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1 Preface

This bootcamp is intended to be a review session for the material covered in Week 1 of
Summer@ICERM 2017. My goal is to clarify any confusing topics covered in Week 1 and to
present the material in a way that connects all of the material into a full picture. If you have
any questions about the material please feel free to email me at melissa_mcguirl@brown.edu.
Most of the exercises have been taken directly from the references listed at the end.

2 Introduction to Topological Data Analysis

Topological data analysis (TDA) lies in the intersection of data science and algebraic topol-
ogy. In data science, one of the main goals is to extract important features from large
datasets and then classify or cluster the data based on their features. There are several
methods for doing this and the choice of method depends largely on the data being studied.

In algebraic topology, one of the main goals is to classify topological spaces based on their
topological features. There are two primary tools for classifying topological spaces: homo-
topy and homology. While homotopy is easier to define, it is nearly impossible to compute
the homotopy type of a given space. In contrast, homology is tricky to define but as we have
seen it is “easy” to compute. For this reason, homology is the tool that connects topology
to data science.

Datasets often come in the form of point clouds lying in some metric space. Computing the
homology of a point cloud itself would be uninformative as the homology groups of dimen-
sion NV > 0 would all be trivial. Rather, we assume the points have been sampled from some
underlying manifold and we attempt to extract the homology of that manifold by growing
balls around each point in the point cloud. Since a priori it (usually) cannot be known how
big to grow the balls, we instead compute the homology of the covered point cloud for a
finite sequence of radii. This is known as persistent homology.

The persistent homology of a point cloud is typically represented by barcodes or persistence
diagrams. These representations will be discussed below. Given barcodes or persistence
diagrams, one can begin to classify different point clouds, or datasets, based on their topo-
logical features. This method has been successfully applied to a range of fields such as
oncology, evolutionary biology, image processing and more.



3 Simplicial Complexes

Simplicial complexes are the main data structure used to represent topological spaces in
TDA. We will review the main types of simplicial complexes used in TDA, but first we need
to recall a few fundamental definitions. For the following definitions, let wug,u1,...u, be
points in R?.

Definition 3.1 (Affine and Convex Combinations) An affine combination of {u;}1,
1§ a point x = Z_?:l Aiu; such that Yy A = 1. A convex combination of {u;}l-, is a point
T = Z;Ll Aiu; such that Y, Ai=1 and \; >0 for alli=0,1,...n.

Definition 3.2 (Affine and Convex Hulls) The affine hull of ug,uy,...uy, is the set of
all possible affine combinations of {u;}":

aff (ug,uy, ..., uy) = {x = Z)\iui : Z)‘i =1}.
i=1 i=1

Similarly, the convex hull of ug,u1,...uy, is the set of all possible convexr combinations of
{uitizo:
n

conv (g, U, ..., uy) = {x = Z At ¢ Z)\i =1 and \; > 0Vi}.

j=1 i=1
Example 3.1 Given two points x1,xs € R?, the parametrization of the line connecting
to xo is given by

z(t)=(1-t)xy +txy, 0<t<1
Taking A\ = (1 -t) and Ay =t we see that for all0<t <1

2
YXi=(1-t)+t=1,
=1

and moreover since 0 <t <1, \; >0 fori=1,2. It is now not hard to see that

2
conv(z1,x2) = {x = 121 + Mg : Z)‘i =land \; 20Vi} ={x=(1-t)zy +tx2:0<t <1}
i=1

Definition 3.3 (Affinely Independent) The n + 1 points, ug,u1,...u,, are said to be
affinely independent if and only if the n vectors u;—uq, for 1 <i <n, are linearly independent.
Note, in R there are at most d + 1 affinely independent points.

Just as the convex hull of two points is the edge or line segment connecting the points, the
convex hull of 3 affinely independent points is a triangle parametrized by those points, and
so on. We are now ready to define a simplex.

Definition 3.4 (Simplex) A k-simplex is the convex hull of k + 1 affinely independent
points:
o = conv(ug, U1, ..., Uy ), dim(c)=n.
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Figure 1: Figure courtesy of http://outlace.com/TDApartl.html

A 0O-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, a 3-simplex is a
tetrahedron, and so on.

Definition 3.5 (Face of a Simplex) Given o = conv(ug,u1,...,u,), a face T of o, de-
noted T < 0, is T = conv(Usy , Wiy, -« Uiy, )y WHETE Uiy, Wiy« ooy Wi, CUQ ULy e ey Une Lf Uiy, Uiy s - .
U, UL, - - -, Un, WE Say that T is a proper face.

