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Part 1.  Biology, technology, and a little math...

This talk is a description of a common mathematical framework to 
describe self-assembly of polyhedra. I will contrast two problems:

The self-assembly of the bacteriophage MS2 (Reidun Twarock's team)

Surface tension driven self-folding polyhedra (our work). 
 
 



Examples of icosahedral symmetry  in  nature

Radioalarian   10 µm

Widely  different  self-assembly  mechanisms  at  different  scales. 

It is a very interesting to understand the types of symmetry, the “coding 
of symmetry” in the genome, and the interplay between symmetry  and 

the pathways of  self-assembly.

C 60  molecule, 0.7 nm Adenovirus,  90 nm
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One of the first uses of the phrase  “self assembly”  is  by  Caspar 
and Klug  in  their  work on the structure of viruses.  They 
distinguish  grades of organization in a cell as sub-assembly and 
self-assembly  and write:

Self-assembly (of a virus)  is a process akin to  crystallization 
and is  governed by  the laws of statistical mechanics. The 

protein  subunits and  the nucleic acid chain spontaneously 
come together  to form a simple virus particle because this is 

their lowest free energy state .” 

Caspar and Klug; Cold Spring Harbor Symposium, (1962)



Our work is on synthetic  self-assembly.  

We want biology to inspire  the design  of devices and materials.   In turn, 
we hope that synthetic models will shed light on biological self-assembly. 

Typical themes: 
 

stripped  down interactions (e.g. one  dominant energy  scale) , 
simple  shapes built out of a few simpler motifs, 

some randomness.



A  self-assembling circuit 

Forming Electrical Networks in
Three Dimensions by

Self-Assembly
David H. Gracias, Joe Tien, Tricia L. Breen, Carey Hsu,

George M. Whitesides*

Self-assembly of millimeter-scale polyhedra, with surfaces patterned with sol-
der dots, wires, and light-emitting diodes, generated electrically functional,
three-dimensional networks. The patterns of dots and wires controlled the
structure of the networks formed; both parallel and serial connections were
generated.

Most fabrication of microelectronic devices
is carried out by photolithography and is
intrinsically two-dimensional (2D) (1). The
3D interconnections required in current de-
vices are fabricated by the superposition of
stacked, parallel planes and by their connec-
tion using perpendicular vias (2–4). We dem-
onstrate self-assembly as a strategy to form
interconnections between electronic devices
and prefabricated circuits, and to form 3D
electrical circuits.

Previous uses of self-assembly to fabri-
cate electronic devices include shape-directed
fluidic self-assembly of light-emitting diodes
(LEDs) on silicon substrates (5) and coplanar
integration of segmented integrated circuit
(IC) devices (6) into 2D “superchips” using
capillary forces at the surface of a flotation
liquid (7). We demonstrate the formation of
two classes of 3D electrical networks—par-
allel and serial—by self-assembly, as an ear-
ly step toward a strategy for fabricating 3D
microelectronic devices. The basic unit in
these assemblies is a polyhedron [a truncated
octahedron (TO)], on whose faces electrical
circuits are printed. In the present demonstra-
tions, these circuits include LEDs to demon-
strate electrical connectivity and trace the
networks; in the future, they will include
devices with more complex functionality
(e.g., processors). The LEDs are wired to
patterns of solder dots on adjacent faces of
the polyhedron. The TOs are suspended in an
approximately isodense liquid at a tempera-
ture above the melting point of the solder
(m.p. ! 47°C), and allowed to tumble gently
into contact with one another. The drops of
molten solder fuse, and the minimization of
their interfacial free energy generates the
forces that assemble the TOs into regular
structures (8). Processes based on capillary
interactions between solder drops have been
used previously to assemble electronic and

mechanical structures: examples include
“flip-chip” technology (9) and the rotation of
parts of microstructures into nonplanar orien-
tations (10, 11). During assembly, recogni-
tion of the pattern of dots on one face by that
on another orients and registers the patterns,
and generates dot-on-dot electrical connec-
tions among polyhedra. Self-assembly of
polyhedra can generate networks in which the
LEDs are connected either in parallel or in
series. Figure 1 outlines both the fabrication
of the patterned polyhedra and their self-
assembly into 3D structures that include elec-
trical networks (12).

We used a scheme in which LEDs were
mounted on the hexagonal faces of the TO,
and the solder dots were placed on the square
faces. To maximize the rate of self-assembly,
all of the square faces of the TO had the same
fourfold symmetric pattern of solder dots.
With this pattern, correct registration of pat-
terns on juxtaposed faces occurred in one of
four indistinguishable ways; dots on the pat-
terns that transformed into each other under
fourfold rotational symmetry were equivalent
and served the same function. On the 3 mm
by 3 mm square face, the width of all of the
solder dots was !1 mm (Fig. 2). A common
size was required: the solder wetted the cop-
per with a well-defined contact angle, and
each drop of the same size therefore had the
same height. Empirical testing suggested that
the optimum distance between adjacent sol-
der dots was approximately one-half their
width. Smaller separations resulted in electri-
cal shorting between dots due to bridging
with solder; larger separations resulted in
misalignment. We designed the shapes of
solder dots to give an energy diagram for
self-assembly having one large (global) min-
imum and relatively small local minima.

The wires that connect different solder
dots electrically on each TO were fabricated
in the same way as the dots. When the pat-
terned TOs were dipped in solder, these wires
were also covered with a solder layer. By
making the wires substantially narrower
(!150 "m) than the diameter of the dots (!1

mm), we limited the height of the solder film
on the wires to !15% that of the dots. When
the faces self-assembled, the larger dots fused
into connections, but the smaller wires did
not touch and fuse (Fig. 2C). It was, as a
result, unnecessary to insulate the wires to
prevent shorting, even when they crossed on
juxtaposed faces of two TOs.

We wished to demonstrate, by self-as-
sembly in 3D, networks that are widely
used in current 2D IC technology. In these
systems, pins on processors belong to one
of three groups: bus lines (driving voltage,
clock), inputs, and outputs. Bus lines con-
nect processors in parallel; outputs of one
processor connect serially to inputs of ad-
jacent processors.

In the pattern of solder dots (Fig. 2D), the
five dots that lie on reflection axes comprise

Department of Chemistry and Chemical Biology, Har-
vard University, Cambridge, MA 02138, USA.

*To whom correspondence should be addressed. E-
mail: gwhitesides@gmwgroup.harvard.edu

Fig. 1. The procedure used to form electrical
networks in 3D by self-assembly (12). (A) An
array of the basic pattern of copper dots, con-
tact pads, and wires was defined on a flexible
copper-polyimide sheet using photolithography
and etching. (B) These pattern elements were
cut out along the dotted line, (C) glued on the
faces of the polyhedron, and (D) LEDs were
soldered manually onto the contact pads. (E)
The copper dots and wires on the TOs were
coated with solder, and self-assembly occurred
in hot, isodense, aqueous KBr solution.
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two sets of dots differentiated by symmetry:
{1} and {2, 5, 8, and 11}. During self-assem-
bly, dots from one set on a TO connect to dots
from the same set on another TO. These dots
are used for parallel or bus-line connections.
The other dots, {3, 6, 9, and 12} and {4, 7,
10, and 13}, form two distinct sets related by
reflection symmetry. Upon assembly, dots
from one set on a TO (e.g., outputs from one
processor) connect to those from the other set
on another TO (e.g., inputs to a second pro-
cessor). These dots are used for serial, input/
output connections.

Figure 3 shows the realization of a 3D
network with parallel connectivity, using
self-assembly. The pattern of solder dots con-
sisted of dots {2, 5, 8, and 11} and {1} (Fig.
2D), which were on the axes of symmetry of
the square face (13). In the assembled aggre-
gate, LEDs on one TO connected to those on
the adjacent TO in parallel, along three or-
thogonal directions. The fidelity of the inter-
connections was visualized by lighting up the
LEDs connected in parallel in the assembly.

This self-assembled, 3D parallel network
mimicked bus lines in circuits in which a
number of electrical components are powered
by the same common wires.

For the realization of a 3D network with
serial connectivity (Fig. 4), we used the sets
of solder dots {3, 6, 9, and 12} and {4, 7, 10,
and 13} (Fig. 2D) that were off the axes of
symmetry of the square face (14). The im-
portant feature of the assembled 3D network
was that the cathode of one LED always
connected to the anode of another LED
across the assembling faces. The serial net-
works were traced by illuminating sets of
LEDs (e.g., Fig. 4D) (15).

The 3D assemblies can be designed to be
porous: this porosity may allow for cooling
fluid to be pumped through the assemblies.

The shape and the distribution of solder dots
on the assembling faces raises interesting
questions regarding the design of patterns
that best enable the “recognition” of one pat-
tern by another. Other concepts adapted from
2D self-assembly, such as hierarchical self-
assembly (16) and shape-selective self-as-
sembly [that is, use of lock-and-key struc-
tures (17, 18)], offer more sophisticated strat-
egies for the fabrication of asymmetrical net-
works incorporating more than one repeating
unit.

We have demonstrated parallel and serial
connectivity separately; it is possible to ex-
tend these ideas to more complex networks
involving different combinations of parallel
and serial connections. The LEDs in our dem-
onstrations are simple bipolar electronic de-

Fig. 2. Strategies used to design patterns of
solder dots. (A) The widths of all the dots in the
patterns used were approximately the same.
The width of the wires was smaller. (B) A
cross-sectional view [section XX! in (A)] of two
assembling faces. (C) When the faces connect,
the solder dots fuse with each other, whereas
the wires between them do not touch. (D) A
pattern comprising dots that can be used for
both parallel and serial networks.

