
THE ISOMETRIC EMBEDDING PROBLEM AND RANDOM

MATRIX THEORY

GOVIND MENON

Abstract. The purpose of these notes is to introduce a set of models that

make precise some links between the isometric embedding problem and ran-
dom matrix theory. The underlying formalism is a model for equlibration that

separates a stochastic flow for a gauge from a (typically) deterministic evolu-

tion for an observable. Matrix models are introduced to clarify this structure.
The simplest of these models is a stochastic flow in the space of Hermitian

matrices H(n) described by the Itô equation

dM = [dK,M ] := dKM −MdK, dKijdKkl = Cijkl dt.

Here the noise dK takes values in the space of anti-Hermitian matrices A(n),

so that C is a positive definite tensor on A(n).
Despite the fact that M(t) is stochastic, it is shown that for a particular

choice of covariance kernel C (see equation (4.24) below) the eigenvalues of M

evolve deterministically according to Coulombic repulsion

λ̇j =
∑
k 6=j

1

λj − λk
, t ≥ 0.

This model is shown to be exactly solvable.

The main tasks for analysis are to show that this choice of covariance
kernel may be obtained through both intrinsic and extrinsic considerations.

The intrinsic problem involves showing that a particular choice of C is not

just a lucky guess, but is in fact the analytic center of a polytope, so that it
is itself determined as the argmin of a solution to an elliptic PDE of Monge-

Ampère type. The extrinsic problem is to show that the SDE for dM is the

projection of Brownian motion in the space of Hermitian matrices H(n) onto
a coadjoint orbit. The underlying structure– deterministic evolution of an

observable (the spectrum) and stochastic evolution of a gauge (the Hermitian

matrix) – is representative of a larger class of models that are all motivated
by a stochastic approach to the embedding theorems.
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1. Introduction

The purpose of this note is to develop some links between random matrix theory
and the embedding problem for Riemannian manifolds through the analysis of new
matrix models. The problems outlined here can be analyzed without any knowledge
of the embedding theorems. But it is helpful at the outset to understand the
underlying viewpoint and research program as motivation for this work.

1.1. Random matrix theory and the Nash embedding theorems. Given a
closed Riemannian manifold (M, g) an isometric embedding into (Rq, e) is a C1

map u : M → Rq such that u]e = g. Here e denotes the Euclidean metric on Rq
and u]e is the pull-back metric onM. Modern understanding of this problem dates
to the pioneering work of Nash in the 1950s [20, 21]. All the work presented here
has its origins in an attempt to find a conceptual explanation for the link between
the embedding problem and turbulence discovered by De Lellis and Székelyhidi [4].

We will treat embedding as a stochastic flow of immersions ut : (M, g)→ (Rq, e),
such that u := limt→∞ ut satisfies the PDE u]e = g. Any such stochastic flow is
determined by the covariance kernel of dut: we choose it as the solution to a
semi-definite program (SDP). In general, this SDP has the character of an infinite-
dimensional matrix completion problem, but simpler examples are provided below.
Formally one may design the SDP so that the pullback metric gt evolves determin-
istically, while ut is stochastic. The main purpose of this note is to introduce matrix
models that allows a better understanding of this structure: stochastic evolution
of a ‘gauge’ (the immersion ut) and deterministic evolution of an ‘observable’ (the

metric gt := u]te).
The simplest matrix model we study is the SDE

dM = [dK,M ] := dKM −MdK, dKijdKkl = Cijkl dt, M ∈ H(n), (1.1)

with a specific covariance structure described in equation (4.24) below. Let M =
QΛQ∗ denote the diagonalization of M , with the added convention that Λ =
diag(λ1, λ2, . . . , λn) with λ1 < λ2 < . . . λn. In this setting the gauge is the matrix
M(t), which evolves stochastically by (1.1). The observable is the spectrum Λ(t)
which evolves deterministically by Coulombic repulsion between the eigenvalues; an
associated spectral measure evolves by the complex Burgers equation.

This model is exactly solvable. This observation is not surprising to someone
familiar with random matrix theory since Coulombic repulsion is simply the β →∞
limit of Dyson Brownian motion. What is fundamentally new is the model (1.1),
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the underlying viewpoint regarding equlibration, and the link between random ma-
trix theory and the embedding theorems. Despite the extensive study of Dyson
Brownian motion, it seems not to have been suspected that deterministic Coulom-
bic repulsion of eigenvalues has an underlying stochastic structure, or that this
structure may be used to understand problems in apparently unrelated areas. The
main goal of this note is to present some tractable conjectures that nail down the
underlying Riemannian geometry and stochastic analysis thus linking the areas of
random matrix theory, the embedding theorems and turbulence. Let us briefly
explain why we view this as an interesting direction.

1.2. Gibbs measures for embedding. Our approach to the embedding theorems
involves several shifts in viewpoint from Nash’s work. The question we wish to
formalize and answer is ‘What does a typical embedding look like?’. This is in
contrast with the historical questions ‘Does an embedding exist? If so, how smooth
is it?’ resolved by Nash and Gromov.

