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Part 1. Biology, technology, and a little math...

This talk is a description of a common mathematical framework to
describe self-assembly of polyhedra. I will contrast two problems:

The self-assembly of the bacteriophage MS2 (Reidun Twarock's team)

Surface tension driven self-folding polyhedra (our work).



Examples of icosahedral symmetry in nature

C 60 molecule, 0.7 nm Adenovirus, 9o nm Radioalarian 10 pum

Widely different self-assembly mechanisms at different scales.

It is a very interesting to understand the types of symmetry, the “coding
of symmetry” in the genome, and the interplay between symmetry and
the pathways of self-assembly:.
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One of the first uses of the phrase “self assembly” is by Caspar
and Klug in their work on the structure of viruses. They
distinguish grades of organization in a cell as sub-assembly and
self-assembly and write:

Self-assembly (of a virus) is a process akin to crystallization
and is governed by the laws of statistical mechanics. The
protein subunits and the nucleic acid chain spontaneously
come together to form a simple virus particle because this is
their lowest free energy state .”

Caspar and Klug; Cold Spring Harbor Symposium, (1962)



Our work is on synthetic self-assembly.

We want biology to inspire the design of devices and materials. In turn,
we hope that synthetic models will shed light on biological self-assembly:

Typical themes:

stripped down interactions (e.g. one dominant energy scale) ,
simple shapes built out of a few simpler motifs,
some randomness.
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Fig. 1. The procedure used to form electrical
networks in 3D by self-assembly (72). (A) An
array of the basic pattern of copper dots, con-
tact pads, and wires was defined on a flexible
copper-polyimide sheet using photolithography
and etching. (B) These pattern elements were
cut out along the dotted line, (C) glued on the
faces of the polyhedron, and (D) LEDs were
soldered manually onto the contact pads. (E)
The copper dots and wires on the TOs were
coated with solder, and self-assembly occurred
in hot, isodense, aqueous KBr solution.

A self-assembling circuit

Gracias, Tien, Breen, Hsu, Whitesides,

(Science, 2000).



From “proof of concept” to design principles

Many initial laboratory experiments provide “proof of concept”. In the
past ten years, there have been significant improvements in self-assembly
across many scales. For example, polyhedra can now be self-assembled in
several distinct laboratory experiments.

Our interest lies in:
(1) mathematical modeling of self-assembly, especially geometric principles.
(2) connections with biological self-assembly:

(3) principles for efficient design.



Examples of synthetic polyhedra: 1 nm scale
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Organometallic supermolecules built by Archimedean cage built by hydrogen bonds.

covalent bonds.
Ward lab (NYU), Science (2011).
Fujita lab (Tokyo), Science (2010).



Examples of synthetic polyhedra: 10 nm scale
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Icosahedral DNA cage built in modules.

Yamuna Krishnan’s lab (NCBS), Ang. Chemie. (2009).
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passing an elastic thread alternately above
and beneath the corners of the double star,
holding the model flat with the other hand.
Removing the hand (230), we see the
dodecahedron rising (231) as a perfect
model. To paint its faces so that adjoining
faces have different colors, no less than four
colors are sufficient. Choosing four colors,
e. g. red, green, blue, and yellow, we may
distribute them on a dodecahedron either
as illustrated by the sketch (227) or in an es-
sentially different way (228). (By rotation
and reflection can we transform one of these
models into the other?)

We can inscribe a cube into a regular
dodecahedron in such a manner that every
edge of the cube becomes a diagonal of a

(229)

Hugo Steinhaus, Mathematical Snapshots.
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Examples of synthetic polyhedra: micron scale

Truncated octahedra built by self-folding.

Gracias, Menon + students, PNAS, (2011).



The main question

What is common to biological and synthetic self-assembly?

Our approach: use discrete geometry to model the intermediates
and pathways of assembly. Iry to understand the most robust features
of simple models.



Zlotnick’s model (1994) and the building game
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() Discretize the assembly process into intermediate states.

(2) Model attachment/detachment kinetics using experimental data (or
more often simple-minded physics) to determine rates.

(3) Useful in chemistry for modeling fullerenes (Wales, 1987)

Cannot explain malformed shapes, no sequence specific information.
Many other models exist (Berger, Shor, 1994; Bruinsma (2005).



Macroscopic “chemical reactions”

Figure 2. Photograph of the basic unit.

Figure 4. The experimental apparatus.

Hosokawa, Shimoyama, Miura, Artificial Life, (1996).



Chemical reactions theory: states, reactions, rates.

A X @ X4 2X —> XZ, X+ Xz —> X3,
X+X3—>)(4, X——)Q—>X5,
N X2 % XS X+X5——> 5 s 2Xo > Xy,
Xz + X3 = Xs, X + X — X,
V' X3 % X6 2X: — Xg.
States Reactions

Rates: compute probabilities of collisions and bonding.
Must include physics at this stage.



