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Abstract

A method of applying computational topology to quantify heterogenous uptake be-
havior across a time series of single-photon emission computed tomography (SPECT)
images of soft tissue murine tumors has been developed. This behavior cannot be cap-
tured by aggregate measures such as injected dose per gram (%ID/g). Methods: This
method converts a time series of raw data and ROI images into binary tree represen-
tations and persistence diagrams. The binary trees and persistence diagrams quantify
uptake behavior in neighborhoods of local maxima of intensity throughout a tumor
image. This method explores the effects of heterogeneity of uptake on the trends in
persistence by separately analyzing persistence points corresponding to high maxima
and persistence points corresponding to low maxima. The underlying mathematical
construction of this approach is of the zeroth dimension persistent homology. This
method has been applied to SPECT tumor images in inviCRO Study 1881-040 In-111,
which analyzes differences in aggregate uptake behavior between four mice injected
with radioactive tracer In-111 targeted antibody and four mice injected with radioac-
tive tracer In-111 control antibody. Results: Statistical analyses indicate that this
method effectively distinguishes localized uptake behavior in patients injected with
In-111 target antibody from those injected with In-111 control antibody. Separating
persistence points into high and low groups shows that there exists heterogenous up-
take behavior in patients injected with In-111 control antibody, while uptake behavior
in patients injected with In-111 target antibody appears homogenous. Discussion:
There is statistical evidence to suggest that this topological approach captures hetero-
geneity in the binding and uptake of control antibody in tumors in mice injected with
In-111 control antibody. This behavior is not present in the binding and uptake of
targeted antibody in tumors injected with In-111 target antibody.



Acknowledgements



Contents

1 Introduction 4
2 Background 4
2.1 Computational topology and Persistent Homology . . . . . . . .. ... ... 4
2.2 Morse theory . . . . . . . )
2.3 Tumor biology and drug targeting . . . . . . . .. ... .. ... ... ... )

3 Overview of Method 6
3.1 inviCRO Dataset . . . . . . . . . . . . . . 6
3.2 Approach . . . ... 7

4 Algorithm 7
4.1 Image Extraction . . . . . . . . . .. 7
4.2 MATLAB Pipeline . . . . . .. ... 8
4.2.1 Identification of Maxima . . . . . . . .. ... ... ... ... ... 8

4.3 Construction of optimal maxima neighborhoods . . . . . .. .. .. ... .. 9
4.3.1 Construction of Binary Trees . . . . . . .. ... ... ... ... .. 11

4.3.2 Construction of Persistence Diagrams . . . . . . . . .. ... ... .. 13

5 Results 14
5.1 Binary tree representations . . . . . . . ... 14
5.2 Persistence diagrams . . . . .. ... 15
5.3 Statistical analyses of Persistence diagrams . . . . . . . . ... .. ... ... 19
5.3.1 Kruskal-Wallis tests . . . . . . . ... .. ... ... ... 20

5.3.2 Random effects modeling on the X-coordinates of the persistence points 22

5.3.3 Random effects modeling on the Y-coordinates of the persistence points 22

6 %ID/g and tumor-to-heart ratio 26
7 Interpretation of Results 29
8 Conclusion 29
9 References 29



1 Introduction

Topology is an area of mathematics that studies the structure and connectedness of
objects. Properties of topological spaces can be quantified by analyzing the number of
connected components of a space in various dimensions. Specifically, persistent homology
is a method of detecting and quantifying topological information through a filtration of a
domain. In dimension 0, persistent homology analyzes the connected components in a space
as one descends through a filtration of its domain.

There are many applications of computational topology in biology, image analysis, and
data analysis. For example, in [3] computational topology techniques were successfully ap-
plied to classify liver lesions and in [4] discrete topology was used to extract vessel trees from
3-D images. In this thesis, persistent homology is utilized to analyze the effects of tumor
targeting antibodies.

Targeted drug therapies are designed to increase amount of treatment concentrated in
tumor while minimizing the amount of treatment concentrated in healthy tissue and organs.
Antibodies, a vehicle for targeted drug delivery, can be labeled with a radioactive isotope to
enable the study of antibody pharmacokinetics through imaging methods. Utilizing compu-
tational topology techniques, we have developed a method that is capable of quantifying local
Indium-111 (In-111) labeled antibody uptake behavior in single-photon emission computed
tomography (SPECT) images of murine tumors.

Due to natural biological processes, such as necrosis and angiogenesis, the concentration
of radio labeled antibodies will be unevenly distributed throughout a tumor. Information
about local uptake behavior cannot be captured by global measures such as percent injected
dose per gram (%ID/g). A new method that is capable of quantifying local, topological
information from SPECT images of murine tumors injected with targeted antibodies is pre-
sented in this thesis. Applying this method to decay corrected and normalized SPECT tumor
images in inviCRO Study 1881-040 In-111 differentiates between the local uptake behavior
in patients injected with target antibody and patients injected with the control antibody.

2 Background

2.1 Computational topology and Persistent Homology

Computational topology focuses on the quantification of topological structures in datas.
Applying a filtration to a data set allows one to use persistent homology and computational
topology to detect and quantify topological information from their data. In dimension zero,
persistent homology is concerned with the connected components in the data through a given
filtration.

Consider the dimension zero homology of a data structure represented by a 3-D array
of values, D. Let Fy C F; C ... C F, be a filtration of D such that Fy = min(F) and
F,, = max(F'). At each step in the filtration, F}, consider the set Dy = {x € D|x < F}}. In
persistent homology, the number of connected components at each step in the filtration is of
interest.