There are two reasons for looking to RMT for inspiration to answer these ques-
tions. First, our approach to both problems is rooted in a common technical frame-
work. In both cases, the underlying physical process is equilibration and we model
this process with stochastic flows, using an SDP to determine the covariance. We
analyze this SDP with a combination of geometry and probability following recent
work in the optimization community [11]. Roughly, the constraints in an SDP deter-
mine a convex polytope, as well as a canonical Riemannian metric on this polytope
given by the Hessian of the unique solution, denoted F , to a critical Monge-Ampere
equation (see equation (2.9) below). The function F is called the canonical barrier
in optimization theory and it may be thought of as the optimal choice amongst
the family of all self-concordant barriers. 1 The notion of self-concordance was
introduced by Nesterov and Nemirovskii to provide a systematic understanding of
Newton’s method for interior-point methods for conic programs [22]. The interplay
between affine and projective geometry and Newton’s method dates to Karmarkar’s
first papers in the subject [16]; recent work sharpens this insight by showing that
self-concordance is a bound on the Schwarzian derivative (or equivalently a lower
bound on the Ricci curvature) for the metric induced by the barrier [5, 10, 11]. Our
goals include a probabilistic understanding of this condition. This direction has not
been explored to date. For these reasons, stochastic models for optimization, again
focused on matrix models, are also considered in these notes. Here too the under-
lying structure appears to have some depth and it is necessary to first understand
it precisely in simpler models.

Second, at present, RMT offers the best mathematical template for rigorous
understanding of universality. This framework goes roughly as follows:

(1) Given an energy V : R → R, consider the Gibbs measure on the space of
Hermitian matrices H(n) defined by

pβ(M)dM =
1

Zβ
e−βTr(V (M)) dM, Zβ =

∫
H(n)

e−βTr(V (M)) dM,

and study its asymptotics as n→∞. The analog of the law of large num-
bers – i.e. a deterministic scaling limit in the limit n→∞ – is the equilib-
rium spectral measure, which is given by a fixed-point equation depending

1This is an unfortunate conflict of terminology with elliptic PDE theory. We will have to be

careful to distinguish these notion.
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on the potential V . It is possible to formally introduce such potentials for
discretizations of embeddings, but there is to date no rigorous construction
of Gibbs measures for embeddings.

(2) Investigate the universality of fluctuations. The fundamental laws of fluc-
tuation in RMT are the Dyson-Gaudin-Mehta and Tracy-Widom distribu-
tions which depend on the choice of potential only through minor moment
assumptions. While the universality of the Kolmogorov spectrum is an em-
pirical fact of turbulence, there appears to have been no previous attempt
to study such universality in Riemannian geometry, even numerically. It
also does not appear to have been realized that there may be a relation
between universality in turbulence and RMT.

Such speculation – even if it is a long way from rigorous analysis – does have a
basis in both physics and machine learning. Let us discuss this in turn.

Gibbs measures for embeddings appear in the physics literature in Friedan’s work
on the nonlinear sigma model [6, 7]. Several of our ideas originate in this work –
in particular the emphasis on equilibration, gradient flows, and a geometric view
of renormalization. However, we replace Friedan’s techniques – Feynman diagrams
and expansion in dimension – with the use of stochastic flows and an SDP. It is
tempting to draw parallels between our use of information theory and recent work
by string theorists, but this is quite speculative at present [23, 28] 2. Our purpose
here is more narrow – it is to provide a dynamic construction of Gibbs measures
for embedding based on the technical framework that is illustrated in Section 2.
To the best of our knowledge, there appears to have been no attempt to construct
Gibbs measures for embeddings rigorously prior to our work (though see [3]).

There is an extensive literature on the use of embeddings in machine learn-
ing by mathematicians and computer scientists. This includes work on manifold
learning [14] as well as more recent attempts to revisit the embedding theorems to
develop notions of canonical embeddings [27]. An essential idea in most of these
papers is the use of heat kernel embeddings, based on the work of Bérard, Besson
and Gallot [1]. Here too, while the use of heat kernels in the embedding problem
is well-established, there appears to have been no prior attempt to investigate the
probabilistic and thermodynamic foundations of this idea, as captured in the con-
struction of Gibbs measures. A Bayesian approach to learning also leads directly
to this construction problem. For example, Gibbs measures for embeddings are
also fundamental for the construction of priors on geometric fields in the Bayesian
approach to handwriting recognition. This viewpoint is described in [17, Ch.7].

In summary, while the above results, especially [1, 6, 7] were useful to us when
developing our viewpoint, as a matter of technique we find it more fruitful to base
our work directly on Nash’s insights, combining it with an analysis of SDP. New
clustering algorithms and new matrix models for optimization and deep learning
that follow from this viewpoint are discussed below.

1.3. Information theory and embedding. At first sight, our approach is at
variance with the historical development to these theorems which contain no hint
of probabilistic reasoning, the importance of the embedding theorems in physics,
or (until about ten years ago) their utility in applications. Instead, the main lines

2I am grateful to Nima Lashkari for introducing me to these papers.
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of mathematical research since Nash’s pioneering work are usually seen as the de-
velopment of the h-principle by Gromov and the formulation of the Nash-Moser
implicit function theorems [8, 9, 19, 18].

The ‘philosophical core’ of our approach is different: we view embedding as a
form of information transfer between a source and an observer, recognizing that the
process of information transfer is complete when all measurements of distances by
the observer are the same as those of the source. This viewpoint is both Bayesian
and information theoretic. It places the emphasis not on the structure of the
manifold, but on a more primitive aspect of the problem, the measurement of length.
In the Bayesian interpretation, the world is random and both the source and the
observer are stochastic processes with well-defined parameters (we will construct
these processes on a Gaussian space to be concrete). The process of successive
approximation implict in Nash’s work can now be seen as a control strategy by an
observer to tune a model in response to observations of signals from the source.
Thus, embedding is simply ‘replication’ and the process of replication is complete
when all measurements by the observer and the source agree on a common set of
questions (here it is the question: ‘what is the distance between points x and y?’).

