Bhagawandas

Abstract Theta Functions

Lectures by
David Mumford

Advanced Science Seminar

in

Algebraic Geometry

Sponsored by the National Science Foundation

Bowdoin College
Summer 1967

Notes by Harsh Pittie

1. Introduction: Let A be an abelian variety defined over k, an algebraically closed field complete with respect to a real absolute value. Let R be the ring of integers in k, and \bar{k} the residue field; suppose char $\bar{k} \neq 2$. Our aim is to show that A has a "good reduction" over R: i.e., that there is a fibre product diagram:

where \bigcirc is a group scheme over R, and \overline{A} is an extension of \bigcirc \bigcirc \bigcirc \bigcirc M by an abelian variety. The existence of such reductions provides an abstract analogue of the existence of the Satake compactification of the moduli scheme of A.

If $\overline{A} = (C_m)^n$, we will say that A has totally-degenerate reduction: in this case one can get a p-adic analytic uniformization $\pi:V \longrightarrow A$, and hence the Tate-Morikawa-McCabe Theory.

We will use an abstract theory of theta-functions to perform the reduction; and we begin by sketching such a theory.

2. Abstract Theta-functions: Classically, the theta-functions associated to an abelian variety A arise in the following way. Let A be defined over k, and suppose there is a surjective homomorphism π : V —> A; then A \cong V/ $_{\rm Ker}$ π . For example,

if $k=\mathcal{L}$, $V=\mathcal{L}^g$ ($g=\dim A$) and Ker π is a lattice; cr in the Tate-Morikawa-McCabe Theory, k is a local field, $V=(k^*)^g$ and Ker π is a "multiplicative (annular) lattice". Then the theta-functions on V associated to A are holomorphic functions on V which satisfy a certain functional equation with respect to Ker π .

Quite generally, suppose we have a homomorphism $\pi\colon V \longrightarrow A$; and an ample, invertible sheaf L on A so that if $\mathscr L$ is the induced line bundle, then $\pi^*\mathscr L \cong \mathbb N$ (the trivial line-bundle on V - i.e., induced from $\mathscr L_V$). Then sections S ϵ $\Gamma(A,\mathscr L)$ pull back to sections $\pi^*(S)$ ϵ $\Gamma(V,\mathscr L)$, and these are naturally interpreted as k-valued functions on V which can be called theta-functions. These functions satisfy a kind of periodicty with respect to Ker π , as the following argument shows. Let γ ϵ Ker π , and interpret it as a translation map on V; then $\pi \cdot \gamma = \pi$ so $\gamma^*\pi^* = \pi^*$. Therefore we have a commutative diagram

where c_{γ} is a suitable nowhere-zero function on V. Thus, if f is the k-valued function $\pi^{*}(s),$ then we have

$$f(\gamma z) = c_{\gamma}(z)f(z)$$
, $z \in V$.

We apply this formulation as follows. Let p be a prime, $A_p^\infty=$ pts of order p^n in A (some n) and $V_p(A)=\lim_{p\to\infty}A_p^\infty$, the Tate-module of A at p. Then there is

an exact sequence

where π is given by $\pi(a_0,a_1,\ldots)=a_0$. Recall that there are isomorphisms $V_p(A)\stackrel{\cong}{=}(\mathbb{Q}_p)^2g$ and $\bigwedge_p\stackrel{\cong}{=}(\mathbb{Z}_p)^2g$ ($g=\dim A$). Thus we can discuss "local" theta-functions corresponding to the uniformization $\pi\colon V_p(A)\longrightarrow A_p^\infty$. There is an analogous theory of global theta-functions in which $V_p(A)$ is replaced by the adèle group $\prod_p V_p(A)$. However, there seem to be difficulties in the local case for $p\neq 2$; hence we shall restrict our attention, from now on, to the case p=2.

