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In the first part of this paper, we have analyzed a single abelian va-
riety X. In particular, if L is an ample invertible sheaf on X, we have ana-
lyzed the vector space I'(X, L) and the ring

@ rX,L)

and have shown 1) how to choose canonical bases of these vector spaces,
2) how to express this ring as a quotient of a polynomial ring by an ex-
plicit homogeneous ideal involving coefficients which are essentially the
“theta-null werte” of X. In this second part, we shall apply the first part
to embed both the moduli spaces of abelian varieties, and the inverse
limit of these spaces over successively higher levels, as open sets in pro-
jective schemes associated to homogeneous coordinate rings defined by
explicit homogeneous ideals. We also introduce algebraic theta functions,
defined on a 2-adic vector space in terms of which our results on moduli
take on a simple form.

I want to offer some explanation of why the 2-adics play such a
central role in this theory. The situation is this: if you stick to abelian
varieties of char. p(p=+2), then you can build up a theory of theta
functions for these over any (restricted) product

[TQ

lesS
where S is any set of primes containing 2, but not containing p. In other
words, Q, always has to be there, but you can throw in plenty of other
factors if you like. Using only Q, seemed to have two advantages:
(i) you can deal simultaneously with all characteristics except 2, and
(ii) the resulting theta-functions are more concise, i.e., are defined on
the smallest locally compact group which admits them. I might have
written a general theory for some arbitrary set S — clearly this is the
accepted French approach — but there seemed no point in not sticking
to the simplest and most basic case. The essential features are related to
the fact that multiplication by 2 does not preserve Haar measure.

6 Inventiones math., Vol. 3
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§ 6. Structure of the Moduli Space

To study questions of moduli, we must first have a theory of families
of the objects to be classified. Therefore, we must generalize our theory
to abelian schemes:

Definition. Let S be a scheme. An abelian scheme & over S is a group
scheme & finitely presented over S such that the projection n: & - S is
proper and smooth and the geometric fibres of = are connected.

For some of the basic facts about abelian schemes, we refer the reader
to [9], Ch. 61.

Definition. Let L be an invertible sheaf on S. Then 1. H(L) is the group
of sections a: S— & of = such that if 7,,: & - Z is translation by «, then

TSLLQ®n*M

for some invertible sheaf M on S.
2. Hy(L) is the subgroup of those a such that

TFL~L.

3. (L) is the group of pairs («, ¢) where ae Hy(L) and ¢: L—>T}L
is an isomorphism.

Following a familiar procedure, we note first that H and % can be
extended to functors from the category of S-schemes to the category
of groups:

Definition. For all S-schemes f: T— S, let H/ (L)=H(L"), 9’/ (L)=
%(L'), where if F is the morphism in the diagram:

EFxs T x
! i

T8

then L'=F*L. Then f~ H/(L), f%’(L) are functors in an obvious
way.

Proposition 1. Assume that L is relatively ample over S. Then the
2 functors fr H' and %' are representable by group schemes H(L),
Y(L) flat and of finite presentation over S. H(L) is a closed sub-group
scheme of & itself, finite over S, and there is a canonical exact sequence:

06, s—FL)—>H(L)—0.

1 If any doubt should arise as to whether results in [9] are still valid if S is non-
noetherian, it should be dispelled by noticing that any abelian scheme over an affine
S is obtained by base extension from an abelian scheme over Spec(R), where R is a
Z-algebra of finite type, [5], Ch. 4, § 8, 11.
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Proof. First of all, H(L) is nothing but the kernel of the canonical
homomorphism: A(L): & - %. A(L) is flat and finite and of finite pre-
sentation (cf. [9], p. 122), hence H(L) is flat and finite and finitely pre-
sented over S. Secondly, the morphism from the functor %/ to the functor
HY is represented (relatively) by G,-bundles. In fact, if a: T— % x ¢T'is
an element of H/(T), and if

M=my(TXL)® L)
[here L' is the sheaf on & x T induced by L and = is the projection from
Z xgT to T, then
T*L=L ®@n*M,
and multiplication by non-zero sections of M defines the isomorphisms
from L’ to T.¥L'. Therefore the relative functor in this case is represented

by the line bundle M on T corresponding to M ~1, minus its O-section.
Q.E.D.

Definition. Let 6=(d,, d,, ..., d,) be any set of elementary divisors
(d, integers, =1, d;,,|d;). Define a functor % (5) on the category of all
schemes S to the category of groups by:

%5(8)=group of triples (a, x, ), xeI'(S, 0¥),
x is a map from the set n,(X) of connected components of X to X(5),
the discrete group @ Z/d; Z.

I=(ly, ..., I), where [, is a d-th root of 1 in I'(S, 05).
Multiplication is:

(@ x, 1)@, x", )=(a- o' - I'(x), x+x, [ +1)

I+U=- 13, 0, - 1)
g
I'(x), onthe component Y, =[]/
i=1

if x(Y)=(ay,...,a,).

[We add the I’s instead of multiplying them to be consistent with our
previous notation.]

It is easy to check that S+ %°(5) is represented by a group scheme
%(9), flat and of finite type over Z, that fits into a canonical exact
sequence:

where

0—-G,—%(3)—H(6)—0
of group schemes, where

HO)=[®Z2/d,Z]® [ pa]

and where Z[d;Z is taken as a discrete reduced group scheme and gy,
is the usual group scheme of di-th roots of 1.

6*
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Definition. A 3-structure on a relatively ample invertible sheaf L is
an isomorphism over S of the group schemes ¥ (L) and %(3) x S, for
some &, which is the identity on the sub-group schemes G, s. When this
exists, ¢ is called the zype of L.

In this definition, we have included some types of non-separable
invertible sheaves [in fact, all ample invertible sheaves on an abelian
variety with p® points of order p have a type in the above sense] because
in the present categorical approach it is no trouble. However, this was
just for the fun of it and we shall now restrict ourselves to the separable
case.

Fix 6=(d,, ..., d;). Assume all d; even. Assume all schemes are
schemes over Spec Z [d '], where

14
d=Hdi'
i=1

Definition. An invertible sheaf L on Z/S is symmetric if 1*Lx~L,
where 1: & — % is the inverse. It is totally symmetric if there is an iso-
morphism ¢: L~:*L which restricts to the identity on L ® Oy,, Where
Z,<=Z is the kernel of 26. It is normalized if e* L= Og where ¢: S—>%
is the identity section.

Definition. Let A: 9(LY>¥%(d)x S be a J-structure for a symmetric
relatively ample invertible sheaf L on &. Let y: L™ :*L be any isomor-
phism. We define:

i) an automorphism &_, of the functor f—%”(L). Given f: TS,
let L'=L® Oy be the induced sheaf on & xsT. Let a: T->Z xsT be a
section and N

¢: L— T (L)
an isomorphism, so that («, @)e%/(L). Let Y’: L'—1*L’ be the isomor-
phism induced by y. Then
8- 1 @) =(roa, (T2 y) T or* poy),

ie.,
LY L2 ¥ (T*L)

* ook yr ~ T* L,
T...G L)‘mr o
where 1: & xsT—>% x 5T is the inverse.
ii) The automorphism J_, of the functor induces an automorphism
8: (L) -9 (L) of the scheme.
iii) Similarly, the map

((Z, X, l) = ((X, —X, _'l)
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where if I=(ly, ..., L), then —I=(7", ..., [7 1) gives an automorphism
D_, of the functor S —%5(5).

iv) This induces an automorphism D of the group scheme %(9).
v) Then 4 is symmetric if Do A=40 4.
Definition. We consider triples of the following type:

i) an abelian scheme & over S,

ii) a relatively ample, totally symmetric, normalized invertible sheaf
Lon %,

iii) a symmetric 9-structure A: (L) => 4(8) x S for L.
We shall call this triple an abelian scheme with a 6-marking.

Definition. For all schemes S, let .#;(S) denote the set of abelian
schemes & over S with 5-markings, taken modulo isomorphisms. As S
varies, these sets form a functor .#; in S. This will be called the moduli
Sfunctor for abelian schemes with 6-marking.

The object of this section will be to show that .#; is representable,
and to represent it by an open subset of a definite projective variety.
The next step is to study the representations of % ().

Definition. Let V; be the free Z[d ™ !]-module of functions from
K(6) to Z[d~!]. Then for all schemes S, and invertible sheaves L on S,
Vs ®zL is the sheaf of functions from K(6) to L. The discrete group
%5(5) acts Og-linearly on this sheaf, exactly as %(5) acted on V;in § 1:
e.g., if (a, x, Ne%5(5),

fEF(Ua V6®ZL)

Assume for simplicity that U is connected, that x(U)=(ay, ..., a,) and
that /=(l;, ..., [,). Then («, x, I) takes f into f*, where

¥y, b)=a-[I B flay+by, ..., a,+by).

Let E;=V(V;): this is a vector bundle of rank d over Spec Z[d '], and
it is a direct sum of trivial line bundles L, with canonical sections [a]:
Recall that, in general, an S-valued point of E; corresponds to a homo-
morphism from V; to I'(S, Og). Then [a] corresponds to the homomor-
phism

frf(@)

from V(5) to Z[d~']. All the actions of ¥°(5) on V;®0O; can be put
together dually in an anti-representation of 4(d) on E;, i.e., a represen-
tation in which the order of multiplication is reversed. This is clear from
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a functorial point of view, but it may be useful to define this anti-repre-
sentation directly by putting together representations on the various
subgroups:

the subgroup G,,, with S-valued points (¢, 0, 0), acts by homotheties
on E;,

the discrete subgroup @ Z/d; Z, with S-valued points (1, g, 0), acts by
permuting the sections [a]: thus the point b takes [a] to [a+b],

the discrete but twisted subgroup @ a,, with S-valued points (1,0,/),
acts diagonally: thus the point (/y, ..., /) takes [a] to IT I7 - [a].

Proposition 2. Let S be a scheme and let
p: [9(9)xS]xsF—~F

be an anti-representation over S of 4(6)x S on a vector bundle F over S
of rank d. Assume that the subgroup G,, acts on F in the standard way.
Then there is a line bundle L over S and an isomorphism

F-ZL[E;xS]®L

(where ® denotes tensor product of vector bundles over S) such that the
action of 4(0) on F corresponds to the above action of 4(5) on E tensored
with the trivial action on L. Moreover, this isomorphism is unique up to
multiplication by an element of T (S, OF).

Proof. This is nearly the same as that of Prop. 3, § 1, except that we
must use a basic result on the representations of u; established in [4].
It is shown there that if a group scheme of the form @p,, is represented,
over S, in a vector bundle F, then F is a direct sum of sub-vector bundles
F,, ae K(3), where the group acts on F, by the character

@ ”di—’Gm
g
(AT _1_]11;".

Now we realize @ p,, as the subgroup of ¢ (J) of triples (1, 0,{); and
decompose F accordingly. Exactly as in §1, the action of the Z[d ']
valued points o,=(1, a, 0) of ¥(J) permutes these F, transitively. There-
fore all F, are non-empty; since the rank of F is d, each F, is a line bundle
over S. Let L=F,. We set up the required isomorphism by first identi-
fying
Fo=L=(LyxS)®L

then identifying F, with (L, x S)® L by using the actions of ¢, and the
first identification; and then taking the direct sum. The details work out
exactly as in §1. Q.E.D.
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Now start with an abelian scheme Z/S with d-marking. Let L be the
given sheaf on &, and let F=V¥(w,L): this is a vector bundle over §
of rank d. Let f: T — S be a morphism of schemes. Then a T-valued point
of F/S, i.e., a morphism g is the diagram:

T—*——F

\‘ I%noniml morphism
S

is the same thing as a homomorphism y:
S*(my L) “-y“’_OT

of O;-modules. I claim that ¢ (L) is anti-represented over .S on the vector
bundle F in a canonical way. In fact, if /: 7— S is a morphism of schemes,
a T-valued point of ¥(L)/S is given by a section

a: T xgT
and an isomorphism -
p: L—TFL
if L' is the induced sheaf on & x ¢T. Then ¢ induces
T L Lo (THL)

g U
Frael) (@0 T (T L)

T (T T:z* 05
Ul

nge L
Ul

f * (my L)
by standard canonical identifications. Let the composite isomorphism on
S *(my L) be called []. Then this acts on a 7-valued point y: f*(n, L) -0
of F/S by taking it to the new point y o [¢]. This gives us an anti-repre-
sentation of the functor %(L) on the functor associated to F: hence an
anti-representation of the scheme (L) on F.

But Z/S has a given d-marking. Hence we also have an anti-represen-
tation over S of ¥(6) xS on F. Applying Proposition 2, we get an iso-
morphism -

F—(E;xS)®L,

for some line bundle Lon S, unique up to multiplication by elements of
I’ (S, Og). In terms of sheaves, this gives us an isomorphism

My LV, @z K
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for some invertible sheaf K on S, unique up to multiplication by elements
of I'(S, Og). The fact that the isomorphism of F and (E; x S) ® L com-
mutes with pair of actions of (L) and ¢(J) gives a corresponding fact
on the sheaf level:

for all f: T— S, let the 3-structure induce an isomorphism
Y(L)y=9"(L)=%"(6)

where L’ is the induced sheaf on Z x ¢T. Then the action of ¥(L")

on m, L’ — which is canonically isomorphic to f*zn,L — goes over

under this isomorphism to the action of 47 (5) on V;®,f*K.

