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Introduction

The purpose of this thesls is the construction of "'Arithmetic
Modull" of curves of any genus greater than one, This object, first
of all, i¢ to be a normal model M in the sense of Nagata over Z;or
a normel integral scheme, dominating and of finite type over Spec (&) !
{n the sense of Grothendieck. Its fundamental property is to classify
curves of genus g over every algebraically closed field (1. In fact,
the bi-regular equivalence classes of such curves should be isomor-

phic to the closed points of M >§ Spec (L., or equivalently to
Hom (Spec (L, M)

where Hom (X, Y) stands for the set of morphisms or regular maps
from X to Y.

But what does the word "isomorphic'" mean? The isomorxphism
“must certainly be natural, and not merely set-theoretic. The require~
ment roughly is to be "compatible with specialization”, or “"compatible
with algebrajc families'. Movre precisely, the first statement means:
for all valuation rings R, and specializations of algebraic curves
C, —C, over R, there should be given a morphism ¢ :Spec R —>-M,
such that if 2, 2, ave algebraically closed flelds containing the

1 In the following, where no confusion seems likely, we shall
write R for Spec R,



quotient field and residue field of R respectively, 1. e. fields of
definition of C,, Cye then the obvious composite maps

8pec () ~—Spec R —-M

should be the morphisms corvesponding to the curves C,. Similarly,
the second statement means: for all normal varietes A, V over an
algebraically closed fleld O, and projective morphisms £ ¢ A =V
such that l"(x) {s a nonesingular curve with multiplicity 1 for every

%, there should be given & morphism
gtV oM

which maps every ¢losed point x € V to the point of M >§ §), corres
sponding to the curve f’x(x‘) . The mo#t complete way to ‘combine both
requizements, and even allow consideration of infinitesimal families

of curves seems to be this:
(*) For all schemes X, and all proper, ltmplez morphisms
A -‘-—+—X all of whose geometric ﬂbruz are curves of

genus g, there should be given 2 morphism F(f) s X oM,
g{f) is, so-to-speak, the generalized "j*morphism”. Compatibility
is ensured by:

(¢%) For il morphisma Y 24X, {f B = A5 Y end the
projection is B -&a- ¥, then #(g) = #(f) ¢ s .

2 For definitions of this terminology see Grothendieck's notes
[?7], parts 2 and 4.
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Any such pair (M, f) will be called an {nvariant scheme (for
curves of genus g). Since for any morphism M--‘-r-)—- N, (N, » ¢)
{s also an invariant scheme, we can consider the Universal Mapping
Praoperty: 7

(#**) For all invariant schemes (N, V), there is a unique

morphism M<for Nsuchthat ¥ sf « f, An {nvarians

scheme satidfying this will be called & pre~modull scheme
(for curves of genus g). Finally the first requirements we

considered were:

(*¢us) M is a normal model over Z, and for sll algebraically
closea ilelds (), ¥ sets up an isomorphism between bi-
regular equivalence classes of curves C of genus g defined

over {1, and geometric points of M in (), L. e, closed
points of M (. via
P

CAL wv- P, wheve {3 C i Spec () .

It (M, ¢) satisfies all thene properties, we shall call it a modull scheme:.

Its existence (imiqueness {s imm ediate by (#*¢)) is the main theorem
of this thesis.



1 shall follow this terminology!

i) a scheme : as in Grothendieck

i) ' a model over R, R a noetherian integral domain: an
integral scheme of finite type over R, dominating R, ([16)).

{{§) a varieltyoverk: a meodel over a fleld k,

iv) a morphismi as usual. Iprefer this to regular map since
it is more concise; "map" alone i ambiguous.

v) }:n ¢ the scheme over Z, Proj{Z[X - .Xn]} ' b or
what might have been awkwardly called in pre=Grothendieck
terminology, the union over,all p of the loci of
specializations of gn/Q .._..Bl-yg“/[“z“/(p)] . Write

also ﬁ forgn Z.Spee R.

vl) 1f X and Y are schemes, X XY means product over Z
unleas otherwize qualified and w ., v , will be its canonical
projections. If, on the other hand, we consider X XY
and the morphism f 1 X ==>5 or {1 Y =35 {8 no
clear, 1 shall write (X>éY)f g

vil) We shall follow Grothendieck's useful distruction between
point, geometric point and rational point over k . Given
a scheme X over a scheme S, a point {s simply a point
of the underlying topological spaceja geometric point,
however, is a closed point of the space of X>§8pac(ﬂ.)
for some algebraically cloged field (), (and morphism
Spec () —=-5); a rational point over k {s a morphism
Spec(k) —» X (which is equivalent to a point of XZS‘Spec(k)
with residue field k). The residue field of a point x €X

3 Gee Grothendieck's Elements, Chapter II, p. 25, [5].



will be denoted K(x).

It seems to me valuable to preserve the words "model'' and
tyariety" rather than adopting "'scheme such that .....' not only
for brevity and for historical reasons, but because the two concepts
of scheme and normal projective variety particularly call for a
totally different set of technical tools, neither including the other,
and imply very dif(ez;eﬁi plctures of thelr geometry - dominated
one by the functor K, ihé other by the Chow ring A, (1] . For example,
flat m orphisms are often called for in dealing with schemea, where -
open morphisms suffice in dealing with normal varieties; and Cartier
divisors on schemes may be replaced by sums of prime divisors on

normal varieties.

In the firet part of this theais, the construction of the modull
gcheme will be reduced to & ;iréblem of finding a quotient by the action
of a group. In the second, some general results on such quotients
are presented, In the third, the quotient in question is shown to exist,
once & key construction, presented in section four, is carried out.
One appendix deals with some tools for studying the behaviour of
cohomology in & base extension; another with the specialization of
Jacobians.

I would like to express my indebtédness to Professors Tate

and Zariski for thelr encouragement; to T. Matsusaka for the crucial

suggestion that projective families of abelian varieties may be simpler



whe

in strueture than projective families of space curves) and to
Grothendieck and Milbert withans whase work on achemaes aid ine
variant fheory respostively I would naver have thought this preblem
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Section 1. Pluri-Canonical Embeddings of Curves

For simplicity, we shall say:

DEFINITION. X a scheme, A —>X a proper simple morphism
all of whose geometric fibres are curves of genus g, then A is an alge-

braic family of curves of genus g.

We shall sometimes drop "of curves of genus g" if no confusion

is possible. Because the following is not entirely well-known, recall:
DEFINITION. A scheme G ow}er a scheme 8 is a ‘uiauvo
group scheme over 8 if S-morphisms
) G >s< G—>»8
i) G~—>C
i) 8—>G
are given satisfying the usual identities for multiplication inverse and

{dentity respectively; if 8 = Z, G is an absalute group scheme,

DEFINITION., A relative group scheme G/5 is naid to operate

on & scheme X/S if an S-morphism

o>s<‘x-9:a»x
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is given satisfying the usual identities. The letter ¢’ will always be

used for such morphisms below,

The central definition of this section {s:

DEFINITION.  An algebraic family A —<2 5 K, and an operation

of an absolute group scheme G on K is a canonical triple (A, K, G)

if both of the following hold:

1) for all algebraic ,f‘ux_ﬂliu B -LDY , there is an open covering

(U‘} of Y and morphisms £ 1 U, —>K and U, -isomorphisms:
B
£ (U‘) = (Aﬁut)‘i
2) given f£,,£,1 Y —> K, then there is a Y-isomorphism
(A3 Y)‘1 e ] ﬂ‘z

if md only {f there is & motplihm gt Y —> G such that

g xf)
Y cmenrp G XK
(1) o
K

commutes,
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The following conssquence is the motivation of this definition:

PROPOSITION 1. I (A, K, G) .is a canonical triple, then there

Jdaal-l gorres ) hemes (M, ¢). and mor-
phisms K ——> M _guch that o e |
QAR sttt I

o« T
| K s My "
. commutes,

Proof; Let @7 A —> K be the given morphism, then to an
invariant scheme (M, #), assaciate f = §(©) : K—~> M. To see the
commtiattitgiity.of (2, apply the z"‘" property of a canonical triple to
£

1
phism

. 6‘" ‘}. = :z,:‘: G XK~—> K. Wlt_.ﬁ!bllws that there i{s a G X K-isomor-

[AF(GXK)] == [Aﬁ(axxn *z @

Let the projections be called
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&1 t [A%(GXK)] .—> G XK

é_-z t [Aﬁttqu)l'z——»oxx @

mn"'z"(@'.""z "(62)"(0‘1)"“3, o6 af 0,

Convoruly. uy 1(-5—-» M 1is given, and let us construct i
For all algebraic familtes B —E> ¥, let {v, } be the open covering

of Y, and l‘ t U, —~> K the morphisms given by the 1 prop.grty of

canonical triples. Define #(g) | U by fef,.

ap U, N U’ o £ 0 f‘ cfe ‘j_’ and (b) the compatibility property (¥}, As

for (a), note that there are un U 5 {somorphisms

We must show (a)

[Ag (V) = (U, ) = AR N Y] Y

by the cholice of ‘i and I, { hence by the znd property of canonical

triples, there is a morphism

such that the left triangle below commutes:
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gij < § ¥2
Ulr\ "3 ety (X B> K
(3 £ 6 £
K- > M

S8ince, by assumption, the oqiur‘q commutes, the outer triangle
' commutes, hence

!ij Bf.oyz"(guXﬁ) =fe L

(b) is proven by a similar argument. Q.K.D.

