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"Grain boundaries” in soap bubbles
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Cyril Smith, Rev. Modern. Bhys (1964)



Grain boundary networks

In the simplest approximation, the microstructure of a 2D
polycrystalline material is described by a cellular network consisting
of polygonal cells (grains) and their boundaries.

The energy of the system is the perimeter of the grain boundaries.
Each grain boundary evolves by motion by mean curvature+ the

Herring boundary condition. This means that the grain boundaries
meet at vertices where the line tensions must be in equilibrium.

Typically these are trivalent, symmetric vertices, except at singular
times, when edges or cells shrink to zero size.




2D simulations
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Evolution of a random network by motion by mean-curvature
+ Herring boundary condition. (Courtesy: Emanuel Lazar).



Some fundamental facts

The von Neumann-Mullins' relation (1951): the rate of change of
area of a grain with k sides, depends only on its topology
(number of edges, k ), not on its geometry (e.g. length of the
sides).
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The above relation means, in particular, that grains with fewer
than six sides must vanish, and the network must coarsen. That
is, the number of grains must decrease, and the typical size of
grains must increase.

Empirically, the area of a typical domain grows linearly in time. In
fact, the microstructure is seen to be "statistically self-similar"!
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DISCUSSION

Written Discussion: By Joha von Neumann, Institute for Advanced
Study, Princeton, N. J.

The considerations that follow deal with the changes of bubble-volume
due to diffusion, that occur in a two-dimensional bubble-froth (a “Flay
Cell”), as shown in Fig. 12 of Dr. C. S. Smith's paper (to be quoted as
"G.L.").  As pointed out on page T, G.L, such changes of volume are
due to the diffusion of the gas that fills the hubbles, through the liguid
film that forms the (separating) bubble-walls, This diffusion is caused
by the pressure difference between adjacent cells (cf. loe, eit, above), In
first approximation it is proportional to this pressure difference. To be
more precise ! The diffusion-flow across a particular bubble-wall is (in the
approximation referred to above) proportional to the pressure difference
hetween the two bubbles adjacent to this wall, multiplied by the length
of the wall,

The pressure difference of the two adjacent bubbles, at a given point
P of a wall, is 2%/R, where 7 is the surface tension of the liguid forming
the froth, and R is the radius of curvature of the wall at P (cf. page 77,
G.L.). =7 is constant throughout the froth. Let P move over one wall-
side, i.e,, one side separating two given bubbles, Then these two bubbles
and their respective pressures are fixed, hence the pressure difference
hetween them is fixed, and so 2v/R must be constant. R is therefore
constant, i.e., the side in question is a circular are. Fach bubble is bounded
by a polygon formed of circular arcs.

Consider such an ar¢, of radius R and angular aperture a. The pres-
sure difference across it is 27/R, the length of the arc is Ra. Hence the
diffusion flow across this arc (wall-side) is proportional to 29/R -+ Ra
=2%as, ke, to a.

Consider next a bubble in its entirety, Let the bounding circular-are-
polygon have n sides, These sides are circular arcs; let their angular aper-
tures be & ..., aw, respectively, Let the angle between sides i and i+ |
(side n ++1 is side 1 1) be ¢, i.e.. the angles are #, ..., ¥, respectively.
Actually each o = 120° = 2#/3 (cf. page 75. G.L.), hut this is not relevant
yet.

Replace cach arc by it chord, then an ordinary (rectilinear) polygon
obtains. The replacement of arc i by its chord increases each adjacent

oly al angle b . 15 inc - -
polygonal angle by 5 an Hence #, is increased hy PR +'§ ay. The cor-
responding external zngle of the rectilinear polygon obtains by comple-

menting this to 180°* = &, i.e.. it is — ¥ — LI a—'.lrnn. The sumyr of all
external angles of the rectilinear polygon is 860° = '.2;. ie.,
1 1

Z(w —9, —5 % -—Tjn‘.:) = 2w,
. 11..—-—2#.—2‘.:.:21.
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and, using ¢, = *3L(cf. above),
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ted out, ahove, that the diffusion-flow across the side

Note that a; may be >0 as well as <0. @ >0

(< ()) means that the side in question is conyex.(concave.): bence (t(l;l{e

bubble in question loses (gains) gas across thm. su:lel by dlf’fusu)l::i. e-‘;
Fig. 10. G.L.) Thus the diﬂ’msim%ﬂuw'? proportlcmaht‘y to a.l.ho s.:ve)n?
with respect to the signs fi.e., the coefficient of proportionality is positive),
if the flow is interpreted as a rate of loss of gas.

i al i i f a bubble, i.e., its total
In this sense, then, the total diffusion Aow o “a_ .

gas-loss-rate, is (positively) proportional to Tai= "y 7w (cf. above), i.e.,
to 8 —n. Or, equivalently:
In a two-dimensional bubblc-‘frot
bubble is (positively) proportiona

‘des of the bubble (i.e., of its . : r
?I"fh:‘ (:)ositive) coefficient of proportionality depends only on the

general properties of the froth and of its containing “Flat Cell".

