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The purpose of this lecture is to describe a single specific calcula-
tion which gives a modern formulation of an old fact. However, 1
want to devote a large part of this lecture to the explanation of the
machinery which has been developed to give a new and, I think,
enlightening setting to a whole group of old questions.

Severi, for one, raised the question: look at maximal families of
(irreducible) space curves—is the parameter space of such families
rational [10]? A more intrinsic question is whether the moduli
variety for nonsingular curves of genus g is rational ; in other words,
look at the parameter space of the universal family of nonsingular
curves of genus ¢ and ask whether this is rational;} this question

1 Actually, there is no such family. But if g > 3, then almost all such curves

admit no automorphisms, and there is a universal family of the automorphism-
free nonsingular curves.
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34 DAVID MUMFORD

may be very difficult. However, it can be approximated by any
number of weaker questions: is this space unirational, or is it regular
in the sense that its function field does not admit everywhere regular
differential forms (cf. [5], Chapter 7, §2)? Or, still weaker, is the
Picard variety of its function field trivial (cf. [6], Chapter 6, §1)?
One of the principal results of our theory is that the last statement is
true in characteristic 0. In the same line, can we determine various
cohomology groups of this moduli variety?

Now all these questions, especially the last two, suffer from a
certain vagueness because of our uncertainty about

1. Whether to look only at birational invariants of the function
field, ‘

2. Or, if we want to look at invariants of a definite model, which
model to select (since there is no universal family of nonsingular
curves),

3. If we settle for the usual moduli variety (i. e., the coarse one, cf.
[7]), it has singularities (cf. [9]) and is not compact.

If we want an answer which has some pretense of being a basic fact,
or of being more than idle, we certainly need to start with the correct
variety, that is, the one which is most relevant to the set of all non-
singular curves with whatever structure is contained therein. Now
the real clue here, I contend, is that we must not ask for the coho-
mology or the Picard group simply of a variety; there is a much
better object, which is much more intrinsically related to the
moduli problem and which possesses equally (a) a function field,
(b) a Picard group, and (c) both étale and coherent cohomology
theories. The invariants of this object—call it X-—are the basic
pieces of information.

In the first section, I want to describe the whole class of objects
of which our X is an example. These objects, “‘topologies,” were
discovered by Grothendieck, and are the basic concept on which his
theory of étale cohomology is constructed. In fact, it was chiefly in
order to better understand this important concept that I made the
calculations described in this paper. In the second section, I want to
describe the étale topology proper, and its relation to the Zariski
and the classical topology. In the third section, I want to introduce
the topologies relevant to the problem of moduli. All this is nothing
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but definitions, and I hope that they possess enough intrinsic sym-
metry and interest to make the reader bear with their mounting
abstractness. In the fourth section, I try to alleviate this abstractness
by giving the full gory details of the topology relevant to the com-
putations described later. In the fifth section, I describe precisely
in two different ways the Picard groups associated to the moduli
problem. In the last two sections, for g = 1, we give two separate
computations of this group.

§l. TOPOLOGIES

In the classical definition of a topology, we start with a basic set
A, the space, and we are given a collection A4 of subsets of X, called
the open subsets. Suppose we try to eliminate the set X from our
description and develop the theory from 4 alone: then we will have
to endow 4 with extra structure to compensate for the loss of X.
First of all, we make 4 into a category 4 by defining:

Hom(U, V) = set with one element fy,v, if U C V
= empty set, f UZ V
(all U, Ve A).

Notice that the operation of intersecting two open sets U, V can be
defined in terms of this category:

1.1.
U M Vis the product of U and V in 4, that is, it fits into a diagram

Uunvy
U |4
and has the universal mappirig property: for all W € 4, and for all

maps f, g as below, there is a unique 4 making the diagram commute:

w-2>unv
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Similarly, arbitrary unions of open sets can be defined as sums in the
category 4:

1.2.
If U = \U,q U, then with respect to the inclusions

U,

N
Uz——)U

U is the categorical sum of the U/s.

Moreover, the whole space X as an object of A—but not as a set—
can be recovered as the final object of 4; X is the unique element ¥
of A such that for all other U € 4, there is one and only one map
from U to Y.

Now suppose that we want to define the concept of a sheaf F {of -
sets) on X purely in terms of A. This goes as follows: first of all we
must have a presheaf. This will be a collection of sets $(U), one for
each U € 4; and a collection of restriction maps, that is, if U C V,
or if, equivalently, there is an element fy,v € Hom(U, V'), then we
must have a map

resy,y ¢ F(V) — F(U).
This is nothing more than a contravariant functor ¥ from 4 to the

category (Sets). In order to be a sheaf, it must have an additional
property:

1.3.
If U, is a covering of U, that is, each U, is contained in U and

U U, = U,

then an element x of $(U) is determined by its restrictions to the
subsets U,; and every set of elements x, € F(U,), such that x, and
xg always have the same restriction to U, (" Us, come from such an x.

To define sheaves, it is now clear that we may as well start with
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any category @, instead of A, and call its objects the open sets,
provided that:

a. If U, V are open sets, Hom(U, V) contains at most one element.
b. Finite products and arbitrary sums of objects in @ exist; € has
a final object X.
Also this turns out to be essential:

c. VNIV U] = U (rNUY

iel iel
where M, U denote products and sums.

Then sheaves are simply contravariant functors § from € to (Sets)
such that, whenever U = U, U,, the following diagram of sets is
exact:

iF(U) — II iF(U,-) :; II iF(Ul-f\ Uj)
iel igel
Moreover, the “global sections” I'(F) of a sheaf § are nothing but
the elements of the set F(X). If we look at sheaves of abelian groups
instead of sheaves of Sets, then we can define the higher cohomology
groups as well as I' (= H°). Namely, we verify in the standard way:

a. The category of abelian sheaves is an abelian category with Jots
of injective objects. '

b. T' is a left-exact functor from this category to the category
(abelian groups). '

Hence, as usual, if § is an abelian sheaf, put H{(F) (: > 0) equal to
the ith derived functor of T' (cf. [4], §3.2; [1], Ch. 2, §2).

So far, the theory is essentially trivial: it is nothing more than an
exercise in avoiding the explicit mention of points. Grothendieck’s
fantastic idea is to enlarge the set of possibilities by dropping the
assumption that Hom(U, V) contains at most one element; for
example, open sets may even have nontrivial automorphisms.
Notice first of all that then it is no longer sufficient to say simply that
open sets U, cover the open set U: it will be necessary to specify
particular maps

pa:Ua— U

with respect to which U is covered by the U.’s. Moreover, it is
generally not enough to say that the U,’s cover U only when U is
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the categorical sum of the U,’s: usually there are other collections
of maps {p.} which we will want to call coverings. The concept
which emerges from these ideas is the following:

Definition. A ““topology” T is a category € whose objects are
called open sets and a set of ““coverings.” Each covering is a set of
morphisms in G, where all the morphisms have the same image; that
Is, it 1s a set of the form:

The axioms are:

a. Fibred productst U; Xv Us of objects in € exist.
b. {U’ = U} is a covering if p is an isomorphism; if {U, > U} isa
covering and if, for all a,

9.8

{Ua.ﬁ > Ua}

is a covering, then the whole collection

Pa®%a.p

{Uas Ul

is a covering.

c. To generalize property (c) under 1.3, if {U, Pe, U} is a covering,
and V' — U is any morphism, then

{VXU Uaz: V}

is a covering (g, being the projection of the fibre product on its
first factor).

t In any category, given morphisms p: X —Z and ¢: Y — Z, a fibre
product is a commutative diagram: :
W
u./ \l’
X ¥
N 8
z

such that for all objects W’ and morphisms #’ : W’ — X, 2’ : W — Y such that
pou = geod, there is a unique morphism ¢: W' — W such that v’ = uo¢,
v’ = pot. This object W is usually written

X Xz 7Y

and referred to alone as the fibre product of X and ¥ over Z.
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In general, we want to assume that € possesses a final object X,
but this is not necessary. We want to generalize the concept of a
sheaf to an arbitrary topology:

Definition. A sheaf (of sets) on T is a contravariant functor &

from € to the category (Sets) such that, for all coverings U, U
in T, the following diagram of sets is exact:

F(U) =1L 5(U,) DI 55Uy Xv Up)
a a,B

(the arrows being the usual maps given by the functor &, contra-
variant to p, and to the projections of U, Xy Us to U, and to Up).
Exactly as before, each sheaf & of abelian groups has a group of

global sections:
r'{) = 3(X)

(X the final object) and hence, by the method of derived functors,
higher cohomology groups Hi(7, ).