Persistence diagrams can be utilized to represent structural information of a data set. To



construct a dimension zero persistence diagram, a birth and death time is assigned to each
component. A component C is born at time C} if C € b, and C' ¢ D; for all j < b. The
component C dies at time Cjy if (i) there exist points ¢ € C' at time Cy; such that at time
Cy-1, c€ C"and CNC" =g at Fy_y, and (ii) component Cj | C. Condition (ii) is known
as the Elder Rule. A traditional persistence diagram is a scatter plot of points (Cy, Cy) for
each connected component.

In this thesis computational topology is utilized to analyze data of SPECT tumor images.
Due the structure of the dataset presented, a descending filtration of the tumor images has
been applied to each image and the values greater than a given filtration value at each stage
in the filtration of the tumor data are analyzed. In this analysis the Elder Rule is ignored
and the death of a component is defined as as the value at which is joins to an existing
connected component. A modification of the traditional persistence diagram is utilized to
represent the topological information

2.2 Morse theory

A Morse function is a smooth function with only non-degenerate critical points. Given
a Morse function, Morse theory allows one to analyze the structure of critical points, level
sets, and sub-level sets of the function on a given domain. Specifically, Morse theory extracts
topological information from the domain by only looking at the behavior of the function at
its critical points.

In the dataset presented in this thesis, each image is represented by a 3-D array of voxel
intensities, which are interpreted as values of a Morse function on a 3-D domain. The locally
generic nature of smoothed SPECT tumor images makes it reasonable to assume that the
data contain no degenerate critical points. Viewing the SPECT tumor image data as a Morse
function a 3-D domain, topological information can be extracted from different regions of the
tumors. Specifically, the uptake behavior of the tumor images can be quantified by locating
local maxima of the SPECT tumor images and analyzing regions around the maxima.

2.3 Tumor biology and drug targeting

Targeted cancer treatments have the potential to increase the amount of drug delivered
directly to the tumor while minimizing the amount of treatment concentrated in healthy areas
of the body. One method of drug targeting involves attaching treatment to antibodies with
specific tumor cell antigen binding sites. If the antibody successfully reaches the targeted
tumor cells it will then be internalized by the cell and degraded through chemical processes,
however, several other biological processes can either increase or decrease the concentration
of antibodies that reach the targeted tumor cells.

Complications in pre-clinical drug targeting studies arise because it is difficult to isolate
the binding effects of a targeted antibody. First, antibodies are radiolabeled with an isotope
so that the antibody can be tracked through imaging processes. Consequently, the radioac-
tive decay of the chosen isotope will decrease the amount of uptake behavior that can be
captured through imaging.

Second, the antibody can only reach the tumor through the blood. If the antibody is
cleared from the blood at a slower rate, then it can result in higher tumor uptake compared



to an antibody that clears the blood faster.

Third, the enhanced permeability and retention effect (EPR) can trap antibodies in tumor
tissue and therefore increase the antibody concentration. Tumor cells grow by simulating
new blood vessels through a process called angiogenesis. The rapid production of new blood
vessels results in abnormal vascular structure in tumor tissue which results in poor lymphatic
drainage. This is known as the EPR effect. Since antibodies are relatively large molecules
they can get trapped and accumulate in the tumor interstitial tissue. The EPR effect can also
cause antibodies to accumulate in the tumor at different rates, depending on their location
within the tumor. For example, antibodies might be slower to clear from necrotic regions of
the tumor due to decreased blood supply.

It is imperative to account for all of the processes that can effect antibody accumulation
and clearance in order to fully understand the binding rates of a targeted antibody. Analyzing
local regions of the tumor might provide additional information regarding the behavior of the
antibodies throughout the tumor. In this thesis various normalization techniques are applied
to analyze tumors injected with different antibodies, and the tumors are analyzed on a local
scale in an attempt to quantify both the binding rates of the antibodies and heterogeneity
within the tumors.

3 Overview of Method

3.1 inviCRO Dataset

inviCRO, a pre-clinical software company that focuses on the design and analysis of
imaging trial, provided SPECT image data of murine tumors for analysis. The topological
methods of analysis presented in this thesis have been applied to the SPECT data for eight
patients in inviCRO Study 1881-040 In-111. Each animal in this study has been injected
with a non-xenograft tumor from a mouse cell line. There are two groups in this study, one
group was injected with In-111 labeled targeting antibody and the other was injected with
In-111 control antibody. No treatment was given to either groups in this study.

The patients in this trial have been images at 3, 24, 48, and 72 hours after injection,
but in this thesis the hour 3 images are discarded as insignificant. Group 1 will refer to the
four patients injected with In-111 labeled targeting antibody (patients A1101-4) and Group
2 will refer to four patients injected with In-111 control antibody (patients A1105-8). The
images have been decay corrected using 67.32 hours as the radioactive half-life of In-111.
Uptake measures are in microcuries (pCi).

Two separate normalization techniques have been applied to these images. In the first
normalization, all images have been normalized by the mean intensity value of the corre-
sponding hour 24 image when calculating persistence. In the second normalization, each
tumor image has been normalized by the mean intensity value of the heart uptake of the
corresponding image. Heart normalization reduces the discrepancies in blood clearance rates
across the patients in an attempt to isolate the difference in binding rates of the two anti-
bodies.



3.2 Approach

A topologic approach for quantifying the the binding rates of targeted antibodies and
heterogeneity within the tumors was developed. The underlying mathematical construction
of this method is of the zeroth dimension persistent homology of the image filtered by
intensity. This method was implemented in a MATLAB pipeline that takes as its input a
time series of raw data and ROI images exported from VivoQuant, inviCRO’s image analysis
software, and produces both binary tree representations of the tumor images and a time series
of 2D scatter plots, called persistence diagrams.

