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§ 10. Non-Degenerate Theta Functions

The third part of this paper is devoted (1) to a complete description
of the boundary of the moduli space for abelian varieties described in § 9,
and (2) to connecting our theory with the classical theory of theta func-
tions. We begin by defining a theta function in a coordinate-free manner
and investigating how and under what non-degeneracy restrictions we
can construct a tower of abelian varieties having this as its theta function.
Our goal is to find an inverse to the moduli map @ described in §9.
Fix

0) an algebraically closed field k, char (k) #+2;

i) a 2g-dimensional vector space V over Q,;

i) a skew-symmetric bi-multiplicative map:

e: VxV—{2"th roots of 1 in k},
i.e.,
e(a,)=1
e(a * ﬁ, Y)=e(a’ 7) * E(ﬁ, 7)
e(aa B ° ‘y)=8((1, ﬁ) ° 8((1, 7),

iii) a maximal isotropic lattice A<V (i.e., a compact, open subgroup
such that e(a, f)=1, all a, fe A, maximal with this property);

iv) a quadratic character
€yt %A/A——»{il}
such that
2
ex(a+p) ex(a) ex(f)=e(a, ),
all o, e A.
* Part I of this paper has been published in Inventiones math. Vol. 1, pp. 287— 354
and part II in Vol. 3, pp. 75— 135.
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We assume, however, that via a suitable isomorphism Ve Q38, A~ Z3¢,
and e, e, have the form defined in § 9. In fact, this is nearly always the

case: if we write
ex (@) =(~ 1)

where Q is a quadratic form on 4 4/4 with values in the field F,={0, 1},
then @ has an Arf invariant 4(Q)eF,. It is not hard to show that
(V, 4, e, e,) has the required form only if 4(Q)=0. We leave this point
to the reader.

Definition 1. A theta-function ® on V is a map ©@: V —k satisfying

i) O(@+p)=ex(B/2)- e(f/2,0) O(x), all xe ¥, e,
i) O(—a)=0(a), all aeV,
4 4
ii) ‘]:[10(oci)=2_g > e(y,n) -i]__[l@(cxi+y+r])

nei A/A
4
if y=—%Y o, ay,...,a,€V arbitrary.
1

If we let
So={2|© () #0} =support (6),

then S, is a union of cosets of A. The structure of S, is a “fine”” property
of ®, so we introduce:

Definition 2. The coarse support S, of O is:
S,={a|©(a+n)*0, for some nei A}.

We will see in § 11 that the coarse support S, of a theta function is
either all of V, or 1 A+ W where W< ¥V is a proper subvectorspace. This
is the essential difference between good and bad theta functions.

Note that So=—S, and S,=~—S;. We always assume, in what
follows, that @ %0, i.e., So+¢.

L If x,€S,, x5, X3, X468, then 2x, +x, 4+ x5+ x,¢S,.

Proof. Use the quartic relation on @, with o, =2x; +x,+x;+x,,
0y =X,,03=X3, Ag=X4, Y= —X; —X3—X3—X4. Q.E.D.

2.0eS;.

Proof. Assume 0¢S,. Take any yeS,. Apply (1.) with x,=x;=y,
x4= —y and we get a contradiction. Q.E.D.

3. x,yeSo=>3(x+y)eSs,.

Proof. Apply (1.) with x;=%(x+»), x,=x,x3=—y and x4=—x.
Q.E.D.
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Because of (2.), there is an 5y €4 A such that © (1) +0. Fix one such .

Proof. By (3), if xeS,, then (x+#,)eS;, so x+n,€2S,+ A. This
gives the 1% inclusion. This also shows that 2xe4S,+ 4. Hence if
ye2*S,, so y=2%. x, xeS,, then 2. xe2**!1 S+ A. This gives the rest
of the inclusions. Q.E.D.

Definition 3.

S,= U [2*So+4].
kz1

5. S, is a group.

Proof. Let x, yeS,. Now x, ye(2'- Sy+A) for some /=/,. Then
x=2 - xo+n,y=2"yo+{, X9, ¥6€So and #, {eA. Therefore by (3),
L(xo+y0)€S;, hence 2'(xo+y,)e2'*!.S,+A. Therefore x+ye
Q'*1Sy+A)cS,. Q.E.D.

6. S, =W+ A, for some subvectorspace Wc V.

Proof. This is easily seen to be equivalent to asserting that S_/4 is a
divisible subgroup of ¥/A. But if xe2*-S,+4, then x=2* x,+7,
Xo€Sy, neA, hence x—ne2{2*"1S,}c2-S,, ie., the image of x in
S,/ is divisible by 2. Q.E.D.

Definition 4. A theta function is non-degenerate if equivalently:

(@ S,=V.

@) S,>3i4.

(a"’) For all sufficiently large n, 2" - So+A4>1A.

(a”’") For all sufficiently large n, and ae2™""! 4, there is an ne2™"4
such that @ (a+#) +0.

The next step is to form, via the function @, a sequence of graded
rings:

Definition 5. If M is a vector space of k-valued functions on V, let

S (M)= ® %H(M),
n=0
where Sy(M)=k, ¥, (M)=M, and &, (M), for n=2, is the vector spac
of functions on ¥V spanned by the products f;, ... f;,, (f;,eM, all j).
Another convenient notation is the following:

% {set of functions o > f(a/2) ,}

all feM
In particular, let

M, =span of the functions @, all fe27%4
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where
Ogy()=e(B/2,2) - O(x—p).

The corresponding rings & (M, ,) will be the heart of our analysis. These
are only half of the rings we need, however. To define the others, choose
a decomposition:

A=A, ® A,

such that Q, - A;=V; is an isotropic subspace under e, and such that
e, (¢/2)=1 for all aeA; or A,. This exists because if we choose coordi-
nates V=Q2% such that 4, e, e, take their standard forms, then A, =
Z?>x{0}, A,={0} x Z have these properties. In terms of A, and 4,,
we now define a kind of ‘““dual” theta-function ¢. It is to satisfy the
equations:

Y e 0@+p+) - O@—B+)=¢@®) - ¢(B)

{et Ai/M1

all a, feV. In fact, if we let ®(a, f) denote the left-hand side of this
equation, then the quartic equations on @ are equivalent to:

P(a, f) - (7, 6)=P (2, 0)- (7, B)

for all a, B, y, 6V (cf. proof of Lemma 2, § 8). This, plus the elementary
fact & (o, f)=P (P, ) implies that one and (up to scalars) only one such ¢
exists. Notice that ¢ satisfies the equations:

D) pla+B)=fs(B) - e(B,0) - (), for all aeV, BelA,+4,, if
Fe (G B1+B)=e(I By, Bo) (BieA).