A topology in the classical sense gives a topology in an obvious
way. To give the theory some content, consider the following
example:

Let a group 7 act freely and discontinuously on a topological space
X; that is, for all x € X, there is an open neighborhood U of x such
that UM U = @ for all o €7, 0 5 e. For every set S and action of
m on S, we can construct the topological space § = (X X S)/n
(endowing § with the discrete topology). With two 7 sets S and 7" and
a w-linear map f : S — 7, we obtain a local homeomorphism

(X X $)/m 5 (X X T)/m

| i

S J
that makes § into a covering space of 3. Let the category € consist
in the set of such spaces § and such maps f; let the coverings con-
sist of maps f, : S« — 3 such that, equivalently, J = Jafa(Sa) or
T = U.fa(Sa). The final object in this topology is the topological
space X/m, since every other open set has a unique projection

S=XXS8/m—>X/7

in the category. In other words, what has happened is that the open
sets are no longer subsets of X/x; they are covering spaces of X /7.
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If X is simply connected and connected, then X is just the universal
covering space of X/, and the topology consists in fact in all cover-
ing spaces § of X/, and all continuous maps § — J making the
following diagram commute:

- f
§—4J
X/7
On the other hand, this topology is actually independent of X: we
may as well “call” the m-sets .§ themselves the open sets, and call the
w-linear maps f : §— T the morphisms. Then the space X corre-
sponds to the m-set 7, (say with left multiplication as the action of =
on itself), and the final object X/ corresponds to the w-set {0}, with
trivial action of 7. We shall call this topology 7.

In this form, it is easy to give an explicit description of a sheaf § on
the topology. Let 7, considered only as a set with the group 7 acting
on the left, be denoted (). Then the right action of 7 on () makes =
into a group of automorphisms of the m-set {r). But the group of
automorphisms of () obviously acts on the set F({m)) for every sheaf
F. Let M = F((m)). Then M itself becomes a m-set. I claim that & is
canonically determined by the w-set 4.

a. Let § be a m-set on which = acts transitively. Then there is a
m-linear surjection ‘ :

(m) =8

making () into a covering of S. By applying the sheaf axiom to this
covering, we check that F(§) is isomorphic to the subset M* of M of
elements, left fixed by 2 C m, where £ is the stabilizer of p(e).

b. If §is any m-set, then S is the disjoint union of m-subsets S. on
which 7 acts transitively. If 7, is the inclusion of S in S, apply the
‘sheaf axiom to the covering

{Sa=> 8}
We check that, via F(z,),

F(S) =11 F(S.)-

Conversely, given the w-set M, the isomorphisms in (a) and (b)
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define a sheaf F: hence to give a sheaf (of sets) F in this topology and
to give a w-set M are one and the same thing. In particular, a sheaf of
abelian groups  is the same thing as a m-module M. As the 7-set {0}
is the final object in 7., we find by means of (a) that the global
sections I'(5) of the sheaf & are just the invariant elements A/™ of M.
Now it is well known that the category of w-modules is an abelian
category, and that
M— M

is a left-exact functor on this category. Its derived functors are
known as the cohomology groups of = with coefficients in M:

Hi(w, M)
(cf. [8], §10.6). Therefore, we find:
Hi(T,, §) = Hi(r, M).

One final set of concepts: if 77 and 7T are two topologies with
final object, a continuous map F from T, to T consists in a functor
from the category of open sets of 7' to the category of open sets of
T such that:

a. It takes the final object to the final object.
b. It takes fibre products in 7’ to fibre products in 77.
c. It takes coverings in T to coverings in 7.

For the sake of tradition, if U is an open set in 7T, we let F~1(U)
denote the open set in 7 associated to U by this functor; in other
words, requirement (b) means: .

FY(U X Uy 2 (FY(U) X FUy).
U Fy(U)

If Fis a continuous map, then F induces a map F, from sheaves
on T to sheaves on T5: let § be a sheaf on 7';. Define

F,(®U) = s@FX))

for all open sets U in T This is clearly a sheaf. By standard tech-
niques (cf. [4] and [1], Ch. 2, §4), we find that there is a canonical
homomorphism:

Hi{(Ts, F,(5)) — H(Ty, 5).
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Moreover, let U be an open set in a topology 7. Then “U with
its induced topology” is a topology Ty defined as follows:

a. Its open sets are morphisms V' — U in T.
b. Its morphisms are commutative diagrams:

Vi— T,
U
c. A set of morphisms
Ve—V
U
is a covering, if the set of morphisms { ¥V, — V'} isa covering in T.
Then there is a canonical continuous “inclusion’ map:

t: Ty— T,

that is, to the open set V in T, associate the open set :7}(V) which is

the projection:
P VX U—-U.

§2. ETALE AND CLASSICAL TOPOLOGIES

From now on, we will be talking about schemes. For the sake of
simplicity, we will work over an algebraically closed field &, and all
schemes will be assumed separated and of finite type over &, without

further mention.
Definition. Let f : X — Y be a morphism. Then if, for all closed

points y € ¥, f71(y) is a finite set and for all x € f~1(y), the induced

homomorphism
f*ro0,— 0.

gives rise to an isomorphism of the completions of these rings

Tk . A ~ A
f ‘-oy——)oz:

then f is élale.
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As an exercise, the reader might prove that this is equivalent to
assuming: ‘

a. f is flat, that is, for all x € f~1(y), 0. is a flat o,-module,
b. The scheme-theoretic fibre f~!(y) is a reduced finite set, that is;
f7X(y) is a finite set, and for all x € f~1(y), m. = f*(m,) - 0..

Clearly, “étale” is the scheme-theoretic analog of “local homeo-
morphism’ for topological spaces. Now let X be a scheme.
Definition. The étale topology X of X consists of

a. The category whose objects are étale morphisms p : U — X, and
whose morphisms are arbitrary X-morphisms; in other words,

given U X, v 2 X, then Hom(p, g) is the set of commutative
diagrams

vy
z:\/q ‘
p |

(For simplicity, we shall refer to the objects of this category as
schemes U, the étale morphism p to X being understood).

b. The coverings consist in arbitrary sets of morphisms {U. 2y}
provided that :
U =\Jpa(Ua).

Let Xz.r be the Zariski topology on X: its category consists in the
open subsets of X and the inclusion maps between them; and a set of
inclusion maps p. : U. C U is said to be a covering if

U=VUU.,.

These two topologies are related by a continuous map
(2 Xét, — XZar-

Namely, if U C X is an open subset, the inclusion morphism ¢ of U

. in X is obviously étale, so that 7 is an open set in X¢. The reader

should check to see that the map from U to i extends to a functor
from the category of Xz, to the category of X, which takes cover-
ings to coverings and fibre products to fibre products.

If £ = C, the field of complex numbers, we can compare X with
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the classical topology too. The set of closed points of X forms an
analytic set X, and has an underlying topology inherited from the
usual topology on C: call this X Unfortunately, there is no con-
tinuous map in either direction between X and X.x. However,
there is a third topology related to both: let open sets consist in
analytic sets U and holomorphic maps

f: U—’)Xc,

which are local homeomorphisms—as usual, coverings are just sets
of maps
‘ 7

Ua’_‘—a—') U

\X/

such that U = \U,f,(U,). Call this topology XZ¥. Then there are

continuous maps
X%
a/ \b
X

(33 Xét.,

since

a. An open set in Xcx is an “open” subset U C X¢; and this defines
the inclusion map
i1 U— X,
which is a holomorphic local homeomorphism.
b. An open set in X¢; is an étale morphism f : U — X of a scheme
U to the scheme X; and this defines the holomorphic local
homeomorphism

~ fer Uc — Xc¢
of the corresponding analytic sets.
On the other hand, although a is not an isomorphism of topologies,
it is very nearly one in the following sense:

Definition. Let f: Ty — T, be a continuous map of topologies. f
is an equivalence of T1 and T if

a. The functor f~* from the category of ope.n sets of 7T’ to that of T
is fully faithful,
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- b Every open set U in T} aclrmts a covermg in- T1 of the form
(V) - U } with’ sultable open sets V, in Ty, ‘

c. A collection of maps {V “ V}in Tyisa coverlng, if the collec-
T (ya) ’

tlon of maps { f‘l(V,,) f—l(V)} inTiisa covenng
‘We leave it to the reader to check several 51mple p01nts aisan ,
'equlvalence of topologles if f: T1—> Ts is an equlvalence of . \
, topologles f+ defines an equlva.lence between  the category of S
* sheaves on T and the category of sheaves on Tz, hence if § is a
- sheaf of abellan groups on T, the canomca.l homomorphlsm. e

H’(Tl, 5) (—H(Tg, f*ﬂz)

is an 1somorphlsm In fact there is no sw,mﬁcant d1ﬂerence between '
‘ equlvalent topologies. For thlS reason ‘we often speak of “the con-
tinuous map”’ from Xex to Xe, although strictly speaking thlS does
‘not exist. Finally, there is a very nice result of M. Artm let Z/n
denote the sheaf on X7, L ’
z/ w(U) = D Z/n;
connected components of
U in complex topology

(this is the sameas the sheaf associated to the presheaf which simply
assigns the group Z/n to every open set U.) We shall denote bx(Z /n)
simply by Z/n; since the connected components of a scheme U in its
complex and in its Zariski topologies are the same, we have:

b (Z/n)(U) = 7 Z/n.

conneeted components

of U in Zanslu topology
If Xis nonsmgular M Artin has proven that: the canonical homo-
morphism

Hi(Xe, Z/n) — H(X, Z/n) & H{(Xex, Z/n)

is an isomorphism. This result assures us that, at least for nonsingular
varieties, the étale topology, defined purely in terms of schemes,
captures much of the topological information contained in the
a priori finer complex topology.