It follows, incidentally, that the above isomorphism of zn,L and
V;®zK determines the isomorphism of %(L’) and ¢7(5) for all f:
hence it determines the given isomorphism of ¥ (L) and %(J) x S. Now
assume L is relatively very ample: this occurs if all d; are divisible by 4
for example. Then we get a closed immersion over S

it & —P(n.L)=P[V;®,K]=P(V;)xS,

which is determined by the original é-marking on %. Conversely, this
immersion determines the d-marking: the sheaf L, for example, is
obtained

a) by pulling back Op(1) via p; 0 i: X ->P(Vy),

b) by then normalizing this sheaf on the identity section. In other
words

(*) Lx(pjoi)* [91’(1)] ®(poiogom)* [9?(_ D].

And the morphism from %(5) xS to %(L) is determined as follows: let
K=(p,0iog)*(0p(—1)). Then the isomorphism (*) determines the
isomorphism:

e Lxm, [(pyo )" (0p(D)] ® K

- 2p, 4 [0p(1)®0s]®K
= I/tS ®Z K ’
which, as we just saw, determines the J-structure. Summarizing, the

abelian scheme Z'/S with §-marking determines, and is determined by the

closed immersion:
i: & —P(V;)xS.

Recall that the group structure on & is determined completely by the
identity section &: S—%, ([9], p. 117). Therefore, the whole functor
M5 is isomorphic to a subfunctor of the functor Hilby,,) of all flat fa-
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milies of closed subschemes of P(V;) with distinguished section (cf. [9],
Ch. 0, § 5).

In particular, we have defined, from Z/S with J-marking, the S-val-
ued point of P(V;): pyjoiog: S—P(V,). It is not hard to verify that this
defines a morphism of functors:

The next step is to describe the image. First define a closed subscheme
M;<P(V,) by RIEMANN’S theta relations:

let Q(a)e V; be the function which is 1 at a, and O elsewhere;

let Z,=K(d) be the subgroup of points of order 2; embed K(d)<
K(29) as before.

1. For all elements a, b, ¢, de K(20) such that they are all congruent
modulo K(6), and for all /e Z,, set

[ ZZ I(n)-Q(a+b+n)-Q(a—b+n)]x
x[ Y Im)-Qlc+d+n)-Q(c—d+n)]—

- ZZ Im)-Qa+d+n-Qa—d+n)]x
x[ ZZ In)-Q(c+b+n)-Q(c—b+n)]=0;

2. For all aeK(9), set
0(a)—Q(—a)=0.
The main result can now be stated:
Theorem. If d,, ..., d, are all divisible by 8, then there is an open subset

M; of M; such that t defines an isomorphism of M s with the functor of
points of the subscheme M of P(V).

We can go even further: not only can we identify the moduli scheme
M, but we can write down the universal projective family of abelian
varieties over M; obtained by the immersion i. Define

A;=P(V) % M,
by the relations:

let X, be the same function as Q(a), but in the copy of ¥V in the first
factor:

1. For all a, b, ¢, d, | as before, set

[Y Im-Qlc+d+m)-Qle—d+m]-[ X 1) - Xovpsn Xacpsnl—

neZz neZz

_'[ Z l(’?)Q(C+b+’1)Q(C—b+'1)][ Z l(”)'Xa+d+q'Xa—d+q]=0'

neZy neZy
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Thus via the projection p,, A, is a projective scheme over M;. More-
over, the diagonal 4 is a section

& MJ""')J‘;
of the projective scheme A;/Mj,.

Further Theorem. Let A;=pi'(M;). Then As| M, with section A is an
abelian scheme over M and it is equal to the universal abelian scheme,
with its identity section, embedded in P(V;) x M5 by the morphism i defined
earlier in this section.

The remainder of this section will be devoted to proving these
theorems.

Step 1. Without passing to any subset of M, at all, 4;,/M; has a kind
of 9-structure. In fact, let M be the sheaf induced on A; by Op(1). Then
for all morphisms

f: T—M;,
let M’ be the induced sheaf on A4; X 3;,7. We get a canonical homomor-
phism:
group of T-automorphisms
A Ay Xy T— Ay x 5T,
plus isomorphisms
0o M'-—"52* M
And whenever 4;x 3, T is the subscheme of P(¥;) x T induced from an
abelian scheme with §-marking, these homomorphisms give us back the
J-structure. To define this, assume for simplicity that 7" is connected,
and that

{T-valued points of 4(d)} —

(%, D)eg" (),
x=(a1! R ] ag),
I=(ly, ..., 1p).

Then we get a projective transformation y of P(V;) x T by the linear map
V;®I'(T,07)—V;@I'(T,0y),
fef*
f*((bls seey bg))=d * H l?"f(al-l-bl’ :ag+bg)
(regarding V;®I'(T, O7) as I'(T, Or)-valued functions on K(J)). In
particular,
X, ®1-X,_ . ®@-[TH™.

One checks immediately that the equations defining A4, are invariant
under this substitution. Therefore the projective transformation u re-
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stricts to an automorphism A of 4;x 3,T. But the linear map defining
u also defines an isomorphism

¥: [0p(1) ® 071> *[0(1) ® O1].
And y restricts on 4, X 3,7 to an isomorphism
o: M- M.

Step 11I. In the first step, we have used a little bit the actual structure
of the equations defining M;: now we shall use this structure in detail.
We want to define first a canonical morphism

M, ;—% M,
which will be used in Step V.

Let M(resp. M') be the invertible sheaf on M; (resp. M, ;) obtained
by restricting Op (1) from the ambient P(V;) (resp. P(V, ;). By definition,
we shall have

T (M*)=M'?,
and we define 7 by its effect on the sections of the very ample sheaf M?:
(%) 7*[Q(a+b)-Q(a—b)]= ZZQ'(a+11)-Q'(b+n),
nesL2

where Q and Q' are the sections of M and M’ defined above, and q, be
K(26) satisfy a+beK(d). To see that this defines a morphism 7, we
must check that when these values for n* are substituted, the following
are zero:

7*[Q(a)- Q(B)]—n*[Q(b) - Q(a)]
n*[Q(a)- Q(b)]- n*[Q(c)- Q(d)] —

o —7*[0(a) - Q@] - 7*[Q(c) - O ()]
*[Q(—a)- Q(B)]—7*[Q(a)- Q(B)]
for all a,b,c,de K(0),
ZZl(n)-n*[Q(a+b+n)~Q(a—b+n)]><
X ZZl(n)-ﬂ*[Q(C+d+11)-Q(c—d+11)]-
) - ZZ In)-n*[Qa+d+n)-Qla—d+n)]x
X ZZl(n)-n*[Q(0+b+11)-Q(c—b+n)]

for all a,b,c,de K(26), leZ, such that a,b,c,d
are congruent modulo K(J).

The first 2 expressions in (1) are 0 by virtue of the relations imposed on
the Q"’s; the last expression in (1) and the expression (2) are identically
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zero by virtue of the commutativity and associativity of multiplication
in the Q'’s.

It is clear from the definition of = that if L is an invertible sheaf of
type 6 on an abelian variety and we choose symmetric 3-structures on
(L, L?), then the corresponding geometric points x,, x, in M;, M, ; are
related by m(x,)=x,. The main result that we will need is:

Hardest Lemma. Let a geometric point x in M,; be the theta-null
point assigned to some abelian variety with 26-marking. Then 7 is étale
in a neighborhood of x.

Proof. Let y=n(x). By the infinitesimal criterion for a morphism
to be étale ([3], § 3, Cor. 3.2), we must check the following: let 4 be an
artin local ring with residue field %, the field of definition of x. Assume
that o: Spec(4) - M is an A-valued point extending y: Spec(k) - M;.
Then there exists one and only one A-valued point t: Spec(4) - M, ;
such that 6= o 7, and such that t extends x.

In down-to-earth language, suppose that at x, the coordinates Q’(a)
have values ¢’ (@) in k; and that at o, the coordinates Q(a) have values
q(a) in A. Then g(a), q'(a) satisfy the Riemann theta relation and sym-
metry, and if g(a) is the image of g(a) in &, then g’ (a), q(a) are related
by (x). We must show that there are elements g’ (a)e 4 such that g'(a)
lifts g’ (a), and is still a point of M,; and such that ¢’(a) and g(a) are
related by (*). We have one more thing to help us: the values g(a) and
4’ (a) come from an abelian variety.

The first thing to observe is that () nearly determines ¢’(a): in fact,
we get

ZZ Im)-q(a+b+n)-qa—b+1n)

’ nezZ;

® = Y 1o -aa+n)- ¥ 1) a'+n).

neZy neZsz
Since the g'’s come from an abelian variety and since 4|d; for all 7, we
also have

For all /eZ, and aeK(J), there is an element bea+ K(5) such that

> 1) -q'(b+n)+0
neZz
(cf. § 4, Proof of Theorem 1).
Set
U(a,b,))= 3, I(n)-q(a+b+n)-q(a—b+n),

neZ;

x(a, l)= Z l('l) : q,(a+11)1

neZz

x(a, D=3 I(m)-q'(a+n).

neZy
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For each /leZ,, and aeK(26)/K(d), choose an element a,eK(20) lifting
a such that x(ag, /)=0. Then U(ay, ay, /) is a unit in 4, and x(a,, !) is
to satisfy:

1) x(a09l)2=U(aOsaO’l)9 x(ao’l)HJ—c(a09l) iIl k

Since char(k)=2, this determines one and only one x(a,, /). For any
other ae K(29) lifting a, set
U(a,ay,l)
x(ao, D)

From the x’s, we determine the ¢'’s by summing over . This proves the
uniqueness of the values ¢’(a), i.e., of the point 7, and shows that = is
unramified at x. It remains to show that if {x(a, /)}, hence {q'(a)} are
determined by i), ii), then they satisfy all the requirements.

First of all, x(a, /) lifts x(a, [) since X(a, /) satisfies (ii) with bars in it.
Hence q'(a) lifts g’ (a).

Secondly, x(a,l) and U(a, b, ) satisfy (x)": let a, be K(26) both lie
over a. Then

ii) x(a,l)=

U(a: do l) : U(b’ o, l)
x(aO H] 1)2

_ U(avaOal) : U(baaOs l)
- U(a03a0’l)

=U(a,b,])

by RIEMANN’s theta relation for the g’s. Therefore, the corresponding
q’(a)’s satisfy ().

Thirdly, ¢’ is even. In fact, I claim x(—a, /)=x(a, /). This follows
from the equation U(—a, ay,)=U(a, ay,!) which follows from the
evenness of q.

Fourthly, we must check that ¢’ satisfies RIEMANN’S theta relation.
This is really rather tricky. It is convenient to use a different form of
these relations:

let H=K(20)xZ,
[n.b.: 24 is the discrete group Hom(Z,,A*)].
If b,=(a;, [;))eH, i=1, 2, then set
Clby,by)= ) L) l(n2) g (ay+n1)-q'(az+n3)

N1, M2€Z4
nitn2eZz

o T ()00 - x(@ 0, 1)- x(az+n, )

neZs

x(a,l)-x(b,))=

[here I;=restrictions of /; to Z,].
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The relations are:

C(by,by)- C(b3,b))=C(by+p,by+ ) - C(bs+B,bs+p)
(*%) for all by, b,, b3, bs, feH such that
b1+b2+b3+b4=—2ﬂ.

To check that these relations are equivalent to the ones we have been
using involving U’’s is quite straightforward and we omit it. [The method
is the same as the one we will use in the next step.]

We also need a third form of these relations, that is, the Riemann
form itself involving the x’s (cf. § 3, right at the end):

x(ag, 1)) x(az,1,)-x(az,13)-x(as,1,)

1
=7 Z k@n)-x(a;+b+n,l,+k)-x(a,+b+n,l,+k)x
keZy
neZs

xx(as+b+n,l3+k) - x(a,+b+n,l,+k)
(*x%) for all ay,a,,a3,a,,beK(20)
I, 1,15, 14‘5i2

such that
al+a2+az+a4= '—2b,

11+12+l3+l4=0.

This is how to go back and forth between (*x) and (**x):

1) take expression (**), substitute /, +2k, for /,, I;+2k, for /5, and
m—k, —k; for m, [here b;=(a;, [;), and f=(a, m)]. Sum over all choices
of k,, k5, rearrange the right-hand side and you get (x#**).

2) take expression (*#*#), substitute a, + { for a,, a,+{ for a,, a;+{’
for ay, a,+ (' fora,, b—{—{’ for b, multiply by (I, +1,) ({) - (3 +1,)({),
and sum over all {, {'eZ,. Rearrange the right-hand side and you get (+#).

The point to notice here is that you don’t need all of the relations (xx)
to get a particular one of the relations (#*%), or vice versa.

Next, there are some relations (x+) that we do get immediately. In
fact, suppose b, +b,€2H. Then a,+a,€K(d) and /,=I, on Z,. Using
(*)', one finds that C(b,, b,) splits into a product:

Couby=g57 [ T (i +L)O- a(ar+a:+20]x

x[ Y (=) - q(a;—a,+20)].

{eZs
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One gets similar equations for C(b;, b,), C(by+ B, b,+ ) and C(b5+ 8,
b, -+ f): substituting, one gets (x*) from the associative law.

Next, we can show that the relations (*x) also hold if b, +5;€2H.
We prove this in 3 steps using the precise description of which relations
(#x) are needed to prove which relations (***) and vice versa.

i) relations (#«) for all values of b, b,, b5, b,, B such thatb, +b,c2 H
imply relations (**#) for all a;, /;, b such that a, +a,€K(8), /,=1/, on Z,.

ii) relations (***) are symmetric under permutation of the variables.
So we also get relations (**x) when a, +a;eK(d), !, =15 on Z,.

iii) Using the fact that Z, < K(8), if a; + a;€K(9), thena; + a3+ {+ '€
K(6) and we can go back: we get relations (#*) whenever b, +b,€2 H.

