
ODE2D Trajectory Neuron.m

function [t,v1,v2] = ODE2D_Trajectory_Neuron(v1zero,v2zero,T,epsilon,w11,w12,w21,w22)
% function [t,v1,v2] = ODE2D_Trajectory_Neuron(v1zero,v2zero,T,epsilon,w11,w12,w21,w22)
%
% Numerically integrate the system of equations
%
% dv1/dt = -5*v1(t) + w11*atan(v1(t)) + w12*atan(v2(t))
% dv2/dt = -1*v2(t) + w21*atan(v1(t)) + w22*atan(v2(t))
%
% from 0 to T using a time-spacing of epsilon and with the
% initial conditions v1(0) = v1zero and v2(0) = v2zero.
%
% Returns a vector t = [0:epsilon:T] of time points
% and vectors v1 and v2 (the same size as t) containing
% the corresponding values of the functions v1 and v2
%
% Compare to ODE_Demo_Func.m

% Generate a vector of epsilon-spaced times from 0 to T.

t = [0:epsilon:T];

% The number of values of v1 and v2 is the same as the number of values in t.

n = length(t);

% Initialize the two vectors.

v1(1) = v1zero;
v2(1) = v2zero;

% Iterate through time and recursively update v1 and v2.

for k = 1:n-1
v1(k+1) = v1(k) + epsilon * (-5*v1(k) + w11*atan(v1(k)) + w12*atan(v2(k)));
v2(k+1) = v2(k) + epsilon * (-1*v2(k) + w21*atan(v1(k)) + w22*atan(v2(k)));

end

% Return to where the function was called.

return

1

ODE2D Neuron Demo.m

% Set the synaptic weights for the two neuron systerm.

w11 = 17; w12 = -13;
w21 = 4; w22 = -5;

%%
% Draw the DIRECTION FIELD for the two neuron system.
%%

ODE2D_Quiver_Neuron(-10,1,10,-10,1,10,w11,w12,w21,w22)

%%
% Plot some sample TRAJECTORIES.
%%

% Set up the constants for numerical integration.
% Start at time 0 until time 50 with a time step of .01.

T = 50; epsilon = .01;

% Get the (approximate) trajectory starting from (8,8) using numerical
% integration.

[t,v1,v2] = ODE2D_Trajectory_Neuron(8,8,T,epsilon,w11,w12,w21,w22);

% Plot the trajectory on the same graph as the direction field.

hold on
plot(v1,v2)
hold off

% Get the trajectory starting from (8,-8) and plot on the same graph.

[t,v1,v2] = ODE2D_Trajectory_Neuron(8,-8,T,epsilon,w11,w12,w21,w22);
hold on, plot(v1,v2), hold off

% Get the trajectories starting from (-8,8), (-8,-8), (.5,.5), (-.5,-.5)
% and plot on the same graph.

[t,v1,v2] = ODE2D_Trajectory_Neuron(-8,8,T,epsilon,w11,w12,w21,w22);
hold on, plot(v1,v2), hold off

[t,v1,v2] = ODE2D_Trajectory_Neuron(-8,-8,T,epsilon,w11,w12,w21,w22);
hold on, plot(v1,v2), hold off

[t,v1,v2] = ODE2D_Trajectory_Neuron(.5,.5,T,epsilon,w11,w12,w21,w22);
hold on, plot(v1,v2), hold off

[t,v1,v2] = ODE2D_Trajectory_Neuron(-.5,-.5,T,epsilon,w11,w12,w21,w22);
hold on, plot(v1,v2), hold off

2

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 1: Screen output for ODE2D Neuron Demo.m. The thick line is the trajectory starting from (8, 8).
The dots show the initial conditions. (The code for these illustrative features is not shown.)

3

Linear Sytem:
v̇1 = av1 + bv2

v̇2 = cv1 + dv2

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 2: Direction field and sample trajectories for linear system with (a, b, c, d) = (1,−1, 1, 3). Initial
starting points are all near (0, 0). Trajectories went too far at first (see below), but axis([-6 6 -6 6])
crops like above.

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
4

4