To complete this comparison of the topologies associated to a.
scheme X, we must mention three other topologies, defined over any
k, which are interesting. The idea behind these topologies is to
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enlarge the category as much as you want, but to keep the coverings
relatively limited. In all of them, an open set is an arbitrary morphism

frU—-X,
and a map between two open sets f; and f, is a commutative diagram:

Ul—‘—" U2

N /-

The restriction on the coverings involves new classes of morphisms,
defined as follows:

Definition. A morphism f : X — Y is flat if for all x € X, the local
ring 0. is a flat module over 0y). Moreover, f is smooth if it is flat and
if the scheme-theoretic fibres of f are nonsingular varieties (not
necessarily connected).

To understand smoothness better, the reader might check that it is
equivalent to requiring, for all x € X, that the completion o is
isomorphic, as 0(»-algebra, to

6]’(1)[[le . e ey Xn]]
for some 7.
For the purposes of §3, it is very important to know that smooth

morphisms are also characterized by the following property (cf. [3],
exposé 3, Theorem 3.1).

2.1,

Let 4 be a finite-dimensional commutative local 4-algebra, and
let I C A be an ideal. Let a commutative diagram of solid arrows
be given:

Spec (4/1)

Then there exists a morphism denoted by the dotted arrow ﬁlhng
in the commutative diagram.
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This should be understood as a kind of “homotopy lifting prop-
erty,” so that smooth morphisms are somewhat analogous to fibre

spaces.
We can now define three topologies,

* * *
Xét: Xsmootln and Xﬂat:

by defining a covering as a collection of morphisms {U, - U} such

that U = U.fa(U.) and f, is étale; f, is smooth; f, is flat, respec-
tively. You can check to see that all our topologies are related by
continuous maps as follows:

* ¥ * :
Xilat — Agsmooth Xét — X — XZar.

The important fact about these maps is that, in particular, they
set up isomorphisms between the cohomology of Xoeotny Xz and Xe.
Therefore, as far as cohomology is concerned, any one of these three
topologies is just as good as the others.

§€3. MODULI TOPOLOGIES

For this entire section, fix a nonnegative integer g. We first recall
the basis of the moduli problem for curves of genus g:

Definition. A “curve” (over £, of genus g) is a connected, reduced,
one-dimensional scheme X, such that

dimH(X, ox) = g.

Definition. A “family of curves” over S (or, parametrized by S)
is a flat, projective morphism of schemes

X —S

whose fibres over all closed points are curves.
Definition. A “morphism” F of one family m ! %; — 8 to
another my : X3 — S is a diagram of morphisms of schemes:

XLy — Xy

Sy — 5,
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making X into the fibre product of Sy and X; over S,. F is smooth/

flat/étale if the morphism from §; to S; is smooth /flat /étale.
Definition. Given a family of curves = : £ — .§ and a morphism

g 1 T — S, the “induced family of curves” over 7T is the projection:

pgi.‘rXsT—%T.

The most natural problem is to seek a universal family of curves,
that is, one such that every other one is induced from it by a unique
morphism of the parameter spaces. As indicated in the introduction,
the usual compromises made in order that this existence problem
has a solution are exactly what we want to avoid now. Instead, we
want to define a topology; in the ideal case, if a universal family of
curves had existed, this would be one of the standard topologies on
the universal parameter space. Inasmuch as such a family does not
exist (unless stringent conditions on the curves in our families are
adopted), this topology is a new object.

Definition (Provisional Form). The moduli topologies 9N, ME oo,
and 9N, are as follows: '

a. Their open sets are families of curves.
b. Morphisms between open sets are morphisms between families.
c. A collection of such morphisms

Xy — X
|
Se — 8

Pa

is called a covering, if S = \U,g,.(S.,) and if each g, is étale,
smooth, or flat, respectively.

The first thing to check is that this is a topology and, in particular,
that fibre products exist in our category. However, unlike the
examples considered in §2, there is not necessarily a final object in
our category. Such a final object would be a universal family of
curves. A second point is that, if = : € — §is any family of curves,
the topology induced on the open set 7 is equivalent to the topology
S?fu Simooths OF Stiy, on 8.

A less trivial fact is that absolute products exist in our category.
Let m; 1 9, — S: (i = 1, 2) be two families of curves: I shall sketch
the construction of the product family. First, over the scheme
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S1 X 82, we have two induced families of curves,

X X S, S1 X X

N S

S1 X Sa.

Now suppose Y — T'is a third family of curves, and that the follow-
ing morphisms are morphisms of families:

SCI/"}{\SH (a)

J YN
Sl S2
To have such morphisms is obviously equivalent to having (1) a

morphism 7"— §; X S, and (2) isomorphisms over T of the three
families of curves:

(Y] (%1 X S2) X T] [(S2 X %2) X T (b)
\\(Sj 1 6“2)/ o SZ)
T

But now we must digress for a minute; consider, 4 la Grothen-
dieck, the following class of universal mapping properties which can
be used to define auxiliary schemes. Let § be a scheme, and let

\/

be two morphisms. Look at all pairs (7, ®) consisting of schemes T
over § (i. e., with given morphism to §) and isomorphisms over T

Xl XS T._’:; Xz x,g T.

\7/
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If there is one such pair (7, ¢) such that for every other such pair
(T’, ®'), there is a unique morphism (over §)

f:T'—>T
making the following diagram commute:
X Xs T/ —> Xy Xs T’

Ix, X f [14\’2 X f
¥

X1 Xs T‘T" Xe Xs T

then (7, ®) is uniquely determined up to canonical isomorphism by
this property. And T 1s denoted

ISOHls(Xl, Xz)
Now returning to our families of curves, suppose that the scheme
I = Isomg,x 5,(X1 X 82 S1 X X2)

exists. Then, in situation (a), we get not only a canonical morphism
from 7T to S1 X S but even a canonical morphism from 7 to I. Now
over 1, the two families of curves induced from X;/81 and X»/S» are
canonically identified: call this family % /1. Then the situation (a)
is obviously equivalent with a morphisin from the family Y/ T to the
family /1. In other words, /I is the only possible product of the
families %1/51 and %;/S,. Fortunately, 7 does exist in our case. This
is a consequence of a general result of Grothendieck’s (cf. [2],
exposé 221), and we will pass over this point completely.

Definition. The product of the families m; : ;= S; (( = 1, 2)
will be denoted:

T . (xl, xz) — ISOITl(ﬂ'l, 71"2).

Since products do exist in the common category of the topologies
91t *, there is no reason not to add a final object M to this category
in a perfectly formal way. In order to enlarge the topology, though,
we have to define the coverings of the final object M. The point is,
however, thatif r : € — Sis part of a covering of M, and if 7’ : X'—
§’ 1s any other family of curves whatsoever, then the morphism from
the product family

(X, ') — Isom(m, n’)
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to the family =’ must be part of a covering of #’. In particular, the
projection from Isom(w, #’) to & must be étale, smooth, or flat
according to the case involved. This leads to:

Definition. A family of curves m: X — § is étale, smooth, or flat
over M if, for all other families =’ : X’ — §’, the projection from
Isom(m, ') to §’ is étale, smooth, or flat.

If we use criterion 2.1 for smoothness given at the end of §2
(p. 46), the condition that = is smooth over M can be reformulated.
In fact, after unwinding all the definitions by various universal

mapping properties, this condition comes out as follows.

3.1. ,

Let A be a finite-dimensional commutative local k-algebra, and
let 7 C A be an ideal. Suppose we are given a diagram of solid
arrows:

Yo
Spec(4) - - 7’ S
Spec(4/I)

where Y/Spec(4) and ,/Spec(4/I) are families of curves, and
where the two solid squares are morphisms of families of curves.
Then there should be a morphism of families denoted by the dotted
arrows filling in the commutative diagram.

Such families have been considered already: compare, especially,
the thesis of M. Schlessinger. The important thing is that plenty of
such families exist. In particular, if C is any curve over &, we cer-
tainly want C to be part of such a family. This can be proven by the
method of “linear rigidifications” (cf. [7], §5.2 and §7.2). A fortiori,
plenty of families = flat over M exist too.

With families étale over M, it is another matter. In fact, unless we
stick to curves C without global vector fields (i. e., everywhere finite
derivations), such families do not exist. Let us analyze what it means
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for w : % — § to be étale over M. Let C be any curve over £, and let
$ - C— Spec(k)

be the trivial family given by C. Then if 7 is étale over M, Isom(w, p)
must be étale over Spec(k) ; that is, Isom(m, #) must consist in a finite
set of reduced points. But the points of Isom(w, p) represent iso-
morphisms of C with the fibres 7=1(s) of the family =. Therefore, if
is étale over M, the following is satisfied.

