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The guiding question

How do eigenvalue algorithms perform on large, random matrices?*

* this is theoretical numerical analysis (at least, so far), I'm not a professional numerical linear algebraist....



Three stories   

(1) Eigenvalue algorithms as dynamical systems (flashback to the 1980s).

(2)  Random matrices and empirical universality (with Pfrang, Deift, Trogdon).

(3)  A few explanations (with Pujals).



Part 1.  Eigenvalue algorithms as dynamical systems 



The  QR  factorization

Assume L is a real, symmetrix matrix.  The  Gram-Schmidt procedure 
may be viewed as  the matrix factorization 

L = QR

Q is an orthogonal matrix

R is an upper triangular matrix



The  naive QR algorithm

The QR algorithm is an iterative scheme to compute the eigenvalues of L. 
There are two steps:

Step 1: Compute QR factors at iterate k.

The unshifted QR algorithm generates a sequence of isospectral matrices that 
typically converges to the desired  diagonal matrix of eigenvalues.

Lk = QkRk

Lk+1 = RkQk.

Observe that Lk+1 = QT
k LkQk.

Step 2: Intertwine these factors to obtain the next iterate



The practical QR algorithm

(1) Reduce the initial matrix to tridiagonal form. 
(2) Use a shift while iterating as follows.

At the k-th step compute the QR factorization:

Then set

The shift parameter is often chosen to be  the eigenvalue of  the lower right 2x2 block 
that is closer to the right-hand corner entry of the matrix (Wilkinson). 

Again, we  find Lk+1 = QT
k LkQk.

Lk � µkI = QkRk.

Lk+1 = RkQk + µkI.



Jacobi matrices

Assume L is tridiagonal

L =

�

�������

a1 b1 0 · · · · · ·
b1 a2 b2 · · ·

0 b2 a3
. . . 0

...
...

. . . . . . bn�1

0 0 · · · bn�1 an

�

�������

and that the  off-diagonal entries are positive. 

This is a practical assumption: we may reduce a full matrix to a 
Jacobi matrix with the same spectrum by Householder reflections.



Spectral and inverse spectral theory (Stieltjes).

The spectral data consist of the eigenvalues of L and the top row of U:

Given L, clearly we may find       and  

Stieltjes established the converse: given       and       we may reconstruct      .

L = U�UT , u = (1, 0, . . . , 0) U.

� u.

� u L

n�

j=1

u2
j

z � �j
=

1

z � an +
b2
n�1

z � an�1 +
b2
n�2

z � an�2 + · · ·

.



QR as a dynamical system: the phase space

Assume L is a Jacobi matrix with distinct eigenvalues, say

The  QR iterates are isospectral Jacobi matrices.

A more sophisticated form of the inverse spectral theorem reveals that 
the isospectral manifold is a convex polytope --the permutahedron.  
 
The iterates of the QR algorithm live in the interior of this polytope.

L = U�UT .

Lk = Uk�UT
k , L0 = L.



Deift, Nanda, Tomei (SIAM J. Numer. Anal., 1983).

Phase space and QR iterates for 3x3 matrices

6 P. DEIFT, T. NANDA AND C. TOMEI

Thus, as P (1, 0, 0), the corresponding matrices converge if (and only if, as is easy
to see) the ratio u12/u13 has a limit. Similarly, the vertices (0, 1, 0) and (0, 0, 1)
correspond to intervals of matrices of the same form

a2 b2
\ 0 b2 a3

but now a A 2 and A 3 respectively.
Rephrasing these facts, we see that the space of 3 x 3 tridiagonal matrices with

bi > 0 and fixed spectrum A > A2 >,3 is homeomorphic to a hexagon with boundary
(i.e., a disk with six preferred boundary points): the interior of the space corresponds
to matrices with bi > 0 while the boundary consists of pieces with some bi 0, arranged
as in Fig. 2 (cf. van Moerbeke [5]).

0
0

I1 0 I,1 0 0 hl 0

0 A3 b2 a3 0 A

albol b A F O01[al
a2 a2
0 0

!10 0

i io /I:3 1a a b
ba a C D/ L0 b a3

A3 b a2 A2
0 A 0 0 A 0

0
0

FIG. 2

AB, CD and EF correspond in u li variables to the edges (cos 0, sin 0, 0), (0,
cos b, sinb) and (cos ,, 0, sin ), 0<-0, b, 4, =<7r/2, respectively. FA, BC and DE
correspond to the vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1), respectively.