The binary tree representations of the tumor images correspond to the zeroth dimension
persistent homology, or connected components, of the tumor image. The leaves of the tree
correspond to local maxima, while the internal branches represent two or more connected
components that have joined at some stage in a filtration of the tumor image. Converting
the binary trees into persistence diagrams provides a way to quantify the local behavior of
the tumor images.

The persistence diagrams measure heterogeneity across SPECT images by representing
the intensity behavior surrounding local maxima of intensity throughout each image. Com-
bining the persistence diagrams of a series of images taken at subsequent times produces a
time series persistence diagram.

Statistical analyses of the time series persistence diagrams show the significance of the
distinctions between the persistence diagrams representing the tumor features of the patients
in Group 1 and those representing the tumor features of the patients in Group 2. Various
normalization techniques were applied to the persistence diagrams in an attempt to isolate
the binding effects of the targeted antibody. The persistence diagrams were normalized by
initial time point, hour 24, in order to capture the relative change in antibody accumulation,
and separately by the heart’s antibody accumulation to capture the antibody binding rate.

In an attempt to analyze uptake behavior in different regions of the tumors, the per-
sistence points were separated into high and low classes based on the value of their corre-
sponding maxima. Analyses of the high and low time series persistence diagrams have been
compared to analyses of normalized percent injected dose per gram (%ID/g) and tumor-
to-heart ratio calculations on high, low, and all voxels to demonstrate that this method
successfully measures tumor heterogeneity which cannot be captured by standard, global
measures.

4 Algorithm

4.1 Image Extraction

SPECT image data was exported from VivoQuant using the cropping and 3-D ROI (re-
gion of interest) tool. Tumor ROI raw data for each SPECT image was imported into
MATLAB, along with cropped regions of non-tumor tissue and heart tissue for comparison.
Images were smoothed using a Gaussian smoothing algorithm with box-width 3 and decay
corrected using the 67.32 hour radioactive half-life of In-111. Images were separately normal-
ized by the mean intensity value of the corresponding hour 24 image and the mean intensity
value of the corresponding heart ROI when calculating persistence.



Figure 1: (a) A1107 H24 CT image and sagittal, coronal, and transverse SPECT images.
(b) A1107 H72 CT image and sagittal, coronal, and transverse SPECT images.

4.2 MATLAB Pipeline
Each image in the dataset was fed through a MATLAB pipeline for analysis.

4.2.1 Identification of Maxima

For each image, the pipeline identifies a collection of local maxima. A voxel is designated
as a local maximum if the intensity value M; for that voxel is strictly larger than the values
of the remaining voxels in a 3 X 3 x 3 box of voxels centered at the voxel of interest. The
location and uptake value of each maximum are recorded, and maxima whose uptake values
are lower than the 95th percentile of non-tumor tissue uptake are discarded.

For each stored maximum, the algorithm creates a connected neighborhood of voxels. It
maximizes the number of voxels in each neighborhood so that each neighborhood contains
exactly one maximum, no two maximum neighborhoods intersect, and for each neighborhood
the minimum uptake intensity value m; of the neighborhood occurs on the boundary.
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Figure 2: (a) VivoQuant cropped A1101 H72 tumor image (The axes have been flipped to
match the MATLAB images). (b) Maxima points of A1101 H72 tumor image. (c¢) Maxima
neighborhoods of highest 5 maxima of A1101 H72 tumor image.

4.3 Construction of optimal maxima neighborhoods

To find the optimal collection of neighborhoods around each maximum, the algorithm
first picks an intensity value, called an isovalue, between the first and second maxima value,
where the maxima values are ranked in descending order. Then, it takes all of the voxels in
the 3-D array whose value is greater than or equal to the isovalue and identifies connected
components, called isosurfaces. This process is repeated as isovalues are iteratively chosen
between critical points until all of the maxima have appeared in the level set. Once all of
the maxima appear in the level set, isovalues below the lowest maxima value are selected
until all of the components in the level set have joined to one connected component.

The surface information for each isovalue is store in a MATLAB array. The columns
of these arrays correspond to critical values and the rows correspond to isovalues. The
isosurfaces are identified in the following way:

1. Get dimension of smoothed image and build a mesh grid.

2. Use MATLAB?’s isosurface function to get the faces and vertices list of the voxels in
the isosurface. Use the face list to create an edge list, and then use the vertices list to
create an incidence matrix.

3. Use graphconcomp from MATLAB’s bioinformatics package to calculate the number
of connected components in the isosurface and match each vertex with a connected
component.

4. Covert each component’s vertex list into a Delaunay triangulation through MATLAB’s
delaunay Triangulation function and use MATLAB’s nearestNeighbor function to find
which vertices and surfaces are closest to the critical points in the level set.

5. Assign an integer value to each surface and store the surface information in the array
containing the image’s surface information.



Note: Here it is assumed that the components in the isosurface are oriented surfaces that
partition the set of maxima into those that lie in the interior of the surface (voxel intensities
greater than isovalue) and those that lie in the exterior (voxel intensities less than isovalue).

p

o )
:

Figure 3: (a) Isosurfaces corresponding to isovalue = 3.38 x107%* of patient A1104 H72. (b)
Isosurfaces corresponding to isovalue = 3.0 x107% of patient A1104 H72. (c) Isosurfaces
corresponding to isovalue = 2.615 x 1079 of patient A1104 H72.

