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Problem Set-Up

Inputs

Observation data sampled at discrete times ti : {x(ti )}i∈I , where
x(ti ) ∈ Rn

Goal

Learn f (x(t)) such that dx
dt = f (x(t))
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Approach 1: Sparse Identification of Non-linear Dynamical
Systems (SINDy)

SINDy References/Sources:

K. Champion, S. Brunton, J. N. Kutz, Discovery of Non-linear
Multiscale Systems: Sampling Strategies and Embeddings, SIAM
Journal of Applied Dynamical Systems (2019)

S. Brunton, J. Proctor, J. N. Kutz, Discovering governing equations
from data by sparse identification of nonlinear dynamical systems,
PNAS (2016)

https://www.youtube.com/watch?v=gSCa78TIldg
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Approach 1: Sparse Identification of Non-linear Dynamical
Systems (SINDy)

Given measurement data {x(ti )}i∈I , can we accurately learn f (x(t)) so
that dx

dt = f (x(t))?

SINDy Assumptions

1 We have the full state measurements

2 f only has a few active terms, i.e. f is sparse is the space of all
possible functions of x(t)
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SINDy Algorithm

Case 1: Also assume data sampled from uniscale dynamical system

SINDy: Step 1

Collect measurement data and form a state space matrix:

X =


xT (t1)
xT (t2)

...
xT (tm)

 =


x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
. . .

. . .
...

x1(tm) x2(tm) . . . xn(tm)


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SINDy Algorithm

SINDy: Step 2

Numerically approximate Ẋ to get

Ẋ =


ẋT (t1)
ẋT (t2)

...
ẋT (tm)

 =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
. . .

. . .
...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)


Common methods for approximating the derivative:

Total variation regularized derivative (see R. Chartrand, Numerical
Differentiation of Noisy, Nonsmooth Data, ISRN Applied
Mathematics, 2011)

Finite difference methods
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SINDy Algorithm

SINDy: Step 3

Construct library Θ(X) of candidate nonlinear functions of X:

Θ(X) =

 | | | | | |
1 X XP2 XP3 · · · sin(X) cos(X) · · ·
| | | | | |

 ,
where

XP2 =


x21 (t1) x1(t1)x2(t1) · · · x22 (t1) · · · x2n (t1)
x21 (t2) x1(t2)x2(t2) · · · x22 (t2) · · · x2n (t2)

...
...

. . .
...

. . .
...

x21 (tm) x1(tm)x2(tm) · · · x22 (tm) · · · x2n (tm)


and similarly for general XPq .
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SINDy Algorithm

SINDy: Step 4

Sparse regression on Ẋ = Θ(X)Σ to solve for Σ = [σ1, . . . , σn] coefficients,
σi ∈ Rp.

Let λ > 0 be the sparsity threshold

1 Initial guess: solve Ẋ = Θ(X)Σ via ordinary least squares

2 If Σ(i , j) < λ set Σ(i , j) = 0
3 for k = 1, 2, . . . , n

solve Ẋ(:, k) = Θ(X)(:,Σ(:, k) > λ)Σ(Σ(:, k) > λ), k) via least squares

4 Repeat steps 2-3 until coefficients do not change (or for a fixed
number of iterations)
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SINDy Summary

Figure 1: SINDy algorithm. Figure from Figure 1 of Discovering governing
equations from data by sparse identification of nonlinear dynamical systems (S.
Brunton, J. Proctor, J.N. Kutz, PNAS, 2016).

Melissa R. McGuirl Discovering Equations from Data February 28, 2019 10 / 29



SINDy Parameter Choices

Differentiation method and corresponding parameters (e.g., for the
total variation regularized derivative you need to specify the
regularization term)

Polynomial order for Θ(X) and whether or not to include sine/cosine
bases functions

Sparsity threshold λ

Melissa R. McGuirl Discovering Equations from Data February 28, 2019 11 / 29



SINDy Case 2 Algorithm

Case 2: Assume data sampled from multi-scale dynamical system

Refined Problem Set-Up: nonlinear systems with linear coupling

Given measurement data {u(ti )}i∈I and {v(ti )}i∈I , with u(ti ) ∈ Rn (fast
variables) and v(ti ) ∈ Rl (slow variables), we try to learn functions f (u(t))
and g(v(t)) and C ∈ Rn×l , D ∈ Rl×n such that

τfastu̇ = f (u) + Cv

τslowv̇ = g(v) + Du
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SINDy Case 2 Algorithm

SINDy Multiscale Approach: Burst Sampling

Sampling scheme: Collect sample measurements in short bursts with
a small step size, spread out of over a long duration

Repeat SINDy with burst sampling scheme
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Burst Sampling

Figure 2: Burst Sampling. Figure from Figure 3(a) in Discovery of Non-linear
Multiscale Systems: Sampling Strategies and Embeddings (K. Champion, S.
Brunton, J.N. Kutz, SIAM Journal of Applied Dynamical Systems, 2019).