Next, we can show that the square of relation (*#) is always true:
C(by,b,)*- C(bs, by)*=C(by+ B, b, +P)* - C(by+p, b+ P>
In fact, for all b,, b,e H,
C(by,b,)*=C(by, by)- C(by, —b)
=C(0,b,—b,)- C(0, —by;—b,)
by relation (**) with f=—b,

=C(b1—b2,0)‘ C(b1+b2,0).
Therefore:
C(by+p, by+B)* - C(bs+p, bs+P)’
=C(by+b,+2B,0)- C(by—b;,0)- C(b3+bs+25,0) x

X C(b;—b,,0).
But

b1+b2+2ﬂ=—b3—'b4, and b3+b4+2ﬁ=—b1—b2: SO we get
=C(by+b;,0)- C(by—b,,0)- C(bs+b,,0)- C(b3—b,,0)
=C(by, by)* - C(bs, ba)*.

But the Riemann relations definitely hold when you take the image of
C(by, b,), etc., in k. Therefore, if

C(by, b)-C(bs,b)#0  ink,

it follows that C(b,,b,) - C(bs,by) and C(by+B, b+ ) - C(bs+58,
b, + B) are square roots of the same number, are units, and have the same
images in k: hence they are equal.
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Now suppose
by+b,+bs+by=-28
by +by+b3+by=-2p
where b;+b;e€2 H, all i, and f+ f'e2 H. Assume moreover that
C(by, b3)- C(b3, bY) is a unit.
Then we can also show that
C(by, b3)- C(b3,b,)=C(b,+B,b,+B)- C(b3+B, ba+h).

In fact, we know this equality, when there are primes everywhere. Hence
it suffices to show:

C(by, by) - C(by, b3) - C(bs, by) - C(b3, by)
@) =C(by+p,b,+B) - C(by+ B, b2+ ) - C(b3+ B, bsat+B) x
xC(b3+p', by+p).

But assume b;+b; = —27y,;. Then using the relations (x%) that we know
to be true, we get:

C(by, by)- C(by, —b3)
=C(yy=y2+by—by,71—72) C(p1+7y2+by+b5, 91 +72)

C(bs, by)- C(b5, —by)
=C(p3—ya+bs—bys,y3—74) C(ys+ys+b3+by,v3+74)

C(by+p, b, +p)- C(b1+B', —b3—p)
=C(by—by+y1—72,71—72) X
XC(y1+y2+bi+b2+ B =B, yi+v2—B—B)
C(bs+B, by+p)- C(b3+p', —by—f)
=C(b3—bs+73—74>V3—74) X
X C(p3+ya+bi+bi+p —B,y3+7.—B—F).

We can assume that y,+y,+7y;+7y,=0-+p by altering one of the y’s
by an element of order 2. Using the symmetries C(4, B)=C(4, —B)=
C(B, A) one checks that the product of the 1st two right-hand sides
equals the product of the 2nd two. Hence the same for the left-hand sides,
hence () is true.
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It remains only to check that for any b, b,, bs, by, B such that
by +by+by+b,=—2p, there exists bi, b3, by, b,, p’ differing from the
b;’s and B by 2 H, such that

1+b5+b3+by=-2p
C(by, b3)- C (b}, by)*0.
Now we know that the functions g, q" come from an abelian variety.

Therefore choosing a compatible 4J-marking on this abelian variety,
there is a null-value function g”’ on K(40) with values in k, such that

q’'(a+b)-q'(a—b)= % q"(a+m)-q"(b+n).
N neZy
Now if aeK(49), leZ,, set:

Z(a, D)=y 1mq"(a+n).

neZs

Thenif b, =(a+b, [), b,=(a—b, m) are 2 elements of H, with a, be K(49),
I, meZ,, one checks immediately that:

C(by, b))=z(a,l+m)-z (b, 1—m).

Therefore, translating the question into one involving Z’s, we have to
check:
for all ay,a,,a5,a,€K(49), congruent mod K(26),

forall l,,1,,1;, 14624, congruent mod 224,
there exists a4, &, , a3, o, € K(26), congruent mod K (J)

and k6224, such that
4

[Tz (a;+0;, ;- +m)=0.
=1

1}

But using the hypothesis that Zg = K (), this follows from:

for all ae K(49), 1624, there exists a € Zg such that
z(a+a,1)*0.

This is a special case of the result stated following Theorem 1, § 4. Phew!

The same analysis also gives the result:

If {g’'(a),} are the coordinates of a geometric point x, in M, ; which
corresponds to an abelian variety with 2J-marking, then the coordinates
{q’(a),} of any other geometric point x, such that m(x,)=mn(x,) are
determined by:

ZZ 1mq'(a+m),=y(a,1) -"ZZ 1(n)-q"(a+n)y
nesiz €L

7 Inventiones math., Vol. 3
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where 7y is a quadratic character:
y: KQ26)|K(O)xZy—{+1}.

We leave it to the reader to check this change from the g’(e),’s to the
g’ (a),’s also comes about by a suitable modification of the 24-marking.
Therefore:

if a geometric point x of M, corresponds to an abelian variety with
28-marking, so do all geometric points in n~*(n(x)).

Step III. Let Z[S be an abelian scheme with J-markings. Let
i: & P (Vs) xS be the closed immersion defined above. Then

i) p;oioe is actually a morphism j of S to M;,
ii) i(%¥) equals the subscheme y of P(¥;)x S obtained as the fibre

product:
Y - P(V;)xS

T
AJ———-—)P(I/&)XMJ.

In order to establish this, it clearly suffices to take the case S=Spec(4),
where A is an artin local ring with algebraically closed residue field. Let
p be the characteristic of the residue field k. Then there are considerable
technical simplifications:

a) for all positive integers » not divisible by p, A contains exactly
n n-th roots of 1, which lift the n n-th roots of 1 in k,

b) if Z/S is an abelian scheme, then for all positive integers n not
divisible by p, the subscheme %, of points of order n is the disjoint
union of n®¢ subschemes, each being the image of a section of Z/S: i.e.,
all points of order » are rational over S.

Cor. of (a), (b). Let Z/S be an abelian scheme, and let X/k be its
fibre over the residue field. Let L be a relatively ample sheaf of degree
don . Then H(L) is a disjoint union of the images of d* distinct sections
of Z/S, and there is a one-one correspondence between 3-structures for
L and for the induced sheaf Lon X.

In this case, we can deal entirely with the group of rational points
%5(5) instead of with the combersome group schemes. Thus %5(9) is
just the (discrete) group extension:

0—->A*—-—»gs(5)——>K(é)xK/z5)—-+0

N\
and where K(0) is just a (discrete) group isomorphic to K(d). And the
representation theory boils down to:
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There is a unique A-linear representation of 5(5) on a free A-module
of rank d, in which the subgroup A* acts by homotheties.

In particular, a $-structure on L induces an isomorphism:
r#,L)=V,;®z4

unique up to multiplication by elements of 4*.

To get down to the proof itself, we are given Z/S, plus a totally sym-
metric relatively ample L, plus a symmetric isomorphism f, of ¢(L) and
%5(5). By the results of § 2, there is a §-structure

fa: 9(@H—595(26)
such that the pair f, and f, of 9-structures on X is symmetric. Lift f,
to a 9-structure f, for L2. Then f; and f, induce isomorphisms:
I'Z,L)=V;®z4
(&, DV, ®,4,

where the first is the isomorphism used to define i: Z < P(V;) x S. Also,
evaluation of sections at ¢ defines particular A-valued functions ¢; and
g2 on K(6) and K(24) via

&, L2V,;®,4
l”' lf - Y f(a)qu(a).
aeK(id)
A = A

Here g, (a) is just the value of Q(a) at ¢: so {g, (a)} is a set of homogeneous
coordinates for the point iog: S—P(¥;)x S. This means that {g,(a)}
are the homogeneous coordinates of j(S), and these are exactly the
numbers which are to satisfy RIEMANN’s theta relations.

The only thing that must really be checked is that the pairing
(&, L)xI'(%,L)y—-I%, 1)

given by multiplying sections is defined by the same multiplication formula
as in § 3. But the proof given in § 3 of this formula goes over without
any change to this more general case: simply replace the ground field &k
by the ground ring A. Once the multiplication formula is known, RIE-
MANN’S relations on {g. (@)} follow formally, as in § 3. This proves (i).

To prove (ii), the first point is that & =%. This follows immediately
from the multiplication formula. In fact, on &, the coordinates Q(a)
have the constant values ¢, (¢) and the coordinates X, induce the sections
of L on & denoted by J, previously. The identity which we need comes
out immediately by reducing the quadratic expressions in the 4,’s to

T*
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functions on K(24) and using the relation between ¢; and g;.. Secondly,
if Y is the fibre of % over k, then X=Y. This follows from Theorem 2,
§ 4, and the fact that the equations on X, are a complete set of quadratic
relations. In fact, for fixed /eZ,, aeK(26), these relations assert that
all the quadratic expressions

{ 2 l(l’]) Xa+b+r1 ‘ Xa—b+q l bE a +K(5)}
N€zy
are proportional. Since, in fact, on X each of these sets consists in sections
of L? corresponding to the function Y, ,:

{0 if b—a¢Zz,
Y“”(b)—{l(b—a) if b—aez,,

and since the Y, ’s are linearly independent, these do exhaust the qua-
dratic relations on the X,. Thirdly, we note the obvious:

Lemma. Let U be a closed subscheme of V, both being noetherian
schemes over Spec(A). Then if

1. U is flat over A,

2. the fibres U and V over Spec(k) are equal, then U=V.

This proves (ii).

Step IV. Suppose that N is a connected subscheme of M, such that
if A; induces a subscheme B over N, then B is smooth over N. Suppose
that some geometric point x of & is in the image of .#; under ¢. Then the
N-valued point 1y of N is in the image of .#;, i.e., there is an abelian
scheme %/N with §-marking such that i(%)=B.

By assumption, one geometric fibre B of B/N is an abelian variety.
Therefore, by Theorem 6.14, Ch. 6, [9], B is an abelian scheme over N
with identity section 4. By construction, B=P(V;) x N. Let Op(1) induce
the sheaf M on B. Normalize it on the identity section, i.e., set

L=MQ@p; 4*(M™").

I claim that the inverse 1 for B is given by restricting the projective trans-
formation j to B, where
Jji P(V3) X N—P(Vs)x N

FFX)=X_,.

But the inverse is given by j on B (cf. § 3). Since i1=j on one geometric
fibre of B/N and on the section 4 of B/N, 1= everywhere by the rigidity
lemma ([9], Ch. 6, §1). Since j is a projective transformation, this shows
that 1*L=~L, i.e., L is symmetric. Now j has 2 disjoint subspaces of fixed




On the Equations Defining Abelian Varieties. II 95

points:
L, defined by X,=X_,, all ae K(0)

L, defined by X,=-—X_,, all aeK(d)

and the identity section 4 is completely contained in L,. To say that L
is totally symmetric is the same as saying that B,, the kernel of multi-
plication by 2, is completely contained in L,. But B,cL, UL, since
j=id on B,; and B,, the points of order 2 on B, is contained in L, since
the projective embedding of B is assumed to come from a -marking.
Since S is connected, this implies that B,cL,, and hence that L is
totally symmetric.

Moreover, by Step I, we get a homomorphism
A G(@)xN—-F(L)

of group schemes over N such that the actions on p, , L and V; match up.
Since A induces an isomorphism of the group schemes %(6) x Spec(k),
% (L) corresponding to the situation in the geometric fibre B, 1 is an iso-
morphism everywhere 2. Therefore, A is a 9-structure. Also A is symmetric
at one point, hence it is symmetric everywhere. Therefore, B/N has a
9-marking which induces the given embedding in P(Vs)x N. Q. E. D.

Step V. Recall the main result on flattening stratifications ([/0],
Lecture 8):

Given a projective morphism f: X — Y of noetherian schemes, Y can
be decomposed into a disjoint union of locally closed connected sub-
schemes Y,, such that if g: Y'> Y is a morphism from a connected
noetherian scheme Y’ to Y, and we look at the fibre product:

X' S Y’

Lo

x L.y,

then f’ is flat if and only if g factors through one of the subschemes Y,.

Apply this to A;/M;: if Z<M; is one of the pieces, and some fibre
of A; over Z is obtained from an abelian scheme with 6-marking, then
we must show that Z is open. If we do this, both theorems are proven.
The openness of Z follows from:

Key Lemma. Let X/Spec(k) be an abelian variety with 6-marking over
an algebraically closed field k. Let this define a geometric point x of M.
2 In fact, since A is an isomorphism of the subgroups G,, s in any case, it is only a

question of whether 4 is an isomorphism of the quotients H KJ), H(L). Since these are
etale over .S, a homomorphism is an isomorphism if it is so at one point.
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Let A be any artin local ring with residue field k, and let
f: Spec(4)— M,
be a morphism extending x. Then the scheme over Spec(A) induced by A,
is flat over Spec(A).
Proof of Lemma. Let Ay define, over A, the projective scheme

Z < P(V;) x Spec(A).

Let L be the invertible sheaf on & obtained by restricting Op(1) to Z.
We shall show:

() r,1r) is a free 4-module, for all large n.

This certainly is enough to prove the lemma, in view of the following
elementary observation:

Sublemma. Let A be an artin local ring with residue field k, and let R
be a graded A-aigebra generated over A=R, by R,. Assume that R, is
a finite A-module, and that R, is a free A-module for an infinite set of
integers n. Then R, is free for all but a finite set of n’s.

