
Abstract

The purpose of this article is to illustrate the utility of algorithmic
models for morphogenesis with easily visualized examples. Morphogen-
esis is modeled as a set of jumps between well-defined states of being
so that developmental pathways can be modeled mathematically as
Markov chains on graphs. This viewpoint is illustrated in a model
system: self-folding polyhedra.

An interplay between algorithmic and mechanistic viewpoints is
necessary to quantify the rates of transition between different states
in developmental pathways. An ab initio method that uses only in-
formation theory and geometry to model the conformational entropy
of linkages is discussed. This approach also reveals some ties between
biological questions and the foundations of mathematics.
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1 Introduction

The purpose of this paper is to illustrate the utility of an algorithmic view
of morphogenesis. The heart of the matter is this: we model developmental
pathways as a series of random jumps between different states of being. This
viewpoint is demonstrated with geometric models where the states of being
are easily visualized and a principled theory may be used to answer a critical
quantitative question – how long does a system stay in a particular state?

It is helpful at the outset to place this formalism within a broader con-
text. The idea that life is based on an interplay between algorithms and
randomness – a genetic code in constant evolution through interaction with
its environment – is a profoundly seductive paradigm for a mathematical
scientist. It touches on at least three major themes in 20th century math-
ematics – the birth of computer science, the formalization of probability
theory and the search for unifying structure in geometry. And as Conway’s
game of life reveals [9], it is also great fun!

But there is an epistemological tension between the unifying power of
abstraction – which underlies all forms of mathematical reasoning – and
the detailed analysis of the particular that is central to biology. While
cellular automata reduce life to an interplay between abstract principles
such as replication and competition, it is hard to escape the feeling that
such abstraction doesn’t provide ‘real answers’ for a pragmatic biologist.
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Surely the algorithmic discovery of a new ‘life form’ in the game of life can’t
mean very much when contrasted with the diversity of the tree of life filtered
through 3.5 billion years of evolution.

Or does it? The contrast between artifical and natural life runs through
all forms of genetic modification and it seems prudent to hedge one’s bets,
distinguishing between fundamental limits, i.e. problems that can be re-
solved in principle given enough computational power, and those that can
be resolved pragmatically, i.e. studied in wet labs with modern experimen-
tal techniques. Mathematical models that abstract the essence of biological
truth, such as replication and competition in the game of life, play a critical
role in bridging this divide. The goal of this paper is to illustrate some
lessons learnt from one such model system – self-folding polyhedra. This is
a model experimental system on the mesoscale (nanometer–millimeter) that
sheds light on the self-assembly of chemical and biological systems with sim-
ilar geometry. It is suited to interdisciplinary investigation, since it allows
the use of ‘off-the-shelf’ mathematical techniques to resolve practical chal-
lenges in the lab, as well as a sharper look at foundational questions in
mathematics – the nature of space and what exactly it means to compute.

The paper is structured into two parts in order to demonstrate both
of these aspects. In the longer technical part, we review a discrete geo-
metric paradigm for self-assembly and explain how to use a formulation of
graph embeddings developed by the author to compute rates of transition in
self-assembly. This part of the paper illustrates the use of algorithmic prin-
ciples and minimal geometric reasoning to provide a unifying mathematical
perspective on self-assembly. The second part of the paper, titled “Does
Life Compute?” is a reflection on the interplay between mathematics and
biology that arises when the above questions are situated within broader de-
velopments in mathematics and the sciences. This part of the paper places
the computational scheme within its true mathematical context: the role of
information theory in geometry and in the Bayesian conception of models.

The underlying viewpoint is applicable to problems in morphogenesis,
such as embryology, which may be modeled as jumps between states. The
extension of the methodology of this paper to such systems requires the isola-
tion of a minimal set of rules, typically based on geometric decompositions,
followed by the analysis of developmental pathways determined by these
rules. These rules are strongly dependent on the organism and developmen-
tal process being studied. We hope that the visual simplicity of folding – the
geometric metaphor chosen in this paper – will provide sufficient hints for
the discovery of similar rules in other contexts. The methodology itself is not
restricted to folding. The role of visual imagination and a decomposition of
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cell development into well-defined stages runs through Foe’s seminal work
on the partitions of mitotic domains [16]. As discussed in Section 4, the
nature of geometric decomposition and morphogenesis can be interpreted
more broadly with information theory.

2 Discrete geometry and self-assembly

Let us first briefly describe the experimental work and mathematical frame-
work that stimulated the ideas described in this paper.

2.1 Self-assembly of polyhedra

An important theme in nanotechnology is the use of biological metaphors
to design small scale devices. Examples that stimulated our work are See-
man’s use of DNA as a construction material on the nanoscale [37] and the
understanding of ATP-synthases as molecular engines [14, 32, 40]. Such
an interplay between biology and technology is primarily driven by experi-
ments. We will focus on the role of mathematics in a model problem: the
self-assembly of polyhedra. This class of problems is narrow enough to admit
precise mathematical structure. It is also broad enough to encompass the
study of simple organisms such as many ss-RNA viruses [7], the chemistry of
C60 [23] and supramolecular ‘buckyballs’ [26], DNA containers [5, 13], and
self-folding polyhedra [33].