Melissa R. McGuirl Discovering Equations from Data February 28, 2019 14 / 29



SINDy Case 2 (multiscale dynamics) Additional Parameter
Choices

Burst size (number of samples per burst)

Duration over which to sample (about 2 times the period of the slow
dynamics, at least)

Total number of bursts to collect

Placement of bursts (select burst times as Poisson arrival times or
select them uniformly and then add noise to the left/right)
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Aside: What about PDEs?

Figure 3: PDE-FIND algorithm. Figure from Figure 1 in Data-driven Discovery of
partial differential equations (S. Rudy, S. Brunton, J. Proctor, J. N. Kutz, Science
Advances, 2017). Also see https:

//www.youtube.com/watch?v=oI3grKBxkqM&feature=youtu.be+target%3D
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Approach 2: Hankel alternative view of Koopman
(HAVOK) analysis

HAVOK References/Sources:

S. Brunton, B. Brunton, J. Proctor, E. Kaiser, J. N. Kutz, Chaos as
an intermittently forced linear system, Nature Communications (2017)

K. Champion, S. Brunton, J. N. Kutz, Discovery of Non-linear
Multiscale Systems: Sampling Strategies and Embeddings, SIAM
Journal of Applied Dynamical Systems (2019)

https://www.youtube.com/watch?v=Q8VzAtGGlDQ
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Approach 2: Hankel alternative view of Koopman
(HAVOK) analysis

HAVOK Assumptions

1 We only have one state measurement variable {x(ti )}i∈I , x(ti ) ∈ R
2 Data comes from an r-dimensional chaotic dynamical system
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HAVOK Algorithm

HAVOK: Step 1

Collect measurement data and form a state space vector:

X =


x(t1)
x(t2)

...
x(tm)


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HAVOK Algorithm

HAVOK: Step 2

Form Hankel matrix:

H =


x(t1) x(t2) . . . x(tp)
x(t2) x(t3) . . . x(tp+1)

...
...

. . .
...

x(tq) x(tq+1) . . . x(tm)


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HAVOK Algorithm

HAVOK: Step 3

Apply singular value decomposition to Hankel matrix:

H = UΣV ∗

HAVOK: Step 4

Find optimal rank r (M. Gavish and D. L. Donoho The optimal hard
threshold for singular values is 4/

√
3, IEEE Transactions on Information

Theory (2014))
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HAVOK Algorithm

HAVOK: Step 5

Apply SINDy algorithm (with degree 1) using first r columns of V as
measurement data:

Vr = [V1,V2, . . . ,Vr ]T
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HAVOK Algorithm

HAVOK: Step 6

Separate out rth variable. Build state-space model from first (r − 1) terms
and use rth term as a forcing term:

dV
dt

= AV(t) + BVr (t),

where V = [V1,V2, . . . ,Vr−1]T , and A and B are coefficient matrices
found from SINDy in step 5
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HAVOK Summary

Figure 4: HAVOK analysis. Figure from Figure 1 in Chaos as an intermittently
forced linear system (S. Brunton, B. Brunton, J. Proctor, E. Kaiser, J. N. Kutz,
Nature Communications, 2017).
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HAVOK Parameter Choices

q (HAVOK matrix dimension)

Differentiation method and corresponding parameters

Sparsity threshold λ
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Other HAVOK approaches

What if we have quasiperiodic data instead of chaotic data?

Methods for tackling this case with both uniscale and multiscale
dynamics are presented in Discovery of Non-linear Multiscale Systems:
Sampling Strategies and Embeddings (K. Champion, S. Brunton, J.
N. Kutz, SIAM Journal of Applied Dynamical Systems, 2019)

Methods rely on dynamic mode decomposition of Hankel matrix and
shifted Hankel matrix

Return to these methods after we cover dynamic mode
decomposition?
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Open source code

MATLAB SINDy and PDE-FIND code available here:
http://faculty.washington.edu/kutz/page26/

MATLAB HAVOK code available here:
http://faculty.washington.edu/sbrunton/HAVOK.zip

Modified comparison code on Dropbox
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Group Activities

1 Try MATLAB code with favorite dynamical systems

2 Play around with parameter and analyze how performance changes

3 Add noise to system data and see how methods perform

4 Download relevant data from https://www.kaggle.com/datasets

(or try your own data sets) and see if we can learn
interesting/accurate governing equations for the data
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