(i) ¢(—)=¢(a), all aeV,

as well as certain quartic equations. Now let

M, =span of the functions ¢, pfe27%7'. 4
where

Pp(@=e(B,0) - p(a—p).
Proposition 1. 1. % (M, )= M, ., equality holding if and only if
for all B27* 1 A, 3ye27* A such that ¢ (B+7)+O0.

2. (Mg )*SEMy 0, equality holding if and only if for all
Be27* 1 A, Iye2 % A such that @ (B+7y)+0.

Proof. To compute &, (M,,), note that it is spanned by the functions:

f@= Y e ('Iv ﬁl;ﬂz) O, -y (@) - Opp,— (@)

net Ai/4y
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where B,€27%A. But
f(cx) e(ﬁ‘+ﬂ2,a)~ Z e(d—Bl+ﬁ2,n)><
net Ai/A, 2
XO(a—p+m) O(x—B,+1n)
Bi+ B> ) ( »Bl+ﬁ2) (ﬁl_ﬂz)
_e(T’“ A I A

Bi—B,

¢[ﬂx+ﬁz](°‘) Qb( )EM2k+1-

We get every ¢p,;, 627571 4, in this way, if and only if every such y
can be written:

=ﬁ1;ﬂz Be27* A

b

such that

s (B52) 0.

This is exactly the condition in (1). To prove (2), first notice the identity:

@ ¥ e@)’-dltp+) - pa—p+0)

Ledt A2/A2
= Y e@d?eltB+ln) OQa+2{+n)- OQ2B+n)

et d2/A>
netAi/As

= Y 0Qa+n)-0Qf+m-e@+pfmn-[ ¥ eQ{n)]
nei A/Ay {et A2/42
=25.0Qw)-012p).
Now % (M, +1)* is spanned by the various functions:

f@= Y el Bi+B2) - ba,-m(@/2) - rp;—(2/2)

net Az/A2

where f;,€27%"! A. But this  comes out as:
f(@)=2% O, 1p,7(@) - OBy —P2)EM 15
(2) now follows just like (1). Q.E.D.
Corollary. If O is non-degenerate, then for all k>0,
LHM2)=Mjp4y
LM ps 1)*=M2k+2 .
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Proof. The 2" equality is clear, by condition (a’”’) of the definition of
non-degenerate. As for the first, note that by formula () in the proof of
the Proposition,

20= Y e@) @+ ¢©.
{et A2/42
Therefore, [@(x)+0]=>[¢(x+{)+0, some (eiA,]. Thus the non-
degeneracy of @ implies the same for ¢, and the 1** equality follows too.

Q.E.D.
In the following discussion, we shall assume that @ is non-degenerate.

As usual, if R=X R, is a graded ring, then R(2) is the graded ring £ R, ,,.
The Corollary shows that there exists a &, such that for all k=k,,

(B) SMYQ)=F (My+1)-
In particular, the corresponding schemes
X = Proj (y(Mk)) >

for k=k,, are all canonically isomorphic. We shall prove eventually
that this X is an abelian variety.

So far, we know that & (M,) is finitely generated over k. Moreover,
it has no nilpotents: if it did, it would have a homogeneous nilpotent
element fe%,(M,). Then f#0=>f(a)+0, some aeV=fN(a)=+0, all
N=fN+0in % y(M,). Therefore, X is a reduced algebraic scheme over k.

In fact, we can map
Vid—X

by evaluating functions in & (M;) at points of V. To be more precise, for
all aeV, define a homogeneous prime ideal P(a)c S (M,,) [resp.
P() =& (Myi+4)] by:

P(@)=Y. P.(®)

P(@)={f€5,(M,)| f(2*2)=0}
resp. ={feS,(Myus1)| f(2*0)=0}.

It is easy to check that for all k, if the P(a) in & (M,) is intersected with
L (M) (2), the resulting ideal is equal to the P(a) in #(M, () under the
isomorphisms (8). For this reason, we omit a k in the notation P(x).
Thus P () gives a well-defined point P(x)eX. It follows easily from the
definition that:

a) P(«) is a k-rational point of X,

b) P(x+B)=P(a), if feA.
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Moreover:

c) {P(«)|xeV} is dense in X.

Proof of c. Take 2k = k,. If (c) were false, for large n, there would be
a non-zero function fe%,(M,,) that vanished at all P(«)’s. But /(P (x))=
0<>f(2¥x)=0, so f would vanish everywhere on V, hence f=0. Q.E.D.

One can do even more: for aeV, I claim that there is an automor-
phism 7,: X — X such that T,(P(B))=P(x+p), all BeV. To construct
T,, let k, be the least integer such that 2*'ae A. Define

Ta*3 S M, )— L (M)

P FSMypr1)—> L Myps1)
by:

T f(B)=e(B, 2" ') - f(B+2°a),  all feS,(M,,)
resp.

=e(B,2"a)" - f(B+2"a), all feS,(Mz441)

(where we assume k=k,). To check that this is, indeed, an automor-
phism of (M) [resp. (M, +1)], it suffices to check that T @,;e M,,,
all ye27%4; and T}¢p,€Myp4,, all ye27*7 1A, But, in fact, one
computes:

" T} Op=e (27 a)-e(y, 2 0) - O,
?

Ta* ¢['y]=f* (Zk ) - e(y, P ) - -

Moreover, one finds that T.*, acting on & (M), induces the same auto-
morphism on ¥(M,) (2) that you get by considering the T acting on
S (M, ) and carrying it across via the isomorphisms () of & (M,) (2)
and (M., ). Therefore, the T;*’s all define one and the same auto-
morphism T, of X. Note that:

d) (TH ™ (PB)=P(a+p).

Proof. If feS,(M,,) or (M54 ,), then

T, feP(B) < T, f(2*f)=0 < f(2*a+2")=0 = feP(a+p),
hence

d) T(P(B)=P(a+p).

One checks also (via (y) if you like) that:

€) Ta1+az=Ta1°Ta2’

f) T,=id. <ae4,
so that T is a faithful action of the group ¥'/A4 on the scheme X.

A remarkable consequence of all this is:

Proposition 2. If © is non-degenerate, then ¥ (M,) is an integral
domain, for all k.
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Proof. We show first that (M) is a domain if k=k,. Since ¥ (M,)
has no nilpotents, this is equivalent to showing that X is irreducible.
Now V/A acts on X, so it permutes the various components of X, i.e.,
we have a homomorphism:

Vid— S:{gp. of permutatlons}

of components of X

But S is a finite group and V/A is a divisible group. So V/A must map
each component X; into itself. On the other hand, the collection of
points {P(x)} forms a single orbit of the action of ¥/A4 on X. Therefore,
all these points {P(x)} belong to a single component of X. Since they are
also dense in X, X can have only a single component. Therefore & (M)
is a domain if k=k,.

