \overline{\Theta}^*(\alpha_0^*)$$
 if $\alpha = \eta + \alpha_0, \ \eta \in \Lambda, \ \alpha_0 \in W$
$$\alpha_0^* = \text{image of } \alpha_0 \text{ in } W/W^{\perp}$$

$$\overline{\Theta}^* = k\text{-valued non-degen. theta fcn. on } W/W^{\perp}$$

- (theta transformation law) $\Theta(\alpha + \beta) = e_*(\beta/2) e(\beta/2, \alpha) \Theta(\alpha) \quad \forall \alpha \in V, \forall \beta \in \Lambda.$
- (symmetry) $\Theta(-\alpha) = \Theta(\alpha) \quad \forall \alpha \in V.$
- (Riemann theta relation) For all $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in V$ we have

$$\prod_{i=1}^{4} \Theta(\alpha_i) = 2^{-g} \cdot \sum_{\eta \in \frac{1}{2}\Lambda/\Lambda} e(\gamma, \eta) \prod_{i=1}^{4} \Theta(\alpha_i + \gamma + \eta)$$

where $\gamma = -\frac{1}{2}(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)$.

See [Eq 3], p. 216.

⁵The coarse support of an algebraic theta function $\Theta: V \to K$ is the set of all for every $\alpha \in V$, there exists $\eta \in \frac{1}{2}\Lambda$ such that $\Theta(\alpha + \eta) \neq 0$.

⁶See Prop. 1 of Abstract theta functions, paper [???] in this volume.

⁷See Theorem on p. 230 of [Eq III] for this assertion. A cusp is a vector subspace $W \subseteq V$ such that $W^{\perp} \subseteq W$; see page 229 of loc. cit.

⁸An origin of a cusp W is an element $\eta_0 \in \frac{1}{2}\Lambda$ such that $e_*(\eta_0) = 1$ and $e_*(\alpha) = e(\alpha, \eta_0)^2$ for all $\alpha \in W^{\perp} \cap \frac{1}{2}\Lambda$; see p. 229 of loc. cit.

⁴That $\Theta: V \longrightarrow K$ is a theta function for (V, Λ, e, e_*) means that it satisfies

Choose:

$$\begin{array}{rcl} V & = & W_1 \oplus W_2 \\ \Lambda & = & \Lambda_1 \oplus \Lambda, & \Lambda_i = \Lambda \cap W_i \\ e_* & = & 1 & \text{on } \frac{1}{2}\Lambda_i \end{array} \right\} \text{ standard decomp. of } V$$

s.t.
$$(0) \subset W^{\perp} \subset W_1 \subset W \subset V$$
, so $W = W_1 \oplus \widetilde{W}_2$, $\widetilde{W}_2 \subset W_2$.

Given $V=W_1\oplus W_2$ and $W=W_1\oplus \widetilde{W}_2$ as above: \exists 1-1 correspondence between

- (a) \mathcal{O} -valued theta fcns. Θ on V s.t. coarse supp $(\overline{\Theta}) = W + \frac{1}{2}\Lambda$.
- (b) \mathcal{O} -valued $Gaussian\ measures^9\ \mu\ on\ W_2\ s.t.\ \mathrm{supp}(\overline{\mu})=\widetilde{W}_2$

In $fact^{10}$

$$\mu(a_2 + 2^n \Lambda_2) = 2^{-ng} \sum_{a_1 \in 2^{-n} \Lambda_2 / \Lambda_2} e(a_2, a_1 / 2) \cdot \overline{\Theta}(a_1 + a_2) \qquad \forall a_2 \in W_2, \ \forall n \in \mathbb{N}$$

$$\overline{\Theta}(a_1 + a_2) = e(a_1, a_1 / 2) \int_{a_2 + \Lambda_2} e(a_1, \beta) \cdot d\mu(\beta) \qquad \forall a_1 \in W_1, \ \forall a_2 \in W_2$$

Esp.

$$\sup \left\{ |\mu(U)| : U \subset a_2 + \widetilde{W}_2 + \frac{1}{2}\Lambda_2, U \text{ compact open} \right\}$$

$$= \sup \left\{ |\mu(a_2' + 2^n \Lambda_2)| : a_2' \in a_2 + \widetilde{W}_2 + \frac{1}{2}\Lambda_2, n \ge 0 \right\}$$

$$= \sup \left\{ |\Theta(a_1 + a_2')| : a_1 \in W_1, a_2 \in \widetilde{W}_2 + \frac{1}{2}\Lambda_2 \right\}$$

$$= \sup \left\{ |\Theta(b)| : b \in a_2 + W + \frac{1}{2}\Lambda \right\}$$

(III) Show that $\forall \Theta$ or μ , and $\forall a_2$, this *sup* is a *max*. PROOF. Associate Φ to Θ s.t.

$$\Phi(\alpha) \Phi(\beta) = \sum_{\zeta \in \frac{1}{2}\Lambda_1/\Lambda_1} e(\alpha, \zeta) \Theta(\alpha + \beta + \zeta) \Theta(\alpha - \beta + \zeta)$$

$$2^{g} \Theta(2\alpha) \Theta(2\beta) = \sum_{\zeta \in \frac{1}{2}\Lambda_{2}/\Lambda_{2}} e(\alpha, \zeta)^{2} \Phi(\alpha + \beta + \zeta) \Phi(\alpha - \beta + \zeta)$$

⁹An k-valued even measure on W_2 is a Gaussian measure if there exists a k-valued measure ν on W_2 such that $(\mu \times \mu)(U) = (\nu \times \nu)(\xi(U))$ for all compact open subsets U in $W_2 \times W_2$, where $\xi \colon W_2 \times W_2 \longrightarrow W_2 \times W_2$ is defined by $\xi(x,y) = (x+y,x-y)$; see page 118 of [Eq II].