In its most abstract setting, folding is a technique for constructing three-
dimensional objects from a two-dimensional sheet. This formalism is rich
enough to encapsulate the art form of origami so it is clear that there is
a great deal that one can construct. But as anyone who has tried their
hands at origami knows there is also a great deal that can go wrong. What
distinguishes origami from a crumpled sheet of paper is an algorithm: a
precise description of a sequence of folds that converts a sheet of paper into
a desired shape.

Self-folding is the technology (and art form) of constructing a three-
dimensional shape on micro- and nano-scales without the explicit use of an
algorithm. Instead, one must use physics to guide a two-dimensional shape
into its final three-dimensional form. The experiments in the Gracias lab
rely on surface tension and thermal fluctuations. A schematic of this method
is as follows. Suppose our goal is to construct a simple shape such as a cube.
Imagine cutting the cube along edges, flattening it into a shape that consists
of a collection of rigid squares joined at the uncut edges that remain. Such
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a two-dimensional shape is called a net (see Figure 1). More generally, all
convex polyhedra may be unfolded into nets.

The main idea in surface-tension driven self-folding is to begin with such
a net, patterned by electrolithography, with a low-melting point material
such as solder deposited on the edges between faces. The solder melts when
the net is released into a high boiling solvent and its surface tension causes
the faces to rotate relative to one another (see [25] for details of the experi-
ments). There is no explicit control on the sequence of folds and in the first
approximation one must assume that all the faces begin to rotate simultane-
ously. In practice, therefore some of the nets fold succesfully into the desired
shapes, while many do not. An empirical test of the role of the initial net
in self-folding was first carried out in [3]. All possible nets of the cube were
patterned on a substrate and self-folded. They were then examined for de-
fects under an optical microscope, graded into four categories, and the yield
of each grade as a fraction of initial nets was evaluated [3, §3].

The mathematical question that stimulated our interest is this: How
does one design initial nets for self-folding with maximal yield? The catch
is a combinatorial explosion: while a cube has 11 nets, a dodecahedron has
43380! Matters get worse very fast for even the best understood polyhedra
(see [21, Table 1]). Thus, in practice, successful self-folding requires a care-
ful resolution – experimental and theoretical – of an inverse problem that
involves optimizing yield criterion over a massive dataset of initial nets.

2.2 Configuration spaces for self-assembly

The process of folding and unfolding a polyhedron admits a natural theoret-
ical framework. We model self-assembly beginning with a net as a sequence
of jumps between partially formed intermediate states, where the states dif-
fer in the manner in which their edges are glued. The assembly of polyhedra
from these rules are shown in Figure 1 through Figure 4. A distinct assembly
process is shown in Figure 5.

This framework separates the combinatorial and geometric aspects of
self-assembly. The distinction is as follows. The terms combinatorial re-
flects the information contained in the gluing rules. In chemical terms, it
reflects whether a particular bond has been formed, or not. The adjective
geometric reflects the fact that an intermediate state with given combina-
torial information may be realized in three-dimensional space, R3, in many
different ways. In chemical terms, it reflects that the same molecule has
infinitely many conformations. The mathematical term for each such con-
formation is an isometric embedding , where the term isometric means that
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Figure 1: Unfolding the cube. The folding algorithm introduced in [33]. At each step,
all edges on a face are unglued until it is free to rotate by the dihedral angle (90 degrees
in this example, but see Figure 4). This image is from [33].

the length of any given edge is the same in every conformation.
Our work [22, 33] focused on the combinatorial aspects of self-assembly.

An algorithm was introduced to unfold a given polyhedron into nets through
a sequence of elementary moves. This algorithm may be used to exhaustively
enumerate all intermediate states for smaller polyhedra, as well as to sample
intermediate states for larger polyhedra. This model was tested in two ways.

1. Heuristics obtained in the experiments with cubes were combined with
the algorithm to obtain candidate nets for the dodecahedon and trun-
cated octahedron. These nets were then tested in the lab. The trun-
cated octahedron has more than 2 million nets; yet it may be self-
assembled with high yield by such algorithmic design [33].

2. Folding pathways computed with the algorithm were compared with
folding pathways in the lab, observed by optical microscopy [22, Fig-
ures 13–15]. Such information is not experimentally accessible for self-
assembling polyhedra on smaller scales (e.g. fullerenes and viruses).

Exhaustive enumeration is not a feasible strategy for larger polyhedra. How-
ever, the same framework may be used to sample large subsets of all inter-
mediates (see [22, Fig. 16]).

This work illustrates the utility of mathematical modeling to resolve
certain practical challenges in self-folding. However, for a mathematician,
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Figure 2: Combinatorial configuration space for the cube. The assembly pathways
for a self-folding cube beginning at all 11 nets are computed using the unfolding algorithm
of Figure 1. A perspective view is adopted to visualize intermediate states. Observe that
each intermediate may typically adopt infinitely many different conformations since the
faces are free to rotate about edges unless kinematic constraints forbid it (e.g. when three
squares are glued at a corner). Each edge on this graph is weighted by a symmetry factor
that accounts for the number of ways in which faces may be glued or unglued to transform
one intermediate to another. This image is from [33].

the main attraction of such graph-based models is that they provide a unified
description for self-assembly. This goes roughly as follows:

1. Discrete geometric idealizations have been proposed for several fun-
damental self-assembly processes. These include lattice-based models
for the assembly of long chain molecules [12] and models for the self-
assembly of polyhedra that differ in the underlying rules for attach-
ment and detachment [35, 42, 43, 49] (Cf. Figures 1 and 5).