3. Construction of Theta-functions.

Let L be an ample invertible sheaf on A, $\mathcal{L}: \mathcal{L} \longrightarrow A$ the corresponding line bundle. For y ϵ A, let $\mathcal{L}_y = \mathcal{L}^{-1}(y)$, the fibre over y. Assume that

- i) There is an isomorphism ρ : $i^* // --> // where i:A --> A is the map <math>i(x) = -x$; i.e., that // is symmetric.
- ii) We are given a specific isomorphism $\phi_0\colon \mathcal{L}_0 \xrightarrow{\sim} k$. Now we can trivialize $\pi^*\mathcal{L}$ if we can find isomorphisms $\mathcal{L}_{\times} \xrightarrow{\sim} k$ for all $x \in A_{\infty}$. We proceed to do so as follows. Let $t_x\colon A \longrightarrow A$ be the translation $t_x(y) = x+y$, and suppose that for some particular x we are given an isomorphism $T_x\colon t_x^*\mathcal{L} \xrightarrow{\sim} \mathcal{L}$. Consider the diagram:

As it stands, there is no reason to expect this diagram to commute. However, if we modify τ_x by a suitable automorphism of $\mathbb Z$ (which is just an element of k^* - since $\mathbb Z$ is a line bundle over a projective variety) we can force the diagram to commute. Now suppose that $\alpha, \beta \in k^*$ are automorphisms such that $\alpha \cdot \tau_x$ and $\beta \cdot \tau_x$ make the diagram commutative, then an easy chase shows that $\alpha^2 = \beta^2$, or $\alpha = \frac{1}{2}\beta$. Thus $\alpha \cdot \tau_x$ and $-\alpha \cdot \tau_x$ are the only isomorphisms of $\mathbb Z$ with $\mathbb Z$ which make the diagram commutative, and if we stipulate that this should be so, then an isomorphism $\tau_x^!: t_x^*\mathbb Z$ is determined canonically up to ± 1 .

We can define a completely canonical isomorphism σ_{gx} from t_{x}^{*} \mathcal{I} to \mathcal{I} as follows,

from
$$t_{xx}^*$$
 \mathcal{I} to \mathcal{I} as follows,
$$\sigma_{xx}^* : t_{xx}^* \mathcal{I} = t_{x}^* (t_{x}^* \mathcal{I}) \xrightarrow{t_{x}^* \tau_{x}^*} t_{x}^* \mathcal{I} \xrightarrow{\tau_{x}^*} \mathcal{I}$$

since - τ_X^t and τ_X^t give the same σ_{gX}^t . Thus we can get canonical isomorphisms

$$(\sigma_{xx})_{0}: (t_{xx}^{*} \mathcal{L})_{0} \longrightarrow \mathcal{L}_{0}$$
 and from this

 $\phi_0 \circ (\sigma_{gX})_0 : (t_{gX}^* / L)_0 \longrightarrow k$. But $(t_{gX}^* / L)_0 = L_{gX}$. Therefore we have a canonical isomorphism

$$\phi_{\circ} \circ (\sigma_{gX})_{\circ} : // _{gX} \longrightarrow k$$
.

Therefore we can trivialize $\pi^* \mathbb{Z}$ along those fibers \mathbb{Z}_X such that $t_Y^* \mathbb{Z} \xrightarrow{\sim} \mathbb{Z}$ for some y solving 2y = x. But this isomorphism exists for only a few points in A. We use the following lemma to enable us to obtain isomorphisms $\mathbb{Z}_X \xrightarrow{\sim} \mathbb{Z}_X$ k for all $x \in A_{2^{\infty}}$. Put $H(L) = \{x \in A: t_X^* \mathbb{Z} \xrightarrow{\sim} \mathbb{Z}_X$ } Lemma: $(n^2 > n)$. Let $n\delta: A \longrightarrow A$ be the isogeny

no(x) = nx. For all x ϵ A of finite order, (no) t_x^* is isomorphic to (no) U for some n (n = order of x will do).