In general, suppose some &(M,) were not a domain. Then there
would be homogeneous elements fe%,(M,), ge¥, (M,) such that f - g=0,
f#0, g+0. Now f? and g2 can be considered as elements of #(}M,.,).
Since f- g=0, we still have /% - g?=0. Also, since ¥(M,) has no nil-
potents, /240 and g2=0. Therefore ¥ (M,.,) is not a domain either.
Continuing in this way, we find that $(M;) is not a domain for all
/= k, which contradicts the first part of the proof. Q.E.D.

Corollary 1. The following are equivalent:

i) O is non-degenerate,

i) S, =V, ie., for all acV, Inet A such that O (a+n)=+0.
iii) For all aex A, Anet A such that O (a+n)=+0.

Proof. Clearly (ii) = (iii)=(i). Now assume (i) holds. If @ (a¢+#)=0,
all nel A, then it would follow from the definition of ¢ that ¢ (x+ f) x
¢(B)=0, all fe V. But this means that ¢;_,; - ¢0;=0, i.e., one of the rings
SF(M, 44+ 4) is not domain. This contradicts the Prop., so (ii) must hold.
Q.E.D.

Corollary 2. #(M,) Q)= S (M), for all k=2.

Proof. In view of Prop. 1, this follows from Cor. 1 provided that we
check: VaeV, dne A such that ¢ (x+#)+0. Looking back at the proof
of the Cor. to Prop. 1, you see that this too follows fromCor. 1. Q.E.D.

To show that X is actually an abelian variety, we could either define
the group law explicitly, using the addition formula of § 2, or else we can
use only the action of ¥V/4 on X and combine this with general structure
theorems on the automorphisms of a variety. Although the former is
more elementary, we follow the latter approach as it is quicker.

X is given to us together with a projective embedding. For example,
X=Proj (#(M,)), so

XcP(M,).
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Let L, be the invertible sheaf induced on X via this embedding. If, via
the isomorphism X=Proj (¥#(M,)), we embed X in P(M,), the induced
sheaf L, is just:

Ly~I37%

Let & denote the family of all invertible sheaves algebraically equivalent
to L,. We shall use the fact that Aut (X, £), the group of automorphisms
of the pair X, 2, is an algebraic group (MATSUSAKA [/4], GROTHEN-
DIECK [15], p. 221—20). For all ae V/A, if 2*ae A, then T, is induced by
an automorphism 7F of #(M,,); therefore T*(L,,)=L,,; therefore
TX(L,) differs from L, by an invertible sheaf of finite order; therefore
T. ' (#)=2. In other words, the action of V/A4 on X factors through an
injective homomorphism:
ViA—-Aut(X, ).

Let A be the Zariski-closure of V/A in Aut (X, ). Then A is connected
since V/A is divisible and dense in 4 (cf. proof of Prop. 2), and 4 is
commutative since ¥'/4 is commutative and dense in A. Moreover, since
the V/A-orbit of P, is dense in X, the A-orbit of P, must be an open
dense set in X, i.e., A acts generically transitively on X. In fact, the mor-
phism

y: A—-X

GHU(po)

is an open immersion of 4 in X. This follows since the image yr(A4) is
always isomorphic to A/H, H=the stabilizer of P,; and since A4 is
commutative and acting faithfully on X, all stabilizers are trivial.

Next, we want to compute the dimension of X. I claim that the Hilbert
polynomial of (X, L,) is given by:

Proposition 3. y(L5)=48 - nt.

Proof. For k large,
=dim(M3+24)-

Now M, 441, is, by definition, the span of the 22#**" functions @,
where B runs over cosets of 27~ A/A. But these functions are linearly
independent. To see this, look at the automorphisms 7,* of #(M, . 1)),
where ae27*71A. Use formulae (y) above and note that each O,
gives rise to a distinct set of eigenvalues for the T,*’s. Therefore, the
©y,7’s could not be dependent unless one were identically zero, and this
is not the case. Therefore

dim M, 4, ;=45 - (224,




224 D. MUMFORD:

This shows that y(L%) and 4% - n® agree for an infinite set of values of n.
Since both are polynomials, they are always equal. Q.E.D.

Corollary. dim X=g.

Returning to 4, we find that 4 is a commutative g-dimensional
algebraic group containing a subgroup isomorphic to (Q,/Z,)?%. From
well-known structure theorems on algebraic groups, the only such A4’s
are abelian varieties. Therefore 4 is complete, hence 4 =X, hence:

(D) X is an abelian variety.

Moreover, in the course of proving this, we have also found that
V/A is acting on X via translations, hence (comparing orders) we find:

(1) > P(a) is a group isomorphism of V[A with tor,(X).

Up to this point, identifying the various Proj (&(M,))’s has been
useful. But to go further, it is more convenient now to drop these identi-
fications. Therefore, now let

X, =Proj(£(M,),)).

This is a family of isomorphic abelian varieties. However, the most
natural maps between them are given by the inclusions:
M;,eM;3,4;
SMz)=FS(Myy42)

inducing finite morphisms:

P
Xo—Xp41:

To check that p is defined, we must know that (M, ,) is integrally
dependent on &(M,,). But I claim:

0()’ 0ln=2"% Y e, NOM’ Oy Oy_rin-

ne4 A/A

[Proof. B(y)? - Opgy(0)*=e(B, ®) O(y) O(y) O (B—) O (x—p).
By the quartic relations on @, we get

=2"%¢(B,0) Y. e(—7, M O()* OB—a—y+n) O(a—f—y+n)
n
=2_gZe(n, 'V)@("l)z : @[ﬂ-{-y—r,](a)' @[ﬂ—y+q](a)' Q.E.D.]
n
Choose yef+14 so that ©(y)+0. Then if Be27""' A, this equation

shows that @fp] €% (M, ,). This proves that p is a finite morphism. Since
X, and X, are abelian varieties, p must be an isogeny.
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Define prime ideals:
P(k)(“)c L (M3))

PO @)=Y P (@)

PP (@)={feS%H (M| f(@®)=0}.
Then P® («) defines a k-rational point ¥, (x)e X, . We have
(@) p(Wk+1 (@)= ().

(b) o (o) defines an isomorphism

V12 A" tor, (Xy) .

via

(b) here follows from conclusion (II) above, noticing how we have
reinterpreted the ideal P(w). In fact, if we call X the common abelian
variety to which all the X,’s were previously identified, then P(x)eX
corresponds exactly to v, (2*a)eX,. Therefore ¥, (2)=0<PQRQ *a)=
0<>2"*aeA. Moreover, this shows that via these identifications, we get
a morphism:

X P@)

!
(et 1 ‘//k7+ 1(2k+ ! o)

’

Xk l//k(2k +1 (X)

(-

X  PQRo)=2P(x).