2. Intuitive notions of intermediate states and pathways of assembly can
be formalized in a unified way using a graph we term the combina-
torial configuration space C = (V,E). Each vertex v ∈ V denotes an
intermediate state. Two states u and v are neighbors linked by an
edge e if they differ in the formation of a bond (Figures 2 and 4).
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Figure 3: Labeled assembly pathways from two nets. These figures demonstrate
the complexity of pathways originating from two distinct nets. The faces are labelled
with letters and the edges with numbers in order to keep track of information that is not
included in Figure 2.

3. The kinetics of self-assembly is modeled as a Markov chain on C. The
use of Markov chains on graphs is a standard technique well-suited
to fast computation. In order to apply this framework to C, we must
enrich C to include two positive weights on each edge e ∈ E. These
correspond to the forward and backward reaction rates along e.

The main bottleneck in up-scaling this framework is that it is not feasi-
ble to obtain these rates of transition from experimental data. The problem
again is a combinatorial explosion. The number of edges in C is typically
orders of magnitude larger than the number of vertices [21, Table 1]. This
prevents the extraction of rates of transition based on experimental obser-
vations within accepted statistical paradigms for parameter estimation. It
is therefore necessary to compute rates ab initio using a theoretical method.
But what theory should we use?

3 Conformational diffusion of linkages

3.1 Motivation for the model

The appeal of discrete geometric models for self-assembly is their concep-
tual minimalism. The phase space C provides a simple description of assem-
bly pathways. Further, the underlying framework can be adapted to other
problems in morphogenesis that may be modeled as a set of jumps between
different states on a graph. Thus, we must determine rates of transition
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with a similar minimalism. The question then is as follows: can one enrich
C to include rates using geometric reasoning alone?

Our claim is that a good model for the conformational diffusion of link-
ages is all that is required to resolve this problem. Here we use the term
diffusion in the mathematical sense (a diffusion is a solution to a stochastic
differential equation). A reader uncomfortable with this terminology may
loosely equate the phrase conformational diffusion with internal vibrations.
We use the former phrase because we work with linkages that are composed
of rigid subunits freely rotating about hinges. Thus, there is no underlying
mass or stiffness matrix and no vibrational frequencies in the conventional
sense.

An ab initio geometric model for determining the rates of transition for
the building game was explored in [21]. The intermediate states in the build-
ing game consist of partially formed shells. The determination of rates of
transition between two partially formed shells may be related to a phys-
ical caricature for the formation of fullerenes as follows. We assume we
begin with a gas of monomers corresponding to the individual faces of the
fullerene. The monomers diffuse in space sticking with some probability
when they collide. Thus, monomers form dimers, the dimers form trimers,
and so on, as shown in Figure 5. Each k-mer is a polyhedral linkage that
consists of a collection of rigid faces joined at edges. The linkage adopts
different conformations since the faces are free to rotate about hinges. The
conformational diffusion of k-mers is the primary factor in determining the
rates of transition. This is because the probability of attachment of rigid
faces to an intermediate state is higher when the intermediate state adopts
a conformation that allows a rigid face to dock at the correct angle. This
idea is illustrated with a simpler linkage in Figure 6.

Conceptually, this idea has its roots in the interplay between geometry
and function in enzymes. The idea that binding is determined by confor-
mational geometry is motivated by Boyer’s flip-flop theory for the ATP-
synthases [6]. For the F0F1, nucleotides attach and detach at catalytic
binding sites in synchrony with the conformational changes of the molecule
so that it functions as a Wankel rotary engine on the molecular scale [14].
Experimental resolution of the SERCA pump reveal a similar, but more in-
tricate, interplay between catalysis and conformational changes [40]. Our
model does not include any biochemistry; however, focusing on the role of
conformational diffusion allows us to retain the underlying geometric insight.

The role of conformational diffusion in other models of self-assembly is
just as fundamental. The main insight from [22, 33] is that partial rigidity of
intermediates is the limiting factor in successful self-folding. An intermediate
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state v ∈ C is a partially formed polyhedra that has some floppy parts and
some rigid parts (e.g. when three squares are glued at a corner). It is
natural to determine rates by formalizing the idea that the faces of the
partially formed intermediate rotate freely about hinges, with edges sticking
when they are sufficiently close.

These caricatures may be extended to the HP model of protein folding
and models for the formation of viral capsids in a similar way. In all these
models, we have a state space C as well as a system of algebraic equations
that imposes geometric constraints. If we can design a fast subroutine that
computes the conformational diffusion of a state v ∈ C, it allows us to
compute the rates of transition between neighbors on the graph C. That the
same structure describes self-assembly on completely different scales and
physics is no longer the primary concern: what matters is that all these
models may be studied with standardized tools in a systematic manner.

3.2 Stochastic relaxation for hard constraint systems

The purpose of this section is to illustrate the applicability of the author’s
recent work on the isometric embedding problem to conformational diffu-
sion [27]. This goes as follows: (a) each solution to the embedding problem
for an intermediate is a candidate spatial conformation during self-assembly;
(b) The stochastic flows in [27] provide an additional probability distribu-
tion on conformations, thus providing a means to compute the odds of faces
being favorably aligned for edge gluing. Implementations of these ideas for
the complete configuration spaces in Figures 2–4 lie beyond the scope of
this paper, since the numerical methods of [27] must first be optimized on
benchmark problems in graph embedding, before being compared with ex-
perimental data on self-folding. However, the simplicity of the basic scheme
is demonstrated in equation (3) below.