3.2.

For all curves C over k, C occurs only a finite number of times in
the family = : X — §, that is C is only isomorphic to a finite number
of curves 7 }(s). Moreover, if C occurs at all in =, the group of
automorphisms of C is finite:

Now conversely, the smoothness of = and (3.2) (i.e., 3.1 and 3.2),
guarantee the étaleness of 7. To see this, let 7’ : X' — 5" be any
other family of curves. Assume (3.1) and (3.2). Then we know that
Isom(wr, 7’) is smooth over §’; for it also to be étale over .§" means
simply that Isom(w, #’) has only a finite number of closed points
over every closed point s’ €.5’. But let C be the curve 7/~1(s"). There
is an isomorphism between the set of closed points of Isom(w, 7’)
over s' and the set of isomorphisms of C with the curves 7=1(s) (s a
closed point of §). Therefore, the finiteness of this set follows from
3.2

Definition. A family 7 : € — S of curves satisfying (3.1) and (3.2)
will be called a “modular’’ family of curves.

Modular families have the following very nice property. Let
7 ¢ X — S be two modular families of curves, and suppose the
curve C occurs in 73 over the point 5; € S; and in 7, over the point
S9 € Sg, that iS,

w1 (s1) =2 C = my (),

I claim that §; and §; are formally 1somorphic at the points s1, s2;
in other words, the complete local rings 6,, and 6,, are isomorphic.
To see this, fix an isomorphism 7 of #7'(s1) and x5 '(ss). Then 7

determines a point
¢ € Isom(m, m3)

lying over s; and s.. But since both 71 and 7» are modular, Isom(my, 1)
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is étale over both Sy and S.. Therefore, via the projections, we get
isomorphisms:

12
IR

0s, =2 0; =2 0,

More precisely, two modular families containing the same curve are

related by an étale correspondence at the point where this curve

occurs. As a consequence, for example, either all or none of such

families are nonsingular, and they all have the same dimension.
Another very important property of modular families is that any

morphism between two such families is necessarily étale. Assume that

Y—x

ﬁ_} l

is a morphism of modular families. This morphism defines an iso-
morphism of /7T and the family induced by X /S over T": so it defines
a morphism of T to Isom(w, m) by the universal mapping property
defining Isom. We get the diagram

Isom(w, )

. Vpl ,,,\

Tr——— 8§

where p100 = 1, and p, o0 = g. Since p, is étale, a section, such
as g, of p; defines an isomorphism of T with an open component

Iy C Isom(w; 7).

Since p. is étale, the restriction of p; to I, is étale; hence g is étale.
We now return to our topologies.
Definition (Final Form). The moduli topologies M) oo, and
omg,. are as follows: '

a. Their open sets are families of curves, and a final object M.

b. Their morphisms are morphisms of families of curves, and projec-
tions onto the final object M,

c. A collection of such morphisms with image a family = : € — §
is called a covering exactly as before; a collection of projections of
families w, : X, — S, onto the final object M is called a covering
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of M if: (1) each family =, is smooth, or flat over M, and (2)
every curve C occurs in one of the families 7,.

It is clear that a topology 911}, could be defined in the same way,
but then the final object M would have no coverings at all. This is
because some curves have an infinite group of automorphisms, and
hence do not occur in any modular families. One result is that
sheaves on this topology would not be sufficiently restricted; the
topology is too loosely tied together and would not be useful.

However, suppose that we happen to be interested only in non-
singular curves. This is perhaps short sighted, but never mind. By
considering only families of nonsingular curves, we can modify
M ooth, fOr example, and get a smaller topology. Now if the genus ¢
is at least 2, it is well known that such nonsingular curves have only
a finite group of automorphisms. Itis to be expected that they belong
to modular families, and indeed this is the case. Therefore, we can
define an étale moduli topology by locking only at nonsingular
curves and modular families. We make the definition in analogy to
the scheme topology X rather than X% :

Definition. The moduli topology 9., is as follows:

a. Open sets are modular families of nonsingular curves, and a final
object M.

b. Morphisms are morphisms of families of curves, and projections
onto the final object M. ’

c. A collection of morphisms:

Xoe—X
Lo
Sy —

fa
is a éovering if §=\U,g.(5,); a collection of projections of
families 7, ! X4 — S, onto the final object M is a covering if
every curve C occurs in one of the families m,.

In the rest of this paper, this is the lopology we will be interested ing there-
fore, we will refer to it simply as I, rather than M.

It is, I think, a very important topology. At a future occasion, I
hope to give some deeper results about this topology and compute
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some of its cohomology groups. For the present, I just want to men-
tion a few nice facts about it: :

a. The induced topology on an open set = : X — S is equivalent to
the étale topology Se on S.

b. If r : %€ — Sis an open set, .S is a nonsingular 3g — 3-dimensional
variety.

c. The so-called ‘“‘higher level moduli schemes” form (for n > 3,
prime to the characteristic of £) modular families

Mo + 5xn__)Sn

each of which is, by itself, a covering over M. Moreover, Isom(r,,
7,) is a finite Galois covering of S,.

§4. THE ELLIPTIC TOPOLOGY

The last topology that I want to define is the one which we shall
study closely in §§6 and 7. It is essentially the topology M in the
case g = 1, except that certain modifications are necessary to
extend the definition given in §3 when g > 2. With this topology
everything can be made very explicit, and hopefully the abstractness
of all our definitions will be enlivened by this case. This topology is
the classical proving ground for all notions of moduli, and, as such, it
is found in various forms in hundreds of places.

The difficulty in using the definitions. of §3 when g = 1 is that a
nonsingular curve of genus 1 admits a structure of a group scheme,
and therefore it has an infinite group of automorphisms. But by a
minor modification, we can make everything go through. The key is
to consider not curves, but peinted curves, that is, curves with a
distinguished base point.

Definition. A nonsingular pointed curve of genus 1 is an “elliptic
curve.”

Definition. A ““family of pointed curves” is a family of curves
7 : X — S with a given sectione : S— X (l.e.,moe = 1,). If g = 1,
and the curves are nonsingular, this is called a “family of elliptic
curves’. ; :

We can define a modular family of elliptic curves just as before.
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Since modular families of elliptic curves do exist, it makes sense to
state the next definition.
Definition. The topology 9 is as follows:

a. Its open sets are modular families of elliptic curves, and a final
object M,
b. Its morphisms are (étale) morphisms of families of elliptic curves,
and projections of every open set to A.
c. Coverings of a family = : & — § are collections of morphisms of
X, —

families:
x
| |

Seg— 8§

such that § = U, f,(S.); coverings of M are collections of projec-
tions of families 7, to M, provided that every elliptic curve occurs
in one of the families 7,.

We want to describe this topology explicitly. First, we shall outline
the basic facts about elliptic curves, and then indicate step by step,
without complete proofs, how this leads to our final description. We
shall assume from now on that the characteristic of £ is not 2 or 3, so
as to simplify the situation. '

The basic fact is that elliptic curves are exactly the curves obtained
as double coverings of the line ramified in four distinct points.
Therefore, they are the curves C described by equations

yr= (= an)(x — an)(x — o) (x — ).

Since the group of automorphisms acts transitively on the curve C,
we can assume that the distinguished point e on C'is the point x = ajy,
y = 0. By a projective transformation in the coordinate x, we can
put a4 at o, and the equation becomes: '

¥t = (x — a)(x — a)(x — ag),

where ¢ is now the unique point of this curve over x = oo.

In the language of schemes, the conclusion is that every elliptic
curve is isomorphic as pointed curve to the subscheme of P, defined
by homogeneous ideal

@ = (A7§XU - (A’] - a;XU) (A)l — a;/\’g) (Xl - Ol;Xo))
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together with the distinguished point
X() =0,X1 =0;X2?£0.

It can be shown that this representation is essentially unique; in
fact, the triple (aj, &y, a;) is uniquely determined by the curve up to
permutations and to affine substitutions of the form

B; = Aa; + B.

It follows easily from this that elliptic curves are classified by the
number:

. AN=2)-Cx—=1)-A+1D]2
a M[ Ao — 1) ] M
where )\=?—:,i—:—i}-

Why is this? First, X determines the triple (a, s, a3) up to affine
transformations. And, if we permute the a;’s, A is transformed into
one of six numbers:

1Aa—1 1 A
Ay 1 =N a—1

A1 =2

Also, the values A = 0 and A = 1 are excluded, since the three
numbers a1, oy, and a; are distinct. It can be checked that j is un-
changed by any of these substitutions in A, and, conversely, that
only N’s related by these substitutions give the same j. The factor -64
arose historically, and turns out to be crucial if we specialize to char-
acteristic 2. In characteristics other than 2, it is obviously harmless!