This map, from X to X, agrees with 2 at all points P (a). Therefore it is
equal to 26. In particular:

(c) The degree of p is 22¢ and Ker (p)=Ker (26). It follows that all
the X,’s generate a single 2-tower. Call this X={X,},.s, and let X, =
X,,, %,€S. Moreover, these a,’s are a cofinal set in S, by (c). In view of (a)

a (Y ()}

Vi VoV (),

defines a homomorphism

and (b) implies that ¥ is an isomorphism. More, (b) shows that the com-
pact open subgroups 2¥A and T(«,) correspond to each other under .

This 2-tower is polarized too. Let L, be the sheaf o(1) on X} coming
from its presentation as Proj (¥(M,,)). Since the p’s comes from grada-
tion preserving homomorphisms of the #(M,,)’s it follows that p*(L,) =
L, ... To check that L, is totally symmetric, we need the inverse on X:
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Let 1*(f) () =f(—0), all feL (M, ).
Then i* defines an involution
I Xk — Xk
such that 1(Y () =¥, (—a).

Therefore 1 agrees with the inverse of X, on all points v, («), hence
=inverse of Xj.

Since 1 is induced at all by an automorphism * of #(M,,), it follows
that L, is at least a symmetric sheaf. Since
{Vi(@)|ae2*~ 1 A/2* A} =Kernel of 25 in X,,

L, is totally symmetric if and only if i* is the identity in (M, ,)/P® (),
all xe2*~! A. This means that for all fe M,,, 1*f—feP® (), i.e., f(@)=
f(—o). But M, is spanned by @,;’s, 274, and if fe27* A, xe2* 71 4,
then:

Op(—)=e (g, —oc) O(—a—p)=e (g, oc) O(a—B) =0 (x).

Therefore all the L,’s are totally symmetric and {X,, L,} extends to a
polarized 2-tower J ={X,, L,}. We shall leave it to the reader to check
the key fact that y is symplectic:

d) e,(Ya, yp)=e(a, p), all a, BeV.

Recapitulating this whole section so far, we have defined an arrow:

construct a polarized

o {Given a non—degenerate}_) 2-tower J ={X,, L.},

~" )theta function @ on V plus a symplectic isomorphism|
v V=5 V(X)

Now, on ¥ we have the vector space of functions spanned by all the
Op1’s. On V(X), we have the vector space of all theta functions 3[I"(J)]
of the tower 7.

Proposition 4. Via y, these vector spaces are equal:
Span of O’s={I 0¥ |sel(I)}.

Moreover, @ itself is the unique function f (up to scalars) of the
Sform Y0¥ satisfying the functional equation:

fla+B)=ex(B/2)-e(B/2,0) - f(@), all aeV, feA.
Key Corollary 1. If V=032%% A=Z2%%, and e, e, have the standard
0
forms of § 9, then @ is exactly the theta function 9[0] o associated to the
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—

triple (X, 7,y ™) in § 9. In other words, E is an inverse to the map ©

of §9.
Proof of Prop. 4. Let ae2™% A and let k>k,. Define T}: #(M,,) -
F(M,,) slightly differently from before:

T ®)=e (B.5) S@+0.  all feS,0M50).

Note 71 (P®(B))=P® (o +p). Let T,: X, — X, be the automorphism
induced by 7,F. Then 7,(,.(8)) =y (x+ B), hence T, is translation by the
point ¥, (o), i.e.,
L=Ty@-
Moreover, T;* also induces a compatible isomorphism:
8(®): Li—"5 Ty (o) Ly .
For all k=k,, these are compatible, so the totality of pairs

g(@)={Wx(®), gx(@) | k=k,}
is a point of ().
(*) gl=0c[¥(®)], i.e., g(a) is the canonical element of ¥(J") over the
point ¥ () in V(X).

Proof of *. This requires checking 2 things: (i) g(«) is a symmetric
element of 9(7), i.e., 6_,;g(@W)=g(®)"*, and (ii) g(2a)=g(x)?. In terms
of T}, this is the same as:

Q) *¥oTr=(TH Lor*.

(i) T, =T} T},

These are both immediate. Q.E.D.

Next, notice that M,,~I'(X,, L;). In fact, there is a canonical map
M, —»I' (X, L,); it is injective, since the ring (M, ;) has no nilpotents,
and only nilpotent elements of &,(M,,) define trivial sections of L};
but it is easy to check that both dim M, and dim I'(X,, L,) are equal to
2%k2, therefore M,,=~I(X;, L,). Therefore,

Span of all the
I'(7)=lim I'(X,, L) =) M,, =1 functions @,
k k ﬂe 174

Now let f be some linear combination of the @p,. Say feM,,,. Let
S define sel’ (Xy,, Ly,). I claim that:

(*) f@=8WY», al aeV.

16 Inventiones math., Vol. 3
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Taking a larger k, if necessary, we may suppose that ae2™% A. By
definition, 3;; at Y« is the “value” at the origin of X, of the section
of L,, obtained via the map:

F(Xkl ’ L,“) F(Xk, P T.;:q (—a) Lk;) —]‘JN—" F(Xk, > L) -
iy (@)

~

8Ky (—a)

This means that we simply apply the automorphism (7*,)"! of M,, tof,
and take the value at the origin. But 7*,=T*"!, and (T*/) (0)=f(®),
so () is proven. Thus the span of the @,’s is the same as the space of
functions 9,0y, sel'(7).

As for the final assertion of the Proposition, on the one hand, @ does
satisfy the functional equation there; and, from the general theory of the
space 3[I'(Z)] in § 8, we know that this functional equation has only a
1-dimensional set of solutions in $[I'(J)]oy. Q.E.D.

Corollary 2. All g-dimensional principally polarized abelian varieties X
are isomorphic to Proj (¥ (M,)), where M, is the span of the Oyy’s,
Be} A, for some non-degenerate theta function @ on V.

0

0] attached to X as in § 9, and carried

over to a function on ¥ by a suitable isomorphism of ¥and V' (X). Q.E.D.

