
GIBBS MEASURES FOR SEMIDEFINITE PROGRAMMING

GOVIND MENON

Abstract. These notes document an ongoing study of Gibbs measures for

semidefinite programming. Soft and hard constraint models are introduced

and the partition function is explicitly computed in terms of Harish-Chandra
(HC) integrals. The structure of this formula involves a generalized heat flow

in a dual space, along with a Hamilton-Jacobi limit as β → ∞.

Contents

1. Introduction 1
1.1. Notation 2
1.2. Semidefinite programming (SDP) 2
1.3. Gibbs measures 3
1.4. Outline 3
1.5. Harish-Chandra’s integral and the partition function 4
2. Metrics on P(n) 6
2.1. The trace metric on P(n) 6
2.2. The Bures-Wasserstein metric on P(n) 7
3. Volume forms on P(n) 9
3.1. Some book-keeping 9
3.2. The trace metric on P(n;R) 10
3.3. The trace metric on P(n;C) 11
3.4. The Bures-Wasserstein metric on P(n;R) and P(n;C) 11
3.5. Diagonalization and Weyl’s formula 12
4. Soft constraints 13
4.1. The case m = 1. 13
4.2. Arbitrary m. 14
References 16

1. Introduction

The purpose of these notes is to apply the formalism of Gibbs measures to
semidefinite programming and to compute the related partition functions using
Harish-Chandra integrals.

Key words and phrases. Semidefinite programming, Harish-Chandra integrals.
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1.1. Notation. The abbreviations LP and SDP mean linear and semidefinite pro-
gramming respectively.

We will work with the space of Hermitian and Hermitian positive definite ma-
trices, denoted H(n) and P(n) respectively. Similar calculations hold for real sym-
metric matrices. We use the same terminology in both settings, writing P(n;C)
and H(n;C), or P(n;R) and H(n;R), when there is a need to distinguish between
the two. Standard SDP is on P(n;R) and SDP over P(n;C) can be reduced to SDP
on P(n;R) [6, 4.42, pp.202]. However, the punchline here involves Harish-Chandra
integrals. Since these are simpler in the Hermitian setting, we consider P(n;C) first,
inverting the traditional relation. The asterisk ∗ is used to denote the conjugate
transpose, or just transpose, depending on whether one works with real or complex
entries. The Frobenius inner product on H(n),

(M,N) := Re Tr(M∗N), M,N ∈M(n), (1.1)

is used throughout. The asterisk is dropped when M and N are Hermitian. The
symbols � and � denote the Loewner order on Hermitian matrices, as is common
in optimization [6, 13].

1.2. Semidefinite programming (SDP). We consider an SDP whose primal
form is

minimize c∗x (1.2)

subject to x1A1 + . . . xmAm +B � 0. (1.3)

Here x and c are vectors in Rm, {Aj}mj=1 and Bj are given matrices in H(n). LP

may be recovered from SDP by restricting attention to diagonal matrices. 1

The dual form of the SDP (1.2)-(1.3) is

maximize Tr(BX) (1.4)

subject to Tr(AjX) + cj = 0, 1 ≤ j ≤ m, (1.5)

and X � 0. (1.6)

The primal and dual formulation have the same solution when we assume strict
feasibility of (1.2). This means that we assume there exists x ∈ Rm such that the
following strict inequality is true:

m∑
j=1

xjAj +B ≺ 0. (1.7)

The dual formulation (1.4)–(1.6) will govern most of our work. In particular, we
focus on the geometry of the feasible polytope

F := {X ∈ P(n) |Tr(AjX) + cj = 0, 1 ≤ j ≤ m}. (1.8)

The set F is invariant under a GL(n) action: the SDP (1.2) is equivalent to the
SDP obtained through the transformations Aj 7→ MAjM

∗, B 7→ MBM∗ for all
M ∈ GL(n) [6, 4.39]. This invariance underlies the Riemannian geometry of P(n)
with the trace metric that we use below.

1One must fix a convention of signs and whether one is working with a maximum or minimum

in the primal and dual formulations. The convention adopted here is that of [6, Ex.5.11], since

this allows us to check all the steps. The only differences are minor changes in notation and the
fact that we work over the complex numbers and Hermitian matrices. Lovasz’s notes [13] are an

excellent source for the theory of SDP.
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1.3. Gibbs measures. We will study Gibbs measures for a relaxed problem. There
are two reasons for adopting this viewpoint.

(1) Our primary goal is to use SDP to construct stochastic flows on manifolds
with applications to nonlinear PDE. In that setting, the cost function is
constant on the boundary of the feasible set and one needs to introduce
a measure on the extreme points of the feasible set to replace the usual
notion of an extremum in SDP. The use of Gibbs measures with finite β
is a relaxation of this problem. It is necessary to first study such Gibbs
measures in finite-dimensions before extending it to PDE.

(2) Karmarkar’s pioneering work on interior point methods for LP was shown to
arise from a gradient flow by Bayer and Lagarias [1, 2, 3, 10]. This structure
was then extended to SDP by Faybusovich [8]. We believe these structures
have a probabilistic origin. Since neither LP nor SDP has a probabilistic
structure at first sight, this statement requires some explanation.

