[ Note: Need to add suitable references to the undated letter from Mumford to Grothendieck
and to the Bowdoin lectures, in the first footnote. |

DEGENERATION OF ALGEBRAIC THETA FUNCTIONS !
§1. 2-adic theta functions, values in a complete valued field 2

Problem:

Given K: complete algebraically closed valued field; integers O, residue field k = O/m,
absolute value | | : &% — Ry , char.(k) # 2.

Given V: 2¢-dimensional vector space over Qs, plus e, e, , A.3

IThis is a lightly edited version of a set of hand written notes by Mumford. It contains an essentially
complete proof of the results in the undated letter [??7] to Grothendieck, despite the following disclaimer in
that letter: ‘I say “think” because I haven’t written down the details systematically. In fact one should get a
rather complete “structure theorem” for these abelian varieties (I hope).” Mumford lectured on these results
in the 1967 Summer School at Bowdoin, see paper [??7?] in this volume. Appendix II in the 1984 Ph. D.
dissertation of C.-L. Chai, London Math. Soc. Lecture Notes Series 107, 1985, pp. 237—286 is an adulterated
version of the same set of notes.

2The notes come in two groups, reproduced as two sections. The first section contains the key results on
the structure of 2-adic theta functions associated to abelian varieties over a local field. This structure theory
is applied in §2 to 2-adic monodromy of abelian varieties over local fields. Two pages of the original notes
are essentially the same as the last section of the Bowdoin lecture notes [??77]; they are not reproduced here.

3The notations and results in Equations defining abelian varieties I, II, III, abbreviated as [Eq I, 11, II1]
in the footnotes, are used extensively in this set of notes. In particular

e: VXV — lus=(K)

is a skew-symmetric bi-multiplicative non-degenerate pairing from V x V' to the group of all roots of unity
whose order is a power of 2, A is a maximal isotropic O-lattice in V', and

1
€y §A/ A — {£}
is a quadratic character such that

eulat B)ealo)en(d) = e(@, B Va,Be 3A.



Given © : V — K, a theta function w.r.t. e, e, ,* coarse support(©) = V.5
Analyze structure of ¢

(I) All values ©(«a) are integrally dependent on {©(5) |8 € 1A}, Hence max [O(a)| exists
and is taken on for some « € %A.6 So multiply © by a constant s.t.

(a) O(a) € O for all a € A

(b) Ja € LA with ©(a) ¢ m, or equivalently |O(a)| = 1.
. Get a non-zero theta function ©(«) := [©(a) mod m] € k.
(IT) Say coarse support(©) =W + 1A, W C V a cusp.”

(*) Choose a symplectic translation 7' of V' s.t. T(A) = A, e, = 1 on T(W*+)N 3A. Change A
by this: Then 0 is an origin® for W. Later, will have to apply 7' in reverse to the structure
Th. we get for O.

~ OK:

6(a) = e.(n/2) e(n/2,) 8 (ap)

if a = n+ay, nEN apeW
af = image of ap in W/W+
©" = k-valued non-degen. theta fen. on W/W*

iThat © : V — K is a theta function for (V, A, e, e.) means that it satisfies
— (theta transformation law) O(a+ 8) = e.(8/2) e(3/2,a) O(a) Ya € V, V3 € A.
— (symmetry) O(—a) =0(a) VaeV.

— (Riemann theta relation) For all oy, as, a3, aq € V we have

4 4
[T6t) =27 > e(v.n) [[O(ci +7+mn)
i=1 nELA/A =1
where v = f%(al + s+ az + ay).

See [Eq 3], p. 216.

5The coarse support of an algebraic theta function ©: V — K is the set of all for every a € V, there
exists 7 € A such that ©(a + 1) # 0.

6See Prop. 1 of Abstract theta functions, paper [???] in this volume.

"See Theorem on p. 230 of [Eq III] for this assertion. A cusp is a vector subspace W C V such that
W C W; see page 229 of loc. cit.

