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Abstract We develop a mathematical model for the energy landscape of polyhedral
supramolecular cages recently synthesized by self-assembly (Sun et al. in Science
328:1144–1147, 2010). Our model includes two essential features of the experiment:
(1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The
molecular geometry is used to introduce an energy that favors square-planar vertices
(modeling Pd2+ ions) and bent edgeswith one of two preferred opening angles (model-
ing boomerang-shaped ligands of two types). The combinatorics of the model involve
two-colorings of edges of polyhedra with four-valent vertices. The set of such two-
colorings, quotiented by the octahedral symmetry group, has a natural graph structure
and is called the combinatorial configuration space. The energy landscape of ourmodel
is the energy of each state in the combinatorial configuration space. The challenge in
the computation of the energy landscape is a combinatorial explosion in the number
of two-colorings of edges. We describe sampling methods based on the symmetries
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of the configurations and connectivity of the configuration graph. When the two pre-
ferred opening angles encompass the geometrically ideal angle, the energy landscape
exhibits a very low-energy minimum for the most symmetric configuration at equal
mixing of the two angles, even when the average opening angle does not match the
ideal angle.

Keywords Supramolecular chemistry · Self-assembly · Polyhedra ·
Molecular cages

Mathematics Subject Classification 52B05 · 70B15 · 92C40 · 92E10

1 Introduction

The central goal of thefield of synthetic self-assembly is to create ordered assemblies of
building blocks bymimicking the essentials of biophysical processes of self-assembly.
In supramolecular chemistry, the building blocks are molecules, and a basic problem
is to synthesize supramolecular cages, to shed light on the self-assembly of viral cap-
sids (Liu et al. 2011; Takeda et al. 1999; Caspar and Klug 1962). Such cages may
be used to contain or catalyze chemical reactions with great precision. For example,
molecular flasks that stabilize highly reactive compounds, such as phosphorus, have
been synthesized by self-assembly (Mal et al. 2009). While the chemistry of these
examples differ, all of them share fundamental geometrical features. The cages are
Platonic or Archimedean polyhedra, and theirmolecular design relies on the decompo-
sition of the polyhedra into simpler geometric units, and a careful choice of molecules
whose reactive units can be idealized as such units. For example, in the experiments
reported in (Liu et al. 2011), the fundamental units are hexagonal ‘molecular tiles’ that
assemble into (quasi)-truncated octahedra, each molecular tile forming one hexagonal
face of the truncated octahedron.

Our primary interest in this article is to develop a mathematical model that sheds
light on the self-assembly of organometallic molecular cages synthesized in Fujita’s
lab (Sun et al. 2010). These cages may be idealized as Platonic or Archimedean
solids with four-valent vertices. They are realized in experiments by organometal-
lic complexes consisting of four-valent palladium (Pd2+) ions at vertices linked by
‘boomerang-shaped’ organic ligands. All suchmolecular cages have the general chem-
ical formula MnL2n . The subscript of M indicates the number of palladium ions at
the vertices, and the subscript of L denotes the number of organic ligand molecules
making up the edges of the polyhedron. The symmetry of the vertices forces n = 6,
12, 24, 30 and 60. Several of these ligand polyhedra were observed in experiment,
including the octahedron (n = 6), cuboctahedron (n = 12) and rhombicuboctahedron
(n = 24) (Sun et al. 2010), shown in Fig. 1a–c.

A particularly interesting effect was observed when two different ligand molecules
with differing bend angle were mixed. The concentration of the two different organic
ligand molecules, types A and B say, served as a control parameter. Separately, these
ligands formed cuboctahedra (Fig. 1b) and rhombicuboctahedra (Fig. 1c) of the form
M12A24 and M24B48, respectively. In a mixture, a variety of supermolecules with the
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Fig. 1 Four-valent polyhedra with Oh symmetry. aOctahedron, b cuboctahedron, c rhombicuboctahedron.
d–f Ideal supramolecular cage embeddings. Here, the Pd2+ ions are represented by large black vertices,
while the ‘boomerang’-shaped organic ligands are represented by small gray vertices (‘elbows’), each with
two arms; ind, the straight edges of the octahedron are included only for comparison. Note that the geometry
at the ions is square planar. g–i Frustration. Minimum-energy embeddings when the preferred bend angle
of the edges is θ0 < θ∗. g θ0 = 81◦, θ∗ = 90◦, h θ0 ≈ 105.5◦, θ∗ ≈ 117.2◦, i θ0 ≈ 120.7◦, θ∗ ≈ 134.1◦.
Brightness of color indicates the energy contribution from each vertex and each ‘elbow.’ Note that the
geometry at the ions is deformed from square-planar (Color figure online)

general chemical formula Mn A2n−mBm , 0 ≤ m ≤ 2n, and n = 12 or n = 24 are
theoretically possible. Further, for 1 ≤ m ≤ 2n − 1 these polyhedral supermolecules
typically have many distinct isomers, corresponding to different geometric arrange-
ments of the A and B ligands. In experiment, as the concentration ratio was varied,
a sharp transition was observed from a solution in which only cuboctahedra formed
to one in which only rhombicuboctahedra formed. More precisely, while a solution
consisting of all isomers Mn A2n−mBm with n = 12 or n = 24 and 0 ≤ m ≤ 2n
is possible in theory, in each experiment with a fixed concentration ratio of A and B
ligands, the equilibrium solution consisted of only cuboctahedral isomers (n = 12) or
only rhombicuboctahedral isomers (n = 24). The sharpness of this phase transition
was described as emergent behavior by Fujita and co-authors (2010).

