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Chapter 1

Fundamentals of random
matrix theory and
numerical linear algebra

1.1 What is a random matrix?

There are two distinct points of view that one may adopt. On one hand, our
intuitive ideas of randomness are intimately tied to the notion of sampling a
realization of a random variable. Thus, given a random number generator,
one may build a random Hermitian matrix, M € Her(n), by choosing its real
diagonal and complex upper-triangular entries independently at random. It is
conventional to assume further that all the diagonal entries have the same law,
that all the upper-triangular entries have the same law, and that the real and
imaginary parts of each off-diagonal entry are independent. For example, we
may assume that the entries on the diagonal are +1 with probability 1/2, and
that the upper-triangular entries are +1 4 i with probability 1/4. It is also
conventional to have the variance of the diagonal entries to be twice that of the
real part of the off-diagonal entries. Random matrices of this kind, are said to
be drawn from Wigner ensembles.

On the other hand, one may adopt a more analytic view. The Hilbert—
Schmidt inner product of two Hermitian matrices, Tr(M*N) = szzl M N,
defines a natural metric Tr(dM?) and volume form DM on Her(n) (see Chap-
ter . In this text, unless otherwise stated, ||M| = y/Tr M*M). Thus, each
positive function p : Her(n) — [0, 00) that decays sufficiently fast as || M| — oo,
may be normalized to define a probability measure. A fundamental example is
the law of the Gaussian Unitary Ensemble (GUE)

1
paue(M)DM = 7e—% MDA (1.1.1)

Here Z,, is a normalization constant that ensures pgug is a probability density

9



[15 this USp(n)? Or Sp(2n, R)?

10 CHAPTER 1. FUNDAMENTALS

(we use the same notation for different ensembles; thus the numerical value of Z,,
must be inferred from the context). The term GUE was introduced by Freeman
Dyson [Dys62], and refers to an important invariance property of pgug. Each
U € U(n) defines a transformation Her(n) — Her(n), M — UMU*. It is easily
checked that the volume form DM is invariant under the map M — UMU™, as
is the measure pqur(M)DM. More generally, a probability measure on Her(n) is
said to be invariant if p(M) DM remains invariant under the map M — UMU*,
for each U € U(n). Important examples of invariant ensembles are defined by
polynomials in one-variable of the form

g(l’) = agNl‘QN + (12N71.’L'2N_1 +...+ap, a; € R, 7=0,1,...,2N, asny > 0.
(1.1.2)
Then the following probability measure is invariant

1
p(M)DM = ——e” TraMp g, (1.1.3)

n

We have assumed that all matrices are Hermitian for simplicity. The above
notions extend to ensembles of matrices from Symm(n) and Quart(n). The
notion of invariance in each case is distinct: for Symm(n), the natural transfor-

Jmation is M QMQT, Q € O(n); for Quart(n) it is M — SMSP, S € USp(n).

The standard Gaussian ensembles in these cases are termed GOE (the Gaussian
Orthogonal Ensemble) and GSE (the Gaussian Symplectic Ensemble), and they
are normalized as follows:

1 1
peor(M)dM = Z—e*% TN, pasp(M)AM = ol TMIDALL (1.1.4)

n n

The differing normalizations arise from the different volume forms on Symm(n),
Her(n) and Quart(n) as will be explained in Chapter [2l For now, let us note
that the densities for all the Gaussian ensembles may be written in the unified
form

B2
Zn(B) tema THMD) (1.1.5)

where 8 = 1,2 and 4 for GOE, GUE and GSE respectively. While it is true
that there are no other ensembles that respect fundamental physical invariance
(in the sense of Dyson), many fundamental results of random matrix theory
can be established for all 5 > 0. These results follow from the existence of
ensembles of tridiagonal matrices, whose eigenvalues have a joint distribution
that interpolates those of the 8 = 1,2 and 4 ensembles to all 8 > 0 [DE02].

1.2 The Ginbre ensemble

The so-called Ginibre Ensemble can be seen as a fundamental building block to
define GOE and GUE. The real Ginbre ensemble, denoted Ging is an n X n ma-
trix of iid standard normal random variables. The Complex Ginibre Ensemble
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is then defined as

X ~ Gll’l(j(’n,) s X~ (Xl + iXQ), X1, X0 ~ GinR(n),

1
V2

where X; and X5 are independent. Then it follows that

GOE(n) %(x +X7), X Ging(n),
GUE(n) —— (X + X*), X Ging(n).

V2

There is a related construction for GSE that avoids direct use of quarternions
using a 2n X 2n complex matrix. See [DE02] for the details.

1.3 The main limit theorems

The basic question in random matrix theory is the following: what can one
say about the statistics of the eigenvalues of a random matrix? For example,
what is the probability that the largest eigenvalue lies below a threshold? Or,
what is the probability that there are no eigenvalues in a given interval? The
difficulty here is that even if the entries of a random matrix are independent,
the eigenvalues are strongly coupled.

Gaussian ensembles play a very special, and important, role in random ma-
trix theory. These are the only ensembles that are both Wigner and invariant
(see Theorem [19| below). Pioneering, ingenious calculations by Dyson [Dys62],
Gaudin and Mehta [MG60, Meh04], on the Gaussian ensembles served to eluci-
date the fundamental limit theorems of random matrix theory. In this section
we outline these theorems, assuming always that the ensemble is GUE. Our
purpose is to explain the form of the main questions (and their answers) in
the simplest setting. All the results hold in far greater generality as is briefly
outlined at the end of this section.

By the normalization , a GUE matrix has independent standard nor-
mal entries on its diagonal (mean zero, variance 1). The complex off-diagonal
entries have independent real and imaginary parts with mean zero and variance
1/2. We denote the ordered eigenvalues of the GUE matrix by Ay < Ay < ...\,
A fundamental heuristic for GUE matrices (that will be proven later, and may
be easily simulated) is that the largest and smallest eigenvalues have size O(y/n).
In fact, A\; & —2y/n and \,, &~ 2y/n as n — oo. Since there are n eigenvalues,
the gap between these eigenvalues is typically O(1/y/n). There are thus two
natural scaling limits to consider as n — oo:

1. Rescale M + n~/2M so that the spectral radius is O(1). In this scaling
limit, n eigenvalues are contained within a bounded interval, and we obtain
a deterministic limit called the semicircle law.
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2. Rescale M — n'/2M so that the gaps between eigenvalues are O(1). In
this scaling limit, we expect a random limiting point process. The limiting
point process is a determinantal point process called the Siney process.

In fact, the situation is more subtle. While the expected value of the gap between
eigenvalues for a GUE matrix is indeed O(n~'/2), the gaps are O(n~2/3) about
the edge of the spectrum. There is an an entirely different scaling limit called
the Airy, process obtained by rescaling the spectrum of M + 2./nl.

In all that follows, we consider a sequence of random matrices of size n
sampled from GUE(n). To make this explicit, the matrix is denoted M,,, and

its ordered eigenvalues are denoted ,\§”> < /\én) <... < )\%n).

1.3.1 The semicircle law

Definition 1. The probability density and distribution function

1 x
Psc(T) = %\/4 — 22 lig<2, Ficlz) = / psc(z') da’, (1.3.1)
—oo

are called the semicircle density and the semicircle distribution respectively.

Theorem 2. Let M, be a sequence of GUE matrices of size n. The rescaled
empirical spectral measures

1 n
pin(d) = Zl =172 (dz) (1.3.2)
iz

converge weakly to the semicircle density almost surely.

Theorem [2| may also be interpreted as the statement that the empirical spec-
tral distribution of the matrices M, //n converges to the semicircle distribution.
The shortest proof of Theorem [2] uses the following integral transform.

Definition 3. Assume p is a measure on R that satisfies the finiteness condition

/_OO ﬁu(dx) < 00. (1.3.3)

The Stieltjes transform of p is the function

i(z) = /00 ! p(dr), ze C\R. (1.3.4)

o T —Z

The Stieltjes transform is of fundamental importance in the theory of or-
thogonal polynomials and spectral theory. This is because there are natural
Stieltjes transforms associated to the resolvent (M — z)~1, such as

Te(M —2)"' and v*(M —2)"'v, veC” |v]=1. (1.3.5)
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The general proof of Theorem uses a recursive expression for the law of Tr(z —
M,)~t. As n — oo, the fixed point of this recursion, Ry solves the quadratic
equation

R*>—2R+1=0. (1.3.6)

It is then easy to verify that

Rue(2) = % (<24 V1), zeq\-2.2] (1.3.7)

We recover the semicircle law from Rs.(z) by evaluating the jump in Im(Rsc(2))
across the branch cut [—2,2].

Remark 4. The heuristic to determine the typical spacings is the following.
Define 7(n> € [—2,2] by the relation

i_

== psc(x)dz, j=1,2,....n
n

— 00

Then the approximation )\;n) ~ \/ﬁfyj(-m should hol We have
(m)

1 Yi+1 N . .
! :/(n) pre(@)dz ~ (1, = 1 pee(7). L)
75

If j = j(n) is chosen so that ’yj") —r,r € (—2,2) (i.e. in the “bulk”) we have

, 1
D
A / Vpse (1)

At the edge, consider (noting that ,ﬁn) > —2)

1 7 ™ 2/ (m) 3/2
f:/ Psc(x dxw/ \/2+xdT——( —|—2> ,
n -2
(n)
+2= 2/3
2vn+ A" =0 %), AW _2/n=0(n 5, (1.3.9)
where the last equation follows from )\ f ny; ) and the natural symmetry

between A" and A",

IThis is made rigorous and quantitative by Erdds, Yau and Yin [EYY12].
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1.3.2 Fluctuations in the bulk: the sine process

We now rescale so that the gaps between eigenvalues is O(1) and the scaling
limit is a random process. This random process will be denoted Sine; (and Sineg
for the general S-ensembles). Each realization of the Siney process is a countable
set of points {x;}72 _ . One of the fundamental statistics associated to a point
process is the probability of having k points in an interval. In order to state
a typical fluctuation theorem that describes these probabilities, we must define

the sine-kernel and its Fredholm determinants.
Definition 5. The sine-kernel is the integral kernel on R x R given by
sinw(z —y)

Ksine(xa y) = 7T(:,l? — y)

;T FY, (1.3.10)

and Kgne(z, x,) = 1.