8An origin of a cusp W is an element 19 € A such that e,(ny) = 1 and e.(a) = e(a,np)? for all
aeWtn %A; see p. 229 of loc. cit.



Choose:

V = WiaeW,
A = AMaA A=ANW, standard decomp. of V'
e, = 1 on A,

st. (O)CWECW,CcWCV,soW =W, & W, Wy C Wa.

Given V=W, Wy and W = W; & Wg as above:
3 1-1 correspondence between

(a) O-valued theta fcns. © on V' s.t. coarse supp(©) = W + 1A.

(b) O-valued Gaussian measures® p on Wy s.t. supp(jz) = W,

In fact!®
plag +2"Ny) = 2779 Z e(as, a1/2) - O(a; + as) Va, € W, Vn € N
a1€2 " Aa /A2
@(al +ay) = e(al,al/Q)/ e(ay, B) - du(f) Va, € Wy, Yay € Wy
az+A2
Esp.

sup {|,u(U)| U Cay+Ws+ AQ, U compact open

= sup{ |©(ay + as)|: a1 € Wy, ay € W, + A2

:SUP{ |(ah +2°Ag)| : ay € an + W + Az, nz 0}
)

1
zsup{@(b)| bcay+ W+ -A

(IIT) Show that VO or u, and Vas, this sup is a max.
PROOF. Associate ¢ to O s.t.

a)@(B) = Y, el )0+ pB+¢)0(a— LB+

§E%A1/A1

2020)0028) = > e(@,)?(a+ B+ ) (a—B+)

CE%A2//\2

9An k-valued even measure on W is a Gaussian measure if there exists a k-valued measure v on Ws such
that (ux p)(U) = (v xv)(E(U)) for all compact open subsets U in Wy x W, where £: Wo x Wy — Wy x Wy
is defined by &(x,y) = (v +y,z — y); see page 118 of [Eq II].

10See pp. 116-117 of [Eq II].



L ®(a)] - [@(B)] < max [O(a+ 5+ ()] [O(a -3+

CE%Al

O(a+0) -0 = f)] < max [+ Q)] - [@(5 + O

542

" max [O(a+ B+ ()| |O(a— 8+ ()| = max [(a+ )| [P(5+ ()
So
max [O(a+ B+ ()| - max [O(a+F+ ()= max [D(a+ )| [®(8+ ()
¢3M CEsM Ce5A2+7 M
Ve e W + Ay
Now assume 5 € W. Use { I € %A1 st [Bz+n)=1"

Let 7(y) = max |©(y + ()]
cetn

sor(at f)T(a = B) = max [P(a+ G- [2(8+ Gl
C1,(2€ 5 A2+ 2 A1, C1+(aET A
Def. o € V' is normal if max |®(a+ ()= max |P(a+])|.
(egh CEFhatiM

1
[Va 3n e §A2 s.t. & + 7 is normal |
So if a normal, § € W, then

Tla+p)r(a=p) =2 max [®(a+ ()= pla)
Ceghit3A2

Esp.
T(a+B) (e —B) = 7(a)?.
Note: If € 35, o+ 7 normal, then 7(a +7) > 7(a).

PROOF oF NOTE.

7(a)? = . omax o [®(a+ G- PG
C1,62€5 2 +5MA1, Gi+QeesM

< max  [®(a+()| = pla)
CE%A2+§A1

a+n normal = 7(a+n)*=pla+n) > 7(a)? Q.E.D.



Now suppose a,, € a + W + %A s.t.

10(an)| — sup{\@(ﬁ)\:ﬁea—i—w—{—%]\}::s.