In order to understand what drives this phase transition, we develop a ‘minimal’
model that combines the geometry of isomers with a phenomenological energy for
deviations from the ideal bend angle.We then compute an energy landscape for isomers
with the general chemical formula Mn A2n−mBm , n = 6, 12 and 24, 0 ≤ m ≤ 2n.
These computations reveal interesting features, such as the symmetries of minimum-
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energy states. Further, they reveal the need to carefully account for symmetry in order
to obtain a computationally tractable problem.

Our work suffers from certain limitations. First, the results presented here are zero-
temperature calculations, so entropy and kinetics are ignored. Including these effects
seems necessary to explain the emergence seen in Sun et al. (2010). We conclude
this article with some remarks that indicate how entropic effects could be included by
building on our computations. Second, from the standpoint of modeling, it should be
noted that the physics of molecular cages is not as well understood as that of other
model systems in self-assembly such as rigid colloidal clusters [see, e.g., Holmes-
Cerfon et al. (2013) and the references therein]. The governing assumption behind
our work is that physical models that mimic essential features of the experiments—in
this case, the polyhedral geometry, a simple elastic energy and the combinatorics of
isomers—serve to describe the system. These assumptions yield a model of appealing
simplicity, but ignore the possibility that a detailed understanding of the chemical
interaction of molecular cages is necessary to explain the experiments.

To the best of our knowledge, our work is the first attempt to develop a theoretical
model for the experiments that is faithful to the underlying geometric combinatorics.
Despite the apparent specificity of ourmodel, the ideas presented heremay be naturally
adapted to the other experiments. More broadly, the development of a theoretical
understanding of self-assembly is a deep fundamental exercise, rich in biological,
mathematical and physical ideas. Our work is an instance of small, but growing,
mathematical literature on synthetic self-assembly that emphasizes ideas from discrete
geometry and statistical physics (Holmes-Cerfon et al. 2013; Pandey et al. 2011;
Kaplan et al. 2014). These models typically include three aspects. The first is the
identification of a configuration space that idealizes the set of intermediate structures
that lie between the building blocks and the assembled product. The second is to
understand the free energy landscape; in particular, to understand which of the states
in the configuration space are energetically favorable. The third is a description of
the kinetics of self-assembly. In this article, we focus on the first two aspects of this
procedure, since (as will become clear) determining the energy landscape requires
intensive computation, and is of independent interest.

The rest of this article is organized as follows. We describe the configuration space
and energy in the next section. This is followed by a description of the combinatorial
explosion and a symmetry-based sampling scheme. Finally, we describe our numerical
results and conclusions.

2 The Configuration Space and Energy Function

Weare interested inmolecules of the formMn A2n−mBm , withn vertices corresponding
to the ions M , 2n−m ligands of type A andm ligands of type B. Our model involves:
(1) simple geometric combinatorics, (2) a phenomenological energy function and (3)
sampling schemes for fast computation. (1) For anym, the number of distinct isomers
is the number of distinct two-colorings of the edges of the polyhedra modulo the
action of the symmetry group of the polyhedron. (2) Our energy function penalizes
the geometric distortion of the polyhedra caused by ligand molecules with differing
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bend angles. (3) A calculation of the full energy landscape is impossible for n = 12
and n = 24 because of a combinatorial explosion. We use symmetry and heuristics
based on n = 6 to sample the energy landscape.

2.1 Colorings and Configurations

More formally, let P be a polyhedron whose faces, edges and vertices are denoted
(F , E,V). We assume that P is one of the following: the octahedron; cuboctahedron;
or rhombicuboctahedron. All these polyhedra, shown in Fig. 1, have regular four-
valent vertices, and their symmetry group is the octahedral group, Oh , which is the
direct product of S4, the permutation group of four elements corresponding to permu-
tations of the four pairs of opposing faces of the octahedron, and S2, corresponding
to reflection (Coxeter 1973). A two-coloring of edges, or coloring for short, is a map
c:E → {0, 1}. The set of colorings is denoted C . It is convenient to view the colorings
‘physically’: we identify the polyhedron P with its standard embedding in space and
paint the edges of P blue (0) or red (1), for ligands of type A and type B, respectively.
We say that two colorings c1 and c2 are equivalent under Oh , written c1 ∼ c2, if there
exists g ∈ Oh such that gc1 = c2.We define a configuration to be an equivalence class
of colorings under the relation ∼. The quotient set C/Oh is called the combinatorial
configuration space, or simply configuration space. It is the set of all distinct colorings
modulo the symmetry of the polyhedron.