Thus every hexagonal bubble (irrespective of further details n:
shzipel) has a constant-gas-content, every pentagonal bubble loses gasﬂ:t
the same rate,; every heptagonal bubble gains gas n: tl;eh:a;mfl: rlt:{;;inﬂ

- it; 1 (octagonal) bubble loses
ntagonal ones lose it; every tetragona
Z:s agt twice the rate at which pentagonal (heptagonal) bubbles lose

(gain) it, etc.

Note, that these resu
content due to diffusion. .
parably simple characterization of t
to these changes of gas-contt?nt.
doing the same for the discontmuctus c
appears (cf. pages T8, 79, G.L.). Finally,

not in three, dimensions.

Now it was poin
is proportional to a.

h the total gas-gain-rate of any
|ton — 6, where n is the number
bounding circular-arc-polygon).

~
Its apply only to the continuous changes of gas-

There remains the problem of finding a com-
he total changes of bubble-shapes due
There remains, also, the problem 'of
hanges that occur when a side dis-
these results are valid in two, but

J. von Neumann (1951). Collected Paperg, Vol. V.



Physical experiments on soap bubbles

Experiments by Adam Roth (U.Penn), movie courtesy: Emanuel Lazar (U. Penn).



Recent work in applied math (1). Computation and modeling.

(1) Development and implementation of numerical schemes for
the study of large networks.

Front tracking schemes 1.: Kinderlehrer, Lee,..., Ta'asan et al;
Front tracking schemes 2: Lazar, Srolovitz and Macpherson.
Level-set methods: Elsey, Esedoglu and Smereka;

Restricted gradient flows: Henseler, Niethammer, Otto.

(2) Reduced models: Barmak, Emelianenko,.Epshteyn, ...,
Kinderlehrer, Ta' asan-- use statistics obtained from computer
simulation fo develop simplified models for coarsening.



Recent work in applied math (2). Random topology 1.

MacPherson-Srolovitz formula in 3-dimensions (Nature, 2007)

J5p KAA =27 (E(D) — 2 ?:1 ei(D)) :
L(D) the "mean width" of a domain D.

MacPherson-Srolovitz formula in d-dimensions (Nature, 2007)

4 Voly(D) = =21 (Hy—2(Dg) — t Hi—2(Da—2)) .
Voly(D)  d- dimensional Lebesgue measure of D.

H (Dp) Hadwiger s-measure of p-dimensional feature of D.



Recent work in applied math (2). Random topologies in 3D

Poisson—Voronoi
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Lazar, Magon, Macpherson, Srolovitz, Phy. Rev. Lett. (2012).




Our goal and results

Goal: to rigorously derive a Kinetic theory for the coarsening of grain
boundary networks.

Results:

(a) Hydrodynamic limit theorem: rigorously derive kinetic equations
from a particle system that is a cartoon of the evolution of grain
sizes by von Neumann's rule, interspersed with random flips.

(Technically, this is more like a result in queuing theory, than
geometric PDE and relies on the theory of piecewise deterministic
Markov processes).

(b) Computational modeling: Simulation of particle system; derivation
of parameters of the model from "full computations” by others.

(c) Analysis of kinetic equations. For example, well-posedness and a
proof of asymptotic self-similarity in some simple cases.



Random fields compared with kinetic description

A f(x,t)
3
-
Area, x
Af(xt)
4
(C’)
—
Area

Grain boundary evolution Kinetic description

Figure: Flyubjerg, Phyge. Rev. E (1993) Flow of number densities of 3 and 7 grains



Topological types in 3D are much more complicated!

Poisson—Voronoi

P1, f=0.28%

(00133200...)

P2, f=0.17%

(00133100...)

P3, f=0.15%

(00044200...)

P4, f=0.13%

(00134110...)

P5, f=0.13%

(00044100...)

P6, f=0.10%

(00052200...)

P7, f=0.10%

(00142210...)

P8, f=0.10%

(00125200...)