In this interpretation, the embedding problem for Riemannian manifolds has the
same character as apparently simpler problems such as the embedding problem
of finite metric spaces and metric graphs into Rq. This idea is explained at the
end of this section, since it immediately reveals the mathematical structure of our
stochastic flows. It also reveals how one may follow our modification of Nash’s
insights to create new stochastic algorithms in machine learning. (The embedding
of metric spaces and graphs are of fundamental importance in applications such as
geo-sensing and the design of navigation systems). Here too the ‘core’ mathematics
is the interplay between the Riemannian geometry of SDP and stochastic flows.

Once one has adopted this intellectual position, the only fundamental bottleneck
on embedding is provided by Shannon’s channel coding theorem; the traditional
emphasis on codimension, smoothness and the use of implicit function theorems
begin to appear less fundamental. In particular, at a foundational level, the use
of probabilistic or information theoretic methods in the embedding problem should
be seen as natural, because it is nothing more than a modern formalism for the
process of measurement of lengths. This ties the embedding theorems to much
older developments in mathematics, in particular the work of Riemann.

But the truth is much more mysterious. There appear to be many subtle and
unexpected ties between our approach (which is just beginning) and these landmark
results. Our work began with a specific technical modification of Nash’s 1954 paper
and it is only through a laborious series of simplifications, guided by many analogies
with the work of others, that we arrived at the viewpoint above. At the technical
level, our stochastic approach to embedding interpolates between Nash’s work in
1954 and 1956, replacing the discrete iteration for low-codimension embeddings
in 1954 and the smooth flow for high-codimension embeddings in 1956, with a
stochastic flow. The Itô correction provides the desired change of metric in this
approach. The SDP arises because many choices of covariance kernel can be used
to achieve the same change of metric; the analytic center of the SDP provides
a principled choice amongst these. In fact, the analytic center is the argmin of
the canonical barrier associated to the SDP. The primary task of this note is to
construct simpler models where this SDP can be understood in detail.
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By choosing an alternative viewpoint, centered mainly in the relation of math-
ematics to the sciences, our approach provides a systematic derivation of several
new geometric stochastic flows. In each case, the key technical step is a precise
understanding of an SDP which has the character of a matrix completion problem.
A study of the embedding theorems from this viewpoint also seems to shed new
light on the intrinsic construction of Brownian motion on Riemannian manifolds
by Eells, Elworthy and Malliavin. An examination of these constructions suggests
a natural ‘physical’ cartoon of embedding as a backward heat flow (this idea still
requires a precise formulation; though a sketch is included at the end of this note).

Our main goal at present is to understand the structure of these geometric sto-
chastic flows, both with rigorous analysis on simplified models, a probabilistic ap-
proach to SDP and optimization, as well as numerical experiments. In this way, we
hope to develop new heuristics and analytic techniques, in order to attack several
unresolved questions on the embedding problem.

2. Example: clustering on a finite metric space

Let us illustrate our viewpoint with an instructive example. Assume given a
finite metric space (K, ρ) and consider the problem of isometrically embedding K
into Rq. A closely related problem is to find an isometric embedding of a finite graph
G into Rq. When q = 1 we are constructing a function on a metric space whose
level sets may be used to partition the metric space into subsets. This idea is called
clustering and it plays an important role in machine learning. These problems are
well studied [12], but our take on them is new.

An essential aspect of Nash’s 1954 paper is the relaxation of the PDE u]e = g
to a space of C∞ subsolutions v]e < g (ordering is in the sense of quadratic forms),
followed by an iteration that ‘pushes up lengths’ by the addition of fluctuations. The
purpose of this section is to ilustrate the robustness of this insight when combined
with stochastic flows and SDP. For now, these ideas should be seen only as ‘proof
of concept’. It is of interest to improve on this basic structure to construct fast
methods for embedding graphs and metric spaces.

First, consider the problem of embedding a finite metric space. Thus, assume
given (K, ρ) and following Nash, let us say that a map v : K → Rq is short if
|v(x) − v(y)| < ρ(x, y) for every pair of points x, y ∈ K. The set of short maps
is clearly non-empty since we may always map all points in K to the origin in
Rq. Now let us seek an embedding via a stochastic flow ut : K → Rq, 0 ≤ t < ∞,
insisting that ut should be short for each t. We define such stochastic flows through
Itô SDEs, writing

dut(x) := du(x, t) =
√
dL (2.1)

where the terminology
√
dL means that the covariance of the mean-zero noise is

given by

dui(x, t)duj(y, t) = L̇ij(x, y; t) dt. (2.2)

The terminology for the noise is unconventional, but useful since our end result will
be a closed equation for du and L.

To simplify matters further, let us assume that q = 1 so that we are looking at
the clustering problem. It is not true in general that a finite metric space or graph
can be embedded into the line; however, our method always provides a relaxation
of this problem, and it is easiest to see the structure of an SDP in this setting.
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When q = 1 equation (2.2) reduces to

du(x, t)du(y, t) = L̇(x, y) dt

and we see that L̇ must be a positive semi-definite matrix of size |K| × |K|. For

brevity, let n = |K|, so that L̇ ∈ P(n), the space of real positive semi-definite
matrices of size n × n. The general structure (2.2) also provides a positive semi-
definite covariance tensor, but one must be more careful in analyzing positivity and
our purpose here is simply to illustrate the role of SDP.

We term the use of stochastic flows in equation (2.1) as stochastic kinematics.