The usefulness of a e;nonicd triple is therefore clear. To
:conuruét 0;10. we phtll use thc Hilbert schemes which Grothendieck
has recently defined, These lchom;t are a variant of Chow varieties,
and, in fact the part of the Hilbert scheme we need would seem to be
isomorphic to part of a "Chow model", that is to say, the closure '1n
integral projocd\r_o space ‘aN of a Chow variety in AEN >£ Q , (or better
the locus of solutions of the canonical integral equa’tion?which define
the Chow variety = which in general define an ideal such that primes
p are in some of ite isclated prime ideals}. However, in his report
[6] . Part 1V, Grothendieck has sketched the proof of very strong

theorems about his Hilbert schemes — hence in this case about Chow
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models too ~— which in particular give one a description of its infini-
tesimal propﬂie-. These are necessary {or proving the defining
prope‘riy of & canonical triple in the case the Y of the definition is not
;'educed (for example, i! Y = Spec A, A an Artin local ring); and for
proving that the K we obtain is normal (in !ut. timplc over Z). To
the best of my knowledge, no analogous ruult- are knowu for Chow
coordiut“. In fact Grothendieck shows (and ho even takes it as his
defining ‘proporty) that, £§r every n, polynomiﬂ P Lin 2. and noetherian

schemes X

= (#) there is a 1-1 correspondence between closed sub-schemes
YcC X ng such that O'Y is flat over X, and for one and hence
all x € X, the Hilbert characteristic polynomial of YX K(x)

Czu( ) is P{X),and morphisms asx-»uuh.‘?@ m,,,g(,gx

-being the Hilbert scheme,

The analogous classical result is, for all n, m;, 4 and normal varieties

V over a fleld k, of charackeristic P,

{# ¢%) there {s a 1-1 correspondence between positive cycles
Z on VXP} suchthatif suppZ = UZ,, then v, : Z, —> V is
an open morphism, and for one, and hence all simple points

x €V the cycle
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[z (xx ER)]

on Pyx) is purely of dimension m, and degree 4, and has

no component with multiplicity divisible by p and morphisms

d

g1V Chow ?‘d , where Chgw:“' is a suitable open subset

of a Chow Variety over k.

This ¢an probably be generalized to ""Chow models" over Z,
and normal models V instead of varieties; and in that case it seems
clear that except for the two points noted above. Chow coordinates
élu#;very diiferent classical techniques could be used in this section,

Fix any n2 3, and let ¥, = mw BH{ZTC

PROPOSITION-DEFINITION 2. There exists a unique ve-

duced sgb-scheme K, < # guch that the geometrie points of K

with values in Q. are precisely the subeschemes C C P(g -1)(za~ t)“‘
) e over O, C ¢ any byperplang, C a gury
of genus g, uul such gzgt the line bundle on C induced by this em«
bedding is tsomorphic to o(nK) (e, [QF/, 1®™).

proet: Write PEVEN1. p tor smplicity. By the re-
mark of p. 99 of [6], Part IV, there {5 an open subset U,C &
parametrizing the sub=schemea C C X X' P such that C {s simple
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and sbsolutely irreducible over X, Since the Hilbert characteristic
polynomial of the geometric fibres is (g -1)}(2nX-1), it follows that
‘ @7

these fibres are indeed curves of genus g. Let Al —-!—D Ul be:the
algebraic family of curves induced, via #, from the {dentity U, - Uy

' R 3
we are also given Alc Ul XP, Let P be the dusl projective space
to P, and 1 C'g xg* the divisor of incident points and hyperplanes.
St B(X) = (g -1{20X -1}, then {s Grothendieck's terminology, there

{s a natural morphismi

Po _f Po *
Hilb /P,,—-—-> mn’pxp*/g* o2 #nx£ .

Let E = Projacttonu [Supp (U x P‘*) N Supp (Imugo f)]. E is clearly
a closed subset of U ; let U -U «E, and A - (U ). It.ie
immediate that the geometric points of . U corrupond precisely to
the curves in Al not contained in any hyperplane. Finally, let L be
the line bundle induced on A, by hyperplanes of P via A, > U,

T
xz——‘—» P. Look at:

PP (“1@3'@@@-; /U;X -(n-n>. 4

& The definition of the sheaf ‘Q'X /Y for any simple morphism X —>Y
can be found in [7], p. 1, Part 1.
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Define K C U, to be the reduced sub-scheme with support = supp X .
To prove that this is precisely the locus of geometric points with the
last property required, note that if C.fl {s a geometric fibre of &
lying over the ordinary fibre Cx. for x € Uz ’ qd La ’ L! stand
for the line bundles induced on these curves by L, then noting that

deg (c,(L)) = n{2g - 2) becaus@ of the:coefficiént of Xin Fy,

~ : "
L.Q- [~8 ,Q.cn/

1 s s Y
R L B
_ ~(n-1)\
<= H(L® [ﬂiﬂ /n] £ (0)
-{n-1)
PN H*G.,@[azx,m] >¢ o .

and by Proposition 7 of Appendix 1, this last cohomology group is

1 1 “jo-lh
= (R®) L®[QA v, | @Kr(x) .
' 2

hence:

<= $x ¢ (0) . Q.E.D.
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Let An be the algebraic family induced over Kn by

K AN, »andlet v 1A —> K . Then

PROPOSITION 3. Let L be the line bundle induced on An

"
An > Knx g-—-é—i' ~I:. There exists

bx hyperplane sections via
a line hundle Lo on Kn such that

n

1
L = (w: L°)®E1An“‘n] .

Proof: This is essentially an application of the "see-saw"

principle, Let
1 e 0
Es L®(‘O'A /K ) ’ LO = (R 'n)‘m) .
n' " n

1 claim L, is locally free, rank}, and for all y € K ., Lo® Kly)

=2 HO(E ® ¥(y)), which implies the result — since there /i. a canon~

{cal homomorphiem

n
1
(':LD)®|E]’AnIKn:) —> L .

which restricted to each fibre Cy is
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1-101..(9.().1 )?n'gnl n-—->1..
7y Ry °y/%(y) y

— an isomorphism eince

i 1 nﬁ‘
£, L
X. c /K(Y)] Y

But by Proposition 8 of Appendix 1, as I(n is reduced, and
Ey = E@Kkly) & o, forevery y€K , it follows that L, is
Sy

indeed locally free, ratik 1 such that L ®K(y) o H (E o Q.E. D.

COROLLARY,
P #0. ol ") 2 pr% (L) 2K x P . °
- An/l(n ) 2ol T T At

‘Now let PGL{N) be the absolute group scheme of projective

transformations of '?__": in fact,
PGL{N) = open subset of Proj{&[uoo. U Yottt .UNN]}

where dot‘(Uu) # 0. Its group structure is induced by the Hopf

5 The symbol P(E), E a locally free sheaf is defined on p. 71, of
[5] . Chapter II.
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algebra structure on its homogbne'oui'é‘*bordlnato ring!

U—»ZU ®U

k=0

giving a homomorphism
. 1"

Let C!’un = PGL{(g -1){2n -1)-1). Clearly Gn operates on an. and

by the invariance of its defining property also on Kn .