 $\mathbf{x}_{\mathbf{x}_{m+1}}^{\bullet}$: $\mathbf{t}_{\mathbf{x}_{m+1}}^{*}$ ($2^{m}\delta$)* \mathcal{I} —> ($2^{m}\delta$)* \mathcal{I} and thus a completely canonical $\sigma_{\mathbf{x}_{\hat{m}}}^{\bullet}$, and therefore isomorphisms

$$\phi_{\circ} \circ (\sigma_{x_{m}})_{\circ} \circ ((2^{m}\delta)^{*} \mathbb{Z})_{x_{n}} \longrightarrow k. \quad \text{But } ((2^{n}\delta)^{*} \mathbb{Z})_{x_{n}} = \mathbb{Z}_{x_{0}}.$$

Thus we get the desired isomorphism of the fiber \mathcal{L}_{x_0} with k. Glossing over the development, the final theory comes out something like this. We begin with a symmetric, ample, invertible sheaf L on A of degree l, as above. L determines

- i) a bimultiplicative, skew-symmetric form
 e: V₂(A) x V₂(A) ---> {2ⁿ th. roots of l in k}
- ii) a "quadratic character" $\theta_*:(1/2 \)/ \longrightarrow \{\pm 1\}$ satisfying $\theta(\alpha,\beta)^2 = \theta_*(\bar{\alpha}+\bar{\beta})\theta_*(\bar{\alpha})\theta_*(\bar{\beta})$ for $\alpha,\beta\epsilon\frac{1}{2} \ \wedge$.

We can assume that the Arf invariant of e_x is zero by replacing L by some t_x , $x \in A_z$, if necessary. (The quadratic form e is classical: see for example Lang, Abelian Varieties).

This gives a homomorphism of k-algebras $\theta: \underset{n=1}{\overset{\infty}{=}} \Gamma(A, \angle^n) \longrightarrow \{k-\text{valued functions on } V_g(A) \text{ satisfying } (*)\}$

where multiplication of sections s_1 , s_2 is given by s_2 s_3 . Further, θ is injective; in fact, if $a = (a_0, a_1 \dots) \in V_2(A), \theta_{[t]}(a) = 0$ if and only if $< => t(a_0) = 0$. If s_0 denotes the canonical section of then we put $\theta_{[s_0]} = \Theta$ the Riemann theta-function. It

satisfies

(****) for every $\alpha \in V_{g}(A) \supseteq \beta \in \frac{1}{2} \land \text{so that } \Theta(\alpha + \beta) \neq 0$.

What is remarkable about these theta-functions is that beginning with just Θ we can recover the pair (A, \angle) . Suppose we start with a vector space V isomorphic to $(Q_2)^2 \mathcal{G}$, \wedge a maximal isotropic lattice in V, the form e and the quadratic character $e_{\mathbf{x}}$. Then we can define a theta-function Θ on V as a k-valued function satisfying (**), (***) and (****). We then put

$$S_{o}(M) = k$$

 $S_{i}(M) = M$

 $S_n^-(M) = \text{space spanned by n-fold products of elements from M.}$ Then $A = \text{Proj} (\oplus S_n^-(M))$ is the abelian variety sought for, and \mathbb{L} is easily recovered from A and $\oplus S_n^-(M)$.

Finally, let us note an important correspondence between theta-functions on V and finitely-additive measures on a certain subspace of V. These measures arise from the Fourier transforms of the theta-functions, and are examples

of Schwartz-Bruhat distributions. Explicitly, we can describe them as follows:

decompose V as $V_1 \oplus V_2$ where V_1 , V_2 are isotropic with respect to the pairing e, $\bigwedge = (\bigwedge \cap V_1) + (\bigwedge \cap V_2)$ and $e_{*}(\alpha) = 1$ for $\alpha \in \frac{1}{2} \bigwedge \cap V_1$. A finitely-additive measure μ on the Boolean ring of compact open subsets of V_1 is called Gaussian if and only if

- i) $\mu(U) = \mu(-U)$
- ii) Given the map ξ : $V_1 \times V_1 \longrightarrow V_1 \times V_1$ $\xi(x,y) = (x+y, x-y), \text{ then}$ $(\mu \times \mu)(\xi U) = (\nu \times \nu)(U) \text{ where } \nu \text{ is some other measure}$ on the same ring.