A linkage is an assembly of rigid units such as rods and faces attached at
vertices and edges. In mathematical terms, it is a graph G = (V,E) along
with a positive function ρ(e) that gives the length of each edge. The set
of conformations of a graph in an ambient space, typically denoted Rq, is a
function u : V → Rq such that

u : V → Rq, |u(e+)− u(e−)| = ρ(e), e ∈ E, (1)

where e± denote the vertices on either end of the edge e and |v| is the length
of a vector v ∈ Rq. For example, when we consider the 3-bar linkage in
Figure 6, G has four vertices, three edges of unit length and q = 2. The
rigid body mode may be removed by fixing the position of one edge.
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The set of all conformations of a linkage defined by (G, ρ), denoted M,
is the set of solutions to (1). This formulation tells us that the study of
linkages is nothing but the study of equations (1). However, as noted in
Figure 6, it isn’t enough to know what the solution set M looks like. Not
all conformations are conducive to assembly and what we really want is a
natural probability distribution onM that tells us which conformations are
likelier than others.

This problem is knottier than one expects at first sight. First, all mani-
folds may be precisely approximated by the solution sets of equations (1) [2];
informally, every surface, now matter how tortuous, can be built out of link-
ages! More generally, equations (1) are an important example of hard con-
straint systems and there are few general techniques for their study. First,
the nature of the linkage has (unsurprisingly) a sharp effect onM and much
of the algebraic and computational theory of linkages is devoted to formulat-
ing precise notions of rigidity and flexibility [10]. Second, while the intuitive
notion of random walk on a surface or hypersurface is not hard to visualize
(take a random step in space, then project it onto the surface) this doesn’t
work very well for (1), since the solution setM typically has singular points.
This makes it difficult to design efficient numerical schemes that combine
methods developed for algebraic equations such as (1) with Monte-Carlo
schemes (see [48] for an interesting recent contribution in this direction)).

A natural fix is to modify equation (1) replacing hard constraints with
some form of soft constraint. The most immediate choice is to modify the
underlying model from a linkage composed of rigid units to a spring mass
system. This isn’t satisfactory for the following reasons:

1. When we introduce ad hoc physics, we lose the scale-independence
that geometric models of self-assembly provide. That is, in order to
draw general quantitative lessons that apply (for example) to both
self-folding polyhedra on the mm-scale and fullerenes on the nm-scale,
we must treat both experiments within a minimal framework. The
most important concept for which one must seek a unified treatment
in this problem is the conformational entropy . That is, one must
account for the degeneracy of solutions to (1) in some way, for example
by computing a suitable generalized volume for M. Such entropic
contributions are less easy to see with a spring-mass system.

2. Equation (1) applies to problems in machine learning such as cluster-
ing. For example, a function u : V → R allows us to partition V into
sets (say two sets corresponding to whether u is positive or negative).
In this context, there are no physical regularization parameters such
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as mass or spring stiffness. It is therefore necessary to modify (1) in a
manner that uses as little additional structure as possible, so that the
same formalism applies in different areas of application.

3. Replacing hard-constraint systems with spring-mass systems raises
new issues for numerical simulations. In order to resolve all scales,
it is necessary to understand the limit of infinite stiffness and zero
mass. However, spurious high-frequency oscillations make this task
numerically challenging.

We approach the problem of conformational diffusion with a stochastic
relaxation scheme. This scheme involves three main ideas:

1. Relaxation. We relax equation (1) to a set of subsolutions. Here these
are defined by the equation

v : V → Rq, |v(e+)− v(e−)| < ρ(e), e ∈ E. (2)

This idea is commonly used for hard constraint systems in computer
science [18]. In our work, it is strengthened by including a principled
stochastic scheme to improve a subsolution to a solution.

2. Stochastic control theory. We introduce a continuous time random
walk for an augmented variable (ut, Lt) consisting of a subsolution
ut and a Gaussian filter Lt. At each time t, the evolution of the
subsolution is an Itô differential equation of the form

dut(x)dut(y) = L̇t(x, y) dt, L̇t = LtS(ut)Lt. (3)

3. Semidefinite programming (SDP). Here S(v) is a positive semidefinite
matrix that depends on a subsolution v only through the residuals
r(e) := |v(e+) − v(e−)| − ρ(e). Roughly, S is chosen to penalize the
residual and vanishes when r does. It is computed by an SDP.

Equation (3) pushes a subsolution ut ‘upwards’ to a solution u∞ by a pro-
cess of constant wiggling that leads to an expansion of lengths on average.
Figure 7 illustrates the stochastic flow schematically.

Equation (3) is derived from an information theoretic interpretation of
the measurement of length by successive approximations. The subsolution
ut provides an estiate of the length of edge e at scale t and the covariance L̇ is
the most unbiased estimate for correction at scale t, given a penalty function.
Further, while equation (3) is defined on information theoretic grounds, it
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corresponds to a classical physical picture: quasistatic evolution of a thermal
system (ut, Lt). Several choices of S(v) are possible. However, each choice
relies on the same thermodynamic foundations, so that the dependence S(v)
is analogous to an equation of state [27, §4,5].

