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1. Introduction: Let A be an abelian varilety defined

over k, an algebraically closed field complete with respect
to a real absolute value. Let R be the ring of integers

in k, and k the residue field; suppose char k # 2. Our

aim is to show that A has a "good reduction" over R: i.e.,

that there is a fibre product diagram:

L " o
Spec k $—>Spec R <——=23pec &

where #» is a group scheme over R, and A is an extension of
& E by an abelian variety. The existence of such
reductions provides an abstract analogue of the existence
of the Satake compactification of the moduli scheme of A.

1t § = (¢ )", we will say that A has totally-degenerate
reduction: in this case one can get a p-adic analytic
uniformization weV -;¥> A, and hence the Tate-Morikawa-
McCabe Theory.

We will use an abstract theory of theta~functions to

perform the reduction; and we begin by sketching such a

theory.

2. Abstract Theta-functions: Classically, the theta~functions

associated to an abelian variety A arise in the following way.

Let A be defined over k, and suppose there is a surjective

homomorphism 1ws V ===> A; then A = For example,

V/Ker T’
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itk=C, vs= Q:g (g = dim A) and Ker w is a lattice;
cr in the Tate~Morikawa-McCabe Theory, k is a local field,
vV = (k%)g and Ker 7w is a "multiplicative (annular) lattice".
Then the theta-functions on V associated to A are holo-
morphic functions on V which satisfy a certain functional
equation with respect to Ker m.

Quite generally, suppose we have a homomorphism
me V :::> A; and an ample, invertible sheaf L on A so that
if {. is the induced line bundle, then n¥g = T (the
trivial line-bundle on V - i.e., induced from (- ,).  Then
sections S & I'(A,/ ) pull back to sections weﬁs) € P(V,Z7),
and these are naturally interpreted as k;valued functions
on V which can be called theta;functions. These functions

satisfy a kind of periodicty with respect to Ker w, as the

following argument shows. Let 4 ¢ Ker 1, and interpret it

as a translation map on V; then « « ¥ = 1w so y¥'n~ =7 .

Therefore we have a commutative diagram

Y—::- ”%ZL _ ”*/Z__
s "3
s ——> ]
7 mult. by ¢
Y
where c,, is a suitable nowhere-zero function on V. Thus, if

Y
f is the k-valued function w*(s), then we have

f(yz) = cY(z)f(z) , z2 €V,

We apply this formulation as follows. Let p be a
prime, pr = pts of order pn in A (some n) and
Vb(A) = lim pr s, the Tate-module of A at p. Then there is

< svma

P
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an exact seguence

P p( ) A

where w is given by m(a ,al...) = ao . Recall that there

2 o

are ilsomorphisms Vp(A) (Qp)zg and £\ pg (25)28 (g = dim A).
Thus we can discuss "local " theta-functions corresponding

to the uniformization s Vﬁ(A) = pr « There is an
analogous theory of global theta~functions in which Vp(A)

is replaced by the adele group]J:Vp(A). However, there

seem to be difficulties in the local case for p # 2; hence

we shall restrict our attention, from now on, to the case

p = 2.

3, Construction of Theta-functions.

Let L be an ample invertible sheaf on A, 3 L —> A
the corresponding line bundle. For y € A, let Q_y =,ﬂ-?(y),
the fibre over y. Assume that

i) There is an isomorphism p: 1%l => [ where

itA ~> A is the map i(x) = -x; i.e., that L is
symmetric.

ii) We are given a specific i1somorphism ¢o:‘£"o-:—> k.
Now we can trivialize ﬁaséL if we can find isomorphisms
AL.X o> k for all x ¢ Ag“' We proceed to do so as follows.

Let t,: A =——> A be the translation tx(Y) = x+y, and
suppose that for some particular x we are given an isomor;

phism T&: tX*'ﬁL —> 1L . Consider the diagram:
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s

. i
i t; ﬂ“ - > i* L

mn

(t,08) " [ p

1 WV
(1°t-x) [Z__ /.L-

l t* 4
1 ) =X X
¥ 0 Vv

- % -X <e
62,1 L > 5, U__

As it stands, there is no reason to expect this diagram to
commute. However, 1f we modify Ty by a suitable automor-
phism of /. (which is just an element of k" - since . is

a line bundle over a projective variety) we can force the
diagram to commute. Now suppose that o, € k'yf are auto;
morphisms such that o - Ty and B ° Ty make the diagram
commutative, then an eaey chase shows that a® = g%, or
a=+ B, Thus a ° T, and -a © % are the only isomorphisms
of,é?iiwith /a which make the diagram commutative, and if
we stipulate. that this should be so, then an isomorphism

CERM

~

/A is determined canonically up to + 1.