Proof. Just take © to be the 9[

Corollary 3. The open set M <M, which in §9 represents the
moduli functor M, is the open set whose geometric points represent
non-degenerate theta functions, i.e.,

set of all systems of coset representatives
‘{r: YA AR Y o } ‘
For all reE, let
U __{open set in M, defined by}
" | X, #0, all xeImage (r) )
Then
M,=UDU.,.

reE

§ 11. Satake’s Compactification

In this section, I want to analyze the degenerate theta functions @
on V, in the sense of § 10. In particular, they all come from lower dimen-
sional non-degenerate theta-functions via “cusps”. This will show that
the whole moduli scheme M, is a disjoint union of copies of the M_’s
for dimensions g and lower i.e., that M, is the Satake compactification
of M, !,

1 ddded in Proof. A closer study hasshown that M is not normal along M, — M.
Its normalization is Satake’s compactification.
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Return to the discussion at the beginning of § 10: let V, A4, e, e* be
given as before. First, I want to describe a way of forming degenerate
theta functions on ¥ out of theta functions on lower dimensional spaces.

Definition 1. A cusp is a subspace W<V such that WicW, ie.,
if ae V has the property e(x, f)=1, all fe W, then ac W.

Given a cusp W, let:
V=w/w*
A=AAWAAW*

¢ =induced skew-symmetric pairing, VxV—k*

Lemma. A is a maximal isotropic lattice in V, (for €).

Proof. Notice that A/AnW is a free Z,-module. Therefore the
sequence:
0> ANW—oA—>A/ANW—0

splits, and A=A, ®(An W) for some sub Z,-Module A,. Let V,=
Q, A;,s0 V=V,® W. Now I claim:

(%) AnW) =A+W*t,

[In fact, let aeV satisfy e(x, f)=1, all feAn W. Since V, and W are
dual vector spaces via e, there is a ye W+ such that e(x, f)=e(y, p) all
BeV,. But then a—7y is orthogonal to both ¥, and A n W, hence ortho-
gonal to A, hence a—yeA. Thus ae W+ A4.] _

Now to show A is maximal isotropic, let e W have an image @ in V
perpendicular to A, i.e., ae(Wn A)*. By (%), a=0, +a,, where a,€4,
a,eW*. But then o, =a—a,eW. Therefore ;e WnA so &=& €.
Q.E.D.

Definition 2. A cusp with origin is a cusp WcV, plus an element
No€% A such that

i) e, (W) =e(a, no)?, all e W (3 A).

ii) ey (o) =1.

It is not hard to check that every cusp has at least one origin: we leave
this to the reader. Given a cusp with origin, look at the map

o> ey (%) - (% 1o)”
where a3 AN W. If BetAn W, then
ex(a+p) - e(a+B,10)* =ex (@) - ex () - e(a, B)* - e(2, o) - (B, n0)*

=ey (@) - e, 70)>.
16*
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Thus there is a quadratic form &,: 4 A/A —»{+1} such that
(%) ee(@=ex(@)-e(o,n0)®, all aetAnW.
It is not hard to check that the new data (17, 4, ¢, e,) has the standard
form required in § 10 (i.e., that the associated Arf-invariant is 0). We
leave this to the reader also.

Now let @ be a theta-function on V.

Definition 3. For all xeV, let

0  if agne+ WA
Ty, @)= + ~
w10 O) €x (%‘) e (121‘,'10) e (____’702’11 a“) O(a,)
if 0(=110+1’[1+0(0, 1116/1, aOGVV.

Proposition 1. The above T, W,,m@ is well-defined (note that the aeV
may be decomposed in more than way as a=ny+1, +,), and is a theta-
Sfunction on V.

The proof of this Proposition is a ghastly but wholly straightforward
set of computations. It took me several hours to do every bit and as I
was no wiser at the end — except that I knew the definition was correct —
I shall omit details here. Our main result is:

Theorem. Let © be any theta-function on V, and let W be the sub-
space of V such that S,=W+A (cf. § 10). Then W is a cusp, and if y,
is any origin for W, © is equal to T, W,,,O@ for some non-degenerate theta-
function & on W. In particular, W is characterized by:

coarse support (@)=W+1 4.

The proof of this theorem will be based on the @ <> u correspondence,
given in Lemma 1, § 8. Before taking up the proof of the Theorem, we
want to give this correspondence a more intrinsic formulation. Let
V=W,® W,, where W, are maximal isotropic subspaces, such that

)A=A,®A,, ;=AW,.
ii) e, (¢/2)=1, altx in A, orin 4,.
Then
a) Define a measure u on W, from a theta function ® on V via

B HPA) =2 T e, ) O+,
are 2-1nA3/A2

b) Define a theta function @ on V, from a measure u on W, via

O +a)=e (1, %) | e@.p)-dud).

ay+Ay
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Our proof will be based on the fact that any finitely additive measure p
(on the algebra of compact open subsets of W) has a support, i.e., a
smallest closed set .S such that:

u(U)=0, all compact open U’s in W, —S.

Proof. Say S, and S}, are closed sets such that uy(U)=0if Uc W, - S,
or UcW,;—Sg. Then let UcW,—(S,nSp) be a compact open set.
We must decompose U into U,u Uy, where U,c W;—S,, and Ugzc
W, —Sg, and U, and Uy are compact and open. For all xeUn S, note
that x¢S,, so we can find a compact, open neighborhood U, of x such
that

U,cUn(W,—Sp).

Since Un S, is compact, it can be covered by a finite set of these U,’s: say
UnS,<c[U,,u---0T,].

Let Ug=U,, v---v U, . By construction UgcUn(W;—Sp) and Uy
is compact and open. Let U,=U— Ug. Then U, is also compact and
open and since Uz Un Sy, it follows that U,cUn(W,—Sg). By
assumption on S, and S5, we have u(U,)=0 and u(Ug)=0. Therefore
#(U)=0. This shows that the family of sets:

& ={8S closed in W,| u(U)=0 for all compact open sets U= W; — S}
is closed under finite intersections. Now let

s*=NSs.
Se&

I claim S*e4 too. Let Uc W, — S* be a compact open set. Since

W1—S*= U @-95),
Se&
it follows that U is covered by the open sets Un (W, —S), where Se.
Since U is compact, it can be covered by a finite number of such open
sets:
Uc(W;=Sp)u v —S,)

where S, ..., S,e&. Now let Te& be a closed set contained in all these
S;. Then Uc W, —T. But Te¥ means that this implies u(U)=0. So
u(U)=0 whenever Uc W, —S*, i.e., S*e¥ too. Q.E.D.

Proposition. Let yu be a non-zero even Gaussian measure on W, (i.e.,
U has the property (A) of Lemma 1, § 8). Then the support S of u is a sub-
vector space of W,.
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Proof. Notice that if u,, u, are 2 measures on W,, and p, x u, is the
induced measure on W, x W, , then

Support (i, X f1,) = Support (i) x Support (i) .

Let &: W, x W, ->W,x W, be the map &((x,y)=(x+y, x—y). By
definition, a Gaussian measure u is associated to a second measure v
such that

Seluxp)=vxv.