Caveat. The hexagon of Fig. 2 presents only a topological picture and has no
metric significance.

Similarly, in the 4 4 case, the space of tridiagonal matrices with bi >= 0 is homeo-.
morphic to a truncated octahedron with boundary as shown in Fig. 3, where (il, i2, i3, i4)
stands for the matrix diag (Ail, Ai2, Ai3,/i4)" The hexagonal faces correspond to matrices
with bl or b3---0 (the 3 3 case), while the square faces (a product of two intervals,
one for each 2 2 matrix) corresponds to b2 0.

We will use these low-dimensional examples to illustrate the properties of the
Toda flow in 5. It will be clear that the description extends to n > 4 as well as to
the general flows of 4.
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Convention: The eigenvalues are labelled in  decreasing order: �1 > �2 > . . . > �n



The Toda lattice

Hamiltonian system of n particles with unit mass on the line. Each interacts 
with its neighbors through an exponential potential.

H(p, q) =
1
2

n�

j=1

p2
j +

n�1�

j=1

eqj�qj+1

q̈j = eqj�1�qj � eqj�qj+1

q1 qn



Particle system to tridiagonal matrices (Flaschka, Manakov)

Jacobi Tridiagonal, skew-symmetric 

H(p, q) =
1
2

n�

j=1

p2
j +

n�1�

j=1

eqj�qj+1

q̇ =
�H

�p
, ṗ = ��H

�q

H(L) =
1
2
Trace(L2)

L̇ = BL� LB := [B,L]

L =

�

�������

a1 b1 0 · · · · · ·
b1 a2 b2 · · ·

0 b2 a3
. . . 0

...
...

. . . . . . bn�1

0 0 · · · bn�1 an

�

�������

aj = �1
2
pj , bj =

1
2
e(qj�qj+1)/2.Set

B =

�

�������

0 b1 0 · · · · · ·
�b1 0 b2 · · ·

0 �b2 0
. . . 0

...
...

. . . . . . bn�1

0 0 · · · �bn�1 0

�

�������



L(t) = U(t)�U(t)T , u(t) = (1, 0, . . . , 0) U(t)

Moser's solution formula (1975)

v(t) = u(0)e�t, u(t) =
v(t)
�v(t)� .

The Toda lattice may be solved explicitly by inverse spectral theory.  
Suppose we know the spectral data for the initial matrix. If we denote

Then

Thus, L(t) may be recovered by Stieltjes inverse spectral mapping.



Completely integrable Hamiltonian flows on Jacobi matrices

Consider a scalar function G with derivative g and extend it to a function on matrices.

Fundamental fact:  the Lax equation

defines a completely integrable Hamiltonian flow, with Hamiltonian

H(L) = Tr G(L).

L = U�UT , G(L) = UG(�)UT .

L̇ = [Ps(g(L)), L],

is the projection onto skew-symmetric matrices.Ps

Complete integrability: all these flows commute, and all of them may be 
solved by Moser's recipe.



10 P. DEIFT, T. NANDA AND C. TOMEI

be the Hamiltonian for n particles on a line interacting pairwise with exponential
forces (Toda lattice). The observation of Flaschka [1] was that the Hamiltonian
equations of motion for these particles

d-x Yk, l <= k <- n,

d d2

drY1 -x -exp{xl-x2},

d d2

dtY dtaX exp{x---Xk}--exp{xk--X/}, l <k

d d2

d-y =-x exp {X_l-X}

are equivalent to (1) under the change of variables

-Y k=l, 2,... n,ak= 2’
b, exp {(x, x,+)/2}, k=l,2,...,n-1.

From lak(t)--Xkl<=C exp {-2/xt} we see that the eigenvalues of (-L(0)) are twice the
asymptotic velocities of the particles, while the inequalities b (t)-< c exp {-2t} show
that the particles responding to the forces -(O/Oxk)’ e xj-xj+’ are asymptotically
free. Furthermore by (8), (hi,’’’, hn) and (log u11,’’’ ,log Uan) are (essentially) the
action-angle variables for H.

Remark 5. Although these decay rates are of theoretical interest, they are only
of limited computational interest because of deflation (see 3).