(1) A linear system of equations need not be easy to solve.

A combinatorial explosion

(2) Rates cannot be determined from experiment (need a weight for each edge).

Polyhedron +# faces | # intermediates | # edges in C | # assembly pathways from [] to Il
Tetrahedron 4 5 (5) 4 (4) 1 (1)
Cube 6 9 (3) 0 (8) 3(2)
Octahedron 8 15 (12) ( 4) 4 (4)
Dodecahedron 12 74 (53) 264 (156) 17,696 (2 166)
Icosahedron 20 2650 (468) | 17242 (1984) 57,396,146,640 (10,599,738)
Truncated tetrahedron 8 29 (22) 65 (42) 402 (171)
Cuboctahedron 14 341 (137) 1636 (470) 10,170,968(6,258)
Truncated cube 14 500 (248) | 2731 (1002) 101,443,338 (5,232,294)
Truncated octahedron 14 556 (343) | 3071 (1466) 68,106,377(5,704,138)

A few enumerative results from: Johnson, Menon (2015).




Part 2. Biological inspiration:

Structure and self-assembly of viruses,
and the story of MSa2.



Viruses

Viruses are the most populous (10"31) and genetically diverse
organisms (10™7 genotypes) on earth. However, they lack the
biosynthetic machinery for independent existence.

The “simplest” viruses consist of a genome (RNA or DNA)
contained within a protein shell (the capsid).



The (idealized) reproductive cycle

(1) Capsid disassembles when virus infects a host;
(2) Genome hijacks host’s machinery to make new genome and protein;

(3) Capsid reassembles and packages the genome.



The elegant natural design of viruses

(1) Genetic economy.

(2) Structural symmetry:

(): NTH-NCBI lists the complete genome of approximately 4000 viruses.
Many of these have very short genomes. For example, ss-RNA viruses often
have genomes with only 1000 to 10000 base pairs.

(2) In the mid-1950s’ crystallography revealed that many viral capsids have
icosahedral symmetry. As Caspar and Klug realized, structural symmetry is
well matched with genetic economy -- a few basic units can go a long way...
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Geodesic domes, planar tilings, and
models of an icosahedral virus.

Caspar, Klug (1962)



The Caspar-Klug “quantization”

T=21

The number of subunits in the viral capsid must be 60T where

T=h*+hk+Ek* hk=012...



This restriction had been found by Goldberg in 1937 in his study of
discrete isoperimetric problems.

Caspar-Klug virus= Goldberg polyhedron.




“Forbidden” structures

T=6 is impossible, thus a virus structure based on Caspar-Klug theory
cannot have 360 subunits. But such virus structures were found in 1991.

Both SV 40 and polyomavirus have 72 pentamers, thus 360 subunits.

Liddington et al (Nature , Nov. 28, 1991).



Aperiodic tilings and SV40

The Sv4o0 structure is simple and beautiful (Twarock, 2004):
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Certain aperiodic tilings (e.g. the Penrose tiling) can be "folded" into a
closed polyhedron, analogous to the Goldberg polyhedra.

Thus, SV 40 discovered quasicrystals two billion years before us!



The story of MS2

MS:2 is an icosahedral virus with a single-stranded RNA. It infects the bacteria
e.coli, and other enterobacteria. The MS2 genome was the first to be
completely sequenced (Fiers 1972-1976).

The genome has 3569 nucleotides that code for four proteins:

(1) coat protein; (2) maturation protein; (3) lysis enzyme; (4) replicase enzyme.



ayVGACCUGUG- =¥

30~ A=U
c-G
LDI U°° SD

* S e SRS, zrz “sotrice o BTG W RiE ‘:zzxxe. c

vy
B A-u C

INV. Ao-eA
#-A-U
UG

&l-»

c-G

U C
AU

82?8

z‘m‘ffz

o, 8




The equilibrium structure of MS2

The capsid consists of 180 copies of the coat protein. However, this protein exists

in three configurations (A,B,C) which bind into two dimers (A/B and C/C).

The switch from one dimer to another is triggered by an RNNA hairpin loop.



The early dogma on the process of self-assembly

Self-assembly (of a virus) is a process akin to crystallization
and is governed by the laws of statistical mechanics. The
protein subunits and the nucleic acid chain spontaneously
come together to form a simple virus particle because this is
their lowest free energy state .”

Caspar and Klug; Cold Spring Harbor Symposium, (1962)



The dogma soon unraveled....

(1) The time taken to reach equilibrium is too long (this is
essentially the same as Levinthal’s paradox for protein folding).