The task ahead of us is to choose the matrix L̇ using other principles, for example
the inclusion of energetics, to obtain a closed evolution equation. To this end, let us
again follow Nash and seek a correction of the metric defect, which in this discrete
setting is the discrepancy between the distances provided by the short map ut(x)
and the distances dictated by the metric ρ. To this end, we apply Itô’s formula to
the pairwise distances |ut(x)− ut(y)|2 to obtain

d |ut(x)− ut(y)|2 = 2 (ut(x)− ut(y)) · (dut(x)− dut(y))

+ (dut(x)− dut(y)) · (dut(x)− dut(y)) . (2.3)

The first term on the LHS is a martingale term and its law is determined once
we have prescribed the covariance L̇. The second term is the Itô correction. It is
deterministic and it can be expressed directly in terms of L̇ as follows:(

L̇(x, x) + L̇(y, y)− 2L̇(x, y)
)
dt. (2.4)

Since ut is short, we may now choose to ‘bump it up’ by choosing the above term
to be M(x, y) dt where M = M(u) ∈ P(n). This choice constitutes the energetics
of our problem. All that matters is that M is defined by a sufficiently smooth map
from Rn → P(n), such that M(v) > 0 when v ∈ Rn is short and M ≡ 0 when v is
not short. Of course, specific choices of M could affect the rates of convergence and
computational cost of the scheme, but what matters for us at this stage is simply
the structure of the problem. Once M(u) has been chosen, stochastic kinematics

imposes a set of constraints on L̇. In particular, if we want the expected value of
each pairwise squared distance to improve by M(x, y) dt we obtain a set of linear
equations of the form

L̇(x, x) + L̇(y, y)− 2L̇(x, y) = M(x, y), x, y ∈ K. (2.5)

This set of equations may be rewritten in the standard form of SDP. Let Axy denote
the matrix such that Axy(u, v) = 1 if u = v = x or u = v = y; Axy = −1 when
u = x, v = y and u = y, v = x; and Axy(u, v) = 0 otherwise. Then equation (2.5)
may be rewritten as the linear constraint

Tr(AxyL) = M(x, y), x, y ∈ K. (2.6)

This equality constraint may also be relaxed further to the inequality constraints

Tr(AxyL) ≤M(x, t), x, y ∈ K, (2.7)

in case equation (2.6) has no solution.
Let us take stock of what has been done so far. We have applied Nash’s insight of

relaxation to the problem of metric space embedding in combination with stochastic
calculus and an energetic rule to choose a correction M . This has led us to another
relaxation, equation (2.7). The reason we used dL in (2.1) is to allow for the fact
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that we would like to design our flows so that L(t) is differentiable in order to
ensure absolute continuity of the underlying Gaussian measures. This restriction is
most interesting in infinite-dimensions where it is imposed by the Cameron-Martin
theorem, but it is also interesting in finite-dimensions when constructing low-rank
approximations.

This restriction is the last piece of structure we need. Differentiability of L(t)

imposes the condition that L̇ must lie within the tangent space TLP(n). Thus, the
linear constraints in (2.7), as well as the positivity constraint

L̇ ≥ 0 (2.8)

define a convex polytope C = C(u, L,M) in TLP(n). This is the simplest setting in
which one sees the appearance of an SDP. However, unlike the standard setting in
optimization, we do not have a linear cost-function to minimize, what we are seeking
is a way to choose a unique point within C that closes the evolution equation.

A principled answer to this question is provided by the notion of the analytic
center of a polytope. Under mild non-degeneracy assumptions, a convex polytope in
P(n) carries a natural Riemannian geometry. More precisely, there exists a unique
solution to the Monge-Ampère equation 3

log detD2F = 2F, P ∈ C (2.9)

such that limx→∂C F = +∞. This solution provides a canonical foliation of the
polytope by affine hyperspheres and the analytic center is the argmin of F . 4 These
two steps in combination now yield the closed dynamical system

du =
√
dL, L̇ = argminP∈C(u,L,M)F (P )). (2.10)

By construction, L̇ is monotone increasing and ut is a bounded martingale, and it is
immediate that limt→∞(ut(x), Lt) exists if one establishes a Lipschitz dependence
of the analytic center on u, L and M . In this manner, we may construct Gibbs
measures for relaxations of embedding problems. Since the above scheme maps a
finite metric space into R, what it provides is a stochastic clustering algorithm.

Once this basic structure has been identified – stochastic kinematics and a degen-
erate SDP that determines the noise – many variants become possible. For example,
the distinction between the embedding of a finite metric space and a graph embed-
ding, is that a graph contains additional information (the connectivity of points by
edges), that may be used to ‘compress’ the space of embeddings. Thus, for instance
when considering graph embeddings, we may use the gradients of scalar random
fields to simplify the SDP and embedding. In order to avoid further distraction,
these algorithms are treated in a separate section.

3. Goals and related work

3.1. Conjectures. The concrete tasks that we would like to establish by exploring
the RMT model are as follows. Prove that:

3Need to transform this from the statement on Rn to P(n).
4While the proofs of these results use deep PDE results, it is not apparent that the full power

of these results is needed in our context. What matters is simply the fact that given only the
geometry of a polytope, as defined by constraints such as (2.6), there is always a fundamental

notion of the center of the polytope. In fact, by relaxing the SDP itself, we hope to obtain a
better probabilistic understanding of these results using Gibbs measures for optimization. These
ideas are being explored in the thesis projects of Michael Lee and Zsolt Veraszto.
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(1) The stochastic flow introduced below corresponds to motion by mean cur-
vature of coadjoint orbits in the space H(n) of Hermitian operators.