The enumeration of C/Oh is a classic problem in discrete group theory [we fol-
low (Rotman 1995)]. Let Ohc denote the orbit of a coloring c. We say that the
degeneracy of a coloring c is the size of the orbit |Ohc|. Clearly, the degeneracy
is the same for all colorings in the equivalence class [c]. Thus, it is meaningful to
speak of the degeneracy of [c]. Let oc ⊂ Oh denote the stabilizer subgroup of c ∈ C .
We call the size of this subgroup, |oc|, the symmetry number of c, and denote it by s.
By the orbit-stabilizer theorem and Lagrange’s theorem, for every coloring c ∈ C ,

|Ohc| × |oc| = |Oh | = 48. (1)

Two colorings c1 and c2 are equivalent if and only if they lie on the same group orbit.
Thus, the size of the configuration space, |C/Oh |, is simply the number of distinct
orbits. LetCg denote the set of colorings fixed by g ∈ Oh , i.e.,Cg = {c ∈ C |gc = c }.
By Burnside’s lemma,

|C/Oh | =
1

|Oh |
∑

g∈Oh

|Cg|. (2)

While this calculation of the size |C/Oh | is well known, our interest lies in an
explicit description of each equivalence class [c] ∈ C/Oh . We compute C/Oh explic-
itly for the octahedron and cuboctahedron as described below. We are unable to
explicitly compute C/Oh for the rhombicuboctahedron because of a combinatorial
explosion. Note that |C/Oh | is bounded below by

|C/Oh | ≥ |C |
|Oh |

= 2|E |

48
. (3)
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The octahedron has 144 unique configurations (the lower bound is 85), and the cuboc-
tahedron has 352,744 unique configurations (the lower bound is 349, 525). For the
rhombicuboctahedron, the same bound yields 248/48 ≈ 5, 864, 062, 014, 806, which
is too large to enumerate explicitly. Thus, one of the main computational challenges
in our work is to obtain a realistic understanding of the energy landscape, despite the
combinatorial explosion of |C/Oh |.

Finally, note that the configuration space C/Oh inherits a natural graph structure
from C . We say that two colorings cm and cm+1 with m and m + 1 ‘red’ edges are
neighbors in C if they differ at a single edge. If cm and cm+1 are neighbors, it is clear
that gcm and gcm+1 are also neighbors for each g ∈ Oh . Thus, every coloring in the
orbit Ohcm is the neighbor of at least one coloring in the orbit Ohcm+1 and it is natural
to say that [cm] and [cm+1] are neighbors in C/Oh .

2.2 A Phenomenological Energy for Molecular Distortion

Each configuration [c] ∈ C/Oh determines the unique combinatorial structure of a
supramolecular conformation. An energy landscape is a map F :C/Oh → R.

We define a phenomenological energy by penalizing the distortion both of the
edges and of the vertices from their preferred geometry. The edges are modeled as
two straight arms, joined at an angle at the ‘elbow’ of the boomerang (Fig. 2a). Let
X ∈ R3|E |+3|V | denote the coordinates of the elbows of the ligands and of the vertices
of the embedded polyhedron.We introduce energy terms which account separately for
the distortion from a preferred length for each arm of an edge (Earms); distortion from
the preferred bend angle at each elbow (Eelbow); and distortion from square-planar
geometry at each vertex (Evertex):

G(X; [c]) =
∑

e∈E
(Earms(e(X))+ Eelbow(e(X)))+

∑

v∈V
Evertex(v(X)). (4)

Here the notation e(X) and v(X) implies that the energy depends on the coordinates
of each edge and vertex, respectively. Finally, the energy landscape F([c]) is defined
by

F([c]) = inf
X

G(X; [c]), (5)

where the infimum is taken over all embeddings of P into R3. In our numerical
experiments, the energy G is minimized through a zero-temperature Monte Carlo
annealing; for the largest system, the rhombicuboctahedron, the minimization takes
about 100 s for a tolerance in the vertex positions of about 0.3% of the arm length, or
about 140 s for a tolerance of 0.1% of the arm length.1 This annealing does not reach
the exact energy minimum, but gives an upper bound on the minimum energy which

1 The tolerance is the width of theGaussian distribution of random test displacements applied to the vertices
in each dimension;we use successively smaller tolerances, and end the annealing processwhen the evolution
of the total energy at the lowest tolerance has a sufficiently small average slope, the threshold slope set by
trial and error to balance accuracy with efficiency.
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Fig. 2 Geometry of a edges, comprising an ‘elbow’ and two arms, and b four-valent vertices

we believe to be typically within a few percent of the actual infimum. This fact may
be verified for the minimum-energy configurations shown in Fig. 1d–f.

We now describe the terms in the energy in local coordinates in more detail. We
use a harmonic approximation for each energy term, that is, a term which is quadratic
about the equilibrium point, as is standard practice in modeling of physical systems;
physically accurate energies will have a more complex form, but this lowest-order
approximation should capture the most interesting effects. We introduce an energy
cost to deviations of the length of the arms from one:

Earm = Ea

(
(l1 − 1.0)2 + (l2 − 1.0)2

)
, (6)

where l1 and l2 are the lengths of the two arms. We choose Ea ≫ Ee, Ep, Ev (defined
below) to make the arms stiff; this has the effect that in general in the minimum-energy
embedding, the arms are of length one and do not contribute significantly to the total
energy.