The correspondence between theta-functions on V and Gaussian measures μ on V $_{_{1}}$ is given thus:

$$\mu(\alpha_{1} + 2^{n} \wedge_{1}) = 2^{-ng} \sum_{\alpha_{g} \in 2^{-n} \wedge_{g} / g} e(\alpha_{1}, \alpha_{g} /_{g}) \theta(\alpha_{1} + \alpha_{g})$$

and

$$\theta(\alpha_{1} + \alpha_{2}) = e(\alpha_{1}, \alpha_{2}/2) \int_{\alpha_{1} + \Lambda_{1}} e(\alpha_{2}, \beta) d\mu(\beta)$$
where $\Lambda_{i} = \Lambda \cap V_{i}$ (i = 1,2) and $\alpha_{i} \in \Lambda_{i}$.

4. The Reduction of A over R

We now analyze the relation of Θ to the integers R in k (R,k as in section 1). Let | denote the real absolute value of k; $V_{S}(A)$, \wedge and Θ as before.

Proposition. $\max_{\alpha \in V} |\Theta(\alpha)|$ is finite and is taken on for $\max_{\alpha \in V} |\Theta(\alpha)|$ some $\alpha \in \frac{1}{2}$ \wedge .

Proof. The Riemann theta-relation

$$\prod_{i=1}^{4} \Theta(\alpha_{i}) = 2^{-g} \sum_{\eta \in \frac{1}{2}} \Theta(\gamma, \eta) \prod_{i=1}^{4} \Theta(\alpha_{i} + \gamma + \eta)$$

$$\prod_{i=1}^{4} |\Theta(\alpha_{i})| < \max \prod_{i=1}^{4} |\Theta(\alpha_{i} + \gamma + \eta)|$$

gives $\prod_{i=1}^{4} |\Theta(\alpha_{i})| \leq \max_{1 \leq i} \prod_{j=1}^{4} |\Theta(\alpha_{i} + \gamma + \eta)|$ $\eta \epsilon_{2}^{1} / \chi^{i=1}$

since $|\Theta(\alpha)|$ is constant on cosets of \wedge .

If we put $\alpha_1 = \alpha_2 = \alpha_3 = \alpha = -\alpha_4$, then

$$(+) \quad |\Theta(\alpha)|^{4} \leq \max_{\eta \in \mathbb{Z}} \quad |\Theta(\eta)|^{5} \quad |\Theta(2\alpha - \eta)|$$

since (†) is valid for all α & V , applying it successively to $2\alpha-\eta$, $4\alpha-3\eta$,..., $2^n\alpha$ -(2^n-1) η ,... and substituting back in (†) we get

$$|\Theta(\alpha)|^{4} \leq \max_{\eta \in \frac{1}{2}} / |\Theta(\eta)|^{r_{\eta}} \cdot |\Theta(2^{n_{\alpha-(2^{n-1})_{\eta}}})|^{s_{\eta}}$$

where
$$r_n = \sum_{i=0}^{n} 3/4^{i}$$
, $s_n = \frac{1}{2n}$

Now in the 2-adic topology $2^n\alpha$ - $(2^n-1)\eta$ converges to η . We know r_n converges to μ . Therefore we get

$$|\Theta(\alpha)|^4 \leq \max_{\eta=\frac{1}{2}} |\Theta(\eta)|^4$$

whence

$$\max_{\alpha \in V} |\Theta(\alpha)| \leq \max_{\eta \in \frac{1}{2} / N} |\Theta(\eta)|^4 \leq \max_{\alpha \in V} |\Theta(\alpha)|^4$$

which yields the result.

Using this proposition we can normalize Θ so that its values lie in R, but not all lie in the meximal ideal M; that is, if $\overline{\Theta}$ denotes the induced function to \overline{k} , $\overline{\Theta}(\alpha) \neq 0$ for some $\alpha \in V$.