Therefore, if S'=Support (v), it follows that £(SxS)=S'xS". In
particular
aeS < (a,0)eS xS

<> 2a,0)=¢((o,x))e S’ x S".
Since S is non-empty, 0€S’, and aeS<>2aeS’, i.e., S’=2S. Therefore
0eS too, and we find:
aeS < (2,0)eSxS
<> (o, 0)=¢((a,0))eS" xS’
< aeS’.

Therefore S=S" also. Finally,

a,peS = (a,f)eSxS
= (a+B,a—p)eS xS
= a+f,a—feS'=S.

Thus S is a closed subgroup of W,, such that S=2S. Therefore S is a
subvectorspace over @,. Q.E.D.

Corollary. For all y,e W,, all theta functions @ on V,

Support(©)= (&l (@ 12)=1} = OG+ir)=e (1 212) 6,
all AleQ,.

Proof. The assumption on the support of @ implies (cf. (a) above)
that u(o; +2"4,)=0 if e(x,, y,)=+1. Therefore,

Support(u) <= {o; € Wy| e(ety,y,)=1}.
Since this support is a vector space,

Support(w)=W; N (Q; - )’2)l-
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Let H denote the hyperplane W, n(Q; - 7,)*. Then

Oa,+oy)=e ((xl,%z—) )

e(ay, B)-du(p).
(agy+A41)nH
Thus

o+ A
@(a1+uz+ly2)=e(a1,—22——yi) J el +Ay,, B -du(B)
(a1 +A)nH
and since e(1y,, f)=1 when fe H, this comes out

—e (aiz?_) -{e (ozl, -"‘2—) [ e(w.B)- du(ﬂ)}

(a1+A)nH
—e (ocl, ’12“) O, +a,). Q.E.D.

In fact, I claim that the same Corollary holds for all yeV, not just
for ye W,. This can be seen by noting that for any yeV, there is a sym-
plectic automorphism T: ¥ — V such that T(A)=A, i.e., TeSp(V, A),

such that T~ 1(y)eW,. Going back to the action of the symplectic
group introduced in § 9, we see that:

If @ is a theta-function, then so is @', where

O'()=e(n/2,0) ©(Ta—T1n)
where n €} A satisfies

ey (2)2) - ey (Ta/2)=e(n, ), all aed.
Now assume Supp(@)<={a|e(a, y)=1}. Then
Supp(€")=n+T""(Supp(O))
cn+{ale@T ' y)=1}
c{ale(@2" T 'y)=1} Gf n>0).

Therefore, by the Corollary

-1
O+AT 'y)=e (oc, ATZ y) O'(w), all leQ,,
from which

O@+iy)=e (oz, izl) 0@
follows immediately. We are now ready for the Proof itself:

Proof of Theorem. We know that the support of @ meets 4 A4 (cf. § 10):
choose 1,€Supp(©)n 1 A. Then:

Supp(@)+noc W+ A4
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(§ 10, assertion (4.) at the beginning). Therefore, if yeW'n(24) it
follows that e(e, y)=1, all aeSupp(@). But then by Corollary above
— as generalized —

O@+i-y)=e (a%) O, all ieQ,.
This shows that

*) @(a+y)=e(a,%)-@(oc), all ye W+

Inparticular, @ (1, +7) %0, allye W+, hence W +n, = W+ A+n,. There-
fore W< W, ie., Wis a cusp.

Now suppose we take an arbitrary point « in the Support of @. We
know that a can be written as:

a=no+ni+og, n €A, ageW.
But then:

O (@) =e, (l’zl) e (ﬂzi,nowo) - O (1o + %)

=e, (71_21_) -e (%-,no) -e ('10;-"1 ,a) . [e (oc,%o—) . @(1}0+o¢)] .

Define a function @ on W by

é(a)=e (a, —"23) -O(a+1ng).

If ye W, we compute (using (*)):
O(+y)=e (a+y,—nj9-) -O(a+nyo+y)

=e (y, ’7—20) e (0(+"Io’%) ‘e (d,f;—o) < O (a+1o)
=é(a).

This shows that @ i's, in reality, a function on V=w|W+, and that ©
is exactly the function Ty ,, @ obtained from @ via Definition 3.

To check that 5, is an origin for W, look at (*) when y-e€ W A. Then:
14 - e (L) e (X a)-
e (oc, 7) cO(@)=0(a+7y)=ey (2 ) e (2 , oz) O(x)
hence

ey (%) =e(,y)  if ©(0)+0.
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So
ey (-z—)ze(no,y), all yeW nA.

Moreover, using

O (no)= 0O (—1no+210)=ex (o) O(—1n,)
and
O(—n9)=0(no)*0,

we conclude that e, (7,)=1 too.

The fact that O is again a theta-function is simply a matter of applying
the calculations of Prop. 1 in reverse and is quite straightforward. We
omit this. The final point is that @ is non-degenerate. But since S, 2 W,
we know that for all ae W, a=2*f+n,, where @(8)+0, n,eA. Then
B=no+n;+Bo, €A, Boe W, and O () +0. Since

a—2*Bo=n1+2no+2*n,e Wn 4,

this shows that for all ae W, oc=2"~ﬂ0+n3, where @~~(ﬁo)=!=0, neEWnA.
This means exactly that the S, for © is all of V, i.e., @ is non-degenerate.
Q.E.D.

The main Theorem can now be reformulated to give a Satake-like
decomposition of M. More precisely, for each integer g=0, let

M, (g)=the Proj defined in § 9, Def. 3 with indices ce Q3%.

M (g)=the open set in M _(g) whose geometric points are the non-
degenerate theta functions.

If h<g, we define a vast number of closed immersions
iyt M ()—M,(g)

as follows: let W< Q2# be a cusp such that 2A=dim (W/W+1). For each
such W, choose an origin 7,€4Z28, and a symplectic isomorphism:

~

é: Q" =, wiw+
such that
S(ZIN=WnAW A,

1G'a;-a)=e,(14(@), all aeZ3"

Then iy is defined by the homomorphism of the homogeneous coor-
dinate ring:

0 if a¢no+WH+Z3®
i (XB)=1 (1 n flo+1
i (™ ("f‘) e (—21",’70) e( 02 ! a“) : qgh')%ao)

if a=r]0+ao+r]1, aoEVV, ”lezgg.
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(Here X®, X® are the coordinates used to define M (g), M, (h)
respectively). Then we get the restatement:

Main Theorem.
M ()= disjoint union of the locally
©\8/=1 closed subschemes iw(My(h)|’

the union being taken over all cusps W< Q38.