Proof. Without loss of generality, we can assume that k is infinite.
Let R=R® k. In R, let

©=0:n-nQ, P=)0
be the primary decomposition of (0). Let P, be the irrelevant ideal

®R,.
nz1
Since k is infinite, there is an element ge R, such that
§ ¢P 2 (WRLIRW P, .

Let ng be an integer such that @, o Pjo,i.e., O, o R, for all n=n,. I claim
that R, is a free A-module for any integer m=n,. Choose fy, ..., f; in
R, such that f, ..., f; are a basis of R,,. Note that for all integers p,

Epfls vy Epj;cEEm+p
are independent over k. In fact, if
0=y ag"fi=2" (T auf)

then g¢P;, for i=2 implies Z“ifiEQy i=2. And since the degree is
large enough, ¥ o, f,€Q;. Hence Y o,f ;=0, which is a contradiction
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unless all the «’s are 0. Now suppose that R,, is not a free A-module. Then
k
Z a i f‘i = 0
i=1

for some elements a,, ..., @€ 4, not all 0. Let p be a positive integer such
that R, ., is a free 4-module. Then since R, , has a basis of the form
8 fy s 8 iy By, ..., By, it follows that R, , has a basis of the form

gp.fls .“’gpf;“ hls [EEE} hl‘ But
k

Z a;(fig7)=0.

i=1
Therefore, the &’s are all 0 which is a contradiction. Q.F.D.
Once we know that I'(Z, L") is a free A-module for all large n,then
Z is flat over Spec(4) ([5], Ch. 3, 7.9.14). To prove (x), let ;= S* (V,) ® 4
be the ideal generated by the quadratic defining relations of A;. Then
I'(%, L)=(S"Vs® A1),
for all large n, and it suffices to prove:

(I5),» is a direct summand of (S*"V;)® 4
(x*) for all n=0,1,2, ...
We shall prove (xx) by induction on n, assuming at each stage that it is
known for n<ny and all §. To start things off, (I;); equals (0), for (**) is
always true for n=0. To get from (*#) for n=ny to (+*) for n=ny+1,
we shall simply show for all 4-valued points of M, as above, there is an
A-valued point of M, ; with the same properties such that:

(¥%4) 6_90((52" Vs) ® A)/(Ia)Zn%'((S* V25) ® A)/Iza-
In particular, "
(S V) ® A)[(Ip)on+1 2(S™" V25 ® A[(L25)2n
so (xx) will be completely proven.
To lift the A-valued point of M;, we use the morphism

T MZJ—*M{,

defined in Step II. The underlying k-valued point of f corresponds to an
abelian variety with -marking. Choose a compatible 2 d-marking on this
abelian variety. This defines a k-valued point y of M,; over x. By
Step I1, = is étale at x. Therefore, there is one (and only one) A-valued
point .

g: Spec(A)—M,;

lifting f with underlying k-valued point y.
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Let these A-valued points be given by homogeneous coordinates
q(a), acK(9), and q'(b), be K(2J), where q(a), q'(b)e A. These satisfy the
usual equations (cf. Step II). Then in concrete terms:

S*V;® A/l,
~ A[""Xa""]aEK(J)
{ (ZImglc+d+n)-qlc—d+n)-(Z l(n)Xa+b+,,Xa-b+,,)}
~(Z1malc+b+n)-qlc—b+m) - (Z 1M XorargXa-atn)
S* VZ& ® A/IZJ

~ A['”,Xa,a'"]ueK(Zﬁ) .
{ (ZIm g (c+d+mn) - g’ (c—d+n)- (El(n)Xa’+b+,,X;-b+,,)}
—(ZImq'(c+b+n)-q'(c=b+m) - (Z101) X+ a4y Xd-atn)
We set up the isomorphism (#x) by requiring that
T[Xa+b : Xa—b]= Z q’(b+l’]) : Xa’+rl

neZs

for all a, be K(26) such that a+be K(5). This implies:
T[ Y ) Xosbsq Xampnl= Y lmq'(b+n)- Z I(n) X4y

neZz neZy neZz

for all a, be K(29), ZEZA2 such that a+be K (J). Since
Zlmq(a+b+n)qa—=b+n)=Z1n)q (a+n) - Z1(mq' (b+1n),

this second equation implies that the quadratic relations in the ring of
X’s go to O in the ring of X'’s. Moreover, since for all aeK(296), [eZ,,
there is an element bea+K(d) such that Y (I(n) ¢'(b+n)) is a unit, this
also shows that the map is surjective. Similarly, since the elements
Y I(n) X+, are linearly independent it is clear from this second equation
that every quadratic expression in the X’s which goes to 0 via T is a
combination of expressions of the form:

Z Ab{ z l(rI)Xa+b+ar—b+r1}'

bea+K(d) neZz

And, in fact, the expressions

[Z l(’i)q,(bz"‘ﬂ)] . [2 I(n) X 10, - Xacp, +,,]
—[Z 1@ g (by+m)] - [Z 1) Xasb, 40 Xamby+4]

will span the kernel. But if b, =b, b, =d and we multiply this expression
by a unit of the form Y. [(n) ¢’ (c+1), cea+ K(8), we get the typical qua-
dratic relation on the X’s. Therefore, 7 sets up an isomorphism:

52V, @ A1), —8'Vy 3 ® A(Ly5);.
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At this stage in the proof, we have already shown that for all §, (I;), is
a direct summand of S?2V;® A.

Now try to extend 7 to a homomorphism of the whole ring. Let U be
the free A-module S?V;® A/(I;),. Let Y, , be the element X, X, in U.
Then, as observed in the proof of Theorem 2, § IV,

[eed .
2n - ok ideal generated by
&5 @A)z U/{n,,,n,.,—x,,m,b |

Therefore, all we have to check is that when T is extended to S? U, the
A-module generated by the expressions T(Y, ,) - T(Y, )—T(Y, ) %
T(Y,,,) is the same as the 4-module of quadratic relations in the X'’s,
and the proof will be complete. Call the first module N,, and the sec-
ond N,. It is easy to check that N, = N,, simply by calculating out the
expressions T(Y, ) - T(Y, o) —T (Y, q) - T(Y,,4).

Consider the diagram

Ny =t N, ——5%V,,04

I 1 i
N®k—L-N,@k—L—8*V,;@k.

Since N, is a direct summand of S?¥,;® A4 according to the first part
of this proof, it follows that /is injective. But in Theorem 2, § 4, we showed
that N, =N, in case 4=k. Therefore the images of N, ®k and N, ® k
in S?V,;®k are equal. This implies that j is surjective, hence that i is
surjective, and hence Ny=N,. Q.E.D.

§ 7. The 2-Adic Limit

Up to this point, we have been studying pairs (X, L), consisting of
abelian varieties X, and ample invertible sheaves L of separable type.
To push the theory further, however, it seems almost essential to make it
freer of variations within one isogeny type. The simplest way to do this
is to study simultaneously a whole tower of abelian varieties. All the
simplifications that occur however have to do with dividing by 2, so it
doesn’t seem necessary or fruitful to look at all isogenies: instead we look
only at isogenies of degree 2", some n. This is economical, too, because
our moduli will then be the values of functions on 2-adic vector spaces,
rather than of functions on adelic spaces. As always, we assume
char (k)= 2.

The basic definition is:

Definition 1. A 2-tower of abelian varieties (or tower) is an inverse
system {X,},.s of abelian varieties, i.e., S is a partially ordered set such
that V a4, «,€S, 3 €S, f>a,, a,, and whenever a, f€S, a>f, we are
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given an isogeny of degree 2":

Do, g+ Xo— Xy
such that:
1) If o> f>7, the diagram of isogenies
Xa Po, v Xy
Pa, p /p; %4
X;
commutes,

2) If &>y, f, and K;=kernel {X,— X, }, then K, € K,<>$,28,.
3a) For all €S, and all isogenies X,— Y, of degree 2" (some n),
3P €S such that « = f, and one has a diagram:

<)

Fa\
Xp

3b) For all aeS, and all isogenies ¥ — X, of degree 2" (some n),
3BeS such that f=« and one has a diagram:

Y\
X,
ﬁ -
X;

Note that, starting with orne abelian variety X, we can generate in a ca-
nonical way a 2-tower of abelian varieties by taking coverings and
quotients of degrees 2", starting with X.

Definition 2. If X is an abelian variety, let tor,(X) denote the group
of closed points xe X of order 2", some n.

If X={X,} is a tower of abelian varieties, we get a derived inverse
system of discrete groups {tor, (X,)}. Let

V(X)=lim tor, (X,).
acsS

If X is one abelian variety, we also let V'(X) denote V' (X), where X is the
2-tower generated by X. This is the usual 2-Tate group of X. For all
o€ S, there is a canonical surjection

Pt V) —tory(X).




On the Equations Defining Abelian Varieties. IT 101

Denote the kernel by T(x). Each T'(«) is an inverse limit of finite groups,
so if we topologize V' (X) by taking the T'(«)’s as a basis of open neigh-
borhoods of the origin, then V' (X) becomes a locally compact group,
and each 7'(a) becomes a compact, open subgroup. From well-known
structure theorems, we know that there are topological isomorphisms:

0—> T(@) — V(X) —— tory(X,) ——0

g U g
subgroup of] 2
2¢ 2e 0/Z of elts.
0 (ZZ) (QZ) ? Of order 2n 0
(some n)

(where g=dim X). In particular,

S~{partially ordered set of compact,}
"~ lopen subgroups T<=(Q,)** )

When X is generated from one given X, the kernel of the canonical
homomorphism ¥V (X)—tor,(X) is usually denoted T(X), and T(X) is
also called the 2-Tate group of X.

A final point: when k=C, one can associate to a tower of abelian
varieties a common universal covering space. In fact, for all «= B, p,,:
X,— X, induces an isomorphism

Pap: Xo— X
between the universal covering spaces. Therefore let X stand for a com-

plex vector space canonically isomorphic to each )2,. In the classical
theory, X plays a role analogous to ¥(X). For all «, there is a canonical
surjection g,: X — X,. Let L(a) denote its kernel. Then {L ()} is a family
of commensurable lattices in X, and a2 f if and only if L(x)<=L(p).
Since X,= X/L(x), the whole tower can be generated by starting with the
complex vector space X and dividing by these lattices L ().

Definition 3. A polarized tower of abelian varieties is a tower {X,},
aeS, plus a set of totally symmetric ample invertible sheaves of degree
2", some n: L, on X, for a in a subset S, =S, plus isomorphisms

P} (L) ——L,
whenever a, f€S,, a> . We require:

1) If «, Be S, and o> f3, then feS,=a€S,.
2) If a>p>7y, yeS,, then the isomorphisms of L,,Ls, L, — all
pulled up to X, — are to be compatible,
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3) If a>p, aeS,, and if there exists a totally symmetric sheaf M on
X, such that p¥ ;,M=L,, then BeS, too, [in which case, L, will have
to be M too].

The object of this section is to generalize the theory of §1 to a polar-
ized tower of abelian varieties. So from now on, let’s suppose given one
such tower J ={X,, L,}. The first important observation is:

¢“4>2” Lemma. For all xeV(X), there exists an aeS, such that
P (x)eH(Ly).

Proof. Start with any a,€S,. Let 2" be the order of the point p,, (x).
Let a,eS, be the element such that o, >, and such that the isogeny

DPuzya; 18270, i€,
X
W’al

1 X

ar
/5
X

ag

Since (2" 8)*L,, =(L,)*"", H((2"8)*L,,) contains all points of X, of
order 22". Therefore H(L,,) contains all points of X,, of order 2". But

0=2"p,,(X)=2"Ps,, 0,(Pes (%)) =2*"[q (P, (¥))]

$0 p,,(x) has order 2*". Q.E.D.

Now let Sf={aeS,|p,(x)e H(L,)}. Like S,, it has the property:
B>a, aeS5=fecS5. Suppose that for one aeS§, you choose an iso-
morphism -

Dy Lu_’) T*(x)(Lz) .

Da
Then I claim this determines canonically isomorphisms
@p: Ly— Ty (Ly)

for all Be S5. This is clear — first suppose f>a, and then choose ¢, so

that:

Ly— Ty 5 (Ly)

f
S T;; x) (p;l;, a (La))

Dpo(Ly) —2hete) S ()

commutes. In general, first determine ¢, for some ye S3 such that y>a, 8,
then go backwards to determine ¢, from ¢,. Call such a system of ¢,’s,
all xeS%, a compatible set of isomorphisms L, STy () (L,).
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Definition 4. 4(J)=set of pairs (x, {p,}), where xeV(X), and
{@.}, xS, is a compatible set of isomorphisms.

This forms a group in the usual way. Given (x, {@,}), (, {¥.})e¥4(F),
choose any yeSgn S. Then form the composition:

Lv ? Tpt(y)(L}') Tpt(xﬂ)(Ly) .

¥y

—_—
T5,00(9v)

Call this p, and generate with it a compatible set of isomorphisms {p,},
all ae SF*?. Then let

(%, {0a}) o (3, (Wa})=(x+ 1, {pa}).