Fig. 3 (left). A self-as-
sembled 2 " 2 " 3
aggregate containing
12 TOs and demon-
strating parallel con-
nectivity. (A) The pat-
tern of copper dots,
wires, and contact pads
used. (B) A patterned
TO with three LEDs,
prior to assembly. (C) A
photograph of the self-
assembled aggregate
and a penny (to indi-
cate size). Two electri-
cally isolated pairs of
wires connected to a
battery illuminate six
LEDs in an electrically
continuous loop involv-
ing three TOs. (D) Cir-
cuit diagram showing
the parallel network
formed. The gray cir-
cles represent individu-
al TOs. The blue half-
circles represent solder
dots that connect on
juxtaposed faces of
two TOs. The LEDs are
shown in black. The
network contains 16
pairs of wires, which
consist of four (red), six
(green), and six (blue)
pairs in each of the
three dimensions. The
six LEDs that illuminate
are highlighted by
black squares Fig.
4 (right). A self-assem-
bled 2 " 2 " 3 aggre-
gate containing 12 TOs
and demonstrating serial
connectivity. (A) The
pattern of solder dots used. (B) The terminals of a single LED are directly soldered across two contact pads,
and a wire is soldered in a way that connects the third contact pad to one of the terminals of the LED, using
a polarity in which the anode of the LED connects to dots from the set {3 and 9} and the cathode connects
to dots from the set {7 and 13}. (C) A patterned TO prior to assembly. (D) A self-assembled aggregate. The
LEDs on different TOs connect to each other in serial loops. The loops were traced by powering pairs of leads.
Individual loops range in size from those containing two LEDs to one that contains 10 LEDs; this loop is shown
illuminated. (E) The circuit diagram sketching the largest serial loop formed; 10 LEDs illuminatewhen the loop
is connected to a battery (D). The LEDs connect cathode to anode in all loops.
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Gracias, Tien, Breen, Hsu, Whitesides,  (Science, 2000).



From  “proof of concept”  to  design principles

        Many initial laboratory experiments provide “proof of concept”.  In the 
past ten years,  there have been significant  improvements  in self-assembly 
across many scales. For example, polyhedra can now be self-assembled  in 
several distinct laboratory experiments.  

Our interest lies in:
 

(1) mathematical modeling of self-assembly, especially geometric principles.

(2) connections with biological self-assembly.

(3) principles for efficient design.  



Examples  of  synthetic polyhedra: 1 nm scale 

ing many protein subunits that assemble into a
well-defined polyhedron (e.g., an icosahedron)
that contains RNA or DNA within its interior
(5). The rational design of synthetic supramo-
lecular cages, which sometimes can be described
as molecular polyhedra, relies on well-defined
structure-directing forces to guide self-assembly,
albeit of a more limited number of components
(6–13). Hydrogen bonding is a particularly at-
tractive tool for assembling polyhedral cages be-
cause of its directional and reversible nature, but
the de novo design of polyhedra based on hy-
drogen bonding between well-defined molecular
tiles is rare. Here, we report such an example in
which 72 charge-assisted hydrogen bonds reli-
ably guide the assembly of two kinds of hexag-
onal molecular tiles, joined at their edges through
complementary and metrically matched hydro-
gen bonds to form a quasi-truncated octahedron
(q-TO), which corresponds to one of the 13 Ar-
chimedean solids. The q-TO has an interior
volume of 2200 Å3 and serves as the composite
building unit of a body-centered cubic frame-
work with features resembling those of sodalite
and zeolite A, displaying an unexpected ability to
encapsulate a wide range of differently charged
species, ranging from transition metal complexes
to “ship-in-a-bottle” clusters.

Guanidinium organomono- and disulfonate
(GS) compounds readily form layered crystalline
materials based on a two-dimensional (2D) quasi-
hexagonal network, assembled through charge-
assisted N-H+···–O-S hydrogen bonds (14, 15).
This ubiquity of layered structures (more than
500 to date) suggests that the design of new GS
compounds with alternative architectures must
rely on strategies that frustrate the formation of
layered structures. We reasoned that this could be
achieved with rigid polysulfonates, for example,
hexa(4-sulfonatophenyl)benzene (HSPB6–). No-
tably, the solid-state structure of guanidinium
nitrate (16) is isomorphous with the hexagonal
guanidinium-sulfonate network, and the separa-
tion between guanidinium hydrogen bond do-
nors along each edge of a hexagonal [G3NO3]

2+

unit (dG…G ~ 7.5 Å) is comparable to the dis-
tance between sulfonate hydrogen bond accep-
tors on each edge of the HSPB6– (the average
distance between substituents on neighboring
phenyl rings of 39 derivatives of hexaphenyl-
benzene suggests that dS…S ~ 7.2 Å; Cambridge
Structural Database, Version 5.31, November
2009). Simple models suggest that four HSPB6–

tiles and four hypothetical [G3NO3]
2+ tiles can

fold into a convex polyhedron denoted here as
a q-TO, a lower symmetry form of a truncated
octahedron that results from two sets of distinct
molecular tiles (the interested reader can build the

q-TO from the model in Fig. 1). Whereas the con-
ventional truncated octahedron is described by
a [46.68] tiling (17) and 432 point-group symme-
try, the q-TO would be described by a [46.64.64]
tiling and symmetry. Notably, this is the only pos-
sible outcome for polyhedron assembly of these
tiles. The 5 Platonic solids can be excluded be-
cause they do not contain hexagonal faces, and
among the 13 Archimedean solids, only 5 have
hexagonal faces. The truncated tetrahedron and
truncated icosahedron cannot support N-H···O-S
hydrogen bonding along all edges, whereas the
hexagonal tiles in the truncated cuboctahedron
and truncated icosidodecahedron do not share
edges (table S1 provides the systematic rationale
for the exclusion of all Archimedean solids other
than the truncated octahedron).

The q-TO spontaneously self-assembled from
dimethylformamide (DMF):water solutions con-
taining guanidinium chloride, sodium nitrate, and
hexaphenylbenzenehexasulfonic acid, afford-
ing colorless block-shaped crystals (compound
1) (18). These crystals, whether micrometer- or
millimeter-sized, exhibit well-defined square and
hexagonal facets that reflect the point-group sym-
metry of the q-TO (Fig. 2C and fig. S3). Single-
crystal x-ray diffraction revealed cubic I

!
43m

symmetry and a = 26.7 Å, with q-TOs on a body-
centered lattice interconnected by sodium bridges
(figs. S4.1 and S4.2). Each q-TO comprised
four HSPB6– tiles and four [G3NO3]

2+ tiles, in the
configuration described above, assembled from
20 molecular components held together by 24
charge-assistedN-H+···–O-Nhydrogen bondswith-
in the [G3NO3]

2+ tiles and 48 hydrogen bonds
along the edges shared by the tiles (Fig. 2).

The q-TO can accommodate a sphere with a
diameter of 12 Å, corresponding to a sphere vol-
ume of 905 Å3. The total free volume in the in-
terior of the q-TO itself, as measured with a 1.2 Å

probe radius, approaches 2200 Å3. Four sodium
ions, each shared by four q-TOs, bridge adjacent
q-TOs through (sulfonate)O···Na+···O(sulfonate)
interactions on the edges of the open squares,
creating square channels between the q-TOs along
the <100> directions of the body-centered cubic
lattice and generating a 3D framework. The chan-
nel cross section is 4.6 Å by 4.6 Åwhen corrected
for van der Waals radii. The framework topology
and tiling pattern resemble those found in sodalite
and zeolite A (19). In the parlance of zeolites, the
hexagonal HSPB6– and [G3NO3]

2+ tiles are sec-
ondary building units (SBUs), and the q-TO is
the composite building unit. The q-TO, however,
is assembled from molecular tiles that fold into
a closed convex object with solid surfaces rather
than open nets. Each q-TO carries 16 negative
charges and the overall framework carries 10 neg-
ative charges per q-TO due to the sodium ions.
Each q-TO in compound 1 contained 12 dis-
ordered DMF molecules, as well as disordered
cations (sodium, guanidinium, and dimethylam-
monium from adventitious decomposition of
DMF) and anions (chloride and nitrate) in amounts
sufficient to compensate the negative charge of
the framework.

In situ synchrotron powder x-ray diffraction
revealed that the frameworkwas stable up to 160°C
(fig. S10), reflecting an uncharacteristic robust-
ness of the hydrogen-bonded assembly in the solid
state. The existence of void space in the q-TO as
well as the continuity of the pore structure created
by the sodium bridges between adjacent q-TOs
was demonstrated by exposure of compound 1 to
iodine vapor under ambient conditions (the diam-
eter of the I2 molecule is smaller than that of the
<100> channels). The colorless single crystals of
1 instantly became yellow upon exposure to iodine,
gradually darkening until becoming black through-
out (fig. S7). Elemental analysis was consistent

1Department of Chemistry and the Molecular Design Institute,
New York University, 100 Washington Square East, New York,
NY 10003–6688, USA. 2Department of Materials Science, Uni-
versity of Milano-Bicocca, Via Roberto Cozzi 53, 20125 Milan.

*To whom correspondence should be addressed. E-mail:
mdw3@nyu.edu

Fig. 1. (A and B) Comple-
mentary [G3NO3]

2+ (yellow)
and HSPB6– (green) tiles,
with their corresponding edge
lengths, defined by the dis-
tance spanned by neighbor-
ingguanidiniumand sulfonate
ions, respectively. (C) Sche-
matic representation of an
unfolded q-TO based on the
complementary [G3NO3]

2+

(yellow) and HSPB6– (green)
tiles, illustrating the edge-
sharedN-H···O-Shydrogen
bonds. (D) The q-TO. The open
squares in (C) and (D) corre-
spond to the openings on the
surface of the q-TO that en-
able the formation of <100>
channels between adjacent
q-TOs in the solid state.
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Organometallic supermolecules built by 
covalent bonds.  

Fujita lab (Tokyo),  Science  (2010).  

Archimedean cage built by hydrogen bonds. 

Ward lab (NYU), Science (2011).  



Examples  of  synthetic polyhedra:  10 nm scale
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Icosahedral DNA Nanocapsules by Modular
Assembly**
Dhiraj Bhatia, ShabanaMehtab, Ramya Krishnan, Shantinath S. Indi, Atanu Basu,
and Yamuna Krishnan*

Communications

4134 ! 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2009, 48, 4134 –4137

The construction of well-defined 3D architectures is one of
the greatest challenges of self-assembly. Nanofabrication
through molecular self-assembly has resulted in the formation
of DNA polyhedra with the connectivities of cubes,[1]

tetrahedra,[2,3] octahedra,[4,5] dodecahedra,[3] and buckmin-
sterfullerene.[3] DNA polyhedra could also function as nano-
capsules and thereby enable the targeted delivery of entities
encapsulated from solution. Key to realizing this envisaged
function is the construction of complex polyhedra that
maximize encapsulation volumes while preserving small
pore size. Polyhedra based on platonic solids are most
promising in this regard, as they maximize encapsulation
volumes. We therefore constructed the most complex DNA-
based platonic solid, namely, an icosahedron, through a
unique modular assembly strategy and demonstrated this
functional aspect for DNA polyhedra by encapsulating gold
nanoparticles (GNPs) from solution.