In the following theorem we will assume that x and y are restricted to a finite
interval (a,b). The sine-kernel defines an integral operator on L?(a,b) that we
denote by Kiinel(q,5)- The kernel Kgne(z,y) is clearly continuous, thus bounded,
for 2,y € (a,b). Thus, Knel (4, defines an integral operator on L?(a,b) that
is trace-class, and it has a well-defined Fredholm determinant

det (1 - Ksine]]-(a,b)) (1311)

o (_1ym
=1+ ZO ( m? /(a - det (Ksine($j7xk)1§j,k§m) dzidzs ... .dz,,.

Though perhaps mysterious at first sight, the origin of this formula is rather
simple. Integral operators with some smoothness and boundedness (in particu-
lar, continuous integral operators K whose trace f: | K (x,x)|dx is finite) may be
approximated on a discrete-grid of size h by a finite-dimensional discretization
K},. The determinant (I — K},) is then the usual determinant of a matrix and
we may use the definition of the determinant to expand det(l — K},) in a finite
series, which is nothing but the infinite series above in the instance when all
terms beyond m = rank(K},) vanish. This approach was pioneered by Fredholm
in 1900 before the development of functional analysis and is turned into an effi-
cient numerical method in Section[I0.1} From a probabilistic point of view, this
formula arises from the Inclusion-Exclusion Principle, taken to the limit. The
operator theory introduced by Fredholm allows for that limit to be understood.

Theorem 6 (Gaudin-Mehta [MG60]). For each finite interval (a,b) C R, and
re(—2,2),

lim P (ﬁpsc(r) (/\](Cn) — r\/ﬁ) Z (a,b), 1<k < n) = det (1 — KsineL(a,p)) -
A (1.3.12)

The probabilities of the Siney process can be expressed without reference to
the matrices M,,. For each interval (a,b) let Nq ) = Yo L{z).e(ab)}- Then,

P (Nap) = 0) = det (1 — Knel(a)) - (1.3.13)
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For comparison, if we had a Poisson process {Z1};2 _ ., with rate A(dz), the
associated count N(a’b) would satisfy

P (N(a’b) = O) = exp (— /ab A(dx)) .

1.3.3 Fluctuations at the edge: the Airy point process

Remark [4] and Theorem [f] reveal that the gaps between consecutive eigenval-
ues )\gn) and )\51)1 is of O(n~—'/2). However, the fluctuations at the edge are
much larger, of O(n='/6). The point process of shifted and scaled eigenvalues
converges in distribution to a limiting point process, {yx}32, called the Airy,
process. In order to describe the law of this process, we must define the Airy
function and the Airy kernel.

Definition 7. The Airy function is defined by the oscillatory integral

o0
Ai(z) = i/ k7 elk®/3 ;. (1.3.14)
21 J_

The Airy function is one of the classical special functions [AS7T2]. It admits
several alternative definitions. For instance, the oscillatory integral in
may be deformed into an absolutely convergent integral in the complex plane.
This argument allows us to establish that the Airy function is entire and to
determine its asymptotic expansions as x — to0.

These properties may also be established using the theory of ordinary differ-
ential equations in the complex plane [Hil97]. It is easy to verify from ,
after deformation, that Ai(x) satisfies the differential equation

¢"(z) =xp, —00<z<00. (1.3.15)

Equation (|1.3.15]) admits two linearly independent solutions, only one of which
decays as * — oo. Up to a (fixed by convention, but otherwise arbitrary)
normalization constant, the decaying solution is Ai(x).

Definition 8. The Airy kernel is the continous integral kernel on R x R given
by
Ai(@)AT'(y) — Al (2)Ai(y)

KAiry(fan) = T —y s l‘?éy,

and by continuity at z = y.
Observe that both the sine and Airy kernel have the form

/ gl
Ty

where f solves a second-order linear differential equation. Similar kernels arise

in various limiting models in random matrix theory. For instance, the Bessel

kernel — corresponding to f(z) = J, (), the Bessel function with parameter «

— describes fluctuations about the singular values of random matrices.




16 CHAPTER 1. FUNDAMENTALS

Theorem 9. For each interval (a,b) C R, —oo < a < b < oo,

Tim P (n1/6 (A,(j) _ 2\/73) ¢ (a,b), 1<k < n> = det (1 — KaiyLa)) -
(1.3.17)

As in the remarks following Theorem |§|, the expression det (1 - K, A;,y]l(%b))
gives the probability that no points of a realization of the Airy, point process
lie in (a,b).

1.3.4 Fredholm determinants, Painlevé equations, and in-
tegrable systems

It is immediate from Theorem [6]and Theorem [@lthat the Fredholm determinants
det (1 - Ksine]l(a,b)) and det il - KA;,y]l(mb)) are positive for all (a,b). This is
astonishing if one treats (1.3.11)) as a starting point, since it is by no means clear
that the signed infinite series sums to a positive number! It is in fact rather
challenging to extract meaningful information, such as the asymptotics of tails,
from the expression of probabilities as Fredholm determinants. A crucial piece
of the puzzle lies in the connection between Fredholm determinants and the
theory of integrable systems. More precisely, the Fredholm determinants satisfy
differential equations in a and b (or more generally in endpoints of intervals,
when one considers the obvious extensions of Theorem [6l and Theorem [ to
a collection of intervals H;nzl(am, bm)). These ordinary differential equations
have a special, integrable structure, that allows their analysis. The following
theorems illustrate this aspect of random matrix theory.

Theorem 10 (Jimbo-Miwa-Mori-Sato [JMMS80]). For allt > 0,

Lal(s)
det (1 - Ksine]l(_%,%)) = exp (/0 = ds) : (1.3.18)

where o(t) is the solution to the Painlevé-5 equation

(ta")? + 4 (to’ — o) (to' —o+0%) =0, (1.3.19)
which satisfies the asymptotic condition
t 2t
o(t)=—=————, tlo. (1.3.20)
™ 7r

Theorem 11 (Tracy—Widom distribution [TW94]). For all real t,

Fy(t) :=det (1 — KairyL(t,00)) = €xp (/ (s — t)q*(s) ds) , (1.3.21)
t
where q is the solution to the Painlevé-2 equation
¢ =tqg+2¢>, —c0 <t < o0 (1.3.22)
which satisfies the asymptotic condition

q(t) ~ Ai(t), t— oo. (1.3.23)
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We will discuss the basic properties of Painlevé equations and integrable
systems in Lecture ??7. Here is a brief preview.

The Painlevé differential equations are a special family of nonlinear ordi-
nary differential equations that generalize the classical theory of linear dif-
ferential equations in the complex plane and the associated theory of special
functions [Hil97]. For example, the Painlevé-2 equation (1.3.22)) may be viewed
as a nonlinear analogue of the Airy differential equation. Broadly, the
Painlevé differential equations represent a complete classification of second-order
differential equations with the Painlevé property — their only movable singular-
ities (movable by changing initial conditions) are poles — that are not solvable
with elementary functions. The theory of Painlevé equations was developed in
the early years 1900’s, by Boutroux and Painlevé, but fell into obscurityﬂ It
was reborn in the 1970s with the discovery of their importance in integrable
systems and exactly solvable models in statistical mechanics, such as the Ising
model in 2D [MWT73]. We illustrate these links with a fundamental integrable
system: the Korteweg-de Vries (KdV) equation

Up + 6UUL + Ugze =0, —00 < x <00, t>0. (1.3.24)

Despite the fact that KdV is nonlinear, it may be solved explicitly through the
inverse scattering transform. We will not discuss this method in detail. But in
order to make the connection with random matrix theory, let us note that if one
seeks self-similar solutions to KdV of the form

1 x
u(x,t) = (3t)2/3q ((3t)2/3> (1.3.25)

then ¢ = v2 4+ v’ and v satisfies the Painlevé-2 equation (1.3.22)). It is in this
context that Hastings and McLeod established the existence of a solution to

(1.3.22)) that satisfies the asymptotic condition (1.3.23)) [HMS0]. It is remarkable

that it is exactly this solution that describes the Tracy-Widom distribution
Fs(¢)!

1.3.5 Universality

We have restricted attention to matrices from GUE to present some of the
central theorems in the subject in an efficient manner. One of the main achieve-
ments of the past decade has been the establishment of universality — informally,
this is the notion that the limiting fluctuations in the bulk and edge described
by the Siney and Airy, processes, hold for both Wigner and invariant ensembles
which satisfy natural moment assumptions. The idea of universality is of clear
practical importance (we need understand only a few universal limits). It also
appears to hold the key to some of the connections between random matrix the-
ory and other areas of mathematics. The explanation of these connections may

2Paul Painlevé was rather restless: he began in mathematics, became an early aviation
enthusiast and then turned to politics. He rose to become the Prime Minister of France for
part of World War I and was later the designer of the disastrous Maginot line.
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lie in the fact that determinantal point processes, such as the Siney and Airy,
process, have the simplest structure of strongly interacting point processes. By
contrast, Poisson processes, while universal, describe non-interacting points.

1.4 Connections to other areas of mathematics

Random matrix theory has deep connections with many areas of mathematics,
many of which are still poorly understood. A brief overview of some of these
connections is presented below. While some of these notions, such as the con-
nections with stochastic PDE require more background than we assume, some
other connections (e.g. with quantum gravity) are in fact more elementary (and
fundamental) than one may naively expect. Our purpose here is to present a
small sample of the rich set of ideas that make the subject so attractive.