Theorem 3 provides us in the 3 3 case in particular, with the phase portrait of
the flow shown in Fig. 4.

diag (A 1, 2,
, 3)

diag (A 2, / 1, / 3)

diag (A 2, 3, / 1)

diag (h , h 3, h 2)

diag (I , ,, , )

diag (h 3, h , h 2)

FIG. 4
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Symes theorem (1980)

The iterates of the QR algorithm are exactly the same as the 
solutions to the QR flow evaluated at integer times! 

The Hamiltonian for the QR flow is the spectral entropy.



Hamiltonian =  algorithm

The Toda algorithm:  

G(x) =
x2

2
, H(L) =

1
2
TrL2.

The  QR algorithm:  

G(x) = x (log x� 1) , H(L) = Tr (L log L� L) .

The  signum algorithm (Pfrang, Deift, M.):  

G(x) = |x|, H(L) = Tr |L|.



Many numerical linear algebra algorithms were shown to be  time-1 
maps of completely integrable Hamiltonian flows by Deift, Demmel, Li, 
Tomei and Nanda.  Moody Chu and Watkins investigated these ideas, 
from a numerical linear algebra viewpoint.  

Certain sorting and dynamic programming algorithms, can also be recast 
as gradient flows (Brockett, Bloch, Fabyusovich). This includes, for 
example, a flow that solves the assignment problem -- so  “purely 
discrete” problems can be solved by “continuous” methods.  



Bayer and Lagarias found gradient flows that underlie Karmarkar's 
algorithm and other interior point methods.   

Summary (part 1)

Unexpected connections between dynamical systems and fundamental 
iterative algorithms were discovered in the 1980s.



Part 2. Random matrices and empirical universality 



Motivation   

An important feature of many numerical algorithms is that ``typical 
behaviour’’ is often much better than ``worst case’’ behaviour.  It is 
interesting to try to quantify this.   Some examples:

1)  Testing Gaussian elimination on random matrices: (Goldstine, von 
Neumann 1947, Demmel 1988, Edelman, 1988).



 
2)  Average runtime for  the simplex method (Smale, 1983). 



3)  Smoothed analysis (Spielman, Sankar, Teng, 2004).



Deflation as a stopping criterion

When computing eigenvalues we must choose a stopping criterion to decide on 
convergence. Typically, we try to split the matrix L into blocks as follows:

We call this deflation.  For a given tolerance, we define the deflation time

L =
�

L11 L12

L21 L22

�
, L̃ =

�
L11 0
0 L22

�
.

T� = min{k ⇥ 0|max
j

|�j(Lk)� �j(L̃k)| < ⇥}



Christian Pfrang’s thesis (2011)

    Empirically investigates the performance of three eigenvalue 
algorithms on random matrices from different ensembles. 

(1) QR -- with and without shifts.
(2) The Toda algorithm.
(3) The signum algorithm.

The algorithms:

The random matrix  ensembles:

(1) Gaussian Orthogonal Ensemble (GOE).
(2) Gaussian Wigner ensemble.
(3) Bernoulli ensemble.
(4) Hermite-1 ensemble.
(5) Jacobi uniform ensemble (JUE).
(6) Uniform doubly stochastic Jacobi ensemble (UDSJ)



The numerical experiments

(1) an algorithm (QR, Toda, signum)

(2) a deflation tolerance in the range: 1e-2 -- 1e-12

(3) a matrix size between 10--200

(4) an ensemble (1--6)

Choose:

Compute the deflation time and deflation index for a large number of random 
samples (typically 5000--10000).  In this manner, he generates empirical 
distributions of the deflation time and deflation index.

(Various computational tricks are used to streamline this process).



Fig. 6.1. Empirical hit time distributions of QR algorithm for GOE initial data with � = 10�8

and matrix dimension ranging through 10, 30, . . . , 190 (type 1).

21

Fig. 6.17. Empirical hit time distributions of Toda algorithm for GOE initial data with � = 10�8

and matrix dimensions 10, 30, . . . , 190 (type 1).

37

unshifted QR, GOE data

Examples of empirical distributions 

Toda, GOE data

These are histograms of the deflation time for a fixed tolerance (1 e-8) 
and matrix sizes that range from 10, 30, 50, ..., 190.