How about automorphisms of elliptic curves as pointed curves?
Every elliptic curve C obviously possesses the automorphism

x—x

y— =y
corresponding to its being a double covering of the x-line. We will
call this the inversion p of C. A very important fact is thatif r : & —
g : §— X is any family of elliptic curves, then the inversions of all
the fibres piece together to an automorphism P : X — X, of the
family 7; we will also call this the inversion of 7. A related fact is that
p commutes with any other automorphism a of C. Since k(x) is the



58 DAVID MUMFORD

field of functions on C fixed by the inversion, such an «a will take £(x)
into itself; that is, it will be given by a projective transformation in x.
Also since «a leaves ¢ fixed, it leaves x = « fixed; and it must per-
mute the other three branch points a;, ay, as. It is now an elemen-
tary result that such an a occurs only in two cases:

a.j =0;\ =2,1 or —1; &, al, as of the form B, B + 7, 8 + 2.

b.; =123 A = —w or —w? (w a cube root of 1); a;, a,, a; of the
form 8 + v, 8 + wy, B8 + w¥y.

Now normalizing the first case by choosing a; = —1, @y = 0,

a; = 1, we find that C possesses the automorphism o of order 4:

x° = —x

y =iy
such that ¢ is the inversion. Normalizing the second case by
choosing a; =1, ay = w, a3 = w?, we find that C possesses the auto-
morphism 7 of order 6:

X =w:'x

y=-y

such that 7® is the inversion. These are the only automorphisms.

Now, what about modular families. Since only one parameter j is
involved, it is natural to expect that modular families are always
parametrized by nonsingular curves S. This is true. The most
natural thing would be to look for a modular family parametrized
by j itself. The following is an example of such a family:

V:2=x*4+A4-(x+1)
27 128 —;

where A= :
4 J

We check that if ;7 # 0, 123 then 4 is finite and the roots of x* 4
A(x + 1) are all distinct—so we have an elliptic curve. And we can
compute its j-invariant in an elementary way, and it is the j we had
at the start.

In the language of schemes, let

A; = Spec A[j]
S = A, — (0,129),
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and let X be the closed subscheme of P, X .§ defined by the vanish-
ing of the section

X5 Xo— X} — — - ——— - (XuX] + XO)

of the sheaf 0(3). Let ¢ be the morphism
S™(0,0,1) X SC«x.

Then a rigorous analysis of the infinitesimal deformations of an
elliptic curve shows that this is a modular family.

Can we extend this family 7 to cover the points; = 0 and 12% For
the value j = 0, 4 is infinite; and for j = 123, our equation degener-
ates. But even a priori it is clear that there has to be trouble. If =
is a modular family, then Isom(r, ) must be étale over S. Now for
each closed point ¢ € S, the closed points of Isom(m, 7) over ¢ stand
for: (a) closed points ¢’ € S such that 7—(¢) and #~1(¢’) are isomorphic,
plus (b) isomorphisms of 7#~1(¢) and =—(¢’). If S'is an open set in the
j-line, 7#~1(¢) and 7~ (¢) can never be isomorphic unless ¢ = ¢'.
Therefore, the number of points in Isom(r, 7) over ¢ equals the
order of the group of automorphisms of #~1(¢). For j # 0, 123, this
is 2, so Isom(, 7) is a double covering of §; and Isom(, 7) could not
have four or six points overj = 0 orj = 123. The real problem here
is that j is not the “right” parameter at j = 0 and 123 At j = 0,
4/] or something analytically equivalent is needed; at j = 123
/7 — 12% is needed. This works out as follows. Let 7 : € — § be
any modular family. In particular, .S is a nonsingular curve. Suppose
we define a function on the closed points of § by assigning to the
point s € S the j-invariant of the curve #—(s). It can be proven that
this function is a morphism:

S5 A,
We can then prove the following.
4.1.
Each component of .§ dominates A; and the ramification index of j

at a closed point s€ S is 1, 2, or 3 according to whether j(s) # 0
and 128 j(s) = 0, or j(s) = 123



60 DAVID MUMFORD

We now want to return to the problem of giving an explicit
description of the topology 9. The morphism j is one invariant
which we can attach to the family = : € — §. Unfortunately, a
given ; may correspond to more than one family 7. A second
invariant is needed. The key is to use more strongly the particular
modular family over A; — (0, 123%) which we have constructed.
With this as a reference point, so to speak, we will get the second
invariant. Let 7o : %o — .S, denote this one family. We use the

. diagram:

Isom(wr, m)

e
27N\
N ' So
Aj

The first thing to notice is that this is commutative: let ¢ be a closed
point of Isom(m, o). If s = p1(¢) and 5o = po(f), then ¢ represents an
isomorphism of 7~1(s) and m5(s0). Therefore, 7#=1(s) and 7y (so)
have the same j-invariant, that is, p1(f) and p.(f) have the same
image in Aj;.

Now what is Isom(m, 79)? Over a closed point s €S, its points
represent isomorphisms of 77(s) with curves 75 (s0), 50 € So. In other
words, Isom{m, m¢) has no points over s if j(s) = 0 or 123; two points
otherwise. Isom(w, 7o) is a double étale covering of the open set:

7Sy C 8.

This covering extends uniquely to a covering 7 of all of § (not neces-
sarily étale!)T. The covering I/S is the second invariant. I claim that
7 and //§ determine the modular family = uniquely.

Indication of Proof. The first step is to check that there is at most

1 By a double covering 7/S, I mean a second nonsingular curve 7, and a
finite, flat, surjective morphism f : T" — S of degree 2, étale over an open dense
subset §' C S. Now either Isom is the disjoint union of two copies of j71(Ss); and
then 7 is the disjoint union of two copies of §; or Isom is the normalization of
771(S) in a quadratic extension of its function field, and then 7 is the normaliza-
tion of S in this field.
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one family X/§ extending the restriction of this family to the open
subset 77!(Sp). After this, we may assume j(S) C So. Let Y be
the given family of elliptic curves over I = Isom(r, mo). Then we
have a diagram of morphisms of families:

Y

/N

X Xo

/ ] T
S So

The family Y/I is determined by j and /S, because it is just the
family induced over 7 by the base extension

]——)S‘J—)So

from the standard family 9. On the other hand, ¢ is also induced
from X via the double étale covering 7/S. Therefore, Y is a double
étale covering of . We could recover X from Y if we knew the
involution ¢ of Y interchanging the two sheets of this covering. But
let Py be the inversion of the family mq: this is an involution of %
over S,. Let ¢ be the involution of I corresponding to the covering
1/S’: this is an automorphism of 7 over §, too. Since the diagram sets
up an identification

‘y = ]XSo Xy,

t and Py induce an involution ¢ X Py of Y. We check that « =
1 X Py Q.E.D.

The next question is whether there are any restrictions on j and
1/ for these to come from a modular family. Besides the restriction
(4.1) on j mentioned above, it turns out that the following is the
only further restriction.
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4.2,
1 is ramified over all points s of .S where j(s) = 0 or 123,

Turning all this around, we can make it into a second definition of
the topology M:
Definition. The topology 9N is as follows:

a. Its open sets are morphisms j of nonsingular curves S to A; satisfy-
ing restriction (4.1), plus double coverings /S satisfying restric-
tion (4.2); and a final object A/

b. Its morphisms are commutative diagrams:

11'—"—)12

| |

Sl—"'_) Sz

making 7; into the fibre product §; X, I2; and projections of
every open set onto M, ‘
c. Coverings of (j, 1/S) are collections of morphisms

I,—1

|, |

Seg— 8

such that § = \U,f.(S.); coverings of M are collections of projec-
tions of open sets (Jo, 1o/Ss) onto M such that A; = U7, (S4).

Note that, because of restriction (4.1), given a morphism of open

sets:
I, — I,

|, |

Sl“) Sz

the morphism f is necessarily étale.

Let us work out (absolute) products in these terms to see how it all
fits together. Say (71, I:1/51) and (s, I2/S:) are two open sets. Suppose
we want to map a third open set (7, /S) to both:
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I

VAN

i/j\l
N7

Then first we get a morphism f; from § to §1 X 4 S2. But § is non-
singular, and f maps each component of .S to an open subset of
S§1 X a S2; therefore, f, factors thi"ough the normalization of $y X 4 So.
Denote this normalization by 7, and let f» : .S — T be the morphism
that factors f1. Let I; and I, be the double coverings of 7 induced by
1,/81 and I3/S;. Then pulling these double coverings all the way
back to .S, we get isomorphisms of both with 7/S, hence an iso-
morphism between them. Exactly as in §3, we get a factorization of
f2 via 8 D Isomg(Z/, ). But what is this Isom? At points where I
and 7, are unramified, it is just the “quotient”’ double covering;
that is, if 7 is defined by extracting 4/, and I, by /73, then Isom
is the double covering given by A/f1/fz. Since I; and I, are ramified
over exactly the same points of 7, this “quotient® covering extends
to an étale double covering I; over all of 7. It turns out that I; is a
closed subscheme of Isomr(Z;, I,) and f, factors via

S -
S I,
This I, is the S of the product open set. Over I, I and I, can be
canonically identified to the I of the product open set.