1.4.1 Number theory

The Riemann zeta function is defined by the infinite sum

o0

1

OEDY — Re(s)>1. (1.4.1)
n=1

The function ((s) is central to number theory, since it provides a generating

function for the distribution of the prime numbers via Euler’s product formula

[e.°]

1 1
— = H gt Re(s) > 1. (1.4.2)

n=1 p prime
For instance, the divergence of the harmonic series at s = 1 provides a proof
that there are infinitely many primes. The study of {(s) by complex analysis is
the cornerstone of analytic number theory. The basic facts are as follows. The
function ((z) extends to a meromorphic function on C by analytic continuation,
which has a simple pole at s = 1 where the residue is 1. A closely related
function is the Riemann &-function

S

£(s) = 27%25(5 ~1r (5) ¢6s). (1.4.3)

Recall that the I' function is a ‘continuous interpolation’ of the factorial, defined
by the integral

I'(s) :/ e " tdx, Re(s)>0. (1.4.4)

0
The I'-function extends to a meromorphic function C, which has simple poles at
..,—2,—1,0 where the residue is 1. These poles cancel the ‘trivial’ zeros of the

¢ function, and the essential difficulties related to the study of the ( function
are more transparent for the £ function. It satisfies the functional equation

(s)=¢(1—-s), seC. (1.4.5)
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The celebrated Riemann Hypothesis is the conjecture that all zeros of the £
function lie on the critical line Re(s) = 1/2 (this line is the symmetry axis for
the functional equation above). In his fundamental paper on the distribution of
prime numbers (translated in [Edw74] and [Rie53]) Riemann presented a series
of asymptotic expansions that would imply rigorous bounds on the distribution
of primes if the Riemann Hypothesis is true.

The connection between random matrix theory and the Riemann Hypoth-
esis is two-fold. First, if one could construct a Hermitian operator with point
spectrum whose eigenvalues coincide with the zeros of £(i(s — 1/2) then the
Riemann Hypothesis would follow immediately (since all eigenvalues of a Her-
mitian operator are real). The catch, of course, is to determine such an operator.
Nevertheless, as we discuss below, random matrix theory has shed new light on
the spectral theory of several operators, deterministic and random. Thus, the
theory provides a catalog of ‘guesses’. Second, if one assumes the Riemann hy-
pothesis, the fluctuations in the zeros of ((s) are described by the sine-kernel!
Under the Riemann hypothesis, the non-trivial zeros of {(s) may be written
Yo = 3 Eity, with 0 <t <t <.... Let

tn tn
- 1 n N(x) = 1 . 1.4.
wy, = 5 log (%) , and N(z) ;?:1 — (1.4.6)

This rescaling is chosen so that lim, . N(z)/z = 1 in accordance with the
Prime Number Theorem.

Despite the fact that the zeros w,, are deterministic, we may introduce proba-
bilistic notions by counting the (rescaled) zeros upto a level > 0. For example,
we may define the empirical probability measure

N
i (dw; z) = %x) ; S, (). (14.7)

In order to study the gaps between eigenvalues, we must consider instead the
empirical measures

1
pa(dl; ) = — > Sy —wy (dl). (1.4.8)
1<j,k<N(z);j#k
The expectation of a continuous function with respect to ps(dl; x) is denoted
o 1
Ra(fio) = [ fOmlio) =1 fw-w).  (149)
e 1<j<k<N(z)

Under the assumption that f is band-limited, i.e. that its Fourier transform has
compact support, Montgomery established the following

Theorem 12 (Montgomery). Assume the Riemann Hypothesis. Assume f is
a Schwartz function whose Fourier transform f is supported in [—1,1]. Then

T—00 ml

lim Ro(f;x) :/jO FDua(dl),  pa(dl) = (1— (Si”l) ) dl.  (1.4.10)
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The point here is that the right hand side of is precisely the 2-point
function for the sine process. More generally, Montgomery’s theorem is now
known to hold for the distribution of n-consecutive gaps. That is, the rescaled
fluctuations converge to the Sines process in distribution. Bourgade’s thesis
provides an excellent introduction to these topics [Bou(9].

1.4.2 Combinatorics and enumerative geometry

We will present two problems of enumerative combinatorics that connect with
random matrix theory. As a first example, we note that the 2m-th moment of
the semicircle law

2 1 /2m
2my = = 1.4.11
/25(1 Psc(z) dz m+1(m) Com, ( )

the m-th Catalan number. An analytic proof of this identity follows from a
comparison between the Stieltjes transform Rs.(z), and the generating function

Cla)=) Cpa™= 1=vizdz (1.4.12)

x
m>0

The Catalan numbers describe the solution to many combinatorial problems |
For example, C, enumerates the number of Bernoulli excursions or Dyck paths
of length 2m: these are walks Si, 1 < k < 2m such that So = S3,, =0, S > 0,
0 <k<2m,and |Sgt+1 — S| = 1.

A deeper set of connections between integrals on Her(n) and geometry was
first noticed by the physicist 't Hooft [tH74]. Ignoring for now the physicists’
motivation, let us illustrate a particular computational technique that underlies
their work. Consider a matrix integral of the form

Zn(2) = /H ( )eTf<*ZM4>pGUE(M) DM, Re(z) > 0. (1.4.13)
er(n

The quartic nonlinearity prevents us from expressing this integral in closed form.
Nevertheless, this integral may be expanded in a Taylor series

Zn( ):i (_Z)k/(T (M*)* paue(M)DM, Re(z) >0.  (1.4.14)
n(2 Wl r GUE , e(z . A.
k=0

A fundamental lemma on Gaussian integrals (on RY) (Wick’s lemma) allows us
to reduce each integral above to a sum over pairings of indices. It is convenient
to keep track of these pairings with a graphical description, called a Feynman
diagram. 't Hooft observed that when RY = Her(n) the Feynman diagram
associated to each term in enumerates embedded graphs on a Riemann
surface. This characterization was independently discovered by mathematicians.

3Stanley lists 66 examples in [Stalll Exercise 6.19].
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Lemma 1 (Harer-Zagier [HZ86]). Let ¢,(m) denote the number of ways to pair
the edges of a symmetric 2m-gon to form an orientable surface with genus g.
Then

o0

fmm) = eg(mynm =27 = / Tr(M2™)paun(M)DM.  (1.4.15)

g=0 Her(n)

Note that only finitely many terms in the sum are non-zero. The series above
is an instance of a genus-expansion. It illustrates the beautiful fact that matrix

integrals serve as the generating functions for Riemann surfaces with a given
combinatorial decomposition.

1.4.3 Random permutations

Consider the symmetric group S(n) of permutations of size n. Every element of
S(n) can be represented as a reordering of the integers 1,2, ...,n. For example,
three elements of S(5) are

m = 54312, o = 12435, ms = 45123.

We define a function ¢ : S(5) — N by £(m) = length of the longest increasing
subsequence of w. For example,

Um) =2, l(m) =4, l(m3)=3.

There is a natural probability distribution Uni(n) on S(n), the uniform distri-
bution, or Haar measure. If I, ~ Uni(n) then P(IL, = ) = % for any 7 € S,
since |S(n)| = nl.

The law of I(I1,,) when IT,, ~ Uni(n) was one of the first problems to be inves-
tigated by Monte Carlo simulation on a computer. Ulam performed simulations
in the early 60’s [UlaGI] and conjectured that

L

4D

It was later independently established by Vershik and Kerov [VK77], and Logan

and Shepp [LST7] that ¢ = 2. The detailed numerical computations of Odlyzko
and Rains [OR00] indicated

E [((T1,)] — 2v/n = O(n~/9). (1.4.16)

The comparison between (|1.3.9) and (|1.4.16)) should be striking. Indeed, the
following is often called the Baik—Deift-Johansson Theorem and it makes this
scaling rigorous.

Theorem 13 ([BDJ99]). Let S(n), ¢ and 11,, be as above. Then for all t € R

((11,) — 2
lim P (()1/6\/5 S t) = det(l — KAiry]]-(t,oo))~
n

E[((IL,)] — c.

n—0o0

That is, the limit is the same as the largest eigenvalue of a random Hermitian
matriz.
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This theorem is discussed in great detail in [BDSI7]. This surprising con-
nection was explored further by Johansson [Joh00] leading to many connections
to random growth processes and the KPZ equation.

1.4.4 Spectral and inverse spectral theory of operators

While Theorem [2-Theorem [9] associate limits to the spectrum of the operators
M, it is natural to ask if there are limiting operators that may be naturally
associated to the limiting spectra. Thus, for Theorem [2| we ask for a ‘natural’
operator that has spectral density given by the semicircle law, py., and for
Theorem [6] and Theorem [J] we seek ‘natural’ random operators that have pure
point spectra with the law of the Sines and Airy, point processes. What is a
‘natural’ operator is, of course, a subjective idea, but convincing candidates
operators are suggested by inverse spectral theory.

We say that a matrix 7' € Symm(n) is a Jacobi matriz if all its off-diagonal
entries are strictly positive. The spectral measure of a Jacobi matrix is the mea-
sure whose Stieltjes transform is e? (T'— z)~'e;. There is a 1 — 1 correspondence
between the space of n x n Jacobi matrices and probability measures on the line
with n atoms. This correspondence extends naturally, but with some caveats,
to semi-infinite Jacobi matrices. The essence of this theory (due to Stieltjes) is
that the entries of T' may be determined from the continued fraction expansion
of eI (T — z)~te;. This correspondence will be considered in detail in Chap-
ter [3) but here is a concrete example. By applying Stieltjes’ procedureﬁ to the
semicircle law, we discover that ps.(x) is the spectral density for the seminfinite
tridiagonal matrix that is 1 on the off-diagonal, and 0 in all other entries. This
follows from the continued fraction expansion

Ry(—2)= ——— (1.4.17)

Ensembles of tridiagonal matrices are of practical important in numerical
linear algebra. For instance, a key pre-processing step while solving symmetric
linear systems is to transform the matrix to tridiagonal form by Householder’s
procedure (see Chapter [3). Dumitriu and Edelman pushed forward the Gaus-
sian measures under this procedure to obtain a family of tridiagonal ensembles,
known as the general-f ensembles [DE02]. Further, Edelman and Sutton made
a formal expansion of these operators, and observed that as n — oo, the tridi-
agonal operators appeared to converge to the stochastic Airy operator [ESOT]:

& 2 1.4.1
—@—Fx—kﬁ, 0<z<oo (1.4.18)

4The Stieltjes’ procedure is the procedure by which an orthonormal basis of polynomials
is constructed by the Gram—Schmidt process, exploiting a three-term recurrence relation. It
is intimately connected with the Lanczos iteration.