 Empirical universality                

For each algorithm,  the rescaled (zero mean, unit variance)  empirical 
distributions collapse onto a single curve that depends only on the 
algorithm (i.e. not on the ensemble, matrix size or deflation tolerance). 

Ensembles (1)-(4) have the Wigner law as limiting spectral distribution. 
Ensembles (5)-(6) do not. However, we find that the QR algorithm with 
Wilkinson shift yields the same distribution in fluctuations for these 
ensembles too.
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Figure 1: The QR algorithm applied to GOE. (a) Histogram for the
empirical frequency of τn,ϵ as n ranges from 10, 30, . . . , 190 for a fixed defla-
tion tolerance ϵ = 10−8. The curves (there are 10 of them plotted one on top
of another) do not depend significantly on n. (b) Histogram for empirical
frequency of τn,ϵ when ϵ = 10−k, k = 2, 4, 6, 8 for fixed matrix size n = 190.
The curves move to the right as ϵ decreases.

3.1 Unscaled deflation time statistics for GOE

We first present deflation time statistics for τn,ϵ for a fixed ensemble (GOE)
for both QR and Toda algorithms. The statistics of τn,ϵ for the QR algorithm
are shown in Figure 1. Similar statistics for the Toda algorithm are shown
in Figure 2. These figures reflect the typical dependence of these algorithms
on n and ϵ for ensembles (1)–(6). Similar statistics for other ensembles may
be found in [24, chapter 7]. In all cases, we observe that the histograms for
the QR algorithm are relatively insensitive to n and shift to the right as ϵ
decreases. The histograms for the Toda algorithm shift to the right as n
increases and ϵ decreases as discussed below.

15

Empirical deflation time statistics: unshifted QR on GOE
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Figure 7: Universality for the shifted QR algorithm on the Wigner

class. Empirical deflation time for the QR algorithm with the Wilkinson
shift normalized as in (25) with ϵ = 10−k, k = 8, 10, 12 and n ranging from
10, 30, . . . , 190. Note that ϵ is significantly smaller than for the unshifted QR
algorithm. The ensembles are (a) GOE; (b) Hermite-1; (c) Gaussian Wigner;
and (d) Bernoulli. Each of the figures (a), (b), (c), and (d) is obtained by
collapsing the data as in Figure 4. The peak of the TE1 ensemble is lower,
and the tail shorter, than those for the other three ensembles.

30

The QR algorithm with Wilkinson shift 
takes very few iterations to deflate. This 

behavior is insensitive to matrix size.

Nevertheless, by choosing very small deflation 
thresholds, we can begin to see a universal 
empirical distribution for deflation times. 



Empirical universality for QR with shifts



Fig. 6.14. Combination of all the QR runtime histograms (type 7), compared with a ‘normalized’
gamma distribution with parameters k = 2 and � = 1 (red: Bernoulli, green: GOE, orange: Wigner,
purple: Hermite–1). Here normalized refers to shifting and scaling to obtain a distribution of mean
zero and variance one.

34

Fig. 6.30. Combination of all the normalized Toda runtime histograms compared with a stan-
dard normal distribution with parameters µ = 0 and � = 1.

50

unshifted QR. 
Fit is Gamma(2,1) with 

exponential tail.

Rescaled histograms for all matrix sizes, deflation tolerance, and 
ensembles (1)--(4) (GOE, Bernoulli, Gaussian Wigner, Hermite-1).

Toda. 
Fit is standard normal.



Numerical experiments reveal universal fluctuations in the distribution 
of the deflation time for three Hamiltonian eigenvalue algorithms.

 Such "universality in halting times" is not restricted to these 
algorithms. Tom Trogdon performed extensive numerical computations on 
several algorithms, and found similar universality. These include a 
critical scaling regime for the conjugate gradient method, and an 
interesting decision time algorithm. 



These results are reported in Deift, M. , Olver, Trogdon (PNAS, 2014). 


 

Summary (part 2)



Part 3. The largest gap conjecture, gradient flows 
on the permutahedron and sorting networks



The largest gap conjecture

Our guess: The observed "universal distribution" for the Toda flow is the 
edge-scaling limit of             QR and signum are more subtle.

gn = max
1�j�n�1

(�j � �j+1)

Denote the largest gap in the spectrum by

1/gn.
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Dim(s) = 40

The largest gap conjecture: numerical evidence

Overlay of statistics of the largest gap and observed deflation time.