THEOREM 1. (An. Kn' Gn) is a canonical triple for any

Proof: Start with an algebraic family B Lo X. We seek

an open covering (Ui} of X and morphisms { : U —> K  euch that

there is a U‘-ilomorph“m

iy =2, (A 2 u>‘1 .
h

n
Consider E = (Roﬂ' )((Q.lslx) ) . By Proposition 7 of Appendix 1, it

follows E is locally free, and for all y € X,
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n
0 1
EQily)=~ H (ﬂ. ) ) .
( BY/K(Y)

Pick U, so that E{ U, is free, and for simplicity write X=U.,
' and assume E is free. Choose a basis of E, hence an identification
P(E}) 2 XX P, where P = g‘"l)‘ 2n-1)-1 again. Consider the usual

rational map

B——>XXP
(9 | \ /
x

1claim that if n > 3, this is & closed immersion, hence {after trivially
checking the Hilbert characteristic function) defines a morphism
f1X—p ‘#n , induecing the family B. But it {s a well known class-
ical fact that for all points y € B the {nduced t'nap By a4 "‘EK(Y) is

a closed immersion. Therefore B —> X X P {s well defined, i.e. a
morphism, and is 1-1, (to be well defined means for any point x of B
there is a local section of E not zero at x ; but if there is such a

section in

n
0 A 4
H [[Q Iy ,
(( B'(x)/x(ﬂ' (X‘))) )
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it lifts to & local section in E), By thé Stein factorization B—» X X P
‘16 a finite morphism, Let x€ B and y € XX P its image. We still
muut show O = O-/O{ where 0 —> OC=p 0‘y-—-> O— . Butif

& c cs'y is the tde.l generated by the mlximum ideal of O}( x), X"
then we know oL /.F o, " o—y/ou 5. Therefore o'x/ o—Y is a
finite O -module such that Le(o ) = &,/ O, hence by

Nakayama's lemma, 0:‘/ O’y s (0), 1.e, o, " cyy/ o .

We still must show that the morphism f factors: X —>K e #n ~.
Clearly Supp(Image f) C Supp (Kn)'-, hence f factors if X is reduced.
To see this in general, it suffices to prove that for all Artin local
rings Ao , and morphisms Ao > X, then £+ g {actors through
K . But given any such A,, by a result of 1. Cohen [2]), Corollary 2,
p. 89, there is a complete regular local ring A, such that Ab = Allah

some primary OC. Consider the induced algebraic family B,

:Bl < : lb > B
(S) n wo ll’
X

8pec Al G B peC Ao ——>

By a result of Grothendieck, [9], Theorem 9, p. 13, there exists

an algebraic family B, over Al also inducing Bo. The free sheaf

1
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By
0 1 '
E =(Rw) ((‘O'BIIAI> )

is such that
El@‘AOan s “‘o'o’ ((.a; h Y)zn DA,
o' 7o %

(Proposition 7 of Appendix 1), .The chosen basis of E induces one

of Eo. and this may be lifted to & bawsis of l;x. We obtain

AT T

Spec Al?t +— §pec Ao."""

(6)

\L Y Y

(E,) ¢ P(E,) — P(E)

b R |

which commutes. As above B,~> P, isa closed immersion.
1

Hence we obtain



: Ao -—-L—> X
£
("
A\l #n
\\
"y
K
n

Since Al {§ reduced, the factorisation along the dotted line exists,
hence also {¢g factors through K‘ This cornpletes the proof of

the first property of a canonical triple.

Sscandly, supposs ll' iz t X —> Kn are given and a

X 7£lomorpﬁilm

(An -3 x) [ = (An ﬁn__x»a
I [

Bl Bl

There oxist embeddings

j‘tBtQ-—bxxa. is=s), 2,

inducing back the morphisms 1‘ t X —> Kn » 121, 2, according to
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the definition of Hilbert schémes. Let v 81 -3 X, and let

E, = (R'n) ((“’i‘/x)n) :

By the Gorollary of Proposition 3, there are canonical X-isomorphisms

XXP 2 P(E,)
| \x /

and the homorphhm of the ‘i" induces an X-isomorphism

P(Bl)-*ﬁ. P(!:z). Composing, let

F1XX P X-P(E) .’.*.‘_.>_P(mz).4._~_ XXxP

NV

Now the group scheme PGlL{(g-1)(2n=1)-1) = Gn has the fundamental

property:

.~ .
Hom (X, On) = Autx(x X,;P.) .
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(S8ee [6), IV, p. 19 and 11, p 13). Th\;. / induces gt X —>» Gn .

It remains to verify that

x g x4 :
—— an K.

(8) 2 l‘

Kn commutes.

But consider:

B C-..-.--pp(gl) <.....-_-.xxp

1

(9) ¢ ¢ 4

B,C———> P(E,) 2 XXP

By construction, the inner squares commuts, hence the rectangle

does also, But by the relation of § and g, it follows that:

& X
g mix%e Gx(xxP)

- K/
NZ e
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'I‘hirdero (8) commutes (byk‘doflnition of the induced operation of
G, on 7_#‘).
The converse of the second property of canonical triples {s

immediate. |autb:h

COROLLARY OF PROOF. K_ is simple over % .

Proofi By Grothendieck's criterion, Theorem 3.1, Part 3,
{7] . this is equivalent to1 for a1l Artin local rings Ajsand Ay s Al/o_(.

and morphisms

Spec A, —> K

there {9 & factorisation

Spec A ~—>Bpec A~ K_ .

But,in effect, this is exactly what we showed above, except that there
Al was a complete, regular -local ring, in the part of the proef using
diagrams (8), (6) and (7). The argument thers applies verbatim.

ﬁ Q.E. D,
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Section 2. Generalities on Quotients by Algebraic Groups.

Suppose an absolute group echeme G, a scheme K, and an

operation of G on K are given.

DEFINITION: A scheme Q and a morphism § i K—>» Q
will be called a quotient pair (Q,¥) if

G X K —Zy-

(v L" 2 e
-L——)-' o] . commutes,

(2) for all algebraically closed fields (2, § set up an {somorphism

between the orbits Hom( (), , K)/Hom( () ,G) and the geometrie
points Hom( 2, Q),

(3) ¢ is an open morphism,

(4) the sheaf 07, consists of the invariant functions of Oy in the
following sense: VUC Q open, nO'Q.U) 2{fe F(O'K.fl(U))l

if fdefines f ;9"1(0) e A{t_l , then

& x §"H(U) = ¢ }(V)

S’

g*Y(u) St al commutes} .

The uniqueness of such a pair follows from:
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PROPOSITION 4. Given any scheme P, and morphism ¥: K
«> P such that

G XK —& e K
T
K % —- P commutes,

there {s » unique moyphism f1Q —>P suchthat ¥ =1 ,¢ .

_Proof; Let x €Q, By (2), the set VY (#°(x)) conststa of
exactly one point y € P, Let VCP be opéen and tllinc. 4 €V. By
(3, HV YY) CQ 1a open, Let U CH(Y *HV)) be open and affine,
= €U, We shall define f locally by a homomorphisni:

[Op V)= [((6g.0) .

Namely, if g € [‘( Ope V), g defines g't V oead ,é}

. hence g" sﬂ'l(u)
mﬁ-g" , and it s easy to verify the condition of (¢). Hence g" defines
g e f‘(O’Q. U) by (4). This map is obvicusly a homomorphism; that

these local f'a agree, and that the final f 18 unlqﬁe follows clearly, Q.E.D,
The concept of a quotient becomes somewhat more minagable

in light of:
THEOREM 2. If G, Kare models over Z, K normal and G

absolutely irreducible, then given § : K —»-0Q, (Q,9) ia s quotient
pair if and only if (1), (2) hold and (4*#) Q15 & normal model over Z.
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Proof:  Let us ‘tirat prove the sufficlency of these new
conditions. The fixst step is to show § is equidimensional. We
need!

LEMMA 1, X~f- ¥ of finite type, ¥ a noctherian scheme,
X {rreducible, snd f dominating. Then o

. ' N B :
X 2§ X eeenbos X oquidimensional 55> X wfes ¥ equidimansional.

Proofs Note that the ffbres of vy are merely ground field
exthﬁligeai of the fibres of £ . Q. E.D.

LEMMA 2. Xeded ¥-B> 2 of finite type, Z 8 noetherian
scheme, X frreduicible, and £ and g surject! ve, then

g o { equidimensional > g equidimenaional .