W.lo.g. can assume |O(a,)| = 7(a,) & « normal (in view of Note above).
OK : Pass to subsequence s.t.

ap —aym €W +A (all n,m).
W.lo.g. may assume a,, — o, € W for all n,m. Now if

() = |O(ay)| > /s |O(a1)| = geom. mean of s, |O(aq)],

then

2

s-T(ay) < T(an)” =T(an + (g — ay)) - T(a, — (1 — ay)) < (o) - s,

contradiction. .. s = 7(«,,) for all n. Step (III.) is proved.
We conclude

Proposition 1. V O-valued Gaussian measure p on Ws, let Wg = supp(zz). Then V
compact open subgroup Aj C V, and Va € Wy,

sup{\u(U)]: U§W2+A’2+a}
is attained.!!

(IV) Theorem 2. Let V be a finite-dimensional vector space over Q2, W be a vector
subspace of V, and let A C V be a compact open subgroup.'? Let 1 be a Gaussian measure
on V with values in O. Let v be the dual Gaussian measure of p, i.e. &(pu x pu) = v.13
Assume that

(1) @, 7 have support W C V.
(2) YVwe W
max { [p(V)|: VCw+A+W} = o(w)
max { [v(V)|: VCw+A+W} = 7(w)
exist.

IfweV, ceO, and || =0o(w)=max (o(w+n)), then
nEsA

}=w+m+W

{u
supp —
C lw+A+W

for some 19 € A.

Prop. 1 has been proved for A’ = 2A,. Apply an automorphism A of Vs such that A(2A5) C A

12The general notation for §1 is suspended in Step (IV). In application the triple (V, A, W) in this theorem
will be (Wa, Ag, ﬁ//) Also the meaning of 7 is different from that in the proof of Step (III).

13As before, £: VXV —VxV, & (2,y)— (z+y,2—y).



PROOF. Claim 1: 7(w)? = o(w).
(1) IUCw+A+W st. |pU)] =a(W).M
S X p(Ux M =o(w), oy xv(EU x A))| = o(w).
But £(UxA) C(w+A+W)x (w+A+W),
L AULUs Cu+ A+ W st [p(U)] - [v(U)] = v x v(Uy x Uy)| = o(w)
© 7(w) = max{|p(U)], [W(Ua)]} > Vo (w)
(2) U Ccw+A+Wst. [v(U)| =7(W).
Sy xv(U x U)] = 7(w)?

But

(W+A+W)x (w+A+W) = U E((w+A+WHn) x (A+W +n)) ne%/\

disjoint
oAUy Cw+A+W+n, 3U, e A+ W +1n st

T(w)? = v x v(§(Ur x U))| = |u(U1)] - |u(U2))|
< )| < o(w+n) < o(w).

We have proved Claim 1.
Look at measures

1L

v
- = Ha = = Vy -
ClutAt+W Velwiatw

Claim 2. (a) &(ptw X 1) = (Vu X Vo) lg(ueasw)x(atw))-
(b) The restriction of the measure v x v to

(W+A+W)Xx (w+A+W)—=E(w+A+W) x (A+W))

has absolute values strictly less than o(w).
(€) &y X 1) = vy X 1y, as measures on (w+ A+ W) x (w+ A+ W).

4Here U is compact open; the same for the U;, Us and U below.



Clearly (a) holds, and (b) implies (c). To see (b), suppose that Uy C w+ A+ W + 7,
Uy C A+ W +n, U, Uy compact open, n € %A, né¢ A+ W. Then

v x v(§(Ur x Uy) [u(U1)| - |p(Ua)]

< ofw+n)-ol)
< o(w+mn) (cn¢EA+W)
< o(w) (" assumption on w)

Claim (b) is proved.'s
Theorem 2 is a formal consequence of (¢): Let S := supp(,), T := supp(r,). So
TXxT=(S8xW)=TxT={(a+u,a—u)|a€eS, ueW}

because & (fhy X fhy) = Vi X V. Start with a € S, u € W. Then at+u € T, so (a+u,a+u) €
TxT. and a+u € S too because £ *(a + u,a + u) = (a + u,0). We have shown that
a+W C Sforallae S. If b€ S also, then b+u € T as before, and (a+u,b+u) € T xT.