This modular assembly strategy to access complex poly-
hedra involves a stepwise amalgamation of discrete modules
obtained from degenerate components. DNA icosahedra may
be constructed from three distinct five-way-junction (5WJ)[6,7]

components V, U, and L, with programmable overhangs
(Figure 1a; see Table 1 in the Supporting Information for
sequences). Each 5WJ module, V, U, and L, is constructed
from equimolar amounts of the respective five phosphory-
lated single strands (Figure 2a; see also Figure 2 in the
Supporting Information). At 20 mm, V was shown to form a
complex with L in a 1:5 ratio (Figure 2a,b). The complemen-
tary module VU5 was synthesized similarly from components
V and U (see Figure 3a in the Supporting Information). At
this stage, contiguously hybridized strands in VU5 and VL5

were ligated chemically with N-cyanoimidazole (NCI)[8,9] to
enhance stability.

When 5WJs of U attached to 3.5 nm gold nanoparticles
were complexed with V in a 1:5 ratio and investigated by
electron microscopy, several pentagonal arrangements of gold
nanoparticles were observed in the [1:5] complex VU5

(Figure 2c,d; see also Figure 3 in the Supporting Informa-
tion). The average center-to-center distance between two gold

nanoparticles that mark adjacent vertices (“a”) and non-
adjacent vertices (“b”; see Figure 3 in the Supporting
Information) in these pentagonal arrangements of VU5

were a= 8.8! 1 nm (n= 36) and b= 13.7! 1.7 (n= 12). This
result is consistent with the theoretical distances (a= 8.3 nm,
b= 13.4 nm) in the proposed half-icosahedral, compacted,
cup-shaped arrangements resulting from recognition between
complementary overhangs U5 and U2 of adjacent U 5WJs in
the complex VU5.

The two different modular assemblies, VU5 and VL5, with
ten identical overhangs each (the overhangs are complemen-
tary in the two assemblies), were shown to complex with each
other in a 1:1 ratio. The contiguous termini were ligated again
with NCI to yield a complex I with a 2:5:5 V/U/L stoichiom-

Figure 1. Retrosynthetic strategy for the construction of the DNA
icosahedron: The icosahedron I is constructed from two half-icosahe-
dra, VU5 and VL5, which in turn are formed from two types of 5WJ, V
and U/L. a) The 5WJs V, U, and L are shown. The heavy black lines
represent double-stranded regions, and the complementary overhangs
are color-coded. b) Each half is formed from a central vertex 5WJ, V,
and five equivalents of the 5WJ U or L. c) The complex structure, I, is
formed by the addition of an upper (VU5) to a lower half (VL5) in a 1:1
ratio.

Figure 2. Gel electrophoretic images showing the formation of the
complexes at various stages of assembly. a) PAGE (10%) showing the
formation of the 5WJ V and the formation of the [1:5] complexes VU5

and VL5 from 5WJs. Lane 1: DNA marker; lane 2: V1 oligonucleotide;
lane 3: 5WJ V ; lane 4: VU5 ; lane 5: VL5. b) Gel electrophoresis showing
the formation of the [1:5] complex VL5 in the indicated stoichiometry.
The radiolabeled 5WJ V was complexed with the unlabeled 5WJ L at
different ratios. Samples were then subjected to electrophoresis on
10% native PAGE in TBE buffer and visualized with PhosphorImager.
Lane 1: V+L ; lane 2: V+2L ; lane 3: V+3L ; lane 4: V+4L ; lane 5:
V+5L ; lane 6: 5WJ V (P32-labeled V1 oligonucleotide). c) Representa-
tive transmission electron micrograph (TEM) of a gold-nanoparticle-
labeled U 5WJ in a VU5 complex. Scale bar: 20 nm. d) Defocused
image of the same field; gold nanoparticles appear as white spheres
as a result of defocusing. Scale bar: 20 nm.[14]
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Icosahedral DNA cage built  in modules. 

Yamuna Krishnan’s lab (NCBS),  Ang. Chemie.  (2009).  



Hugo Steinhaus, Mathematical Snapshots.





Examples  of  synthetic polyhedra:  micron scale

Truncated octahedra built by self-folding. 

Gracias, Menon + students, PNAS,  (2011).  



The main question

     What is common to biological and synthetic self-assembly? 

 
      Our approach: use discrete geometry to model the intermediates 
and pathways of assembly. Try to understand the most robust features 
of simple models.



Zlotnick’s model (1994)  and the building game
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(1)   Discretize the assembly process into intermediate states. 

(2) Model attachment/detachment kinetics using experimental data (or 
more often simple-minded physics) to determine  rates.

(3) Useful in chemistry for modeling fullerenes (Wales, 1987)

Cannot explain  malformed shapes, no sequence specific information. 
Many other models exist (Berger, Shor, 1994; Bruinsma (2005).



Macroscopic  “chemical reactions” 
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Figure 2. Photograph of the basic unit.

Figure 3. The case for shaking the units (Dimension: mm).

3 Theory and Experiment
3.1 Yield Problem and Its Solution
Testing the mechanical model described above, the authors encountered a problem that
has never been studied: the yield problem of self-assembling systems. For example, if
the process starts with 12 basic units, the ideal goal is to form two complete hexagons
as in Figure 5a. But actually, the system usually reaches a final state such as Figure 5b.
Increasing the quantity of starting units cannot be a solution. As is generally known,
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Figure 4. The experimental apparatus.

AA—A
V.

12

AA—A
V_J

12 (b)
Figure 5. Explanation of the yield problem, (a) The ideal case. Yield is two. (b) An actual case.
Yield is zero.

yield is a chemical term that stands for the final amount of desired product. Yield is two
in Figure 5a, and is zero in Figure 5b. We define the yield problem as the problem of
predicting the final amount of complete bodies in an arbitrarily given self-assembling
system.
This problem can be solved completely using the following method. Moreover, this

method clarifies the dynamical evolution of the system. The method will be a useful
tool when we design a self-assembling system.

416 Artificial Life Volume 1, Number 4

Hosokawa,  Shimoyama, Miura, Artificial Life, (1996). 
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Figure 6. Initial, intermediate, and final products of the system.

The procedure is summarized as follows:

1. Let the quantity of every intermediate product be a state variable. This greatly
reduces the degree of freedom of the system.

2. Derive the dynamics governing the state variables from the information of
elementary processes. This phase is similar to chemical kinetics [91 or population
dynamics [5].

3. Calculate the variation of the state variables from given initial conditions according
to the dynamics.

In the case of our mechanical model, there are one initial, four intermediate, and one

final product shown in Figure 6. They are represented by symbol Xi ~ Xß according to
the number of constituent units. However, Xi is abbreviated to X. Symbol x¡ represents
quantity of X,- (i = 1 ~ 6). These are state variables of the system.

Elementary processes are described similarly to chemical reactions as follows:

2X^X2, X+X2^X3,
X + Xi^-Xi, X + X4^X5,
X + X5^-Xß, 2X2-* X, (1)
X2 + X3 —> X5, X2 + X4 —>• Xß,
2X3 -+ Xf,.

The elementary processes are often called "reactions" hereafter. We assumed that all
reactions are bimolecular reactions. In other words, we neglected reactions in which
more than two clusters are bonded simultaneously such as 3X —* X3.

If every x, is large enough, the state vector x = (xi,..., Xß) obeys the difference
equation

x(í+l)=x(í)+F(x(0), (2)

where t is the parameter corresponding to time. Speaking more strictly, t represents
the number of collision between clusters. And F = (Fi,..., Fß) is a mapping from
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Chemical reactions theory:  states, reactions, rates.
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Figure 12. Divisions of the plane using the units for the basis.

Appendix A

We will explain the calculation of the bonding probability Pb in detail using the example
of Pn. In section 3.1, P¡m was assumed to be equal to the probability that

there is a pair of bonding faces of X¡ and Xm such that each face can be
seen from the other face completely, (A.l)

when the clusters are placed on the plane at random. Let the two units be a and b. The
plane can be divided into four regions using a unit for the basis as shown in Figure 12.

When b is in the region Ai from the standpoint of a, if b directs its S-pole-face to
a, (A.l) is true. In other words, a should be in the region B2 or B$. The probability of
that is

P'b in Ai)P{a in B2 U B3) =
-

x
-

= -.

3 2 6 (A.2)

In the case of b being in the region A$, the probability of (A.l) is 1/6 as well. And
in the case of b being in the region ^42, ¿* should be in the region B\, B2, or _S3. So, the
probability is

1 5 5P(b in A2)P(a in Bx U B2 U B5) =
-

x
-

= —.

6 6 36 (A.3)

Thus, P\i is obtained as the sum of these probabilities:

Pb-1-+1- + 1-1-1~0472Pu
- 6 + 6 + 36 - 36 - °-472- (A.4)
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Rates:   compute  probabilities  of collisions  and   bonding. 
Must include physics at this stage.



A combinatorial explosion

(1) A linear system of equations need not be easy to solve.
(2) Rates cannot be determined from experiment (need a  weight for each edge).

Polyhedron # faces # intermediates # edges in C # assembly pathways from ⇤ to ⌅
Tetrahedron 4 5 (5) 4 (4) 1 (1)
Cube 6 9 (8) 10 (8) 3 (2)
Octahedron 8 15 (12) 22 (14) 14 (4)
Dodecahedron 12 74 (53) 264 (156) 17,696 (2,166)
Icosahedron 20 2650 (468) 17242 (1984) 57,396,146,640 (10,599,738)
Truncated tetrahedron 8 29 (22) 65 (42) 402 (171)
Cuboctahedron 14 341 (137) 1636 (470) 10,170,968(6,258)
Truncated cube 14 500 (248) 2731 (1002) 101,443,338 (5,232,294)
Truncated octahedron 14 556 (343) 3071 (1466) 68,106,377(5,704,138)

Table 1: A sample of enumerative results for the building game [33].
All results were determined by exhaustive enumeration with a computer; we
are not aware of theoretical bounds or exact enumeration formula for the
building game. The numbers in brackets refer to shellable intermediates,
edges between shellable intermediates and pathways through shellable in-
termediates respectively (see [76] for more on shellability). The number of
intermediates for the Platonic solids are 1 more than the results from [20]
since we also count the complete polyhedron as an intermediate.

define dominant intermediates and pathways. Every energy function E may
be used to rank states (j � k if Ej � Ek), and to define the path of least
energy between ⇤ and ⌅ (see Figure 8). From a kinetic standpoint, given
A the states j may be ranked by considering the equilibrium distribution �j

associated to A. For several chemically natural choices of E and A, the top
few intermediates are the same. As we show in Section 9, a similar collapse
onto a few dominant intermediates is also seen in self-folding polyhedra. A
broader empirical study of C, E and A will be presented in the forthcoming
article [33].