§5. THE PICARD GROUPS

Now we come to the Picard groups, which are one of the interest-
ing invariants of our topologies. There are two quite different ways
to define these groups. One is a direct method going back to the
moduli problem itself; the other is a cohomological method using our
topologies. We will first explain the direct method:

Fix, as before, the genus g.
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Definition. An “‘invertible sheaf” L (on the moduli problem
itself) consists in two sets of data:

a. For all families of nonsingular curves (of genus g) = : € — S, an
invertible sheaf L(x) on S.
b. For all morphisms F between such families:

X1— X,

S1 e Sz
an isomorphism L(F) of L(ry) and f*(L(r2)).1

The second set of data should satisfy a compatibility condition with

respect to composition of morphisms:
Let

AX1— X2— X5

PR

S — 8 —8;
f [4

be a composition of the morphism F from m; to 72, and G from =,
to m3. Then the diagram:

f*(L(sz))

Ly \;‘*(uan

L(my) f*(g*(L(ms)))

(g 2 /) *(L(ms))

should commute.

This definition has an obvious translation into the language of
fibred categories, which is left to the reader who has a taste for that
approach. Loosely speaking, an invertible sheaf is simply a pro-

1 Note that the morphism F is the whole diagram, while f is simply the
morphism from §; to S2. In the sequel, we will denote morphisms of families by
capital letters and the component morphism of base spaces by the same small
letters.
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cedure for attaching canonically a one-dimensional vector space to
every nonsingular curve of genus g: Start with L as above. If C/k is
such a curve, let

m . C — Spec(k)

be the projection. Then L(mr) is a one-dimensional vector space

(over k) attached to C. Conversely, if this procedure is “canonical”

enough, then given a family 7 : € — §, the one-dimensional vector

spaces attached to the curves 7 1(s) (s € Sx) should form a line bundle

over §; and its sections then form an invertible sheaf L(r).
Example. Given any 7 : % — § as above, let

E(ﬂ') = Rlmry (Ox).
This is known to be a locally free sheaf on § of rank g. Let
L(m) = A7{R'm« (0x)}.

This is an invertible sheaf on §. Moreover, for all morphisms of
families:

X1 — X

oy

S] —_> Sz
there is a canonical identification of E(m;) and f*(E(wrs)), hence of
L(w1) and f*(L(ws)). This is, therefore, an invertible sheaf on the

moduli problem. It corresponds to attaching to each curve C the
one-dimensional vector space

A9{H(C, 0¢)}.

It is clear what is meant by an isomorphism of two invertible

sheaves.

Definition. The set of isomorphism classes of such invertible
sheaves is called Pic(9m).

As usual, Pic(9M) is an abelian group. Given L and M, two inver-
tible sheaves, define L ® M by

(L ® M)(m) = L(m) ® M(x)
(L @ M)(F) = L(F) ® M(F).

This induces the product on the set of isomorphism classes Pic(91).
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Now we give the second definition of Pic(917). Recall that, by defini-
tion, a scheme X is a particular type of topological space, together
with a given sheaf of rings ox. Now that we have generalized the
concept of a topological space, it is clear that an important type of’
object to look at will be a topology T, together with a given sheaf of
rings 07. This combination is known as a ‘“‘site.” For example, if X is
a scheme it is not only the Zariski topology which comes with the
sheaf of rings ox. Recall the five topologies on X and the continuous
maps:

* ¥ *
Xflat - Xsmooth - Xét - Xét i XZar-

Let 7 : U— X be a morphism, that is, an open set in Xg,,. Then
definet a sheaf 0 on Xj,; by

o(U— X) = T'(U, oy).

By taking direct images, this also defines a sheaf 0 on X oo, Xa,
Xe and Xzar; on Xz, this is just the original sheaf ox. Thus each of
these topologies is a site.

What is more important now is that the topologies 91 are also
sites. Let 7 : & — S be an open set in I, that is, a modular family
of nonsingular curves. Let

o(X = 8§) = I'(S, os).

This defines a sheaf of rings 0 on 9N, except for the ring 0(Af): this
is simply determined by the sheaf axiom. Fix a covering of 9 by
open sets {X, = Sq}. Let the product of 7, and 7 be the open set

Ta,B

3:;'3‘

> Sa.8-
Then o(M) is the kernel of the usual homomorphism

H O(a:a - Sa) — H O(a:a.ﬂ - Sa,ﬂ)'
o a6

In fact, if g > 3, it is known that o(M) is just £. In any case, this
defines 0, and it brings 91 into a familiar context: we can now
develop a theory of coherent sheaves, and their cohomology on 91,

t This is not obviously a sheaf; it is so as a consequence of the theory of descent
(cf. [3], exposé 8).
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as well as a general theory of (étale) cohomology. Moreover, in
addition to 0 we get the two auxiliary sheaves:

a. o*, defined by d*(ac 5 S) = group of units in o(fI.'—T> S).
b. K, defined as the sheaf associated to the presheaf K(¢ 5 S) =
total quotient ring of o( 58). k

The ring of global sections of X is, so to speak, the function field of
the moduli problem. Now the second definition of Pic(91) is simply

the cohomology group:
H\(9m, o*).

Sketch of Proof of Isomorphism. The first thing to do is to set up a
map between these groups. The map goes like this: let L be an
invertible sheaf on the moduli problem. Then we will associate to
L an element:

k N e H'(9N, o*).
First choose any collection of families w, : Xo — S, which is a cover-
ing of the final object M. Then L(r,) is an invertible sheaf on S,.
By replacing S, with a suitable set of (Zariski) open subsets and
replacing 7, by the set of induced families over these subsets, we can
assume that for each « there is an isomorphism:

L(Tra) :; 03,
Pa
For each a, choose such an isomorphism. For all ¢, 8, let
Taf - (fxa; fxﬂ) — Isom (g, Wﬁ) = Iop

be the product of the families 7, and =g. Let 1 and 2 denote the
projections of Isom(w,, 7) onto S, and Ss. By definition of an
invertible sheaf, we are given isomorphisms of pf(L(r.)) and
by (L(mg)) with L(mw, ). Now look at the composite isomorphism:

Or.5 = p1(0s,)

3/7;: (L(ﬂ'a)) via ¢
=~ L(wagp)

= py (L(mg))

< p¥(0s,) via g

= OIa.ﬂ‘
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This isomorphism is set up by multiplication by a unit:
o € Tlap, 07, ;) = 0*(map).

I claim that, for the covering {m.} of M, {g,s} forms a 1-Czech
cocycle in the sheaf o* This is checked using the compatibility
property for the invertible sheaf L (cf., last part of the definition of
an invertible sheaf). Then this cocycle induces an element A; in the
first Czech cohomology group for this covering, hence an element
Az of HY(9W, 0™).

Now suppose the isomorphisms ¢, are varied? The only possible
change is to replace ¢q by ¢, = 0a * ¢a, Where o, means multiplica-
tion by the unit:

0 € T'(Se, 05,) = 0%(ma)
But then g, is replaced by the homologous cocycle:

Tag = pr(oa) " p3(05") * Tasp.

Therefore even \; is unaltered. Now suppose the covering {=,} is
changed. Any two coverings are dominated by a finer covering, so
we can assume that the new covering is finer. It is immediate that
the new A, is just the element of the new Czech cohomology group
induced by the old A; under restriction. Therefore, A, is unaltered.

This defines a map from Pici1(9M) (the first group) to Pic»(9M) (the
second group). To show that this is a surjective, we first use the fact
that (for any sheaf F),

HYSW, F) = lim H\¥, F)

coverings A

where H'(A, —) denotes the first Czech cohomology group for the
covering A. Now suppose X» € H(I, 0*) is given. Then A, is induced
by a Ay € H'(%, 0*) for some covering . And A, is defined by some
cocycle {oap} in 0*, (if A is the covering 7o : Lo — Sa). Now suppose
7 € — S is any modular family of nonsingular curves. Then

{I, = Isom(m, 7o) — S}
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is an étale covering of S. Moreover, via the natural projection
I, X5 Iz — Isom(mwa, mg),

the cocycle {rqs} induces a cocycle {r,s} for the covering {1, — S}
of § and the sheaf 0F. We then require a theorem of Grothendieck:

Theorem 90 (Hilbert-Grothendieck). Let {U.— X} be a flat
covering’ of X for all «, let L, be an invertible sheaf on U, ; and for
all a, B, let ¢,p be an isomorphism on U, Xx Up of the sheaves
1 (Le) and pF(Lg). Assume an obvious compatibility of isomor-
phisms on U, Xx Ug Xx U, (for all o, B, ¥). Then there is an
invertible sheaf L on X, and for all «, isomorphisms ¥, on U, of L,
and ¢X(L) such that, on U, X x Up, the diagram:

11 (L) =5 p3(Ls)
- pr¥(Ya) U Hm*wa)
p1 (g2 (L)) =13 (g5 (D))

commutes. Moreover, L and y, are uniquely determined, up to:
canonical isomorphisms. (cf. [3], exposé 8, Theorem 1.1).