Prooft { and g surjective implies ¥ and Z are {rreducible.
Let 14,7y be the generic and en arbitrary point of Z respectively, ‘and
let y), ¥, be the generic point of Y, and:the generic point of any eomponent
C of g"'t(z‘z) veapectively. Also, let D be any component of l.l(yz).
Then we know

dim G > dim g lz,)

dim D 3 dim £"Hy,)
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hence
dim(g o f)’l(zl) = dim g,l(zl) + dim f-l(Yi)

dim C ¢« dim D

ia

% dm‘l‘[one component of (g f)ﬂ(zz)]

dim g o 0™

Therefore dim C = dim g*Hz,) . " Q.E.D,

‘Now G is {rreducible and dominates Z, and consequently ia
Therefore K X G ..--l->_ K is equi~

equidimensional over Z. & _ o s
dimensional, and factoring this by K X G —remmmmnomed- K6 K ceeermay K,
it follows by Lemma 2 that KEK'-:-L»- K {8 equidimensional.
Therefore bjr Lemma 1, K—g—‘-—>-0 is mMMmiml. Now by
Theorem 5, Section 4, Chapter III of [5], since Q is normal, it
follows K——»Q l8 an open morphism, ié. (3). Note that in this
argument we have not used the full strength of (2). _ In fact, we have

used precisely:

(25) ¢ is dominating, and the map of the orbits
Hom(Q , K)/Hom((). , G) ===~ Hom(Q2,Q) 1s l-1.

To prove (4), let f: ¢_1(U)——)- Al e giver satisfying: the condition

of (4).

® For example, note that if G —p-7, U C.G open, then v Uis
constructible, and dim Z = 1, hence U {s open or closed. Giirred —>U
not closed hence 7 is an open morphism. Hence by Theorem 53 Section 4,

Chapter II of [5], v is equidimensional.
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"x U with support the closure

Let F be the reduced subscheme of A
of the image of { X §. F is a model over,Z, hence it has a normal-
ization F_ . Moreover the dominating morphism ﬂ‘l(ﬂ) —p F

has & unique factorization:

gty Yeor T F

nor

since K is normal. I claim that the pair (F ., #) satisfies (1), (2;)
and (4% ) for the operation of G on ﬂ'l(U). For, first of all, consider:

a x ¢*{v) —T— ¢"v)

() l" 2 v l ,
i) X
; T

F .

Since f o 7 , = f o G, hence & oY o7y 8 &Y «0), and since

G xf !(U) ie lhtegral. feoosf ev 3 18 dominating, and @ birational,
it must follow that Y ¢ v, and Y « C"agree on the generie point of

G X fl(U). and hence agree. This proves (1) for (Fnor' Y (25)
follows since the map Hom((), K)/Hom({L,G) = Hom((2 ,Q) factors
thru Hom(Q, ¥, ) by (1), and hence Hom({), K}/Hom(, G)-

w3 Hom({),, Foo r) rmut be 1+, Therefore by the first part of the

proof, it follows VY : ﬁ';(U) ~~> F_ . 18 an open morphism, and in
particular, Y (ﬂ'l(U)) = (Fnor)o is openin F ., hence is a model
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{teelf. Consider the morphism (Fnor)o --e»—U. By what we have
shown I induces an isomorphism of geom etric points, hence since
the characteristic is O, o s birational; hence since U {s normal,

is en {somorphism, Therefore we may define the composite

=] N
0L (g7 > Al vl !

which defines ' € [((04,U). This {' clearly induces f€ _ﬁ ¢' li(U'))
1t remains still to note that [(0g, U= [(o; ¥ Y(U)) 45 11, This

follows sinceff ¢ f l‘(U’)-----v)-‘l! is surjective, and U is:reduced.

Let us now prove the converse. Assume (Q,f) a quotient pair.
Then by (4), the local rings of Q are subrings of those of K, hence Q
{s locally integral, By (2), # ta surjective, hence Q is actually
integral. To show that Q is a normal model, let UC Q be affine and
open, R = [*(0r .U) First of all, let £ € quotient field of R, and
integrally dependent on R. Thenf € [ Ke ] "(U)) since K is normal,
and consider the diagram:

a x¢"{v) —F— 7"lv)

(12) T2 f

Lu) ——al

Since f = g/h, ‘g, h €R, therefore for x €G Xﬂ'l(U) generic,
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f(w 3("» s g(v zh»/h(* 3("»

. alet/a(ot)
. fot)

hence the diagram commutes, Therefore by (4), £ €R. It remasins
to show Q of finite type over %, Now R {s a countable get ¢ enmumerate
its elements f‘. ‘a. ‘sj ‘... m net

R, = 2l f30 *<» ISR .
Lat U_ * Spec Ry . Thers are canoniosl ovphlsms
FoHU) et U e o 00 e U,-—-—»—ﬁz—»- U —>Z.
Let An- « i g Moo <t
and a = ¢ 3 oo xrto
then A C e CACACA c o xekw .

By the descending chain condition on subvichemes of a nectherian
scheme, there exists an nry

Aﬂo » A%+‘ N s ® Aﬂ W ese »

(any n 2 ng), heace Opy = O in fact. Then let U = normalization of



the clogure of the image of Uin U . Since U is s normal model,
" .

there is a unigque factorization

vy —s u b-'ff--->Une .

Let @ : #*(U) —>T. Then (1), (2;) and (4*) hold for the pair (U, ),
hence by the first part of this proof, ?ls an open morphism. In
particular ’60 = ?(ﬂ"(l_l)) is also a normal model, and (’I‘fo.’a) satisfies
(1)s (2) and (4%). Hence by the first half of this theorem, (ffo.'i) is

a quotient pair for the action of G on d'l(U).' By Proposition ¢4,
éuotient pairs are unigue and U = G’o . Hence U is a model too.
Q. E. D,

In fact, we will not use the converse of this theorem. It is
lnteresting; however, insofar as it sheds some light on why Nagata [17)
was able to obtain his counter-example to Hilbert's i4th problem.

He had a group G/Q operating on Al‘é' some N, linearly. Even
projectivizing, his action is extrem ely non-hausdorff, and (23) is
far from holding. The proof above breaks down at the step where
you wish to conclude that the image of U in U, is open,

The following corollary is the precise result we will use in

the construction of modull :



COROLLARY: X (A,K,G)are a canpnical triple, K,G models
over Z, Kno romal, ggﬂ abgolntely frreducible, and for every p
b

ere .3 mi

#p
Ko >

guch that (1) and (2)) hold, and O is & model oyer Z, then the modull
scheme m !.a

Prools By Proposition 1 and Propoaftion 4, it suffices fo find
a quotient pair x-ﬁ‘-»-Q for the operation of G on K. By thé unique~
néss of quotients, 14 suffices to find one locally, e.g. for every p,
K(p) —-;-?-—-rop . But glven (2,0} satisfying (1) and (%), fixet
replace QP by its normalization Qp. . Then, just as in the pm( of
Theorem 2, ﬂ; ! x(p,---—»q; is an open morphism; set Q' = image
of ﬂ; . Then (0'1':‘ #;) sutisfies (1), (2) and (4%), hence {s a quotient
palr by Theorem 2. Q. E, D,

' 1of Z, then X, \ = X X Z/ y -
If X is any model of Z e 2 >§""‘(P)
A=



Section 3, The Construction of the Moduli Scheme

In this section, we shall construct the ‘'quotient” Qp with
the properties of the last Corolliry using any of the canonical triples
(A Kn' Cin). This construction does not depend on any general prin-
ciples for the existence of such quotients (which would be more satis-
factory), but on a reduction to a very simple situation where the quo-
tient Imay be explicitly constructed. This explicit work will be carried
out in Section 4, but we state the results here:

m
DEFINITION. Let (g“):‘c (5‘)"‘ e P"X.0e xP" Do the

open sub-scheme whose geometric points are thol‘“q-‘d}ugl‘ez&;
(xl. Y xm). x, € f_n.» such that, for all hyperplanes H Cx_n. if

m, points x, are € H, then

i IR
m

n+l

n m n,m 7_
DEFINITION. Let (E)) " = () /L . where A
= gymmetric group on m letters, operating on (‘g_n)m by permuting

the factors. This quotient exists by a standard result (See [ 7], Part$s,

L X/G means the quotient of X by the operation of G: if it exists.
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Section 1) depending on ,&m being finite and (Al:n)m being projective

over Z.
A

DEFINITION.  Let [(F)) ), C (E™)T' be the open subset

which {s the image of (P") .