We also introduce an energy cost to deviations of the angle of the elbow from its
preferred opening angle:

Eelbow = Ee(θ − θ0)
2 (7)

with θ the actual opening angle and θ0 the preferred opening angle (which depends
on the type A or B). Thus, this term is the only term in the energy which depends on
the configuration as well as on the embedding. The coefficient Ee sets the scale of
the energy contribution of the edges. At each vertex, we introduce an energy cost for
deviations from square-planar geometry (see Fig. 2b):

Evertex = Ev

⎡

⎣
∑

⟨i, j⟩
(θi j − π/2)2 + Ep

∑

i

(φi − π/2)2

⎤

⎦ , (8)

with the first sum over pairs of neighboring edges i and j and θi j the angle formed by
the ‘arms’ of those edges; and the second sum over edges i and φi the angle formed
between the arm of that edge and ‘plane perpendicular,’ defined as the average of the
cross-products of the pairs of neighboring edges. The first sum pushes the edges to
all be perpendicular to one another (square), while the second sum pushes the edges
to be coplanar. The overall coefficient Ev sets the scale of the energy contribution of
the vertices relative to the edges, while the coefficient Ep sets the scale of the energy
contribution of the ‘planar’ aspect of the vertices relative to the ‘square’ aspect.
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For each polyhedron, there is an ideal angle θ∗ such that there is a zero-energy state
when all edges have θ0 = θ∗. We calculate these ideal angles analytically for each of
the three polyhedra considered. Fixing one vertex at the origin, we write explicitly the
positions A, B, C, D of its four neighbors in a regular polyhedron (ordered cyclically
so that B and D are each closer to A than is C). We then solve for E, F, G, H, the
positions of the elbows, which satisfy the following conditions:

|E| = |F| = |G| = |H|
G = −E , H = −F

E · F = E ·H = F ·G = G ·H = 0

|A − E| = |E| , |B − F| = |F| , |C − G| = |G| , |D − H| = |H|

These relations ensure that the geometry at the vertex is square planar and that every
arm of an edge is of the same length. Examining the triangle OEA, we see that the
opening angle θ is then given by

θ∗ = cos−1
(
1 − |A|2

2|E|2
)

(9)

Thus, if the preferred angle of every edge is set to θ∗, the embeddingwith this geometry
at every vertex of the Platonic or Archimedean polyhedron will give a zero-energy
configuration; these embeddings are shown in Fig. 1d–f. The values derived for the
ideal angles of the three polyhedra are:

θ∗,octahedron = 90◦,

θ∗,cuboctahedron = cos−1

(
1 − 2

√
2

4

)

≈ 117.2◦,

θ∗,rhombicuboctahedron = cos−1

(
25 − 20

√
2

33 − 20
√
2

)

≈ 134.1◦.

Note that these values for the cuboctahedron and rhombicuboctahedron correct the
approximate values of 120◦ and 135◦, respectively, given in Sun et al. (2010).

However, in experiment this value can only be chosen approximately, and the angle
θ0 is different from the ideal value. This causes frustration, as shown in Fig. 1g–i,
and the minimum-energy state balances competing energies. In these examples, the
total energy of the vertices is between 1.8 and 2.0 times the total energy of the edges.
All of the energy contributions are necessary to observe frustration. This can be seen
by counting the degrees of freedom. For example, if the planarity of the vertices is
relaxed, the edge ‘elbows’ can rearrange themselves so that they satisfy their preferred
angles at the expense of the square-planar geometry at the vertices. Only when all four
energy terms are in competition do we have an interesting system. It is in this sense
that we consider our energy model to be minimal.
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Finally, we define the average preferred angle for mixtures of two ligands. The
preferred angle used in Sun et al. (2010) is:

θ̄0(cA, cB) =
1

cA + cB
(cAθ0(A)+ cBθ0(B)) , (10)

where cA and cB denote the concentrations of ligands A and B. We will also use θ̄0
with no arguments to mean

θ̄0 ≡ θ̄0(c, c) =
1
2
(θ0(A)+ θ0(B)) (11)

and θ̄0(m) in an isomer Mn A2n−mBm to mean

θ̄0(m) ≡ θ̄0(2n − m,m) = 1
2n

((2n − m)θ0(A)+ mθ0(B)) (12)

3 Symmetries and Sampling Strategies

As discussed above, our goals are twofold: (1) to enumerate the configuration space
C/Oh and (2) to calculate the energy landscape F(C/Oh). The computational diffi-
culty of these tasks depends strongly on the size of the polyhedron P . When P is the
octahedron, we are able to fully enumerate the configuration space and its graph struc-
ture, and compute the entire energy landscape. WhenP is the cuboctahedron, we fully
enumerate the configuration space and its graph structure, but we sample the energies
of only a fraction of the configuration space to compute a partial energy landscape.
When P is the rhombicuboctahedron, even the configuration space is intractable. We
enumerate only those configurations c with non-trivial symmetry number s, and sam-
ple the energy of only a fraction of these configurations. In what follows, we focus
mainly on the sampling strategies used to obtain partial, but informative, descriptions
of the configuration space and energy landscape for the two larger polyhedra.

The octahedron is the most straightforward. With only 212 = 4096 colorings to
consider,we construct every coloring and calculate the equivalences underOh to obtain
a complete list of configurations. There are 144 configurations, of which 94 have non-
trivial symmetry groups (see Table 1). We also calculate explicitly the graph structure,
identifying the neighbor relations between configurations.We then calculate the energy
of every one of the 144 configurations by solving the minimization problem (5).

