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Q1. Can we use the Loewner equation to construct natural graph
embeddings of Galton-Watson trees in the upper half plane?

Q2. Can we construct a graph embedding of the CRT as a scaling limit
of these embeddings of finite Galton-Watson trees?

Q3. What does this construction say about "true trees" (conformally
balanced embeddings) and the Brownian map?

At first sight, there is no random matrix theory here. But the above
problems are closely related to map enumeration.



(a) A brief introduction to the CRT.

(b) Loewner evolution with branching (tree embedding).

(c) Scaling limits: the SPDE in the case of a Feller diffusion.

(d) Some remark on true trees and the Brownian map.

(a) is (necessary) background. Basic reference: Le Gall (1999).
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Def: A real tree is a pointed compact metric space with the tree property.

Construction: Let f: [0,1] — R0 be continuous, and f(0)=£(1)=0.
Consider

4(u,0) = flu) + f(v) — 2 min f(s)

s€|u,v]
and
U~rv < du,v) =0.
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Def: T = |0,1]/ ~¢ is the real tree coded by f.
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The continuum random tree

Definition: The continuum random tree (CRT) is the random real tree
coded by the normalized Brownian excursion .

As the uniform distribution on rescaled Dyck paths of length 2n
converges to e, the uniform distribution on plane trees conditioned to
have n edges converges to the CRT.

1 (d)
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The CRT was introduced by Aldous (1991-93).
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Loewner (1920s):  ¢: satisfies the initial value problem

o e
gt(z) T gt(z) s u(t)7 gO( ) :




Chordal Loewner evolution

General version: Let ¢«(z) denote the solution to the initial value problem

w,(du)
R 8t(2) —u

81(z) = , 8o(z) =z

Let H;= {zeH]} for which g«(z)eH is well defined.

Then g; is the unique conformal map from H; onto H with the hydrodynamic
normalization. The hull is the set

H\Ht o Kt-

Idea: The measure is supported on points that are escaping H.

Conditions: {u+}:-0 is a family of nonnegative Borel measures on R that is right

continuous with left limits in the weak topology:.
For each ¢, us (R) and supp (us) are each uniformly bounded for 0 <s < t.




Examples

1) pt = du

N
2) U, = Z O,y produces the multislit equation (Schleissinger "13):
i=1 N

3) U = O xs generates SLE,.

Question: Which measures generate embeddings of trees?




The general form of Loewner evolution is rarely used. However, it is central to
our approach. The one line summary of our work is the following conjecture:

Graph embeddings of continuum trees are generated by Loewner evolution
when the driving measure is a suitable superprocess.

The simplest example in this class is what we call the Dyson superprocess.
It is the free probability analogue of the Dawson-Watanabe superprocess.



Loewner evolution driven by Dyson BM with branching

(Simulation courtesy of
Vivian Healey and
Brent Werness.)




SPDE for the Dyson superprocess
ilde) = ol t)de e s oo ool st =]
Orp + 0z (PHp) = o /p W,
where TV is space-time white noise and . is the Hilbert transform
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The SPDE is formal, but convenient. The measure valued process is actually
defined through a martingale problem.



Comparison with the Dawson-Watanabe superprocess

The Dawson-Watanabe superprocess is the scaling limit of branching
Brownian motion when the discrete branching processes converges to the Feller
diffusion. The spatial motion of each particle is independent.

1 :
Orp = §Ap+a\/ﬁW, P ERYE50,

The Dyson superprocess is the free probability version of this SPDE:

Op+ 05 (pHp) = o/pW, zcR,t>0.

Unlike Dawson-Watanabe, this is a superprocess of interacting particles.



The SPDE and stochastic Loewner evolution

Consider the Cauchy-Stieltjes transform

o)

f(z,t):/oo : u:(ds), =z € H.

Define the Gaussian analytic function h(z,t), 2z € H with covariance kernel

D ) = o t’)/_oo /_OO Z . - - pe(ds)



The Dyson superprocess and Loewner evolution

Let B denote white-noise (in time alone). Then (formally)

Of+ f0,f =chB, zecH,t>0.

This SPDE may be solved by the method of characteristics

d
d—j — f(2,1), df =oh(z,t)dB, zcH.

The stochastic Loewner evolution is given by the subordination formula

Qt(z) == f(gt(z)vt)7 90(2) == 7 e el



Absolute continuity w.r.t. Lebesgue measure

?

:ut(dx) . ,0(213, t) dx

Dawson-Watanabe superprocess:

d=1 [t is absolutely continuous (Konno-Shiga, Reimers, 1988).

s =) [t is singular (Perkins, 1988).

Dyson superprocess: we don't know yet. The basic regularity estimates for free
convolution with a semicircular law were obtained by Biane (1997). Unlike
Dawson-Watanabe we would like [t to be singular with respect to Lebesgue
measure.