Simplicies are the building blocks of simplicial complexes. If we glue together simplicies in
a “nice enough” way, we get a simplicial complex. More formally, we have the following
definition.

Definition 3.6 (Simplicial Complex) A simplicial complez is a finite collection of sim-
plices K such that

1. 0 e K and 7 <o tmplies T € K and

2. 01,09 € K implies either (i) o1 Nnog =@ or (it) o1 Nog is a face of both o1 and 0.

Figure 2: A simplicial complex (left) and a collection of simplices (middle and right)
which do not form a simplicial complex. Figure reference: http://iopscience.iop.org/
article/10.1088/1742-5468/2009/03/P03034/fulltext/

In practice, it is usually easier to construct a simplicial complex abstractly, without having
to deal with how to place it into Euclidean space. For this reason, we have the notion of an
abstract simplicial complex.

Definition 3.7 (Abstract Simplicial Complex) An abstract simplicial complex is a fi-
nite collection of sets A such that a€ A and B c a implies 5 € A.

So why do we care about simplicial complexes? Simplicial complexes are the fundamental
object we use to approximate the homology of a point cloud. We do this by first taking a
covering of our point cloud.

y Wi, &
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Definition 3.8 (Cover) Let X be a topological space. A cover of X is a collection of sets
U ={U,}ier such that X c 'U[Ui'
1€

Definition 3.9 (Nerve of a Cover) Let X be a topological space, and let U = {U; };er be
any cover of X. The nerve of U, denoted by N'(U), is the abstract simplicial complex with
vertex set I, where a family {io, ...,ix} spans a k-simplex if and only if Ui, n...nU;, #@.

Figure 3: Cover of a finite metric space (top left), vertex set generate by cover (top right),
edges and faces generated by non-empty intersections of the cover (bottom left), and the
nerve of the cover (bottom right). Figure reference: http://www.dyinglovegrape.com/
math/topology_data_1.php

A natural question to ask is, how well is the simplicial complex representation of my data set
capturing the true topological features of my data? Luckily, we have the following results.

Theorem 3.1 (Nerve Theorem) Let U be a finite collection of closed, convex sets in
Euclidean space. Then, the nerve of U and the union of the sets in U have the same
homotopy type.

Now, let’s discuss the common simplicial complex constructions used in topological data
analysis.

Definition 3.10 (Cech Complex) Let X be a finite set of points in R:. For each x € X,
let B,(z) = {y e R d(z,y) <r} be the closed ball centered at x with radius r > 0. The Cech
complex of X and r is the nerve of {B,(z)}zex. Namely,

Cech(X, r)={occ X :(\B.(z) + o}

xTreo

Observe, the vertex set of Cech(X, r) is precisely X itself. In Euclidean space, closed balls
are closed, convex sets so the Nerve Theorem applies to the Cech Complex. A similar
construction is the Vietoris Rips complex.
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Definition 3.11 (Vietoris Rips Complex) Let X be a finite set of points in R%. For
each © € X, let B.(z) = {y e R? : d(x,y) < r} be the closed ball centered at x with radius
r>0. The Vietoris Rips complex of X and r is defined to be

VR(X,r)={cc X :By(z;) nBy(z;) # @ for all z;,x; € o}

In other words, VR(X, r) consists of all subsets of X whose diameter is no greater than
2r. From the definitions, it is not hard to see that Cech(X,r) ¢ VR(X,7). You will also
prove in the exercises that VR(X,r) c Cech(X,/2r). Thus, while the Nerve Theorem does
not apply to Vietoris-Rips complexes directly, the Vietoris-Rips complex is nested between
two Cech complexes so it is reasonable to say that the Vietoris-Rips complex is a fairly
good approximation. Moreover, it is computationally easier to construct the Vietoris-Rips
complex than the Cech complex.

Figure 4: A cover of three points in R? (left) with the corresponding Cech (middle) and
Vietoris-Rips (right). Figure reference: http://brown.edu/Research/kalisnik/Notes2.
pdf

One of the main drawbacks of the Cech and Vietoris Rips constructions is that the dimension
gets very large, even if X c R? for d small. The Delaunay and Alpha complexes offer a
solution to this issue. First, we must define the Voronoi diagram.

Definition 3.12 (Voronoi Diagram) Given a finite point set X c R, we define the
Voronoi cell of a point pe X to be

V,={z eR?:d(z,p) <d(x,q) V qge X}.
The collection of all Voronoi cells is called the Voronoi diagram of X.

Note, the Voronoi diagram actually covers the entire ambient space R?. We now use the
Voronoi diagram and the nerve construction to construct new simplicial complexes.