For each isovalue, the algorithm checks for bad joins and bad splits. A bad join refers
to more than two connected components joining to one connected component. A bad join
occurs when two consecutive isovalues are too far apart in value, and so the algorithm checks
and fixes bad joins in the following way:

1. Compare rows in the array containing the isosurface information for each image that
correspond to consecutive isovalues.

2. Compare the column entries of these two rows to see if columns containing more than
2 distinct integer entries in one row have the same integer entry in the next row.

3. Fix joins by inserting more isovalues in-between the values where the bad join occurred
until no more bad joins exist.

Similarly, a bad split occurs when critical points that were previously identified as being
on the same component have become misidentified as splitting onto two different components.
This happens when an isosurface surrounds one or more minima as the isovalues decrease,
which causes a void to form that encloses the minim(um)a. The algorithm checks for splits
in the same way it checks for joins, except it moves in the opposite direction. Specifically,
the algorithm checks for bad splits in the following way:

1. Identity the maxima on each component in the previous isosurface.

2. Record which component(s) the maxima on the previous component are identified with
in the current isosurface.
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3. If the maxima on the previous component are not on the same surface in the current
isosurface then a split has been found. In this case, identify the split surfaces and find
the size of each surface by counting the number of vertices in its vertex list.

4. Identify the larger component of the split surfaces as the maxima component and the
smaller component as the minima component.

5. For each maxima in the isosurface that has been identified as being on a minima
surface, replace the minima surface label with the correct maxima surface label.

Once all of the bad splits and bad joins have been correctly identified and fixed, the al-
gorithm produces a MATLAB array that contains the surface information for each isovalue
in the filtration of the tumor image. Surface labels 1-(the number of critical points) corre-
spond to surfaces around a single critical point, and surface labels greater than the number
of critical points correspond to surfaces containing more than one critical point. A surface
is born at the isovalue corresponding to the row in which the surface label first appears, and
a surface dies at the isovalue corresponding to the first row in which the surface no longer
appears. Since the algorithm descends through the filtration of the image, the death times
of a surface are always less than their corresponding birth times.

4.3.1 Construction of Binary Trees

Binary trees are used to represent the structure of the Morse functions corresponding to
the 3-D SPECT image data. The leaves of the tree represent critical points of the Morse
function, and branches of the tree represent critical points joining. The length of leaves
andbranches correspond to the length of the range of isovalues for which the component
appears in the level set.

The algorithm uses MATLAB’s phytree function to create the binary tree representation
of each image. The inputs for phytree are a two-column array corresponding to the leaves
and branches of the tree and a vector containing the lengths of the leaves and branches of
the tree. The rows in the two-column array input correspond to the tree’s branches and the
entries in each row are the children of that branch. The number of rows in this array will be
one less than the number of critical points in the image.

The algorithm identifies branches in the MATLAB array containing each image’s surface
information as those whose surface label is greater than the number of critical points in the
image. For each branch, starting with the branch whose label is (number of critical points
+ 1), the algorithm finds the children of that branch by identifying the surface labels in the
row above the row where the branch first appears. The surface labels of the children for
each branch are inserted into a two-column array, which will be the first input for phytree.
The second input for phytree is a distance vector corresponding to the length of the range
of isovalues for which each component persists, which can be extracted directly from the
MATLAB array containing each image’s surface information.

The binary tree representations contain surface information about the dimension 0 per-
sistent homology of each image. Therefore, these structures can be utilized to identify
topological information about the antibody accumulation throughout local neighborhoods
of the SPECT tumor images.

11
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Figure 4: (a) Isosurfaces corresponding to isovalue = 3.38 x107% of patient A1104 H72. (b)
Isosurfaces corresponding to isovalue = 3.0 x1079 of patient A1104 H72. (c) Isosurfaces
corresponding to isovalue = 2.615 x 1079 of patient A1104 H72. (d) Binary tree corre-
sponding to isovalue = 3.38 x107% of patient A1104 H72. (e) Binary tree corresponding to
isovalue = 3.0 x107% of patient A1104 H72. (f) Binary tree corresponding to isovalue =
2.615 x 107 of patient A1104 H72.

12



4.3.2 Construction of Persistence Diagrams

| =
(a) (b) (c)

A1103 Persistence Diagram, Decay Corrected, Hour 24 Normalized A1103 Persistence Diagram, Decay Correct, Heart Normalized

Figure 5: (a) Binary tree representation of image A1103 H24. (b) Binary tree representation
of image A1103 H48. (c) Binary tree representation of image A1103 H72.(d) Decay corrected
and hour 24 normalized time series persistence diagram of patient A1103. (e) Decay corrected
and heart normalized time series persistence diagram of patient A1103.

To better quantify the topological information of the tumor images, the binary tree repre-
sentations are converted into 2-D scatter plots called persistence diagrams. The persistence
diagram for an image is a scatter plot of the points

() = (M — g, ST
where z; is the length of the i'* leaf in the binary tree and y; is the midpoint value of
the i'" leaf in the tree. Similarly, z; can be thought of as the range of intensity in the
neighborhood of the maximum, and y; approximates the mean intensity in the neighborhood
of the maximum. Thus, the persistence plot contains measures of the neighborhoods of
maxima throughout the tumor. For each patient, the pipeline combines the H24, H48, and
H72 persistence diagrams to produce a time series persistence diagram.
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In order to explore the influence of regions of high uptake on the trends in persistence, the
algorithm separates persistence points into two groups based on the value of the local maxima
to which they correspond. An intensity threshold is set at the 95th percentile of maximum
values in an image. Persistence points corresponding to local maxima with values below
the intensity threshold are classified as low maxima and persistence points corresponding to
the local maxima with values above the intensity threshold are classified as high maxima.
Persistence diagrams are constructed for each patient for both the low and high maxima.