THEOREM 3. (E™)J" is a principal fibre bundle over &

guasi-projective normal model Q over Z, with group PGI{n).

The proof will be given in Section 4.

COROLLARY. [(P")7'],/PGLIn) exists, and {s a quasi-

projective normal model “n. m 2ver 3‘2‘ .

Proof of Corollary: Let Q= (B.n);n/POMn) as in Theorem 3.

By unique;xea'u of Q, the operation of ’&m on mn’;n} induces ap 1
aperation of ,J/m on Q (the operation of ’&m and that of PGL{n)
commute with each othér). BSince Q is quasi-projective over Z,
Q/,&m = “n.m exists and is & quasieprojective normal model over
& By the universal mapping property of (&n)? - (gf)mlim .

there is a unique ¢ 1
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i, m

(Ehy ——— (2N, ],

(13) ¢

n,m

Q ety M

such tlut thio commutu‘ It follows immodiately that (Vi oL b o)

is a quottent patr for th. action of PGL(n) on [(g_n)mlo Q. E.D,

N

Using t'hﬁ. we can construct Q,. Fix n> 3, and p a prime,
and also an lnteger ¥ such that p¥ > 228 8. /47" | 14 g firat
part of the argument, we shall outline a procedure, symbolically
referred to as (P), for associating to any curve C, simple over a
field k of characteristic ¢ p (and,;a’b-qlutcly irreducible), a rational
g-2)'g

point over k in M 2g Where' m = pv ' o z“

/“I.m
Procedure (P): Firet, let J be the Jacobian variety of C,
also defined over k. Now, unfortunately the ®@-divisor of J 1is not

282, g

necessarily defined over k; however, the divisor class 2
so. In fact, if J {e constructed by Chow's method via the cycles of
degree N: (2g-2) for example, with the cycles in |[NK| acting as

origin, then the cycles of the linear systems



“38~
(N - DK 4 2(P, 4+ +Pg-l”

where Pl" ovs P‘.l are variable pdxlxtl’ of C, span a prime divisor
©' in J ratiomal over k. Over an algebraically closed fleld {2 O k,
" it 1s imrmediate that ©' is the image of © by J =D J, A(x) = 2x,

and therefore @' is algebraically equivalent to 1353, 0, and
(6") " z““‘”! . (0"
¢
» /‘ . ‘:u
By( the Riemann-Roch theorem for abelian varieties, (20],

o g
dimje’| = L2 -1

&

= /.( -]
(ad, ia fact, HY(O(@') =(0), 1>0). Embed J < L™ by |0']:

this is an embedding since z“’" > 3, and [18].

Consider the diagram
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- NS
}

k

1%

| where A(x)®mp” * x=am:+ x, and Image (e) = identity of J,

Let ¥, s(JXxk) : & sub-gcheme of J since k is & sube.
v J e

scheme of J via ¢, and immersions are stable undér products,
Consider Fv &8 & sub-scheme of gf 'l. Now l‘y i{s a reduced -
'qubéuchoihd since pXchar J i in fact, deg()\) = mz". hence IN( 0’”)
is an dgcbra over k of dimension mz‘; and since supp([F¥F v >§.D.]
consists of mz' distinct points, ['(O'w) must be a separable alge-
brs over k , and in particular has no niipotent elements. Therefore

Fv defines a O<cycle on"'g{:.l , and it has a Chow point:

. z'
A-1\m
a vc (gk : 0 rational over k .

Together with the canonical morphism, this defines
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— (M) m’®
. ¢

2g
-1
nl 1 Spec k--->(P/‘ )’:‘

a uttou.l point over k in (g'u °l . At this point we require:

LEMMAL A C P" an abelian variety of degree d,dimension g

doﬁnpd over an all bn.lunz closed fleld ., H C E_ ah lane

not contunlnl A, Thcnu “0 of the N = mz‘ points of order m on

A (ch‘ru"ﬂ‘tw .Q.Xm) s AYe in H\ ® then
N

" NO/N _<_ ﬂ,m Pl

Prooft Gonsider AtA=>A, Ax)em: x. Let Ybea
curve through the idontlty on A which is the intersection of A with
a linear space of appropriate dimension, Let h = (A H), then

)\'l(;{} muo tlm;:qh every point of order m, hence:

-1
Ny < (b AT,

()« X)),

= m®%m. ‘()A
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by Proposition 2, p. 92, and Thesrem 6, p. 109. of [13). Therefore
< 2 2
NOIN _<. ‘h' ,,m = d/m ® Q.E.Dl

Hence, in our case A = J, if we choose ¥ so that

m s p”t >~/U-q/?;3 s then

NO/N ._g/a-g!‘/mz </q'¢f//l;?-¢f s ll/u ,

consequently |
maye 6927,

{in fact. Therefore we may define & rational point over k in

: " , R :
M/u.l'mz' . . ., as the composition of of,, and ga-l. m2g+ Then

C —» o’t'; is the result of Procedure (¥).

Set Qp0 " M/‘*lo m?8 u_‘d write Kip Eolip * Ap (Aa)ip)
for convenience for the members of the canaonical triple localized out-

side p. We shall define a morphism ’Pp.vz K(p’ — Qp.v t let

x € K, . be its generic point, and let Cx/ K.(x) be the curve in A(

(p) p)
over x. Then let (?) associate to C_, the morphism "PO: Spec K(x)

—> Q . Then V¥ , as & rational map, is defined simply as the
PeY PsV ———
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clogure of 1’0.

PROPOSITION 8.

i) \PPN is & morphism

. . o
i) o x' 6 K(p) 7 ‘Pp.y(x') ¢ then y' is the image

of the rational point associated by (&) to the curve C_,in A(p) which

is the fibre over x'.

ool ,C x .

Proof: Lot [‘ Koy %9, be uu closed sub-stheme
which is the graph of "Pp o To prove (1), by Zariski's main theo-
Yem (ses Corollary 5, Theorem 2, Chapter Il of [8]), since K, o
is a normal model, it is enough to show that f Py — xm gives
an isomorphiam of the points of IN P> with those of K(’). Therefore
(1) and (i1) follow if we show that, given any x' € K( "’ U y"tKi{x')
—p QP {s the rational point associated by (@) to C o ¢ sud if

Y ,
x" 1 K(n') =~ K(p) is the rational point determined by :‘ + then the

image of

x" xy'": K(x‘)-—-—z»K(p)x Qp.\)

is the point of Fp ,sbove x! . It is enough, therefore, to show that
[}
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if R is any discrete, rank 1, valuation ring, and Spec R --Lb K(p)

is a dominating morphism which maps the closed point of Spec (R)

to x', then f can be lifted to a morphism h

FP.‘)
v,

8pec (R) —7—> K‘p’

(15)

(h is unique since R is a valuation ring!) mapping the closed point

of Spec (R) to the tmage of x"X y".

To show this, let

e (e g )

be the algebraic family induced ovof R. By Appendix 2, ARIR has
s Jacobian, or more simply, there is a relative group schome JR '
proper over R, whose generic and closed fibres are precisely the
Jacaobians of the generic and closed fibres of ARIR . Moreover, by
Appendix 2, thers is also an integral closed sub-scheme 0;‘ cC JR

which intersects the generic and closed fibres of J in precisely the



@' -divisors defined in (?). Note that the local rings of J; are
regular, since R itself in s regular local ring, and Jo —2-) R

'u s simple morphism ([ 7] , Part 2, Proposition 3.1). Therefore
0’-!3(0;!’ = LR is a line bundlo.. Also LR induces on the generic

‘and closed fibres of Jp the line bundles corresponding to the

.Q’ ~divigors: this h‘clou by what we claim about O'R ’ oxe’pz that
Isy might possibly-indice on the closed fibre the line bundle corre-
sponding to a multiple of @', Butas (0'3‘) !‘/Le g! on both fibres,
and as intersection multiplicity is preserved under lpqcuumion. )
this cannot lu.pjnn. ' By Proposition 7 of the first appendix,

(R v )(L )=(0), 1>0, and (R “I“R! -E’ is a free n-modulo
uductng to the cohomology groups l-t (010 1) at the generic and
closed points of R, i.e, tensored with the quotient and residue

field of R. Choosing & basis of Eo , we can define an embedding
e
In © Ex

which reduces to ones projectively equivalent-to the embeddings of
the generic and closed fibres obtained in the course of (¥); one cﬁ-
not be sure it reduces to the same embedding on the generic fibre
since the chosen basis of the tensor product of ER with the quotient

field of R may not come from & basis of ER‘ The closed sub-scheme
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: FV R is defined exactly as in (?), hence defines

:g ;js?oc R iep [éz:—l)l:lza]o — [@f“']":’zs}o — Qp.»’

exactly as in (@), By construction, it is clear that the images of
the generic and closed points of Spec (R) a re the points associated

by (@) to the corresponding fibres of Ag: Consequently,

: f X
Spec (R) —28 5 K(p)x Qp. v

(a8) maps the generic point to the generic point of fp v;
[

(b) maps the closed point to the image of x'"' X y" .