Hj =
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with Dirichlet boundary conditions at = 0. Here b denotes (formally) white
noise (it is not hard to define Hg rigorously).

Theorem 14 (Ramirez-Rider-Virag [RRV1I]). The spectrum o(Hg) of the op-
erator Hg is almost surely a countably infinite number of eigenvalues p11 < pio <
ps < .... Moreover, c(Hg) has the same law as the Airyz point process.

In particular, for 8 = 2, the spectrum of the stochastic Airy operator de-
scribes the limiting fluctuations at the edge of the spectrum of GUE matrices.
Despite the simplicity of this characterization, it is not completely understood
how to recover the explicit determinantal formulas of Tracy and Widom from
this formulation (see [Ruml15]).

1.4.5 Universality in numerical computation

It is quite natural to ask about other aspects of random matrices beyond prop-
erties of their eigenvalues. For example, what distributions “arise” in the com-
putation of the eigenvalues of a random matrix. And are these distributions
universal?

Before one can truly ask this question (and make it more precise) an algo-
rithm needs to be set. For example, one can use the power method to compute
the top eigenvalue, the QR eigenvalue algorithm to compute the entire spec-
trum, or if one is truly trying to be competative with the state of the art,
the smplicitly shifted QR algorithm (i.e. Francis’ algorithm) [Fra6I] (see also
[Wat11]) should be used.

And then the question of how a distribution can “arise” in a deterministic
algorithm needs to be addressed. The most natural way is to examine the
runtime distribution also called the halting time. Since eigenvalue computation
amounts to polynomial rootfinding, abstract theory (Galois theory, specifically)
tells us that if the degree is five or larger then any general algorithm to compute
the eigenvalues must be iterative.

It turns out that the so-called Toda algorithm is a natural algorithm to
use on symmetric indefinite matricesﬂ The Toda algorithm to compute the
eigenvalues of a symmetric (or Hermitian) matrix H is derived by discretizing
and numerically solving the matrix flow

X'(t) = X()B(X(t)) — B(X(£)X(t), B(X)=X_—X*, X(0)=H,

where X_ is the strictly lower-triangular part of X. It follows from the fact
that B(X(t)) is skew-symmetric that the eigenvalues of X (¢) do not change in
time — the flow is isospectral.

A measure of the error in computing the top eigenvalue of the matrix is

E(t) = Z | X5 (t)]?

5This is not because of its efficiency but rather because of its mathematical properties.
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because if E(t) = 0 then we are guaranteed that X11(¢) is an eigenvalue of
X (0) = H. The associated halting time is given by

T.(H) =min{t > 0: E(t) < ¢*}.
The following is a consenquence of [DT1§].

Theorem 15. Suppose H ~ GOE(n) (8 =1) or H ~ GUE(n) (8 =1) and
e <n%39 for ¢ > 0. Then

T (n‘l/QH)
fm F 3o <t)=Fg"(t), 1.4.19
N (712/3(loge1 —2/3logn) — 5 () ( )

where

1
gap — i <
0= i P <n1/6(A£Z” A t) '

The existence of the limit F5*"() in the 8 = 2 case is implied by Theorem
below. An important additional fact that is also established in [DT18] is that
this theorem also holds, up to the modification of some ensemble-dependent
constants, if H is from a so-called generalized Wigner matrix or invariant en-
semble.
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Exact theory for random
matrices and numerical
linear algebra
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Chapter 2

Integration on spaces of
matrices

In this section, we review the geometry of the classical Lie groups, as well as the
spaces Symm(n), Her(n) and Quart(n) and explain how to integrate over these
groups and spaces. Given an point on a manifold M € M, we use dM to denote
the differential of M, i.e., an infintesimal element on the tangent space T (M)
at M. We reserve DM to refer to a (naturally induced) volume form defined
using an inner-product on the tangent space. Note that for x € R, dz = Duz.
Our main goal is the following

Theorem 16 (Weyl’s formula).
DM o |A(A)|® DADU (2.0.1)

where A(A) is the Vandermonde determinant
AN =0 I - A=diag(h,..A),  (2.02)

1<j<k<n

DA is Lebesgue measure on R™, and DU denotes (unnormalized) Haar measureEl

on O(n), and an appropriately defined measure on U(n)/T"™ = {U € U(n) : u1; > (Since the set of all diagonal unitary
0, j=1,2,...,n}, and USp(n)/T" = {V € USp(n) : vy; >0, j=1,2,... mH Dny, the auotiont 1o not  growb. So
in the cases B = 1,2 and 4 respectively.

we cannot define Haar measure on it.

The main strategy to prove Theorem is to treat the mapping from ma-
trices with distinct eigenvalues to their eigenvalues and eigenvectors. Then we
identify the tangent spaces, and give a formula that relates the tangent space
for the eigenvalues and the tangent space for the eigenvectors to the tangent
space for the matrix. This formula allows one to change variables in the metric
tensor and therefore in the volume form.

1See Section for a discussion of Haar measure.

27
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Remark 17. It is common to normalize the Haar measure such that it is a
probability measure. We have ignored this constant here, though is is explored
in the exercises. The essential aspect of is that the Jacobian for diago-
nalization is given by |A(A)|?. This has far-reaching consequences for random
matrix theory and has the interesting physical interpretation of eigenvalue re-
pulsion.

In what follows, we first present a detailed description of integration on O(n)
and Symm(n). The ideas are then extended to Her(n) and Quart(n).

2.1 Integration on O(n) and Symm(n)

A (linear) isometry of R™ is a linear transformation that leaves the inner-product
invariant The Lie group O(n) is the group, under composition, of linear trans-
formations of R™ that preserve the standard metric g = I. For each O € O(n)
and each z € R" we must have (Ox)T(Oz) = z7z. Thus, O(n) is equivalent
to the group of matrices O such that OTO = I. The group operation is matrix
multiplication. It is easy to check that the group axioms are satisfied, but a
little more work is required to check that O(n) is a differentiable manifold, and
that the group operation is smooth.

We now introduce the natural volume forms on Symm(n) and O(n). We first
note that the space Symm(n) is isomorphic to RP, p = n(n + 1)/2 via the map

M — (Mlla---7Mnn;M12a---aMn—1,n)~ (211)

Thus, all that is needed to define integrals over Symm(n) is a choice of inner-
product. We will always use the Hilbert—Schmidt inner product

Symm(n) x Symm(n) = R, (M,N)+ Tr(M*N) = Tr(MN). (2.1.2)

The associated infinitesimal length element is

ds? = Tr(dMTdM) = > dMZ +2) " dM,. (2.1.3)

Jj=1 J<k
In & coordinates on RP, the associated metric tensor g is diagonal and takes
the value 1 for the first n coordinates (diagonal terms), and the value 2 for
all the other coordinates (off-diagonal terms). Thus, the metric tensor g €

Symm, (p) has determinant on(n=1)/2 " We apply formula lb to find the
following volume form on Symm(n),

DM =2 VA TTamy; [ dMix. (2.1.4)
j=1 1<j<k<n

Each O € O(n) defines a map Symm(n) — Symm(n), M — OMO?. This map
is an isometry on Symm(n) with the metric above. It is in this sense that (2.1.6)
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is the natural inner-product. Since this map is an isometry, the volume element
DM is also invariant.

O(n) is a differentiable manifold that is not flat. Thus, in order to define a
volume form on O(n), we must identify its tangent space ToO(n), @ € O(n),
and then introduce an inner-product on ToO(n). Further, the ‘natural’ inner-
product should be invariant under the group operations. The tangent space at
the identity to O(n), T;O(n), is isomorphic to the Lie algebra, o(n), of O(n).
In order to compute o(n) we consider smooth curves (—a,a) — O(n), a > 0,
t — Q(t) with Q(0) = I, differentiate the equation Q(t)7Q(t) = I with respect
to t, and evaluate at ¢ = 0 to find

Q(0)" = —0(0). (2.1.5)

Thus, each matrix in o(n) is antisymmetric. Conversely, given an antisymmetric
matrix A, the curve t — e* gives a smooth curve in O(n) that is tangent to [
at t = 0. Thus,

T;0(n) =o(n) = {A|A=-A"}. (2.1.6)

The tangent space at arbitrary O € O(n) is obtained by replacing (2.2.2) with
the condition that OT'O is antisymmetric. Thus,

ToO(n) = {OA|A € o(n) ). (2.1.7)

Finally, given A A e o(n), we define their inner product (A,/I) = Tr(AT;l) =
—Tr(AA). This inner-product is natural, because it is invariant under left-

translation. That is, for two vector OA, OA € ToO(n) we find Tr (OA)T(OA) =

Tr(AT A). The associated volume form on O(n) is called Haar measure. It is
unique, up to a normalizing factor, and we write

DO =2 V4 TT dAg. (2.1.8)
1<j<k<n

Now let f: O(n) — R be a bounded, measurable function. Define a neigh-
borhood of O € O(n) by B.(0O) = {O € O(n) : |O — O| < €}. Then for
€ > 0, sufficiently small, we can find a diffeomorphism (i.e., a chart) po : Up —
B.(0) C O(n), Up open satistying

0eUp C ToO(n), (po(O) =0 (2.1.9)

Then for such € > 0 define

_ gn(n—1)/4 _
/BE(O)fDO 2 / fleo(A) [ d4jn (2.1.10)

©5 ' (B<(0)) 1<j<k<n

It can be verified that this is independent of the choice of . So, now consider
such mapping at the identity, ¢;. And choose

po(A) = 0pr(0TA). (2.1.11)



In what sense are A and Q orthogo-
nal? I guess Q has zero diagonals, so
this is true in the sense of Hilbert-
Schmidt.
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We find

/ fDO = 2n=1)/4 / fOer(0T4)) [ d4j (2112)
B (0) O¢r ! (Be(1))

1<j<k<n

We use the fact that O furnishes an isometry from 770(n) to ToO(n) so that
/ DO = rn—1)/4 / fOera) T dAm.
B.(0) o7 H(Be(I)

1<j<k<n
In particular, if we choose f = 1, then [, ) DO does not depend on O € O(n),

(2.1.13)

showing that this is indeed uniform measure on O(n).