§ 12. Analytic Theta Functions

In this section, we work over the field C of complex numbers. We
have 2 purposes: (a) to sketch an approach to the classical theory of
O-functions, analogous to our theory of algebraic ©@-functions, and (b) to
use this to compute our algebraic @-functions via the classical ones,
when k=C.

We will make use of the following lemma:
Lemma 1. Let X be a compact Kihler manifold. Then the operator

1 -
2ni a9

defines a surjection:

C® real - real closed C* (1,1)-forms Q on X,
functions on X with O cohomology class

with kernel consisting only of constants.

Corollary. Let Lbe an analytic line bundle on X. Let c,(L)e H*(X, C)
be its first chern class. Then for all real closed C® (1, 1)-forms Q whose
cohomology class equals c,(L), there is one and (up to a constant) only
one Hermitian structure || | on L whose associated curvature form is Q.

The lemma is standard and we omit the proof. The Corollary can be
proven by choosing one Hermitian structure || ||, on L: let Q, be its
curvature form. Then any other Hermitian structure on L is given by
p- | llo, where p is a positive real C® function on X: and its curvature
form Q is

1 -

Now use the Lemma and everything comes out. Q.E.D.

In particular, when X is an abelian variety, an analytic line bundle L
on X has one and (up to a constant) only one Hermitian structure | ||
whose curvature form Q is a translation-invariant (1, 1)-form. In what
follows, we will always put this Hermitian structure on line bundles on
abelian varieties. In this case, Q is determined by its value at the origin.
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Now let X be the universal covering space of X. Xisa complex vector
space, and if

p: X—X
is the canonical homomorphism, dp induces a canonical identification
between X and the tangent space of X at the origin (or at any other

point). Therefore, any translation-invariant real 2-form Q on X defines
and is defined by a real-linear skew-symmetric form:

E: XX)?—)R.

Eisa (1, 1)-form if and only if E(ix, iy)=E(x, y), all x, ye X. Moreover,
let A=Xkernel (p). A is a lattice in X, canonically isomorphic to H, (X, Z).
Since the first chern class of a line bundle is integral, if E represents ¢, (L),
then E must take integral values on A x A:

E(AxA)<SZ.

If we lift L to )2, we have a situation in which the following lemma
applies:

Lemma 2. Let Y be a complex vector space, and let L,, L, be 2 ana-
Iytic-Hermitian line bundles on Y. Then a holomorphic-unitary isomor-
phism ¢: L,—=>L, exists if and only if the curvature forms of L,,L, are
equal; if so, ¢ is unique up to a scalar of absolute value 1.

Proof. Standard methods.

In particular, let Y=X , and let M =p* (L) be induced from an abelian
variety. Give L and hence M the Hermitian structure with constant
curvature form E. The above lemma has 2 applications:

(I) Construction of a nilpotent group ¥: If xeX, and T, denotes
translation by x, then the lemma shows that M and T.* M are holomor-
phic-unitary isomorphic. If

g(M)={(x, ®)| ® a holo.-unit. isom. of M with T, M},
then (M) is, as before, a group lying in an exact sequence:
1-Cf—>9%M)—>X —0

(C¥=complex numbers of absolute value 1).

(I) Construction of canonical “trivialization” of M: Let 1 denote
the trivial analytic line bundle over X with canonical section 1. To put
a Hermitian structure on 1, we may set |1|= any positive real C*-
function. For example, let

(11]|(x) = e~ ™2H 0=
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where H is a Hermitian form on X. The corresponding curvature form
E: XxX-Ris easily checked to equal Im (H). But

Hw— E=Im(H)
sets up an isomorphism:

hermitian ~ |real skew-symmetric forms E on X
forms on X such that E(i x,i y)=E(x,y) ’

so for each L on X with translation-invariant curvature form, we have a
unique Hermitian structure on 1 of the above type so that 1~L. In
particular, we get a canonical

1=2M.

We can now develop a theory along similar lines to our algebraic theory.
For example, if H is positive definite, then let:
# = Hilbert space of L2-holomorphic sections of M over X.

Then %(M) has a natural unitary representation on 5%, it is irredu-
cible, and it turns out to be the only irreducible unitary representation of
% (M) in which Cf<% (M) acts by its natural character. This is the
situation described by CARTIER [2], and studied by CARTIER and many
others, e.g., MACKEY, Fock, WEIL etc. Exactly as in § 1, ¥(M) governs
the “descent” of the Hermitian bundle M to the abelian variety X, (or
to other ones X’ =[X/another lattice]), and the “descent” of holomor-
phic sections of M to holomorphic sections of its descended form. Thus
we get:

Proposition 1. There is a 1—1 correspondence between

1. Hermitian-analytic line bundles L' on X such that p¥*L' =M,

2. subgroups K=%(M), such that Kn CY¥={1} whose image in X is
A=ker (p: X - X).

Moreover, the holomorphic sections of M of theform p*(s'), s'eI’' (X, L'),
are exactly those sections s which are invariant under K, i.e.,

s=T*($(s), all (x,$)eK.

Proof. Straightforward.

Finally, via the canonical trivialization of M, holomorphic sections
of M correspond to holomorphic functions on X: thus each section
sel' (X, L) defines a holomorphic function on X. These are the classical
theta-functions.

As far as moduli are concerned, the simplest and most basic result is
the following: we set out to classify triples consisting of —
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1. a complex vector space Y, of dimension 2;

2. an analytic, Hermitian line bundle M on Y, with curvature form
E=1Im H, H positive definite.

3. Parametrized lattices in Y, i.e., monomorphisms

a: Z22Y
such that
E(ax,0y)="x;-y,—"x;- y,
if
x=(x1,%3), y=01)2)-

Such triples arise if we start with a principally polarized abelian variety
(X, L), together with a symplectic isomorphism:

B: Z** "L H (X, Z).

Namely, let Y= X, M= p*L with canonical Hermitian structure, and let
B define o via the natural maps H, (X, Z)=Ker (p: XX )cX Conver-
sely, the triple (Y, M, o) determines X and f, and L up to replacing L
by TXL, some xeX.

Let $=SIEGEL’S g x g upper half-plane. Then the moduli result is:

Proposition 2. There is a natural bijection between the set of isomor-
phism classes of triples (Y, M, a) and $. In this bijection, t€ $ corresponds to

Y=C¢,
. —%‘x' B
M=1 with hermitian structure |1](x)=e s
a((X1, X2))=%x; +7- X3

where B=(Im1)" L,
The final topic I want to discuss is the relation between the classical
and algebraic theories. Let’s start with:
X =abelian variety;
L =symmetric, ample, degree 1 sheaf on X. [Assume for simplicity
that L is so chosen among its translates 7L, xeX,, that its

unique section is evern; equivalently, that the Arf invariant of Q,
where ek (x)=(—1)¢™, is 0.]