We can define a completely canonical isomorphism O, x

from th ﬂ_ to [Z, as follows,

. !
Y T RS E & 3 T1
%ax® Tlax L=+ <5 L) >t L —x o[

since =~ 1§.and T; give the same o . Thus we can get
canonical isomorphisms

(o

ax)o : (tzx Q;)o —_—— (1"0 and from this
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> k., But (t% M) = - _ .

(Poo(ozx)o : (tzx U")o 2X o 2X

Therefore we have a canonical isomorphism

¢ 0o(o,,) 2 [Lgx >k .

0

Therefore we can trivialize n* Z along those fibers /e
such that ty { <> 7 for some y solving 2y = x. But this
isomorphism exists for only a few points in A. We use the

following lemma to enable us to obtain isomorphisms

/.

Lemmas (n® > n). Let ndy A —> A be the isogeny

« >k for all x ¢ A .. Put H(L) = {xeA: & [[Z> /L)

né(x) = nx., For all x ¢ A of finite order, (nd) t:' ZZ—
is isomorphic to (nd)* /L. for some n (n = order of x
will do).
(The proof is easy: 1let x = ny, so y has order n®., Then
(no) * AL s 4 v° . But for any A/ and k,
5 M ¥ §Ak. So (nd) ¥t * [_ —> ty“ (nd) ° [Z-—->t“Ln -(n5 Y2.)

Now let xoe A:aoo be some fixed but arbitrary element.
Then X sits in at least one sequence (xo,xl,...,)eva(A).
> 4.

however, for large enough m, (2"8)7(t) (L) —=> (2"6)* 4 by
1

We will not in general have an isomorphism tx:. ﬂ,

the lemma. Since (2m6)* txfl‘-'> tx ﬂ(2m6)'x‘,{Z_ we get &
. m+a
canonical (up to + 1) isomorphism

T : tx*- (2"6) ¥ [l —> (2"6)*/] end thus a completely
m+a m'l'l

canonical O, and therefore isomorphisms

1f
0, oo, ), 8 (Z")FL), —>x. But ((2%)f) =L

mn n n

L]
Xo
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Thus we get the desired isomorphism of the fiber ﬂ[_x with k.
Glossing over the development, the final theogy
comes out something like this. We begin with a symmetric,
ample, invertible sheaf L on A of degree 1, as above. L
determines
i) a bimultiplicative, skew;symmetric form
es Va(A) X VZ(A) —> {2" th. roots of 1 in k}
ii) a'quadratic character" e, :(1/2‘ﬁ4\———> {+1}
satisfying e(a,p)®= e%(&+6)e%(&)e%(53for a,Be% VAR
We can assume that the Arf invariant of e, is zero
by replacing L by some txei, X £ Az, if necessary.
(The quadratic form e is classical: see for example Lang,

Abelian Varieties).

In terms of this data we obtain theta-~functions

© g1t V (A) —> k for all sec I(4, 4 ™), satisfying
() Orgylatp) = [e%(ﬁ/z)-e(ﬁ/a,aolr‘e[s](a) for all a eV _(A)
Be N .

This gives @& homomorphism of k-algebras
6 3n§1 T'(A, I %) —> {k-valued functions on VZ(A) satisfying
()}
where multiplication of sections sl, Sz is given by

Slﬁ sz. Further, 6 is injective; -in fact, if
a =-(a ,8 ess) &V (8),8,, ,(a) =0 if and only if
) 2 [+]

1
<==> t(aé) = 0, If S denotes the canonical section of

/s theﬁ we put G't ] = ® the Riemann theta-~function. It
So



gatisfies

4 —g <O 4
(e3¢ H M%)=2 P MYW)H@WfW*m
i=a nNex A i=2
2’

.1l
where ¥ = = 5 2 G4
(s+332) for every a € Vz(A) a8 e% A so that ©(a+B) # O.

What is remarkable about these theta-functions is that
beginning with just ® we can recéver the pair (4, L ).
Suppose we start with a vector space V isomorphic to (Qz)zg,
/\ a maximal isotropic lattice in V, the form e and the
quadratic character e,. Then we can define a theta-function
® on V as a k-valued function satisfying (%), (s=:) and

(s=:%) o We then put

M = k-vector space spanned by e(a,p) @ (2a-p)
where a ¢ V, B ¢ % A . (This will equal the space
of 8 [s]'s, s ¢ (A, [L*%).
Se (M) =k
S (M) =M
1

-—

Sﬁ(M) = gpace spanned by n-fold products of elements from M.