There is a shorthand which is used in connection with this
theorem: given the L,, the isomorphisms {¢.,s} are called “descent
data” for {L.}. The L obtained is said to be gotten by “descending”
the sheaves L, to X (that is, reversing the process, the L, are gotten
by lifting L to U.). -

Apply this theorem with U, = I,, X =S, Lo = 01,, and ¢,z
given by 045 The L constructed is to be our L(r). We leave it to the
reader to construct the isomorphisms L(F) required for an invertible
sheaf; and to check that this L does induce A, when the process is
reversed. : '

Finally, why is the map injective? If A, were 0, then for a suitable
covering A; would be 0, and for suitable choices of the ¢,’s, the
cocycle g4, itself would come out 1. The question is then, if 6.5 = 1
for all @, 8 show that L = o (the trivial invertible sheaf). What we
need to dois to construct, for every family = : & — .S, an isomorphism

¥(m) : L(m) =5 o5,
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such that, for every morphism F of families:
Xy —> Xy

Sl m—— S2
the diagram: L(F)
L(m) === f*(L(2))
q ) q o)

f*(os,)

O,gl

commutes. Exactly as before, we use the induced étale covering

{I, = Isom(m, mq) 5 S}.

The family of curves Y, over 7, induced via g, from X/ is canoni-
cally isomorphic to the family induced from %./S.. But we are given
an isomorphism of L(r,) and o0g,. This induces an isomorphism of
L(Ya/I.) and or,; hence an isomorphism

q: (L(ﬂ->) ? Or14.

The fact thatoas = 1 can be easily seen toimply that the diagram of

sheaves on I, X g Ig:
p1 (g2 (L(m)— p1 (0ra)

p3¥ (g3 (L(m))) == p3(015)
pr¥(¥g)

commutes. In order words, both L and og satisfy the conclusions of
Theorem 90 for the setup Uy = I, X = 8, La = 014, and ¢ = 1.
Therefore, the uniqueness half of that theorem states that there is a
canonical isomorphism of L and 0. This is to be ¥(7). We omit the
rest of the details.
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§6. COMPUTATIONS: DIRECT METHOD

We return to the case g = 1, and its topology 9. In this section,
for char(k) # 2, 3, we shall give a direct computation of Pic(9M). In
the next section, for & = C, we shall give a transcendental com-
putation of this same group.

Let L be an invertible sheaf on the moduli problem. First of all,
let us try to extract some numerical invariants directly from L.
Start with a family of curves = : € — S. Any such family has one
nontrivial automorphism: the inversion p of order 2. By definition
of an invertible sheaf, the morphism of families:

x x
S S

induces an automorphism L(p) of L(w). Since p has order 2, so does
L(p). But L(p), as any automorphism of an invertible sheaf, is given
by multiplication by an element a € I'(S, 0%). Therefore, a? = 1;
hence on each connected component §; of S, « equals +1 or —1. In

particular, suppose § = Spec(k), and & = C is an elliptic curve.
Then we have defined a number:

P
_—

R
1s

a(C) = +1.

Moreover, if r : & — §is any family, then the fact that the inversion
p for = induces the inversion on each fibre #=!(s) of the family
implies that the function « € I'(S, 0%) has value a(7=1(s)) at the
point s € §. This shows that a is a “continuous’ function of C; that
is, if we have a family = : % — § with connected base §, then « is
constant on the set of curves m#~1(s) occuring as fibres in the family
7. Actually this shows that « is constant on all curves; either a(C) =
+1 for all C, or a(C) = —1. Namely, it is easy to exhibit a family =
with connected base S, such that every C occurs in . For example,
take the family of all nonsingular cubic curves; or take the modular
family of cubic curves

¥ =x(x — 1)(x —N),
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where A # 0, 1, «. Therefore, in fact, we have defined one number
a(L) equal to +1. And, quite clearly, this gives a homomorphism

Pic(IM) — Z/2.

In fact, this same method goes further. After all; there are two
elliptic curves with bigger groups of automorphisms. Let C4 be the
curve with a group of automorphisms of order 4 (i. e.,j = 0); let
Cp be the curve with a group of order 6 (i. e., j = 12%). Pick gener-
ators ¢ and 7 of Aut(C,4) and Aut(Cp). Note that ¢? is the inversion
of C4 and 73 is the inversion of Cp. Let

74 ¢ C4 — Spec(k)
mp: Cp— Spec(k)

be the trivial families. Then L gives us one-dimensional vector
~ spaces L(wa) and L(wg), and L gives us an action of Aut(C4) on
L(mr4) and of Aut(Cs) on L(wg). In particular, ¢ acts on L(r4) by
multiplication by a fourth root of 1: call it L(¢); and 7 acts on L(rp)
by multiplication of a sixth root of 1: call it L(7). Clearly,

L(0)? = a(L)
L{7)? = a(L).

If we also fix a primitive twelfth root of 1, ¢, then we can determine
uniquely an integer 8 mod 12 by the equations:

§% = a(l); §% = L(o); {% = L(7).

Then this associates an invariant §(L) € Z/12 to each invertible
sheaf L. It is easy to see that this is a. homomorphism:

Pic(W) = Z/12.

Actually, § is not quite as nice as a, in that to define 8 we had to
make three arbitrary choices, namely, o, 7, and {. Our next step is to
simultaneously make 3 more canonical and to prove that {3 is surjec-
tive. Recall the invertible sheaf A on 91 given as an example in §3:

A(EI l’ S') = Rlﬂ'* (Om)

(with the obvious compatibility morphisms for each morphism of
families). The interesting fact is that 8(A) is a generator of Z/12. To



verify this, all we have to check is that A(s) [resp. A(7)] is a primitive
fourth root (resp. a sixth root) of 1. But this means simply that
Aut(C,) [resp. Aut(Cg)] acts faithfully on A(w,) [resp. A(mg)]. Now
by definition:
A(ma) = H'(Ca, oc,)
A(mp) = HY(Cs, 0cs)-
We could say, at this point, that it is a classical fact that these actions
are faithful. But this is not hard to check:
Proof of Faithfulness.
a. By Serre duality, for any curve C, H(C, o¢) is canonically dual
to the vector space of regular differentials on C.
b. If Cis the elliptic curve:

y2 = x% + Ax + B,

then the differential dx/y is regular, and is a basis of the space of
such differentials.
c. C4 is the curve

yi=x—x =x(x +1)(x — 1)
and ¢ may be taken to be '

x]—> —x
y|— .

Then dx/y |— i(dx/y), so the action of Aut(Cy) is faithful.
d. Cp is the curve

Y= =1 = (= D — w)x — o)
and 7 may be taken to be
X |—>w x
y = =
Then dx/y | = —w(dx/y), so the action of Aut(Cp) is faithful.
Q.E.D.

Therefore 8 is indeed surjective. But also 8 can be normalized by
the requirement:

B(A) =1 (mod 12).

Then 8 becomes completely canonical.

e

R o BRES
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The last step is that 8 is injective, completing the proof of:

Main Theorem. If char(k) # 2, 3, and if g = 1, then there is a
canonical isomorphism

Pic(9n) =2 Z,/12.

Sketch of Rest of Proof. Let L be an invertible sheaf on the moduli
problem such that 8(L) = 0 (mod12). Then all automorphisms of
all elliptic curves C induce trivial automorphisms of the correspond-
ing vector spaces L(C/Spec(k)). We must set up consistent iso-
morphisms of all the invertible sheaves L(w) with the sheaves o0g.
But say 7 : € — § is a modular family of curves containing every
elliptic curve as a fibre. Then according to the results of §5, it is
sufficient to set up an isomorphism ¢ of this one L(r) and os pro-
vided that the compatibility property written out in §5 is satisfied.

Look at the diagram:

Isom(mr, )
ls
{Normalization of .§ X, S}
le
S X, S

@)

(cf. §4, last part). Recall that f is an étale double covering. Let
¢; = pio gof. By definition of an invertible sheaf, we are given an
isomorphism ¢ of ¢; (L) and g5 (L). We can use the fact that 8(L) = 0
to show that there is actually an isomorphism ¥, of p7 (L) and p; (L)
which induces ¥ via f*og*. Set theoretically, we see this is as
follows: let £ and ¢’ be two closed points of Isom(wr, 7) over the same
point 7 of § X, S. Let L; and L; be the one-dimensional vector spaces
obtained by restricting the invertible sheaves pf (L) and p; (L) to
the one-point subscheme {f}. If s; = p;(i), then L; = L(z(s)).
Moreover, ¢ and t' define two isomorphisms 7 and 7’ of #(s;) and
77 1(s2). By hypothesis, L(z’ o 771) is the identity! Therefore, L(r) =
L(z"). But L(r) and L(s') are just the isomorphisms of L; and I,
given by looking at the action of y at the points ¢ and ¢'. Therefore,
¥ induces a unique isomorphism ¢, of L, and L, at z. One must still
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check that this isomorphism g is given by functions in the local
rings of .§ X, § (this scheme is not normal, so this is not obvious).
We omit this technical point.