$$\begin{split} \therefore |\Phi(\alpha)| \cdot |\Phi(\beta)| &\leq \max_{\zeta \in \frac{1}{2}\Lambda_1} |\Theta(\alpha + \beta + \zeta)| \cdot |\Theta(\alpha - \beta + \zeta)| \\ |\Theta(\alpha + \beta) \cdot |\Theta(\alpha - \beta)| &\leq \max_{\zeta \in \frac{1}{2}\Lambda_2} |\Phi(\alpha + \zeta)| \cdot |\Phi(\beta + \zeta)| \\ \therefore \max_{\zeta \in \frac{1}{2}\Lambda_1} |\Theta(\alpha + \beta + \zeta)| \cdot |\Theta(\alpha - \beta + \zeta)| &= \max_{\zeta \in \frac{1}{2}\Lambda_2} |\Phi(\alpha + \zeta)| \cdot |\Phi(\beta + \zeta)| \end{split}$$

So

$$\max_{\zeta \frac{1}{2}\Lambda_1} |\Theta(\alpha + \beta + \zeta)| \cdot \max_{\zeta \in \frac{1}{2}\Lambda_1} |\Theta(\alpha + \beta + \zeta)| = \max_{\zeta \in \frac{1}{2}\Lambda_2 + \frac{1}{4}\Lambda_1} |\Phi(\alpha + \zeta)| \cdot |\Phi(\beta + \zeta)|$$

Now assume
$$\beta \in W$$
. Use $\left\{ \begin{array}{l} \forall x \in W + \Lambda_2 \\ \exists \eta \in \frac{1}{4}\Lambda_1 \ s.t. \ |\Phi(x+\eta)| = 1 \end{array} \right.$

Let
$$\tau(\gamma) = \max_{\zeta \in \frac{1}{4}\Lambda_1} |\Theta(\gamma + \zeta)|$$

$$\therefore \tau(\alpha+\beta) \tau(\alpha-\beta) = \max_{\zeta_1, \zeta_2 \in \frac{1}{2}\Lambda_2 + \frac{1}{8}\Lambda_1, \ \zeta_1 + \zeta_2 \in \frac{1}{4}\Lambda_1} |\Phi(\alpha+\zeta_1)| \cdot |\Phi(\beta+\zeta_2)|$$

Def. $\alpha \in V$ is normal if $\max_{\zeta \in \frac{1}{8}\Lambda_1} |\Phi(\alpha + \zeta)| = \max_{\zeta \in \frac{1}{2}\Lambda_2 + \frac{1}{8}\Lambda_1} |\Phi(\alpha + \zeta)|$.

$$[\forall \alpha \exists \eta \in \frac{1}{2} \Lambda_2 \text{ s.t. } \alpha + \eta \text{ is normal }]$$

So if α normal, $\beta \in W$, then

$$\tau(\alpha + \beta) \tau(\alpha = \beta) = x \max_{\zeta \in \frac{1}{2}\Lambda_1 + \frac{1}{2}\Lambda_2} |\Phi(\alpha + \zeta)| =: \rho(\alpha)$$

Esp.

$$\tau(\alpha + \beta) \tau(\alpha - \beta) = \tau(\alpha)^{2}$$
.

Note: If $\eta \in \frac{1}{2}\Lambda_2$, $\alpha + \eta$ normal, then $\tau(\alpha + \eta) \geq \tau(\alpha)$.

Proof of Note.

$$\tau(\alpha)^{2} = \max_{\substack{\zeta_{1},\zeta_{2} \in \frac{1}{2}\Lambda_{2} + \frac{1}{8}\Lambda_{1}, \ \zeta_{1} + \zeta_{2} \in \frac{1}{4}\Lambda_{1} \\ \leq \max_{\zeta \in \frac{1}{2}\Lambda_{2} + \frac{1}{8}\Lambda_{1}} |\Phi(\alpha + \zeta)| = \rho(\alpha)}$$

 $\alpha + \eta$ normal $\implies \tau(\alpha + \eta)^2 = \rho(\alpha + \eta) \ge \tau(\alpha)^2$. Q.E.D.

Now suppose $\alpha_n \in a + W + \frac{1}{2}\Lambda$ s.t.

$$|\Theta(\alpha_n)| \longrightarrow \sup \left\{ |\Theta(\beta)| : \beta \in a + W + \frac{1}{2}\Lambda \right\} =: s.$$

W.l.o.g. can assume $|\Theta(\alpha_n)| = \tau(\alpha_n)$ & α normal (in view of Note above). OK: Pass to subsequence s.t.

$$\alpha_n - \alpha_m \in W + \Lambda \quad (\text{all } n, m).$$

W.l.o.g. may assume $\alpha_n - \alpha_m \in W$ for all n, m. Now if

$$\tau(\alpha_n) = |\Theta(\alpha_n)| > \sqrt{s \cdot |\Theta(\alpha_1)|} = \text{geom. mean of } s, |\Theta(\alpha_1)|,$$

then

$$s \cdot \tau(\alpha_1) < \tau(\alpha_n)^2 = \tau(\alpha_n + (\alpha_1 - \alpha_n)) \cdot \tau(\alpha_n - (\alpha_1 - \alpha_n)) < \tau(\alpha_1) \cdot s,$$

contradiction. $\therefore s = \tau(\alpha_n)$ for all n. Step (III.) is proved.