By (a), it factors through [" S By (b), the required result is

proven. ' Q.E.D,

In order to complete the construction of moduli, we must
construct ’p t l(“’) —>Q, satisfying the requirements of the

Corollary to Theorem 2. We shall take as ﬁp :
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)( va s X
PouN ® 1’}9. vox "Pp.voﬂ ‘Pp.N

where N>>0, vo = least n such that pn > z(z"'z). ‘n/,g! , and as

Q 1t
P

Q uclomuo!lmgodl((p) in Q X---XQP i
]

PlN P vo N

By Proposition 5, (Q_ .0 §.. 5) 8atisfies conditicn (1) of the Cor-
' VPN’ TP N

ollary, and clearly § PN is dominating. It remains to sxamine
’

Dy * (K(p) Q;('N K(pb, )

PIN.GPoN

that A DA
e Yo Yoal

chain condition on closed sub-schemes of the noetherian scheme

Dede'D A Dereer . By the descending

xmx }{‘p’ » there exists an N, such that A"o = ANo“ @ eeses
We must show that supp (ANO) = the imags of G(P)x K(p, under

6 x 1w, , and then we are finished. We require:

z [

LEMMA 2. A A, C P sbelian varieties over an algebra-

ically closed field (), of characteristic ¢ p. If for all £> Vo
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there exists a tranaformation T, € PGL(n) X (2 such that T, (A;)

and A 2 have the same points of oi‘dcz ‘p‘ » then there exists 2
trangformation T _ € PGL(n) X Q such that To.o(At) =A,.

Proof: Let G C PGL(n) x{) be the closed reduced sub~-
schemes whose points are the transformations T such that all points
of order p¥ on A, are contained in T(A)). Then G, DGy D oo
Since G £ 0 for any k, and since, by the deacending chein condition
on closed sub-schemes, there exists an N such that GN » Gun Boeeres,
it follows that some T is in n;’“okc PGL(n) X{2. Then every point
of order p'N. any N , of Ay 8 in T(A‘).' Bince p characteriatic (Q),
the union of all points of ovder p*, some N, arve Zapiski+dense in
A0 - Ay = T(A). Q. E.D.

Finally, if x,, x, are two geometric points of K(o) such that

® Xy isin Ay overy N, then consider the curves Cx‘ over x,

in Ag,), ond thelr Jacoblans J, C gg'l. Since x, x %, € Ay, it

follows that there {s a projective transformation T, of gg ! guch
'that the points of order 'pN on J*z are the same as those of TN(Jxl) .

B Let W C A. be the least closed subvariety of A, containing all
points of order “pN, every N. W is clearly invariefit under transla=
tions by the points of a closed subvariety containing the points of order
pN, any N, Hence W is a subgroup in fact, But W and A, have the
same number of points of order p, hence dim W = dim Az.zh.nd We=A,,
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By the lemma, J_ and J x, are projectively equivalent, hence

o
isomorphic as polarised Jacoblans. By Torelli's theorem (14],

C ’1' and c' are {somorphic, and by the properties of a canonical

y

ttﬂ?l.«'( thgro is a geometric point 6 of G(p) such that x,' = %, 0
in ] X ° re~
- .. ﬁxxz e !mp of‘ a(’) K(p’ under & X v, | ‘rhc require
ments of the Gorollary to Theorem 2 sre therefore completely

satisfied, and moduli exist.
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Section 4. The Operation of PGL{(n) on (gn)m

In this section, we shall prove Theorem 3. The methods are
those of classical (i.e. Hilbert and before) invariant theory., Letthe
t'h factor in ( zn’m have homogeneous coordinates x{:). x{". vee, xg’.

For all (n+ 1l)-triples 10. ‘1' Tty in of integers between 1 and m,

let
D ity oeeaiy, = . Det (x“k’) ,
0!l tim OSk‘lsn -t

The first step is a purely combinatorial result stating that suitably

many of these D's are not serc at a geometric point of (‘g_n)':t

PROPOSITION 6. Let P = (P R s Pm) be a geometric

point of (gn)x(!; , Then

(a) there exists N and No >0, and for every { between 1

and m, a monomial T[m in the D's such that TF{'“)(P) #.0, and the

degree ofﬂ“’_t_gxg’_tg N‘.gju._u_;gn-no._gj-i.

(b) there exists N > 0, and for every i¥ j integers between

| and m, a monemthl 77" 1n the D's such tnat 77" )Py # 0, and

the degree of.#i'” in xf:" is N, {f k#i,j, and N+1, if k=i,

lndN-l._‘l_f_kﬂj.
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Proof; Let E be the real vector space of dimension m,
and let H be the convex cone spanned by the points Pi con il
: R L

= (xl.xz.---.xm) where KtBO it 1 ¥ any Lk.xisliflnsometk.

and where (10. ces 1n) range ovérithe {nii1)-fiplesustch that

(P) # 0. Then there is a 1-1 correspondence between

fge°® odn

monomials v in D's such that «(P) ¢ 0, and positive integral sumas

D

of the points P (taking the exponent of & given D to the coefficient of
the f:orr“ponding( P). Then I claim (a) follows from the assertion
(1,1, +++ , 1) € Int (H). For this implies that every point with rational
coordinates sufficiently near (1,1, « ++, 1) i4 a positive rational sum

of the P's. Hence there is an Nl s uch that all points

(lwli o 2 ultl'#;tlo"°ol>

are such rational sums. Therefore, for N = NINO large enough,
(N, N,*** N, N - _No. N, *** , N} are positive integral sums of the
P's, hence (a). Now if LV PR 1) € Int (H), there is a linear
functional on E, zeroat (1,1, «+* , 1) and non-positive on H, f.e.

3@1. az. cecsa such that

() Zutkf_o i Dio.---.ik‘p’” ;



_ m
(ii) Z o = 0 .

i=1

Say without loss aof generality that o2 e, 2> o"n' + Pick the
’uquopéo 110" il’ vee, in as follows: 10 =1 ll = gmallest { such
that P, ¢ 'Pio‘ $ 1, = smallest { such that P, £ line spanned by

P

{o
m

.,1?',‘x in E‘n: $ 13 = gmallest { such that Pi ﬁ plans spanned by
Py Py Py, d0 B" i ete, 1t follows from the hypothesis P € (B")

that i -1 <(m/n¢)(since Py Py Pyyeoe s i -1 all'lie in a hyper-
plane). Therefore, if A= [m/n#l], 1 < /4% 1, hence.
n
o > . E a,
/u k=0

2 ot pon,
“ 3/“'“1*/“'“';«4-1 .

But therefore t;uﬂf_o.henco
/1- , 4 /A4 na > M a +(m-u)a
I /u+1-/" “ /47 ue1
m
_>_ ul'l- ai = 0 s

i=1 1=/A+1
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Therefore all inequalities are equalities, and by the last one,
a=a, = e = a/’“ ' “d;u-u";‘a.u‘ veema and by the first
one, a*l = atz B e = a‘n ’ agd by the second, o‘n s ;a-n . Conse-
quently, ‘°l =a, = set@ma = 0. Therefore (a) is proven,

To prove (b), for note that for { # J between 1 and m R
"th;_oro eﬂ.ltl’ il’ sve, %nl such that |

Dioi‘o"‘ o‘n‘P) " 0

Djoilo"’ltn‘p) e -

For if this were not 80, one sees sasily that there would be two
hyperplanes, Hl th rough P‘. ‘and Hz through Pj such that every
point P, was on H, or l;!z . But < m/2 points (Pi) are on any one

hyperplane, so this is impossible, Then set

1.9 _ | . Ny-1
T-r %’Dipila“'l‘n (Djl‘ll""‘hn) 0

. TT(*I) oy ,TT(ln).TTU) )

Q. E.D.
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Before proving Theorem 3, let me make precise the mean-

ing of principle fibre bundle:

DEFINITION. X is said to be a principal fibre bundle over
Y with group G, where X, Y, and G are schemes over 8, if (a)
there is an s-opq?ation GyX ....‘Z'....;, X of G on X, (b) thereis a

S8-morphism f: X—>Y, such that

ng—ﬂ—px

VR l‘z ‘14

X o> ¥ ) commutes,

-
(2) ~ There is an open covering {U } of Y, and S-morphisms
:U ~~» X such that f 8 =1dentlty. and G§U —-ti—-bﬁ (Ui’

: X8

given by G>S<U Gf-' (vi)_——% ' (U‘) is an isomorphism,

THEOREM 3. (5“)’;’ is a principal fibre bundle over a

quasi-projective normal model Q, over Z , with group PGL{n).