" %(a—b)EW & Matu,b+u) €S XW.

So a—beW forall a,b € S. Step (IV) is proved.

(V) We reformulate what have been proved so far, and what is expected. Let V be a vector
space over Qqo, W C 'V a vector subspace, 7: V — V/W, dimV = g, dimW = g —r. Let u
be an O-valued Gaussian measure on V s.t. supp(zz) = W. We have proved:

(1) For all compact open subset U C V/W,
sup { [w(U")|: U € =~ *(U), U’ compact open }
is reached by some compact open subset U’.
(2) For all compact open U C V/W, let

oy = max{ |u(U")|: U' C 7#~'(U), U’ compact open },

7
m=1(U)

Hu = [—
Cuy

Then supp(py) is a finite union of cosets of W.

let ¢y € K be s.t. |cy| = oy, and let

15Because each compact open subset of (w+ A+ W) x (w+A+W)—&((x+A+W) x (A+W)) is a
finite disjoint union of subsets of the form £(U; x Us) satisfying the above conditions.

7



Expectation 3: 35 C V/W, S —— V/W
Z1/2" —— Qf
and 3 a function'® ¢: S — R of the form o(z) = e 9®* @ a pos. def. quad. form on S,

s.t. YU C V/W compact open, let oy = max,cpyns o(z), and let ¢y € K be s.t. |cy| = op.
Then'”

(a) |w(U")| < oy for all compact open U’ C 7~ H(U).

| ] is a k-valued measure whose support is exactly
= 1(U)

U '

yesSNU, a(y)=ou

(b) s = [—

Def. The singular set S = S(u) of p is defined by
S =S(p) :={x€V/W:Jopen neigh. U >z € V/W s.t. supp(uy) =7 "'(z) }
Def. Define 6: S — R by
o(x) = max { |u(U")]: U' C 7' (U) }
for any x € S, where U is an open neighborhood of x in V/W s.t. supp(uy) = 7 1(x).
This definition is independent of the choice of U.

It remains to show that
S—— V/W

El |-

Zn2r —— Q@

and
o(z) =e @ Q pos. def.

PrROOF OF EXPECTATION 3. Let v be the O-valued Gaussian measure dual to pu, i.e.
E(pxp) =vxv. Let T = S(v) C V/W be the singular set of v, and let 7 =0o(v) : T — R
be the sup. map for v. Then
ESxS)=TxT
and
o(x)-o(y)=vx+y) -y(x—y) foral z,yeS.

From these we deduce

16The function o on S C V/W here is different from the function ¢ on W in Theorem 2.
1"Tn terms of the function o : S — R here, for w € V, the positive number o(w) in Theorem 1 is equal

to max,esnr(wiatw) ().



(a) S is a subgroup of V/W and 25 = S.

(b) @ := —logo is a quadratic form from S to non-negative real numbers.!'

Let A C V/W be a neighborhood of 0, and let Sy := AN .S, a subgroup of S s.t.
U 2_nSO — S .
neN

(c) Let xy,...,x, € Sy be a Z-linearly independent subset in Sy. Look at the maximal H
s.t. 3

VAR ,,'H( Qn ¢((a1,...,an)zzai$i

|,

So
Let @' be the quadratic form on Q" s.t.
Q'(a,a) := —logo(p(a,...,a,)) for a = (ay,...,a,) € H

Note that
(@ is a pos. semi-definite quad. form on Q"

Qa)=0, a€eQ" = a=0

(c1) [H:Z"] < 0.
If not, 4 Q-vector subspace L C Q" s.t. HN L is dense in L in classical topology. But
Va € 7", ¢(a) € S,

in ¢(a) +2™A, o(¢(a)) > o(b) for all b e ¢(b) +2™A
if m is large enough. Thus
Q'(a,a) <Q'(b,b)  forall bea+2"H.

Take a € LNZ" and b € (a+2™H) N L in particular: then the possible b’s are dense
in L. So there are some b’s for which Q'(b,b) < any given ¢, and get a contradiction.