Persistence diagrams corresponding to patients A1101-A1104 were combined to create an
aggregate Group 1 time series persistence diagram representing the topological information
of the targeted antibody, and persistence diagrams corresponding to patients A1105-A1108
were combined to create an aggregate Group 2 time series persistence diagram representing
the topological information of the control antibody.

Two collection of persistence diagrams are created for each patient. The first collection
of persistence diagrams contains decay corrected persistence points normalized by the initial
time point, hour 24, in order to capture the relative change in antibody accumulation.
The second collection of persistence diagrams contains decay corrected persistence points
normalized by the heart’s antibody accumulation in an attempt to capture the antibody
binding rate.

5 Results

5.1 Binary tree representations

The following figures are binary tree representations of tumor images from inviCRO
Study 1881-040 In-111. The first time series of binary trees comes from a patient in Group
1, representing the tumor images of mice inject with the targeted antibody. The second time
series of binary trees comes from a patient in Group 2, representing the tumor images of
mice inject with the control antibody.

(a) (b) (c)

Figure 6: (a) Binary tree representation of image A1103 H24. (b) Binary tree representation
of image A1103 H48. (c) Binary tree representation of image A1103 H72.
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Figure 7: (a) Binary tree representation of image A1107 H24. (b) Binary tree representation
of image A1107 H48. (c) Binary tree representation of image A1107 H72.

It appears as through the leaves in the binary tree representation of patient A1103 move
closer to the root of the tree over time, while the leaves of the binary tree representation of
patient A1107 remain approximately constant with respect to their location in the tree over
time. The length of the leaves also appear to be increasing over time in patient A1103, but
they remain approximately constant in patient A1107. To better quantify these difference,
each leaf is assigned coordinates

(xivyi) = (Mz — my, 9

)

where x; is the length of the " leaf in the binary tree and y; is the midpoint value of the
it" leaf in the tree. The points for all of these points in the time series of binary trees are
combined to create time series persistence diagrams for each patient in the study.

5.2 Persistence diagrams

The following figures are pairs of time series persistence diagrams of tumor images from
inviCRO Study 1881-040 In-111. The first pair of time series persistence diagrams comes
from a patient in Group 1, representing the tumor images of mice inject with the targeted
antibody. The second pair of time series persistence diagrams comes from a patient in Group
2, representing the tumor images of mice inject with the control antibody. Each pair of per-
sistence diagrams contains one diagram where the persistence points are normalized by the
initial time point, hour 24 and one diagram normalized by the heart’s antibody accumulation.

15



A1103 Persistence Diagram, Decay Corrected, Hour 24 Normalized A1103 Persistence Diagram, Decay Correct, Heart Normalized
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Figure 8: (a) Decay corrected and hour 24 normalized time series persistence diagram of
patient A1103. (b) Decay corrected and heart normalized time series persistence diagram of
patient A1103.

X107 A1107 Persistence Diagram, Decay Corrected, Hour 24 Normalized A1107 Persistence Diagram, Decay Corrected, Heart Normalized
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Figure 9: (a) Decay corrected and hour 24 normalized time series persistence diagram of
patient A1107. (b) Decay corrected and heart normalized time series persistence diagram of
patient A1107.

In the decay corrected and hour 24 normalized time series persistence diagrams, the y-
coordinates tend to decrease over time for patient A1103, but there is no apparent trend
for the y-coordinates corresponding to patient A1107. This behavior corresponds to the
location of the leaves in the binary tree representations of patients A1103 and A1107. Con-
trastingly, in the decay corrected and heart normalized time series persistence diagrams, the
y-coordinates tend to increase over time for patient A1103, but there is no apparent trend
for the y-coordinates corresponding to patient A1107.

The persistence points for all of the patients in Group 1 were combined to create an
aggregate Group 1 time series persistence diagram. Similarly, the persistence points for all
of the patients in Group 2 were combined to create an aggregate Group 2 time series persis-
tence diagram. The group persistence diagrams are presented below.
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Figure 10: (a) Decay corrected and hour 24 normalized time series persistence diagram of
all patients in Group 1. (b) Decay corrected and heart normalized time series persistence
diagram of all patients in Group 1.
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.
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Figure 11: (a) Decay corrected and hour 24 normalized time series persistence diagram of
all patients in Group 2. (b) Decay corrected and heart normalized time series persistence
diagram of all patients in Group 2.

Similar to the behavior in the patient persistence diagrams, in the decay corrected and
hour 24 normalized time series persistence diagrams the y-coordinates tend to decrease over
time for Group 1, but there is no apparent trend for the y-coordinates corresponding to
Group 2. In the decay corrected and heart normalized time series persistence diagrams, the
y-coordinates tend to increase over time for Group 1, while there is no clear trend for the
y-coordinates corresponding to Group 2.

The persistence points were separated into two groups based on the value of the local
maxima to which they correspond, in an attempt to analyze the influence of regions of high
uptake on the trends in persistence. An intensity threshold is set at the 95th percentile
of maximum values in an image. Persistence points corresponding to local maxima with
values below the intensity threshold are classified as low maxima and persistence points
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corresponding to the local maxima with values above the intensity threshold are classified
as high maxima. Persistence diagrams are constructed for each patient for both the low and
high maxima.

The high and low normalized persistence plots corresponding to Group 1 and Group 2
are presented below.

