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Building Polyhedra by Self-Assembly

Gromov begins an interesting—and speculative—recent
article [2] with the question, “Is there mathematics in
biology?” The answer, 1 think, is yes, but this is not
immediately apparent, since the real underlying question
is whether modern biology can inspire new forms of
mathematics in a way that compares to the deep ties
that bind mathematics and physics. If we believe that
an essential aspect of mathematics lies in the discovery
of abstract principles from empirical knowledge, there
is little doubt that biology today presents us with an
abundance of the “raw stuff.” What seems much harder
is to process this raw stuff into beautiful mathematics,
especially if one begins with the genetic code and the
theory of evolution.

The topic of my talk is not true biology, but an
instance of “synthetic biology.” All biological organisms
build themselves or “self-assemble.” This is, of course,
familiar to us from our everyday experience, but my
talk will be about much smaller organisms. For the
past twenty years, nanotechnologists have been trying
to manufacture devices by mimicking biological self-
assembly and the exquisite design of molecular machines.
The goal of my talkis to advertise one aspect of this rapidly
growing field and to explain how an important biological
example—the self-assembly of viruses with icosahedral
symmetry—can inspire and guide the development of
self-assembly in technology.

Viruses are biological organisms that lack the cellu-
lar machinery necessary for independent existence. The
simplest viruses consist of genomes contained within a
protein shield (the capsid). The capsid disassembles when
the virus attacks a host cell; the virus genome then hijacks
the host cell and uses it to make many more copies of
virus genome and proteins, which then rapidly reassemble
into new copies of the virus. The natural design of viruses
has two elegant features that should appeal to all math-
ematicians: genetic economy and structural symmetry.
The genetic sequences of primitive viruses are very short.
For example, the genome of MS2, a well-studied virus, has
only 3,569 nucleotides that code for four proteins (lysis,
replicase, maturation, and coat protein), each of which
has a very specific function. The lysis enzyme degrades
the cell wall of the host, and the replicase catalyzes the
reproduction of the virus. The other two proteins are used
to build the MS2 capsid: it consists of 180 copies of the
coat protein, pinned at one end by the maturation protein,
in a beautiful arrangement of dimers with icosahedral
symmetry (Figure 1). While the genome of MS2 has been
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Figure 1. A ribbon-diagram showing the structure

of the bacteriophage MS2. The coat protein exists

in three distinct conformations (A, B, and C), which
merge in pairs into A/B dimers (blue/green) and C/C
dimers (maroon). A/B dimers cluster into pentamers
around the 5-fold axes of an icosahedron, three alter-
nating A/B and C/C clusters form at the 3-fold axes,
and the C/C dimers sit as axes of 2-fold symmetry.

known since the mid-1970s, it is only recently that the
intricate combinatorial structure of the co-assembly of
the capsid with RNA folding was deciphered by Reidun
Twarock and her colleagues 1.k

The self-assembly of viruses has inspired many exam-
ples of synthetic self-assembly. My work has mainly been
in collaboration with David Gracias, an experimentalist
at Johns Hopkins University. Over the past fifteen years,
David has used photolithography to design many devices
and containers that fold themselves into a final shape
once they are released from a substrate. The devices built
in his lab are small (a hair’s width and smaller), but much
larger than viruses such as MS2. This allows us to observe
the pathways of self-folding, unlike the process of self-
assembly of viruses, which must be inferred indirectly
(Figure 2).

The unfolding of a polyhedron into a planar net is a
classical problem in discrete geometry, and our collabora-
tion began when David asked me what the best net should
be for a self-folding dodecahedron. The issue here is a
combinatorial explosion. The cube has only 11 nets, each

LFor more on connections between combinatorics and molecu-
lar biology, see “Strings, Trees, and RNA Folding” by Christine
Heitsch in this issue (page 817).

VOLUME 64, NUMBER 8



BN AMS FALLSECTION SAMPLER NN

Figure 2. Optical microscope images of surface-
tension-driven self-assembly of a dodecahedron from
a net. The sides of each face of the dodecahedron are
300 ym.

of which may be tested in the lab. However, the dodeca-
hedron has 43,380 nets, and, to my surprise and delight,
simple heuristics along with our computations revealed
the best nets in the lab [4]. Since then our work has evolved
into a study of the pathways of self-assembly [3]. This
has required some surprisingly sophisticated mathemat-
ics. My current goal is to understand the conformational
diffusion of polyhedral linkages. More formally, this in-
volves a rigorous formulation for Brownian motion on
algebraic varieties defined by polyhedral linkages, along
with effective algorithms for simulation.
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