Let
L =line bundle on X whose holomorphic sections are L;
X =universal covering space of X;

V,(X)=2-Tate group of X.
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Also, let A, =inverse image in X of tor, (X), i.e.,
U2~"-A4, if A=Ker(p: X—X).
n

Then we have canonical maps:

Va(x)

Azy | X.
Ny

Note that A, is dense in both V,(X) and X. We have “trivialized” L
when it is pulled up to V,(X) or to X, in § 8 and just above. Thus we
have 2 distinct trivializations of L on A,. The main result is that these
differ by an elementary factor:

Theorem 3. Let 1 denote the trivial complex line bundle on A,. Then
the following diagram commutes:
1

algebraic trivialization
f_./
multiplication by a - e% H (a, a)/2

(L, pulled back to A,)

. .. N v ’\‘
classical trivialization <

where ae C* and E=1m (H) is the curvature form of L.

Proof. Let M,=p*L=induced line bundle on ¥,(X) or X. Let y:
M ,—=51 be the classical trivialization. The algebraic trivialization of M,
is based on finding a distinguished collection of isomorphisms

(2P Ml'_’,Ta*er

all ae¥V,(X). In fact, let 1=inverse map in all our groups, and let p:
M;—=-1* M, be the isomorphism induced by the symmetry of L. Then,
for all elements 2aeV,(X), ¢, , is characterized by the existence of ¢,
satisfying:
i) P2a= :(Pa°¢a,
ii) 1*@ 0 p=T2,[po9;'],
iii) ¢, is induced by an algebraic isomorphism

oL (28 L—5(2"8)* (T} L)
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for some n, i.e., via the factorization:

X

P1°27' s
V2 (X)
xX.

But introduce, for all ae X, isomorphisms , from M, to T}*M, via:

~

=~ ~ * ~ *
M2 '] 1 mult. by fa(x) ’I;‘ 1 TSy Ta M
where
fa(x)zen[H(x,a)+H(a,a)/2].
Also introduce
. ~ *¥1 R %
P MZ [ 1 canonical identification "1 *y M.

One checks easily that iy, and p’ are holomorphic and unitary isomor-
phisms. Therefore p and p’ can differ only by a constant: and since both
are the identity at 0e X, p=p’. Moreover, if ae27" A, then the algebraic
isomorphism ¢;: (2"8)*L-—"—(2"0)*T % )L, referred to in (iii) above,
induces an isomorphism ¢.': M, —» T;F M, via the factorization

Since ¢, is also holomorphic and unitary, it differs from y, only by a
constant. Next, note that {f,} satisfy the identities:

il)fla(x) zfa(x'l"a) 'fa(x)s

ii") fo(=x)=falx—a)"".

These translate readily into the identities on the {y/,}:

i”) ll/2a=Ta* 'pa o '//a'

i) *y,0 p=T2,[po ¥, "].

Finally, i”, ii”’, plus the fact that ¢, induces ¥/, shows that {, and ¢,
induce the same isomorphism of L on A,, with T;*(Lon A,), all aeA,.

Finally, to compare the 2 trivializations, start with the unit section 1

of 1 on 4,. This goes over, via the algebraic trivialization, to a section s
of Lon A, such that, for all aeA,,

s(a)=¢,(0) [s(0)]
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(i.e., ¢,(0) is the induced isomorphism from the fibre L, or (M), to the

fibre L, , or (M,),) But under the classical trivialization ¥, y,(0)
corresponds to the isomorphism of fibres:

1 mult. by e™/2H(a, a) R

0 o

I I

C C.

Therefore, the section s goes over, under the classical trivialization, to a
section of 1 which, if it has value « at 0, has value

o - en/2 H(a,a)

at a. All in all, the section 1 of 1 has gone into the section

g(a)=oc . en/2 H(a,a)

of1. Q.E.D.
Corollary. If the unique section s of L (up to scalars) defines
a) the holomorphic function @, on X via the classical trivialization,
b) the 2-adic theta-function © ,on V,(X) via the algebraic trivialization,

then
-; H(x,x)

O,(x)=u-e - 0,(x)
all xed,.

To calculate @, and hence @, by analytic means, we must know the
“descent data™

Kc%(M,)

that defines L on X. Let e,: $4/4 —{+1} be the quadratic character
defined by L. Then, as we saw in § 8, the descent data for the pull-back M,
of Lis the group:

{(x’ ¢)IXEA'ZZ’ ¢=e*(21'x)'¢x}'

In view of the proof of the theorem, this implies that

K={(x’l//)|’x€/19 z//=e*(%x) : wx}

(Notation as in proof of Theorem). Now a K-invariant section s of M,
is one which satisfies T (s)==¢(s), all (g, ¢)eK. Going back to the
definition of y,, one sees that if /= (s) is the function on X correspon-
ding to s, then f is K-invariant if and only if

) fx+a)y=eu(Ga) f,(x)- f(x)

all xe)f, acA. From this it follows that &, must be the unique holo-
morphic function satisfying (*).
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To go further and write down this @, as an infinite series, it is con-
venient to introduce coordinates. Let

i: Z°*- 2,4  be a symplectic isomorphism .
Coordinatize X via )
X~C®
so that i((n,, 0))=n,, and let 7 be the g X g matrix defined by
i((0,ny))=7-n,.

Because of our assumption on ej, hence on e, , if we choose coordinates
correctly, we can assume that

ex[3i(ns, n)]=(=1)"""
As we saw in Prop. 2, if we now express:
H(z,z)='z-B-z
then B=(Im t)~!. Finally, set
@h(Z)=€;tz.B.z- Y erilincnttna
neZg

It is easy to check that this is a holomorphic function satisfying (*).
Therefore, this is the sought-for theta-function. Combining this with the
Corollary, we find

e2— z'B'(z—E).

0,(2)=
If

Y gFrithinrentincal all ze{J27%4.
k

neZs

z=i((0y,0,)), oel27%.(29),
x

then after rearranging, one finds

—nitayaz 2ni[4tn-t-n+tn-ay]

@a (al’ a2) =€ e

neaz+Z8
The function so defined clearly extends to a locally constant function
defined for all a;, a,€Q?¥: it is the sought-for algebraic theta function
defined in § 8. Comparing this with the formula in Lemma 1, § 8, expres-
sing @, in terms of the finitely additive measure p on Q%, we also get an
analytic description for u:

4 is countably additive,
p= z eﬂ:i‘x-t-x_ 5,‘,

xeD
J,=delta measure at x,

D=J27%z".
k
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