The current bottleneck is the need to benchmark this scheme, optimizing
the choice of S, before applying it to problems in self-assembly. The use of
SDP provides a fast and stable numerical method, supported by theoretical
guarantees (polynomial time convergence) and reliable software. The limit
u∞ = limt→∞ ut is always guaranteed to exist, though it may be a subso-
lution not a solution. Thus, even in situations where equation (1) does not
admit solutions (e.g. mapping a triangle into the line), the method provides
a principled approximate solution.

This concludes the technical part of this paper. The next section is an
informal account of the origin and context of these ideas.

4 Does life compute?

Schrödinger’s little book [36] led a generation of physicists to the nascent
field of molecular biology. The closest parallel within mathematics are Tur-
ing and von Neumann’s investigations of computing and the human mind,
leading to the creation of computer science. The purpose of this section is
to explain a sense in which self-assembly sits at a fascinating intersection
of these disciplines. It is structured as an essay, primarily for a biologi-
cally minded reader, about the intimate ties between self-assembly and the
foundations of mathematics.

This essay is also a counterpoint to an interesting paper by Gromov [19]
that begins with the question: is there mathematics in biology? His answer,
and ours, is an emphatic yes. But this is the sort of rhetorical question that
should be treated with seriousness, since the underlying sentiment should
be rephrased for the non-mathematician as: is there real mathematics in
biology? Of course, this leads to the question of what exactly constitutes
‘real’ mathematics since the relation between the aesthetic, pragmatic and
utilitarian aspects of the subject are a matter of perpetual debate. But as
far as the relationship between mathematics and the sciences goes, it reflects
the primacy of physical law in determining the evolution of mathematical
thought since Newton; and some ambivalence, even today, of the role of
probabilistic reasoning in the foundations and practice of mathematics.

Our purpose here is to provide a candid account of what some aspects
of biology look like from within mathematics. The discussion is structured
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around the three themes raised in the introduction to this paper: the for-
malization of computation in terms of effective procedures, the role of prob-
ability theory, and the search for unity in geometry. These questions were
carefully studied in the 1930s-1950s in a period when applied mathematics
emerged as a discipline and Schrödinger wrote his book. We wish to demon-
strate their continued vitality within the context of self-assembly. Then, as
now, it seems best to begin with the second law of thermodynamics.

4.1 Information theory, geometry and thermodynamics

Shannon’s creation of information theory was directly motivated by the
problems of telecommunication [39]. We interpret his work more broadly as
a principled foundation for thermodynamics, in particular of living systems,
by providing a sharper understanding of entropy and Gibbs distributions.

In order to illustrate this point, let us consider Shannon’s models for
language. Markov introduced the idea of a Markov chain in order to for-
malize style in poetry, but it is Shannon who first understood the full power
of this idea. He modeled text as a stationary Markov chain on generalized
alphabets and used his model to estimate the entropy of the English lan-
guage [38]. The modern descendant of this idea is a Bayesian paradigm of
learning which goes roughly as follows: assume the world consists of random
signals, construct a probabilistic model that is capable of generating such
signals (such as a Markov chain), then given observational data use Bayes
rule to infer the best fit between model and data. Variants of the same basic
scheme may be used to model many problems of cognition, including speech
recognition, machine translation, and face recognition [29]. The success in
practice of this paradigm comes with many bells and whistles; for exam-
ple, real language cannot be modeled so simplistically [8] and deep learning
does much better on these cognition tasks today. What matters for us is
the dramatic expansion of the applications of mathematics made possible
by mathematically minded gamblers [11].

Information theory differs from 19th century thermodynamics and sta-
tistical mechanics in three fundamental ways. First, the underlying abstrac-
tion is a probability space – informally, a set of events and a set of internally
consistent rules for associating probabilities to events. It has no a priori re-
lation to models of ‘physical’ or ‘visual’ space. Despite such abstraction, the
concept of entropy acquires new meaning as the fundamental limit on data
compression or the depth of search in a yes or no game like twenty questions.

Second, the physical idea of equilibrium acquires a minimal form, despite
the absence of ‘true’ time and space. The probability space is a set of infi-
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nite sequences in an alphabet, which may be further winnowed to a space
of statistically equivalent ‘typical sequences’. Time evolution is reduced
to shifting step-by-step along such sequences. This idea was motivated by
telecommunication, but its abstract character gives it great versatility, in-
cluding of course, applicability to genetic codes. The notion of equilibrium
is reduced to the idea of minimal, but persistent, background noise leaving
the space of typical sequences invariant under shifts.

Finally, Shannon’s deepest result – the channel coding theorem – pro-
vides a sharp microscopic understanding of fundamental limits imposed by
the second law of thermodynamics. Mathematicians today see heat flow as
steepest descent of (information theoretic) entropy. This formulation vastly
expands the physical idea of diffusion process, while being firmly rooted in
classical foundations. It is these foundations that dictate our formulation of
conformational diffusion in Section 3; in particular our insistence on minimal
geometric reasoning.

The reappearance of the concept of entropy in information theory af-
ter its birth in the kinetic theory of gases (in the 19th century work of
Boltzmann, Clausius, Gibbs and Maxwell) led to the initial speculation that
information theory is a branch of statistical mechanics. However, in the
1950s, Jaynes showed that statistical mechanics may itself be derived from
information theory. More precisely, Jaynes treats information theory as a
foundation for statistical inference, by viewing a probability space as the
fundamental abstraction and using the maximization of entropy as a princi-
ple to choose the most unbiased estimate for a random variable given partial
information. The efficacy of this method is then demonstrated by recovering
the laws of statistical mechanics in classical examples [20, §3,§5].