2.2 Weyl’s formula on Symm(n)

Let us now recall some basic facts about Symm(n). Each matrix M € Symm(n)
has n real eigenvalues and an orthonormal basis of real eigenvectors. We write
A for the matrix diag(Aq, ..., \,) of eigenvalues, and @ for a matrix whose k-
th column is a normalized eigenvector of M associated to the eigenvalue Ag,
1 < k < n. Since the columns of @ are orthogonal and normalized to length 1,
it is immediate that @ € O(n). Thus,

MQ=QA and M =QAQT. (2.2.1)

In what follows, we will view the transformation M +— (A,Q) as a change
of variables, from Symm(n) — R™ x O(n). Strictly speaking, this change of
variables is not well-defined since (2.2.1) is unaffected if we replace the k-th
column Qg of Q by —Qg. This issue is considered more carefully in Lemma
and Lemma [5| below. In a loose sense, diagonalization is analogous to polar
coordinates in R"™,
x
R™ — [0,00) x S"™1  zws (r,u), r=|z[,u=">. (2.2.2)
r
Polar coordinates are natural for rotation invariant probability density on R™.
For example, the standard Gaussian measure on R” may be written

|| r?
e 2 Dz =Che 27" 1drDu,

(2.2.3)

where Du denotes the normalized n — 1-dimensional measure on S™ ! and C,,
is a universal constant. The factor »”~! is the Jacobian of this transformation.
Weyl’s formula shows that the Jacobian for (2.2.1)) is |A(A)|. The proof of
Weyl’s formula relies on an orthogonal decomposition of Th;Symm(n).
Lemma 2. Let M have distinct eigenvalues. Then

ThSymm(n) 2 R" @ o(n). (2.2.4)

with respect to the Hilbert—Schmidt inner product.

I’'m a bit confused by the following:

If A(O) = O, then M = A. But
then my mapping from R™ @ o(n) —
TprSymm(n) is (A, Q) — A which is
not invertible, which tells me they are
not isomorphic. So I added the addi-
tional assumption.
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Proof. We first assume that M = A is diagonal. Consider a smooth curve
(—a,a) = Symm(n), a > 0, t — M(t) = Q(t)A(t)Q(t)T such that M(0) =
A(0) = A, and Q(0) = 1. We differentiateﬂ this expression with respect to ¢
and evaluate it at ¢ = 0 to find the following expression for a tangent vector in
TASymm(n):

M = A +[Q, Al (2.2.5)

Here A can be an arbitrary diagonal matrix, and Q an arbitrary antisymmetric
matrix. By the assumption of distinct eigenvalues, given M, A = diagonal(M)
and A, Q is uniquely determined. Since the diagonal terms in the commutator
[, A] vanish, of @ vanish, Q and A are orthogonal with respect to the Hilbert—
Schmidt inner product. Thus,

TASymm(n) 2 R" @ o(n). (2.2.6)

When M = QM Q7 is not diagonal, we consider a curve M (t) as above, with
M(0) =M, A(0) = A and Q(0) = Q. Now equation (2.2.5) is replaced by

M =q(A+1Q7Q.A]) Q" (2.2.7)

The matrices QTQ are antisymmetric and span o(n). Again, Q is uniquely
determined by M, A and A. Moreover, the matrices [QTQ, A] and A are orthog-
onal as before. For arbitrary A and A we find M(t) := Qe (A + tA)e *4QT is
a smooth curve in Symm(n), satisfying M (0) = M.

Lecture Note 1. In the above calculation we have implicitly assumed that ¢t —
A(t) and t — Q(t) are also smooth. Certainly, such smooth curves exist. If
one only assumes that M(¢) is smooth but ignores the distinct eigenvalue as-
sumption, because M (t) is always symmetric perturbation theory gives that the
eigenvalues (which are ordered) and associated projections can be chosen to be
differentiable functions of ¢ [Kat95, Theorem 5.4]. But note that symmetry is
actually unnecessary as we have assumed distinct eigenvalues. The main point
is that one can build a matrix Q(t) by applying the projections to the standard
basis, allowing the computation of A and Q, in a well-defined way.

Lecture Note 2. The fact that the commutator [QTQ, A] must be symmetric
implies that (QTQ)U + (QTQ)ji = 0 for i # j and more specifically for \; #
Aj. The diagonal entries of this product must vanish. So, for given distinct
eigenvalues we can define the mapping

M (diagonal(QMQT),QTQ) . (2.2.8)
This maps Th;Symm(n) onto R™ @ o(n). The inverse map is, of course, given by

0 (A i [A,A]) QT, (A A) eR" @ o(n).
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read Q [QTQ A]) QT but this
traceless matrix.

Remark 18. The proof of Lemma [2] reveals that all matrices of the form R ————

M+ Q( ) (1Q6)"Q(s). AT) Q(s)"ds (2.2.9)

lie on an isospectral manifold — i.e. a manifold of matrices in Symm(n) with
the same spectrum as A. And if one makes the ansatz Q(t) = e for an
antisymmetric matrix A, one has

M = [A, M]. (2.2.10)

Lecture Note 3. Conversely, if M = [A, M] for a skew-symmetric matrix A then
M (t) is symmetric if M (0) is. And the trace of all powers are conserved, using
the cyclic properties of the trace,

d

— T M*(t) =Tr Y MI7Y(&)M(t)M*=I(t) = k' Te M(t)M*~ (¢
dt Z ®) 0 ) (2.2.11)
=k Tr[A, M(6)]M"1(t) = k [A, M*(t)] = 0.
This implies for A; = A;(t) we have
1 1 1 A
24 2x - 2), Ao
: . _ . Sl =0 (2.2.12)
VD VP D SO

If the eigenvalues are distinct, this matrix is non-singular (see (2.6.6])) and spec-
trum of M is constant.

Proof of Weyl’s formula for § =1. We now have two coordinate systems on
Ty Symm(n) provided that the eigenvalues of M are distinct. We will show
that the set of all symmetric matrices with distinct eigenvalues is open, dense
and of full Lebesgue measure (see Lemma and Corollary. The coordinates
Eos 1 < o < p give the metric (2.1.3). A coordinate system, which is always lo-
cally defined, is (A, A), where A is a diagonal matrix and Aisan antisymmetric
matrix. We use (2.2.7) to find the infinitesimal length element in this coordi-
nate system. On the subset of Symm(n) consisting of matrices with distinct
eigenvalues, using that M is symmetric, and Q7dQ = dA, A € o(n),

TrdM? = Tr(dM)"dM = Tr Q(dA + [dA, A])T(dA + [dA, A])QT
= TrdA? 4+ 2TrdA[dA, A] + Tr[dA, A]? (2.2.13)
= TrdA? + Tr[dA, A]?.

2Differentiability is guaranteed by classical perturbation theory [Kat95, Theorem 5.4].
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Expanding out this last trace, we find
Tr[dA, A]* = Tr(dAA — AdA)?
= TrdAAdAA + Tr AdAAdA — Tr AdA®A — Tr dAAdA

=23 3 dAjpdAg e — D0 dARdAGA? =D Y T dA A A
j=1 k=1 j=1 k=1 j=1 k=1
=2 (A — Ap)?dA%,.
i<k
(2.2.14)
Therefore
ds? =Tr(dM?) = > dAT+2 Y (N — A)dA%. (2.2.15)
j=1 1<j<k<n

Thus, the metric tensor in these coordinates is a diagonal matrix in Symm , (p)
that takes the value 1 on the first n coordinates, and the value 2(X\; — \;)? for
each term Aj,. By (B.2.2)), the volume form is

DM =2"""VATTdN [ 1A — Ml ddje = [A(A)]DADO.  (2.2.16)

j=1 1<j<k<n
O

To interpret Weyl’s formula, in a neighborhood Uy, of a matrix with distinct
eigenvalues, one needs to construct an invertible map ¢(M) = (A, Q) from
symmetric matrices in this neighborhood to these “spectral” variables. Then
for f with compact support in Uy

/f(M)DM/d;(U )f(QAQT)|A(A)\DADO. (2.2.17)

We now work to understand how to define such a map, and why matrices with
repeated eigenvalues do not cause further issues.

2.3 Diagonalization as a change of coordinates

Some care is needed when treating the map M — (A, Q) as a change of vari-
ables. First, the map is not even well-defined in general, since the sign of each
normalized eigenvector is arbitrary. Second, even if we fix the signs, the choice
of eigenvectors is degenerate when M has repeated eigenvalues. Third, A is
not uniquely defined if we do not specify an ordering of the eigenvalues. The
following lemmas address this issue. Define the Weyl chamber

WP={AeR"| M <Xa<...< A\ } (2.3.1)
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Lemma 3. Assume My € Symm(n) has distinct eigenvalues. Then there exists
€ > 0 such that for each s € {£1}", there is a C*° map

B B(Mg) = W™ x O(n), M (A, Q)

that is a C* diffeomorphism onto its image.