Proof: Let 8 x‘w[ ’ K;i). . f-] +« RC 8 the sub-ring

generated by monomials of equal degree in each set of variables

x‘ ). i.e. generited by xm {2) R X{m) +  Let
h m
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sogét'Q'.D .-oc].lﬂdR SSof\R.

iOI"'lin 0

(A) Ro {s finitely generated.

Proof of (A): ' Notice that Ro is generated by monomials in

the D’s which are of equal deyree in each set of variables xﬂ" . U

‘;‘e ilit tho D's as D"'. Dl’ e'ea ; DN 5 ﬁun Ro is generated by the

mqn@inials D: l, D:z RETEI D;N such that

| 'xm sccurs x‘_" occurs X(m) occurs

e :
in D1 in Di in I.'{1

But Gordon ([4]), P 199) has proved the leﬁmaz

LEMMA 1. Qiven a finite set of homogeneous linear equa-

tions with integral coefficients, thera is a finite set of positive inte-

gral solutions such that every other positive integral solution is a

positive integral combination of the given solutions.

This {mplies that there is a finite set of such monomials so

that every other is a monomial in these monomials. Q.E.D.
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Recall the lemma, [15]:

LEMMA 2. R = Z ® Rn uraded ring, finitely generated

n=0
over R, . There oxists sn N. such that R(N) = Z:o R N is finitely

generated by elements of R(N)l = RN over Ro )

Apply this lemma to R, and consider the inclusion of graded
rings Ro(N) CR(N). Now R is the homogeneous coordinate ring of
the well-known Segre model for (gn)m. Therefore Proj _R(N)a (lg_n)m
too, Let Q = Proj RO(N) , & projective model over Z. The inclusion

RO(N) C R(N) induces a rational map WY1 (g:‘)m —_— Q.
{B) "P restricted to (gr):‘ is a morphiam.

Proof of (B}t As usual, this is equivalent to saying, if P is
a geometric point of (gn)? » then there exists an a € li.o(N)1 such
that o(P) ¢ 0. But by part (a) of Proposition 6, TT“) RN Tr(m)
is a homogeneous element of RO(N) ,» not vanishing at P. Since

RO(N) is generated over Z by RO(N)I . some a as required must

Let Y = vV ["(an)? . It is immediate by the elementary

properties of determinants that
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PaLm) X (BNT —Z— (27

(16) 2 - l

(gn):l ——-Y——-> -Z)- commutes,

Now let a geometric point P € (E") be fixed. We wish to
‘show that there is an open U CcqQ ., VY(P) € U, and a morphism

By~ ( E;n).': such thatt -

(1) Y ¢ 8 = identity

(41) U XPGL{n) --‘-—b '\P'I(U) given by 6 ¢ (8 X identity)

is an {somorphiem.

When this is proven, it follows that ((gn)!:) = Q is open
{n Q, hence Q is a modal over Z, over which (xn)': is a principal
fibre bundle. It follows immediately that Q is the quotient of BNy
by PGL(n), hence is normal by Theorem 2. Therefore the theorem

will be complstely proven.

To construct S, we use a so-called Typische Darstellung.

Namely, seek:
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(1) xk.’e(no),u y 0<k<n, 1<j<m

(2) o € 80 v 1€§<m, homo;oneom in x‘:’ , all k

J

(3) | q’kes » 0< i,k <n, homogeneous in x(f).tlll

with dagree independent of i,k (but possibly dependent on 7)) ,

such thati
v n .
(‘) ujxij’ = Z ‘i.klk.J ] Of_'is‘_n. 15]5!’! ’
ks

Their existence follows by Proposition é, if we fix any sub-
seript o , and also one (n + l)~ttupla io. o ee "n such that

D, 4 (P) # 0 , and then set:
0" " *m

No‘l a

‘l', lklj . (D10011.-o-o‘n) Dioyi.-.zlitvj."‘.‘_n.ﬁ("’)

.T‘-,l-(lo- 9 .., -TT“"' a) .'ﬂ’(to). cos .Tr(ln)
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(2%) a, = (D

' . 1’)N0'Tr(a.j)'ﬂ-“o,a)'
. '*n :

10- ilo

e TV T, el TR

’ | : ] ' we 1Tl i
(3') 6‘1,1"'”-“0 o) ... ‘TT(ik o) ... -TT“" a)'xi K

Then (*) follows by moans of the standard identity:

n
’ - §)) . 5{ik)
(*") D*o""‘inxi_ 'REOP‘O"“'/*I\:'J""'% X, .

What does this apparently complicated formula mean?
First of all, (6‘1‘_’} define a rat{onal map ¢ : (gn)m._,, PGL{n) ,
while for each § , {1k.j} d efine a rational map ‘6 —_— Alin « hence
all together define & rational map s Q- (gn)m « Define YUCQ
to be the set of points x such that &,J"(x) #$#0,all j. Then (*) implies

that s {s a morphiem on U, and § s a morphism on \P-I(U); and
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that the following composaed morphiem is the identity:

1p‘!(u)<M PGLn) X(BH™ = (BT .

Then (i) follows immediately, and to show (il), define g =P X d:x‘P’l(U)'
> UXPGIL{n). Then { ¢« g = identity follows from this identity. |
. To see that g * f = identity, note first that no m«triple P --..(Pl‘.sz.. Pm)
€ (™) X£2 has any stabiliser, i.0. if 6(T XP) =P, then T=1l,
‘where T € PGL{&) X {2. For, suppose that D‘o ix{(p) $0.
' '# ‘”
Since <(m/n+l)of the Pi li ¢ in any one hyperplane, it follows that
<m of the P1 lie in one of the hyperplanes I-lk " Hk spanned by
P

Pl ottt B oo P, Therefore, there is a P such that

0 k n La41
P1 2t _l'-"1 55 P£ form a projective base of p". G onsequently,

0 n n+l S
if T leaves every P, fixed, T is the identity. Therefore, it follows
that g * { is the identity on geometric points, and since U X PGl{n)

{s reduced, g *f is the identity. - Q.E.D.
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Appendix 1, Cohomology and Base Extension

Fix a flat, proper morphism f : X —> Y , and a locally {ree
sheaf E on X, Fix y€ Y, and let Xy = X ¥ K(y) be the fibre over
y.Ey=E ® O;ty be the sheaf induced on Xy by E. The problem
i{s to compare (th)(E) with Hq(Ey) « This question being local on
Y, sssume Y = Spec (A) is affine, and assume A is nostherian.

Let U, ***, Un be a finite covering of Xyiby.affine sets. Form

U
v _
the Gech cochain complex with respect to the covering (U‘} » with

sections of E -

c10—>c —2cteac?— o — "0 .