We conclude

Proposition 1. \forall \mathcal{O} -valued Gaussian measure μ on W_2 , let $\widetilde{W}_2 = \operatorname{supp}(\overline{\mu})$. Then \forall compact open subgroup $\Lambda'_2 \subset V_2$ and $\forall a \in W_2$,

$$\sup \left\{ |\mu(U)| \colon U \subseteq \widetilde{W}_2 + \Lambda_2' + a \right\}$$

is attained.¹¹

- (IV) Theorem 2. Let \mathcal{V} be a finite-dimensional vector space over \mathbb{Q}_2 , W be a vector subspace of \mathcal{V} , and let $\Lambda \subset \mathcal{V}$ be a compact open subgroup. Let μ be a Gaussian measure on \mathcal{V} with values in \mathcal{O} . Let ν be the dual Gaussian measure of μ , i.e. $\xi_*(\mu \times \mu) = \nu$. Assume that
 - (1) $\overline{\mu}, \overline{\nu}$ have support $W \subset \mathcal{V}$.
 - $(2) \ \forall w \in W$

$$\max \{ |\mu(V)| \colon V \subset w + \Lambda + W \} =: \sigma(w)$$
$$\max \{ |\nu(V)| \colon V \subset w + \Lambda + W \} =: \tau(w)$$

exist.

If $w \in \mathcal{V}$, $c \in \mathcal{O}$, and $|c| = \sigma(w) = \max_{\eta \in \frac{1}{2}\Lambda} (\sigma(w + \eta))$, then

$$\operatorname{supp}\left\{\left. \frac{\overline{\mu}}{c} \right|_{w+\Lambda+W} \right\} = w + \eta_0 + W$$

for some $\eta_0 \in \Lambda$.

¹¹Prop. 1 has been proved for $\Lambda' = \frac{1}{2}\Lambda_2$. Apply an automorphism A of V_2 such that $A(\frac{1}{2}\Lambda_2) \subset \Lambda'_2$ ¹²The general notation for §1 is suspended in Step (IV). In application the triple $(\mathcal{V}, \Lambda, W)$ in this theorem will be $(W_2, \Lambda_2, \widetilde{W})$. Also the meaning of τ is different from that in the proof of Step (III).

¹³As before, $\xi \colon \mathcal{V} \times \mathcal{V} \longrightarrow \mathcal{V} \times \mathcal{V}, \quad \xi \colon (x,y) \mapsto (x+y,x-y).$

PROOF. Claim 1: $\tau(w)^2 = \sigma(w)$.

(1)
$$\exists U \subset w + \Lambda + W \text{ s.t. } |\mu(U)| = \sigma(W).^{14}$$

$$\therefore |\mu \times \mu(U \times \Lambda)| = \sigma(w), \qquad \therefore |\nu \times \nu(\xi(U \times \Lambda))| = \sigma(w).$$

But
$$\xi(U \times \Lambda) \subset (w + \Lambda + W) \times (w + \Lambda + W)$$
,

$$\therefore \exists U_1, U_2 \subset w + \Lambda + W \quad \text{s.t. } |\nu(U_1)| \cdot |\nu(U_2)| = |\nu \times \nu(U_1 \times U_2)| = \sigma(w)$$

$$\therefore \tau(w) \ge \max\{|\nu(U_1)|, |\nu(U_2)|\} \ge \sqrt{\sigma(w)}$$

(2) $\exists U \subset w + \Lambda + W \text{ s.t. } |\nu(U)| = \tau(W).$

$$\therefore |\nu \times \nu(U \times U)| = \tau(w)^2$$

But

$$(w + \Lambda + W) \times (w + \Lambda + W) = \bigcup_{\text{disjoint}} \xi \left((w + \Lambda + W + \eta) \times (\Lambda + W + \eta) \right) \qquad \eta \in \frac{1}{2}\Lambda$$

$$\therefore \exists \eta, U_1 \subset w + \Lambda + W + \eta, \exists U_2 \in \Lambda + W + \eta \text{ s.t.}$$

$$\tau(w)^{2} = |\nu \times \nu(\xi(U_{1} \times U_{2}))| = |\mu(U_{1})| \cdot |\mu(U_{2})|$$

$$\leq |\mu(U_{1})| \leq \sigma(w + \eta) \leq \sigma(w).$$

We have proved Claim 1.

Look at measures

$$\frac{\overline{\mu}}{c}\Big|_{w+\Lambda+W} =: \mu_w, \qquad \overline{\frac{\nu}{\sqrt{c}}\Big|_{w+\Lambda+W}} =: \nu_w.$$

Claim 2. (a) $\xi_*(\mu_w \times \overline{\mu}) = (\nu_w \times \nu_w)|_{\xi((w+\Lambda+W)\times(\Lambda+W))}$.

(b) The restriction of the measure $\nu \times \nu$ to

$$(w + \Lambda + W) \times (w + \Lambda + W) - \xi((w + \Lambda + W) \times (\Lambda + W))$$

has absolute values strictly less than $\sigma(w)$.

(c)
$$\xi_*(\mu_w \times \overline{\mu}) = \nu_w \times \nu_w$$
 as measures on $(w + \Lambda + W) \times (w + \Lambda + W)$.

¹⁴Here U is compact open; the same for the U_1 , U_2 and U below.