The largest gap via stochastic Airy

�d2�

dx2
+

�
x + 2ḃ

�
� = ��, 0 < x <�, �(0) = lim

x��
�(x) = 0.

The edge-scaling limit of the spectrum is given by the Stochastic Airy operator.

Heuristically,  the spectrum of stochastic Airy is a random perturbation of the 
spectrum of the Airy operator, i.e. minus the zeros of the Airy function

An explicit description of the law of the largest gap is not known.


Even the fact that it is well-defined requires some care...

Eigenvalues of Airy. Eigenvalues of stochastic Airy.



Why the largest gap?

Conventional wisdom: Toda rates are determined by the smallest gap, since the smallest 
gap determines the rate of convergence to equilibrium (Moser). 

Convergence to equilibrium occurs at slow rate

ẋ = �µx, ẏ = ��y, 0 < µ� �.

Approach to x-axis occurs at  fast rate

µ

�

But convergence to equilibrium is not the same as deflation.



Understanding deflation (M, Pujals)

Main new idea: Combine analysis of Toda with combinatorics of permutations.

Invariant manifolds: 



Each (n-k)-face on the polytope is invariant. 



Each such face corresponds to block diagonal matrices with k blocks. 

=3

L =

�

������

L1 0 0 · · · 0
0 L2 0 · · ·
0 0 L3 0 · · ·

. . . . . .
... 0

0 · · · 0 Lk

�

������



Deift, Nanda, Tomei (SIAM J. Numer. Anal., 1983).

Toda phase space for 4x4 matrices

SYMMETRIC EIGENVALUE PROBLEM 7

(1234) (2134)

(124
(1423) .././(742()2413)/(31._234)
(1432)[(4’-12ii’:431)(2341)

(4132)
(341)(211)

(4312) (4321)

FIG. 3

The following lemma shows that (1) can be solved explicitly in terms of the
"inverse" variables (A, u) (see also Remark 4).

LEMMA 1 (Moser [2]). Let L(t)solve (1). Then

eAtu (0)(8) u (t)

Proof. From (4), uij(t)= 2=1Vik(t)Uki(O) and from (3),

In particular,

dt
uq(t) Bkukj(t).

k=l

d
d---ulj(t) bl(t)uzi(t)= (Ai-al(t)Uxi(t)),

d ( )(9) d-Ux(t)= A- Auk(t) ux(t).
k=l

The lemma follows directly upon substituting (8) into (9).
Let min k x,.. .,n -1 (hk--Ak+l).
THEOREM 3.

[a (t) AI --< c exp {-2/xt},
b (t) =< c exp {-2t},

fort>-O

where c depends on L(O).
Proof. By the explicit solution (8), {uxx(t), Ux2(t), Ul,(t)} converges exponen-

tially to (1, 0,..., 0). The idea of the proof is to use induction and the inverse
algorithm to show that the full matrix (ugi(t)) of eigenvectors converges exponentially
to the identity matrix.
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Normal hyperbolicity (M, Pujals)

Simplest example (enough to understand largest gap): 



The stable equilibrium lies at the intersection of (n-1) invariant manifolds.



Each such manifold is of the form 



The normal rate of attraction for any such manifold is at least 



bk = 0, 1 � k � n� 1.

�k � �k+1.

Easy consequence of Schur-Horn theorem for Toda.



Analogous statement requires more care for other flows. 

Main observation : order relations between eigenvalues of blocks imply 
normal hyperbolicity of invariant manifolds. 



Deift, Nanda, Tomei (SIAM J. Numer. Anal., 1983).

From deflation to global dynamics...

20 P. DEIFT, T. NANDA AND C. TOMEI

TABLE 5
Matrix C.