The ‘cartoon’ that underlies our viewpoint is this. Both LP and SDP
are mathematical models for the allocation of resources in large systems.
Imagine now that these large systems are equilibrium descriptions of mi-
croscopic negotiation between many parties, or a juggling of resources be-
tween different tasks, subject to the hard constraints (1.2). How could one
model such underlying fluctuations? Work on interior point schemes such
as Karmarkar’s include a Riemannian metric on P(n) in addition to the
constraints. But once one has a Riemannian metric, one obtains a model
for fluctuations ‘for free’, since each choice of metric determines a Brownian
motion in P(n). This Brownian motion may then be conditioned to respect
the constraint (1.8), leading naturally to Gibbs measures for SDP.

For now, this probabilistic cartoon is implicit, not explicit. We will simply
postulate a Gibbs measure and compute its partition function. Further, once one
works with Gibbs measures, the cost function is less important than the interplay
between the geometry of the feasible set F and the inverse temperature β, especially
as β →∞. For this reason, we will first work with the case C = 0.

The main formulas are summarized in Section 1.5

1.4. Outline. The calculation consists of three steps.

(1) Choose a Riemannian metric on P(n). Our two favorite examples are the
trace metric and the Bures-Wasserstein (BW) metric. Once the metric is
chosen, we compute the associated volume form, denoted

√
det gDX, on

P(n) (this reduces to a computation of Jacobians). Thus, a metric gives us
a way to integrate over P(n) and define probability measures on P(n).

(2) Use equation (1.8) to define either a soft constraint or hard constraint
model. For soft constraints we introduce an energy E : P(n)→ R that may
be constructed from the constraints (1.8) and define the Gibbs measure

µβ(dX) =
1

Zβ
e−βE(X)

√
det g DX, β > 0, (1.9)

with the partition function

Zβ =

∫
P(n)

e−βE(X)
√

det g DX. (1.10)
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The soft constraints are considered first, since these immediately yield fruit-
ful connections with random matrix theory. The disadvantage of soft con-
straints is that the problem is not as minimal as SDP, since additional
heuristics are used to choose V given the constraints (1.8). However, hard
constraints may be recovered in the limit β →∞.

(3) Compute the partition function Zβ . We find that Zβ may be expressed
explicitly in terms of Harish-Chandra integrals for every feasible SDP; see
equation (1.21) below.

Remark 1. The partition function Zβ depends implicitly on the constraints; we
have not noted this explicitly in these formulas. Once Zβ is known, standard
theory allows the computation of the entropy, free energy and other thermodynamic
variables. The primary difficulty in all such models is the computation of Zβ .
Our model is explicitly solvable. Further, the formulas seem tractable to rigorous
asymptotic analysis, both as β →∞, as well as in the limit n→∞.

Remark 2. Karmarkar’s algorithm and its generalizations are gradient flows of
the cost function on F with respect to the trace metric. The use of the Bures-
Wasserstein metric is motivated by recent work in deep learning, as well as its
fundamental role in optimal transportation theory. The set of all metrics that
are amenable to these methods is classified by Ando and Kubo (see Remark 5).
The partition function should be computable in this setting too. There is a well-
developed theory of concordant barrier functions in optimization theory. We do
not use this explicitly, but for the trace metric, our computation of the volume
form recovers the barrier function log detX. I don’t know if the analogous Bures-
Wasserstein barrier has been explored. In any case, the Ando-Kubo calculation
provides a description of all barriers that can be constructed from an underlying
Riemannian geometry.

1.5. Harish-Chandra’s integral and the partition function. We will focus on
the unitary group U(n) consisting of complex matrices such that U∗U = Id. In this
setting, Harish-Chandra’s integral formula, or the Harish-Chandra-Itzykzon-Zuber
(HCIZ) integral is∫

U(n)

eTr(aUbU∗) dU =

(
n−1∏
p=1

p!

)
det(eaibj )ni,j=1

V (A)V (B)
:= H(a, b), (1.11)

where a = diag(a1, . . . , an) and b = diag(b1, . . . , bn) are diagonal matrices, and
V (Λ) is the Vandermonde determinant associated to a diagonal matrix Λ (see equa-
tion (3.16) below). 2 Integration is with respect to normalized Haar measure dU

on U(n); equivalently the factor
∏n−1
p=1 p! is the volume of U(n) with respect to

Lebesgue measure 3.
Formula (1.11) generalizes to the orthogonal group O(n), but its form is more

complicated since it requires the notion of a Cartan subalgebra and the form for
even and odd n is different. This is why we prefer to work with Hermitian matrices,
returning to real symmetric matrices once this case is understood fully.

Soft constraint models replace the constraint (1.5) with a penalty. We will
consider penalty functions defined through m polynomials pj : R→ R each of which

2The switch to lower-case for matrices reflects common usage for the Cartan subalgebra.
3Need to check these normalizations.
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has a global minimum at x = −cj , with pj(−cj) = 0, and such that pj(x) → +∞
as |x| → ∞. The simplest set of such polynomials is

pj(xj) =
1

2
(xj + cj)

2, xj ∈ R, j = 1, . . . ,m. (1.12)

Let us also define the polynomial and differential operator on Rm

p(x) =

m∑
j=1

pj(xj), p(∂x) =

m∑
j=1

pj(∂xj
), x = (x1, . . . , xm) ∈ Rm. (1.13)

We use these polynomials to define an energy E : P(n)→ R

E(X) =

m∑
j=1

pj(Tr(AjX)). (1.14)

Clearly, E(X) ≥ 0 and E(X) ≡ 0 on the feasible set F . Several variants of this
idea are possible.