Then A = Proj (@ Sn(M)) is the abelian variety sought for,
and £- is easily recovered from A and & Sn(M).

Finally, let us note an important correspondence between
theta:functions on V and finitely-additive measures on a
certain subspace of V., These measures arise from the

Fourier transforms of the theta~functions, and are examples
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of Schwartz-Bruhat distributions. Explicitly, we can
describe them as followss
decompose V &as Vl ® Vz where Vl, V2 are isotropic with
respect to the pairing e, A= (AN Vl) + (AN Vz) and
e%(a) =1 for a ¢ %f4n Vie A finitely-additive measure
on the Boolean ring of compact open subsets of V:L is called
Gaussian if and only if

i) w(U) = p(-0)

ii) Given themap &: V. x V. —> V_x V
1 1 1 1

E(x5y) = (x+y, x-y), thén
(b x wXEU) =(v xv)}(U) where y is some other measure
on the same ring.
The correspondence between theta~functions on V and Gaussian
measures . on V:L is given thus:
ula + 25 A ) =278 > o(a ,"/z) €(a + a)
1 1 o 2™ /] a 1 2
2 2//)

2
and _
6(a1+ az) = e(al,ag/z)a/; e(az,B)du(B)
1

where /11 = /In vy (i =1,2) and a & /Wi.

li. The Reduction of A over R

We now analyze the relation of ® to the integers R in
k (R,k as in section 1). Let| | denote the real absolute

value of k: Va(A),/4 and ©® as before.
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Proposition., max |®(a)| is finite and is taken on for
aeVv

some a € % A .

Proof. The Riemann theta~-relation

% : 4
[_[ ( O'.i) = 8 ? e( 4, 1) H 0 ai+Y+Tl)
i=a e A 1=,
gives o . 4 _
]:[ | &( ai) | < max ﬂ_ | &( a.i+y+-q) |
lh? "332' / 1_?

since |®(a)| is constent on cosets of A .

Ifweput o =a =a =a=-a, then
‘ 1 2 3 &
(1) le(a)|* < max  |e(n)|® |o(2a = 0) ]

since () is valid for all a & V , applying it successively

to 2a~1 , Lo~31 ,..., 270 =(27-1)1,... and substituting

back in (1) we get

lo(a) |* 5 max le(n) | 7. I®(2nc§-(2nw-"1)n)ISn
nes /&K
where r = ;2% B/Mi s 8 =€§E

Now in the 2-adic topology épa - (en-l)n converges to 1.

We know r  converges to L. Therefore we get

l®(d)|*é mex |@(n)|*

il
=5 7
whence
max |€(a)| < max |O(n)|* < max |6(a)]|*
aeV ,ne% /y/‘ aev

- which ylelds the result.
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Using this proposition we can normalize ©® so that its
values lie in R, but not all lie in the meximal ideal M;
that is, if ® denotes the induced functionto k , &(a) # 0
for some a & V.

We now invoke the main result used for the Satake

compactification., (see [1])

Theorem: For every theta;function ® onV, (i.e., & function
satisfying (), (%), (%) but not necessarily (s==w:)) there
is a subspace W c V with w c W (4 with respect to e) and a
non-degenerate theta-function $ on W/w such that

supp © s W+ A+ Ny » Mg e’ ? A

and - o
6('r]o+'n1+a,) = e%(ﬂl/z) e(nl/a,a) e(ﬂ.‘.’.;'_'ﬂ.l_ , a) &a)

(n &/, QEW)

- The theta-functlon ® is used to construct an abelian
variety B/k of dimension h(where dim W/Wi = 2h) in the same
way that A was_constructed from © (see section 3). Then the
special fibre A of the sought;for group scheme Ci. should

be in an extension

0 >@~;’1 >k > B >0 .
Notice that if the reduction is to be totally;degenerate,
then we must have W = wl, and hence B = {0}.

To construct &2 héwever, we must first study how many
R-valued theta=-functions come from a given k-valued non-

degenerate theta-function & on a vector space W/ﬁi of smaller

dimension. For this question the measure-theoretic point
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of view (outlined at the end of section 3) is much better.
For ease of exposition we confine ourselves to the case of
totally;degenerate reduction, i.e., W = w*: In this case the
R;valued measure M corresponding to @ redﬁces to a k~valued
measure i, where p is jusb the point mass at O, 50 (the so-
called "Dirac delta-function"). The main result concerning

these measures is this.