Group 1 High Persistence Diagram, Decay Corected, H24 Nommalized Group 1 Low Persstence Diagram, Decay Corected, H24 Nomalized

o Hour 24 * Hour24
+ Hourdg o Hourdg
o Hour72 8 o Hour72

Maxima Mean
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2 25
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(a) (b)

2 25
Vaxima Height

Figure 12: (a) Decay corrected and hour 24 normalized time series persistence diagram of
the high maxima corresponding to all patients in Group 1. (b) Decay corrected and hour 24
normalized time series persistence diagram of the low maxima corresponding to all patients
in Group 1.

Group 2 High Persstence Diagram, Decay Corected, H24 Nomalized Group 2 Low Persstnce Diagram, Decay Corected, H24 Nommalized
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Figure 13: (a) Decay corrected and hour 24 normalized time series persistence diagram of
the high maxima corresponding to all patients in Group 2. (b) Decay corrected and hour 24
normalized time series persistence diagram of the low maxima corresponding to all patients
in Group 2.
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Group 1, Decay Corrected and Heart Normalized High Persistence Diagram Group 1, Decay Corrected and Heart Normalized Low Persistence Diagram
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Figure 14: (a) Decay corrected and heart normalized time series persistence diagram of
the high maxima corresponding to all patients in Group 1. (b) Decay corrected and heart
normalized time series persistence diagram of the low maxima corresponding to all patients
in Group 1.

Group 2, Decay Corrected and Heart Normalized High Persistence Diagram Group 2, Decay Corrected and Heart Normalized Low Persistence Diagram
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Figure 15: (a) Decay corrected and heart normalized time series persistence diagram of
the high maxima corresponding to all patients in Group 2. (b) Decay corrected and heart
normalized time series persistence diagram of the low maxima corresponding to all patients
in Group 2.

Statistical analyses were applied to the collection of group persistence diagram presented
above in order test if persistence diagrams can distinguish patients injected with the targeted
antibody from those injected with the control antibody.

5.3 Statistical analyses of Persistence diagrams

Kruskal-Wallis tests and random effects modeling were applied to the collection of time
series persistence diagrams, as well as to the separate high and low persistence points. These
tests were applied to aggregate time series persistence diagrams comparing all of the persis-
tence points in Group 1 against all of the persistence points in Group 2. The results were

19



further compared to analyses of the H24, H48, and H72 normalized %ID/g values for each
patient.

5.3.1 Kruskal-Wallis tests

Kruskal-Wallis tests indicate that the medians of the decay corrected, hour 24 normalized
mean uptake values per maxima neighborhoods (y-coordinates of the persistence diagrams)
are significantly different across the time series in both Group 1 and Group 2 with p-values
1.16 x 1071% and 5.07 x 1079, respectively. In contrast, the medians of the decay corrected,
hour 24 normalized ranges of intensity per maxima neighborhood (x-coordinates of the per-
sistence diagrams) are not significantly different across the time series in both Group 1 and
Group 2, with p-values 0.746 and 0.767, respectively. Thus, the mean uptake values of the
maxima neighborhoods will detect changes in uptake while the range of uptake in the max-
imum neighborhoods will not with respect to the decay corrected and hour 24 normalized
data.

Applying Kruskal-Wallis tests to the decay corrected, heart normalized persistence points
indicate that both the mean uptake values of the maxima neighborhoods and the range of
uptake in the maximum neighborhoods will detect changes in uptake with respect to the
decay corrected and hour 24 normalized data. The medians of the decay corrected, heart
normalized mean uptake values per maxima neighborhoods (y-coordinates of the persistence
diagrams) are significantly different across the time series in both Group 1 and Group 2 with
p-values 2.06 x 107 and 2.39 x 10734, respectively. Similarly, the medians of the decay
corrected, hour 24 normalized ranges of intensity per maxima neighborhood (x-coordinates
of the persistence diagrams) are significantly different across the time series in both Group
1 and Group 2, with p-values 2.06 x 1072° and 0.0015, respectively.

The following box plots demonstrate the trends of the persistence points as a function of
time. In these plots, 0 refers to hour 24, 1 refers to hour 48, and 2 refers to hour 72.

Figure 16: (a) Notched box plots of Group 1’s hour 24 normalized ranges of intensity per
maxima neighborhood (x-coordinates). (b) Notched box plots of Group 2’s hour 24 normal-
ized ranges of intensity per maxima neighborhood (x-coordinates).
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Group 1 H24 Normalized Y-coordinates Group 2 Ha4 Normalized Y-coordinates.
T T

Figure 17: (a) Notched box plots of Group 1’s hour 24 normalized mean values per maxima
neighborhood (y-coordinates). (b) Notched box plots of Group 2’s hour 24 normalized mean
values per maxima neighborhood (y-coordinates).

Figure 18: (a) Notched box plots of Group 1’s heart normalized ranges of intensity per
maxima neighborhood (x-coordinates). (b) Notched box plots of Group 2’s heart normalized
ranges of intensity per maxima neighborhood (x-coordinates).
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Group 1 Heart Normalized Y-Coordinates Group 2 Heart Normalized Y-coordinates
T

Figure 19: (a) Notched box plots of Group 1’s heart normalized mean values per maxima
neighborhood (y-coordinates). (b) Notched box plots of Group 2’s heart normalized mean
values per maxima neighborhood (y-coordinates).

The box plots above show that the hour 24 normalized x-coordinates remain approx-
imately constant over time in both Group 1 and Group 2. Contrastingly, the hour 24
normalized y-coordinates of the persistence points decrease over time in Group 1 while they
increase over time in Group 2. In regards to the heart normalized persistence points, both
the the x-coordinates and y-coordinates increase over time in both Group 1 and Group 2.
Random effects modeling was applied to the coordinates of the persistence points as a func-
tion of time to test for differences of the rate of change of the persistence points in the two
groups in the study.