Moreover, we get an exact sequence:

0——k* G (T) 25 V(X)——0

as usual. Notice the simplification here over the theory of §1: the finite
group H(L) that depended on L has been replaced by the big group
V(X) depending only on the tower and not on the polarization. It is not
hard to interpret 4(Z) as a simultaneous direct and inverse limit of the
%(L,)’s, with respect to the connections induced between them whenever
o> f3, as in Prop. 2, §1. In particular, for all a, €.S,, if we look at the sub-
group:
@2 (T)=n""[p5 (H(L,))]

N
4%(9)
then for all (x, {@,})e¥¥ (), p,,(x)eH(L,,) so @,, is defined, and
(%, {9a}) = (Po, (), 02,
defines a surjection:
@(7) =59 (L,) —0.
Let K(a,) denote the kernel of this map. We get the picture:
0 0
Lo
K@@ — T(x)
l l
—k* — %3 (T) "> p, (H(L,)—0
‘ Ga ¢F¢
0—k*— %) > H(L) —0
! l

0 0
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Lemma 2. For all aeS,, 9¥(T) is the centralizer of K(o) in 9(J),
and k* - K(a) is the center of 4¥(7).

Proof. If xeK(x) and ye%¥(7), then y - x - y~* is still in K(x), and
it has the same image in T(x) as x has, since p; * (H(L,)) is a commutative
group. Therefore x=y - x - y~ !, i.e., K(«) = center [¢¥(J)]. Since k* is
even in the center of 4(7), k* - K(x) = center [9¥(J)] too. Butif xe center
[2¥* ()], g.(x)ecenter [¢(L,)] and we know k* is the whole center of
%(L,). Therefore k* - K() is exactly the center of 4F (7). Now suppose
y€%(7) centralized K(«). y is certainly in 45 (J) for some BeS, (B>0).
Then the image g4(y) in ¥(L;) commutes with the image g4[K(«)] in
%(Lg). Now gg[K(2)] is a subgroup of ¥(L,) lying over the subgroup
Ker(pg,) of H(Lg). Therefore by Prop. 2, §1, g4(») is an element of
%(Ls) whose image in H(Ly) is in pj 5 [H(L)], i.e., the image of y in
V(X) is in p; j(H(Ly), or ye93(7). Q.E.D.

Corollary. k*=center of (7).

As in §1, we can describe the non-commutativity by a skew-sym-
metric form e;: V(X)) x V(X) »k*:

e(mx,my)=x-y-x"1.y7!

all x, ye% (7). Then the lemma tells us that:

1) pz ' (H(Ly) is the group of elements xe ¥'(X) such that e,(x, y)=1,
all yeT'(®), i.e., T(x)*.

2) T(x) is the group of elements xe V' (X) such that e,(x, y)=1, all
yeps*(H(L,), i.e., the degenerate subspace for the pairing e; on
pe H(H(LY).

3) For all xeV(X), there is a yeV(X) such that e;(x, y)*1, i.e.,

e; is non-degenerate.
In particular, for all aeS,, (a) e;=1 on T(®), (b) T(x)*/T ()= H(L,),
and (c) the pairing induced on T'(®)/T(«) by e, corresponds to the old
pairing e; _on H(L,).

Using the symmetry of the L,’s, we obtain an automorphism

5_y: G(T)—%(T)

exactly as in §2. But now since 2 - V(X)=V(X), 6_; is much more
convenient than before. In fact, it induces a canonical section of §(J)
over V(X):

Definition 5. Let xe V(X). Let ze 9 (7 ) satisfy n(z)=x/2, 6 _ ,(z)=z"1:
there are exactly 2 such elements in 4(7), z and (—1) - z (here —1 is an
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element of k* and we multiply in ¥(J)). Let
o(x)=2z*

(which is independent of the choice of z).
Therefore, ¥ (7)) decomposes as a set:

" G(T)=k*xV(X)
i -
a-o(x)e(a,x).
Let’s compute what happens to the group law:
Lemma 3. For all x, yeV(X), 0(x) - 6()=e,(x, y/2) - 6(x+y).
Proof. Let z, we%(J) lie over x/2,y/2 respectively and satisfy
6_yz=z"1,6_jw=w"1 Let
s=e,(—x/4,y/2)-z-w.
Then s lies over (x+y)/2 and satisfies:
o_y1s=e,(—x/4,y[2)-6_1z-6_3w
=e,(=x/4,y/2)-[z7" Wz W] (z- W)
=e;(—x/4,y/2) - e,(=x[2, =y[2) - (z- w)""

=51

Therefore
e, (x,y/2) o(x+y)=e,(x,y/2) - s*
=¢,(x/2,y[2)-z-w-z-Ww
=e,(x/2,/2)-2*(z"  w-z-wTHW?

=0(x)-a(y).
Q.E.D.

In other words, the group law, carried over to k* x V(X), is
(d,X) ‘ (ﬂs y)=(a : iB ° e}.(xay/2)’x+y)'
Let’s give a complete structure theorem for 4(7°) and V(X). Let
x: Q,—k* be an additive character with kernel Z, .

Definition 6. A symplectic isomorphism of V(X) and Q% x Q% is an
isomorphism ¢ such that if @, x, @, x are the 1°* g and 2"¢ g components
of ¢(x), then

(6 )=t P1x 929="01y 9, x]
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for all x, yeV(X) (here ¢ denotes the transpose vector, and - is multi-
plication of 1 x g and g x 1 matrices).

We leave it to the reader to check that such an isomorphism always
exists: for example by constructing it inductively via some cofinal series
oy <oy, <---in S.

Definition 7. 9,=k* x Q% x Q% , with group law
(“,x,J’)' (ﬁ,u,u)=(oc ﬂ : X(tx '"),x+U,J’+U)-

D_,: 9,59, is the automorphism D_,((o, X, y))=(a, —x, —).
Z:0% x Q4 - 9, is the section

z@n=(x(%52) %)

Definition 8. A full 9-structure for 7 is an isomorphism c: (7 )>%,,
which is the identity on the subgroups k* and such that cod_,=D_,cc.

It follows immediately that a full 3-structure ¢ induces a symplectic
isomorphism ¢: ¥(X)>Q3, and also that Zoc=cogs. Therefore c is
even determined by c. This is a simplification which was foreshadowed
in the discussion at the end of § 2. In fact, given a symplectic isomorphism
¢, we can define the unique full 9-structure c extending ¢ by:

c(A-a(x)=4-Z(c(x))

‘0. X0, X
=(/1-x(¢1—2q2—),(p1x, QDZX)

for all Aek*, xeV(X), and one checks all the requirements easily. In
particular, one full 3-structure always exists and we have a structure
theorem for 4(Z°) and its maps.

So far, in our polarized tower, we have considered only the rotally
symmetric L,’s that can be put in an inverse system on the X,’s. For a
few more o’s, however, we may be able to find a symmetric invertible
sheaf L, on X,, such that for some element feS, for which f>o, p¥ 5L,
is isomorphic to the L, that we already have: such an L, will be said to be
compatible with the given polarization.

If we define as before
G2 (I)=n""(pz '(H(Ly)),
then every element ({x;}, {¢z})e%s(J) is compatible with a unique
isomorphism -
(pa: La—)Txt(La)

and we obtain a homomorphism g,: 4¥(9)—>%(L, just as before.
Let K(«) be its kernel: a subgroup of ¥(7") isomorphic under m= with
T ().
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Lemma 4. If L, is a symmetric sheaf on X, compatible with our polar-
ization as above, then K(o) is the set of elements

e (Po(z %)) 0 (%)
xeT (). In particular, if L, is totally symmetric, then K(a)=0o[T(%)].
Proof. To unwind the definition of a(x), let f>o be the element of S
giving us a diagram:
Xy

w\m

X,

i

Xe

Then p; , L, is totally symmetric, hence isomorphic to Ly, and u=p,(%x)
is in H(L,). Choose an isomorphism

¥ Li——T}L,

such that &_;((u, ¥))=G@, ¥)~". Let (u, ¥)*=Q2u, ¢z). Then o(x) is
represented by the elements (2u, ¢,)e%(L,). Since xeT'(x), 2ueKer(py, ,)
and there is a scalar A such that:

L, L,

p;;,aL Tl*up;;,aLat

4
\ ||
*

commutes. This means that 1~ - ¢(x) is compatible with the identity
map from L, to L, i.e., is in the kernel of ¢,. The lemma boils down then
to checking that A=el*(pg, ,(4)). Throwing out irrelevant notation, we
can restate this fact as:

Lemma 5. Let L be a symmetric invertible sheaf of separable type on
an abelian variety X. Let ue X, and let (u, )€ % ((256)* L) satisfy 6 _ ,((u, p))
=(u, @)~ *. Let (u, )* =Qu, V). Then the composite isomorphism:

Q¥ LY T} (28)* L=2(28)* T, L=(26)* L

is multiplication by eL(2u).

Proof. Since L is symmetric, (26)* L=~L*. Let v=2u and let (v, p) be
the element #,((u, )) in 9 (L?). Since 7,00_;=36_,0n,,0_,((v, p))=
(v, p)~*. But ef’(v)=[e;()]*=1, so by Prop. 3, §2, 6_,((v, p))=(v, p).

8 Inventiones math., Vol. 3
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Therefore (v, p)?=1 in ¥(L?). Therefore by Prop. 6, §2, n,((v, p))=
(0, e£(v)) in %(L). Explicitly, this means that:

L4- p2 Ty* L4
(26)*L~--+T*(25)* L

mult. by 21;(0) (2 5)* Tz*u L

Il

(28)*L
commutes. But (v, p2), as an element of ¥(L*), is &, ((v, p)). And
&2((, p)) =22(n2((u, 9))) =382 ((u, ©)) =, 0)* - 5 _1((u, 9))= (v, ).

Therefore the dotted arrow is { and the lemma is proven. Q.E.D.

Conversely, suppose we start with any a€S such that e=1 on
T () x T(a), i.e., T(x) is isotropic, and try to make a subgroup of 4(7)
via
K(@={es(z%)-0(x)| xe T()}
where e, is a function from 3 7(«) to {31}. This works if we take for e,
any function satisfying

ex(x+y)=e;(x, )" ex(x) - ex ().

In particular, e, (x)=1 if xeT(x). Let S be such that 2T(x)=T(p).
Then feS,, and K(B)=0[T(B)]=K(x). Let L, be the totally symmetric
sheaf on X, defined by our polarized tower. Then K(a)/K(B) is a level
subgroup of ¥(L,) lying over the subgroup ps[T ()] of H(Lg). As in §1,
it provides descent data for L, in the isogeny p;,: X;—X,, since
Ker(pg)=pp[T(®)]. Let it define L, on X,. This L, is easily seen to be
symmetric, compatible with the polarization, and satisfying

() =),  all xe} T@®.

Conclusion., Symmetric sheaves L, on some X,, compatible with the
polarization, are in 1—1 correspondence with all possible “level” sub-
groups K< %(J) such that

1) Knk*={1},

2) for all xeK, o(n(x))= +x.

This ends our discussion of the groups that are involved in a polarized

tower of abelian varieties. Next, we turn to their representations. The

family of vector spaces
{rx,,Ly}, aeS,
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forms a direct system, and we define:

r7)=1uimr(x,,L,).

aeSo

Just as in §1, 9(9) is represented on the vector space I'(Z"). Moreover,
as in §1, we check that we can recover I'(X,, L,) from I'(J") since:

F(X,, L) {elements of I'(7) }

invariant under K (x)

[The same holds for any symmetric L, compatible with the polarization
and the corresponding K(x).] What representations does a group like
%(J) have? We make the following restriction:

Definition 9. An admissible representation o.— U, of 4(7) [resp. %,]
in a vector space V is one in which the subgroup k* acts via its natural
character (i.e., if aek*, U,=a - (id),), and such that for all xeV:

{o€9(T), resp. %, | U, x=multiple of x},

is the inverse image in %(J) [resp. %,] of an open subset of V(X)
[resp. Q2¢].

Prop. 3 of §1 generalizes easily to:

Theorem. %,, and hence 9(J ), has one and only one irreducible

admissible representation. All other admissible representations break up
into direct sums of the irreducible one with itself.

The proof of this is roughly as follows: choose a maximal open
subgroup U< Q2 on which the skew-symmetric form

e((x1 3 V1), (%25 Y2))=X[tx1 : J’z—txz : .VI:I

vanishes identically, such as Z22. Then construct eigenvectors in ¥ for
the subgroup k*x U of ¢,. All other elements in the group permute
these eigenvectors and we show that this permutation can be described
simply, (independent of ¥). We leave the details to the reader as they
are similar to those in the proof of Prop. 3, §1.

This irreducible representation can be written down like this:

Let

__)vector space of k-valued, locally constant
£ |functions f on Q% , with compact support| "

[U(a,x,y)f](z)=a'1(ty‘Z)'f(x+z)
if fest,, (a,x,y)e%,, zeQ}.
s.
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Notice that the only elements fe#, invariant under the operations
Ui.xy) @ll x, yeZ§, are the multiples of the characteristic function:

0, z¢Z%
1

g
, zeZ5.

D(z)={

Therefore 4, is irreducible (i.e., in view of the Theorem, if any subspace
canonically attached to the representation is one-dimensional, the re-
presentation must be irreducible).

On the other hand, we have:
Theorem. I'(J) is an irreducible admissible representation for 4(J).

Proof. It is an admissible representation since every xeI' (") is in some
I'(X,, L), hence is an eigenvector for k* - K(«). H is irreducible since if
K(x)=%(J) corresponds to a symmetric L, on X, of degree 1, then the
subspace of K(a)-invariants is isomorphic to I'(X,,L,) and this is
l-dimensional. Q. E.D.

It follows that if we choose a 3-structure c: ¥(7)—>%,, we get a
unique isomorphism:

ro-—t-#

such that B(U,(s))= U, ,(B(5)), all ze 9 (7), seI' (7). The isomorphisms
B extend the isomorphisms f in §1 in the following way:

a. let «e S, and let T(@)< V' (X) be a compact open subgroup such
that ¢(7T'(x)) in Q% x Q4 is of the form Ux V.

b. Then p;'(H(L,) is the orthogonal subgroup, i.e., V*xU*
(if V*={xeQ%|x(x-y)=1, all yeV¥}, U* similar). Therefore ¢ induces
isomorphisms:

. -1
H(L,)gl’f—(TIéf)i))g(VL/U) x (U/V).