(2) The motion by mean curvature is exactly solvable. This includes an explict
description of the time dynamics by the complex Burgers equation, as well
as an explicit description of a limiting constant mean curvature surface
using Hermite polynomials.

(3) The structure of the SDP for the covariance is almost explicit for the exam-
ple studied here. We conjecture that the analytic center may be determined
explicitly and that it corresponds to our ‘lucky guess’ in equation (4.24).

(4) This approach suggests new insights into RMT too. As we show below, the
scaling limit for the spectral measure of the stochastically evolving matrix
M(t) ∈ H(n) is given by the complex Burgers equation. Important work of
Biane and Voiculescu has shown that the complex Burgers equation should
be seen as the heat equation for RMT [2, 26]. However, these results were
obtained using tools from asymptotic representation theory and von Neu-
mann algebras. There appears to be no direct construction of a diffusion in
a space of bounded operators that corresponds to Voiculescu’s free proba-
bility. But it seems reasonable to expect that there is a scaling limit of the
construction outlined below (which is completely rigorous for any n) that
provides a new description of free probability. This problem is definitely
harder. It is more prudent to nail down the first three points and publish
these, before addressing the question of scaling limits.

3.2. Related work. Matrix models of equlibration, all of which reduce to the
same philosophy and tools – the construction of stochastic flows by intrinsic and
extrinsic methods, SDP for covariance tensors, Gibbs measures for SDP – are being
investigated in parallel work with students. In particular, Ching-Peng Huang will
explore the Bures-Wasserstein analog of the construction presented here (again joint
with Dominik Inauen). Michael Lee and Zsolt Veraszto are studying Riemannian
analogs of the following fundamental model for equilibration with applications to
optimization and deep learning respectively.

It is always helpful to think about the following classical model when one studies
Gibbs measures. Given a potential V : Rn → R and a fixed inverse temperature
β > 0 the Gibbs measure µβ associated to the potential is the probability measure
with density

pβ(x) =
1

Zβ
e−βV (x), Zβ :=

∫
Rn

e−βV (x) dx. (3.1)

The main tasks in statistical mechanics usually reduce to computing the partitition
function Zβ or sampling from it. The Gibbs measure may be derived in various
ways. A variational approach involves minimizing free energy; the key idea being
the role of entropy. This derivation has a Bayesian foundation: the Gibbs measure
µβ represents the best guess of the law of an unknown random variable, given the
knowledge of the potential V . This derivation takes its sharpest form when V is
either 0 or +∞, so that we have a hard constraint model. The Gibbs measure is
then obtained by minimizing the entropy subject to the constraints [13].

It is also helpful to think of the Gibbs measure as a dynamic quantity, so that
one forms a physical feel for the process of equilibration. A commonly accepted
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caricature of equlibration is the Itô SDE

dX = −∇V (x)dt+
1√
β
dB, (3.2)

which describes the motion of a particle in Rn that is trying to minimize the poten-
tial subject to stochastic fluctuations. In this cartoon, B(t) = (B1(t), . . . , Bn(t)) is
standard Brownian motion in Rn. The equilibrium measure for this Markov process
is the Gibbs measure µβ . The physical intuition here is that the potential drives
the particle down to its minima, but then the noise kicks it out of the potential
well and the equilibrium measure reflects a balance between these effects.

The work with Michael Lee and Zsolt Veraszto tackles the following problems.
With Lee, our goal is to provide a stochastic formulation of interior point methods
for SDP. This work is stimulated by the need to understand SDP better. Here we
build on fundamental insights from the optimization community. In particular, they
have shown that efficient algorithms for SDP can be understood as gradient flows
on the space P(n) of positive definite matrices equipped with the trace (or Cartan-
Hadamard) metric: at any X ∈ P(n), the length of a tangent vector A ∈ TXP(n)
is given by 〈A,A〉X = Tr(X−1AX−1A). Veraszto is exploring a model of deep
learning, which too reduces to a gradient flow, but this time on GL(n) equipped
with a metric determined by the architecture of the network.

Our approach to both these problems, reduces to the analysis of the Riemannian
analog of (3.2). The setting now is as follows. We assume given a Riemannian
manifold (M, g) and a potential V : M → R. The Gibbs measure has density
given by

pβ(x) =
1

Zβ
e−βV (x), Zβ :=

∫
M
e−βV (x)

√
det g(dx). (3.3)

(That is, we simply replace the volume form on Rn by its natural Riemannian
analog). However, the SDE that replaces (3.2) is more subtle and is given by

dX = −gradgV (x)dt+
1√
β
dW (3.4)

where dW is intrinsic Brownian motion with respect to the metric g. To the best
of my knowledge, this equation has not been investigated systematically. Certainly,
both the applications we consider are completely new.

It is possible to avoid SDE and work with the associated Fokker-Planck equations
instead. The analysis of (3.2) then reduces to the celebrated work of Otto and his
co-workers [15, 24]. The Riemannian analogs has been investigated by Sturm [25],
though I have not looked at it carefully yet. But here too, the emphasis on intrinsic
Brownian motion and stochastic differential geometry is new.

Finally, despite the simplicity of the results presented below, to the best of my
knowledge the model and all assertions are new. It is for the reasons outlined above
that I would like to begin rigorous analysis on my program with this model.