Corollary. H is a finitely generated abelian group: w.l.o.g. H = Z".

(co) @' is positive definite.

If not, get
R PR Rm (m<n)
H

18For s € S, we have o(s) = 1 < s € W = supp(fi).



and a quadratic form Q" on R™ s.t. @Q'(a) = Q" (w(a)) for all a € R, and 7(H) C R™
is not discrete. i.e. 3 R-vector subspace L C R™ s.t. w(H) N L is dense in L. Get the
same contradiction as above.

(d) Sy is a free abelian group of rank r = dim(V/W).
PROOF. Define r := dim(V/W), d := dimg(Sy ® Q). Then

d finite < S fin. gen. by (¢1) and (c3).
If d <7, then Sy is too small to be dense' in A, OUT. If d > r, well
S0/2S0 € ANJ2N = (Z)27Z)" .
Q.E.D.

o

S —=Z[1/2]

L]

and o = e~ 9®9) ) pos. def. quad. form on R". Expectation 3 is proved.

R

(VI) Theorem. 4 (1) Every Gaussian measure g on V (as above) can be written as

=

z€eS

where each p, 2 is an O-valued measure on V with

supp(pz) = 7 1() Ve e S
sup{ |p(U): U CV compact open }  Va € S

Similarly, the dual measure v can be written as
v =3 v,

with similar properties as above. Moreover

Ex(ta X fly) = Vo X Vpy Vr,y e S.

196 is dense in V/W because supp(p) = V.

20For z € S, the measure i, is the push-forward to V of a measure !, on 7=1(x), defined as follows. For
any compact open subset U’ of 771(x), let {Ui};en be a decreasing family of compact open subsets of V
such that NjenU; = U’. Then p) (U') = lim; o u(U;).

10



(2) Correspondingly: if (0) C W= C W C V is the set-up for 7: V — V/W C S,?' and

O is an O-valued theta function w.r.t. e, e,, A as in the beginning of §1. Then

Oe) =) O,(a),

eSS

where each O, ?? is a function on V' such that
(a) Oz(a+P) =e.(8/2)e(B/2,0) Oz(a) VB EA,
(b) supp(©,) C 7 H(z) + A,
(€) Ou(a+B) =e(B,7e — a/2)Ou(a) VBEW!L ifv, €V satisfies m(v,) = .

’Deﬁning an associated tower of toroidal groups‘

© on V gives

OycWwWrtrcwcV, m: V- (V/W) (weassume e,(a/2) =1,YVa € WN (1/2)A)
ScV/wW
O, on 7 1(x)+ A

(1) ©g on W/W* defines a tower of abelian varieties
B, indexed by compact open subsets U, C W/ wt
(2) If U C V is a compact open subgroup, get
(a) Uy, = (UNW)/(UNWt), hence B, .
(b) 7(U)N S =Sy, a lattice in S.
Vz € Sy, choose v, € U N7 (z). Set

D, (a) =e(1/2,a) - O+ 72) s aeceW,
a function on W/W+ “related to” O .

. &, defines a point P,(z) € B, .

[If v =~.+n, n € U+ W, then ¢ (a) = const. e(n/2,a)d.(a + 1), so Pu(x)
doesn’t change. |

2IThe quotient V/W here corresponds to the quotient V/W in (1).
22The functions O, is related to the measures j, as in (I):

polaz +2"As) =2 3" e(as,a1/2) Oy(a1 +az).
a1€2n A1 /A,

O, (a1 + a2) = e(az,a1/2) / e(a1,B) - du(B) a1 € Vi,az € V5.
az+A2

11



Get a homomorphism S, i B,

r ——> P,(x)

(c) Go = Specgp, ( E% {T;Q(I)LQ®LQ1})
€SO

A class of rigid analytic maps

Given: K = complete valued field, C = K,

Given: GG, a comm. alg. grp. over K of type

G

Gl |7

m

A abel. var.,

L, ample inv. sheaf on A, all rational over K.