Our intuitive conception of entropy in the kinetic theory of gases and
in information theory is different. In the first case, entropy is inextricably
tied to cartoons of atoms jiggling around in three-dimensional space. In the
second case, entropy is simply a number associated to a set of sequences.
While a space of sequences seems a more sterile abstraction, it provides the
foundation from which all observable consequences of the classical theory are
obtained with simple calculations. In particular, Jaynes avoids paradoxes of
ergodicity that plagued kinetic theory in the 19th century.

This approach has disturbing philosophical implications, since it causes
us to question if there are any fundamental physical models, or whether
physics is ‘just’ the best fit to observations of the natural world. The inter-
pretation of the entropy of a discrete random variable as the optimal length
of a code leads to the idea, developed mainly by computer scientists and
statisticians, that the best models are those that have Minimum Descrip-
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tion Length (MDL) [34]. This view is an extreme counterpoint to physical
theories since it makes no assumptions on the structure of the source that
produces the signal and states only that the best description of the data
is the one that compresses it in the most efficient manner. In the MDL
description, learning is data compression and there are no true models, not
even Newton’s laws.

These examples illustrate a tension between ‘new’ and ‘old’ applications
of mathematics. Shannon’s work extended the applications of mathematics,
by recognizing the utility of probabilistic reasoning in entirely new areas.
Yet information theory remains on the fringes of mathematics, not quite
probability theory, but a nebulous province, situated somewhere between
engineering, mathematics and physics. For the most part, the view per-
sists amongst mathematicians that the most succesful models of nature are
the differential equations of classical physics; the second law remains an af-
terthought. But in the information theoretic interpretation, the second law
of thermodynamics is the fundamental physical principle, since it reflects the
almost tautological fact that a theory must carefully account for a process
of measurement. It is therefore necessary to examine the traditional models
from an adversarial intellectual position.

The stochastic relaxation algorithm presented in Section 3 is a spin-off of
such an adversarial attack on the problem of turbulence. Perhaps the most
traditional models of applied mathematics are partial differential equations,
such as the Euler equations that govern the motion of ideal incompressible
fluids. Recent work in mathematics has revealed unexpected connections
between these equations and Nash’s work in the 1950s on the foundations of
geometry [30, 31]. This connection motivated us to return to Nash’s work
examining it through the lens of information theory. The relaxation scheme
in Section 3 retains essential technical insights from Nash’s papers but it is
based on different conceptual foundations.

The main new idea is that isometric embedding should be seen as a
process of replication by which an observer makes a copy of a given space
by measurement at increasingly fine scales of the distances between each
pair of points. The process of measurement is modeled with information
theory, though it is necessary to augment Jaynes’ approach with spaces
of sequences that change with time. All the stochastic relaxation schemes
in [27] are generalized heat flows that transfer information between a source
and an observer. They reveals an unexpected unity between Shannon’s
channel coding theorem and Nash’s embedding theorems that allows us to
view each limiting shape, u∞, as an optimal code.
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4.2 Self-assembly and computing

The study of self-assembly also leads back to debates from the foundational
era of computing. Let us begin at the mathematical beginning.

The creation of the computer relied in an essential way on investigations
into the foundations of mathematics. These began in the late 1800s with
Cantor’s work on the nature of infinity and evolved into fierce debates on
intuition, logic and the nature of proof by 1925 [46]. By the end of the
1930s, these ideas had settled into the formalization of an algorithm as a set
of narrowly defined procedures for determining the value of a function. The
determination of the truth of a statement within a system of logic – Hilbert’s
Entscheidungsproblem– could be reduced to the operation of a single con-
struct: the Universal Turing Machine (UTM). The UTM differs from the
other abstractions of computing in the sense that it allows visualization of a
computer as a machine moving along a long tape, thus providing a template
for the design of actual computers. It is an abstract construct of importance
for engineering, much like the Carnot engine.

One of the most fascinating chapters in synthetic biology is the real-
ization of Turing machines by biological means. Two striking examples
are Adleman’s demonstration of a DNA computer that solves the traveling
salesman problem and Winfree’s thesis on algorithmically patterned DNA
lattices [1, 47]. In both these experiments, DNA is used to compute – in the
sense of Turing machines – answers to model problems in computer science.
The traveling salesman problem reflects the importance of algorithms: what
is required here is a fast procedure to determine the minimum of a func-
tion defined on a finite set (in ‘human’ mathematics, emphasizing existence
proofs, this question is trivial). Winfree implemented a set of algorithms
using DNA tiles with sticky ends. The connection between the tiling model
and Turing machines is discussed below. DNA self-assembly is now a thriv-
ing field; these remarks are used to emphasize that early studies in the area
are biological realizations of a formal mathematical view of computing.

Let us contrast this with physicists’ take on computation. The study
of physical limits on computing was initially driven by the need to create
stable logic gates using early transistors and vacuum tubes. However, in the
1960s, it evolved into a study of computing as a thermodynamic process.
Bennett and Landauer’s work provides a profound understanding of the role
of entropy and information theory in computing [4, 24]. In particular, by
placing the emphasis on reversibility , the paradox of Maxwell’s demon in
the kinetic theory of gases may be resolved. The main insight is that the
transfer of information is reversible; it is the erasure of information that is
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irreversible. Fredkin and Toffoli provide another model of reversible com-
puting, but now at zero temperature, designing logic gates with a system
of elastic billiard balls [17]. Their system may be seen as a zero tempera-
ture limit of Bennett’s model. Finally, a third model, created by Feynman,
further simplifies Bennett’s model of reversible computation [15].