4. Stochastic gradient descent in RMT

We will construct stochastic flows of Hermitian opearators M(t) such that the
spectrum σ(M(t)) evolves deterministically. The main example of this construction
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is the following: the ordered spectrum λ1(t) < λ2(t) < . . . < λn(t) will evolve by

λ̇j =
∑
k 6=j

1

λj − λk
, 1 ≤ j ≤ n, (4.1)

whereas the Hermitian operators M(t) will solve Itô equations of the form

dM = [dK,M ]. (4.2)

This Itô equation is a stochastic analogue of the deterministic equation

Ṁ = [K(t),M ], (4.3)

where K(t) denotes a smooth curve in the space of anti-Hermitian matrices A(n).
Such a deterministic equation yields an isospectral flow. However, the Itô equation
(4.2) is not isospectral: the Itô correction is transverse to the isospectral manifold.

An Itô equation such as (4.2) is completely prescribed by the covariance tensor
dKjkdKlm. An explicit covariance tensor for which the spectrum of M(t) solves
equation (4.1) is given in equation (4.25) below. An equivalent description of (4.1)
is provided by an evolution equation for the anti-Herglotz function

g(z, t) =

n∑
j=1

1

z − λj(t)
= Tr(R(z;M(t)), R(z;M) := (z−M)−1, z ∈ C+. (4.4)

Equation (4.1) is equivalent to the complex Burgers equation

gt + ggz =
1

2
gzz, z ∈ C+. (4.5)

The specific choice of covariance such that equation (4.2) leads to equation (4.29)
involves some guess work. It is of interest to systematize this procedure. We formu-
late a semidefinite program (SDP) to determine all tensors that ‘lift’ equation (4.1)
to (4.2). This SDP has the structure of a matrix completion problem: we are given
the diagonal entries of a positive definite matrix and our task is to make a princi-
pled guess for the matrix. We approach this question using Bayesian principles and
formulate Gibbs measures for SDP that apply in particular to matrix completion.

This formalism is applied to equations (4.1) and (4.2). This construction yields
the complex Burgers equation in the limit n→∞. The main rigorous challenge is
to construct an associated diffusion process of operators M(t) and to formulate a
notion of entropy solution to (4.2) in this limit. We expect that this construction
will provide a new description of free probability.

4.1. Notation. The space of Hermitian and positive definite matrices is denoted
H(n) and P(n) respectively. By default, Hermitian means complex Hermitian,
though we use the same terminology for real matrices, writing P(n;C) and H(n;C),
or P(n;R) and H(n;R), when there is a need to distinguish between the two. Simi-
larly, the unitary group is denoted U(n) in both settings. However, when diagonal-
izing complex Hermitian matrices, we will work with the quotient group U(n)/Tn
and A(n), the space of anti-Hermitian matrices with zero diagonal. For every
K ∈ A(n), the curve exp(tK) lies in U(n)/Tn, t ∈ R.

The asterisk ∗ is used to denote the conjugate transpose, or just transpose,
depending on whether one works with real or complex entries. The Frobenius inner
product on M(n)

〈M,N〉 := Re Tr(M∗N), M,N ∈M(n), (4.6)
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is used throughout. The asterisk is dropped when M and N are Hermitian.
All calculations below are for real symmetric matrices. They should be extended

to complex Hermitian matrices, but some care is needed when defining the possible
covariances. We will come back to this. We still use the notation ∗, A(n) and H(n).

4.2. Diagonalization and isospectral flows. Let us write

M = QΛQ∗, (4.7)

for the diagonalization of a matrix M ∈ H(n). We assume that the eigenvalues are
distinct so that the change of variables M 7→ Rn × U(n) is locally analytic. We
refer to Λ as the observable and Q as the gauge.

The tangent space TMH(n) admits a direct space decomposition, which is also
an orthogonal decomposition when one uses the Frobenius norm on H(n). Consider
a smooth curve M(t) and differentiate it to find

Ṁ = [K̇,M ] +QΛ̇Q∗, Q̇ = K̇Q. (4.8)

where K̇ ∈ A(n). Similarly, we also have

Q∗ṀQ = [Λ, L̇] + Λ̇, Q̇ = QL̇, (4.9)

with L̇ ∈ A(n). The difference in these two equations is the choice of right or

left-multiplication on U(n). The variables K̇ and L̇ are related through

L̇ = Q∗K̇Q. (4.10)

Equation (4.8) is more convenient for defining SDE on H(n). On the other hand,

equation (4.9) reveals the splitting of TMH(n) more clearly. Since the matrix [Λ, L̇]
vanishes on the diagonal, we see that it is orthogonal to the space of diagonal
matrices with respect to 〈·, ·〉. Thus, equation (4.9) reveals an orthogonal splitting
of TMH(n) with respect to the inner-product (4.6).

4.3. The resolvent. Define the resolvent H(n)× C+ → GL(n;C)

(z,M) 7→ R(z;M) := (z −M)−1, z ∈ C+. (4.11)

For fixed M , the map z 7→ R(z) is analytic in the upper half plane. Similarly,
holding z fixed, the map M 7→ R(z;M) is analytic in M . We compute its first and
second derivatives as follows. Consider a curve (−1, 1)→ H(n), t 7→M(t), with

M(0) = M, Ṁ(0) = S, M̈(0) = 0. (4.12)

The straight line, or geodesic in Frobenius norm, M(t) = M + tS satisfies this
condition. We then differentiate the identity

R(t)(z −M(t)) = Id (4.13)

with respect to t to obtain the idenities

Ṙ = RṀR, R̈ = RM̈R+ 2RṀRṀR. (4.14)

We evaluate this expression at t = 0 to obtain the first and second derivatives of R
at M in the direction S

DR(M)(S) = RSR, D2R(M)(S, S) = 2RSRSR. (4.15)

We will need both these expressions when applying Itô’s formula to (4.7).
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4.4. Stochastic gradient descent. Define the projection map

π : H(n)→ Rn, M 7→ Λ. (4.16)

We want to design flows such that M evolves stochastically, whereas Λ = π(M)
evolves deterministically.