We develop an algorithm to build the graph C/Oh for the cuboctahedron by induc-
tion on the number of ‘red’ edges, denoted m. There is a single configuration which
has m = 0, that is, all edges are ‘blue’; this provides the base case. As our induction
step, we use the subset (C/Oh)m of configurations with m ‘red’ edges to construct
the set (C/Oh)m+1 as follows. For each element [c] ∈ (C/Oh)m , we consider a rep-
resentative coloring c ∈ [c]. This coloring has neighbors {c′} ⊂ Cm+1, obtained from
c by changing the color of a single edge from ‘blue’ to ‘red.’ We compute the orbit
Ohc′ for each neighbor c′ and compare each element of Ohc′ against the configurations
already seen in (C/Oh)m+1. If the configuration has already been seen in (C/Oh)m+1,
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Table 1 Enumeration of
configurations by symmetry
number for each polyhedron

Symmetry
number

Octahedral
configurations

Cuboctahedral
configurations

Rhombicuboctahedral
configurations

48 2 2 4

24 0 1 4

16 2 2 28

12 2 6 29

8 6 23 644

6 4 35 716

4 21 211 46,991

3 1 44 16,015

2 56 5943 >40,648,786

1 50 346,477 ≈6 × 1012

Total 144 352,744 ≈6 × 1012

we make note that [c] and [c′] are neighbors. If the configuration has not been seen
before, we update our list of representatives in (C/Oh)m+1 to include [c′] and make
note of the neighbor relationship. This process ends when we find the single configu-
ration with m = 2n = 24.2 Thus, we do not enumerate every possible coloring, but
we nonetheless identify all configurations and compute the connectivity of the graph
C/Oh . We find a total of 352,744 configurations (see Table 1).

The computation of the energy for each configuration [c] involves a numerical
solution of the minimization problem (5). Rather than pursue this computation for
each of the 352,744 configurations, we sample a fraction of the configurations and
compute a partial energy landscape. We use a sampling strategy which is designed to
identify both the lowest-energy configurations at eachm,which are those of the greatest
interest in determining the configurations present in a self-assembling physical system,
and also the highest-energy configurations, allowing us to understand the scale of the
energy differences which determine the relative proportions of configurations present,
as well as giving us a more complete picture of the energy landscape. This strategy
exploits two heuristic observations about the energy landscape of the octahedron:

1. For a givenm, the highest- and lowest-energy configurations tend to have nontrivial
symmetry number s;

2. High-energy configurations tend to have high-energy neighbors in the graph. Like-
wise, low-energy configurations have low-energy neighbors.

Our sampling strategy consists of two steps. First, we calculate the energy for all
configurations with ‘extreme’ values of m, here defined as m ≤ 4 or m ≥ 20 (630
configurations total), and for all configurations with symmetry number s ≥ 3 (324
configurations total, although there is overlap with the 630 extreme-m configurations).

2 We could also use the symmetry between ‘red’ and ‘blue’ by ending the process whenwe have enumerated
all configurations with m = n = 12, and finding the graph for m > n by swapping the colors of every
edge; we choose instead to continue the process to m = 2n = 24 in order to corroborate the correctness of
our algorithm by comparing the results for m and 2n − m. The time necessary is not prohibitive; the full
calculation took about 12.5 h on a 2012 MacBook Pro laptop.
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Finally, we calculate the energies of about 2% (but at least 100) of the remaining
configurations for each value of m such that 5 ≤ m ≤ 19, chosen as follows. About 1

3
to 1

2 of these configurations are identified as the neighbors of the highest and lowest-
energy configurations known at m − 1 and m + 1. The other roughly half of these
configurations are sampled uniformly at random from the remaining configurations. In
order to maximize the information we have about neighbors of high- and low-energy
configurations, we carry out this calculation sequentially for different values of m,
starting with m = 5 and m = 19 and working our way to less extreme values, ending
with m = n = 12.

For the rhombicuboctahedron, the combinatorial explosion in the number of con-
figurations makes it intractable to even enumerate the approximately six trillion
configurations. We focus instead on configurations with non-trivial symmetries, moti-
vated by the heuristics above, and develop an algorithm to enumerate these ‘symmetric’
configurations, as follows.

For each non-identity element g ∈ Oh , we construct Cg , the set of colorings
which are fixed by the action of g, as follows. We consider the orbits of the edges
of the polyhedron under the subgroup Sg = ⟨g⟩ ⊂ Oh generated by g. In order
for a coloring c to be fixed by g, i.e., gc = c, the edges in each orbit Sge, e ∈ E
must be of the same color. Thus, Cg is constructed as the set of two-colorings of
edge orbits, Sge. As every coloring with non-trivial symmetry number is fixed by at
least one non-identity element, the union ∪{Cg s.t. g ̸= e} then gives us exactly the
symmetric colorings we are interested in. We then compare these colorings /Oh to
enumerate the configurations, that is, the equivalence classes of colorings, with s ≥ 3
(64,431 configurations total; see Table 1). There are tens of millions of configurations
with symmetry s = 2; we have not enumerated all of these, but have enumerated
those with extreme values of m (m ≤ 8 and m ≥ 40), along with those at values
of m relatively prime to 48 which have no higher-symmetry configurations (m =
11, 13, 17, 19, 23, 25, 29, 31, 35, 37).

In fact, we are able to shorten the calculation considerably by computing only
a partial union over a subset of elements g; because we are interested ultimately
in configurations, not colorings, we need only sure that at least one representative
coloring of each equivalence class is present in the union. To select the elements g for
which we compute Cg , we classify the forty-seven non-trivial elements of Oh into the
following five subsets:

1. There are 20 elements of Oh with order≥4. Each of these elements has a power ga

which is of order 2 or 3. Since any coloringfixed by g is also fixed by ga ,Cg ⊂ Cga ,
and we need only enumerate Cg for g of order 2 or 3 to get all configurations.

2. There are eight elements of Oh with order 3; while these fix different colorings,
they generate the same equivalence classes in C/Oh . Thus, we need enumerate
Cg for only one of these eight elements.