F=9, S=1 F=8, S=2 F=10, S=2 | FE=10, S=1 F=9, S=4 F=9, §=4 F=10, S=1 | F=10, 5=2
Grain growth
G1, f=2.83% | G2, f=1.86% | G3, f=1.63% | G4, f=153% | G5, f=1.48% | G6, f=1.43% | G7, f=1.39% | G8, f=1.38%
(0004400...) | (0003600...) | (0004410...) | (0004420...) (0005200...) | (0003610...) | (0013300..) | (0013320...)
F=8, S=8 F=9, S=12 F=9, S=4 F=10, S=2 F=7, 8=20. | F=10,'5=6 F=17, S=6 F=9, S=1

Lazar, Magon, Macpherson, Srolovitz, Phy. Rev. Lett. (2012).




Kinetic theories

Several groups of physicists and materials scientists infroduced
related, but distinct, kinetic theories at roughly the same fime
(1988-1993). All these models have the form:

Bt (k-0)0.h =) 5 Ty Dz ooie ol

The left hand side describes the evolution of the population of
k-gons by the von Neumann-Mullins rule (here x denotes area).

The right hand side describes the “collisions": i.e. the change in
population caused by the vanishing of edges or grains.

Each Kinetic equation reported on here has a different collision
term, arising from a different accounting of grain or edge
deletion.




Singular

The vanishing of an
edge leads to an
unstable 4-vertex and
"neighbor switching"”.

Four cells participate in
the switch:

2 gain an edge, 2 lose
in edge.

events: (1) vanishing of an edge

Fig. 1
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energy: 3.863703 energy: 3.984779
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energy: 4.000000 energy: 3.464102

() (d)

Figureg: Fradkov, Magnagco, Udler, Weaire, (Ohil. Mag. Lett. 1993)



Singular events: (2) vanishing of a grain

20 sec. 40 sec.

Fig. 4. Shrinking of a 4-sided grain in a 2D SCN-polycrystal.

20 sec. 40 sec.

Fig. 5. Shrinking of a S-sided grain in a 2D SCN-polycrystal.

Loss of a 4-gon. Vanishing of a 5-gon.

2 neighbors lose 1 edge.

2 neighbors lose 1 edge. 1 neighbor gains 1 edge.

Figureg: Fradkov, Glickeman, Palmer, Nordberg, Rajan (Ohygica A [993)



Singular events: (3) topological changes in the vanishing of a 4-gon

energy: 3.968 energy: 3.794

(@) (b)

energy: 3.866

(¢)

The vanishing of a 4-cell passes through an unstable 4-vertex, and
can lead to two topologically distinct networks.



Singular events: (4) vanishing of a 5-gon

The vanishing of a 5-cell occurs through

energy: 4.986 onergy: 4.659 passage through the unstable 5-vertex
(a) (b) and can lead fo five topologically distinct
networks.

The number of distinct networks is

the same as the number of planar,
energy: 4.497 "“““Zd)-"‘” rooted trees with 4 and 5 vertices
(c) | respectively.

Fig. Fradkov, Magnagco, Udler, Weaire, (Ohil. Mag. Lett. 993).

energy: 4.531 energy: 4.476

(e) (f)



Common features of kinetic theories

(a) Mean-field assumption: Ignore correlations between grain
shapes. At each singular event, pick grains independently and
increase or decrease their number of edges by 1, according
to the event type. For example, when a 5-gon vanishes pick
three grains independently, decrease the number of edges

for two of them, and increase the number of sizes for one of
them.

(b) assume probability of picking a k-gon is proportional to k.
assume probability of picking a k-gon is proportional to tofal
number of k-gons.

(c) Rate of vanishing events is proportional to number density of
k-gons with zero area.

(d) Total number decreases.
Total area is preserved.

Polyhedral defect is preserved (integral form of Euler
characteristic).



Distinct features of kinetic theories

Fradkov-Udler (1994): introduces a phenomenological parameter
to parametrize relative rate of vanishing of edges and grains.
Ignores vanishing of 5 grains.

Flyvbjerg (1993): ignore vanishing of edges. Obtains a model with
no free parameters.

Marder (1987): wants to removes sizes from 2 neighboring face
with smallest areas when a 4-gon vanishes. Does this by picking
four neighbors independently, and removing edges from the two
smaller ones.

Beenakker (1987): assume all faces circular arcs, finds a most
likely fopology given the perimeter, freats k as a continuous
variable, and obtains a diffusion equation.