5.3.2 Random effects modeling on the X-coordinates of the persistence points
5.3.3 Random effects modeling on the Y-coordinates of the persistence points

Random effects modeling was applied to the coordinates of the persistence points as a
function of time. Trends were assumed linear.

Linear trend comparisons of the group 1 and group 2 mean values per maxima neigh-
borhood (y-coordinates) as a function of time demonstrate that the differences between the
Group 1 and Group 2 slopes of the mean values per maxima neighborhood are statistically
different with respect to both the hour 24 and heart normalizations. The Group 1 and Group
2 slopes of the hour 24 normalized mean values per maxima neighborhood are statistically
different with p-value 5.19 x 107!, while the Group 1 and Group 2 slopes of the heart
normalized mean values per maxima neighborhood are statistically different with p-value
0.0001.

The figures below show the trend fits of the Group 1 and Group 2 mean values per
maxima neighborhood (y-coordinates) as a function of time with respect to both the hour
24 (a) and heart (b) normalizations.
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Figure 20: (a) Linear trend comparisons of the Group 1 and Group 2 hour 24 normalized
mean values per maxima neighborhood (y-coordinates). (b) Linear trend comparisons of
the Group 1 and Group 2 heart normalized mean values per maxima neighborhood (y-
coordinates).

In order to analyze the influence of regions of high uptake on the trends in persistence
and in an attempt to capture heterogenous tumor uptake behavior, the persistence points
were separated into two groups based on the value of the local maxima to which they corre-
spond. An intensity threshold is set at the 95th percentile of maximum values in an image.
Persistence points corresponding to local maxima with values below the intensity thresh-
old are classified as low maxima and persistence points corresponding to the local maxima
with values above the intensity threshold are classified as high maxima. Within group and
between group linear trend comparisons were applied to the high and low persistence points.

The Group 1 and Group 2 slopes of the high hour 24 normalized mean values per maxima
neighborhood are statistically different with p-value 0.016 and the Group 1 and Group 2
slopes of the low hour 24 normalized mean values per maxima neighborhood are statistically
different with p-value 5.062 x 1071, Contrastingly, the Group 1 and Group 2 slopes of the
high heart normalized mean values per maxima neighborhood are not statistically different
with p-value 0.273, while the Group 1 and Group 2 slopes of the low heart normalized mean
values per maxima neighborhood are statistically different with p-value 4.072 x 1075.

Since the Group 1 vs. Group 2 comparisons of the high heart normalized mean values
per maxima neighborhood are not statistically different, while the Group 1 vs. Group 2
comparisons of the low heart normalized mean values per maxima neighborhood are statis-
tically different there is evidence to suggest that, with respect to the heart normalized data,
the distinguishing features between the group of tumors injected with the targeted antibody
and the group of tumors injected with the control antibody come from areas of lower uptake.

It is important to note that the sample size of the high persistence points is significantly
smaller than the sample size of the low persistence points. Therefore, the p-values for the
linear trend comparisons of the high persistence points with be artificially higher than the
p-values for the linear trend comparisons of the low persistence points.

The figures below show the trend fits of the high and low Group 1 and Group 2 mean
values per maxima neighborhood (y-coordinates) as a function of time with respect to both
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the hour 24 and heart normalizations.
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Figure 21: (a) Linear trend comparisons of the Group 1 and Group 2 high hour 24 normalized
mean values per maxima neighborhood (y-coordinates). (b) Linear trend comparisons of the
Group 1 and Group 2 low hour 24 normalized mean values per maxima neighborhood (y-

coordinates).
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Figure 22: (a) Linear trend comparisons of the Group 1 and Group 2 high heart normalized
mean values per maxima neighborhood (y-coordinates). (b) Linear trend comparisons of
the Group 1 and Group 2 low heart normalized mean values per maxima neighborhood
(y-coordinates).

Within group linear trend comparisons were applied to the high and low persistence
points to test for heterogeneous tumor uptake behavior. The slopes of the Group 1 high and
low hour 24 normalized mean values per maxima neighborhood are not statistically different
with p-value 0.650, while the slopes of the Group 2 high and low hour 24 normalized mean
values per maxima neighborhood are statistically different with p-value 0.0180. This analysis
suggests that there exists homogenous uptake behavior in Group 1 that is not present in
Group 2.
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Homogenous uptake behavior in Group 1, however, is not captured with the heart nor-
malized data. The slopes of the Group 1 high and low heart mean values per maxima
neighborhood are statistically different with p-value 0.006, and similarly the slopes of the
Group 2 high and low heart normalized mean values per maxima neighborhood are statisti-
cally different with p-value 2.476 x 107°.

The figures below show the trend fits of the within group, high vs. low mean values per
maxima neighborhood (y-coordinates) as a function of time with respect to both the hour
24 and heart normalizations.