Clearly (a) holds, and (b) implies (c). To see (b), suppose that $U_1 \subset w + \Lambda + W + \eta$, $U_2 \subset \Lambda + W + \eta$, U_1, U_2 compact open, $\eta \in \frac{1}{2}\Lambda$, $\eta \notin \Lambda + W$. Then

$$|\nu \times \nu(\xi(U_1 \times U_2))| = |\mu(U_1)| \cdot |\mu(U_2)|$$

$$\leq \sigma(w + \eta) \cdot \sigma(\eta)$$

$$< \sigma(w + \eta) \quad (\because \eta \notin \Lambda + W)$$

$$\leq \sigma(w) \quad (\because \text{ assumption on } w)$$

Claim (b) is proved.¹⁵

Theorem 2 is a formal consequence of (c): Let $S := \text{supp}(\mu_w), T := \text{supp}(\nu_w)$. So

$$T \times T = \xi(S \times W) = T \times T = \{ (a + u, a - u) \mid a \in S, u \in W \}$$

because $\xi_*(\mu_w \times \mu_w) = \nu_w \times \nu_w$. Start with $a \in S$, $u \in W$. Then $a \pm u \in T$, so $(a+u, a+u) \in T \times T$. and $a+u \in S$ too because $\xi^{-1}(a+u, a+u) = (a+u, 0)$. We have shown that $a+W \subset S$ for all $a \in S$. If $b \in S$ also, then $b \pm u \in T$ as before, and $(a+u, b+u) \in T \times T$.

$$\therefore \frac{1}{2}(a-b) \in W \quad \because \xi^{-1}(a+u,b+u) \in S \times W.$$

So $a - b \in W$ for all $a, b \in S$. Step (IV) is proved.

- (V) We reformulate what have been proved so far, and what is expected. Let \mathcal{V} be a vector space over \mathbb{Q}_2 , $W \subset \mathcal{V}$ a vector subspace, $\pi \colon \mathcal{V} \to \mathcal{V}/W$, dim $\mathcal{V} = g$, dim W = g r. Let μ be an \mathcal{O} -valued Gaussian measure on \mathcal{V} s.t. supp $(\overline{\mu}) = W$. We have proved:
 - (1) For all compact open subset $U \subset \mathcal{V}/W$,

$$\sup \{ |\mu(U')| \colon U' \subset \pi^{-1}(U), \ U' \text{ compact open } \}$$

is reached by some compact open subset U'.

(2) For all compact open $U \subset \mathcal{V}/W$, let

$$\sigma_U = \max\{ |\mu(U')| \colon U' \subset \pi^{-1}(U), U' \text{ compact open } \},$$

let $c_U \in K$ be s.t. $|c_U| = \sigma_U$, and let

$$\mu_U = \left[\frac{\mu}{c_U} \Big|_{\pi^{-1}(U)} \right].$$

Then $supp(\mu_U)$ is a finite union of cosets of W.

¹⁵Because each compact open subset of $(w + \Lambda + W) \times (w + \Lambda + W) - \xi((x + \Lambda + W) \times (\Lambda + W))$ is a finite disjoint union of subsets of the form $\xi(U_1 \times U_2)$ satisfying the above conditions.

Expectation 3:
$$\exists S \subset \mathcal{V}/W$$
, $S \hookrightarrow V/W$ $\cong \downarrow \qquad \qquad \downarrow \cong$ $\mathbb{Z}[1/2]^h \hookrightarrow \mathbb{Q}_2^h$

and \exists a function¹⁶ $\sigma: S \longrightarrow \mathbb{R}$ of the form $\sigma(x) = e^{-Q(x,x)}$, Q a pos. def. quad. form on S, s.t. $\forall U \subset \mathcal{V}/W$ compact open, let $\sigma_U = \max_{x \in U \cap S} \sigma(x)$, and let $c_U \in K$ be s.t. $|c_U| = \sigma_U$. Then¹⁷

- (a) $|\mu(U')| \leq \sigma_U$ for all compact open $U' \subset \pi^{-1}(U)$.
- (b) $\mu_U = \overline{\left[\frac{\mu}{c_U}\Big|_{\pi^{-1}(U)}\right]}$ is a k-valued measure whose support is exactly

$$\bigcup_{y \in S \cap U, \, \sigma(y) = \sigma_U} \pi^{-1}(y) \,.$$

Def. The singular set $S = S(\mu)$ of μ is defined by

$$S = S(\mu) := \{ x \in \mathcal{V}/W : \exists \text{ open neigh. } U \ni x \in \mathcal{V}/W \text{ s.t. } \operatorname{supp}(\mu_U) = \pi^{-1}(x) \}$$

Def. Define $\sigma: S \longrightarrow \mathbb{R}$ by

$$\sigma(x) = \max \left\{ |\mu(U')| \colon U' \subset \pi^{-1}(U) \right\}$$

for any $x \in S$, where U is an open neighborhood of x in V/W s.t. $supp(\mu_U) = \pi^{-1}(x)$. This definition is independent of the choice of U.

It remains to show that

$$S \hookrightarrow V/W$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$\mathbb{Z}[1/2]^r \hookrightarrow \mathbb{Q}_2^r$$

and

$$\sigma(x) = e^{-Q(x)}$$
, Q pos. def.

PROOF OF EXPECTATION 3. Let ν be the \mathcal{O} -valued Gaussian measure dual to μ , i.e. $\xi_*(\mu \times \mu) = \nu \times \nu$. Let $T = S(\nu) \subset \mathcal{V}/W$ be the singular set of ν , and let $\tau = \sigma(\nu) : T \longrightarrow \mathbb{R}$ be the sup. map for ν . Then

$$\xi(S \times S) = T \times T$$

and

$$\sigma(x) \cdot \sigma(y) = \gamma(x+y) \cdot \gamma(x-y)$$
 for all $x, y \in S$.

From these we deduce

¹⁶The function σ on $S \subset V/W$ here is different from the function σ on W in Theorem 2.

¹⁷In terms of the function $\sigma: S \longrightarrow \mathbb{R}$ here, for $w \in \mathcal{V}$, the positive number $\sigma(w)$ in Theorem 1 is equal to $\max_{x \in S \cap \pi(w + \Lambda + W)} \sigma(x)$.