G = SpecA{ & (K ®---®Kl”)}
nezr
where K7, ..., K, are invertible sheaves on A, alg. equiv. to O4 .

To define a rigid analytic map ¢: Go — P@, need m + 1 analytic sections of 7*(L)
over G¢.

~ m+1 Laurent-type expressions L; = Z s(n,i), 0<i<m
nez”

s(n,i) eIN'(A L@ K" @ --- @ KJ)

CONVERGENCE: Vx € G¢, get w(x) =y € Ac, plus K;(y) —— C fori =0,1,...m.
Then evaluate:
s(n,i) —— Val,[s(n,i)] € L(y)

Ask that

: exists in L(y) for all ¢
Z Valz[s(n, )] { & not be 0 for all 4

Hence ¢ comes out.

12



§2. Application to monodromy: method of theta functions
Given
(a) an abelian variety X over K — get T5(X), a module over Z,[Gal(K /K)],

(b) a principal polarization on X plus an even symmetric theta-divisor Dy representing it
— get a theta function O: V5(X) — K s.t. O(oz) = O(z)? Vo € Gal(K/K).

[State converse: all such (V, A, e, e, ©) come from (X, Dy).]
Problem is:
if K = local field, alg. cl. res. field k, char(k) # 2,
& if T := Gal(K/K) acts on Ty(X) via its tamely ramified quotient T'iume.2,

show that

3 an open subgroup U C ['iape s.t.
v operates unipotently on Ty(X) Vy e U

Method: a complete description to the solutions of the theta functional equations over a
local field. viz. 3

(i) (0) Cc Wt C W CV subspaces, 7: V — V/W

(ii) S —— V/W

Nl lw

Z[1)2]" —— @

(i) @: S — R pos. def. quad. form

@:Z@z

ses
supp(©,) C 7 () + A.

xx)

)
) maxy, [0:(y)| =
(¢) Ou(a+P) =eu(B/2) - e(B/2, ) - Oz(e) for all 5 € A.
) Ou(a+08)=e(B,7 — %) Ou() forall € W if v, € m ().

23T ame = [1,Z(1), where ¢ runs through all prime numbers which are invertible in k.

13



Claim: It follows that
v=id. on W and on V/W* VyeU,
i.e. the matrix representation of v has the form

I 0 =
07 0
00 I

This Claim will be proved in two steps below.

Step 1. Assume that ©: V — £k is an algebraic theta function for (VA e, e.), o € Sp(V, A)
such that

e VzeV,dnejAst Ox+n)#£0,
e O(ox) =0(x) forallx € V
Then o is of finite order.

PRrROOF OF STEP 1. Replace o by a suitable tower so that (¢ — 1)A C 4A. We will show
that®* for any n > 2,

(c—1DAC2"A = (6 —1)AC2" A

For any x € 27" A, we have

or — X or — T

O(x) =0O(oz) =O(x + (o — x)) = e 5 ) -e( 5 ,x) - O(x)

coe(lox —x,x) =1 if O(z) #0. Pick an 5 € 1A such that ©(z + 7) # 0. Then
L=e((lo =D +n), (x+n)) = e((o -z, 2)-e((0 = 1), ) - e((o =)z, n) - e((o =1)n,n)).
The last term is 1 because (¢ — 1) € 2"7'A C 2A. The product of the two middle terms is
e((o = 1)n,x) - e((0 = 1z,1) = e(on, z) - e(x,0” ') = e((0* = 1), ox)
=e((c —1)*n+2(c —1)n,ox) =1
because (o — 1)?n € 22"71A C 2"A and 2(c — 1)n € 2"A. So
Q(z) :=e((c = Dz,z) =1 Vo e 27"A.