We now invoke the main result used for the Satake compactification. (see [1])

Theorem: For every theta-function Θ on V, (i.e., a function satisfying (*),(***),(****) but not necessarily (******)) there is a subspace W \subseteq V with W $\stackrel{!}{\subseteq}$ W (1 with respect to e) and a non-degenerate theta-function Φ on W/ $_W$ $\stackrel{!}{\downarrow}$ such that

supp
$$\theta \subseteq W + \Lambda + \eta_0$$
, $\eta_0 \in \frac{1}{2} \Lambda$

and
$$\Theta(\eta_0 + \eta_1 + \alpha) = \Theta_{\mathcal{X}}(\eta^1/\alpha) \Theta(\eta_1/\alpha, \alpha) \Theta(\frac{\eta_0 + \eta_1}{\alpha}, \alpha) \Phi(\overline{\alpha})$$

$$(\eta_1 \in \Lambda, \alpha \in W)$$

The theta-function Φ is used to construct an abelian variety B/\overline{k} of dimension h(where dim $W/W^{\pm}=2h$) in the same way that A was constructed from Θ (see section 3). Then the special fibre \overline{A} of the sought-for group scheme G should be in an extension

$$0 \longrightarrow G \xrightarrow{h} \longrightarrow \overline{A} \longrightarrow B \longrightarrow 0.$$

Notice that if the reduction is to be totally-degenerate, then we must have $W = W^{\frac{1}{2}}$, and hence $B = \{0\}$.

To construct \mathcal{Q} however, we must first study how many R-valued theta-functions come from a given k-valued non-degenerate theta-function Φ on a vector space $\mathbb{W}/_{\mathbb{W}^{\perp}}$ of smaller dimension. For this question the measure-theoretic point

of view (outlined at the end of section 3) is much better. For ease of exposition we confine ourselves to the case of totally-degenerate reduction, i.e., $W = W^{\frac{1}{2}}$. In this case the R-valued measure μ corresponding to Θ reduces to a \bar{k} -valued measure $\bar{\mu}$, where $\bar{\mu}$ is just the point mass at 0, δ_0 (the socalled "Dirac delta-function"). The main result concerning these measures is this.

Theorem: Let μ be a non-degenerate R-valued Gaussian measure on \mathbb{Q}_2^g such that $\overline{\mu} = \delta_0$. Then there is a unique subgroup \mathbb{M}^1 in \mathbb{Q}_2^g isomorphic to $\mathbb{Z}[\frac{1}{2}]^g$ (and equal to it after a suitable change of co-ordinates) and a unique quadratic character $\mathbf{C}^1: \mathbb{M}^1 \longrightarrow \mathbb{R}-\{0\}$ such that

$$\mu = \sum_{\mathbf{x} \in M} \mathbf{c}^{\dagger}(\mathbf{x}) \ \delta_{\mathbf{x}}$$

Moreover, if we tensor M' with R, then there is a positive-definite quadratic form Q: M' Ω R \longrightarrow R so that $|c^*(x)|=e^{-Q(x)}$

Ideally, at this point we should write down $\mathcal A$ explicitly in terms of Θ . However, this presents certain complications, and it is faster to construct $\mathcal A$ by means of the theory of the Néron - model and to check that its special fibre \overline{A} is C h by means of Galois Theory (following a suggestion of Grothendieck).

Choose a subfield k \subseteq k with a discrete absolute value so that A is defined over k, and let \varnothing be the Néron model of A over R = integers in k. Let \varnothing = \varnothing (minus the components of its special fibre not containing zero) then G = Gal (k/k) acts on V (A) preserving Λ , e, W, Mi,

and Q. On $V/_W$ the action of G is determined by its action on M: \cap $(^{1}/_{\cap W}) \cong \mathbb{Z}^g$. Hence we have a representation

into an integral orthogonal group (corresponding to the quadratic form (Q) on \mathbb{Q}_2^{2g} . But this group is finite! Hence replacing k_0 by a finite extension k, if necessary we see that $G_1 = Gal(k/k_1)$ acts trivially on V/k_1 . Since G_1

preserves the action of e, it acts trivially on W too; thus the representation takes the form

$$\begin{array}{c|c}
\sigma & \longrightarrow & \left(\begin{array}{c|c}
\hline
I & * \\
\hline
0 & I
\end{array} \right)$$

Thus $A_{2^{\infty}}$ contains a subgroup H which is k_-rational and is a maximal isotropic subgroup of points of order 2^{n} , isomorphic to $({}^{Q}_{2}/{}_{Z_{2}})^{g}$. Now by one of the key properties of Néron models, all k_-rational points of A extend to R_-rational points of $Q_{1}(Q_{1})$ = Néron model of A over Q_{1} . Since H is divisible, all points of H give R_-rational points of Q_{1} hence H induces a subgroup Q_{2} isomorphic to $Q_{2}/{}_{Z_{2}}$.