5.4 Some flaws in the building game model

There are many distinct models for virus self-assembly. We have emphasized
the building game framework because it is best suited to our work on self-
folding. Let us briefly discuss some shortcomings of this framework in the
context of virus assembly.

The building game assumes that the final polyhedron is ‘known’ even
if assembly proceeds by random attachment, and it cannot account for the
formation of distinct or malformed polyhedra from the same subunits. In
the first experiments with fullerenes, it was noted that when one fullerene
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A few enumerative results from: Johnson, Menon (2015). 



Part  2.  Biological inspiration:

Structure and self-assembly of viruses, 
and  the story of MS2.



Viruses

       Viruses are the most populous (10^31) and genetically diverse 
organisms (10^7 genotypes) on earth.  However, they lack the 
biosynthetic machinery for independent existence.   

       The “simplest” viruses consist of  a  genome (RNA or DNA) 
contained within a protein shell (the capsid).  



The (idealized) reproductive cycle

(1) Capsid disassembles when virus infects a host;

(2)  Genome hijacks host’s machinery to make new genome and protein;

(3)  Capsid  reassembles and packages the genome.



The elegant natural design of viruses

(1) Genetic economy.

(2)  Structural symmetry.

(1): NIH-NCBI lists the complete genome of approximately 4000 viruses.  
Many of these have very short genomes. For example, ss-RNA viruses often 

have genomes with  only 1000 to 10000 base pairs. 

(2)  In the mid-1950s’ crystallography revealed that many viral capsids have 
icosahedral symmetry.  As Caspar and Klug realized, structural symmetry is  
well matched with genetic economy -- a few basic units can go a long way...



Caspar, Klug (1962)

Geodesic domes, planar tilings, and 
models of an icosahedral virus.



T = h2 + hk + k2, h, k = 0, 1, 2, . . .

The  Caspar-Klug  “quantization”

The number of subunits in the viral capsid must be 60T where 



This restriction had been found by Goldberg in 1937 in his study of 
discrete isoperimetric problems. 

Caspar-Klug virus= Goldberg polyhedron.



“Forbidden”   structures

T=6 is impossible, thus a virus structure based on  Caspar-Klug theory 
cannot have 360 subunits.  But such virus structures were found in 1991. 

 

Both SV40 and polyomavirus have 72 pentamers, thus 360 subunits.  
 

Liddington et al (Nature ,  Nov. 28, 1991).



Aperiodic tilings and SV40

The Sv40 structure is simple and beautiful (Twarock, 2004): 

Certain aperiodic tilings (e.g. the Penrose tiling) can be "folded" into a 
closed polyhedron, analogous to the Goldberg polyhedra.  

 
Thus, SV40 discovered quasicrystals two billion years before us!



The story of MS2

MS2  is an icosahedral virus with a single-stranded RNA.  It infects  the bacteria 
e.coli, and other enterobacteria.  The MS2 genome was the first to be 
completely sequenced (Fiers 1972-1976).

The genome has 3569 nucleotides that code for four proteins: 

(1) coat protein;  (2) maturation protein; (3) lysis enzyme; (4) replicase enzyme.



The   MS2   genome

Fiers et al;  Nature (1972)



The equilibrium  structure of MS2

The capsid consists of 180 copies of the coat protein.  However, this protein  exists 
in three configurations (A,B,C) which bind into two dimers (A/B and C/C). 

The switch from one dimer to another is triggered by an RNA hairpin loop.



Self-assembly (of a virus)  is a process akin to  crystallization 
and is  governed by  the laws of statistical mechanics. The 

protein  subunits and  the nucleic acid chain spontaneously 
come together  to form a simple virus particle because this is 

their lowest free energy state .” 

Caspar and Klug; Cold Spring Harbor Symposium, (1962)

The early dogma on the process of self-assembly



The dogma soon unraveled....

(1) The time taken to reach equilibrium is too long (this is 
essentially the same as Levinthal’s paradox for protein folding). 

(2) Klug showed that RNA-driven conformation changes drive 
the self-assembly of  Tobacco Mosaic Virus (1971).  Thus, 
assembly is not thermodynamic, it is nucleated by RNA.

There have been many investigations of the assembly of 
viruses, but sequence-specific studies are very recent and use 
discrete geometry in an essential way. 





The role of RNA folding

distribution of material inside the protein layer that
is very similar to the previously determined cryo-EM
reconstructions of the wild-type virion and reas-
sembled virus-like particles that have been reported
using icosahedral symmetry averaging.1,7 Since there
is only one copy of maturation protein and since it is
of significantly smaller mass than the RNA, this
similarity in density adjacent to the coat protein layer
must mostly reflect the interaction of the RNA with
the coat protein subunit.
The density distribution obtained with C5 sym-

metry provides vital clues on how the RNA is
distributed along the 5-fold axis on which the
maturation protein is located. It allows us to predict,
using a simple mathematical model, the asymmetric
organization of the linear single-stranded RNA
(ssRNA) molecule within its symmetric container.
Strikingly, our results imply that only a very limited
number of RNA configurations out of the over
40,500 ones identified in Ref. 1 are consistent with
the 5-fold-averaged cryo-EM data, biochemical
information regarding RNA interaction with matu-

ration protein, and efficient capsid assembly. This
provides new insights not only into the asymmetric
organization of the genomic material but also into
the sophisticated assembly strategies of the virus.
For example, it shows that, besides having a role
during infection, the maturation protein could also
be used to vastly reduce the complexity of the
assembly process by circularizing the genomic RNA.

Cryo-EM data imply a dimer switching model for
virus assembly

Icosahedrally averaged cryo-EM reconstructions
of Leviviridae show that the outer shells of their
genomic RNAs form distinct, cage-like structures.1,7
An example is bacteriophage MS2, with a cage akin
to the polyhedron in Fig. 1a. This polyhedron is
formed from two distinct types of edges (Fig. 1b): 60
short edges, occurring in groups of five around the
particle 5-fold axes, and 30 long edges, which cross
underneath the 2-fold axes and connect the short
edges of two neighboring 5-fold axes. Previous work

Fig. 1. The polyhedral cage of MS2 RNA density can be described as a Hamiltonian path. (a) A cryo-EM reconstruction
of the outer RNA shell of bacteriophage MS2 (depicted in magenta) based on an image at ∼17 Å resolution adapted from
Van denWorm et al.7 (b) A representation of this RNA shell as a polyhedral cage. (c) A three-dimensional view of a single
Hamiltonian path, which meets every vertex of the polyhedron exactly once by moving along the short (yellow) and long
(orange) edges of the polyhedral cage. (d) A planar net representation of the Hamiltonian path shown in (c) and its
relation to the A (blue), B (green), and C (pink) quasi-equivalent subunits of the MS2 capsid.

400 Prediction of Viral RNA Layout

Twarock's work: use a combinatorial model for RNA-capsid coassembly to 
locate secondary folding sites for RNA on the MS2 genome.

Dykeman, Stockley, Twarock; PNAS (2015)



Part 3. Self-folding polyhedra: computation and 
experiment.

computations: Ryan Kaplan, Daniel Johnson, Joe Klobusicky, 
(Brown)

 
experiments: Shivi Pandey, David Gracias (Johns Hopkins)



Examples  of  synthetic polyhedra:  micron scale



Discovering design principles 

Which net self-folds with the highest yield?

liquefied and minimized its exposed liquid surface area. The
surface tension caused the internal hinges to bead up, creating a
torque that rotated the panels, and enabled the external hinges on
adjacent panels to fuse when the panels met. Although most
previous self-folding work has only utilized internal hinges, the
addition of external hinges to self-folding structures fabricated in
our research group has resulted in increased defect tolerance and
self-correction; this has translated into high yield assembly of
micropolyhedra.
It is known that not all arrangements of six square panels

connected edge-to-edge will fold into a cube. If one is given a
simple polygon (and its interior) in the plane, Alexandrov’s
theorem gives conditions under which this polygon can be folded
by the identification of points of the polygon’s boundary to a
convex polyhedron or a double covering of a convex polygon [13].
Here, the full power of this theorem is not required. What will be
considered instead are polygons that have fold lines (we call these
lines internal hinges, which separate the original polygon’s interior
into polygonal panels) which will form convex polyhedra (with the
panels becoming faces of the completed polyhedron) when folded
along the fold lines and the edges of the polygonal boundary are
joined together (Fig. 2). The term ‘‘net’’ is often used to describe
this situation. Note that for some nets, when using the existing fold
lines, it is possible to make either a non-convex polyhedron or a
convex polyhedron depending on how the polygonal edges are
joined together, e.g. the nets of the octahedron can form non-
convex and regular octahedra. However, this does not arise for the
cube. There are 11 nets that fold into a cube [14] and 11 that fold
into octahedra, but the number of nets varies for different
polyhedra. For example, the tetrahedron has two nets and the
regular dodecahedron has 43380 nets [15]. The basic constraints
in folding the polyhedral net are that the material must exhibit
continuous folding, conserve distances along its surface and not
self-intersect [16].
When we first started assembling polyhedra, no design rules

existed for which of the 11 nets would self-assemble with the
highest yields. We picked the mirror-symmetric cruciform (net 11
in Fig. 3A) due to its familiarity, and it is used by several other
groups [17–20]. In this paper, we systematically investigated the

self-assembly of all 11 cube nets. We also investigated the self-
assembly of the 11 octahedron nets, since the regular octahedron is
the dual polyhedron for a cube; a dual polyhedron is one in which
the roles of faces and vertices are interchanged when compared
with the original polyhedron [21]. We recorded the number and
types of defects observed during each assembly over 68 trials for
each polyhedron. Although we observed that each net could fold
into a well-formed polyhedron, a clear trend emerged for the
number of defects in the assembly among the different nets. We
observed that the cruciform net actually did not provide the best
yields for assembling a cube. Also, there was a strong correlation
between the success of each net folding into the desired
polyhedron and purely geometric compactness factors, such as
the nature of the connectivity of the different panels in the net
design and a radius of gyration function.