These models too have important biological realizations; the simplest of
which is the analysis of RNA poymerase as a reversible copying machine.
In contrast with DNA computing, here the model of computing provides a
theoretical lens to infer properties of a biomolecule designed by evolution.
The theoretical model is not a framework for the design of a synthetic device.

These examples illustrate a continuity of thought between the biological,
mathematical, and physical worlds. It is remarkable that two distinct foun-
dational crises in the late 19th century– the nature of proof in mathematics
and the role of time reversibility in physics – find expression today in models
of self-assembly.

4.3 Geometry and the imagination

Our purpose in this paper has been to provide easily visualized examples of
morphogenesis. Let us revisit the above examples, distinguishing between
abstractions that are formally equivalent and those that are easy to see.

In the mid-1950s, Hao Wang turned his attention from the philosophy of
mathematics to logic. His work on tilings emerged from a broader study of
Automated Theorem Proving (ATP again, but now of a mathematical sort).
An early computer program written by Wang established the 350 proposi-
tions of Russell and Whitehead’s Principia with ease [44]. These results were
established within the classical logical framework of the predicate calculus.
While the results are of broad interest, detailed arguments in formal logic
are impenetrable to most mathematicians. Thus, Wang’s work on domino
tiles began as a method to communicate his results on ATP to other sci-
entists. In a brief, elegant paper he showed that the Entscheidungsproblem
could be reformulated as a question about growth patterns with tiles with
given matching rules [45]. As a formal equivalent, his model adds nothing
new to the concept of the Turing machine. But the tiles provided a valuable
geometric visualization of the Turing machine. That it is this model that
underlies DNA self-assembly causes us again to reflect on the distinction
between visual intuition and formal logic.

The role of visual imagination runs through reversible computing too.
Bennett defines a computer as ‘an engine that transforms free energy into
waste heat and mathematical work’. Mathematical work consists of two as-

18



pects: calculation and proof, both of which are formalized with Turing ma-
chines. Yet, the reversible computers proposed by Bennett, Fredkin, Toffoli
and Feynman are geometric constructs more than they are physical con-
structs. These are the hyperbolic geometry of billiards for the Fredkin-Toffoli
model, confined Brownian motion in Feynman’s model, and a particularly
creative kinematic linkage in Bennett’s Brownian Turing machine (see [4,
Fig.7]). As in Wang’s work, each of these models adds to our comprehen-
esion through visualization. Discussions on whether these abstractions can
be realized physically are of greater practical, than theoretical, importance.
Once it is established that these models are equivalent and that they aug-
ment Turing machines by imposing a time-reversal symmetry, the question
of which is better reflects human intuition and needs, not thermodynamics.

The most mysterious aspect of mathematics is the thin line between the
rational and irrational, the search for patterns that ‘feel right’ and those
that are ‘proved’. Wang’s work showed rather effortlessly that Russell and
Whitehead’s Principia, perhaps the most patient attempt at mathematical
formalization ever, is from a mechanistic standpoint, utterly trivial. No
student of mathematics can fail to be inspired by the persistence of Euclid’s
axiomatic system for plane geometry as a model for mathematical theories,
but here too Wang shows that the system may be mechanized.

These problems have broader interest in AI. Tasks of cognition, such
as image classification (e.g. is a cat present in an image?), can be formu-
lated as a function between an input (a digitized image) and an output (1
or 0). Given the ease with which Euclid’s opus could be formalized, surely
tasks such as this should be easy to solve? Yet, several problems in com-
puter vision remain stubbornly unresolved. Mumford makes the case that
a compelling message of the development of AI is the repeated triumph of
statistical models of learning over logic based systems of learning [28]. That
is, it is not mathematical models of computing that won, but a mathematical
model of communication.

But these battles are not over. The recent success of deep learning over
statistical learning theory (the cat has been found!) harks back to an even
older battle in computing, that between analog and digital. Again DNA
tiling offers a fascinating means to explore the boundaries between these
distinct views of computing, communication and human intuition.

4.4 Information theory and morphogenesis

What gives geometric reasoning such force? It is again helpful to contrast
developments in biology and mathematics.
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The earliest attempts to classify organisms are by scale and shape. The
work of the Dutch artist and collector, Albertus Seba, provided Linnaeus a
template for his taxonomy. Here too we see the interplay between the syn-
thetic and the natural; Seba’s work includes flights of fancy and imaginary
beasts, classified by Linnaeus as Paradoxa: organisms of speculation, not
yet created. And it was the visual ability to distinguish between the shapes
of beaks that provided Darwin a critical hint on evolution, an insight that
when stripped of context is no different than the everyday manner in which
we remark on the similarity between a child and a parent.

The study of geometry carries a particular resonance for all mathemati-
cians. Euclid’s arguments have been unchanged in their essence for two
thousand years across many human cultures. The robustness and evolution
of mathematics has strong similarities with language. The first formalization
of grammar, the Sanskrit grammar of Panini, parallels the axiomatization
of geometry by the Greeks. In both linguistics and mathematics, one sees a
persistent dichotomy between intuitive notions of rules, easily understood by
children, and formalizations that are often incomprehensible to practition-
ers, unless these are mediated with careful communication using examples.
Nor is this dichotomy restricted to these areas: linguistic metaphors govern
many cultural studies and the linguistic studies of De Saussure and Jakobson
played a critical role in Levi-Strauss’ work in cultural anthropology.