The partitition function Zβ defined in equation (1.10) has the following structure

Zβ =

∫
P(n)

e−βE(X)
√

det g DX, (1.15)

where
√

det gDX is a volume form on P(n) that depends on the underlying metric.
The volume form should be seen as the entropic part of the partition function: we
compute it explicitly in Section 3 and show that it depends only on the eigenvalues of
X. The energetic term, however, depends on both the eigenvalues and eigenvectors
of X. Writing X = UΛU∗ for the diagonalization and using Weyl’s integration
formula, Zβ may be written as

Zβ =

∫
Rn

ρref(Λ)

(∫
U(n)

e−βE(UΛU∗) dΛ

)
dU :=

∫
Rn

ρref(Λ)Yβ(Λ)dΛ, (1.16)

where the term ρref(Λ) depends only on the metric, not on F .
Such a splitting is common in random matrix theory. The inner term may be

computed as a functional of Harish-Chandra’s integral. We show in Section 4 that

Yβ(Λ) =

∫
Rm

G(−x;β)H(σ(A(x)),Λ) dx. (1.17)

Here G(x, x′;β) is the fundamental solution for the initial value problem

∂βG = p(∂x)G, G(x, x′; 0) = δ(x− x′), x, x′ ∈ Rm, (1.18)

for the differential operator p(∂x) defined in (1.13), the Harish-Chandra integral H
was defined in (1.11), and σ(A(x)) denotes the spectrum of the Hermitian matrix

A(x) =

m∑
j=1

xjAj , x ∈ Rm. (1.19)

Note that x lies in the primal space Rm, whereas Λ lies in Rn because X is in the
dual space P(n). There is no a priori relation between the dimensions m and n.

In order to get a feel for G, consider the example (1.12). Now p(∂x) becomes the
second-order elliptic operator

p(∂x) =

m∑
j=1

(
∂xj

+ cj
)2

=
1

2
4x + c · ∇x +

1

2
|c|2, (1.20)
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and G(x, x′;β) is a Gaussian kernel which we compute in Section 4. This example is
instructive because it tells us that G(x, x′;β) should always be seen as a generalized
heat kernel (with a drift and killing) in the primal space Rm with the inverse
temperature β > 0 serving as ‘time’.

The expression for the partition can be simplified by interchanging limits in
(1.16) and (1.17) to obtain

Zβ =

∫
Rm

G(−x;β)Wref(σ(A(x))) dx, Wref(µ) =

∫
Rn

H(µ;λ)ρref(λ) dλ, µ ∈ Rn.

(1.21)
Equation (1.21) reflects a soft form of convex duality, since the partition function
is computed by summing probabilities for the primal SDP (1.2). It should be
contrasted with the expression for Zβ in (1.15), where the partition function sums
probabilities on the dual space P(n).

This duality is reflected in the integrands too. Equation (1.15) carries the explicit
Gibbs weight e−βE(X)

√
det g DX for X ∈ P(n). However, in equation (1.21), the

heat kernel G is dependent on the soft potential and thus the constraints, while
Wref splits further into a sum over the reference measure ρref(Λ), which depends
only on the choice of Riemannian metric on P(n), and the Harish-Chandra integral
H which depends on the constraints only through the sum A(x) =

∑
j xjAj .

These formulas are first established formally using generating functions and then
interpreted rigorously using heat kernels. In a sense, they reflect nothing more than
the classical Fourier analysis trick of trading multiplication for differentiation with
the Harish-Chandra integral playing the natural role of generating function. The
reader with some experience with such models will recognize from (1.21) that the
asymptotic analysis of Zβ in the limits β →∞ and n→∞ may now be approached
rigorously using methods from random matrix theory. There appears to have been
no prior study of this nature, despite the fundamental importance of SDP.

2. Metrics on P(n)

We introduce the trace metric and the Bures-Wasserstein metric and discuss
some of their properties.

2.1. The trace metric on P(n). The material in this section originates in [16].
Good pedagogical accounts, from different mathematical perspectives, are [12, Ch
XII] and [4, Ch.6].

The trace metric is the metric on P(n) obtained by pushing forward the Frobenius
norm on H(n) to P(n) under the map

H(n)→ P(n), H 7→ expH =

∞∑
k=0

1

k!
Hk. (2.1)

At any P ∈ P(n) the tangent space TPP(n) is isomorphic to H(n) and for each
S ∈ H(n) we define the inner-product

〈S, S〉P = Tr
(
P−1SP−1S

)
. (2.2)

Note that S = S∗ and P = P ∗.
This metric has several interesting properties. We list some of these.