If a density exists, then the hull cannot be a tree, so this is a crucial property.



Tree Embedding

Question: In the deterministic setting, what conditions guarantee that
the hull is a tree?

Fundamental step: What conditions on the driving measure guarantee
that the generated hull is a union of two simple curves in H that meet at
a single point on R at nontrivial angles (not 0 or 7)?



Tree Embedding: («, [3)-approach

Setup: Let U3, . . ., U, be n continuous functions U;: [0,T] - R
that are mutually nonintersecting U; (t) < U1 (t) foralli=1, ..., n and
all t € [0,T], except for U; (0) = Uj+1 (0). Let us be the discrete measure

n
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Setup: Let U3, . . ., U, be n continuous functions U;: [0,T] - R
that are mutually nonintersecting U; (t) < U1 (t) foralli=1, ..., n and
all t € [0,T], except for U; (0) = Uj+1 (0). Let us be the discrete measure

n
ty = ¢ Z 5Ui(t)
=il

Definition: Let a, B € (0, 1) such that a + § < . We say that K;
approaches R at U;(0) in (&, p)-direction if for each ¢ > 0 there is

s = se > 0 such that there are exactly two connected components of K
that have U;(0) as a boundary point, and

K G H e g e oo L0 o g
K]le @ e ial et el — (U

(Motivated by Schleissinger "12.)
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Tree Embedding: («, [3)-approach

Theorem (Healey): In the setting above, the hulls K; approach R in (,
B)-direction at U; (0) if

Ui - uyo) o
}{% / \/ZJ = ¢,(a,B) — P,(a, B)

}{% Uj—l—l(t) \—/Eu]'—l—l(o) St Qf)l(aaﬁ) e sz(aaﬁ)a

where ¢1(a, B) and ¢2(a, §) are explicitly computable functions.



Tree Embedding: («, B)-approach

Balanced case: If 0 < a = § < 71/2, then ¢1 and ¢, simplify to

bu(a.0) =0 and gya.a) = VI 22

Intuitively: Loewner scaling

If u; generates hulls Ky, then puy» generates the hulls pK..

*So we expect to see vVt whenever a hull is preserved under dilation.



A driving measure for any tree

Let 7= {v, h(v)} be a marked plane tree. (Think of h(v) as the time of
death of v.) Let u; be indexed by the elements of 7 alive at ¢:

= Z O, (1)
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The driving measure

Let 7= {v, h(v)} be a marked plane tree. (Think of h(v) as the time of
death of v.) Let u; be indexed by the elements of 7 alive at ¢:

=L Z Ou, (t)-

VGAtT

On time intervals without branching, chose the U, to evolve according to

HOEEDS uv(t)—lu,?(t)'

V#HGAtT

Theorem (Healey) : If 7 is a binary tree such that h, = h;, then for each
0 <s <max{h(v)}, the hull K; generated at time s by the Loewner
equation driven by u is a graph embedding of the subtree

T.={veT:hp®W) <s)

in H, with the image of the root on the real line, and K; C Ky if s <s’.




Tree Embedding

Proof (idea):

The proof relies on ODE results about the particle system
C1

g D e

V#ﬂEAtT K

e Extend the solution backward to the initial condition U;(0) = U;+1(0).

e Show that the solution generates curves away from ¢ =0.

e Show that the generated hull approaches R in (a, a)-direction for

i Tt
248

[0



Example: Galton-Watson Trees with deterministic repulsion

If O is distributed as a
binary Galton-Watson
tree with exponential
lifetimes, then the
theorem guarantees that
the Loewner equation

driven by u: generates a
graph embedding of 6
with probability one.

A sample of a binary Galton-
Watson tree with exponential
lifetimes.
(Simulation courtesy of
Brent Werness.)
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Embedding the CRT?

Question 2: Let {6k} be a sequence of random trees that (when
appropriately rescaled) converges in distribution to the CRT when 6

is conditioned on having k edges. Does the law of the generated hulls
converge to a scaling limit?

First step: Find the scaling limit of the corresponding sequence of
random driving measures.
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Let {7} be a sequence of random trees, and let{c*} and{c"} be two
sequences with elements in R*. For each k, define

‘ultC =ra Ck Z 6Uv(t)7

VEAtﬁ

where the U,(t) evolve according to

e 2 0

vENEA: Tk i

e Same setting as tree embedding theorem.

e How do we choose the trees {7¢}?
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Galton-Watson trees to the CRT

Theorem (Aldous): If 6 is distributed as a critical binary Galton-Watson
tree with exponential lifetimes of mean 2%% , conditioned to have k

edges, then 6x converges in distribution to the CRT as k — oc.