- (a) S is a subgroup of V/W and 2S = S.
- (b) $Q := -\log \sigma$ is a quadratic form from S to non-negative real numbers.¹⁸

Let $\Lambda \subset \mathcal{V}/W$ be a neighborhood of 0, and let $S_0 := \Lambda \cap S$, a subgroup of S s.t.

$$\bigcup_{n\in\mathbb{N}} 2^{-n} S_0 = S.$$

(c) Let $x_1, \ldots, x_n \in S_0$ be a \mathbb{Z} -linearly independent subset in S_0 . Look at the maximal H s.t. \exists

$$\mathbb{Z}^n \hookrightarrow H \hookrightarrow \mathbb{Q}^n \qquad \phi((a_1, \dots, a_n) = \sum a_i x_i$$

$$\downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Let Q' be the quadratic form on \mathbb{Q}^n s.t.

$$Q'(a,a) := -\log \sigma(\phi(a_1,\ldots,a_n)) \qquad \text{for } a = (a_1,\ldots,a_n) \in H$$

Note that

$$Q$$
 is a pos. semi-definite quad. form on \mathbb{Q}^n $Q(a)=0, \ a\in\mathbb{Q}^n \implies a=0$

(c₁) $[H:\mathbb{Z}^n]<\infty$.

If not, $\exists \mathbb{Q}$ -vector subspace $L \subset \mathbb{Q}^n$ s.t. $H \cap L$ is dense in L in classical topology. But $\forall a \in \mathbb{Z}^n, \ \phi(a) \in S_0$,

$$\therefore$$
 in $\phi(a) + 2^m \Lambda$, $\sigma(\phi(a)) \ge \sigma(b)$ for all $b \in \phi(b) + 2^m \Lambda$

if m is large enough. Thus

$$Q'(a, a) \le Q'(b, b)$$
 for all $b \in a + 2^m H$.

Take $a \in L \cap \mathbb{Z}^n$ and $b \in (a+2^mH) \cap L$ in particular: then the possible b's are dense in L. So there are some b's for which $Q'(b,b) < \text{any given } \epsilon$, and get a contradiction.

Corollary. H is a finitely generated abelian group: w.l.o.g. $H = \mathbb{Z}^n$.

 (c_2) Q' is positive definite.

If not, get

$$\mathbb{R}^n \xrightarrow{\text{proj.}} \mathbb{R}^m \qquad (m < n)$$

$$H$$

¹⁸For $s \in S$, we have $\sigma(s) = 1 \Leftrightarrow s \in W = \text{supp}(\overline{\mu})$.

and a quadratic form Q'' on \mathbb{R}^m s.t. $Q'(a) = Q''(\pi(a))$ for all $a \in \mathbb{R}^n$, and $\pi(H) \subset \mathbb{R}^m$ is *not* discrete. i.e. $\exists \mathbb{R}$ -vector subspace $L \subset \mathbb{R}^m$ s.t. $\pi(H) \cap L$ is dense in L. Get the same contradiction as above.

(d) S_0 is a free abelian group of rank $r = \dim(V/W)$.

PROOF. Define $r := \dim(V/W), d := \dim_{\mathbb{Q}}(S_0 \otimes \mathbb{Q}).$ Then

d finite $\Leftrightarrow S_0$ fin. gen. by (c_1) and (c_2) .

If d < r, then S_0 is too small to be dense¹⁹ in Λ , OUT. If d > r, well

$$S_0/2S_0 \subset \Lambda/2\Lambda \cong (\mathbb{Z}/2\mathbb{Z})^r$$
.

Q.E.D.

$$\therefore S \stackrel{\cong}{\longrightarrow} \mathbb{Z}[1/2]^r$$

$$\int_{S_0} \stackrel{\cong}{\longrightarrow} \mathbb{Z}^r$$

and $\sigma = e^{-Q(a,a)}$, Q pos. def. quad. form on \mathbb{R}^r . Expectation 3 is proved.

(VI) Theorem. 4 (1) Every Gaussian measure μ on \mathcal{V} (as above) can be written as

$$\mu = \sum_{x \in S} \mu_x$$

where each $\mu_x^{\ 20}$ is an \mathcal{O} -valued measure on \mathcal{V} with

$$\sup\{(\mu_x) = \pi^{-1}(x) & \forall x \in S \\ \sup\{(\mu_x(U) : U \subset \mathcal{V} \text{ compact open}\} & \forall x \in S \end{cases}$$

Similarly, the dual measure ν can be written as

$$\nu = \sum_{x \in S} \nu_x$$

with similar properties as above. Moreover

$$\xi_*(\mu_x \times \mu_y) = \nu_{x+y} \times \nu_{x-y} \qquad \forall x, y \in S.$$

 $^{^{19}}S$ is dense in V/W because $\text{supp}(\mu) = V$.

²⁰ For $x \in S$, the measure μ_x is the push-forward to \mathcal{V} of a measure μ_x' on $\pi^{-1}(x)$, defined as follows. For any compact open subset U' of $\pi^{-1}(x)$, let $\{U_i\}_{i\in\mathbb{N}}$ be a decreasing family of compact open subsets of \mathcal{V} such that $\bigcap_{i\in\mathbb{N}} U_i = U'$. Then $\mu_x'(U') = \lim_{i\to\infty} \mu(U_i)$.