If we choose an isomorphism
(VU)—>K (@),
then this gives
S N
(U M)=(V*U)=K (),
hence
Ve
H(L,)=K(d)x K(d).
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c. Thus we get an isomorphism:
Y.
" K@
> k* x (VHU)x (U V)

Sk x K (3) x K(3) =9 (9).

9(Ly)

d. On the other hand, B restricts as follows:

r-t-#

U

functions ¢ on Q3
POy support in V*

constant w.r.t.
translations by U

rx,,L) {functions on V*/U}

{tunctions on K(6)}=V(9).

The induced isomorphism of I'(X,, L,) and V(d) is exactly the isomor-
phism f of §1 corresponding to the 3-structure on %(L,) occurring in c.
In short, B is just the union of the isomorphisms § obtained on a
finite level previously.
Next choose consistent isomorphisms (L), ® x(0) >k, for all xeS,.
These induce “‘evaluation at 0 maps: I'(X,, L,) -k, for all «, which fit
together into one big “‘evaluation at 0”” map:

A: T'(T)—k.
To describe this piece of information in closed form, we need to describe
the dual space #;*:
Dual of #,: 5, is spanned by the characteristic functions ¢, of
compact, open subsets U=Q?, with the obvious relations:
(*) ¢U1UU2+(pU1hU;=¢Ul+(pU2'

Now let # be the Boolean algebra of compact open subsets of @%. Then
a linear functional on # is determined by its values on the ¢’s, and
relations which follow from () make this set function into a measure.
In other words, if we let

= vector space of k-valued finitely additive
¢ ~ |measures u defined on the Boolean algebra %
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then the pairing:
fowy=[f-du
Q

14
makes 5;* into the dual of ;. ’
This shows that there is a unique measure pes;* such that

A(s)= [ B(s)-du
05

all seI' (). This p is “built up” out of null functions ¢;_ in the following
way: let aeS, be such that ¢(7(x))=Ux ¥, as above. Then for all
sel'(X,, L,), B(s) is a function on Q% with support in ¥+, constant on
cosets of U. Then

A(s)= [ B(s)-du via new theory
1
= Y BE))-px+U)

xevi/u
while

A(s)= . EZK:@);S’ (8)(x)- gL (x) via old theory.

Thus identifying K(5) with V*/U, we find:
qr (xmod U)=p(x+U), all xeV".

There are formulae for the other ¢;_’s, but they are much more compli-

cated.
Note that since the g, ’s are known to be even functions, this formula

implies that u is an even measure on Q%.

§ 8. 2-Adic Theta Functions

The basic idea of theta functions is to trivialize an ample sheaf L
on an abelian variety X, after pulling it back to some auxiliary space ¥
via a map 7: V' — X; then sections of L on X become actual k-valued func-
tions on V. In our case, let 7 ={X,, L.} be a polarized 2-tower of abelian
varieties, and take V=V (X). First, what is the “pull-back” of the L,
to V?

Let x={x,}e V(X). Then for all aesS, let L,(x)=(Ly), ®,x, * (x,)
as usual. For all a2 g, pts induces an isomorphism

L, (xﬁ) '—p-?p—" L,(x,).

Passing to the limit, let L(x) denote the vector space you get which is
canonically isomorphic to all L,(x,)’s. The collection {L(x)} of 1-dimen-
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sional vector spaces represents “the sheaf induced on V(X) by the L,’s”.
In particular, every seI'(Z) has “values” s(x)eL(x) for each xe V(X).

Now let z=(x, {¢p,})e% (7). For all a for which ¢, is defined, it
induces an isomorphism

02(x): L) —>TAL) () =L (y+x,),

all yeX,. In particular, z defines an isomorphism z,: L(y)—L(x+»)
for all ye¥(X). Choose as before an isomorphism A, of L(0) with k.

Define A, to be the composite:

LO)y—"—k.

L(y) o

a(—y)y

Then {A,} is a “trivialization” of L, pulled back to ¥ (X). In particular,
if seI'(7), then A,(s(y)) is the value of s at y. Define:

‘9[3](y)=ly(s(y)) .

This is the algebraic theta function associated to s. Alternatively, it can
be expressed as:

9[3](y)= A [Ua (—y)(s)] .
Property 1.
S[Uw(s)](,")=°‘ ce;(x/2, y) - Yq(y—%), if w=a-0(x).

Proof.

S, (,)](y)=A[U,(..y)(Uw(s))]
=a- A[Ua (=y- a(x)(s)]
=0 e,l(x/2, y) : A[Uu(—y+x)(s)]
=o-e;(x/2, ) I (y—x).

Corollary. 9y is a locally constant function on V(X). In fact, if
sel'(X,, Ly, and L, is symmetric associated to e,: $T(x) > {+1}, then
(N =e(x/2) e,(x/2, y) - 83(y —x) for all xeT ().

Proof. Use U, (s)=s, whenever w=e, (x/2) - 6(x), xeT ().

Property I. If s, ..., s,el'(X,, L), and p(X,, ..., X,)ek[X,, ..., X,]
is homogeneous of degree d, then

P(sy,...,5,)=0 in I'(X,, %)
if and only if
P(‘g[n](y)’ -'-9‘9[3”](y))=0’ all yEV(‘Z()
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Equivalently, the map
8: I'(7)— {vector space of locally constant}

k-valued functions on V(X)

extends to an injective homomorphism:

. p ring of locally constant
% @ lim I'(X,, L) — {k-valued functions on V(X){"

d=0 «

Proof. The fact that § extends to a homomorphism, or that
P(sy, ..., 5,)=0 implies P(S,;(»), ..., 9,1(»))=0 follows from the fact
that 9;,;(y) is defined as the value of ¢ at y, (when L, is suitably trivialized).
The fact that 3 is injective is equivalent to noting that no non-zero
section teI'(X,, L?) can vanish on all points tor,(X,); and this is clear
since tor, (X,) is Zariski-dense in X,. Q.E.D.

Property L. If o is an automorphism of the field k, leaving fixed
kock, and if (X,, L,) is defined over k,, then o acts on

D I'(X,,L,)
2) V(X)
and for a;l sel'(X,, L), yeV(X)
S0 w10 =09 (M]-

(More generally, it seems reasonable to expect that 8 should ‘““be
defined”” — in a suitable sense — over any ring R over which an X, and
L, are given.)

The proof is straightforward.

Property IV. If T: V(X)™ Q% x Q% is a symplectic isomorphism, the
transformation T in the commutative diagram:

e
A

\ vector space of all
5 ocally constant

functions on M(X)

)

is given by:

T(f)(»)= Ix(’cozy- (-%l—u)) Sflu—op)-dp,
o

where ¢(x)=(@,x, ¢, x), and pe;* is the theta-null measure of the last
section.
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Proof. If f=f(s), then

T(f)(x)=9(x)
= A(Ua' (—x)(s))

= j (UE(—qux, —(pzx)f) ° d.u
o;

= I (A5 x2S %)- ds. Q.ED.
Qg

Corollary. A basis of 3['(T)] is given by the “classical” theta-

functions: 3 [Z] =T (‘S [Z] )

al, .o if x¢a+2Z3
0 [b] (x)_{x(’b-x) if xea+Z3

where

and a, b run through coset representatives of Q%/Z%. Here

9[‘;](x)=x(t(¢§x—b)-¢1x>- I a(b—ogyx)-u)dp,.

g
at ey x+Z2

In particular,

? [g] =2 (M) [ 2(—"ezx-wdp,

Q1 x+Z5

is known as RIEMANN’s theta function. It is the transform via T of the
0 . 0

characteristic function 5[0] of Z%. The multiples of & [0] form the sub-

space of 7, invariant under the subgroup {1} x Z§ x Z§ =%,. Therefore,

0
the multiples of 3 [O] are exactly the elements of 3[I"()] invariant under
the subgroup

K(@=c ({1} xZ§x Z8)=9(7).

If T(@) is the compact open subgroup of V(X):
T(x)=c~'(Z4x Z5),
then in fact K(«)={e.(4x) - o(x)|xeT(a)} where
ex(X)=x'¢,x-9,x), all xezT(x).

Thus K() defines a symmetric invertible sheaf L, on the abelian variety
X,, and I'(X,, L,) is just the space of K(«)-invariants in I"(Z"). Since this
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g] is nothing but the algebraic

theta function defined by the unique section of L, (up to scalars). Another
way to put it is that
o[

is the unique function f of the form 9 oc™! to satisfy the functional
equation:

is 1-dimensional, L, has degree 1, and $ [

O R P . B AR

all xeQZs, aeZ2=. Note that since p is an even measure on Q%, 9 [8]
is an even function on V(X):

9 [g] (—x)=9 [8] (x).

An important fact is that u can be reconstructed from 9 [g] :
Lemma 1. There is a 1 —1 correspondence between

(A.) measures pe3t* on Q3,

(B.) k-valued functions 3 on Q% x Q% such that

‘a,-a ‘ai-x, ‘a,-x
s(x_*_a):x( 1 2)_x( 1 2_ 2 1).9()‘)
2 2 2
all acZ8 x 75,

This is set up by:
tx .
3(x)=x (-—li—x—z—) c f ox(="x3-u)-dp,

.\‘1+Z§

" - ‘a,-a
pa+2Z=2"t  F g (L0 (e,

a2e2-"25/2%

Proof. Left to reader.

In particular, in studying the u’s that arise from abelian varieties, it
is often convenient to go back and forth between y’s and 9’s that cor-
respond as in this lemma. Let’s consider RIEMANN’S theta relation from
this point of view. Before proving it, I want to set it up in both its p
and 9-form:

Lemma 2. Let p and 3 be even measures|functions corresponding as in
Lemma 1. The following conditions are equivalent:
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(A.) There is a 2" measure, ve H,* related to p by the identity:

ax p(U)y=vxv(£(U))

for all compact open subsets Uc Q% x Q%, where & is the automorphism
of Q5 x 0%:

E(xy, X3)=(x1+x;, X1 —X3).
(B.) For all x, y,u,veQ8 xQ%, if r=—%(x+y+u+v),

9(x)-3(»)- 8(w)- 3(v)

=2"%. izzi:lli x(riny="ny-ry) - S$(x+r+m)x
ne 2/ Z3e

x3(y+r+n)-S@u+tr+n) - S@+r+n).

Proof. To analyze (A.), note first that it is equivalent to the existence
of a measure v such that

L 2] 23] e

os% 08 =Y2

5 [2"1] ) [2y1] dvxdv
osxgs L—X2 —JY2

for all x,, y;, x5, y,€0%. (Here £* denotes pull-back of functions.) This

is because the functions
a c
JHE M

span the vector space of locally constant function on Q3¢ with compact
support. But

& (5 [2"12] X3 [2“]) (,0)=0  if utvd2x,+2}

’ orif u—vé¢2y, +2%
=x(-"%,- u+v))-x(="y2- (u—0))
if uex,+y,+n+2%
vex,—y,+n+2Z§

for some nejZ5.
Thus

£ (5[2351])(5[2.}’1]): N [x1+Y1+'7]x5 [x1—'Y1+'1].
.7 -2 nexzyzs L —X27)2 —X;+Yy2
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But note that
{o du= [ x(="x;-u)dp,
oz L—%2

g
x1+12

t
=X (_'ic’l’zﬁ‘) - 8(xy, x2).

Given v, define
D(x1, %) =x(x; - xZ)z '[z 2(="x3-u)dv,.

x1+
Then equation (#) is the same as:

(%) (=N %) 3(x1+ Yy +1, X2+ y2) (X =y +1, %2 —Y3)
ne¥ 22/ 28

=0 (x4, %3) - P(y1, ¥2)-
The reader can check that if there is a function @ satisfying (*x), this @
comes from a v satisfying (¥). Thus (A.) is equivalent to the existence

of a @ satisfying (*#). If we let x=(x,, x,), y=(¥1, ¥2)» {; =(, 0), then
(*x) becomes:

(x%)’ )y x(=C %) 9G+y+{)I(x—y+L)=P(x)- 2(»).
{164 (ZEx0)/Z5x0

The existence of a @ satisfying this is clearly equivalent to:
(= x)8(x+y+{) S (x—y+ L) %
{1
x 2 x(="C1-u) du+v+L)S(u—v+{y)
{1

(++%) =2 1= T XD S+ v+ L) e+ L) X
X{ZX(—'Q U Fu+y+L)Iu—y+$y)

for all x, y, u, ve Q3% (the summations being as in (x*)").

In (**x), replace x by x+{,, y by y+{,, u by u+ {5 and v by v+ {5,
where {,, {3€0x (4 Z5). Multiply by x("{; - x; +y,) - x (" - uy +v,) and
sum over all {,, {5 mod 0 x Z%. Then out comes (B)! Reversing this,
you can get (xx*) out of (B). Q.E.D.

Definition. Even measures y with property (A.) above will be called
Gaussian.