Question 2a: Can we find a scaling limit of {¢} } defined by
‘L[]; == Ck Z 6UV(t)7

veENA;O;

where the U, (t) evolve according to
k
: C
=" %% ! ,
P AnEIAT

if for each k, Oy is distributed as a critical binary Galton-Watson tree

with exponential lifetimes of mean 2%%/ conditioned to have k edges?




For each k, the driving measure 1 is really a measure-valued process
defined for t € [0, c0).

By convergence of driving measures we mean convergence in the
Skorokhod space D aq.r) [0, o0) of functions from [0, co) to M¢(R) with
cadlag paths (right continuous with left limits).

Called superprocesses.

How to prove convergence of superprocesses?

e Tightness
Prokhorov: tight <> relatively compact subset of D (&) [0, ).
In particular, there is at least one limit point.

e Uniqueness of the limit point. (Conv. of finite dimensional marginals.)



Scaling limits: tightness

Theorem (Healey, M.): (a) For each k, let 6« be distributed as a Cr1t1ca1
binary Galton-Watson tree with exponential lifetimes of mean 2\/_,
conditioned to have k edges, and let {u*} be the corresponding sequence
of measures. If the scaling constants are

P b
Vk
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then the sequence {u*} is tight in D M(R) 0, 00).
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Theorem (Healey, M. ): For each k, let O« be distributed as a cr1t1cal
binary Galton-Watson tree with exponential lifetimes of mean 2\/_,
conditioned to have k edges, and let {u*} be the corresponding sequence
of measures. If the scaling constants are

P b
Vk

Crie—= C1 e
then the sequence {u*} is tight in D M(R) 0, 00).

Why these constants?

e Choose c* = ¢%, since the ratio ¢} /c* determines the branching angle.

e & = 1/Vk is the rescaling for which the total population process of
Ox converges to L, the local time at level ¢ of the normalized

Brownian excursion.
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The Scaling limit

Contour function for critical binary GW trees

Galton-Watson
B B process

! |

Normalized Brownian Local time at level f of

N
NN
~PL)—*)—-
— O —@u)— @O @) —@m)—6——————

time —
4

excursion (@)o<t<1 normalized Brownian
excursion: L,



The Scaling limit

Theorem (Pitman): If for each k, N* is the total population process of
Ok, then Nlt{

Vk
as k — oo, in the sense of convergence in distribution of random
variables in DMf(]Ri) [O, OO)

SolE




Conditioned v. unconditioned limits

Theorem (Pitman): If for each k, N* is the total population process of
Ok, then N’tC

vk

as k — oo, in the sense of convergence in distribution of random

SolE

Variables n D./\/lf(]R) [O, OO)

Standard unconditioned result: For each k, let N¥ be a discrete critical
Galton-Watson process (all lifetimes of length one) whose offspring
distribution has finite variance. Then

Z\Et y Xt7
as k — oo, in the sense of convergence in distribution of random
variables in D r.(r) |0, 00), where X; is the Feller diffusion.
(Need N’é /k — xo > 0, since the Feller diffusion is absorbing at 0.)




The scaling limit: characterization

Theorem (Healey, M. ): In the unconditioned case, each subsequential
limit solves the martingale problem for the Dyson superprocess:

<ut,¢>=<uo,s&>+/0 /R/Rw(xi:g(y)us(dw)us(dy)+Mt(so),

where the local martingale M has quadratic variation

[M(so)]t:/o (s, ©°) ds.

Remark: (a) Don't know yet if the solution to the martingale problem is

unique.
(b) Similar result for the conditioned case (Pitman, Serlet).



Conformally balanced trees in C

Joel Barnes (Ph.D, 2014, U. Washington).

A planar tree is_ conformally balanced if

(a)each edge has equal harmonic measure from infinity
(b) edge subsets have the same measure from either side.

Balanced trees are in 1-1 correspondence with Shabat polynomials
(Bishop, Biane). However, these polynomials are poorly understood.



Conformally balanced trees in C

F Fig. 3. The domain

Fig. 2. The planar tree

Biane (2009): builds a conformal mapping of the exterior domain by welding edges in
pairs. End result is a conformal mapping, continuous onto the boundary, that gives
exactly the non-crossing partition.



The CVS bijection and the Brownian map

Figure 2. The Cori-Vauquelin-Schaeffer bijection. On the left side, a well-labeled tree
(the framed numbers are the labels assigned to the vertices). On the right side, the edges
of the associated quadrangulation () appear in thick curves.

Image from Le Gall (ICM, 2014).
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Given the conformal map, each labeling gives a nested family of geodesics in the
upper half plane with endpoints on its preimage.

The image of these geodesics under the conformal map is a quadrangulation of the
upper half plane.