3. There are ten elements of Oh with order 2 which have the property that |Sge| = 2
for all e ∈ E . Of these, only three produce different configurations, while the
remaining seven fix colorings which are equivalent to colorings already identified.

4. There are six elements of Oh with order 2 which have four orbits for which
|Sge| = 1, that is, these elements map four edges onto themselves. As with the
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elements of order 3, these produce the same configurations, and so we enumerate
Cg for only one.

5. There are three elements of Oh with order 2 which have eight orbits for which
|Sge| = 1, that is, these elementsmap eight edges onto themselves. These elements
represent reflections across the plane bisecting a ring of square faces. Again, we
enumerate Cg for only one of them.

Once the elements g are chosen, the computation of each Cg is automated, as
is the processing of the union ∪Cg to find just one representative coloring for each
configuration. We then calculate energies for configurations sampled as follows. We
calculate the energy for all configurations with symmetry s ≥ 6 (1425 configurations
total); about 2.5% (but at least 40 at each m) randomly selected configurations with
s = 4; about 2.5% (but at least 40) randomly selected configurations with s = 3;
and for m ≤ 8, m ≥ 40, or m relatively prime to 48, about 0.02% (but at least 200)
configurations with s = 2.3 This gives us a total of roughly 10,000 energies calculated
for each of the plots in the next section—a small fraction of the 6 trillion configurations,
but a sampling which we believe captures the most interesting aspects of the energy
landscape.

4 Results

In most of the examples below, we set the energy parameters Ea = 10.0; Ep = 1.0;
and Ee = Ev chosen to normalize the energy of them = 0 configuration to 1.0, taking
values 1.0 < Ee, Ev < 3.8. In Sect. 4.5 only, we change this last condition and set
Ee ̸= Ev as described later.

4.1 Energy Landscape at θ∗ = θ̄0

In Fig. 3, we present a sample energy landscapewhen the average preferred angle is the
same as the ideal angle, and θ∗ = θ̄0 = 1/2(θ0(A)+θ0(B)) [this choice of parameters
was used as a heuristic design principle in Sun et al. (2010); as discussed below the
broad features of this energy landscape are insensitive to these choices of θ0(A) and
θ0(B)]. We observe that when m and n are held fixed, there is a strong variation in
the energy of all isomers with chemical formula Mn AmB2n−m . For m = n = |E |/2,
these isomers include the configurations with minimum and maximum energy.

4.2 Extremal States Have High Symmetry

As in the example above, we typically find that the lowest-energy state is the most
symmetric isomer with m = n. While this conclusion seems unsurprising, it must be
recognized that there are also high-energy states with high-symmetry number!

3 In Fig. 6a, we calculate the energy for configurations with s = 3 only for m ≤ 8 and m ≥ 40, and for a
larger proportion of configurations with s = 2 for m ≤ 8, m ≥ 40, m = 11, 13, 17, 31, 35, 37.
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Fig. 3 Energy spectra. a The octahedron, b the cuboctahedron, and c the rhombicuboctahedron. The
preferred angles are a 81◦ and 99◦ (ideal angle: 90◦), b 105◦ and 129◦ (ideal angle: 117.2◦), c 120.7◦ and
147.6◦ (ideal angle: 134.1◦). For each polyhedron, the energies are normalized so that the configuration
withm = 0 (that is, all edges have small preferred angles) has energy 1.0. The choice of energies calculated
is described in the text. Color indicates the symmetry number of the configuration (Color figure online)

These ideas are illustrated in two extremal configurations for the cuboctahedron as
shown in Fig. 4. Both the extremal energy configurations in Fig. 4 have reasonably
large symmetry numbers, s = 24 and s = 6 and the lowest-energy configuration in
Fig. 4 has an energy of less than 0.06% of the normalized energy (and possibly zero
energy). A heuristic explanation is as follows: at any vertex where two edges each
of type A and B meet, the energy of the vertex is lower in configurations in which
the edges of type A are adjacent to one another (“cis configuration”) and opposite the
edges of type B. This arrangement allows the energy to be reduced by canting the
square plane of the ion. Configurations with many such opposed pairs tend to have
high-symmetry numbers, and so the examination of highly symmetric configurations
captures the low- energy states. If edges of type A are opposite one another—and in
particular if four edges of the same type meet at a vertex—the vertex and the edges
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Fig. 4 Extremal energy configurations for m = n. The preferred angles are as in Fig. 3; blue edges are
of type A with θ0(A) < θ∗, while red edges are of type B with θ0(B) > θ∗. Brightness of the color
indicates the magnitude of the energy contribution. Note the deformation from a regular polyhedron; in
particular, blue edges are shorter than red edges. a–c Minimum-energy configurations for the octahedron,
cuboctahedron, and rhombicuboctahedron, d–fMaximum-energy configurations. Note the high-symmetry
numbers: a s = 12, b s = 24, c s = 48, d s = 2, e s = 6, f s = 6. In the minimum-energy configurations,
every vertex is adjacent to two edges of each type, and edges of different types lie opposite one another. For
the cuboctahedron and rhombicuboctahedron, the maximum-energy configurations are entirely composed
of high-energy 6- or 8-element closed rings which are either entirely of type A or entirely of type B; large
energy contributions also come from the vertices at which four edges of type B meet (Color figure online)

have higher energy. By arranging symmetric configurations of such vertices, we obtain
high-energy configurations for the whole system.