(1) For each M ∈ GL(n) the transformation [M ] : P(n) → P(n) defined by
P 7→MPM∗ is an isometry.
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(2) The geodesic between A,B ∈ P(n) is given by [4, Thm.6.1.6]

P (t) = A1/2
(
A−1/2BA−1/2

)t
A1/2, t ∈ [0, 1]. (2.3)

Recall that each P ∈ P(n) has a unique square root in P(n).
(3) The Riemannian manifold (P(n), 〈·, ·〉) has negative curvature.

Remark 3. This note focuses on explicit computations with this metric. However,
the natural appearance of HC integrals suggests a deeper structure by analogy.

The simplest example of a space with negative curvature is the upper half plane,
C+, equipped with the Poincaré metric. By the uniformization theorem, every
compact Riemann surface is characterized by a fundamental domain in C+, and
the automorphism group of the Riemann surface is represented as a subgroup of
the conformal maps of C+. The manifold (P(n), 〈·, ·〉) is a symmetric space with
negative curvature that should be seen in a similar light. It was first studied by
Cartan in analogy with the upper half plane [16] and the fact that the transfor-
mation [M ] : P(n) → P(n) is an isometry is representation theoretic. It says that
M 7→ [M ] is a representation of GL(n) in the group of isometries of P(n) [12, Thm
1.1].

Recall that the feasible set F is invariant under this GL(n) action. The main
structural conjecture then is that for each strictly feasible SDP, the constraints (1.8)
determine a fundamental domain in P(n) and that the automorphism group for this
domain may be explicitly determined as a subgroup of the isometries of P(n). In this
manner, we expect that each SDP should be faithfully associated to a geometry.
This is conjectural and it may be necessary to modify these statements to get
things completely right. Several formulas in [1, 2, 3] suggest such a structure (see
especially [3, p.298]) and the explicit construction of the automorphism group could
systematize ad hoc counterexamples in LP.

A very interesting set of results that discusses the construction of self-concordant
barriers as solutions to Monge-Ampere equations is discussed by Hildebrand [9].
This work seems important and provides the most direct contact between the ideas
documented here and optimization theory.

2.2. The Bures-Wasserstein metric on P(n). The Bures-Wasserstein metric
on P(n) has been studied more recently; a good review is [5]. This metric is ob-
tained from the Frobenius norm on GL(n) through the Riemannian submersion
Π : GL(n) → P(n), M 7→ MM∗. A computation of the vertical and horizontal
spaces for this submersion yields the following formula for the metric. The tangent
space TPP(n) is isomorphic to H(n) and for each S ∈ TPP(n)

〈〈S, S〉〉P = Tr(H∗H), (2.4)

where H = H∗ ∈ H(n) is the unique solution to the Lyapunov equation

S = PH +HP. (2.5)

There are two useful semi-explicit formulas for the metric.

(1) Suppose we choose a basis on Rn in which P = diag(λ1, . . . , λn). In these
coordinates

〈〈S, S〉〉P =
∑

1≤j,k≤n

|Sjk|2

λj + λk
. (2.6)
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(2) Given S and the invertible matrix P , the solution to the Lyapunov equation
(2.5) is given by the formula

H =

∫ ∞
0

e−tPSe−tP dt. (2.7)

Indeed, if we make the above ansatz for H we may compute

PH =

∫ ∞
0

Pe−tPSe−tP dt = −
∫ ∞

0

(
d

dt
e−tP

)
Se−tP dt, (2.8)

and similarly

HP =

∫ ∞
0

Pe−tPSe−tP dt = −
∫ ∞

0

e−tPS

(
d

dt
e−tP

)
dt. (2.9)

We combine (2.8) and (2.9) to obtain (2.7).

Fix A,B ∈ P(n). The Bures-Wasserstein geodesic between A and B in P(n) may
be parametrized by

M(t) =
(
(1− t)Id + t(A−1#B)

)
A1/2, P (t) = M(t)M(t)∗, 0 ≤ t ≤ 1, (2.10)

where the geometric mean of two matrices R and S in P(n) is defined by

R#S = R−1/2
(
R1/2SR1/2

)1/2

R−1/2. (2.11)

The term M(t) in equation (2.10) is one of many possible lifts of P (t) into a straight
line in GL(n). For this reason, while the parametrization downstairs is satisfactory,
the parametrization upstairs offers room for further exploration.

Comparing equations (2.10)–(2.11) with equation (2.3) we see that the geometric
mean is the midpoint of the geodesic (in the trace metric) between R and S. In
particular, R#S = S#R. Several other properties of the geometric mean are
known [4, Ch.4].

Finally, the sectional curvatures of P(n) with the Bures-Wasserstein metric have
been computed [18]. It turns out that (P(n), 〈〈, 〉〉) is a space with positive curvature.

Remark 4. The duality between the trace metric and the Bures-Wasserstein metric
should be understood better, since these properties are strongly reminescent of
elliptic and hyperbolic metrics in the Poincaré disk model, where a precise duality is
known [15, Ch.1]. The heart of the matter is a better understanding of the geometric
mean. As explained below, this concept appears in both mass transportation theory
and operator theory, so there is a lot more to (2.11) than meets the eye.