Definition 3.13 (Delaunay Complex) The Delaunay complex of a finite point set X c
R is (isomorphic to) the nerve of the Voronoi diagram. Namely,

Del(X)={occX:(V,+2}

pec

Building off of the Delaunay complex, we can use a radius constraint to get a family of
subcomplexes of the Delaunay complex.
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Figure 5: A Voronoi diagram of a finite set of points (left), the covex hull of the points
(middle), and the corresponding Delaunay complex. Figure reference: http://sts.bioe.
uic.edu/castp/background.php

Definition 3.14 (Alpha Complex) Let X c R? be a collection of finite points. For each
peX, let R.(p) = By(p) NV}, be the intersection of the r-ball around p with its Voronoi cell.
Then, the Alpha complex of X and r is given by

Alpha(X,r) ={oc X : R, (p) + @}

pec

The last simplicial complex construction we will discuss is the Witness Complex. In practice,
we have very large datasets and it is usually too expensive to compute a simplicial complex
using every point in the dataset. For this reason, we instead take a subset of points, called
landmark points, and build a simplicial complex using these points instead.

Definition 3.15 (Witness Complex) Let X c R? be any metric space, and let L ¢ X
be a subset of X called the landmark set. Fiz € > 0 and for every point x € X, let m, =

rlniLn d(x,1). Then, the witness complex W (X, L, €) is a simplicial complex with vertex set L
€

and {lo,...,lx} spans a k-simplex in W (X, L,€) if and only if there is a point x € X, called
the witness, such that d(zx,l;) <mgy +€ for alli=0,1,...k.

3.1 Exercises

1. List the pros and cons of using Cech complexes, Vietoris Rips complexes, Delaunay
complexes, Alpha complexes, and Witness complexes.

2. Prove: Let X be a finite set of points in some Euclidean space and let r > 0. Then,

VR(X,r) c Cech(X,V/2r).

Note, this is a tighter inclusion than what you saw in week 1.

3. If K is a p-dimensional simplicial complex and for each k, nj is the number of k
simplices in K, then the Euler number of K is given by

X(K)=no-ni1+n2—...+(-1)"n,.

Show that any two triangulations of the circle S' have the same Euler number.
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4. For each positive integer n, find a simplicial complex with Euler number n. For each
positive integer n, find a connected simplicial complex with Euler number n.

5. Which integers can occur as the Euler number of a one-dimensional simplicial complex?

4 Simplicial Homology

We have just seen several ways to build simplicial complexes on a finite metric space. We
are interested in extracting topological features from our data. The main tool we will use
to do this is called simplicial homology. Throughout the following we will use the working
example provided by Sara Kalisnik ([4]) below. Note, here we have 5 0-simplices {a, b, ¢, d, e},
6 1-simplices {A, B,C,D,E, F}, and 1 2-simplex {7}.

b B e
A C
a d
E D
c

Figure 6: Simplicial complex K example to be used throughout this section. Figure refer-
ence: Sara Kalisnik ([4]).

In general, simplicial homology can be computed over any field F. In practice, F = Z/27Z.

Definition 4.1 (i-chains) Let K be a simplicial complex. An i-chain is a formal sum of
i-simplices Y. c;0;, where c¢; € F, and the sum is taken over all possible i-simplices o; € K.
The set of all i-chains is denoted C;(K).

Ci(K) forms a vector space over F, and this is called the vector space of i-chains in K. In
fact, the i-simplices form a basis for C;(K) and so the dimension of C;(K) is equivalent
to the number of i-simplices in K. When taking F = Z/27Z, the coefficients ¢; ¢ {0,1} and
adding simplices is done with modulo 2 arithmetic.

Example 4.1 Consider K given in Figure 6. Then,
CO(K) = <a7 b,c,d, 6)
CI(K) = (A?BvchaEvF)
Ca(K) = (7)

An example of a 0—chain is a+c+e. Similarly, and example of a 1-chain is A+ B+ D+ E,
and so on.

Given any simplex, we can also define its boundary as follow.



Definition 4.2 (Boundary of a Simplex) Let o = [ug,u1,...u;] be a k-simplex. The
boundary of o is a map Oy : Cx(X) —» Cr_1(X) defined as
k
Oro = Z[uo,ul, co gy ug],
=0

where the 4; notation indicates that u; is omitted.
Example 4.2 Consider K given in Figure 6.
t)=B+F+C
O(A)=a+b

Now we have C;(K) for each i and we have maps 0; : C;(K) - C;_1(K). Putting this all
together we get a chain complex.

Definition 4.3 (Chain Complex) A chain complex is a sequence of chain groups con-
nected by boundary maps:

Qiy2 Ois1 04 Oi-1
o Ci(K) 5 Ci(K) > Ciy(K) 5 ...