Lowest Degree Polynomial Fit Wit Significance: DEGREE 1 Lowest Degree Polynomial Fit With Significance: DEGREE 1
Response =-0.2237'Time' +3.5043'Time" Response =0.9211Time" +4.2955'Time"
Response =-0.32068"Time +2.432'Time® Response =0.22758'Time' +2.4266'Time”
6.5 T T T T T 6.5 T T T T T T T

| | —=—Group 2 H24 Normalized, 95 threshold, High Y-Coordinates|
—o—Group 2 H24 Normalized, 95 threshold, Low Y-Coordinates

6k
—e—Group 1 H24 Normalized, 95 threshold, High Y-Coordinates|

5.5 —=—Group 1 H24 Normalized, 95 threshold, Low Y-Coordinates 1 5.5] b
5 B 5 |
451 1 4.5] 7
g4 1 g 4 1
g 2
g @
g 3
-4 c

e
2 1 o5 i
o+ \9\77 4 2 d
150 b 151 1
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
Time Time
(a) (b)

Figure 23: (a) Linear trend comparisons of the Group 1 high vs. low hour 24 normalized
mean values per maxima neighborhood (y-coordinates). (b) Linear trend comparisons of
the Group 2 high vs. low hour 24 normalized mean values per maxima neighborhood (y-
coordinates).
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Figure 24: (a) Linear trend comparisons of the Group 1 high vs. low heart normalized mean
values per maxima neighborhood (y-coordinates). (b) Linear trend comparisons of the Group
2 high vs. low heart normalized mean values per maxima neighborhood (y-coordinates).
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6 %ID/g and tumor-to-heart ratio

In order to test if the method of analyzing tumor uptake with persistence provides ad-
ditional information than standard analyses, the results of our analysis were compared to
standard metrics. The standard metrics used for comparison are percent injected dose per
gram (%ID/g) and the tumor-to-heart ratio (T:H). %ID/g is a common measure of uptake
which can be calculated by

uptake " volume
injected dose x 100 1000

%ID /g =

where uptake is the total SPECT sum over entire tumor region in pCi, injected dose is the
decay corrected injection dose of antibody, and volume is the total volume of tumor region
in mm3. The %ID/g calculations were normalized by the hour 24 %ID/g value for each
patient.

T:H is a measure used to normalize the blood clearance rate across patients in a trial.
T:H is defined as the quotient of the tumor %ID/g and the heart %ID/g. The hour 24 nor-
malized persistence diagrams are compared to the tumor %ID/g calculations and the heart
normalized persistence diagrams are compared to the T:H calculations. The calculations
were repeated for separate high and low regions of the tumor, where high regions correspond
to voxels whose value is in the 95th percentile of the tumor voxel values, and low regions
correspond to voxels whose value is less than the 95th percentile of tumor voxel values.

The following figures show the tumor %ID /g, heart %ID/g, and T:H calculations for all
voxels, high voxels, and low voxels, where the calculations corresponding to Group 1 patients
are in the top row and calculations corresponding to Group 2 patients are in the bottom
row.
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Figure 25: Tumor %ID/g, heart %ID/g, and T:H calculations of all voxels from right to left
with patients in group 1 represented in the top row and patients in group 2 represented in
the bottom row
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Figure 26: Tumor %ID/g, heart %ID/g, and T:H calculations of high voxels from right to
left with patients in group 1 represented in the top row and patients in group 2 represented
in the bottom row
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Figure 27: Tumor %ID/g, heart %ID/g, and T:H calculations of low voxels from right to
left with patients in group 1 represented in the top row and patients in group 2 represented
in the bottom row

Linear fit comparisons of the Group 1 and Group 2 hour 24 normalized %ID/g values
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as a function of time yield results similar to the linear fit comparisons of the Group 1 and
Group 2 persistence diagrams. As was the case with the hour 24 normalized Y-coordinate
of the persistence points, the %ID/g values in Group 1 decrease over time and the %ID/g
values in Group 2 increase over time. The distinction between %ID/g values and time series
persistence diagrams becomes evident when the %ID /g values are separated into two groups
based on voxel values. In contrast to the mean values, the differences between %ID /g of high
voxels and %ID/g of low voxels are not statistically different in both Group 1 and Group 2
with p-values 0.0624 and 0.139, respectively.

Linear fit comparisons of the T:H calculations fail to distinguish group 1 from group 2
with a p-value of 0.686. Similarly, the T:H calculations on the high and low voxels failed to
distinguish group 1 from group 2 with p-values 0.529 and 0.201, respectively. In contrast to
%ID /g, the differences between the T:H calculations of high voxels and the T:H calculations
of low voxels are statistically different in both Group 1 and Group 2 with p-values 0.006 and
0.003, respectively.
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Figure 28: (a) Linear trend comparisons of the Group 1 and Group 2 %ID/g calculations.
(b) Linear trend comparisons of the Group 1 and Group 2 T:H calculations.

Lowest Degree Polynomial Fit Wit Signiicance: DEGREE 1 Lowest Degree Polynomial Fit With Sgnifcance: DEGREE 1
Response =-1.8816'Time' +17.4309'Time® Response =2.664'Time" +14.5205Time”
Response =-0.16947*Time' +2.4323Time? Response =0.15739'Time' +2.3841"Time?

0 T T T T T T T
—e—group 1 high %ID/g, 24h normalized, 95 threshold
—o—qgroup 1 low &ID/g, 24h normalized, 95 threshold

—e—group 2 high %ID/g, 24h normalized, 95 threshold
1 18 —=—qgroup 2 low &ID/g, 24h normalized, 95 threshold -

16 1 161 ,
- 3 uf ,
12 1 12 ,

Response
=)
T
L
Response
=
T
L

o
T
L
o
T
L

oF 1 6 —
a4 4 4 —
o — - 1
o I I ! | I I I I I 0 I ! ! 1 | I I I I
0 02 04 06 08 1 12 14 1.6 1.8 2 0 02 04 06 08 1 12 14 16 18 2
Time Time
(a) (b)

Figure 29: (a) Linear trend comparisons of the Group 1 high and low %ID/g calculations.
(b) Linear trend comparisons of the Group 2 high and low %ID/g calculations.
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Figure 30: (a) Linear trend comparisons of the Group 1 high and low T:H calculations. (b)
Linear trend comparisons of the Group 2 high and low T:H calculations.

7 Interpretation of Results
8 Conclusion
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