Proof of Lemma[3 An outline of the proof is presented. The remaining details
are left to the exercises. Standard perturbation theory (see [Kat99], for example)
demonstrates that the map is C'°°. The choice of s corresponds to fixing the
signs of the eigenvectors as follows. Let a basis of normalized eigenvectors
of My be fixed. Call the associated matrix of eigenvectors QQg. For each s, let

(()S) = diag(s1,...,8,)Qo. Each Qés) is also an eigenvector matrix for My. Since
the eigenvalues of M are distinct, we may use the implicit function theorem to
solve the algebraic equations that determine the eigenvalues and eigenvectors,
in a way that is consistent with the choice of s. O

Lemma 4 (Weilandt—Hoffman inequality). Let My, Ms € Symm(n) and use
Aj(M;) to denote the jth eigenvalue (in increasing order) of M;. Then

DN (M) = X (My)* < || My — My|%.
j=1

Proof. See [Taolll, Section 1.3] for a particularly nice proof. O

Lemma 5. Assume that M € Symm(n) has a repeated eigenvalue. Then for
every € > 0 there exists M. € Symm(n), such that |M — M.|| < € and M,
has distinct eigenvalues. Furthermore, the set of all matrices in Symm(n) with
distinct eigenvalues is open.

Proof. Exercise. O

Lemma (3| shows that the map M — (A, Q) provides a local coordinate
system near each matrix with distinct eigenvalues. Lemma [5] shows that set of
such matrices is dense. As has been noted, more is true. The set of all matrices
with both distinct eigenvalues and non-vanishing first entries in its eigenvectors
is of full measure. This follows from and Lemma |8 below. One has to
note that the procedure of reducing a full matrix to a tridiagonal matrix that is
used to establish does not affect the first row of the eigenvector matrix.

In fact, Weyl’s formula shows that the set of M € Symm(n) with repeated
eigenvalues and at least one eigenvector with a zero first component has measure
zero with respect to DM. Let O = {0 € O(n) | O1; >0, j=1,...,n} and
Wr={M = OAOT € Symm(n) | —R< A <X <--< X\, < RO €0}
Then define p(M) = (A, Q) uniquely by the convention that the first non-zero
entry in each column of @ is positive. Then we find

/ DM = / |A(A)DA (/ 1)()) : (2.3.2)
JWgr JWr JO~

Wr={AeR"| —R< X\ <M< <\, <R} (2.3.3)
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But

‘ /V . [A(A)[DA < /O DO> - /W |A(A)|DA < /O D()> : (2.3.4)

This then implies, after changing variables back to M,

/ DM:/ DM. (2.3.5)
JWgr JWr

This then implies that for S = {M € Symm(n)|\; = A; for some i # j} has

measure zero. To see that
/ DO = / DO,
J O~ . 5>

make a local change of variables to the tangent space in the neighborhood of
a matrix O € Os \ Os via po(A) = O(I — A)(A+ I)~L. For O fixed, the
condition eing,:()(A)el = 0 is the zero set of a function that is real-analytic in the
components of A. If it vanished on a set of positive measure (Lebesgue measure
on the entries of A), it would have to vanish identically. This shows the measure
of O~ \ O that lies in this neighborhood is zero. Compactness of O \ O~ can
then be used to prove it is measure zero.

2.4 Independence and Invariance implies Gaus-
sian

Fix M € Symm(n) with spectrum o(M). Fix an interval (a,b) C R and let
Symm(n) ) denote the set of M € Symm(n) with spectrum o(M) C (a,b).
Each function f : (a,b) — R extends naturally to a map Symm(n) —
Symm(n) as follows:

FM)=Qf(M)QT, M=QAQ", f(A)=diag(f(\1),....f(\)). (2.4.1)

Clearly, Tr(f(M)) = Tr(f(A)) = Y27, f(Aj). Each f: R — R that grows
sufficiently fast as & — +o00 defines an invariant distribution on Symm(n)

w(DM) = %exp (= Tr(f(M))) DM. (2.4.2)

This is the most general form of an invariant probability distribution.

By contrast, a Wigner distribution relies on independence of the entries of
M. This means that if a Wigner distribution has a density, then it must be of
the form

poM) = (TT00) TI £ | D (@243)
j=1 1<j<k<n
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Theorem 19. Assume a probability measure p on Symm(n) is both a Wigner
distribution and an invariant distribution. Assume further that p(DM) has a

strictly positive, smooth density of the form and . Then p(DM)
is a Gaussian ensemble,

1
((DM) = Ze*ﬁz T (M= Dy, (2.4.4)

with variance 0% and mean vI, for some v € R.

Proof. We first illustrate the essential calculation for 2 x 2 matrices. Suppose
1
ILL(DM) = p(M) DM = Zf(Mll)g(MQQ)]’L(M12)dM11dM12dM22 (245)

We compute the variation in g along an isospectral curve (see Remark .
Consider the curve M(t) = Q(t)MQ(t)T with

Qt)=¢", R= ( (1) _01 > (2.4.6)

The matrix R spans s0(2). We differentiate M (t) with respect to ¢ to obtain

: —2My2 My — Mo
M(0) = [R, M] = 2.4.7
0) =1 ] < My — Mas 2Mi > ( )
Thus, the infinitesimal change in the density p(M (¢)) is
Ldp f'(Mi1) g'(Mag) h'(M;2)
-— = M1+ Moo + M 2.4.8
pdt|,_g FOMy) T g(Mag) 2T (M) T ( )
f'(My) 9'(M22)> W (M)
- oM - 4 (Mg — Mag)i212)
. (f(Mu) 9(Ma) (Mo = M) h(M2)
On the other hand, since p(DM) is invariant, p(M(t)) = p(M) and
dol -y, (2.4.9)
dt |,
We equate (2.4.8)) and (2.4.9)), and separate variables to obtain
1 (f/(Mll) _ 9/(M22)) oo 1L W (Miz) (2.4.10)
My — Moz \ f(M11)  g(Ma2) 2Myp h(Mia)’ o
for some constant ¢ € R. Equation ([2.4.10) immediately implies that
h(Mys) = h(0)eMi2. (2.4.11)

Separating variables again in (2.4.10]), we find with a second constant b € R,

! /

f7 =cMi1 + b, g = cMys + b, (2412)
g
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which integrates to

CM121 cM222
(M) = f(0)e™ 2 M g(Myo) = g(0)e 2 ePM22, (2.4.13)
We combine all the terms to obtain
‘Tr(Mz)
p(M) = f(0)g(0)h(0)e* 2 P T, (2.4.14)
Since p(M) integrates to 1, we must have ¢ < 0, say ¢ = —1/0%. The scalar b is

arbitrary and contributes a shift in the mean that is a scalar multiple of I. The
combination of constants f(0)g(0)h(0) may be absorbed into the normalization
constant Z~'. We have thus proved Theorem [19|for n = 2.

In order to prove Theorem [L9| for arbitrary n we generalize the above argu-
ment as follows. Fix a pair of off-diagonal indices 1 <1 < m < n. We consider
a rotation in R™ that rotates the x;x,, plane as above, and leaves the other co-
ordinates invariant. This entails replacing the matrix R in the argument above
with the matrix R!™ € so(n) with coordinates Rg’,’j = 0j10km — O0jmOr. The
argument above now shows that the density of p in the M, M, and M,
coordinates is a Gaussian distribution of the form (2.4.14):

Te((M'™)?) ”
p(MI™) = e 3 et T MT), (2.4.15)

where M'™ denotes the 2 x 2 matrix

M M
lm __ 11 Im

At this stage, the constants ¢ and b depend on [ and m. But now note that
since the same argument applies to every pair of indices 1 < I < m < n, the
constants ¢ and b must be independent of [ and m. O

Lecture Note 4. Then

0 (4,k)#(,m)or (k,j) # (l,m),
(R™),=¢1  j=1,k=m, (2.4.16)
-1 j=m, k=1.

Then for M(t) = Q(t)MQ(t)T, Q(t) = e'f* we have
M(0) = [M, R"™],

0 k#1,m,
(MR'"™)j =" Mjp(R™ ) = { M; k=m,
=1 —M;m k=1, (2.4.17)
n 0 j#lLm,
(R"™M)j = > (R"™)jeMy = { —My,  j =m,

t=1 Mmk j =1.
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Then we compute

0 j#l,mand k #1l,m,
2M k=m, j=m
—2M k=1, j=1,
Mll_Mmm kZm,j:L

Cir = (M, R"™ )i = { My — My k=1,1=m, (2.4.18)
M, k=m, j#l,m,
—Mm, k=1, j#1,m,
— M, j=m, k#l,m,
M, j=1, k#Il,m.

Differentiating the density, using invariance, we find
1dp w(Mji)
0= pat],_, = 1<J§<:k<ncjkf] ) fii =1 (2.4.19)

Separating out terms, using [ < m, we find

fl/(M”) 7,71(M ) fl,m(Mlm)
Cll fl(Ml) + Cmm fm( mm) +Clm, flm<Mlm) (2 4 20)
flk; (Mjm) o
k= l—&-zl:k;ém lkf j ;;ﬂ f]m(MJm)
Using the expressions for Cj;, we have

f/ ( mm) _ fl/(Mll)) _ flm(Mlm)

A (fm< M)~ fi(bdy ) T 0 M) G
(2.4.21)

flk; Mlk jnL(MJm)
by m, Z =0
Ny S flk: Miy,) Pyt fjm(M]m)

Then one separates variables. The last line of this equation contains only vari-
ables Mj;, that are not included on the first line of this equation. So, we may
separate variables as in the 2 x 2 case to find

fl(Mll)fm( mm)flm(Mlm)

is given by (2.4.15)). It is straightforward to argue that if this is true for every
pair (I,m) then ¢ and b cannot depend on [ or m.