Time a a2 a3 bl b2
0 2.0000E +00 7.6000E +00 4.4000E +00 4.3346E- 10 1.2000E +00
1.0000E +00 2.0000E +00 7.9999E +00 4.0001E +00 2.4206E- 07 2.4420E- 02
2.0000E +00 2.0000E +00 3.0000E +00 4.0000E +00 5.7653E- 05 4.4728E- 04
3.0000E +00 2.0003E +00 7.9997E +00 4.0000E +00 3.9394E- 02 8.1925E- 06
4.0000E+00 7.2516E+00 2.7484E+00 4.0000E+00 1.9825E+00 4.2484E-07
5.0000E +00 8.0000E +00 2.0000E +00 4.0000E +00 5.6146E- 03 2.9369E- 00
6.0000E+00 8.0000E+00 2.0000E+00 4.0000E+00 1.3917E-05 2.1701E-05
7.0000E +00 8.0000E +00 2.0000E +00 4.0000E +00 3.4497E- 00 1.6035E- 03
8.0000E +00 8.0000E +00 2.0000E +00 4.0000E +00 8.5510E- 11 1.1848E- 03
9.0000E+00 8.0000E+00 2.0000E+00 4.0000E+00 2.1196E-13 8.7515E-01
1.0000E+01 8.0000E+00 2.0021E+00 3.9979E+00 5.2567E-16 6.4621E-02
1.1000E +01 8.0000E +00 2.1081E +00 3.8919E +00 1.3390E- 18 4.5216E- 01
1.2000E+01 8.0000E+00 3.5144E+00 2.4856E+00 6.5512E-21 8.5756E-01
1.3000E+01 8.0000E+00 3.9883E+00 2.0117E+00 1.0172E-22 1.5238E-01
1.4000E+01 8.0000E+00 3.9998E+00 2.0002E+00 1.9125E-24 2.0741E-02
1.5000E +01 8.0000E +00 4.0000E +00 2.0000E +00 3.5026E- 26 2.8073E- 03
1.6000E+01 8.0000E+00 4.0000E+00 2.0000E+00 6.4153E-28 3.7993E-04
1.7000E+01 8.0000E+00 4.0000E+00 2.0000E+00 1.1250E-29 5.1417E-05
1.8000E+01 8.0000E+00 4.0000E+00 2.0000E+00 2.1521E-31 6.9586E-06
1.8970E +01 8.0000E +00 4.0000E +00 2.0000E +00 4.4442E- 33 9.9998E- 07

Matrix B requires 13 units of phase space time while C requires 19 units. The
discrepancy in the times occurs because the trajectory through C is close enough to
be slowed down by the equilibrium point diag (2, 8, 4), but not close enough to be
absorbed. This is the phenomenon of bending.

These phenomena occur with increasing combinatorial complexity in all
dimensions n. For example, when n 4, the following (schematic) trajectories can
occur (see Fig. 7):
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The Whole History!
Sorting networks

Projection onto diagonal of a Jacobi matrix


evolving by Toda (Roger Brockett).

842 O. Angel et al. / Advances in Mathematics 215 (2007) 839–868

Fig. 3. The permutation matrix of the half-time configuration σN/2 for a uniformly chosen 2000-element sorting network.

Fig. 4. Left: the “wiring diagram” of the 6-element sorting network ω = (1,2,1,3,4,5,2,1,3,2,1,4,3,2,1). The swap
process is shown by the black discs. The trajectory of particle 3 is highlighted. Right: the graph (or permutation matrix)
of the configuration σ7 = (3,4,2,5,6,1) of ω at time 7.

Theorem 2 (Law of large numbers). Let ωn be a uniform n-element sorting network. The scaled
swap process η satisfies

η(ωn) ⇒ Leb × semi as n → ∞.

Here ⇒ denotes the convergence in distribution of random measures in the vague topology on
Borel measures on R2, and the right side denotes the deterministic product measure.

For a sorting network ω, define the scaled trajectory Ti(t) = Ti(t,ω) of particle i by

Angel, Holroyd, Romik, Virag--  
Uniform sorting networks (2007)
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J. Moser -- Finitely many mass-points on the line (1976)

From random matrix theory to a sorting network

 With probability 1, each choice of initial condition 
determines a sorting network.  
 
Law of the sorting network is determined by the 
scattering theorem for Toda (and related flows).



Summary

(1) Several iterative eigenvalue algorithms are tied to integrable systems.

(2) Empirical universality for fluctuations of deflation times emerges from 
universality of gap statistics for Tracy-Widom point process.

(3)  Each algorithm and matrix ensemble determines a class of random 
sorting networks.   

It seems reasonable to hope that  universality could hold for the sorting 
networks (this has not been tested).