The simplest situation where one sees this interplay is for the SDE

dM = [dK,M ] = addKM. (4.17)

An SDE of this type is completely defined by a positive definite covariance tensor

dKijdKkl = Cijkl dt. (4.18)

Despite first appearances, the description of C requires no stochastic calculus. In-
deed, consider any Gaussian measure on A(n) and let K be a random variable with
respect to this measure. The covariance tensor C for real K is defined by

Cijkl = E (KijKkl) . (4.19)

Such a tensor may first be prescribed in the range 1 ≤ i < j ≤ n and 1 ≤ k < l ≤ n
and then extended to A(n) through the symmetries

Cijkl = Cklij = −Cjikl = −Cijlk. (4.20)

These are part of the symmetries of a Riemann curvature tensor. However, the
Riemann curvature tensor also includes the symmetries of the Jacobi identity, which
do not hold in the example (4.24) that we consider below. This requires more
thought. Similarly, when K is complex Hermitian, the book-keeping needs more
care.

The indices are ordered so that the map A(n)→ A(n), A 7→ C(A) defined by

C(A)ij = CijlkAkl (4.21)

is positive definite with respect to the Frobenius norm (4.6) (note the switch in the
outer two indices). Let’s check this. For any A ∈ A(n) we have

〈A,C(A)〉 = Tr(A∗C(A)) = AjiCijlkAkl (4.22)

(4.19)
= E (AjiKijAklKlk) = E (Tr(A∗K)Tr(K∗A)) (4.23)

= E |Tr(A∗K)|2 ≥ 0,

with equality only when A vanishes.
(It is not apparent to me that this is the best way to order the indices; the

convention in Lie theory is to have a negative definite Killing form. I’d like to keep
things as direct as possible in a manner that is probabilstically natural.)

In general, we will choose the covariance tensor C as a function of M . For fixed
M , and thus fixed Q, it will be useful to express the covariance tensor in terms of
the variable dL introduced in (4.8). We use equation (4.10) and equation (4.18) to
define

Dijkl :=
dLijdLkl

dt
= QpiQqjQrkQsl

dKpqdKrs

dt
= QpiQqjQrkQslCpqrs. (4.24)

An important special case is the following

Dijkl =
1

λj − λi
1

λl − λk
, i 6= j, k 6= l. (4.25)
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Let us check that D is positive definite. Let S ∈ H(n;R). We denote the sum over
repeated indices explicitly and compute

Dijkl =
∑
ijkl

1

λj − λi
1

λl − λk
SijSkl =

(∑
lm

Slm
λm − λl

)2

≥ 0. (4.26)

The underlying structure has little to do with the explicit form of Dijkl. What
matters is that Dijkl factorizes in the form Dijkl = BijBkl for an antisymmetric
matrix B. These calculations should work similarly for covariances on H(n;C), but
this requires a little more care.

4.5. Evolution of the resolvent. Once the covariance is prescribed (and assum-
ing existence of solutions), the evolution of the resolvent is determined by Itô’s
formula. We use equations (4.15) and (4.17) to obtain

dR = R[dK,M ]R+R[dK,M ]R[dK,M ]R. (4.27)

The first of these terms is a martingale term and the second is an Itô correction.
Neither vanishes, but the trace of the martingale term vanishes. Since the trace
defines a spectral measure, let us consider these terms explicitly and introduce
notation for it. Define the anti-Herglotz function g and the (unnormalized) spectral
measure νt through the formulas

g(z, t) := Tr(R(z;M)) =

n∑
j=1

1

z − λj(t)
:=

∫
R

1

z − s
νt(ds). (4.28)

We claim that with the choice (4.25), g satisfies the complex Burgers equation

gt + ggz =
1

2
gzz, z ∈ C+. (4.29)

The rest of this note builds up to this fact.
First, we claim that when dR solves (4.27), the evolution of g is deterministic.

The proof is a computation with the martingale term

Tr (R[dK,M ]R) = Tr(RdKMR)− Tr(RMdKR) (4.30)

= Tr
(
(MR2 −R2M)dK

)
= 0, (4.31)

since M and R commute.
The computation of the second term in (4.28) is a little more tedious since one

must compute the trace of each of the four terms

R[dK,M ]R[dK,M ]R = (4.32)

RdKMRdKMR+RM dKRM dKR−RM dKRdKMR−RdKMRM dKR.

These calculations may be simplified by diagonalization and replacing dK with
dL = Q∗dKQ. For brevity, let S = Q∗RQ = (z−Λ)−1. Both S and Λ are diagonal
matrices. Therefore, the trace of the first term in (4.32) is

Tr(RdKMRdKMR) = Tr(SdLΛSdLΛS) (4.33)

= Sj1j2dLj2j3(ΛS)j3j4dLj4j5(ΛS)j5j1 =
λj

(z − λj)2
λk

(z − λk)
dLjkdLkj

=
λj

(z − λj)2
λk

(z − λk)
Djkkj dt.
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In the second line, we first write out the trace explicitly using the summation
convention. We then simplify terms using the fact that S and Λ are diagonal and
relabel the two dummy indices as j and k. The same technique is used for all the
terms. Thus, we compute the second term in (4.32)

Tr(RM dKRM dK R) = Tr(SΛ dLSΛ dLS) (4.34)

= (SΛ)j1j2dLj2j3(SΛ)j3j4dLj4j5Sj5j1 =
λj

(z − λj)2
λk

(z − λk)
dLjkdLkj

=
λj

(z − λj)2
λk

(z − λk)
Djkkj dt.