Remark 5. The notion of matrix mean may be generalized, just as positive num-
bers admit several means – arithmetic, geometric and harmonic means being the
most common choices. Several properties of such matrix means are known [4, Ch.4].
Kubo and Ando provide a complete axiomatic classification of means that reduces
to Loewner’s theorem on matrix monotone functions [11]. It is of interest to use this
theorem to compute partition functions that generalize the two examples studied
here.

Remark 6. The Bures-Wasserstein metric on P(n)may also be obtained through
mass transportation theory (in particular, the link between mass transportation and
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Riemannian submersion is from [17, Sec. 4]). Every P ∈ P(n) may be identified
with a Gaussian measure µP on Rn via

µP (x) dx =
1√

det(2πP )
e−

1
2x

∗P−1x dx, x ∈ Rn. (2.12)

Equivalently, P is the covariance for a Gaussian random vector Z ∈ Rn, with

Pij = E(ZiZj), 1 ≤ i, j ≤ n. (2.13)

This identification is important since it says that a metric on P(n) is always equiv-
alent to a metric on the space of Gaussian measures on Rn. In particular, the
Bures-Wasserstein metric on P(n) – which is defined here through Riemannian
submersion, a geometric construct – is the restriction of the Wasserstein metric on
probability measures on Rn to Gaussian measures that are absolutely continuous
with respect to Lebesgue measure – a probabilistic construct.

Remark 7. Bures, on the other hand, was studying C∗ algebras [7]. I don’t
understand this as well, but it seems to go roughly as follows. Each P ∈ P(n) is
a generalized density matrix (generalized because a density matrix must have unit
trace). The Bures metric is obtained by ‘purifying’ a density matrix into a pure
state. In mathematical terms, this seems to involve lifting a given P ∈ P(n) into
one of its square roots in GL(n) which leads back to Riemannian submersion.

3. Volume forms on P(n)

We now compute the volume forms for the trace metric and the Bures-Wasserstein
metric at a point X ∈ P(n). These computations involve two steps. First, we use
basic differential geometry to compute the volume form for the two metrics from
Section 2. Second, we diagonalize X = UΛU∗ and use Weyl’s formula to simplify
the volume form.

3.1. Some book-keeping. Given a Riemannian manifold (Md, g) of dimension d
with metric g the associated volume form is√

det g dx =
√

det (gαβ)1≤α,β≤d dx1 . . . dxd. (3.1)

Since our manifolds are spaces of matrices, when using formulas from differential
geometry such as the one above, we must replace the indices α and β with pairs of
indices (ij). We will be explicit about such formulas listing the entries of a matrix
X ∈ P(n;R) as a real vector of length n(n+ 1)/2 as follows

X =



X11

X22

...
Xnn

X12

X13

...
Xn−1,n


. (3.2)

The n diagonal entries are listed first, followed by the n(n−1)/2 off-diagonal entries
in lexicographical order. Similarly, a matrix X ∈ P(n;C) defines a real vector of
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length n2

X =



X11

X22

...
Xnn

ReX12

ImX12

...
ReXn−1,n

ImXn−1,n


. (3.3)

The heart of the matter is that for both the trace and Bures-Wasserstein metric,
the metric is diagonal in these coordinates. Thus, its determinant can be calculated
immediately, yielding the volume form.

3.2. The trace metric on P(n;R). Fix X ∈ P(n;R) and assume at first that
X = diag(λ1, . . . , λn). The volume form in the general case can be reduced to this
situation. Assume S ∈ TXP(n;R) ∼= H(n;R). We use the definition (2.2) to obtain

〈S, S〉X = Tr(X−1SX−1S) = (X−1)ijSjkX
−1
kl Sli

=
δij
λi
Sjk

δkl
λk
Sli =

1

λiλk
S2
ik

=
S2

11

λ1
+ . . .+

S2
nn

λn
+

2S2
12

λ1λ2
+ . . .+

2S2
n−1,n

λn−1λn
. (3.4)

The summation convention for repeated indices has been adopted in the first two
lines and the symmetry Sij = Sji has been used. The n diagonal terms are clear;
note that the n(n − 1)/2 off-diagonal terms of S appear twice by symmetry and
that we restrict the index set Sjk to j < k.

In these coordinates, the metric 〈·, ·〉X is given by the n(n + 1)/2 × n(n + 1)/2
matrix

gαβ =



1
λ2
1

. . .
1
λ2
n

2
λ1λ2

. . .
2

λn−1λn
.


(3.5)

Thus, the determinant of the metric is

det g = 2n(n−1)/2

(
1

λ1 · · ·λn

)n+1

= 2n(n−1)/2 (detX)
−(n+1)

. (3.6)

Finally, we take the square-root of this expression to obtain the volume form for
P(n;R) with the trace metric√

det g DX := 2n(n−1)/4 (detX)
−(n+1)/2

DX, X ∈ P(n;R) (3.7)

where the notation DX means

DX := dX11 · · · dXnn dX12 dX13 · · · dXn−1,n. (3.8)
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3.3. The trace metric on P(n;C). The computation of the volume form on
P(n;C) is very similar to the above calculation. The main change now is that we
separate the real and imaginary components of each off-diagonal term Sjk, j < k.
We find that

〈S, S〉X =
S2

11

λ1
+ . . .+

S2
nn

λn
+

2|S|212

λ1λ2
+ . . .+

2|S|2n−1,n

λn−1λn
, (3.9)

with |Sjk|2 = (ReSjk)2 +(ImSjk)2 for the off-diagonal terms. (The diagonal terms
are always real). The matrix for the metric 〈·, ·〉P is now an n2×n2 matrix similar
to that of equation (3.5), with the difference that each of the off-diagonal terms
appears twice

gαβ =



1
λ2
1

. . .
1
λ2
n

2
λ1λ2

2
λ1λ2

. . .
2

λn−1λn
.