We now intend to prove that if

!

and p is the null-value measure, arising from a polarized tower 4, plus
S-structure ¢, then these conditions on u and $ hold. This fact is derived
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by comparing
'7— = {Xa 2 La}

with the new tower

‘7-(2)= {Xa > Li} *
Notice, incidentally, that the relationship between the towers J and
T is symmetric, in that if we let

TP ={X,, L}
then 7™ is isomorphic to . again. In fact, for all aeS, let 2+a be the
new index such that 2+a> o and such that we get a diagram:

X 2xa —fi—> Xa
P2¥a,x

X,

4

26

Putting together all these isomorphisms, we find
L2 * agfa*(Lt) ’ hCIlCC (XZ *a? L2 *a) E’(Xa s L:)

SO
'7-={X2*d’ L2*a}g{Xa,Lt}=y(4).
I

The natural homomorphisms &, and #, can be defined as in § 2, and
we get a diagram:
11—k —— 9(7) —V(X)—0
a2 £2

l—k*—%9(T ) — V(X)—0

2

ne

a2 £2
1— k" G(TN—V(X)—0
via f lmult. by 2

1—k*— 9(7) —V(X)—>0,
and everything commutes with é_; and ¢. In terms of our standard
groups, this diagram goes over to:

1—k* 9, Ze 0
a2 Ea
l—k*—%P—03*—0
a? E>
1 k* Ny [ LN
F|R 2

I—sk*— @ »Q3¢ 0
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where 42 and 9 are both equal to k* x Q% x Q%, but with group laws:
resp (tZ, X, y) : (a’3 x" .V')=(°‘ ol X(Z‘X : yl)sx"l'x" ,V+.V')
=(a-o - x(4'x-y),x+x",y+y'
and )
E2(a: X, y)=(a » Xy y) ’
F(a,x,y)=(2,2x,2y).
Thus given one symplectic isomorphism
V(X)— Q% x 05,
x> (@1 %, 0, %)
we get symmetric theta structures
¢t $(I)—F,, ¢ 9(T"59D and ¢ 9(TD)"HgW.
Via the theta function representation, we obtain injections:

9: ['(T)— {functlons} ’

on V(X)

functions
). (2)
9. rs )_’{on V(?_()}

and it is easy to check that, for all s, s,eI'(X,, L,)
I (5,® 52)=9(s1) - 9(s53)

i.e., tensor product of sections becomes pointwise multiplication of
theta functions (compare Property II above).

Now, define actions of both 4(7") and 4(Z7®) on the vector space
of all k-valued functions on V(X) by:

(V@) y=a- s (527) -0 =)
if
l w=a-0(x)e¥%(7),
(U2 (@) y=a-es(x, ) - p(y—x)
w=o-0(x)e%(TP).

if
Then according to Property I of algebraic theta functions, Image(9) is

an irreducible %(7)-space, and Image(9®) is an irreducible % (7 ¥)-
space. Moreover, Image($) must be generated by the various functions

(oo
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i.e.,
x 0
yre, (7,y) -9 [0] (y—x)
and Image (3”) must be generated by their various products:

yre (2522, 5) 0[] =208 [g]o—xa)-

Now it is a non-trivial condition that this second family of functions
spans an irreducible 9(7 ®)-space. In particular, let K% (7 ?) be the
subgroup:

ez ', x,y) I xe3 28, yeZ5}].
Then in an irreducible % (7 ‘®)-space, K has a one-dimensional space of
invariants. Now it is easy to check that all the functions

yro[g] o40-9[g] o=

(any xe V(X)) are invariant under c; '(1x Z§ x Z5). Let V<V (X) be
the subgroup ¢; *(Z% x {0}). Then the functions:

0 0

o T a0.0-8 o 0rxs0-8 [ G-x+D)
LedV1/Vy

are all invariant under K. It follows that they are all proportional to one

function ®(y). Therefore, there are constants, depending on x — call
them ¢(x) — such that

Y 08 [g] o+x+0-8 (] 0-x4D=c00- 00).

LexVi/Vy

Interchanging x and y in this expression, using the evenness of § [8]

and its periodicity with respect to elements of ¥, you check that the
left-hand side is symmetric in x and y. Thus

c(x)- 2()=c(y)- 2(x),  all x,yeV(X).

Since neither ¢ nor @ can be identically 0, this implies that c(x)=0o - ®(x),
for all x and some xek*. Replacing @ by ]/oc - P, we get c=9, or

S a8 [o] o+x+0-9 ] o-x+D=009-00.

{etV/Vy
This is equation (x+)' in the proof of Lemma 2, so referring to this proof,

0 . .
we see that we have proven that 9 [0] satisfies RIEMANN’s theta relation.

Because of the central significance of this result, I want to give a
second proof, following the lines of the proof in § 3 in the finite case.
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First, introduce the maps:

i o
ra T I CaAR))
\ functions SN functions
on V(X) |’ on V(X) |~

These induce a pairing
such that equivalently
Blsp)o B(s2)=BP(s:®5,), s el(F)
or
T(fl)'T(f2)=T(2)(f1°f2)’ fieﬁ’}-
Notice that the algebraic tensor product #; ® 5, is just #,,. In parti-
cular, the map

Si, far f10 £2(0)

is a linear functional on #,; ® #;, hence it is represented by a finitely
additive measure A on Q% x Q%: i.e.,

fie L2(00= | fiw-f,(0)-d4,,.
05 %08

2X
Since for all sy, 5,€I'(F), x€G(T), Uy 51 Q@ U, 5,="U,, 5)(51 ®5,), we
find that for all f,,f,eH;, ae%,, U,f10U,fr=U,, 4 (fio f2). Let
a=(1, yl’yl)' Then:
f1°f2()’1)=(U(1,y,,y2)(f1°fz))(o)
=[Ut, vy f1° U, 31,52 £21(0)
=Qg SQ X(t.V2 . (“+U)) Sfiu+yy) - f2(0+y)- d}“u, v
%% 03

for all y,, y,€Q%. Taking combinations of these equations for various
»,’s, it follows that

oo BEHD Lty S0y dh =0

for all locally constant functions g such that g(0)=0. This shows that
[ h(u,v)d2, ,=0

whenever ket ,, and h(u, —u)=0, all u. This implies that 4, , is given
by a measure on the set {(u, —u)}, i.e., there is a Zee}?}* such that

[ h(u,0)d2, ,= [ h(u, —u)d4,
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all he, . Therefore:
fie h)= i+ Hy—w) dA.
2

Now use the fact that s, ® 5,(0)=5,(0) - 5,(0): therefore if y and v are
the null-value measures for 4 and ®, we find

J fiwydp,- | L@ dp,= [ fio fz(w)dv,
oz 02 o0z

= [ fiw+0 frw—1)dv,-d1,.
05% 0

Hence if &(x, ¥)=(x+y, x—y) as usual, we find

[ Fed(uxp= [ E*F-d(vx3) forall Fest,,,
0j« 03+

i.e.,

pxpU)=vxiE'U)

for all compact open sets UcQ2¢. Using the evenness of p, it follows
from this equation that vx A=4Ax v, hence v and 1 are proportional.
Changing v by a constant, which is permissible, we may assume v=A4.
Then if v is the measure

Y(O)=vG D),

it follows that ux p(U)=v"xv'((U), all U. This is condition (4) of
Lemma 2.

§ 9. The 2-Adic Moduli Space

We will now put the results of § 8 in a moduli-theoretic form, and
relate these to the finite-level results of § 6. Once we have done this, we
will be able to go further and determine the structure of the boundary of
the moduli space.

The whole moduli problem for abelian varieties looks very different
when viewed from an isogeny invariant point of view. The difference bet-
ween polarization types disappears because any abelian variety is iso-
genous to a principally polarized abelian variety (as is easily proven by
generalizing some of the results of §1 to inseparably polarized abelian
varieties). The natural thing is then to view the classification in 2 steps:
first one has the totality of polarized towers; second, within each tower
one has a huge system of variously polarized abelian varieties. We will
not treat this entire moduli problem since the study of all inseparably
polarized abelian varieties within an isogeny type is a subject in itself.
In order to a) restrict to separably polarized abelian varieties, while

9 Inventiones math., Vol. 3
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b) constructing moduli schemes simultaneously in as many charac-
teristics as possible, we shall consider only the polarized 2-tower inside
each full polarized tower, and at the same time exclude only char. 2.
Analogous results would be obtained if we restricted ourselves to all
characteristics p, ptd (d a fixed evern integer), and to isogenies within a
tower of degree dividing d¥, N>0. As far as the category of sets is
concerned, we have the following sets and canonical maps to consider:

set of polarized 2-towers I ={X,, L,}
plus symplectic isomorphisms
91 V(X)—> 05 x 05

up to isomorphism
/7] AN

set of abelian varieties X,

ample totally symmetric sheaves | _________
L of type &,, and symmetric
theta-structures f: 4 (L)——%(9,),
up to isomorphism

! /|

set of abelian varieties X, plus
.//{‘?1 ={ ample totally symmetric sheaves
L of type 6, up to isomorphism

M=

M

I

L (other &’s)

(other &’s)

h

set of polarized 2-towers
M- = ji:{Xa’ La}
up to isomorphism

Here 6, is any g-tuple (2™, 2™, ..., 2"), n; =Zn, 2 ---2n, 2 1. The various
arrows arise as follows:
() gtakes (X, L, B)to (X, L),
(IT) A takes (X, L) to the 2-tower generated by (X, L).
(IIT) The f;’s are given by choosing a compact, open isotropic sub-

group Uc Q3¢ such that UY/U~ H(J,), and a symmetric isomorphism

Ck*xI(UY =~

ﬂO' Z(U) 'g(él)
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Then for all (7, @), there is a unique level aeS such that (T (a))="U,
and f((7, ¢)) should be (X,, L,, f) where B is the composite
~ k*xZ(UY) =~
> »%(04) .
via @ 2 ( U) Bo ( 1)
It is apparent from this diagram that the various moduli sets .#; treated
in § 6 are inter-related in a rather complicated way: Given §,, J,, one
can choose any of an infinite number of f,, f, in the diagram:

M
7N
'//lél '/”62

and relate #;, , #;, via the, in general, many-many correspondence so
obtained. Each .#; is related to itself in this way by the well-known
Hecke ring of correspondences. The whole set-up is much easier to visua-
lize starting from .#,,. Note that G=Sp(2g, Q,) acts on #,, if we let
o€@ act as follows:

%(L,)

a(7,9)=(7,000).

Then #__, is nothing but the quotient .#,_/G, and the .#; and A#J’s are
quotients .#, /" where I' = G is a suitable subgroup commensurable with
Sp(2g, Z,). The different maps from #, to .#; are simply the compo-
sitions of (a) action of some 6eSp(2g, Q,) and (b) the canonical map
from A, to A /I". Clearly the most basic sets to get ahold of are /#_,
and 4. We have seen that the .#;’s “are” varieties. Thus the #_ is an
infinite covering of a variety and .#__ is an infinite quotient. As far as
I know there is no sensible object whose underlying point set is #_ .
But #_ is an inverse limit of varieties and will turn out to be a perfectly
upstanding (though non-noetherian) scheme. This moduli space (and
its adelic generalizations) seem to be the most important ones for the
entire moduli theory of abelian varieties.

The next step is to define the scheme an open subset of which will
represent #,. We will work over the following ground ring R:

Definition 1. R=2Z[%, {, {5, (5, ...] where (2={(,_,ifn=2,{;=—1.
The multiplicative group generated by the {’s is isomorphic to Q,/Z,
and we define:

x: Q,/Z, —R*
x(m[2D)=()".

Actually, adjoining the {’s is not essential, but it makes life easier and
seems to be quite natural.

via

9%
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Next, to R adjoin independent transcendentals X,, one for each
aeQ?Ze. Then divide out by the following relations:

t t t
1) X¢+p=x( ﬁlzﬁz) X ( Blz“’ - “‘252) ‘X, all aeQ}f feZi"

2) X_,=X,.

4 4
3) _1__IIXai=2—g X(t'h"lz—')’z"11)'1__[1Xa1+y+,,

net Z38/Z38

M

all al,az ,d3,a4EQ§g, Where 'y=—%‘ ai.
i

1

In what follows, it will be convenient to abbreviate the characters in
these formulas as follows:

Definition 2.
e, By=x(ar- Bo—"B1-2), a, Be Q3¢
ex(@)=x2%, - o), if ae} Z35.
Definition 3.

B ideal generated by
A_R[...,Xaw--]/{relations 1’ 2’3 }

M =Proj(4).
In order to get a preliminary idea of how big M, is, introduce the
subrings:
Definition 4. A,=subring of A generated by

{X,|2"aeZ%%}.

Lemma 1. A is integrally dependent on A,.

Proof. By induction, it suffices to check that X, is integrally dependent
on A,_,, when 2" - aeZ%¢ and n>2. Use relation (3) with a; =0, =03 =a,
ay,=y= —a. Then since X_,=X,, we find that X}e4,.,. Q.E.D.

Corollary. There are integral affine morphisms:

M,

Tn

" Proj(4,)

Proj(4,)
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and M, is the category-theoretic lim of the algebraic schemes Proj(4,),
i.e., for all schemes S,

Hom(S, M ,)=lim Hom(S, Proj(4,)).
Proof. Cf. EGA, Ch. 4.
The X,’s will be nothing but the values of the function 9 [g] when

we connect M, to the moduli problem. It is also convenient tointroduce
a second set of generators of the ring 4, whose values will be the values
of the measure g, in the moduli problem:

For all compact open sets U< 04, let

-n ul tai'ﬂ
Yy=2""¢} > X("T)X(m,ﬂ)

. i=1fe2""Zg/Z%
if N
U=U[«+2"25] and «;%«; (mod2"Z5).

i=1
Using Lemmas 1 and 2, § 8, the relations on the X’s go over to the fol-
lowing relations in the Y’s:
1. YU1 + YU2= YU]U Uz+ YUln Ua*
2. Y_y=Yy, Yu=0.