An example of a kinetic equation (Flyvbjerg)

atfk e (k 5% 6)8a;fk — Zf_:l_li—l Tj,kfj) Osrss C)O,iL > (.

C—I-j7 ]:k_l
=< 2 - (c.te )k =k
@27, 7 =k+ 1.

C4+ = %f5(07t)

¢o =13 (LR h08 L

Only nonlinearity is in the coupling terms fl((), t)fj (CE, t).



What is the correct Kinetic theory?

All equations seem to match experimental
data fo reasonable approximation...

On the other hand:

(i) the experimental data is rather limited
—- about 1000 soap bubbles in Marder's
comparison.

(ii) others compare with numerical
simulations of roughly the same size,
but provide no explanation on the
numerical resolution of singular events.

(iii) there appears to be no side-by-side
comparison of the various equations to the
same data sefts.
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FIG. 3. The average arca of bubbles is shown as a function of
time. Theory is shown in the solid lines, and data from Ref. 1 in
the remaining symbols. The time axes are scaled by measure-
ments of the constant x appearing in von Neumann's law. In
(a) the theory begins with an initial distribution containing 90%
six-sided bubbles, 10% an even mixture of fives and sevens. Two
experimental runs with a similar initial condition are displayed
as well. In (b) are shown theoretical and experimental runs be-
ginning with 80% six-sided bubbles. The theory is fairly insensi-
tive to details of the initial area distributions; these were chosen
s0 as to be close to the conditions of the experiments.

Fig. Marder (Ohys. Rev. A. 1987).



The kinetic equations work as a quick and dirty approach fo the
problem. However, the "thermalizing” effect of coarsening,
depends critically on the flow through singular events, which
remains poorly understood. At present, we do not know how fo
connect solutions tfo the PDE with the Kinetic equations.

But there are many unexplored problems of infermediate
difficulty which contain some of the same features. For example,
a purely combinatorial description of coarsening, i.e. evolution of

a planar graph through discrete elementary moves as shown
below, is already interesting.

AN

0oy Q—» A N
-3 W
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Fig. Flyvbjerg (Phyg. Rev. E. 1993)



Random fields compared with kinetic description

A f(x,t)
3
-
222
# S
Area, x
Af(x.t)
Y
(C")
-
Area a0

One solution to PDE, from an

P bl Arsith solitione Flow of number densities of 3 and 7 grains

Self-similar infinite networks? Self-similar solutions to kinetic equations.



Hydrodynamic limits (1): a comparison for coagulation

A f(xt)

227

mass, x

Ensemble of diffusing colloidal atf = Q(fv f)

il c s> radl shick when They: meet, Q(f,f) is a binary collision kernel with

a rate kernel K(x,y) proposed by
Smoluchowski.

Terminology: "Hydrodynamic” refers to origin of this class of problems
(derivation of equations for gas dynamics and the Boltzmann equation from hard spheres).



Hydrodynamic limits (2): a comparison for coagulation

U Af(x,t)

\/

Sl
N

SR S e
.

Marcus-Lushnikov process: mass, x

State space = partitions of {1,...,N}. 8tf — Q(f, f)

Transition rates given by fixed
coagulation kernel K(x,y). The rate
kernel (heuristically) captures all
physics).

Find a simpler N particle sytem (Markov process) whose empirical
measures satisfy the Kinetic equations in the limit of large numbers.



The good and the bad

Bad:

Have removed all geometry. This is not a first principles
derivation.

Good:

(1) The simplified Markov process clarifies many of the
probabilistic assumptions implicit in the kinetic equations.
Technically: basic estimates via martingales.

(2) Abstract structure often leads to connections with
other areas and is usually of independent inferest.

(3) Some progress, since the geometric evolution of
random networks is currently out of reach (no global well-
posedness, resolution of singularities).



Our particle system

O Ja JanY Ja - Y
N\ N\ S N\ S
3—gons
&0 —«= o o
4—gons
J OO JanY JanY JanY
N\ S U S S S
6—gons
o o > SaS o o
/—gons
6—606 -—060—6—6—9
8—gons

M species with different velocity fields, some left moving,
some zero, some right moving. For example, as above.

State of the system = N points with coordinates (s,x)
denoting species and size respectively.



Transitions (1). Deletion of edges

O o o S - O O S ' S - S
; 3—gons £ 3—gons
e T © S o = 6 o o6~
T 4—gons 7[( —gons
o e e e > . T p
—gons
l 6—gons J] J
eSS 6 O - SRS S S
o o - S0 © 8 b
T /—gons
Jan o . o\ O o o o
N\ J A\ A J J J
O SIS ~—0@ 0 @ 8—gons
8—gons

Immediately before jump >< >< >_< After jump

Markovian assumption: Times of jumps are independent, exponential random
variables with rate constant that could depend on the state prior to jump.