(3.10)

The determinant and volume form may be computed as before. We find√
det g DX := 2n(n−1)/2 (detX)

−n
DX, X ∈ P(n;C) (3.11)

where the notation DX means

DX := dX11 · · · dXnn dReX12 d ImX12 dReX13 · · · d ImXn−1,n. (3.12)

3.4. The Bures-Wasserstein metric on P(n;R) and P(n;C). We again assume
that X = diag(λ1, . . . , λn) since the general computation may be reduced to this
case. We expand (2.6) for S ∈ H(n;R) to obtain

〈〈S, S〉〉X =
S2

11

2λ1
+ . . .+

S2
nn

2λn
+

2S2
12

λ1 + λ2
+

2S2
13

λ1 + λ3
+ . . .+

2S2
n−1,n

λn−1 + λn
(3.13)

As in equation (3.4), the off-diagonal terms appear twice. We see again that the
metric is diagonal in these coordinates and we obtain the volume form

√
det(gBW )DX = 2n(n−1)/4 1

det(2X)1/2

 ∏
1≤j<k≤n

1

λj + λk

1/2

DX, X ∈ P(n;R),

(3.14)
where DX is defined by equation (3.8). This formula is not as transparent as the
comparable formula (3.7) because of the explicit dependence on the eigenvalues of
X. However, it can be simplified using Weyl’s formula as discussed below.

The extension of this calculation to P(n;C) goes as follows. Each off-diagonal
term in (3.13) must now be split into real and imaginary parts

2|Sjk|2

λj + λk
=

2(ReSjk)2

λj + λk
+

2(ImSjk)2

λj + λk
, j < k,
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and it is clear that the metric is still diagonal in these coordinates. Thus,

√
det(gBW )DX = 2n(n−1)/2 1

det(2X)1/2

 ∏
1≤j<k≤n

1

λj + λk

 DX, X ∈ P(n;C).

(3.15)

3.5. Diagonalization and Weyl’s formula. Let X = UΛU∗ denote the diago-
nalization of X (strictly speaking, we should say a diagonalization, but when the
eigenvalues are distinct, the map X 7→ (Λ, U) is locally smooth). The Jacobian
for this transformation is provided by Weyl’s integration formula. To state this
formula, let

V (Λ) =

∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
λ1 λn
λ2

1 λ2
n

...
...

λn−1
1 λn−1

n

∣∣∣∣∣∣∣∣∣∣∣
=
∏
j<k

(λk − λj) (3.16)

denote the Vandermonde determinant associated to Λ. Then we have [14, Thm 15]
the following formula for P(n;R)

2n(n−1)/2DX = |V (Λ)|dΛdU, (3.17)

denotes (unnormalized) Haar measure on O(n). The analogous expression for
P(n;C) is

2n(n−1)/2DX = |V (Λ)|2dΛdU (3.18)

where dU now denotes (unnormalized) Haar measure on U(n)/Tn. 4.
The expressions (3.7) and (3.12) for the volume form on P(n) equipped with the

trace metric now take the simple form

√
det gDX =

 det(Λ)−
n+1
2 |V (Λ)| dΛDU, X ∈ P(n;R)

det(Λ)−n|V (Λ)|2 dΛDU, X ∈ P(n;C)

(3.19)

The analogous expressions (3.14) and (3.15) for the volume form on P(n;R) equipped
with the Bures-Wasserstein metric may be abbreviated by recognizing that∏

1≤j<k≤n

1

λj + λk
=

V (Λ)

V (Λ2)
. (3.20)

We then find that the volume form for the Bures-Wasserstein metric on P(n;R) is√
det gBWDX = det(2Λ)−

1
2
|V (Λ)|3/2

|V (Λ2)|1/2
dΛDU, X ∈ P(n;R). (3.21)

Similarly the volume form on P(n;C) is√
det gBWDX = det(2Λ)−

1
2
V (Λ)3

V (Λ2)
dΛDU, X ∈ P(n;C). (3.22)

These formulas allows us to separate the entropic terms in the Gibbs measure from
the energetic terms corresponding to the constraints. We now turn to these terms.

4Need to compute and fix normalization constants both here and [14]
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4. Soft constraints

The calculation of the previous sections suffice to establish equation (1.16). Let
us explain how to derive (1.17) in two steps. First, we assume that there is only one
constraint, written Ax + c = 0, expand the integrand e−βE(X) in a Taylor series,
and use the HCIZ integral to simplify this expansion. Once this case is understood,
we consider m constraints and organize the terms to obtain (1.17).