More generally, examination of any of the energy spectra suggests that the sym-
metric configurations tend to span or nearly span the range of energies at any value
of m. This is clearest for the octahedron, where in every case, both the lowest- and
highest-energy configurations at any m have symmetry number at least 2, and for
m ̸= 5, 7, the lowest-energy configuration has s ≥ 4 and often the highest symmetry
possible. Configurations with high-symmetry number of course have multiple vertices
with the same arrangement, and so if these are favorable or unfavorable arrangements,
the energy is correspondingly particularly low or particularly high. It is this observa-
tion which led us to emphasize symmetric configurations in sampling the energies of
the cuboctahedron and the rhombicuboctahedron.

4.3 Low and High-Energy States are Connected

For the octahedron, we obtain a complete description of the configuration space as a
graph, as shown in Fig. 5. We observe that low and high-energy configurations are
usually connected to other low-energy and high- energy configurations, respectively.
This feature of the energy landscapemay be explained heuristically as follows. Starting
from a low (resp. high)-energy configuration with several favorable arrangements
of small-angle edges opposing large-angle edges, changing the preferred angle of a
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Fig. 5 Energy spectrum of the octahedron shown with connections between neighboring configurations.
The range of the y-axis has been changed for clarity. Note that low-energy configurations tend to be
connected to other low-energy configurations and likewise high-energy configurations to high- energy
configurations

random edge will often leave most of these favorable arrangements unchanged, giving
another low (resp. high)-energy configuration.

4.4 Asymmetry Around the Average Preferred Angle θ̄0

We find that the shape of the energy landscape is robust as θ̄0 varies. Specifically,
when θ0(A) < θ∗ < θ0(B), but θ∗ ̸= 1/2(θ0(A) + θ0(B)), the energy spectrum
‘tilts’ as shown in Fig. 6. The lowest energy, however, is still found at even mixing,
m = n, even though at this mixing the average angle does not match the ideal angle.
This lowest energy is slightly higher than in the symmetric-angle case, but still well
below the m = 0 and m = |E | configurations. We conclude that even if θ̄0 ̸= θ∗,
the energetically favorable arrangements of small-angle edges opposing large-angle
edges allow for much of the frustration to be relieved.

In the case that the preferred angles do not encompass the ideal angle—i.e., either
both θ0(A), θB(0) > θ∗ or both θ0(A), θB(0) < θ∗—the shape of the energy spectrum
changes. In the case θ∗ < θ0(A) < θ0(B), the lowest-energy state occurs for m = 0
and the energy increases roughly linearly with m; an example for the cuboctahedron
is shown in Fig. 6. Isomers with a fixed m still exhibit a range of energies, but the
variation withs m is similar to the m-dependent energy contribution.

4.5 Varying the Energy Ratios

There is little variation in the shape of the energy spectrum as the parameters Eedge,
Evertex, and Eplanar (we fix Earm = 10.0 > Eedge,vertex,planar) are changed. Figure 6c
shows the energy spectrum for a rhombicuboctahedron with the preferred angles sym-
metrically encompassing the ideal angle, but with the edge energy scale Eedge twice
the vertex energy scale Evertex (Eplanar is kept at 1.0). This is nearly indistinguishable
in overall shape from Fig. 3c, with Eedge = Evertex.

We also observed that the ratio between the energy of a rhombicuboctahedron
with only one ligand type, M24A48, and a cuboctahedron with the same ligand type
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Fig. 6 Variation of the energy landscapes with model parameters. a Asymmetric preferred angles. Partial
energy spectrum for the rhombicuboctahedron with preferred angles 127◦ and 149◦; the average angle
matches the ideal angle (134.1◦) for m ≈ 16. These angles are chosen to match those of the two organic
ligands reported in Sun et al. (2010). Note that the lowest-energy configuration is still at m = n = 24. b
Partial energy spectrum for the cuboctahedron with the same preferred angles as in (a); in this case, both
preferred angles are larger than the ideal angle (117.2◦). Note that the energy increases rapidly with added
type-B edges. c Partial energy spectrum for the rhombicuboctahedron with the same preferred angles as in
Fig. 3c, but with Ee = 2Ev . Note that the shape of the energy landscape is almost unchanged, with perhaps
a very slight increase in the maximum energies. For each energy landscape, the overall energy scale is
chosen so that the configuration with m = 0 has energy 1.0

and parameters, M12A24, is nearly constant over a much larger range of energy ratios,
varying both Eedge/Evertex, and Eplanar (data not shown). Thus, the ratios of the energy
parameters in this system seem to be relatively unimportant; the competition between
the edge energies and vertex energies results in an embedding which balances those
energies in such a way that the shape of the energy spectrum is roughly independent
of the ratios; this shape is almost entirely determined by the preferred angles. The
overall energy scale, of course, will be important in any system in which temperature
plays a role.
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Fig. 7 Crossover from cuboctahedron to rhombicuboctahedron. Partial energy spectra of cuboctahedron
and rhombicuboctahedron plotted together; blue points give the rhombicuboctahedron and red the cuboc-
tahedron (Color figure online)

4.6 Crossover Between Polyhedra

Finally, we compare two different polyhedra to one another as shown in Fig. 7. For
the cuboctahedron, we scale both the number of colored edges and the energy by two
in order to compare energy per molecule. The preferred angles are 121.5◦ and 151.8◦;
both angles are larger than the ideal angle for the cuboctahedron, and the average
angle matches the rhombicuboctahedral ideal angle for m ≈ 20. Note that there is a
crossover; for m ! 6, the cuboctahedron is energetically favored, while for m " 6,
the rhombicuboctahedron is energetically favored.