This is a complex of A-modules, and
#c) = H(E X « [UR'NE),Y)

since Y is affine, On the other hand, U, induces an affine covering
of Xy, for which the (":éch cochain complex, with sections of Ey

is:

C® Kkly): 00— Cl@ K(y) —> Cz@ K(y) =» o+ —> C @ Kly)—>0.
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Therefore H'(C @ Kiy)) = H'(Ey, Xy). To relate H'(C® K{y)

= Hl(tor?(g » KAY))) with H‘(g)@ k(y) = toro(ai(_c_:). e(y)), we use
the Spectral Sequences of Hyperhomology (see p. 146, formula (2. 4. 2)
of [8]). In our case, E being locally {free, and f being flat, it
follows that C ies flat over . A , i.e, torl(g » Ky =(0),1>0,
and one of the two sequences degenerates. Consequently, noting

that tor is right exact, we hl._vo'.in the usual notation,
tor ;P(HYG) s k(y) > HC @ k(y)

Notice that unlike most spectral sequences, this one is in the upper

left hand quadrant:

0 0 0

civens torZ(H™MG), XAy cer‘m"(;n. kly) HUC)® kly)

L]

*
L L3
L] [}

(1 7 . 0

....... torHAC), Kiy)  tor'(HYC), k(y) HIC)®kly)
TIONT tor (HX(C), kly))  tor(HIC), Kiy))  HAC)®kly)
..... g torz-(Hl(C), K(y) torl(Hl(C). K(y)) HI(C)QK‘?)

eree tor2HOC) Kiy) tor'tHYC), kly)  ®ACI®Ky)

0
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The dotted line represents a typical dz . Consequently, we have:

tor g (40D, X () T BBy, Xy)

From this apact’rp;l sequence, we need ohly a few results:

PROPOSITION 7.  If for any q, » HY(Ey, Xy) =(0) for

9>q, ‘_.h.‘!&mq.f)(m) is (0) near .y for q9>q, and 1{‘!9(3;7, Xy)

« (R90)(E) @ kly). If a » 0, then it aleo follows that (RIO)(E)

is locally {ree near y.

Proofi Usae decreasing induction on q. Say we know
(Rq.l)(li) = (0) near y for q' >q. Then by the spectral uqn‘nc.
HY(Ey, Ey) = (R¥(E) ® K(y) . and if 4 >q aleo, (RINE® kiy) = (0),
hence by Nakayama's lemma, (qu)(E) = (0) near y ., I qfo =0,

the spectral sequence consists of one horizontal line, hence
-p, 00 _ ~ 1
tor ((RIKE) , w(y) = (Ey, Xy) .

Therefore torl((Rof)E . ly)) = (0) , which implies (Rof)(E)Y is a

flat Ory-modulé (see [7] , part 4).



-63-

But, as is well known, (Rof)(E)y is therefore a free o;—module‘

Q.E.D.

8lightly stronger is:

PROPOSITION 8. If Y is reduced, and for q >q,

dim ,4(;», HYEy, Xy) is independent of y, then H%Ey, Xy)

" (R‘w{)m) @ Kk(y). If dim K Ay) H%(Ey. Xy) is also independent

of y, then (Rqof)(!:) is a locally free sheaf.

??“‘} Use decreasing induction on q, . Say the proposi-
tion is proven for qb >q, - Then we know Hq(Ey. Xy) is locally

free for q > L P hence the spactral sequence has the form:

»

s« » (RINE @ w(iy)

* 2

(18)

%
» £ 2 - '




b

Hence clearly H“o(Ey. Xy) aJ.(R%I)(E) ® kly) . Now suppose
also that dim K(y)ﬂqo(Ey. Xy) is independent of y. The proposi-

tion follows from:

LEMMA. J a coherent sheaf on a reduced noetherian

schome Y. U dim ., Z® k(y) ie indspendent of y € Y, then
J is & locally free sheat, B e
Proofi Fix y€ Y, andlet £, 1 6 J;;s {nduce a
basis of J;;'@ kly). By Nakayama's lemms, £, ",  opan
J N as an & y-moduh. 1 claim there are no relations. But
suppose ﬁ'ilf‘ "0, 8 € o'y' . Laet (0) ) NeeoN Pr in Ofy be
the decomposition of the (0) idesl, Les K‘ s quotient field of
0./}« Thenby assumption, the f, are indopendent in T x K.
. o T .

l;;neo "j} are all sero in ylfjt Therefore the s, are in

f{ - (0) e Q. K. D.
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Appendix 2, The Specialisation of Jacobians

Grothendieck has recently proved sweeping resulte on the
compatibility of specialization of generalized Picard va.r)i_at-i‘el. as
a corollary to the existence of Picard schemes attached to bio;d
classes of morphiems ([6]). For the case of specialization of
non«singular curves over rankl, discrete valuation rlngi; how-
ever, it is hardly necessary to refer to these new techniques.

The work of Chow, Igusa, Hironaka, and S8himura leaves ,onijyi:a
few details to complete, ([ 3], [10], [11], [12], and [19]). in ;flc‘t'.
Igusa in his first paper on fibre systems of elliptic curves proves
that the Jacobian of a non-asingular curve specializes cqmpp,t\’i_bly'
over an equi~characteristic specialization, His proof, in vi;;v of
Hironsika's and Shimura's work, goes over without modification to
the general case. For the sake of completeness, howaver, let me
sietch how the problem of setting up the Jacobian scheme of any

algebraic family A/X of curves is attacked taking Chow's method,

but the present terminology and Grothendieck's tochniquel"

One f{irst considers:

dx
_ d
e Ggagogh), *
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a scheme simple over X , and Al= HﬂbA(d)/x . Then we can

set up & proé;odure { 9.) » assigning to a point x € A(d) , a rational
point over {(x) of N, as fpllowu given x, there is a canpnical
D defines the lne bundle O (D)=L, . Let P = P(H (L, Ay))

3

5 + hence a canonical DCA_1f A_= A ‘fé(x‘) 3

a prﬁjectivo space over K (x), (* standing for the dual projectiva

space), Then the canonical map

A, —> P(H (L. A))

N

k(%)

' : *
defines a section of ) ! A XP —p A_, hence duslly a divisor
R x M x
HCA XP, H, in turn, defines
A ‘

Ry —~ d
kg-—;uur,Ax/K(x)__‘P(HllhA/x) ;E ix) .

, d
One can prove (a) H flat over P, (b) P —> Hube/K(x) an {immer-

sion. Then P C A(d) ))? K(x) defines ¥ (x}) —> A{, the sought-for
rational point.
Then, if X is integral, we can define the Jacobian scheme

J/X of A/X , as the closure of the image of the rational point
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corresponding t6 the generic point of A(d). ‘An analog of Proposi-
tion 8 can then be proven, by step-by-step tracing the compatibility
of ( @) with specialisation. Finally, picking d = (25 - 2)° N, a
relative group structure {s set up in the usual way, using as identity
thg following morphism X — J l.oet}: = P((Row)((ﬂ.;/x)N))‘ '
where v : A—> X and * rs tands for uw the dual projective

spaces. Then the usual

s reteiah o))
N/

defines dually, as in (?) » & divisor

HCP XA ,
X

hence & map (which is a morphism), }:—b Bile/x » which i{s, in
< . ' '
fact, an immaersion P T A(d). This defines X —> Hilb A(d)/X

which factors through J and defines the {dentity.

Finally, let us note how the relative @'-divisor is seen to
exist., Whether the reader prefers Grothendieck's construction,

Igusa's construction, or the one just outlined, there is in all cases
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a relative group scheme J/X (or J/8pec R , if the reader prefers

to look at that case), and an X-morphism

fo P AN (25 - 20— T .

rmmt coinoq from Chow's method, and also, if Grothendisck's
t_pggngéh is followed, from this alternative consideration: J is
canenically the ldentity component of the larger relative group
-chgmc classifying divisor classes of all degrees. 1( 3 /X s

the component classifying diviser classes of degree n, then

R

) J

{1) there is a canonical X«morphism

ﬂ:A-—-le

4{1) there is a canonical section

KiX—>7J

2g-2

Here ¢ is, of course, the Albunese morphism, and K comes; as

ususl, from the canonical line bundle .().it /K In any case, these

define



1)

)

444

-69-

¢(1) t A(i) —> J‘ by factoring through A({) ,

the composite

ix - ix

Ax-.: XA-ix—‘.—.——x-iDJ XOOOXJ MJ
X X 1x x1 i

{N) Az o' rn
K t JN(Z[-t) """)"JO ' uigc. the existence of a

seation o{"‘thg prlp‘cipal homaogeneous space "zg-z
over JO/‘ s hows that it, and its multiples, are
trivial, (as principal homogeneous spaces).

0

o = KN o g0 282D . g S I 2T .

In any case, assuming this last morphism defined, the

©' -divisor can slso be easily defined. Passing to an open subset

of X if necessary, there will be some rational (N - 1)-times pluri-

canonical divisor. Let it be represented by the section

K X —>A(N-1) « (2g - 2) .

Consider the composite:
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(g - )X [ _(3g-2)X
AXAX XA Lx‘i“““bmu 1)(1; “2) XA Xoor XA
X X X
e

iy A(N ¢ (35 @ 2)) ~—b T .

Then @ is the yeduced #ub-sehome with the image of this morphism

s support.
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