Now we have

——Q@—{_y) =e(lc—1)x -e(lo— r)=e(x, 0 ) eloy,z)=elx,oc 'y — 0o
= 00)-0W) (o0 = Dx,y)-e((o = Dy, z) =e(z,0"y) - e(oy,r) = e(r,0 "y — oY)

for all z,y € 27"A, therefore o='y — oy € 2"A for all y € 27"A. Write 0 = 1 4 7, we have
2"\ 3 oty —y =21y + 1 Yy € 27"A.
But 72y € 2"A, therefore 7y € 2"7'A for all y € 27"A, ie. (0 — 1)A C 22" 1A, Q.E.D.

24This statement was formulated for n = 2 in the original notes.
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We go back to the algebraic theta function © for (V = Vo(X), A = To(X), e, e,) attached
to (X, Dy). Let W C V be the associated cusp, W+ C W. An element v € I'tame Operates
on V via an element of Sp(V,A) s.t. v(W) C W, v(W+) C W+. By Step 1, there exists an
open subgroup U C I'iume such that every v € U has a matrix representation of the form

tA=l B x
0 I C
0 0 A

i.e. v operates on W/W* as the identity.
Step 2. A=1, B=0,ie. 7|y =idw.

We need the following facts for the proof of Step 2; they are consequences of the results
in §1, summarized at the beginning of this section.

Fact (a). o(x) := SUDc1p |©(z 4+ n) depends only on the image of z in V/(W + 1A).
Fact (b). Vz € V, 3¢, € V, depending only on the image of z € V/W | s.t.
|O(z +u) —e(&,u) O(z)| < o(x) Vu € W,

We know that O(yx) = O(x)? Vx eV, v(A) C A and (y — 1)W C W*. Replacing U by

an open subgroup, we may assume® that U = Z, and
(0 —1)(A) C8A+WE, (6 —1)(ANW) C8A
i.e. P(3) holds, where P(n) stands for the statement
(0 —1)(A) C2"A+W* and (0 —1)(ANW)C2"A VyeU.
It is clear that Step 2 follows from Claim 2 below.
Claim 2. Suppose P(n) holds, n > 3, then P(2n — 1) holds.?

The first part of P(2n — 1) implies that if x e ANW, £ =2"""H X4+ w, A e A, we W,
then y71¢ € A+ W, so
e(yz,€) = e(z,y7'¢) = 1.

i.e. the second part of P(2n — 1) follows from the first part.

25Because Sp(V, A) is an extension of a finite group by a pro-2 group.
26Claim 2 was formulated for n = 3 in the original notes.
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Let z € 27"A, n > 3. Changing = by an clement of A, we may assume that [O(z)| =
o(x). Write (y — )z =n+u, n € A, u € W+, Then

Oz)” = O(yr) = Oz +n+u) = e.(n/2) e(n/2, x + u) e(&, u) O().

Change z to 2’ with w := 2’ —2x € 27"ANW. Then |0(2')| = o(2’) = o(x) too by Facts
(a), (b) above. We know?" that
o) _ o)
O@) ()
Loea(n/2) e(n/2,w 4 u) €y, u) = en(n/2) e /2, 2" + u) e(&e, u)
elnr+u)=e(n, 2 +u).

We have (y — )z =n+u, (v —1)2' =0 +u, 7 —n=(y—1we W-NA by P(n).

- e(n,x) = e(n,a) = e(n+ (v — Lw, z + w)

1= e w)e((y - Dw,z) = e(w, —n) e(w, (7 = L)) = e(w, —n + (v = 1)z)

for all w € W N2 "A.
en4+ (v =Dz e2"A+ Wt

Son 4 (y = Da € 2"A + W
o+ eA+WE cue Wt

Hence
2n € 2"A + Wt

by P(n), i.e.
ne2" A+ W,

We have shown that Vy € 27"A, dov € y + %A st. (y =1z €2 A+ W forally € U. So
(y—1DA C 2 A + W,

Q.E.D.

2"from the structure of tamely ramified extensions of local fields.
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