Figure 1. Schematic diagram showing the self-assembly of a
cube from (A) six untethered panels and (B) six tethered
panels. Since the number of conformations is greatly restricted by
tethering as in (B), self-assembly occurs with much higher yield.
doi:10.1371/journal.pone.0004451.g001

Figure 2. Schematic diagram of the net geometry. The diagram
shows the (A) cube and (B) octahedron net geometry and illustrates the
different kinds of topological connections and hinges.
doi:10.1371/journal.pone.0004451.g002

Figure 3. Schematic diagram of all the eleven 2D (A) cube and
(B) octahedron nets.
doi:10.1371/journal.pone.0004451.g003

Compactness and Self-Assembly

PLoS ONE | www.plosone.org 2 February 2009 | Volume 4 | Issue 2 | e4451

Azam, Leong, Zarafshar, Gracias (PloS One 2010)



The   observed   pathways  (net 5  vs  net 11)  and  yield

Results and Discussion

We used a previously established procedure for fabricating the
200 and 500 mm cubes and octahedra on silicon wafers [12] (see
Materials and Methods); cube nets were processed across two
wafers, while all of the octahedron nets were processed on one
wafer. Each net was fabricated with nickel panels (square-shaped
for cubes and equilateral-triangular shaped for octahedra)
connected edgewise by solder hinges. The edges of each panel
featured hinges; internal hinges (along fold lines) connected two
panels, while external hinges were at the edges of the panels and
did not connect to other panels. Each panel measured either 200
or 500 mm on each side, and adjacent panels were spaced apart by
a width equal to 10% of the panel edge length. We electrodepos-
ited solder at the panel edges to form the hinges, released the nets
from the substrate and heated the structures until they folded at
the hinges to form polyhedra. The samples on each wafer were
constructed in close proximity to minimize any variations in the
dimensions during lithographic processing. The wafers were
organized such that a row of 11 nets was repeated multiple times.
Each net featured a characteristic pattern on all panels to
distinguish the polyhedra. Such an identification system was
necessary, since cubes and octahedra resulting from different nets
were assembled simultaneously to minimize any other process
variations. It should be noted that at sub-mm size scales, the role of
gravity in this self-assembling process is minimal [12]. Neverthe-
less, special care was taken in the design so that all of the panels on
all nets had the same mass. Following a lift-off process from the
substrate, the various nets were sorted, placed in random
orientations in a dish and heated until surface tension forces
drove them to fold into polyhedra. We folded the nets in batches,
such that representatives of each were present. We defined the self-
assembly of all the polyhedra in a dish as one trial and completed a
total of 68 trials each for the 200 mm cubes and the octahedra. We
also performed 36 trials each for 500 mm cubes and octahedra and
observed that the folding trends (discussed later) were similar.
For the cubes, we observed that each of the 11 nets folded by

one of two distinct pathways (Fig. 4 A–B). The first pathway
involved two clearly distinguishable sections of the net folding
independently at equal rates and then coming together when a
central hinge folded. The second folding pathway was character-
ized by different folding rates within the sections of the net. Nets 2,
4, 5, 7, 8, and 9 (Fig. 3) followed the first pathway; the remaining
nets followed the second pathway. Fig. S1 in the Supporting
Information section shows snapshots of all the 11 cube nets during
folding. Interestingly, folding of octahedra appeared to follow
more complicated pathways, and there were two possible final
conformations, either the non-convex boat-shaped octahedron or
the convex regular octahedron (Fig. 4 C–D). The formation of
non-convex and regular octahedra depended both on the type of
net as well as the folding sequence of the individual panels during
assembly; some nets formed both types of octahedra.
The data gathered from the assembly of 200 mm and 500 mm

polyhedra indicated that all of the nets, with varying levels of
defects (Fig. 5A–C), were capable of forming perfectly-folded
polyhedra (Fig. 5 D–E). We organized the self-assembled cubes
and octahedra into four categories (labeled A through D)
according to their defects. We could not discern any defects in
‘‘A’’ polyhedra using optical microscopy. They had well-aligned
faces and hinges that folded for form dihedral angles of 90u for
cubes (Fig. 5A) and 109.4u for octahedra. ‘‘B’’ polyhedra were
observed to have either one misaligned face (Fig. 4Bi, 4Biii) or
slightly (deviation,15u) under/overfolded faces. Underfolding
occurred when excess solder was present at a hinge between two

faces, and overfolding occurred when an inadequate amount of
solder was present in the hinge. ‘‘C’’ polyhedra were missing one
face, or were severely (deviation.15u) over/underfolded (Fig. 5Cii,
5Ciii). In some cases with cubes, we observed a twist deformation
and also classified those as ‘‘C’’ cubes (Fig. 5Ci). ‘‘D’’ polyhedra
had two or more of the defects described for ‘‘C’’ polyhedra.
Various other defects were observed in octahedra but not in cubes,
which were a result of the comparatively more complicated folding
mechanics; one common defect that occurred with the folding of
octahedron nets was the overfolding of several sides, resulting in a
tetrahedron (Fig. 5F) instead. Yields for cubes and octahedra are
plotted in Figure 6 and listed in Tables S1, S2, with average ranges
of ‘‘A’’ polyhedra plotted in Figure S2.
Five internal hinges along fold lines connect the six panels of each

cube net; we refer to these connections as edge connections (Fig. 2A).
Similarly, seven internal hinges are present along the fold lines and
connect (through edge connections) the eight panels of each
octahedron net (Fig. 2B). This method of identifying internal hinges
along fold lines is attractive since it can be readily extended to the
nets of other polyhedra. Vertex connections resemble topological
connections described in protein folding models [7]. Vertex
connections occur when panels are not directly connected to each
other but are proximal and oriented at a specified angle to each
other. There is one kind of vertex connection in the cube nets: when
panels are located diagonally to each other, they share one vertex
with an angle of 90u between the panels’ exterior sides. There are
two types of vertex connections in octahedron nets, as panels can be
oriented with their exterior sides forming angles of 120u or 180u
between them (Fig. 2B). A panel with no vertex connections to other
panels in a cube is a hanging panel and is connected to the rest of the
structure by only one edge connection. There are no hanging panels
in octahedron nets, because each panel has at least one vertex
connection. A more compact net results when each panel within the
net has more vertex connections.
We also used the radius of gyration, another common

parameter for determining compactness in protein structure, to
quantify the compactness in the nets [10]. We defined the radius of

gyration (Rg) as Rg~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i~1

xi{xð Þ2z yi{yð Þ2
h is

, where xi,yið Þ

Figure 4. Cube folding dynamics and octahedral conforma-
tions. Two distinct folding dynamics during self-assembly were
observed for cube nets: (A) net 5 follows pathway 1 and (B) net 3
follows pathway 2. Pathway 1 was characterized by independent
folding of two clearly distinguishable sections of the net, which came
together when the central hinge folded. Nets following pathway 2 have
different folding rates for different sections of the net. Octahedron nets
can fold into (C) non-convex boat-shaped or (D) regular octahedra.
doi:10.1371/journal.pone.0004451.g004
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Results and Discussion

We used a previously established procedure for fabricating the
200 and 500 mm cubes and octahedra on silicon wafers [12] (see
Materials and Methods); cube nets were processed across two
wafers, while all of the octahedron nets were processed on one
wafer. Each net was fabricated with nickel panels (square-shaped
for cubes and equilateral-triangular shaped for octahedra)
connected edgewise by solder hinges. The edges of each panel
featured hinges; internal hinges (along fold lines) connected two
panels, while external hinges were at the edges of the panels and
did not connect to other panels. Each panel measured either 200
or 500 mm on each side, and adjacent panels were spaced apart by
a width equal to 10% of the panel edge length. We electrodepos-
ited solder at the panel edges to form the hinges, released the nets
from the substrate and heated the structures until they folded at
the hinges to form polyhedra. The samples on each wafer were
constructed in close proximity to minimize any variations in the
dimensions during lithographic processing. The wafers were
organized such that a row of 11 nets was repeated multiple times.
Each net featured a characteristic pattern on all panels to
distinguish the polyhedra. Such an identification system was
necessary, since cubes and octahedra resulting from different nets
were assembled simultaneously to minimize any other process
variations. It should be noted that at sub-mm size scales, the role of
gravity in this self-assembling process is minimal [12]. Neverthe-
less, special care was taken in the design so that all of the panels on
all nets had the same mass. Following a lift-off process from the
substrate, the various nets were sorted, placed in random
orientations in a dish and heated until surface tension forces
drove them to fold into polyhedra. We folded the nets in batches,
such that representatives of each were present. We defined the self-
assembly of all the polyhedra in a dish as one trial and completed a
total of 68 trials each for the 200 mm cubes and the octahedra. We
also performed 36 trials each for 500 mm cubes and octahedra and
observed that the folding trends (discussed later) were similar.
For the cubes, we observed that each of the 11 nets folded by

one of two distinct pathways (Fig. 4 A–B). The first pathway
involved two clearly distinguishable sections of the net folding
independently at equal rates and then coming together when a
central hinge folded. The second folding pathway was character-
ized by different folding rates within the sections of the net. Nets 2,
4, 5, 7, 8, and 9 (Fig. 3) followed the first pathway; the remaining
nets followed the second pathway. Fig. S1 in the Supporting
Information section shows snapshots of all the 11 cube nets during
folding. Interestingly, folding of octahedra appeared to follow
more complicated pathways, and there were two possible final
conformations, either the non-convex boat-shaped octahedron or
the convex regular octahedron (Fig. 4 C–D). The formation of
non-convex and regular octahedra depended both on the type of
net as well as the folding sequence of the individual panels during
assembly; some nets formed both types of octahedra.
The data gathered from the assembly of 200 mm and 500 mm

polyhedra indicated that all of the nets, with varying levels of
defects (Fig. 5A–C), were capable of forming perfectly-folded
polyhedra (Fig. 5 D–E). We organized the self-assembled cubes
and octahedra into four categories (labeled A through D)
according to their defects. We could not discern any defects in
‘‘A’’ polyhedra using optical microscopy. They had well-aligned
faces and hinges that folded for form dihedral angles of 90u for
cubes (Fig. 5A) and 109.4u for octahedra. ‘‘B’’ polyhedra were
observed to have either one misaligned face (Fig. 4Bi, 4Biii) or
slightly (deviation,15u) under/overfolded faces. Underfolding
occurred when excess solder was present at a hinge between two