Example 4.3 Consider K given in Figure 6. Its chain complex is given by

0% (1) %(4,B,C,D,E.F)3 (ab,cde) B o

Definition 4.4 (i-cycles) An i-cycle is an i-chain ¢ such that 0;c = 0.

In other words, an i-chain is an i-cycle if it is in the kernel of the boundary map 0;. The set
of all such i-cycles forms a subspace of C;(K), which we denote as Z;(K) = ker0;.

Example 4.4 Consider K given in Figure 6. Then,
O(C+B+F)=d+e+e+b+b+d=(2d+2e+2b)mod 2=0

Thus, (C + B+ F) is a 1-chain.

Definition 4.5 (i-boundaries) An an i-chain c is an i-boundary if there exists an i+ 1-
chain d € Ci11(K) such that ¢ = 0;+1(d).

In other words, an i-chain if is an i-boundary if it is in the image of the boundary map
Oi+1- The set of all such i-boundaries forms a subspace of C;(K), which we denote as
Bz(K) = In@i“.

The fundamental property that makes homology work is that the boundary of a boundary
is necessarily zero.

Lemma 4.1 (Fundamental Lemma of Homology) 0;009;,1(d) =0 for alli € Z and for
all i+ 1-chains d.

We now have enough machinery to define homology groups.



Definition 4.6 (i-th homology group) The ith homology group of a simplicial complex
K is the quotient group
Hi(K) = Zi(K)[Bi(K)

Despite their definition, the homology groups do not depend on choice of triangulation. In
other words, no matter how we triangulate a given topological space, we will always get the
same groups!

We are often interested in finding the rank of the homology groups. The rank of the ith
homology group is the difference between the rank of the group of i-kernels and the rank of
group of i-boundaries.

Definition 4.7 (i-th Betti number) The ith Betti number, §; is the rank of the ith ho-
mology group.

4.1 Exercises
1. Prove the fundamental lemma of homology.

2. Construct a simplicial complex with 85 = 3, 81 = 2, By = 1. Prove your construction is
correct.

3. A tetrahedron T is a surface with 4 vertices, 6 edges, and 4 two-dimensinoal faces
(note: T is not filled in). Write down the chain complex associated with T ( at all
dimensions). Note that all but finitely many of them are 0. The underlying field is
F =7Z/2Z.

4. Triangulate the cylinder S* x [0,1] and calculate its mod 2 homology. Try a different
triangulation and verify that the triangulation does not affect the homology.

5. Make your own simplicial complex and calculate its homology.

5 Persistent Homology

Many of the simplicial complex constructions depended on a parameter r. How do you know
which r best captures the homology of your space? The idea behind persistent homology is
that instead of choosing one value of r, we can compute the homology across a sequence of
r values and study which topological features persist.

We will not review all of the algebraic machinery or the algorithm for computing persistent
homology here, but rather give a general overview of the main ideas.

Say we have point cloud data sampled from an annulus. If we take the nerve of a collection
of balls B, (z) centered around each point z in the point cloud, the homology of the nerve
construction is highly dependent on r. For example, if r is very small, there will be little
overlap between the balls and therefore the dimension of Hy will be high and inconsistent
with the true homology of an annulus. In contrast, if r is very large we will have to much
overlap and the 1-dimensional hole in the center of the annulus will be filled in. Since we
usually have no way to determine which r value is best, we take a range of r values to get
a sequence of simplicial complexes for a point cloud data set.



Figure 7: A sequence of Vietoris Rips complexes for a point cloud data set representing
an annulus. Upon increasing the radius of the balls, we see holes appear and disappear.
Which holes are real and which are noise? Figure reference: https://www.math.upenn.
edu/~ghrist/preprints/barcodes.pdfl

In persistent homology, we get a parametrized family of topological spaces, say for example
{VR(X, r)}re[o’N], a sequence of Vietoris Rips complexes associated to a fixed point cloud
for increasing parameter values 0 < r < N. From here, we get natural inclusion maps

VR(X,0)=VR(X,ro) > VR(X,r) > VR(X,72) > ... > VR(X,ra) = VR(X, N)

Instead of computing the homology for each V R(X,r;) separately, we observe that the in-
clusion maps above induce maps on homology H,.VR(X,r;) - H,VR(X,r;) for all i < j.
These maps reveal which features persist. As we saw in Week 1, we can preform a series of
matrix reductions to compute the persistent homology of a parametrized family of topolog-
ical spaces at once. We will not review this method here but you are encouraged to review
the notes on Piazza.