Now the compatibility property of ¢ shows immediately that Yo
is descent data for the invertible sheaf L(w) on § with respect to the
morphism 7 : §— A,. Also j is clearly a flat covering of A;. There-
fore, we can apply Theorem 90 of §5! In other words, we find an
invertible sheaf Ly on A;, and an isomorphism ¢ of L(x) with j*(L,)
such that the following commutes:

p1 (L) =3 py (L(m))
p¥(@) | { ¢ NI

prG*(Lo) = p3 (7*(Lo) (2)

But now every invertible sheaf on the affine line Is trivial, that s,
Lo =2 0,. Use this isomorphism to set up an isomorphism of L with
0s. Finally, the compatibility property follows immediately from
(2). ‘ Q.E.D.

§7. COMPUTATIONS: TRANSCENDENTAL
METHOD

Now assume ¥ = C. We shall give a completely different approach
to Pic(97) which has the virtue of generalizing to higher genus in
various ways. This approach is based on:

Definition.  An ““analytic family of elliptic curves’ is a morphism
7 : € — S of analytic spaces, which is proper and flat, plus a section
£ : 8§ — X of m, such that the fibres of = are elliptic curves.

We can now define a modular analytic family in two ways: either
by the same properties used to define an (algebraic) modular
family;} or else by defining the j-morphism from the base S to the
complex j-plane and requiring that

a. S is a nonsingular one-dimensional complex space.

b. ; is open.

c. 7 has ramification index 1, 2, 3 at x € § according to j(x) # 0, 123,
J(x) = 0, or j(x) = 128
1 The lifting property goes over verbatim. But instead of asking that each

elliptic curve only occur a finite number of times in a modular family = : X — .,
we should ask that it occur only over the points of a discrete subset A C §.
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A morphism of families is defined exactly as before, using analytic
maps rather than algebraic ones.
Definition. The topology M. is as follows:

a. Its open sets are analytic modular families of elliptic curves
m: % — 8§, and a final object M,
b. Its morphisms and coverings are exactly as in 9.

We check to see that products exist in this topology and that they
have exactly the same interpretation as before. Moreover, we get a
continuous map of topologies:

Mex — I,
just as, in §2, we found a continuous map from the complex topology
to the étale topology on a scheme. For all integers n, define a sheaf
Z/n on Nx by
Z/n[X > S] = ® Z/n

topological components
Sa of §

The direct image ax (Z/n) of this sheaf is simply the “same” sheaf:

Z/n[X > S] = &) Z/n.

topological components
(in Zariski topology) of S

An immediate extension of Artin’s result tells us that the canonical
homomorphism
Hi(m, Z/?Z) e Hi(mcx, Z/n)

is an isomorphism.

This gives us a transcendental approach to the cohomology
groups Hi(M, Z/n). These are related to the Picard group by virtue
of the standard exact sequences of sheaves:

0—'—>Z/n—>o""l>o*—>0,

where n indicates the homomorphismf‘——)f" (cf. [1], p. 102). The

t The stronger form in which Artin gave his result is that if g : Xox — Xae is
the canonical map, then:

Rigy (Z/n) = (0), :>0.
This gives Riax (Z/n) = (0), ( > 0) as a corollary because I (respectively,

IM.x) induces on an open set X L S the topology S:t (respectively, Sex).
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cohomology sequence tells us:

0 — HY9W, Z/n) — HO(IM, 0%) — HOON, 0%) — HY (M, Z/n) —
Pic(9M) — Pic(M) — HA(IM, Z /n).

Via these sequences, we can work out the structure of Pic(9), given
that of HY(3M, Z/n). This is because we can prove by general argu-
ments that

a. H*(9M, 0*) has the subgroup C* of constant functions, with
factor group isomorphic to Z.

b. Pic(91) has a subgroup Pic’(9M) of the type R®/Z¢, where the
lattice Z° spans R? (it need not be discrete), with finitely gen-
erated factor group.

Corollary. If there is a prime p such that H'(9, Z/p) = (0), then
H(9, 0*) = C* and Pic(IM) is finitely generated.

Corollary. If there is a prime p such that HY(IM, Z/p) = HIM,
Z/p) = (0), then Pic(IM) is a finite group, and

Pic(m) = lim H'Y(9N, Z/n),
H

where the limit is taken with respect to the ordering:

ni 2 ng if ne [ ni,
and the maps
ni/ne
Z/nz — Z./n1.

{The proofs are obvious.)
We now go on to consider the topology 9Mcx. The point is that
there is one open set in M.z which is very well known:

Let = {z€ C| Im(z) > 0}.
LetZ @ Z act on the analytic space C X \Sj so that the generators
act by:
(x,z)|= (x +1, 2)
(%, 2) ‘—) (x + z, 2).

LetX = (C X $/Z & Z).

Letm: X — $ be induced by p2: C X $ — 9.

Let €: 9 — X be induced by the section $ 5 (0) X @C
C X 9.
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Then 7 (and €) define a modular analytic family of elliptic curves.
‘Moreover, every elliptic curve occurs in 7, so it is a covering of M.

Let T = SL(2; Z)

ab
= group of integral 2 X 2 matrices < >
c d

such that ad — bc = 1.
Let T act on  via

ab z+ b
(o)
I d (74 +d
Call this morphism 7o : T' X  — 9.
Let T acton C X 9 via

(ab)x(xz),_)( x az+b)
c d cz + d ¢z +d
Then we check that the action of T normalizes the action of Z @ Z,
hence it induces an action of I' on . Denote by 7 : I' X % — & the
morphism giving this action. Clearly, = and € commute with this
action of T, so that we have made T into a group of automorphisms

of the family /9. This action of I" has the following interpretation:
via the diagrain

' Xx

TN

r X9

LN

(3)

(@ (-——;.‘g
Lol <—$-?

the family of elliptic curves I' X &/T' X 9 is made into the product
of /9 with itself; in particular,

r X = Isom(w, 7).

The efTect of this is to make a connection between the topology Mex
and the topology 7'r of the discrete group I' (cf. §1). We recall:
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Definition. The topology T is as follows:

a. Its open sets are I'-sets S, that is, sets plus action of T'.
b. Its morphisms are I'-linear maps between I'-sets.

. . Pa .
c. Its coverings are collections So — § of morphisms such that

S = U palSq).

For our purpose, we need a slight modification of this topology.
Definition. Let ', be the subgroup of T of matrices such that

= (mod n)
c d 01

Definition. Let Tt be the following topology:

a. Its open sets are I'-sets § such that, for all x € §, the subgroup of
I' of elements leaving x fixed is contained in I's; and a final
object M.

b. Its morphisms are I'-linear maps of I'-sets, and projections of
I'-sets to M.

. . P .
c. Its covering are collections S, =S S of morphisms such that

S =\ pa(Sa);

and any collections of morphisms to M.
There is a continuous map:
8
Tr— Ty

such that 87! of a T'-set Sis S; and B~'(M) is the I'-set {¢} with one
element. It is easy to check that 8x sets up an equivalence between
the category of abelian sheaves on 7t and the category of abelian
sheaves on Tr. Therefore, cohomologically Tt and T are identical.
In fact, as we saw in §1, these categories of sheaves are equivalent to
the category of I-modules (where the group of global sections of a
sheaf is equal to the subgroup of I'-invariants of the corresponding
module). Therefore, the cohomology of Tt and T is also the same
as the cohomology of the group I
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Finally, there is a continuous map

Mex — Tt
which is as follows:
Definition. Let S be a I'set in T7; give S the discrete topology.
Then y71(S) is the family:

X X S§/T
l
H X §/T

where T acts on & X S and X S by a product of r and 7o with the
given action on .

This makes sense only provided that I' acts freely on X 5 (hence
on X X 5). But if an element a € I" leaves fixed some element of S,
then by definition of Tr, a € T's; then it is easy to check that a acts
on  without fixed points. Therefore, the action is free. Of course,
v~1(M) is to be M. The key point to check is that fibre products in
Tt go into fibre products in M.x. We omit the proof, except to say
that this fact follows readily from the fact that diagram (3) makes
I' X X/T' X 9 into the product of £/ with itself.

Recapitulating, we have unwound the structure of A/ by the

following continuous maps:

The final step is to prove that, via v, we get an isomorphism:
H{(Tx, Z/n) =5 H (Mex, Z/n)

This follows from the Leray spectral sequence, once we know that:
Ry (Z/m) = (0), i>0;

and this is equivalent to knowing that Z/r has no higher coho-
mology in the induced topology on the open set X/ in M, But
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this is just the classical topology on $; and since $ is homeomorphic
to a cell, Z/n has no higher cohomology in this topology.

Corollary. There are canonical isomorphisms:
Hi(m, Z/n) = HY(T, Z/n) for all 7.
Now it is well known that

a. H(T', M) = (0), ¢ > 2, for any I'-module M which is p-torsion,
p#£ 2,3

b. HY(T', M) = Hom(Z/12, M) for any abelian group M with
trivial T' action.

Putting all the results of this section together, we have proven again
that Pic(9m) = Z/12.
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