(2) Correspondingly: if (0) $\subset W^{\perp} \subset W \subset V$ is the set-up for $\pi: V \twoheadrightarrow V/W \subset S$, and Θ is an \mathcal{O} -valued theta function w.r.t. e, e_*, Λ as in the beginning of §1. Then

$$\Theta(\alpha) = \sum_{x \in S} \, \Theta_x(\alpha) \,,$$

where each Θ_x^{22} is a function on V such that

- (a) $\Theta_x(\alpha + \beta) = e_*(\beta/2) e(\beta/2, \alpha) \Theta_x(\alpha) \quad \forall \beta \in \Lambda,$
- (b) supp $(\Theta_x) \subset \pi^{-1}(x) + \Lambda$,
- (c) $\Theta_x(\alpha + \beta) = e(\beta, \gamma_x \alpha/2) \Theta_x(\alpha)$ $\forall \beta \in W^{\perp} \text{ if } \gamma_x \in V \text{ satisfies } \pi(\gamma_x) = x.$

Defining an associated tower of toroidal groups

 Θ on V gives

$$\begin{cases} (0) \subset W^{\perp} \subset W \subset V, & \pi \colon V \to (V/W) \quad (\text{we assume } e_*(\alpha/2) = 1, \forall \alpha \in W^{\perp} \cap (1/2)\Lambda) \\ S \subset V/W \\ \Theta_x \text{ on } \pi^{-1}(x) + \Lambda \end{cases}$$

(1) Θ_0 on W/W^{\perp} defines a tower of abelian varieties

 B_{α} indexed by compact open subsets $U_{\alpha} \subset W/W^{\perp}$

- (2) If $U \subset V$ is a compact open subgroup, get
 - (a) $U_{\alpha} = (U \cap W)/(U \cap W^{\perp})$, hence B_{α} .
 - (b) $\pi(U) \cap S = S_0$, a lattice in S.

$$\forall x \in S_0$$
, choose $\gamma_x \in U \cap \pi^{-1}(x)$. Set

$$\begin{split} \Phi_x(\alpha) &= e(\gamma_x/2,\alpha) \cdot \Theta_x(\alpha + \gamma_x) \,, & \alpha \in W \,, \\ \text{a function on } W/W^\perp \text{ "related to" } \Theta_0 \,. \end{split}$$

 \therefore Φ_x defines a point $P_{\alpha}(x) \in B_{\alpha}$.

[If $\gamma'_x = \gamma_x + \eta$, $\eta \in U + W$, then $\phi'_x(\alpha) = \text{const. } e(\eta/2, \alpha) \phi_x(\alpha + \eta)$, so $P_\alpha(x)$ doesn't change.]

$$\mu_x(a_2 + 2^n \Lambda_2) = 2^{ng} \sum_{a_1 \in 2^n \Lambda_1/\Lambda_1} e(a_2, a_1/2) \Theta_x(a_1 + a_2).$$

$$\Theta_x(a_1 + a_2) = e(a_2, a_1/2) \int_{a_2 + \Lambda_2} e(a_1, \beta) \cdot d\mu_x(\beta) \qquad a_1 \in V_1, a_2 \in V_2.$$

²¹The quotient V/W here corresponds to the quotient V/W in (1).

²²The functions Θ_x is related to the measures μ_x as in (II):

Get a homomorphism
$$S_0 \xrightarrow{P_\alpha} B_\alpha$$

 $x \longmapsto P_\alpha(x)$

(c)
$$G_{\alpha} = \mathbf{Spec}_{B_{\alpha}} \left(\bigoplus_{x \in S_0} \left\{ T_{P_{\alpha}(x)}^* L_{\alpha} \otimes L_{\alpha}^{-1} \right\} \right)$$

A class of rigid analytic maps

Given: $K = \text{complete valued field}, C = \widehat{\overline{K}},$

Given: G, a comm. alg. grp. over K of type

$$G \\ \mathbb{G}_m^r \bigg| \pi \\ A \qquad \text{abel. var.,}$$

L, ample inv. sheaf on A, all rational over K.

Now

$$G \cong \mathbf{Spec}_A \left\{ \bigoplus_{n \in \mathbb{Z}^r} \left(K_1^{n_1} \otimes \cdots \otimes K_r^{n_r} \right) \right\}$$

where K_1, \ldots, K_r are invertible sheaves on A, alg. equiv. to \mathcal{O}_A .

To define a rigid analytic map $\phi \colon G_C \longrightarrow \mathbb{P}^m_C$, need m+1 analytic sections of $\pi^*(L)$ over G_C .

$$\longrightarrow$$
 m+1 Laurent-type expressions $L_i = \sum_{n \in \mathbb{Z}^r} s(n,i)$, $0 \le i \le m$
 $s(n,i) \in \Gamma(A, L \otimes K_1^{n_1} \otimes \cdots \otimes K_r^{n_r})$

Convergence: $\forall x \in G_C$, get $\pi(x) = y \in A_C$, plus $K_i(y) \xrightarrow{\sim} C$ for i = 0, 1, ... m. Then evaluate:

$$s(n,i) \longmapsto \operatorname{Val}_x[s(n,i)] \in L(y)$$

Ask that

$$\sum_{n} \operatorname{Val}_{x}[s(n,i)] \qquad \left\{ \begin{array}{l} \text{exists in } L(y) \text{ for all } i \\ \text{\& not be 0 for all } i \end{array} \right..$$

Hence ϕ comes out.

§2. Application to monodromy: method of theta functions

Given

- (a) an abelian variety X over $K \longrightarrow \text{get } T_2(X)$, a module over $\mathbb{Z}_2[\text{Gal}(\overline{K}/K)]$,
- (b) a principal polarization on X plus an even symmetric theta-divisor D_{θ} representing it \longrightarrow get a theta function $\Theta \colon V_2(X) \to \overline{K}$ s.t. $\Theta(\sigma x) = \Theta(x)^{\sigma} \ \forall \sigma \in \operatorname{Gal}(\overline{K}/K)$.

[State converse: all such $(V, \Lambda, e, e_*, \Theta)$ come from (X, D_θ) .]