By convention, when two features join into one feature, the feature that appeared first in
the filtration persists while the other feature dies off. This is known as the Elder rule.

5.1 Exercises

1. Consider a collection of 12 equally-spaced points on a unit circle (think of tick marks
on a clock). Remove from them all the points corresponding to the prime numbers
(2,3,5,7,11). Use the remaining points on the circle as the basis of a sequence of
Vietoris-Rips complexes based on an increasing sequence {¢;} of distances starting
with €y = 0. Without worrying about the actual values of the ¢;, describe what hap-
pens to the sequence of VR complexes, i.e, do they change? When do they change?

10
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Does H ever increase or decrease? What about H;?

2. Repeat exercise 1 with the Cech construction. Does anything change?

6 Representations of Persistent Homology

In persistent homology you compute the homology of a parametrized family of topological
spaces. For each dimension i, you get parameter intervals arising from the basis of the ith
homology group. These intervals indicate for which values of the filtration the topological
feature exists.

There are two common ways of visualizing the persistent homology of a space. The first
method is called a barcode diagram, and the second method is called a persistence diagram.

An example of a barcode diagram is depicted below. Each bar corresponds to a generator
of homology of the parametrized family of topological spaces. The left end point of each
bar corresponds to the parameter value at which the topological feature first appears and
the right end point corresponds to the parameter value at which the topological feature dies
off. Note, the y-axis of the barcode diagram is insignificant.

|
Hy
e —

H,

Hs

|
|
|-
T —
'
|
'
'
L

Figure 8: An example of a barcode diagram for dimensions 0, 1, and 2 of a filtered sim-
plicial complex. Figure reference: https://www.math.upenn.edu/~ghrist/preprints/
barcodes.pdf.

The parameter value at which a feature first appears is called the birth time, and the
parameter value at which a feature dies off is called the death time. The bars in a barcode
diagram can thus be represented as a collection of pairs (b;,d;) corresponding to the birth
and death time of each bar. If we plot these points (b;,d;) in R? we get a persistence

11
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diagram. Note, b; < d; for all i so all points in a persistence diagram lie on or above the
diagonal y = x.

Sample Sub-level set Ly Sub-level set Log Persistence Diagram
™ - o -
= - % -
— - . ~— -1
4 % |
e . . - <
— E o - ’ —
2 9
1 1 1 I 1 1 1
3 -1 1 3
Figure 9: An example of a persistence diagram. Fig-
ure reference: https://www.semanticscholar.org/paper/

Confidence-Sets-for-Persistence-Diagrams-Fasy-Lecci/
2ec2038£229c40bd37552¢c26545743£02fe1715d.

6.1 Exercises

1. Given the following filtration of spaces, compute the Birth-Death pairs for Hy and Hj.
Represent your results in barcodes and the convert it into a persistent diagram.

Hint: recall that intuitively, Hy counts the number of connected components, and H;
counts the number of essential loops.

7 Functional Persistence

In many applications, one might not want to apply persistent homology to a point cloud,
but rather to a topological space X with an associated function f: X — R. For example,
let X be a 3-D image of a tumor, and let f: X - R be a function that associates to each
point in X a measure of its radioactivity. Then, we can filter the image by radioactivity and
compute the homology of the corresponding super or sub level sets of f~*((~o0,a)) for each

12
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Persistence diagram

00 -
Barcode
H 10
1 = 8
T 6
Hy T 4
2
0 2 4 6 8 10 12
0 246 810
birth
H() Hl HZ
Figure 10: A topological space X filtered by its z-coordinate and its cor-
responding persistence barcode and persistence diagram. Figure reference:

https://pdfs.semanticscholar.org/678d/47b8392f16250ce47184cb04ebf35bc6e086.
pdf?_ga=2.241750406.529015329.1499364066-110733714.1499364066

a € R. This is the main idea behind functional persistence.

Formally, let X be a topological space and let f: X — R be a function associated to X.

Definition 7.1 (Homological Regular Values and Homological Critical Values )
A real number a is a homological regular value if there exists an € > 0 such that for all
z,y€(a—ea+e) with x <y, the inclusion f~1(~oo,2) » f1(~00,y) induces isomorphisms
on all homological groups. A real number a is is a homological critical value if it is not a
homological reqular value.

Definition 7.2 (Tame) A function f: X — R is called tame if it has finitely many homo-
logical critical values and the homology groups Hy(f~1((~o0,a]) are finite dimensional for
all keN, aeR.

7.1 Exercises

1. Define a function f on the digits 0,1,2,...9 such that functional persistence distin-
guishes between all 10 digits.

2. Repeat the previous exercise with the English alphabet.
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