faces, and overfolding occurred when an inadequate amount of
solder was present in the hinge. ‘‘C’’ polyhedra were missing one
face, or were severely (deviation.15u) over/underfolded (Fig. 5Cii,
5Ciii). In some cases with cubes, we observed a twist deformation
and also classified those as ‘‘C’’ cubes (Fig. 5Ci). ‘‘D’’ polyhedra
had two or more of the defects described for ‘‘C’’ polyhedra.
Various other defects were observed in octahedra but not in cubes,
which were a result of the comparatively more complicated folding
mechanics; one common defect that occurred with the folding of
octahedron nets was the overfolding of several sides, resulting in a
tetrahedron (Fig. 5F) instead. Yields for cubes and octahedra are
plotted in Figure 6 and listed in Tables S1, S2, with average ranges
of ‘‘A’’ polyhedra plotted in Figure S2.
Five internal hinges along fold lines connect the six panels of each

cube net; we refer to these connections as edge connections (Fig. 2A).
Similarly, seven internal hinges are present along the fold lines and
connect (through edge connections) the eight panels of each
octahedron net (Fig. 2B). This method of identifying internal hinges
along fold lines is attractive since it can be readily extended to the
nets of other polyhedra. Vertex connections resemble topological
connections described in protein folding models [7]. Vertex
connections occur when panels are not directly connected to each
other but are proximal and oriented at a specified angle to each
other. There is one kind of vertex connection in the cube nets: when
panels are located diagonally to each other, they share one vertex
with an angle of 90u between the panels’ exterior sides. There are
two types of vertex connections in octahedron nets, as panels can be
oriented with their exterior sides forming angles of 120u or 180u
between them (Fig. 2B). A panel with no vertex connections to other
panels in a cube is a hanging panel and is connected to the rest of the
structure by only one edge connection. There are no hanging panels
in octahedron nets, because each panel has at least one vertex
connection. A more compact net results when each panel within the
net has more vertex connections.
We also used the radius of gyration, another common

parameter for determining compactness in protein structure, to
quantify the compactness in the nets [10]. We defined the radius of

gyration (Rg) as Rg~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN

i~1

xi{xð Þ2z yi{yð Þ2
h is

, where xi,yið Þ

Figure 4. Cube folding dynamics and octahedral conforma-
tions. Two distinct folding dynamics during self-assembly were
observed for cube nets: (A) net 5 follows pathway 1 and (B) net 3
follows pathway 2. Pathway 1 was characterized by independent
folding of two clearly distinguishable sections of the net, which came
together when the central hinge folded. Nets following pathway 2 have
different folding rates for different sections of the net. Octahedron nets
can fold into (C) non-convex boat-shaped or (D) regular octahedra.
doi:10.1371/journal.pone.0004451.g004
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is the center of mass of each panel, x,yð Þ is the center of mass of
the entire net, and N is the number of panels (see Tables S3, S4 in
Supporting Information). We consider nets with a lower Rg as
more compact.
We observed strong correlations between the geometrical

compactness of the 2D nets and the yields. Nets with more vertex
connections and lowerRg generated themost ‘‘A’’ polyhedra (Fig. 7).
We performed statistical analysis under the assumption that the two
factors were unrelated. Two-tailed t-tests were completed for
statistical significance to verify that the vertex connections and Rg

correlated to yields of cubes and octahedra. Our statistical tests
compared the percentages of ‘‘A’’ polyhedra to the corresponding
values (per net) of vertex connections and Rg for cubes and
octahedra independently. The p-values fell within the 0.001% range
dictated by the alpha value, which led us to conclude with 99.999%
confidence that vertex connections and Rg had statistical significance
in average yields of different nets. The statistical significance of the
unrelated factors further supports the hypothesis that net success in
self-assembly is strongly driven by both of these geometrical factors.
Our experimental results can be rationalized as follows. We

observed in both polyhedra that while panels folded first along
edge connections, vertex connections enabled panels to lock
together, thereby correcting for any errors in orientation. In fact,
we observed that before folding together as a whole, nets would
often undergo a period of solder readjustment and self-correction,
in which panels moved into their lowest-energy positions. Thus,
vertex connections enabled self-correction and enhanced defect
tolerance. We also observed that hanging panels introduced
defects in cube nets; however, hanging panels are not present in
any octahedron net. Nets with hanging panels followed the second
folding pathway, and the locking together of external hinges could
not occur. Moreover, the hanging panel, connected only to one

other panel by an internal hinge, needed to move a greater
distance than the other panels in order for the cube to form. This
extra movement also caused the side of the net with the hanging
panel to fold more slowly than the other nets. The increase in
motion of this hanging panel resulted in an increase in the error in
the placement of the face and thus decreased contact between
external hinges. Hence, cube nets with hanging panels tended to
result in large numbers of ‘‘C’’ cubes.
Furthermore, our inclusion of Rg as a factor for increasing yields

of ‘‘A’’ cubes and octahedra is supported by various studies in
biophysics. This function is related to the compactness of a
structure and has been widely utilized in polymer and protein
physics to quantify compactness of molecules [7–10]. These
theoretical protein folding studies have shown that compactness in
single polymer chains is a significant factor contributing to the
internal folded protein structure (i.e. compact chains significantly
increase secondary structure). It should be noted that several
similarities and differences exist between our experimental study
and the theoretical protein folding models. Our assembling
polyhedra are similar to protein folding in the sense that both
systems involve self-assembly and secondary interactions are
important in both self-assembling processes. It is known that in
the absence of secondary interactions between panels (i.e. in the
absence of external hinges), the yield of our self-assembly is
extremely low. However, it should be noted there are considerable

Figure 5. (A–C) Cubes and octahedra were classified according to the
following criteria. (Ai–iii) ‘‘A’’ cubes have no defects. (Bi, Biii) ‘‘B’’ cubes
may have one misaligned face, or display slight underfolding or
overfolding. (Ci–iii) ‘‘C’’ cubes are (Ci) severely twisted, (Cii) have a
missing or unfolded face, or (Ciii) have a severely misfolded/misaligned
face. (D) All 11 cube nets were capable of folding into ‘‘A’’ cubes. (E) All
11 octahedron nets were also capable of all self-assembling into ‘‘A’’
octahedra. There are two conformations of the folding of the
octahedron nets: the regular octahedron and the non-convex
octahedron (boat shape). A common defect observed in the folding
of octahedron nets was (F) a tetrahedron. All of these are 200-micron
scale structures.
doi:10.1371/journal.pone.0004451.g005

Figure 6. Distribution of defects in order of decreasing yield of
‘‘A’’ category (A) cubes and (B) octahedra. Violet denotes ‘‘A’’
category polyhedra; maroon denotes ‘‘B’’ category polyhedra; yellow
denotes ‘‘C’’ category polyhedra; and light blue denotes ‘‘D’’ category
polyhedra.
doi:10.1371/journal.pone.0004451.g006
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Net 5 

Net  11 

A: perfectly folded structures.

  D: 2 or more faces did not fold.



The combinatorial explosion  

Polyhedron Number of faces Number of nets

Tetrahedron 4 2

Cube

Octahedron

Dodecahedron

Icosahedron

Truncated octahedron

Viral capsid (T=1)

6

8

12

20

14

60

11

11

43,380

43,380

2.3 x 10 

10 

6

30



What  my students did at Brown*

(1)  Build  models. Convert this to a labelled graph (face-
edge, vertex-edge associated to  a polyhedron)

(2)  Construct  a Monte Carlo sampler:  fish  for spanning 
trees;  convert to a net;  check  for congruence.  Repeat. 

(3) Build a database  of nets.

(4) Optimization:  Find best/worst nets for various cost 
functions (radius of gyration, vertex  connections).

* Maggie Ewing,  Drew Kunas,  Nghi Nguyen (summer 2010)



Vertex  connections  and  radius of gyration

liquefied and minimized its exposed liquid surface area. The
surface tension caused the internal hinges to bead up, creating a
torque that rotated the panels, and enabled the external hinges on
adjacent panels to fuse when the panels met. Although most
previous self-folding work has only utilized internal hinges, the
addition of external hinges to self-folding structures fabricated in
our research group has resulted in increased defect tolerance and
self-correction; this has translated into high yield assembly of
micropolyhedra.
It is known that not all arrangements of six square panels

connected edge-to-edge will fold into a cube. If one is given a
simple polygon (and its interior) in the plane, Alexandrov’s
theorem gives conditions under which this polygon can be folded
by the identification of points of the polygon’s boundary to a
convex polyhedron or a double covering of a convex polygon [13].
Here, the full power of this theorem is not required. What will be
considered instead are polygons that have fold lines (we call these
lines internal hinges, which separate the original polygon’s interior
into polygonal panels) which will form convex polyhedra (with the
panels becoming faces of the completed polyhedron) when folded
along the fold lines and the edges of the polygonal boundary are
joined together (Fig. 2). The term ‘‘net’’ is often used to describe
this situation. Note that for some nets, when using the existing fold
lines, it is possible to make either a non-convex polyhedron or a
convex polyhedron depending on how the polygonal edges are
joined together, e.g. the nets of the octahedron can form non-
convex and regular octahedra. However, this does not arise for the
cube. There are 11 nets that fold into a cube [14] and 11 that fold
into octahedra, but the number of nets varies for different
polyhedra. For example, the tetrahedron has two nets and the
regular dodecahedron has 43380 nets [15]. The basic constraints
in folding the polyhedral net are that the material must exhibit
continuous folding, conserve distances along its surface and not
self-intersect [16].
When we first started assembling polyhedra, no design rules

existed for which of the 11 nets would self-assemble with the
highest yields. We picked the mirror-symmetric cruciform (net 11
in Fig. 3A) due to its familiarity, and it is used by several other
groups [17–20]. In this paper, we systematically investigated the

self-assembly of all 11 cube nets. We also investigated the self-
assembly of the 11 octahedron nets, since the regular octahedron is
the dual polyhedron for a cube; a dual polyhedron is one in which
the roles of faces and vertices are interchanged when compared
with the original polyhedron [21]. We recorded the number and
types of defects observed during each assembly over 68 trials for
each polyhedron. Although we observed that each net could fold
into a well-formed polyhedron, a clear trend emerged for the
number of defects in the assembly among the different nets. We
observed that the cruciform net actually did not provide the best
yields for assembling a cube. Also, there was a strong correlation
between the success of each net folding into the desired
polyhedron and purely geometric compactness factors, such as
the nature of the connectivity of the different panels in the net
design and a radius of gyration function.