Problem is:

if K = local field, alg. cl. res. field k, $\text{char}(k) \neq 2$,

& if $\Gamma := \operatorname{Gal}(\overline{K}/K)$ acts on $T_2(X)$ via its tamely ramified quotient Γ_{tame} .²³,

show that

 \exists an open subgroup $U \subset \Gamma_{\text{tame}}$ s.t. γ operates unipotently on $T_2(X) \ \forall \gamma \in U$

Method: a complete description to the solutions of the theta functional equations over a local field. viz. \exists

- (i) $(0) \subset W^{\perp} \subset W \subset V$ subspaces, $\pi: V \to V/W$
- (ii) $S \longrightarrow V/W$ $\cong \downarrow \qquad \qquad \downarrow \cong$ $\mathbb{Z}[1/2]^r \longrightarrow \mathbb{Q}_2^r$
- (iii) $Q: S \longrightarrow \mathbb{R}$ pos. def. quad. form

s.t.

$$\Theta = \sum_{s \in S} \, \Theta_x$$

- (a) $supp(\Theta_x) \subset \pi^{-1}(x) + \Lambda$.
- (b) $\max_{y} |\Theta_{x}(y)| = e^{-Q(x,x)}$.
- (c) $\Theta_x(\alpha + \beta) = e_*(\beta/2) \cdot e(\beta/2, \alpha) \cdot \Theta_x(\alpha)$ for all $\beta \in \Lambda$.
- (d) $\Theta_x(\alpha + \beta) = e(\beta, \gamma_x \frac{\alpha}{2}) \cdot \Theta_x(\alpha)$ for all $\beta \in W^{\perp}$ if $\gamma_x \in \pi^{-1}(x)$.

 $^{^{23}\}Gamma_{\text{tame}} \cong \prod_{\ell} \mathbb{Z}_{\ell}(1)$, where ℓ runs through all prime numbers which are invertible in k.

Claim: It follows that

$$\gamma = \text{id. on } W \text{ and on } V/W^{\perp} \qquad \forall \gamma \in U,$$

i.e. the matrix representation of γ has the form

$$\left(\begin{array}{ccc}
I & 0 & * \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right)$$

This Claim will be proved in two steps below.

Step 1. Assume that $\Theta: V \to k$ is an algebraic theta function for $(V, \Lambda, e, e_*), \sigma \in \operatorname{Sp}(V, \Lambda)$ such that

- $\forall x \in V, \exists \eta \in \frac{1}{2}\Lambda \text{ s.t. } \Theta(x+\eta) \neq 0,$
- $\Theta(\sigma x) = \Theta(x)$ for all $x \in V$

Then σ is of finite order.

PROOF OF STEP 1. Replace σ by a suitable tower so that $(\sigma - 1)\Lambda \subseteq 4\Lambda$. We will show that²⁴ for any $n \geq 2$,

$$(\sigma - 1)\Lambda \subseteq 2^n\Lambda \implies (\sigma - 1)\Lambda \subseteq 2^{2n-1}\Lambda$$

For any $x \in 2^{-n}\Lambda$, we have

$$\Theta(x) = \Theta(\sigma x) = \Theta(x + (\sigma x - x)) = e_*(\frac{\sigma x - x}{2}) \cdot e(\frac{\sigma x - x}{2}, x) \cdot \Theta(x)$$

 $\therefore e(\sigma x - x, x) = 1$ if $\Theta(x) \neq 0$. Pick an $\eta \in \frac{1}{2}\Lambda$ such that $\Theta(x + \eta) \neq 0$. Then

$$1 = e((\sigma - 1)(x + \eta), (x + \eta)) = e((\sigma - 1)x, x) \cdot e((\sigma - 1)\eta, x) \cdot e((\sigma - 1)x, \eta) \cdot e((\sigma - 1)\eta, \eta)).$$

The last term is 1 because $(\sigma - 1)\eta \in 2^{n-1}\Lambda \subset 2\Lambda$. The product of the two middle terms is

$$e((\sigma - 1)\eta, x) \cdot e((\sigma - 1)x, \eta) = e(\sigma\eta, x) \cdot e(x, \sigma^{-1}\eta) = e((\sigma^{2} - 1)\eta, \sigma x)$$

= $e((\sigma - 1)^{2}\eta + 2(\sigma - 1)\eta, \sigma x) = 1$

because $(\sigma - 1)^2 \eta \in 2^{2n-1} \Lambda \subseteq 2^n \Lambda$ and $2(\sigma - 1) \eta \in 2^n \Lambda$. So

$$Q(x) := e((\sigma - 1)x, x) = 1 \qquad \forall x \in 2^{-n}\Lambda.$$

Now we have

$$1 = \frac{Q(x+y)}{Q(x) \cdot Q(y)} = e((\sigma - 1)x, y) \cdot e((\sigma - 1)y, x) = e(x, \sigma^{-1}y) \cdot e(\sigma y, x) = e(x, \sigma^{-1}y - \sigma y)$$

for all $x, y \in 2^{-n}\Lambda$, therefore $\sigma^{-1}y - \sigma y \in 2^{n}\Lambda$ for all $y \in 2^{-n}\Lambda$. Write $\sigma = 1 + \tau$, we have

$$2^{n}\Lambda \,\ni\, \sigma^{2}y-y=2\tau y+\tau^{2}y \qquad \forall y\in 2^{-n}\Lambda.$$

But $\tau^2 y \in 2^n \Lambda$, therefore $\tau y \in 2^{n-1} \Lambda$ for all $y \in 2^{-n} \Lambda$, i.e. $(\sigma - 1) \Lambda \subseteq 2^{2n-1} \Lambda$. Q.E.D.

²⁴This statement was formulated for n=2 in the original notes.