Now from quite general structure theorems on group schemes, we have an exact sequence

$$0 \longrightarrow L \longrightarrow \overline{A} \xrightarrow{\pi} B \longrightarrow 0$$

when L is a linear group of dimension r, and B is an abelian variety. It can be shown that $\pi(\vec{H})$ is still isotropic in B

and since B has dimension g-r, $\pi(\bar{H}) = (\frac{Q_2}{Z_2})^k$, $k \leq g$ -r. Therefore $\bar{H} \cap L$ has a subgroup $(\frac{Q_2}{Z_2})^r$, whence $L = C \frac{r}{m}$. Using the total-degeneracy of the theta function we can then show that $\bar{A} = C \frac{g}{m}$ - i.e., that $B = \{0\}$.

5. Analytic Theta-Functions.

In this section we will show how our theta-functions with totally-degenerate reduction are essentially equal to suitable holomorphic theta-functions of Tate-Morikawa-McCabe, and hence that the abelian varieties uniformized by the Tate theory are exactly those with totally-degenerate reduction.

In the algebraic theory we have outlined, the exact sequence

$$0 \longrightarrow \bigwedge \longrightarrow V_{g}(A) \longrightarrow A_{g^{\infty}} \longrightarrow 0$$

is the analogue of the sequence

 $0 \longrightarrow M \xrightarrow{q} > V(M) \longrightarrow A(k) \xrightarrow{?} > 0$ (where V(M) is the g-dimensional torus with character group M) of the holomorphic theory. See Tate's Bowdoin Colloquium talks for details. Now using the theorem of the previous section we can express every theta-function with totally degenerate reduction, Θ_a (the subscript \underline{a} emphasizes that it is the algebraic theta-function) as

$$\Theta_{\mathbf{a}}(\alpha+\beta) = \Theta(\beta/\epsilon, \alpha) \sum_{\mathbf{x} \in M^{M}} \Theta(\beta, \mathbf{x}) c^{\dagger}(\alpha+\mathbf{x})$$

where $V = V_1 \oplus V_2$ is a suitable decomposition, $\alpha \in V_1$, $\beta \in V_2$, $M'' = M' \cap \bigwedge$, $M' \subset V_1$, V_2 is the W of the previous section, c^* and M^* as in Theorem 2.

In the holomorphic theory there is a quadratic character c: M---> R which determines q via the identity

$$(q^X)^y = \frac{c(x+y)}{c(x)c(y)}$$

The unique holomorphic theta-function Θ_h is equal to

$$\Theta_{h}(u) = \sum_{x \in M} c(x)u^{*}$$
.

It is now easy to relate $\boldsymbol{\Theta}_h$ and $\boldsymbol{\Theta}_a.$ Explicitly, we construct a map

so that if a e V, x & M

$$f(\alpha)^{X} = e(\alpha, x)$$

and if $\alpha \in M^{1}$, $x \in M$ then

$$f(\alpha)^{x} = \frac{c(\alpha+x)}{c(\alpha)c(x)}$$

Note that $f(^{V}_{z}/V_{z} \cap /) \xrightarrow{\sim}$ {points of order 2^{n} in V(M)} and $f(M^{t})$ is a "2-divisible hull" of q^{M} in V(M).

Define:
$$\gamma: M^{1} \oplus ({}^{V_{2}}/_{V_{2}} \cap \wedge) \longrightarrow R$$
 by
$$\gamma(\alpha+\beta) = c(\alpha)^{-1} e(\alpha, \beta/2)$$

Then a simple verification yields

$$\Theta_{h}(f(x)) = \gamma(x) \cdot \Theta_{g}(x)$$

Since we have essentially the same theta functions in the algebraic and holomorphic cases, it is easy to deduce that the two theories provide uniformizations of the same abelian variety.