Figure 1. Schematic diagram showing the self-assembly of a
cube from (A) six untethered panels and (B) six tethered
panels. Since the number of conformations is greatly restricted by
tethering as in (B), self-assembly occurs with much higher yield.
doi:10.1371/journal.pone.0004451.g001

Figure 2. Schematic diagram of the net geometry. The diagram
shows the (A) cube and (B) octahedron net geometry and illustrates the
different kinds of topological connections and hinges.
doi:10.1371/journal.pone.0004451.g002

Figure 3. Schematic diagram of all the eleven 2D (A) cube and
(B) octahedron nets.
doi:10.1371/journal.pone.0004451.g003
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liquefied and minimized its exposed liquid surface area. The
surface tension caused the internal hinges to bead up, creating a
torque that rotated the panels, and enabled the external hinges on
adjacent panels to fuse when the panels met. Although most
previous self-folding work has only utilized internal hinges, the
addition of external hinges to self-folding structures fabricated in
our research group has resulted in increased defect tolerance and
self-correction; this has translated into high yield assembly of
micropolyhedra.
It is known that not all arrangements of six square panels

connected edge-to-edge will fold into a cube. If one is given a
simple polygon (and its interior) in the plane, Alexandrov’s
theorem gives conditions under which this polygon can be folded
by the identification of points of the polygon’s boundary to a
convex polyhedron or a double covering of a convex polygon [13].
Here, the full power of this theorem is not required. What will be
considered instead are polygons that have fold lines (we call these
lines internal hinges, which separate the original polygon’s interior
into polygonal panels) which will form convex polyhedra (with the
panels becoming faces of the completed polyhedron) when folded
along the fold lines and the edges of the polygonal boundary are
joined together (Fig. 2). The term ‘‘net’’ is often used to describe
this situation. Note that for some nets, when using the existing fold
lines, it is possible to make either a non-convex polyhedron or a
convex polyhedron depending on how the polygonal edges are
joined together, e.g. the nets of the octahedron can form non-
convex and regular octahedra. However, this does not arise for the
cube. There are 11 nets that fold into a cube [14] and 11 that fold
into octahedra, but the number of nets varies for different
polyhedra. For example, the tetrahedron has two nets and the
regular dodecahedron has 43380 nets [15]. The basic constraints
in folding the polyhedral net are that the material must exhibit
continuous folding, conserve distances along its surface and not
self-intersect [16].
When we first started assembling polyhedra, no design rules

existed for which of the 11 nets would self-assemble with the
highest yields. We picked the mirror-symmetric cruciform (net 11
in Fig. 3A) due to its familiarity, and it is used by several other
groups [17–20]. In this paper, we systematically investigated the

self-assembly of all 11 cube nets. We also investigated the self-
assembly of the 11 octahedron nets, since the regular octahedron is
the dual polyhedron for a cube; a dual polyhedron is one in which
the roles of faces and vertices are interchanged when compared
with the original polyhedron [21]. We recorded the number and
types of defects observed during each assembly over 68 trials for
each polyhedron. Although we observed that each net could fold
into a well-formed polyhedron, a clear trend emerged for the
number of defects in the assembly among the different nets. We
observed that the cruciform net actually did not provide the best
yields for assembling a cube. Also, there was a strong correlation
between the success of each net folding into the desired
polyhedron and purely geometric compactness factors, such as
the nature of the connectivity of the different panels in the net
design and a radius of gyration function.

Figure 1. Schematic diagram showing the self-assembly of a
cube from (A) six untethered panels and (B) six tethered
panels. Since the number of conformations is greatly restricted by
tethering as in (B), self-assembly occurs with much higher yield.
doi:10.1371/journal.pone.0004451.g001

Figure 2. Schematic diagram of the net geometry. The diagram
shows the (A) cube and (B) octahedron net geometry and illustrates the
different kinds of topological connections and hinges.
doi:10.1371/journal.pone.0004451.g002

Figure 3. Schematic diagram of all the eleven 2D (A) cube and
(B) octahedron nets.
doi:10.1371/journal.pone.0004451.g003
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Experiments  on self-folding dodecahedra (at Johns Hopkins)
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(a)--(c):  ranked by vertex connections.
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    The  (simple-minded) predictors work.   

    But the main issue is to understand the process of self-assembly. 



(a) Construction of discrete configuration space (a  graph of intermediates).

(b) Markov chains/optimization  on configuration space based on "cooked 
up" rates and energy functions (only geometry, minimal physics).

(c) Daniel Johnson's thesis (2015): compute rates ab initio based on 
Brownian motion of polyhedral linkages.  Impossible to know rates 

from experiment for simple molecules (e.g. fullerenes).

    The  (simple-minded) predictors work. But the main issue is to 
understand the process of self-assembly.  Our model involves:



A discrete evolution: “gluing at vertex connections” 

 Fold a net  in discrete steps by gluing all edges at a vertex by rotating 
through the dihedral angle.  

Glue only one edge at a time, unless additional faces collide. If so, 
glue all additional edges that are forced on you.

 This has several  interpretations such as an  evolution of spanning 
trees on the vertex-edge graph by the removal of edges, or  the 

transformation of  an initial spanning tree on the face-edge graph by 
the addition of cycles. 
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Pathways for net 3
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Pathways for net 5
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Unity in discrete geometry  (1) 
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Unfold an HP chain by breaking secondary  HH bonds.  Initial configuration from 
Chan and Dill (1997). Crankshaft moves adapted from Verdier and Stockmayer (1962).



Unity in discrete geometry  (11) 
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Some interesting mathematical structure 

      The discrete configuration space explodes combinatorially. However,  there 
seems to be a collapse onto a few dominant intermediates that is robust for various 
choices of metrics and rates on the configuration space. 
 
We illustrate this for folding. Similar results have been reported for various models 
of virus self-assembly.



All folding pathways for the cube. 
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Geodesic folding pathways for the cube. 



All folding pathways. 
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Optimal assembly pathways. 

Results and Discussion

We used a previously established procedure for fabricating the
200 and 500 mm cubes and octahedra on silicon wafers [12] (see
Materials and Methods); cube nets were processed across two
wafers, while all of the octahedron nets were processed on one
wafer. Each net was fabricated with nickel panels (square-shaped
for cubes and equilateral-triangular shaped for octahedra)
connected edgewise by solder hinges. The edges of each panel
featured hinges; internal hinges (along fold lines) connected two
panels, while external hinges were at the edges of the panels and
did not connect to other panels. Each panel measured either 200
or 500 mm on each side, and adjacent panels were spaced apart by
a width equal to 10% of the panel edge length. We electrodepos-
ited solder at the panel edges to form the hinges, released the nets
from the substrate and heated the structures until they folded at
the hinges to form polyhedra. The samples on each wafer were
constructed in close proximity to minimize any variations in the
dimensions during lithographic processing. The wafers were
organized such that a row of 11 nets was repeated multiple times.
Each net featured a characteristic pattern on all panels to
distinguish the polyhedra. Such an identification system was
necessary, since cubes and octahedra resulting from different nets
were assembled simultaneously to minimize any other process
variations. It should be noted that at sub-mm size scales, the role of
gravity in this self-assembling process is minimal [12]. Neverthe-
less, special care was taken in the design so that all of the panels on
all nets had the same mass. Following a lift-off process from the
substrate, the various nets were sorted, placed in random
orientations in a dish and heated until surface tension forces
drove them to fold into polyhedra. We folded the nets in batches,
such that representatives of each were present. We defined the self-
assembly of all the polyhedra in a dish as one trial and completed a
total of 68 trials each for the 200 mm cubes and the octahedra. We
also performed 36 trials each for 500 mm cubes and octahedra and
observed that the folding trends (discussed later) were similar.
For the cubes, we observed that each of the 11 nets folded by

one of two distinct pathways (Fig. 4 A–B). The first pathway
involved two clearly distinguishable sections of the net folding
independently at equal rates and then coming together when a
central hinge folded. The second folding pathway was character-
ized by different folding rates within the sections of the net. Nets 2,
4, 5, 7, 8, and 9 (Fig. 3) followed the first pathway; the remaining
nets followed the second pathway. Fig. S1 in the Supporting
Information section shows snapshots of all the 11 cube nets during
folding. Interestingly, folding of octahedra appeared to follow
more complicated pathways, and there were two possible final
conformations, either the non-convex boat-shaped octahedron or
the convex regular octahedron (Fig. 4 C–D). The formation of
non-convex and regular octahedra depended both on the type of
net as well as the folding sequence of the individual panels during
assembly; some nets formed both types of octahedra.
The data gathered from the assembly of 200 mm and 500 mm

polyhedra indicated that all of the nets, with varying levels of
defects (Fig. 5A–C), were capable of forming perfectly-folded
polyhedra (Fig. 5 D–E). We organized the self-assembled cubes
and octahedra into four categories (labeled A through D)
according to their defects. We could not discern any defects in
‘‘A’’ polyhedra using optical microscopy. They had well-aligned
faces and hinges that folded for form dihedral angles of 90u for
cubes (Fig. 5A) and 109.4u for octahedra. ‘‘B’’ polyhedra were
observed to have either one misaligned face (Fig. 4Bi, 4Biii) or
slightly (deviation,15u) under/overfolded faces. Underfolding
occurred when excess solder was present at a hinge between two

faces, and overfolding occurred when an inadequate amount of
solder was present in the hinge. ‘‘C’’ polyhedra were missing one
face, or were severely (deviation.15u) over/underfolded (Fig. 5Cii,
5Ciii). In some cases with cubes, we observed a twist deformation
and also classified those as ‘‘C’’ cubes (Fig. 5Ci). ‘‘D’’ polyhedra
had two or more of the defects described for ‘‘C’’ polyhedra.
Various other defects were observed in octahedra but not in cubes,
which were a result of the comparatively more complicated folding
mechanics; one common defect that occurred with the folding of
octahedron nets was the overfolding of several sides, resulting in a
tetrahedron (Fig. 5F) instead. Yields for cubes and octahedra are
plotted in Figure 6 and listed in Tables S1, S2, with average ranges
of ‘‘A’’ polyhedra plotted in Figure S2.
Five internal hinges along fold lines connect the six panels of each

cube net; we refer to these connections as edge connections (Fig. 2A).
Similarly, seven internal hinges are present along the fold lines and
connect (through edge connections) the eight panels of each
octahedron net (Fig. 2B). This method of identifying internal hinges
along fold lines is attractive since it can be readily extended to the
nets of other polyhedra. Vertex connections resemble topological
connections described in protein folding models [7]. Vertex
connections occur when panels are not directly connected to each
other but are proximal and oriented at a specified angle to each
other. There is one kind of vertex connection in the cube nets: when
panels are located diagonally to each other, they share one vertex
with an angle of 90u between the panels’ exterior sides. There are
two types of vertex connections in octahedron nets, as panels can be
oriented with their exterior sides forming angles of 120u or 180u
between them (Fig. 2B). A panel with no vertex connections to other
panels in a cube is a hanging panel and is connected to the rest of the
structure by only one edge connection. There are no hanging panels
in octahedron nets, because each panel has at least one vertex
connection. A more compact net results when each panel within the
net has more vertex connections.
We also used the radius of gyration, another common

parameter for determining compactness in protein structure, to
quantify the compactness in the nets [10]. We defined the radius of

gyration (Rg) as Rg~
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Figure 4. Cube folding dynamics and octahedral conforma-
tions. Two distinct folding dynamics during self-assembly were
observed for cube nets: (A) net 5 follows pathway 1 and (B) net 3
follows pathway 2. Pathway 1 was characterized by independent
folding of two clearly distinguishable sections of the net, which came
together when the central hinge folded. Nets following pathway 2 have
different folding rates for different sections of the net. Octahedron nets
can fold into (C) non-convex boat-shaped or (D) regular octahedra.
doi:10.1371/journal.pone.0004451.g004
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Results and Discussion