5 Discussion

The main contributions in this work are:

1. The development of a ‘minimal’ mechano-combinatorial model for molecular
cages inspired by experiments (Sun et al. 2010).

2. The development of a symmetry-based computational scheme to determine
minimum-energy states at zero temperature.

While this work was inspired by Sun et al. (2010), it does not as yet provide an
explanation for the emergence seen in experiments. The inclusion of physical effects
that are ignored here, such as entropic effects and kinetics, should shed more light on
the process of self-assembly. We first discuss certain interesting features of the energy
landscape that our work has revealed. We then describe how our computations could
be used as a basis for the inclusion of entropic effects. The computational challenge
of including kinetics in a related model is described in the companion paper (Johnson
and Menon 2015).

First, let us discuss some important features of the zero- temperature energy land-
scape. We have found a strong variation in the energy of isomers—it is not just the
number of each type of edge, but their arrangement on the polyhedron that determines
the energy of the system. When the preferred angles encompass the ideal angle for
the polyhedron, the lowest energies are achieved by high-symmetry configurations in
which edges meet at cis configurations at a vertex. For some choices of parameters, we
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see a shift in minimum-energy states from cuboctahedron to rhombicuboctahedron.
We also note a striking analogy to another experiment in Fujita’s lab, in which ligands
with different lengths but similar anglesweremixed (Sun et al. 2014). For a sufficiently
large ratio between the lengths, r ≈ 2, they observed a mixed yet sorted structure of
the form M12A12B12 with a well-defined structure in which longer and shorter ligand
molecules were found opposing one another. Our work shows that similarly mixed yet
sorted structures are favored when ligands with different angles are mixed, although
the energy differences are small enough that the sorting is not as complete as in Sun
et al. (2014).

Let us now turn to a discussion of entropy. In the experiments, polyhedra with a
range of m self-assemble in a single solution (Sun et al. 2010). Examination of our
energy spectra show first of all that there is a gap between the lowest-energy state
and the next lowest, so that at sufficiently low temperature, only the lowest-energy
state should be observed. This does not take into account the determination ofm from
the bulk ligand concentration; however, the lower envelope of the energy spectrum
is, for the parameters we have studied, concave down, meaning that for p ̸= 1/2 the
system forms as many polyhedra as possible withm = n, the lowest-energy state, and
forms pure polyhedra when one type of ligand is in excess. That configurations with
m ̸= 0, n, 2n are seen indicating that higher-energy states are thermally accessible
due to the entropic considerations. Let us now indicate how our work can be extended
to include these effects.

We distinguish between two approaches : (1) a full computational study of the
free energy landscape at positive temperature; (2) a reduced model that builds on our
study, but includes translational, vibrational and rotational entropy. Study (1) requires
the construction of a Markov Chain Monte Carlo scheme that efficiently explores the
energy landscape at finite temperature to approximate the full partition function of the
system. This approach is completely different from the main thrust of our paper, and
we do not pursue it. On the other hand, as in colloidal systems of rigid spheres, it is
possible to focus on the entropic contribution to the relative probability of different
energy minima, rather than integrating over all possible configurations. We work in
analogy with the recent review (Cates and Manoharan 2015, Section3) for colloidal
systems of rigid spheres. The authors contrast the relative probability of two isomers
(the octahedron and tri-tetrahedron, respectively), by approximating the full parti-
tion function by a product Z = ZTZRZV that accounts for the translational (T) free
energy, rotational (R) free energy and vibrational (V) free energy, respectively. The
translational free energy depends on the internal energy of different configurations
and is the same for the two clusters. However, their rotational and vibrational energies
are distinct and may be computed by classical formulas [Eqs. (3) and (4) in Cates
and Manoharan (2015)] that require a computation of the vibrational frequencies of
normal modes of the cluster, moments of inertia and symmetry factors of different
states. These ideas have a natural extension to our system: the minimum-energy state
for a fixed combinatorial type is the analog of a rigid cluster (e.g., the octahedron and
tri-tetrahedron are two clusters with the same number of particles, but distinct combi-
natorics). Thus, the computational task of augmenting our model to (approximately)
include entropy involves determining the vibrational modes and moments of inertia
for each combinatorial type, by linearizing about the minimum-energy states that have
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been determined in this paper. The vibrational modes may be determined numerically
by computing the eigenvalues of the stiffness matrix obtained by linearizing the elastic
energy at the minimizing geometry, for each choice of parameter values used here.
This task is sufficiently computationally intensive that we do not pursue it here, though
we hope to address it in future work.

We have also not taken into account kinetics. We have considered the configuration
space as a graph by drawing connections between configurations which are related
by the change of preferred angle of a single edge; however, we do not expect this
to be a realistic model for the ways in which edges dynamically arrange themselves.
The kinetics are crucial to establishing whether the system can reach its equilibrium
distribution and onwhat timescale, or whether non-equilibrium states become trapped.

In conclusion, the work presented here provides insight into the importance of con-
figuration and symmetry in the determination of the free energies of self-assembling
molecular cageswith a large number of isomers. It illustrates the importance of exploit-
ing symmetry to reduce the size of otherwise combinatorially intractable problems.
Finally, the zero-temperature calculations serve as the starting point for approximate
calculations at positive temperatures as outlined above.
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