3. If we define quadratic polynomials, Z, for all compact open sets
Uc Q3 x 0%, by relations (1.) and Zy, «y,= Yy, Yy,, and if &(x, y)=
(x+y, x—2y) as usual, then:

Zew,x vy Lewsx vy =Zew, xva * Zewsxvy) -
In particular, let n>1 and let
l: 2”"’Z§—>{i1}
be a homomorphism. Define

Z, 5= Z HOE Yoipintonzes Yoo pingtonze-
ne2n—128/2n g 2 2

Then the general relations imply:
Za,ﬁ . Zy,a=Z¢,6 . Zy,ﬁ

for all a, B, y, 5 Q% . Conversely, these relations, for all »’s, and /= +1,
imply all the quartic relations.
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Moreover, the subring A4, generated by X,, with ae2™" Z2¢ is just
the subring generated by
{(Yy|lU=U+2"25,Uc27"2Z5}
or by
{Ya+2r-z§ lae27"Z5}.

The group G=Sp(2g, Q,) acts on M, in the following way:

Definition 5. For all 6eG, let
(*) Ua(Xa)= Z e*(ﬁlz)e(ﬂlz,a)'e(?/z’a—ﬁ)'Xa'a—aﬂ—ay’

BeZ38/Z32n0—1(23%)
where ye Q3¢ is some fixed element satisfying
ex(B[2) - ex (o B[2)=e(y, )
for all BeZ28na~'(Z3®).

Concerning this definition, one verifies by mechanical calculation
the following:

1. If the y in the definition is varied, it must change by an element of
Z28+ g~ 1(Z2%), and, if so, the operator U, is only changed into a constant
multiple of itself:

U,(X)=c-U,(X), all a.

We shall assume that for each g, some fixed y is chosen.

Note that —IeSp(2g, O,)=G, and U_;(X)=X_,.

2. For all 6€G, acQ32f and feZ2¢,

UG(X¢+B) =€y (ﬁ/2) e(ﬁ/Z’ CZ) ‘ Ua‘(Xa) .
Therefore, if we let M be the free R-module spanned by the X,’s modulo
only relations (1.), each U, defines an R-module homomorphism from

Mto M.
3. For all g, TG, there is a non-zero constant ¢, . such that

U,oU,=c,, . U,..,

i.e., o U, is a ““projective” representation of G in M.

4. For all 6eG, one computes easily that there is a sign e,= + 1 such
that U_;0 U,=e, U,o U_;. Unfortunately, it does not appear to be
easy to show directly that e,= +1 for all ¢. For example, if 0 (Z%8)=Z2¢,
e,=e.(y). However, using (3.), one checks that

Eer=8; " &,

and since G is well known to be its own commutator subgroup, this
implies g,= +1, all 5. But now the submodule 4; of A of elements of
degree 1 is just M modulo the span of the elements {X,—X_,}, and this
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proves that the U,’s induce homomorphisms from 4, to 4,. We will let
U, denote this homomorphism too.

5. The last step is to check that all the U,’s induce ring homomor-
phisms from A4 to A. Frankly, I balked at directly applying U, to the
relations (3.) and seeing what comes out. But, in 2 special cases, it isn’t
too bad. Suppose first that ¢ is in the subgroup I'=Sp(2g, Z,). Then
o(Z3%%)=22¢, and U, reduces to:

Ua(Xa)=e()"/2’ a) : Xcu—ay .

In this case, it’s not hard to check that U, takes a relation of type (3.) to
another relation of the same type, so that U, induces a map from 4 to 4.
Suppose second that ¢ is in the sub-semi-group:

H+={(€*:‘70:r) AeGL(g, Qz)}CG_

A(Z%)=2Z8
For such o, U, reduces to:
Ua-(Xa)= z e(_ﬁllzs a)'Xo'¢+o'ﬁ1

—1
B eZg/A Zg

(where B, is the 2g-vector (B, 0)). Now, referring back to the proof of
Lemma 2, in the last section, we see that an equivalent form of the rela-
tions (3.) is:

)’u,ﬂ'Y:f,é:'-}’a,d'Yy,ﬁ’ all a)ﬁ”)’96€Q§g
where

Ya,ﬂ= Z e(_ﬂb“)Xa+ﬂ+m‘Xa—ﬁ+m-
neiZ;/lg

For seH", Y, ; behaves very nicely. One computes easily that:

Ua'(Ya,ﬂ)z Z e("'lb““)'e(—Cl,Uﬂ)‘ Yaa+n1,¢ﬁ+c1‘
miet AZE/L 28

From this it follows immediately that U,[Y, 5 Y,;— Y, ;- Y, 4] is an
R-linear combination of expressions Y, g+ Yy 50— Yy 5+ Yy g

Finally, it follows from the paper of IWAHORI MaTtsumorto [13] that
all the double cosets in I'\G/I" are represented by matrices:

(3

2%

0 2%

(=2
G
=
v
Q
(8]
v
vV
nh
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Since there are in H*, G=I - H* - T" and our 2 calculations suffice to
prove that for every ceG, U, maps 4 to A.

Putting all this together, we conclude that Definition 5 defines a pro-
jective representation of G on 4, and an action of G on the scheme M, .
In fact, let ¥,: M, — M, denote this action, then, by definition,

Va* (Xa) = Ua—l (Xa)
(the 6~ ! makes it an action of G instead of the opposed group).

Now we can connect M, to the moduli problem. For all algebraically
closed fields k (char (k) #2), there is a map:

Set of k-valued}

0: My (l)— {points of M,

(4, denotes the set defined at the beginning of this §), which assigns to
a tower 7 and a ¢: V(X)—>Q2%, the point with homogeneous coordi-
nates

=[] @0, or Y=u)

(cf. Lemma 1 and 2, § 8).
Recall that G acts on #_ (k) as follows:

Definition 6. Let (7, p)e# (k) and 6eG. Then let U,((7, ¢)) be
the pair (4, oo @), i.e., modify the symplectic isomorphism ¢ to:
VX)) Z, 03 2, 03t
Pk, p
Theorem 1. Under ®, the actions of G on M (k) and on the set of
k-valued points of M, are compatible.

0 . .
Proof. Recall that 3 [0] is the unique element f of 3(I'(9)) in-
variant satisfying

a) f(x+a)=e(al2)-e;(al2, x) - f(x)
for all aep™1(Z2), with e, (0~ () =x(2" «; - ®,), all e} Z28. If we

use the symplectic isomorphism g o ¢, the new function 9 [8] will instead
be the unique fin 3(I"(J)) satisfying:

a’) f(x+a)=ex(al2)-e;(al2,x)-f(x)
for all aep~'(¢~1(Z3%)), with e (¢~ (671 (®))=x (2" &, - ;) all xe}Z2e.
Let 97 [8] denote this new 9 [g] . Then

XU, 91=5 ] (7).




On the Equations Defining Abelian Varieties. 11 131

To find 9° [g] , recall that the functions
0
arses(B2.9)-8 || @=B.  pevD).
span V' (X). Therefore, it suffices to find some linear combination of

these functions satisfying a’). If we make all these into functions on Q3¢
via 6o @: V(X)>Q?%, we find that

o [o] (0@ @)
is that linear combination f of the functions
B@=c(Bl2,0) g ac"'f),  feQit
g@=5 [o] ¢~'»

such that
a” fla+P)=ex([2)-e(B/2,0) - f(a),
for all BeZ28. One solution of (a”) is the function:
g (@)= > ex(B[2)-e(B[2,a) - e(y/2, a— )

ﬂ’eliz/l%xnal%z
xglc ta—o " f—c"1y)

where y satisfies e, (B/2) - e, (67! B/2)=e(y, B), all BeZtnoZ2s. If
this function is not 0, it must equal

4 [g] op log .
But on the other hand, X, has values g(x) at the geometric point x cor-
responding to (<, ¢). Hence X, has the values at V,(x):

X, (Vo (x) =V Xo(x)
=U;—1 Xa(x)
= ) ex(B[2) - e(B[2, a) x

fez3e/Z3enaZis
X e(?/z’ a_ﬂ) Xo—'l a=g—1p—g—1 y(x)
=g"(2)-

Therefore, g7%0, so g’() is also the value of X, at the geometric point
corresponding to (7, 60¢). Q.E.D.
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Now every moduli space is supposed to represent a functor. In our
case, instead of making a big fuss over defining a family of 2-towers of
abelian varieties, over a scheme S, it is simpler to observe that .#_ (k) is
an inverse limit of some of the .#;(k)’s introduced in § 6, and then to
define #,(S) as the corresponding limit of these .#;(S)’s.

Given a polarized 2-tower 7 =({X,}, {L,}) and ¢: V(X)=>Q3%,
for all n=1, we get

a) an abelian variety X, =X, , where
T(x)=97'(27"235),
b) a totally symmetric ample invertible sheaf
L,=L, on X,, oftype
5,=(2%",2%",...,2*"),
c) a symmetric 3-structure:

GET) _ k' x2"ZP

K@) o [ixZ2 =00

Aut G(L)=

This is a map
(7, 0)~ (X,, Ly, )

Mo, (K)— M, (k).

Note that all these X,’s are canonically isomorphic, e.g., to X, via

diagrams:
Xa
%‘, ay
X,
% 15
Xy

and that under these isomorphisms, L, is just L§" ",
On the other hand, between the functors .#;_,, and .#; , we have a

natural transformation:
T, MJ'H_I—’MJ".

In fact, given /S, L, and A in #;_, (S), we get

a) a second ample sheaf M on &, by descending L with respect to

the isogeny
20 ¥ %




On the Equations Defining Abelian Varieties. IT 133

and the descent data A~ !(K,), where K,=%(5,,,) xS is the subscheme
representing the subfunctor of triples (1, x, /), 2x=21/=0.

b) Since
normalizer of A~(K,) in (L)

yn= 71K,

., normalizer of K, in 4(5,4,)

~%(5,)

we get a 9-structure u: Y(M )ig (5,)-

It can be checked that (Z/S, M, p)e%;, (S), so we call this m,((Z/S,
L, A).

Going back to k-valued points, we have a diagram:

and it is clear that this induces an isomorphism
Mo (k) lim A, (K).

Definition 7. For all schemes S, let 4, (S)=1lim #;_(S).

Next, let’s translate the results of § 6 on the representability of .#;,
into the discussion. The results there show that there is an open set:

M, = Proj(4})=M;,

43=R[...,0"(@), ]/ {M(’dm 0" (@)=0"(~a)

and certain quartic relations

} aeK(d,)

such that M, represented .#; (over the ring R). Moreover, in Step II
of the proof, a canonical morphism

T M25—+M‘,
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was introduced. Iterated, this defines a morphism from M,; - M;, e.g.,
from M;,, to M, . If you work it out, it is just the projection:

— -
M, . ——M;,

Pl'oj(A:.g.l) Proj(A:‘)’

Ty (Q(")(a))=2Z Q" D(b),  all aeK(S,)

b=a
beK(@n+1)

(here we identify K(J,) with a subgroup of K(d,.,) as before). In parti-
cular, 7, is a finite morphism. Moreover, as we saw in § 6, (Step II).

(a) m, is étale at all points of M;,,, and =, ' (M, )=M; . In fact:

(b) The morphism of schemes m,: M; ,,— M, corresponds to the
transformation of functors m,: #; , —.#; via the representability
proven in § 6.

(This is easy to check and we omit the proof.)

Now, passing to the limit over the homomorphisms x¥, note that the
direct limit of the rings A4 is just A4 itself. In fact,

K@= @ Z/2°"Z,
g times

and let
(
0"y, ..., ag) = Yo—nay, ., 2-"an)+2m Z§

(a;€Z/2*"Z). 1t is easy to check that the relations imposed on the 9™ (a)’s
give us exactly the defining relations on the Y,’s. Moreover, A4, is just
the image of 4 in 4. (It may very well happen that each =¥ is injective,
sothat A=) 4¥ and 4, = A} : but I have no proof for this.) Geometrically,

this shows that . .
M ,=lim M, .
n

Definition 8. Let M, be the inverse image in M, of M, in M;,
(independent of n by (a)).

1. M, =lim M,,

2. Mo (S)=lim A, (S)

3. The M;’s represent #; (compatibly as n varies). Hence:

Theorem 2. The scheme M, represents M.
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Recapitulating the discussion, the basic set which we are classifying is:

set of polarized 2-towers I =(X,, L,) }

()= { plus symplectic isomorphisms ¢@: V() —- Q3¢

set of abelian varieties X, totally

symmetric ample L on X of type (4,4, ...,4),
and symmetric J-structures 4, on %((2"8)* L), ("
for all n, which are ”’compatible” as n varies

Quite clearly, we can also say:

set of abelian varieties X, totally symmetric
M (k)={ ample L on X of type (4,4, ..., 4), and symplectic ,
isomorphisms ¢: V(X)——Q3* such that ¢(T(X))=22Z3*
or:
set of abelian varieties X, symmetric ample L on X of
degree 1, and symplectic isomorphisms: @: V(X)— Q28
such that ¢(T(X))=Z3%, and ek(¢ ™ '(0))=x(2%x, - a,) allf
acl Z2®

Mo (k)=

In any case, the principal result, on the level of geometric points, is:

Corollary. For all algebraically closed fields k, the map © is a bijection
between M, (k) and the set of k-valued points of the open set M, .

In other words, the whole tower 7, plus ¢: V(X)>Q3t, is deter-
mined by the theta function
o] oo

(or the measure u) and the theta functions that arise in this way are those
which satisfy some finite set of inequalities. Our next task is to determine
these inequalities, and hence M, explicitly.
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