We used a previously established procedure for fabricating the
200 and 500 mm cubes and octahedra on silicon wafers [12] (see
Materials and Methods); cube nets were processed across two
wafers, while all of the octahedron nets were processed on one
wafer. Each net was fabricated with nickel panels (square-shaped
for cubes and equilateral-triangular shaped for octahedra)
connected edgewise by solder hinges. The edges of each panel
featured hinges; internal hinges (along fold lines) connected two
panels, while external hinges were at the edges of the panels and
did not connect to other panels. Each panel measured either 200
or 500 mm on each side, and adjacent panels were spaced apart by
a width equal to 10% of the panel edge length. We electrodepos-
ited solder at the panel edges to form the hinges, released the nets
from the substrate and heated the structures until they folded at
the hinges to form polyhedra. The samples on each wafer were
constructed in close proximity to minimize any variations in the
dimensions during lithographic processing. The wafers were
organized such that a row of 11 nets was repeated multiple times.
Each net featured a characteristic pattern on all panels to
distinguish the polyhedra. Such an identification system was
necessary, since cubes and octahedra resulting from different nets
were assembled simultaneously to minimize any other process
variations. It should be noted that at sub-mm size scales, the role of
gravity in this self-assembling process is minimal [12]. Neverthe-
less, special care was taken in the design so that all of the panels on
all nets had the same mass. Following a lift-off process from the
substrate, the various nets were sorted, placed in random
orientations in a dish and heated until surface tension forces
drove them to fold into polyhedra. We folded the nets in batches,
such that representatives of each were present. We defined the self-
assembly of all the polyhedra in a dish as one trial and completed a
total of 68 trials each for the 200 mm cubes and the octahedra. We
also performed 36 trials each for 500 mm cubes and octahedra and
observed that the folding trends (discussed later) were similar.
For the cubes, we observed that each of the 11 nets folded by

one of two distinct pathways (Fig. 4 A–B). The first pathway
involved two clearly distinguishable sections of the net folding
independently at equal rates and then coming together when a
central hinge folded. The second folding pathway was character-
ized by different folding rates within the sections of the net. Nets 2,
4, 5, 7, 8, and 9 (Fig. 3) followed the first pathway; the remaining
nets followed the second pathway. Fig. S1 in the Supporting
Information section shows snapshots of all the 11 cube nets during
folding. Interestingly, folding of octahedra appeared to follow
more complicated pathways, and there were two possible final
conformations, either the non-convex boat-shaped octahedron or
the convex regular octahedron (Fig. 4 C–D). The formation of
non-convex and regular octahedra depended both on the type of
net as well as the folding sequence of the individual panels during
assembly; some nets formed both types of octahedra.
The data gathered from the assembly of 200 mm and 500 mm

polyhedra indicated that all of the nets, with varying levels of
defects (Fig. 5A–C), were capable of forming perfectly-folded
polyhedra (Fig. 5 D–E). We organized the self-assembled cubes
and octahedra into four categories (labeled A through D)
according to their defects. We could not discern any defects in
‘‘A’’ polyhedra using optical microscopy. They had well-aligned
faces and hinges that folded for form dihedral angles of 90u for
cubes (Fig. 5A) and 109.4u for octahedra. ‘‘B’’ polyhedra were
observed to have either one misaligned face (Fig. 4Bi, 4Biii) or
slightly (deviation,15u) under/overfolded faces. Underfolding
occurred when excess solder was present at a hinge between two

faces, and overfolding occurred when an inadequate amount of
solder was present in the hinge. ‘‘C’’ polyhedra were missing one
face, or were severely (deviation.15u) over/underfolded (Fig. 5Cii,
5Ciii). In some cases with cubes, we observed a twist deformation
and also classified those as ‘‘C’’ cubes (Fig. 5Ci). ‘‘D’’ polyhedra
had two or more of the defects described for ‘‘C’’ polyhedra.
Various other defects were observed in octahedra but not in cubes,
which were a result of the comparatively more complicated folding
mechanics; one common defect that occurred with the folding of
octahedron nets was the overfolding of several sides, resulting in a
tetrahedron (Fig. 5F) instead. Yields for cubes and octahedra are
plotted in Figure 6 and listed in Tables S1, S2, with average ranges
of ‘‘A’’ polyhedra plotted in Figure S2.
Five internal hinges along fold lines connect the six panels of each

cube net; we refer to these connections as edge connections (Fig. 2A).
Similarly, seven internal hinges are present along the fold lines and
connect (through edge connections) the eight panels of each
octahedron net (Fig. 2B). This method of identifying internal hinges
along fold lines is attractive since it can be readily extended to the
nets of other polyhedra. Vertex connections resemble topological
connections described in protein folding models [7]. Vertex
connections occur when panels are not directly connected to each
other but are proximal and oriented at a specified angle to each
other. There is one kind of vertex connection in the cube nets: when
panels are located diagonally to each other, they share one vertex
with an angle of 90u between the panels’ exterior sides. There are
two types of vertex connections in octahedron nets, as panels can be
oriented with their exterior sides forming angles of 120u or 180u
between them (Fig. 2B). A panel with no vertex connections to other
panels in a cube is a hanging panel and is connected to the rest of the
structure by only one edge connection. There are no hanging panels
in octahedron nets, because each panel has at least one vertex
connection. A more compact net results when each panel within the
net has more vertex connections.
We also used the radius of gyration, another common

parameter for determining compactness in protein structure, to
quantify the compactness in the nets [10]. We defined the radius of

gyration (Rg) as Rg~
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Figure 4. Cube folding dynamics and octahedral conforma-
tions. Two distinct folding dynamics during self-assembly were
observed for cube nets: (A) net 5 follows pathway 1 and (B) net 3
follows pathway 2. Pathway 1 was characterized by independent
folding of two clearly distinguishable sections of the net, which came
together when the central hinge folded. Nets following pathway 2 have
different folding rates for different sections of the net. Octahedron nets
can fold into (C) non-convex boat-shaped or (D) regular octahedra.
doi:10.1371/journal.pone.0004451.g004
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Comparison of computation and experiment 
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Where is the math?

(1)  Configuration spaces, numerical schemes, computation of rates for linkages 
executing Brownian motion.

(2) What can we build?



these are also terminal states that are kinetically trapped, but we
find them less relevant in experiment. When comparing with
experiment, previously published heuristics were used to focus on
a few dominant intermediates (Text S2).

2. Degrees of freedom and rigidity within intermediates
It is intuitively clear that a flat octahedron net is flexible,

whereas an assembled octahedron is rigid. In particular, the
rigidity of the octahedron follows from a classical theorem of
Cauchy which states that a convex polyhedron is rigid [39].
However, the first example of a non-convex flexible polyhedron
was discovered by Connelly in 1977 [40]. This idea of rigidity can
be quantified in the mathematical theory of rigidity of ideal
linkages as discussed below. An ideal polyhedral linkage consists of
a collection of rigid panels that are connected by ideal hinges that
allow free rotation. The number of degrees of freedom of a linkage
is the difference between the number of coordinates required to
specify all its vertices, and the number of constraint equations. A
rigid body has six degrees of freedom – three coordinates for its
center of mass and three for its orientation. The number of

internal degrees of freedom is the number of degrees of freedom
minus six. In more intuitive terms, the number of internal degree
of freedom is the number of independent relative motions of a
linkage. By this reckoning, we find that the intermediates in tier Sk

have (4-k) internal degrees of freedom. Thus, in each step of the
assembly process the number of internal degrees of freedom
decreases by one, until the assembly process terminates in a rigid
state. However, these notions do not distinguish between the
intermediates on the same tier. In order to distinguish between
these intermediates, we note that rigidity theory may be further
applied to sub-linkages within a linkage. More precisely, for any
given linkage, we may compute the number of internal degrees of
freedom of a subset of the linkage. We focus on a sub-linkage
consisting of the faces that meet at the corner (vertex) of a
polyhedron. Note that the corners of a tetrahedron, cube and
dodecahedron are rigid. For example, the corner of a tetrahedron
is a linkage consisting of three triangles meeting at a dihedral angle
of 70.53u. It is easy to verify that this linkage cannot be deformed
to another shape while keeping the edge length fixed. In contrast,
the corner of an octahedron has one rotational degree of freedom.

Figure 2. The extended configuration space for the octahedron showing intermediates divided into five tiers (denoted by S0 to
S4). The intermediates in tier Sk have (4-k) internal degrees of freedom. The paths denoted in red correspond to states linked by gluing at vertex
connections with exterior angle 120u (configuration space R); all these paths lead to the formation of Isomer I. The paths in green link states obtained
by gluing at both types of vertex connections (configuration space G). These paths lead to Isomer II, and kinetically trapped states 71, 73 and 80.
doi:10.1371/journal.pone.0108960.g002
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The octahedron and an "isomer" 

Pandey et al; PloS One (2014)



Polyhedra as machines?

Izidor Hafner’s  “bellows” based on Connelly’s polyhedron.