The emotional appeal of visual beauty runs through studies of morpho-
genesis. Who can fail to be inspired by D’Arcy Thompson’s meticulous
cataloguing of the shapes of organisms? Intrinsic mathematical beauty car-
ries its own seduction. The renowned mathematician Rene Thom, treats
structural stability, a mathematical notion from low-dimensional geometry,
as a basis for his theory of morphogenesis [41]. It feels churlish to dismiss
such romanticism, but as a basis for the study of life, both approaches have
serious flaws. Modern biochemistry shows quite convincingly that a far bet-
ter basis for the classification of life is the analysis of genetic sequences and
conserved chemical reactions in the spirit of Woese, not a visual classifica-
tion like Thompson’s. As for Thom, the work hasn’t aged well. Today it
seems a mathematical flight of fancy, akin to Seba’s cabinet of curiosities,
interesting as a cultural artefact perhaps, but not as a systematic science.

The problem is that vision is not geometry. Nor even is it a foundation
for reason. A geometric sketch may capture the essence of an argument for
humans but it is not a formal proof. This dichotomy is one of the reasons
that the nature of space holds such deep fascination for mathematicians.
A triumph of 19th century mathematics was the freedom obtained when
Euclid’s parallel postulate was shown to be superfluous. Riemann made
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a profound distinction between hypotheses about the nature of space and
properties that may be determined through the measurement of length.

The distinction between intrinsic and extrinsic notions of space is at the
heart of the Nash embedding theorems. For example, we may imagine a
two-dimensional ant crawling on linkages like those in Figure 2, or a three-
dimensional grad student measuring the lengths in a lab. Equation (1)
simply says that their measurements of length must agree. The grad student
certainly observes more features of the linkage as it twists in space, but as far
as measurements of lengths go, these are the same object. The fundamental
adversarial position in our approach to these theorems is that we place
the emphasis on a random process of successive approximation by which
length is measured, not the clever, but ‘visual’, devices that Nash uses [27].
More broadly, the above examples are chosen to illustrate that mathematical
definitions of space take many forms – obviously geometric objects such as
polyhedra certainly, but also spaces of languages, phylogenetic trees and
chemical reactions. These spaces may sometimes be visualized, but a full
appreciation requires information theory.

Returning to self-assembly, we see that the study of these model systems
forces us to confront some basic questions: Is morphogenesis limited to the
study of the change of shape and if so, what is shape and how does it emerge
from the expression of data in genetic codes? Our view is that a principled
approach to morphogenesis must be rooted in a more flexible notion of space,
so that the same abstract principles may be used to model learning tasks
such as the acquisition of speech and motor skills by toddlers. In principle,
both these skills can be formalized information theoretically using different
sets of sequences, even if naively they deal with different notions of space.

Why should such abstractions be of interest to a biologist? Of all the
problems of perception, none seems to us to be more fundamental than
the perception of space. The world of mammals coexists with the world
of birds, bacteria, plants and extreme life forms in the deep oceans. It
is not prudent to restrict ourselves to a notion of space that is defined
primarily by human vision, nor indeed should the study of morphogenesis
be restricted to naive classifications of space. A more scrupulous account
of spatial interaction between different life forms must be based strictly on
a comparison between their internal measurements of space. This form of
reasoning is better described by information theory and we find it valuable
to insist on it as a foundation for morphogenesis.
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Figure 4: Combinatorial configuration spaces for the ocathedron. The assembly
pathways for an ocathedron beginning with all 11 nets. The nets may misfold into an
isomeric ‘boat’ configuration when two edges meet at the wrong dihedral angle. Both sets
of pathways are illustrated in this figure, along with images of some intermediate states.
State 83 is the octahedron; State 84 is its isomer. Red paths have the correct dihedral
angle; black paths are misfolded.
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Figure 5: The building game. A polyhedron is built by the attachment of a single
face to a contiguous group of faces. This model has been proposed for fullerenes and viral
capsids [43, 49]. Intermediate states in the combinatorial configuration spaces for the cube
and octahedron are represented in the figure above by Schlegel diagrams. The lightly
shaded faces are empty sites; the darkly shaded faces are occupied. The intermediate
consists of a contiguous collection of darkly shaded polygons that is built by attaching
one face at a time. The full combinatorial configuration space for the octahedron includes
other states along with symmetry factors that count their multiplicity (cf. [21, Fig.1]).
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Figure 6: Conformational diffusion and attachment kinetics. This figure illus-
trates the formation of a 4-bar linkage by random attachment of rigid rods. The rods are
assumed to rotate freely about the hinges at the end. The resulting conformational diffu-
sion determines the rates of self-assembly. Here we illustrate the last step, where a single
bar must attach to a 3-bar linkage. The image on the left is a favorable conformation, the
image on the right is unfavorable. The modeling task is to associate probabilities to each
of these conformations, using minimal additional assumptions.

Figure 7: Stochastic relaxation for a 3-bar linkage. A random configuration of the
3-bar linkage is obtained as the t → ∞ of subsolutions ut to equation (1). For each t the
lengths of the bars are shorter than the true lengths. However, this relaxation provides
wiggle room that allows controlled random fluctuations to expand the length of the bars
on average. The numerical scheme is discussed in [27, §5].
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