(2) Klug showed that RNA-driven conformation changes drive
the self-assembly of Tobacco Mosaic Virus (1971). Thus,
assembly is not thermodynamic, it is nucleated by RNA.

There have been many investigations of the assembly of
viruses, but sequence-specific studies are very recent and use
discrete geometry in an essential way.
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The role of RNA folding
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Fig. 1. The polyhedral cage of MS2 RNA density can be described as a Hamiltonian path. (a) A cryo-EM reconstruction
of the outer RNA shell of bacteriophage MS2 (depicted in magenta) based on an image at ~17 A resolution adapted from
Van den Worm et al.” (b) A representation of this RNA shell as a polyhedral cage. (c) A three-dimensional view of a single
Hamiltonian path, which meets every vertex of the polyhedron exactly once by moving along the short (yellow) and long
(orange) edges of the polyhedral cage. (d) A planar net representation of the Hamiltonian path shown in (c) and its
relation to the A (blue), B (green), and C (pink) quasi-equivalent subunits of the MS2 capsid.

Twarock's work: use a combinatorial model for RN A-capsid coassembly to
locate secondary folding sites for RNA on the MS2 genome.

Dykeman, Stockley, Twarock; PNAS (2015)



Part 3. Self-folding polyhedra: computation and

experiment.

computations: Ryan Kaplan, Daniel Johnson, Joe Klobusicky,
(Brown)

experiments: Shivi Pandey, David Gracias (Johns Hopkins)



Examples of synthetic polyhedra: micron scale




Discovering design principles

Which net self-folds with the highest yield?
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Azam, Leong, Zarafshar, Gracias (PloS One 2010)




The observed pathways (net§ vs net11) and yield

A: perfectly folded structures.

Yield

oD
I 2{3: D: 2 or more faces did not fold.
BA

0

n
w |
M |
—
—_—
~J |
—
= |
o
D |
=N
e |
lo's)



The combinatorial explosion

Polyhedron Number of faces Number of nets

Tetrahedron 4 2
Cube 6 11
Octahedron 8 I

Dodecahedron I2 43,380

Icosahedron 20 43,380

Truncated octahedron 14 23x10°
30

10
Viral capsid (T=1) e



What my students did at Brown*

() Build models. Convert this to a labelled graph (face-
edge, vertex-edge associated to a polyhedron)

(2) Construct a Monte Carlo sampler: fish for spanning
trees; convert to a net; check for congruence. Repeat.

(3) Build a database of nets.

(4) Optimization: Find best/worst nets for various cost
functions (radius of gyration, vertex connections).

* Maggie Ewing, Drew Kunas, Nghi Nguyen (summer 2010)
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Experiments on self-folding dodecahedra (at Johns Hopkins)

0% M M A M-

80%-

H O
> O

60%-

Yield

40%

20%-

il

a- b o=t e
| >|

Dodecahedra

(@--(c): ranked by vertex connections.
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The (simple-minded) predictors work.

But the main issue is to understand the process of self-assembly:



The (simple-minded) predictors work. But the main issue is to
understand the process of self-assembly. Our model involves:

(a) Construction of discrete configuration space (a graph of intermediates).

(b) Markov chains/optimization on configuration space based on "cooked
up" rates and energy functions (only geometry, minimal physics).

(©) Daniel Johnson's thesis (2015): compute rates ab initio based on
Brownian motion of polyhedral linkages. Impossible to know rates
from experiment for simple molecules (e.g. fullerenes).



A discrete evolution: “gluing at vertex connections”

Fold a net in discrete steps by gluing all edges at a vertex by rotating
through the dihedral angle.

Glue only one edge at a time, unless additional faces collide. If so,
glue all additional edges that are forced on you.

L 2

This has several interpretations such as an evolution of spanning
trees on the vertex-edge graph by the removal of edges, or the
transformation of an initial spanning tree on the face-edge graph by
the addition of cycles.
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Pathways for net §
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Unity in discrete geometry (1)
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Unfold an HP chain by breaking secondary HH bonds. Initial configuration from
Chan and Dill (1997). Crankshaft moves adapted from Verdier and Stockmayer (1962).
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Some interesting mathematical structure

The discrete configuration space explodes combinatorially. However, there
seems to be a collapse onto a few dominant intermediates that is robust for various

choices of metrics and rates on the configuration space.

We illustrate this for folding. Similar results have been reported for various models
of virus self-assembly:



All folding pathways for the cube.
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Comparison of computation and experiment
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Kaplan et al; Artificical Life (2014)




Where is the math?

() Configuration spaces, numerical schemes, computation of rates for linkages
executing Brownian motion.

(2) What can we build?



The octahedron and an "isomer"
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Pandey et al; PloS One (2014)



Polyhedra as machines?

Izidor Hafner’s “bellows” based on Connelly’s polyhedron.