We go back to the algebraic theta function Θ for $(V = V_2(X), \Lambda = T_2(X), e, e_*)$ attached to (X, D_{θ}) . Let $W \subset V$ be the associated cusp, $W^{\perp} \subset W$. An element $\gamma \in \Gamma_{\text{tame}}$ operates on V via an element of $\text{Sp}(V, \Lambda)$ s.t. $\gamma(W) \subseteq W$, $\gamma(W^{\perp}) \subseteq W^{\perp}$. By Step 1, there exists an open subgroup $U \subset \Gamma_{\text{tame}}$ such that every $\gamma \in U$ has a matrix representation of the form

$$\left(\begin{array}{ccc}
^t A^{-1} & B & * \\
0 & I & C \\
0 & 0 & A
\end{array}\right)$$

i.e. γ operates on W/W^{\perp} as the identity.

Step 2.
$$A = I, B = 0, \text{ i.e. } \gamma|_{W} = \text{id}_{W}.$$

We need the following facts for the proof of Step 2; they are consequences of the results in §1, summarized at the beginning of this section.

Fact (a). $\sigma(x) := \sup_{\eta \in \frac{1}{2}\Lambda} |\Theta(x+\eta)|$ depends only on the image of x in $V/(W+\frac{1}{2}\Lambda)$.

Fact (b). $\forall x \in V, \exists \xi_x \in V,$ depending only on the image of $x \in V/W$, s.t.

$$|\Theta(x+u) - e(\xi_x, u) \Theta(x)| < \sigma(x) \quad \forall u \in W^{\perp}.$$

We know that $\Theta(\gamma x) = \Theta(x)^{\gamma} \quad \forall x \in V$, $\gamma(\Lambda) \subseteq \Lambda$ and $(\gamma - 1)W \subseteq W^{\perp}$. Replacing U by an open subgroup, we may assume²⁵ that $U \cong \mathbb{Z}_2$ and

$$(\sigma - 1)(\Lambda) \subseteq 8\Lambda + W^{\perp}, \quad (\sigma - 1)(\Lambda \cap W) \subseteq 8\Lambda$$

i.e. P(3) holds, where P(n) stands for the statement

$$(\sigma - 1)(\Lambda) \subseteq 2^n \Lambda + W^{\perp}$$
 and $(\sigma - 1)(\Lambda \cap W) \subseteq 2^n \Lambda \quad \forall \gamma \in U$.

It is clear that Step 2 follows from Claim 2 below.

Claim 2. Suppose P(n) holds, $n \ge 3$, then P(2n-1) holds.²⁶

The first part of P(2n-1) implies that if $x \in \Lambda \cap W$, $\xi = 2^{-2n+1}\lambda + w$, $\lambda \in \Lambda$, $w \in W$, then $\gamma^{-1}\xi \in \Lambda + W^{\perp}$, so

$$e(\gamma x, \xi) = e(x, \gamma^{-1}\xi) = 1.$$

i.e. the second part of P(2n-1) follows from the first part.

²⁵Because $Sp(V, \Lambda)$ is an extension of a finite group by a pro-2 group.

²⁶Claim 2 was formulated for n=3 in the original notes.

Let $x \in 2^{-n}\Lambda$, $n \ge 3$. Changing x by an element of $\frac{1}{2}\Lambda$, we may assume that $|\Theta(x)| = \sigma(x)$. Write $(\gamma - 1)x = \eta + u$, $\eta \in \Lambda$, $u \in W^{\perp}$. Then

$$\Theta(x)^{\gamma} = \Theta(\gamma x) = \Theta(x + \eta + u) = e_*(\eta/2) e(\eta/2, x + u) e(\xi_x, u) \Theta(x).$$

Change x to x' with $w := x' - x \in 2^{-n}\Lambda \cap W$. Then $|\Theta(x')| = \sigma(x') = \sigma(x)$ too by Facts (a), (b) above. We know²⁷ that

$$\frac{\Theta(x')^{\gamma}}{\Theta(x')} = \frac{\Theta(x)^{\gamma}}{\Theta(x)}.$$

$$\therefore e_*(\eta/2) e(\eta/2, x+u) e(\xi_x, u) = e_*(\eta/2) e(\eta'/2, x'+u) e(\xi_x, u)$$

$$\therefore e(\eta, x + u) = e(\eta', x' + u).$$

We have $(\gamma - 1)x = \eta + u$, $(\gamma - 1)x' = \eta' + u$, $\eta' - \eta = (\gamma - 1)w \in W^{\perp} \cap \Lambda$ by P(n).

$$\therefore e(\eta, x) = e(\eta', x') = e(\eta + (\gamma - 1)w, x + w)$$

$$\therefore 1 = e(\eta, w) e((\gamma - 1)w, x) = e(w, -\eta) e(w, (\gamma^{-1} - 1)x) = e(w, -\eta + (\gamma^{-1} - 1)x)$$

for all $w \in W \cap 2^{-n}\Lambda$.

$$\therefore -\eta + (\gamma^{-1} - 1)x \in 2^n \Lambda + W^{\perp}$$

$$\therefore \gamma \eta + (\gamma - 1)x \in 2^n \Lambda + W^{\perp}$$

$$\therefore \ \gamma \eta + \eta \in 2^n \Lambda + W^{\perp} \quad \because u \in W^{\perp}$$

Hence

$$2\eta \in 2^n \Lambda + W^{\perp}$$

by P(n), i.e.

$$\eta \in 2^{n-1}\Lambda + W^{\perp}$$
.

We have shown that $\forall y \in 2^{-n}\Lambda$, $\exists x \in y + \frac{1}{2}\Lambda$ s.t. $(\gamma - 1)x \in 2^{n-1}\Lambda + W^{\perp}$ for all $\gamma \in U$. So

$$(\gamma - 1)\Lambda \subset 2^{2n-1}\Lambda + W^{\perp}$$
.

Q.E.D.

²⁷ from the structure of tamely ramified extensions of local fields.