Minus the third term in (4.32) is

Tr(RM dK RdKMR) = Tr(SΛ dLS dLΛS) (4.35)

= (SΛ)j1j2dLj2j3Sj3j4dLj4j5(ΛS)j5j1 =
λ2j

(z − λj)2
1

(z − λk)
dLjkdLkj

=
λ2j

(z − λj)2
1

(z − λk)
Djkkj dt.

Finally, minus the fourth term in (4.32) is

Tr(RdKMRM dK R) = Tr(S dLΛSΛ dLS) (4.36)

= (S)j1j2dLj2j3(ΛSΛ)j3j4dLj4j5Sj5j1 =
1

(z − λj)2
λ2k

(z − λk)
dLjkdLkj

=
1

(z − λj)2
λ2k

(z − λk)
Djkkj dt.

We collect all terms to obtain the evolution equation

dg = − (λj − λk)2

(z − λj)2
1

(z − λk)
Djkkj dt. (4.37)

When D is given by (4.25), and we note that Djkkj = 0 when j = k, this expression
simplifies to

gt := ∂tg =
∑
j 6=k

1

(z − λj)2
1

(z − λk)
(4.38)

This expression is equivalent to the complex Burgers equation (4.29), since

∂zg = −
∑
j

1

(z − λj)2
, ∂2zg =

∑
l

2

(z − λl)3
, (4.39)

so that the sum in equation (4.38) may be expressed as∑
j 6=k

1

(z − λj)2
1

(z − λk)
=
∑
j,k

1

(z − λj)2
1

(z − λk)
−
∑
l

2

(z − λl)3
= −ggz +

1

2
gzz.

(4.40)
Thus, we have established that the Cauchy transform of the spectral measure

of M satisfies the complex Burgers equation (4.5) when M(t) solves the stochastic
evolution equation (4.2), with covariance kernel given by (4.25). The equivalence
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between (4.1) and (4.4) is seen as follows. We use the second equality in defini-
tion (4.28) along with equation (4.1) to obtain the identity

∂tg(z, t) = −
∑
j

1

(z − λj)2
λ̇j = −

∑
j

1

(z − λj)2
∑
k 6=j

1

λj − λk
. (4.41)

We then substitute the identity (for j 6= k)

1

(z − xj)2
1

xj − xk
+

1

(z − xk)2
1

xk − xj
=

1

(z − xj)2
1

(z − xk)
+

1

(z − xk)2
1

(z − xj)
(4.42)

into (4.41) to obtain equation (4.38), which implies equation (4.40) and thus (4.4).
Thus, all that remains is to establish the identity (4.42). This is a partial fractions
expansion. Clearly,

1

(z − xj)2
1

xj − xk
+

1

(z − xk)2
1

xk − xj
(4.43)

=
1

xj − xk

(
1

(z − xj)2
− 1

(z − xk)2

)
=

1

xj − xk
1

(z − xj)2
1

(z − xk)2
(
(z − xk)2 − (z − xj)2

)
=

1

(z − xj)2
1

(z − xk)
+

1

(z − xk)2
1

(z − xj)
.

Equation (4.4) is exactly solvable by the Cole-Hopf transformation. However,
this is not the usual calculation, since it involves Cole-Hopf in the complex plane.
It suggests that one may approach free probability using purely analytic methods,
rather than a combinatorial or representation theoretic framework.

4.6. Gibbs measures for matrix completion. The connection with Gibbs mea-
sures and matrix completion may now be explained. The above calculation, along
with the specific choice of D in (4.25), shows that there is a covariance kernel D
such that when M solves the Itô equation (4.2), its spectral measure satisfies (4.1),
which is equivalent to the complex Burgers equation.

However, this choice is ad hoc. A closer examination of the calculation reveals
that all that is required of D is that

(1) The tensors C, or equivalently D, must be positive definite on A(n).
(2) The value of D on the diagonal, i.e. pairs of indices (ij), (kl) with i =

k,j = l must be given by

Djkjk =
1

(λj − λk)2
. (4.44)

The symmetry Dijkl = −Dijlk then implies Djkkj = −1/(λj − λk)2, which
is all that is needed for (4.38).

Equations (4.25) and (4.26) reveal that there is a choice of D such that both these
conditions hold. This choice has an appealing simplicity. However, the main weak-
ness in imposing (4.25) is that it does not provide an explanation for which, if any,
of the possible solutions to conditions (1) and (2) above is canonical.

The essential structure in (1) and (2) is of a matrix completion problem. The
structure of the problem is as follows. We are given the values of a positive definite
tensor on its diagonal and we must reconstruct the tensor. Here too one must
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confront the fact that we may have many solutions to this problem. We find it most
helpful to use Gibbs measures as the natural tool for resolving this indeterminancy.

Suppose one has constructed a natural Gibbs measure, µβ supported on the set
of tensors that satisfy (1) and (2) above. This allows the principled choice

D =

∫
P(n)

D̃ dµβ(D̃). (4.45)

In this manner, we may see the deterministic flow ‘downstairs’ as being matched
with a stochastic flow ‘upstairs’ in a manner that corresponds to a true thermody-
namic evolution.
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