Mean field: no correlation between neighbors.




Transitions (2). Deletion of grains (boundary events)
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N\ v YU

/—gons

)
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A particle hits the origin
(size becomes zero).

O

)
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-
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)
)
)
)
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)
)
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———

|

O N

)
)
)

FanY
J v U

/—gons

O N

o S)
8—gons

O N
N A

)
)

N\

A fixed number of independent
particles are chosen and mutated to
other species. This number depends
on the particular boundary event.



Sides

10

Projecting numerical data to the model

o8
Keco o)

D

xTo

oo

D

4 47 90 133 176 219 262 305 348

Area x 10e-7

Acknowledgements:

Matt Elsey (computation of grain boundary evolution);
Joe Klobusicky (conversion to particle model).



General model

{M_, MQ, M_|_} Number of species that have negative, zero and positive velocity.

{2)1, e UM} Velocity fields (need not be constant).

possible boundary events, corresponding to each left

There are M moving species (e.g. k-gons with k less than 6).
K () Number of particles that mutate at boundary event | (e.g. 3 at
3-gon, 2 at 4-gon, 3 at 5-gon.
(1) Matrix of size K(l) x M that takes values in {1, ..., M}.
R Describes the mutation of species at boundary event at species |.
w(l) A vector of positive weights of length M used to define

probabilities (needed to bias selection of k-gons by k).



The law of mutation at boundary events

At a boundary event at species | pick random particles

(Slel)a (SQ7X2)7 JEI (SK(Z)vXK(l))

such that the species S's are independent, with identical law

L St w(s,l)Ng
Pl Dl

Each Xj is conditional on the corresponding Sj

and is chosen uniformly from the particles of species Sj

()
The particle (Sj,Xj) is mutated to (RSj,jan)




General structure: consider only boundary events

(1) The particle system is an example of a piecewise deterministic
Markov process (PDMP). Given the state, the time of the next jump
is deterministic. Such systems were typically studied in queuing
theory, boundary events correspond to the arrival of customers at a
queue.

(2) The evolution of a tagged particle consists of deterministic drift,
with jumps in the velocity caused by mutation between species.

A

time, t

size, X




Kinetic equations

atfa(377 t) i ax(vﬁ(x)fa(xa t)) S

M M K
Z fl(()a t)vl(o) (K(Z)chl) (t)fU (il?, t) T Z ngl) (t)fki (xa t) Z 1{R,(€lj)a})
==

k=1 j=1




The empirical measures

N The total number of particles (does not change in time).

(s1(t),s2(t),...,sn(t); x1(t),...,xn(t))  The state of the system.

I An open interval on the half-line.

ton () = 250 15(25(8)10(s5@)).

This is the normalized number of particles of species O in the interval I

L(,,N(t) Normalized number of particles of species O lost at the origin.



Global semiflow (well-posedness)

Thm. 1. Assume given bounded, continous number densities for each species, such that

nga(xao)a fooofa(xvo)d$<007 Il

Then the kinetic equation has a unique global solution in C' ([0, 00), (BC N L))

and the solution depends continuously on the initial data.

Corollary 1. For initial measures with densities as above, the kinetic equations
define a global semiflow in the space of measures equipped with the weak
topology.

Remark: This theorem is not optimal when M=1. It is possible to define global
measure-valued solutions, without assuming the existence of a density. Related
to Menon-Niethammer-Pego (2009) on min-driven coagulation.




Convergence in probability

Thm. 2. Assume given bounded, continuous number densities for each species such that

O§f0($70)7 fooofa($70)d$<ooa b Sl

Consider the N-particle system with initial empirical measures 1Y (0) that
converge weakly to the measure 41, (0) with density fs (0).

Then for each € >0 and 1 > 0 :

im0 P (SUPg<icr Maxi<o<m d (15 (t), to(t)) > €) = 0.

Here d is a distance that metrizes weak convergence of the empirical measures
and ,LL(t) denotes the solution to the kinetic equations with the given initial data.

Remark: We expect, but have not proved, large deviation bounds for the rate
of convergence even in the case M=l.



The main estimate for tightness

ey (5 0) = SUD; 1o 2oa s b MAT D).

E(mpy(t,0)) < C(T)E(mpy(0,6)), tel0,T].

Atime, t

size, X
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