4.1. The case m = 1. We find it more convenient to work with lower case and use
the following notation for diagonalization:

X = uλu∗, A = vav∗, (4.1)

where a = diag(a1, . . . , an) denote the eigenvalues of A. We further abbreviate this
expression to

X = Aduλ, A = Adva, (4.2)

where Ad is the adjoint action for U(n). (This is the form in which these formulae
generalize to other groups, so it is good to get used to this idea, even if it is just a
change in notation for U(n)). The LHS of (1.11) may be rewritten as∫

U(n)

e(Adua,b) du = H(a, b). (4.3)

We will need to evaluate sums of terms of the form∫
U(n)

(Aduλ, a)
p
du (4.4)

for all positive integers p. The notation here is (X,Y ) = Tr(XY ) for X,Y ∈ H(n).
The main point is that the Harish-Chandra integral is a good generating function.

We compute moments as derivatives of generating functions, like so∫
U(n)

(Aduλ, a)
p
du =

∫
U(n)

∂pxe
x(Aduλ,a)

∣∣∣∣∣
x=0

du = ∂pxH(λ, ax)|x=0 . (4.5)

(The order of operations here is first differentiate in x, then set x = 0.) Aside from
the fact that we integrate over a group, this should be familiar.

The rest of the calculation involves an expansion in Taylor series, with a repeated
use of (4.5) to swap powers (Aduλ, a)p for derivatives ∂px, which are then evaluated
at x = 0. Let us begin with the orbital part of the partition function

Jβ :=

∫
U(n)

e−βE(X) du =

∞∑
k=0

(−β)k

k!

∫
U(n)

E(X)k du, (4.6)

with X = Aduλ. We will expand each integrand E(X)k once more, using the
assumption that E is defined by a polynomial p through equation (1.14), which in
the case m = 1 is simply

E(X) = p((Aduλ, a)). (4.7)

To this end, let us write this polynomial as p(θ) = α0 + α1θ + . . .+ αsθ
s, where s

is the degree of p. Then by the multinomial expansion

p(θ)k =
∑
|l|≤k

(
k

l0 . . . ls

) s∏
j=0

(αjθ
j)lj , l = (l0, . . . , ls). (4.8)
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Set (Aduλ, a) = θ(X) = θ for brevity, so that

E(X) = p((Aduλ, a)) = p(θ), and E(X)k = p(θ)k. (4.9)

Now integrate over U(n) using (4.5), (4.8) and (4.9) to find∫
U(n)

E(X)k dU =
∑
|l|≤k

(
k

l0 . . . , ls

) s∏
j=0

α
lj
j

∫
U(n)

θ(X)
∑s

r=0 rlr du

=
∑
|l|≤k

(
k

l0 . . . ls

) s∏
j=0

α
lj
j

 (∂x)
∑s

r=0 rlr H(λ, ax)
∣∣∣
x=0

=
∑
|l|≤k

(
k

l0 . . . ls

) s∏
j=0

αj∂
j
x

lj

H(λ, ax)|x=0

= p(∂x)k H(λ, ax)|x=0 . (4.10)

With this identity in hand, we return to (4.6) and obtain

Jβ =

∫
U(n)

e−βE(X) du (4.11)

=

∞∑
k=0

(−β)k

k!
p(∂x)k H(λ, ax)|x=0 =

(
e−βp(∂x)H(λ, ax)

)∣∣∣
x=0

. (4.12)

4.2. Arbitrary m. We modify the above calculations as follows. First, the nota-
tion. Replace (4.2) with

X = Aduλ, Aj = Advjaj , 1 ≤ j ≤ m. (4.13)

For any x ∈ Rm, let

A(x) =

m∑
j=1

xjAj := Adv(x)a(x), (4.14)

where a(x) and v(x) denote the eigenvalues and eigenvectors of A(x). The gener-
ating function for arbitrary m is the Harish-Chandra integral

H(a(x), λ) =

∫
U(n)

e(Aduv(x)λ,a(x)) du =

∫
U(n)

e(Aduλ,a(x)) du. (4.15)

By definition (4.14), we also have

H(a(x), λ) =

∫
U(n)

e
∑m

j=1 xj(Aduvj
λ,aj) du (4.16)

=

∫
U(n)

m∏
j=1

exj(Aduvj
λ,aj) du =

∫
U(n)

m∏
j=1

exjTr(XAj) du.

The last equation is added so that one sees the constraints explicitly and so that
it is clear that we may differentiate the RHS with respect to each coordinate xr
and then evaluate at 0 to obtain a basic moment identity analogous to (4.5). For
integers l1, . . . , lm we have∫

U(n)

m∏
j=1

(Aduvjλ, aj)
ljdu =

∫
U(n)

(
∂l1x1
· · · ∂lmxm

) m∏
j=1

exj(Aduvj
λ,aj) du

∣∣∣∣∣∣
x=0

, (4.17)
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(if the typography seems confusing, let me stress again that first we differentiate,
then we set x1 = x2 = . . . = xm = 0.)