Theorem: Let u be a non-degenerate R-valued Gaussian measure
on Qf such that p = 60. Then there is a unique subgroup M!
in Qf isomorphic to Z[%]g (and equal to it after a suitable

change of co-ordinates) and a unique quadratic character

ct: M!? > R=-{0} such that
<
p= 2 oc¥fx) 8
xeM!? N

Moreover, if we tensor M! with R, then there is a positivg;
definite quadratic form Q: M! @ R ——> R so that |c’(x)|=e-Q(x)
Ideally, at this point we should write down & explicitly
in terms of ®. However, this presents certain complications,
and it is faster to construct & by means of the theory of
the Néron = model and to check that its special fibre K is
- 3 by means of Galois Theory (following a suggestion of
Grothendieck).
Choose a subfield ko c k with a discrete absolute value
so that A is defined over ko’ and let éiz be the Neron
model of A over R, = integers in ko. Let (2 = é2zo(minus

the components of its special fibre not containing zero)

then G = Gal (k/ﬁ ) acts on VQ(A) preserving A , e, W, M! ,
[o}
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and Q. On V/W the action of G is determined by its action

on.M! n (/Vh nw) = % €, Hence we have a representation

G > 0(Q)y,

into an integral orthogonal group (corresponding to the
quadratic form (Q) on Q:g . But this group is finite! Hence
replacing ko by a finite extension k, if necessary we see

that G, = Gal (k/k ) acts trivially on V/w. Since G
1

preserves the actidén of e, it acts trivially on W too; thus

the representation takes the form

Thus A_,, contains a subgroup H which is k -rational and is
2 1 .
a maximal isotropic subgroup of points of -order 2n, iso-

morphic to (Qz/ )g + Now by one of the key properties of
Za

Neéron models, all kl-rational points of A extend to Rl-

rational points of(ﬁll(cz, = Neron model of A over Ri)'

1
Since H 1s divisible, all points of H give Rl-rational-
points of Cizl hence H induces a subgroup fI ¢ K, isomorphic
g
to (Qz/zz) .-
Now from quite general structure theorems on group

schemes, we have an exact sequence
T

0 > L > & > B > 0
when L is a linear group of dimension r, and B is an abelian

variety., It can be shown that w(H) is still isotropic in B
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g-r.

EAI

and since B has dimension g-r, = 2/

& r.

Therefore I N L has a subgroup ( 2/ , whence L

Using the total degeneracy of the theta function we can then

show that & = (Bﬁ - i,e., that B = {0}.

5. Analytic Theta-Functions.

In this section we will show how our thete-functions with
totally;degenerate reduction are essentially equal to suitable
holomorphic theta~functions of Tate:Morikawa-McCabe, and
hence that the abelian varieties uniformized by the Tate
theory are exactly those with totally-degenerate reduction.

In the algebraic theory we have outlined, the exact

sequence

>0

is the analogue of the sequence

l?
0 > M ——> v(M) > A(k) ——> 0
(where V(M) is the g-dimensional toms with character group M)

of the holomorphic theory. See Tatel!s Bowdoin Colloguium
talks for details. Now using the theorem of the previous
section we can express every theta;function with totally
degenerate reduction, ®a (the subscript a emphasizes that it

is the algebraic theta-function) as

a.+(3) oz, a) E“ e(B,x) c’(o,+x)

xeM

where V = Vl & V is a suitable decomposition,
2

aeV, peV,M =utn/t ,u'cV, V is the W of the

previous section, ¢! and M' as in Theorem 2,
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In the holomorphic theory there is a quadratic character

c: M > R which determines q via the identity

x v _  c(x+y)
(@7 = oTaYely)

The unique holomorphic theta-function ®h is equal to

o (W =3 o(x)u’ .
xeM

It is now easy to relate ®, and O Explicitly, we

construct a map

f: M!' ® (Vz/vzn/\) —> {xeV(M): x*" ¢ qM}
n | n
Vz(A)/VznA V(M)

so that if a e Vz, X eM

f(cc)x = o(a,x)
and if o e M!, x € M. then
% _ clatx)
f(a)” = c%aicix)
Note that £('2/V_n A ) ——> {points of order 2 in V(M)}

and £(M!) is a "2-divisible hull" of g in V(M).

Define:  y: M!' @ ('3/y o ) > R by
=

Y(atp) = o(@ ™" o(a,?2)

Then a simple verification yilelds

®b(f(x)) = y(x) - ®a(x)

Since we have essentially the same theta functions in the
algebraic and holomorphic cases, it is easy to deduce that the
two theories provide uniformizations of the same abelian

variety.