2.5 Integration on Her(n) and U(n)

The space of Hermitian matrices Her(n) is a vector-space of real dimension n?,

as may be seen by the isomorphism Her(n) — R”z,

M — (]\4117 . 7Mnn7 ReMlz, ey Re]\4n_17n7 |m]\4127 ey |mMn_17n) . (251)
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The Hilbert-Schmidt inner product on Her(n) is
Her(n) x Her(n) - C, (M,N)+— Tr(M*N). (2.5.2)

The associated infinitesimal length element is

ds® = Tr(dM?) = Zde?j +2 Y (dReMj +dImM;).  (25.3)
1<j<k<n
Thus, in the coordinates £, the metric is an n? x n? diagonal matrix whose first
n entries are 1 and all other entries are 2. We apply (12.2.1]) to obtain the volume
form on Her(n)

n
DM =2 V2 TTdMy; [ dReMjpdimM. (2.5.4)
j=1 1<j<k<n

The unitary group, U(n) is the group of linear isometries of C™ equipped
with the standard inner-product (z,y) = x*y. Thus, U(n) is equivalent to the
group of matriceb U € C™*™ guch that U*U = I. The inner-product (2.5.3]) and
volume form are invariant under the transformation M — UM U *

The Lie algebra u(n) is computed as in Section [2.1] n We find

u(n) =TiU(n {AEC"X”\A——A*}, TyU(n) ={UA|Acu(n)}.
(2.5.5)
The transformation M +— iM is an isomorphism between Hermitian and anti-
Hermitian matrices. In fact, the map Her(n) — U(n), M ~ €™ is onto and
locally one-to-one. The inner-product A, A — Tr(A*A) is invariant under left
application of U(n). Thus, we obtain the volume form for Haar measure on U(n)

DU =2"""V/2 [ dA;; J[ dRedjrdimAyy. (2.5.6)
j=1 1<j<k<n

However, when viewing diagonalization M +— UAU* as a change of variables
on Her(n), it is necessary to quotient out the following degeneracy: For each
0 = (61,...,0,) € T", the diagonal matrix D = diag (¢'*,...,e""") is unitary
and M = UAU* if and only if M = UDAD*U*. Thus, for Her(n), the measure
DU must be replaced by Haar measure a measure on U(n)/T™. The form of
this measure on Haar measure on U(n)/T™ follows from the following assertion,
which is proved as in Section

Lemma 6. Each matriz M € TyrHer(n) is of the form
M=U <A+ [U*U,A]) U*, AeT\R", UeTyU(n), diagonal(U*U) =0.

. _ (2.5.7)
The matrices A and U*U are orthogonal under the inner-product .
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Thus, the volume form on the quotient U(n)/T™ is locally equivalent to a
volume form on the subspace of anti-Hermitian matrices consisting of matrices
with zero diagonal:

DU =2"""1/2 T  dRed;rdImAjp. (2.5.8)

1<j<k<n

Furthermore, B — ¢(B) = UeV & provides a locally one-to-one mapping from
PTyU(n) = UT;U(n) to U(n)/T".

Lemma [6] shows that the mapping R" & PT;U(n) — TaHer(n), PT;U(n) =
{A € T;U(n) | diag(A) = 0}, defined by (A, A) — U(A + [A, A])U* maps onto
TpHer(n). Again, the two spaces are isomorphic if M has distinct eigenvalues.

Proof of Weyl’s formula for § = 2. We write, on the subset of Symm(n) con-
sisting of matrices with distinct eigenvalues, using that M is Hermitian, and
U*dU = dA, A€ TiU(n),diag(A) =0,

TrdM? = TrdA? + 2 TrdA[dA, A] + Tr[dA, A]*[dA, A]

2.5.9
= TrdA? + Tr[dA, A]*[dA, A]. (2:5.9)

Expanding out this last trace, using that dA = dReA + idlmA, we need only
((check Jcollect the real part

Tr[dA, A]*[dA, A] = Tr(d ReA)A(dReA)A + Tr A(dReA)A(d ReA)
— TrA(dReA)?*A — Tr(d ReA)A?(d ReA)
+ Tr(dImA)A(dImA)A + Tr A(dImA)A(dImA)

(2.5.10)
— TrA(dImA)?A — Tr(dImA)A%(dImA)
=2 (A — M)?dRedZ, +2) (N — Ap) dImA,.
i<k i<k
Then it follows that the associated volume form satisfies
DM = |A(A)]*DADU. (2.5.11)
O
2.6 Integration on Quart(n) and USp(n)
The field of quaternions, H, is the linear space
T =co+cre; +coeg+cge3, ¢ €R, 1=0,1,2,3, (2.6.1)

equipped with the non-commutative rules of multiplication

¢] =5 =¢3 = ejeaey = —1. (2.6.2)
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These rules ensure that the product of any two quaternions is again a quaternion.
Each x € H has a complex conjugate T = ¢y —c1¢1 —coes —c3e3, and its absolute
value |z| is determined by

|x‘2 :.’i‘x:C(Q)—FC%‘i‘C%‘FCa (263)

Each non-zero x € H has a multiplicative inverse 1/x = Z/|z|>. Thus, H is
indeed a field.

The normed linear vector space H" consists of vectors = (21, ...,2,)7 with
inner product (z,y) = Z;'L=1 z;y;. The adjoint, MT of a linear transformation
M : H™ — H" is defined by the inner-product

(MTz,y) := (z, My). (2.6.4)

It follows that the entries of M are M, = My;. We say that an operator is self-
adjoint if M = MT. It is anti self-adjoint if M = —MT. The space of self-adjoint
operators is denoted Quart(n). We equip this space with the Hilbert-Schmidt
norm as before.

The group USp(n) is the set of linear transformations of H™ that preserve
this inner product. We thus require that for each z,y € H"

(x,y) = (Uxz,Uy) = (UTU:E,y>. (2.6.5)

Thus, USp(n) is equivalent to U € H"*™ such that UTU = I. As for U(n) we find
that its Lie algebra usp(n) is the space of anti self-adjoint matrices. The inner-
product on usp(n) and Haar measure are defined exactly as in Section as is
the analogue of Lemma [6] and the Weyl formula. It is also clear from how the
proof of Weyl’s formula extends to 8 = 2, that because the field of quarternions
is a four-dimensional space, |A(A)|* will arise, see (2.5.10)).

Exercises
2.1. Show that
1 1
N N
A(A) =det | . . (2.6.6)
A?fl Az—l

2.2. The Pauli matrices,

0 1 0 —i 1 0
01:<1 0), Jzz(i 01), 0'3:<0 _1>, (267)

allow a representation of the quarternions in terms of Hermitian matrices.
(a) Show that the Pauli matrices together with the identity matrix span Her(2).

(b) Show that the matrices {ioy,ios,io5} form a basis of su(2). (This is the
subalgebra of u(2) consisting of trace-free matrices).
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(c) Verify that if ¢; = i0;, the rules (2.6.2)) hold (replace 1 by I5).

2.3. The canonical symplectic matriz of size 2n x 2n denoted J,, or simply J,

is the matrix
0o I
J = ( 7 0 ) , (2.6.8)

where 0 and I denote the n X n zero and identity matrices. The symplectic group
Sp(2n,R) (not to be confused with the unitary symplectic group USp(n)!) is

Sp(2n,R) = {S e R"™™|STJS =J}. (2.6.9)

Verify that Sp(2n,R) is a group and compute its Lie algebra sp(2n,R).
2.4. Use the Gaussian integral

| |?
/ e 2 dxy...dz,.
n

to compute the n — 1-dimensional volume w,_1 of the unit sphere S™~!. Deter-
mine the asymptotic behavior of w,_1 as n — oo.

Hint: Do the integral two ways— once in Cartesian coordinates, and once in
polar coordinates.

2.5. Assume given a C! function f : (a,b) — R, and extend it to a function
f: Symm(n) — Symm(n) as in (2.4.1)). Compute the Jacobian of this transfor-
mation. Apply this formula to the function f(x) = €'* to compute the analogue
of Weyl’s formula on U(n) (note that each U € U(n) is of the form "™ for some
M € Her(n)).

2.6. Prove Lemma 4.

2.7. Let A € R™*" for m < n. Show that {x | Az = 0} C R™ has zero Lebesgue
measure.

2.8. Assume f: R — (0, 00) satisfies the functional equation

fle+y) =f)fly), zyek (2.6.10)

It is easy to check that for each a € R functions of the form f(z) = e
solve (2.6.10). Show that these are the only solutions to (2.6.10) assuming

only that f is continuous. (Do not assume that f is differentiable).

Remark 20. The use of row operations in Problem (1) underlies the intro-
duction of orthogonal polynomials. Problems (2) and (3) may be combined to
show that Sp(2n,C) N U(n) = USp(n). The approach in Problem (4) yields
the volume of O(n), U(n) and USp(n) when applied to GOE, GUE and GSE.
The assumptions of Problem (7) may be weakened further — measurability is
enough! You could try to develop a similar approach for the functional equation
implicit in the proof of Theorem That is, can you establish a stronger form
of Theorem [19] that does not assume differentiability ?
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2.9. Every V € U(n) is of the form V = exp(iM) for M € Her(n) (you can as-
sume this fact, but try and prove it). Thus, show that V = Udiag(el®1, ..., el )U*

)_L[()r real numbers a7, ..., a,. Combine this with problem (4) to derive ...

know how to finish this...

2.10. Show that the mapping A + (I — A)(A + I)~! from o(n) to O(n) is
bijective in a neighborhood of 0 to a neighborhood of the identity. Construct
an atlas of O(n) using this mapping.

2.11. Using the Submersion Theorem [BLO5| Proposition 3.42] (also called the
Regular Value theorem) show that O(n) is a smooth manifold.

Hint: Consider ¢ : R"*" — Symm(n) defined by ¢(X) = X7 X. Then show
that I is a regular value and therefore ¢~1(I) = O(n) is a smooth manifold.