On the other hand, we combine identities (4.15) and (4.16) to see that this
moment identity must be equivalent to∫

U(n)

m∏
j=1

(Aduvjλ, aj)
ljdu =

(
∂l1x1
· · · ∂lmxm

)
H(a(x), λ)

∣∣
x=0

. (4.18)

This expression may be more transparent when written in the form∫
U(n)

m∏
j=1

(Tr(AjX))ljdu =
(
∂l1x1
· · · ∂lmxm

)
H(a(x), λ)

∣∣
x=0

. (4.19)

The remainder of the calculation is a somewhat more tedious version of the double
expansion we used to get from (4.6) to (4.12).

First, let us revisit the energy and expressions (4.6) and (4.9). We assume that

E(X) =

m∑
j=1

pj(Tr(AjX)) :=

m∑
j=1

pj(θj), θj = Tr(AjX). (4.20)

Now the series expansion (4.6) remains the same and we must evaluate the expres-
sion ∫

U(n)

E(X)k du =

∫
U(n)

 m∑
j=1

pj(θj)

k

du. (4.21)

This adds one layer of complexity beyond (4.10), but the basic structure is the same.
First, we expand the sum within the integrand using the multinomial expansion m∑

j=1

pj(θj)

k

=
∑
|l|≤k

(
k

l1 . . . lm

)
pj(θj)

lj . (4.22)

Next expand each polynomial pj(θ) in powers of θj

pj(θj) = αj,0 + αj,1θj + . . .+ αj,sjθ
sj
j . (4.23)

This provides a further multinomial expansion for each power pj(θj)
lj in (4.22)

pj(θj)
lj =

∑
|r|≤lj

(
lj

r0 . . . rsj

) sj∏
q=0

(
αj,qθ

q
j

)rq
(4.24)

When equation (4.24) is combined with the expansions above, we see that the
integrand in (4.20), consists of a finite sum of terms of the form∫

U(n)

θq11 · · · θqmm du = (∂q1x1
. . . ∂qmxm

)H(a(x), λ)
∣∣
x=0

, (4.25)

where the RHS is obtained from equation (4.17) and the definition θj = Tr(AjX).
Thus, when integrating such monomials over U(n), we may simply trade moments
in θj for derivatives in ∂xj

of the HC integral. This allows us to undo the sum as
in (4.10) to obtain the identity∫

U(n)

m∏
j=1

pj(θj)
lj du = (p1(∂x1

)l1 . . . pm(∂xm
)lm)H(a(x), λ)

∣∣
x=0

. (4.26)
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When combined with (4.22) this yields the following identity analogous to (4.10)∫
U(n)

E(X)k du =

 m∑
j=1

pj(∂xj
)

k

H(a(x), λ)

∣∣∣∣∣∣∣
x=0

. (4.27)

Finally, we return to (4.6) to obtain the fundamental identity

Yβ =

∫
U(n)

e−βE(X) du (4.28)

=

∞∑
k=0

(−β)k

k!

 m∑
j=1

pj(∂xj
)

k

H(a(x), λ)|x=0 =
(
e−βp(∂x)H(a(x), λ)

)∣∣∣
x=0

.

where we recall the definition of the differential operator

p(∂x) =

m∑
j=1

pj(∂xj
).

In order to complete the proof of (1.17) it is only necessary to provide a rigorous
interpretation for the formal expression e−βp(∂x). This is why we introduce the
fundamental solution in (1.18), as well as the example (1.20). A direct computation
yields the heat kernel for example (1.20)

G(x, x′;β) =

(
β

2π

)m
2

m∏
j=1

exp

(
−β

2
(xj − x′j)2 − cj(xj − x′j)

)
. (4.29)

It is now clear that the formal manipulations in this section may be rigorously
justified. This example also reveals that we must assume the soft potential E(X)
and the related differential operator p(∂x) must be chosen so that they lead to
tractable heat kernels. In analogy with random matrix theory, it is prudent to first
obtain a complete description for this example, before considering a general theory
of τ -functions and universality for soft constraints.
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GIBBS MEASURES FOR SEMIDEFINITE PROGRAMMING 17

[10] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica,

4 (1984), pp. 373–395.

[11] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1979/80),
pp. 205–224.

[12] S. Lang, Fundamentals of differential geometry, vol. 191, Springer Science & Business Media,

2012.
[13] L. Lovász, Semidefinite programs and combinatorial optimization, in Recent advances in

algorithms and combinatorics, vol. 11 of CMS Books Math./Ouvrages Math. SMC, Springer,

New York, 2003, pp. 137–194.
[14] G. Menon and T. Trogdon, Random matrix theory and numerical linear algebra, March

2020.

[15] J. Moser and E. J. Zehnder, Notes on dynamical systems, vol. 12 of Courant Lecture
Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences,

New York; American Mathematical Society, Providence, RI, 2005.
[16] G. D. Mostow, Some new decomposition theorems for semi-simple groups, Mem. Amer.

Math. Soc., 14 (1955), pp. 31–54.

[17] F. Otto, The geometry of dissipative evolution equations: the porous medium equation,
Comm. Partial Differential Equations, 26 (2001), pp. 101–174.

[18] A. Takatsu, Wasserstein geometry of Gaussian measures, Osaka J. Math., 48 (2011),

pp. 1005–1026.

Division of Applied Mathematics, Brown University, 182 George St., Providence, RI
02912.

Email address: govind menon@brown.edu