44

CHAPTER 2. INTEGRATION ON SPACES OF MATRICES



Chapter 3

Jacobil matrices and
tridiagonal ensembles

3.1 Jacobi ensembles

The space of real n x n tridiagonal matrices is denoted Tridiag(n). A typical
matrix in Tridiag(n) is written

al bl 0 ‘e 0
by a2 bo 0
T=| 0 by a3 - : . (3.1.1)
. . . bnfl
0 0 bn—l Qp

Jacobi matrices, and their closure within the space Tridiag(n) are the manifolds

Jac(n) = {T € Tridiag(n)|b; >0,1<j<n}, (3.1.2)
Jac(n) = {T € Tridiag(n)|b; >0,1<j<n}.

Jacobi matrices, or more generally Jacobi operators, are of fundamental impor-
tance in spectral theory. A self-adjoint operator K on a Hilbert space can be
decomposed using its cyclic subspaces. On each of these cyclic subspaces an or-
thonormal basis for span{K7z | j = 0,1,2,...} can be found and the operator
K becomes tridiagonal in this basis. This is an idea used by conjugate gradient
algorithm [HS52]. They also play an important role in approximation theory,
the theory of orthogonal polynomials, and more widely in numerical linear alge-
bra. An essential step in the symmetric eigenvalue problem is the reduction of a
full symmetric matrix to an isospectral tridiagonal matrix (tridiagonalization)
by a sequence of orthogonal reflections. Under this procedure, the Gaussian
ensembles push forward to ensembles of tridiagonal matrices whose laws have
the following simple description.

45
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Definition 21 (Dumitriu-Edelman [DE02]). For each > 0, the Hermite(f)
ensemble consists of T' € Tridiag(n) such that ag, 1 < k < n, are iid normal
random variables with mean zero and variance 2/, and by, 1 < k < n—1 where

I think I fixed this to say X(, )5 are independent x(,_5(1/8) random variables.
instead of x5

The density for xx(o?) is supported on [0, 00) and is proportional to

tkile_;ai?.

The point here is that the Hermite(8) ensembles are the push-forwards of
the Gaussian ensembles when 8 = 1, 2 or 4. Then they interpolate Dyson’s
classification of ensembles to every S > 0. When combined with classical spec-
tral theory, they provide a distinct, and important, perspective on the limit
theorems of random matrix theory. Our immediate goal in this chapter is the
following

Theorem 22. Fiz § > 0 and assume T ~ Hermite(S). Then the marginal
distribution of its eigenvalues is

e T T A(A))P DA. (3.1.3)

1
P i A)DA =
Hermlte(ﬂ)( ) Zn,B
The chapter concludes with a more refined version of Theorem [22] that in-
cludes the distribution of the spectral measure of matrices T ~ Hermite(f).

3.2 Householder tridiagonalization on Symm(n)

Each M € Symm(n) may be diagonalized M = QAQ”. However, the computa-
tion of A depends on the solvability of the characteristic polynomial det(zl —
M) = 0. For n > 5, there is no general closed form solution for the characteristic
polynomia]ﬂ Nevertheless, every matrix always admits the following reduction
that requires only a finite number of algebraic operations.

Theorem 23. For every M € Symm(n) there exists a tridiagonal matriz T and
Q € O(n) such that

M =QTQT. (3.2.1)
A decomposition 18 given by a change of variables
Symm(n) — Jac(n) x (S"72 x §" 7 x ... 8"). (3.2.2)
under which the volume form DM on Symm(n) transforms as follows:
n n—1 n—2
DM = C,, [[ da; [T 6" ~"dbx ][] Der (3.2.3)
j=1 k=1 =1

where Dw; denotes uniform measure on the sphere S'=1, and C,, is the normal-
1zation constant.

IPractical numerical schemes for eigenvalue decomposition are unaffected by this algebraic
obstruction, since they rely on iteration.
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To interpret this theorem one needs a mapping h
h:S"2x 873 x ... x ST O(n), (3.2.4)

so that h(w,—2,wp—3,...,w1) = Q. This mapping is given explicitly below
in terms of Householder reflections. As the dimension of the domain for this
mapping is less than én(n —1), the dimension of O(n), not all matrices in O(n)
are attainable.

Remark 24. The space Tridiag(n) clearly inherits the inner-product Tr(7?) =
D42 E;:ll b3 from Symm(n). However, the volume form obtained from
this metric is not the same as the volume form in (3.2.3]) above.

Remark 25. (For algebraists!) The proof will also show that 7" and () may be
computed with a finite number of the following algebraic operations: addition,
multiplication and square-roots.

Definition 26. Suppose v € R" is a unit vector. The Householder reflection
in v is the matrix
P,=1— 2w, (3.2.5)

Lemma 7. The matriz P, has the following properties:
(a) P2 =1.
(b) P, € O(n).

Proof. Decompose R™ into the orthogonal subspaces span{v} and v*. Then
P,v = —v and Py|,. = I. Thus, P? = I. This proves (a). By construction
PT = P,. Thus, by (a), we also have PT P, = I. O

Proof of Theorem[23. 1. The proof relies on a sequence of Householder reflec-
tions that progressively introduce zeros in a sequence of matrices similar to M.
The first such matrix is the following. Let wy; = (Mo, ... ,Mm)T € R ! de-
note the last n — 1 entries of the first column of M. If the first coordinate of w;
is non-negative, and all other coordinates vanish there is nothing to do. If not,
we may choose a Householder reflection (in R™~!) that maps w; to ||w; ||26§n71)
(here the superscript n— 1 denotes that we consider the basis vector e; € R"71).
Geometrically, such a reflection is obtained by choosing v; to be the unit vector

that lies in between wy and ||w1||ge§n71). Explicitly, we se

1 = wifze" ™ —wi, o= A p = P,,. (3.2.6)
[1]]2

21f one is using this method numerically and |#1] is small, instabilities can be introduced.

1

In this case one should use —|w1|e§"7 — wq.
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By Lemma EL PM) € O(n — 1) is a Householder reflection that maps w; to
w1 |e§"71). It may be extended to a Householder reflection in O(n), by defining

1 0
QW = ( 0 pO ) ) (3.2.7)
Then the matrix
M = QW (Qu))T — 0w, (3.2.8)
is similar to M. By construction, the first row of M) is (M, |wy],0,...,0),
and the first column is (M1, |wi],0,...,0)T. Thus, we may write
(1) lw |(e("—1))T
ML = (n-1) =1 , (3.2.9)
|wile;” N®

where T() is a (trivial) 1 x 1 tridiagonal matrix and N € Symm(n — 1). See
Exercise [3.2] for the appropriate generalization of this step for the complex case
(Cnxn'

2. The proof is completed by induction. Assume that M*) € Symm(n) has

the form -
T*) Jwl(ef" )T
M* = e , 3.2.10
( el N)) ( )

where T®) ¢ Tridiag(k) and N®*) € Symm(n — k), 1 < k < n — 1. We apply
the procedure of step 1 to N*) to obtain a vector vy, a Householder reflection
pk) = P,,, and an orthogonal transformation of M®),

QW = ( ¢ P ) €0(n), M®TV =QWM®Q®. (3.2.11)

Note that Q) leaves the first k rows and columns of M*) unchanged, thus
it does not destroy the tridiagonal structure of the first k£ rows and columns.
Thus, M*+Y has the form with the index k replaced by k + 1.

The procedure terminates when k = n — 2, and yields

M=QTQ", Q=" 2Q"3 . QW. (3.2.12)

3. It is simplest to prove probabilistically. Informally, the k-th step
of the procedure above is a change to polar coordinates in R" %, with b, > 0
playing the role of the radius, and the factor bz_k_ldkawn_l_k being the
pushforward of Lebesgue measure in R"~* to polar coordinates. More precisely,
assume that M ~ GOE(n). We note that the first step of the above procedure
leaves My, alone. Thus, a; = Myj; ~ N(0,1). Moreover, the term by is the
length of the first column of M, not including the diagonal term Mj;. Since a
X2, random variable has the same law as the length of a vector in R™ whose
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entries are iid A(0,1) random variables, we see that by ~ x,_1. Further, the
vector w; = wy /|wy| is uniformly distributed on S™"~2 and independent of both
ay and by (see Exercise . We next observe that by the independence and
invariance of the Gaussian ensembles, the matrix N in (3.2.9) ~ GOE(n—1).
Indeed, M, the lower-right (n — 1) x (n — 1) block of M, is a GOE(n — 1)
matrix, and the reflection P(!) is independent of M. Thus, NV = p(W) 7, p()
has law GOE(n — 1) and is independent of by,a; and w; (see Exercise [3.3)).
Thus, ay ~ N (0,1) and bs ~ Xxn,_2. An obvious induction now shows that if
M ~ GOE then T ~ Hermite(1), and the vectors wy, = wy/|wg|, are uniformly
distributed on S"~1=% 1 < k < n — 2. Comparing the two laws, we find (with

p=1)

g2 o2 n—1 n—2
¢TI DM = Cuem T day [[ b b [ D (3.2.13)
k=1 1=1
The exponential weights cancel, and yield the Jacobian formula ([3.2.3). O

3.3 Tridiagonalization on Her(n) and Quart(n)

Theorem [23| admits a natural extension to Her(n) and Quart(n).

Theorem 27. For every M € Her(n) (resp. Quart(n)) there exists a tridiagonal
matriz T € Jac(n) and @Q € U(n) (resp. USp(n)) such that

M =QTQ". (3.3.1)
The transformation 18 given by a change of variables
Her(n) — Jac(n) x (Sp™2 x Sp™ x ... St), (3.3.2)

where S]f; denotes the unit sphere in B!, with F = C (resp. H). The volume form
DM on Her(n) (resp. Quart(n)) transforms as follows:

(T added 8 to the exponents for the

n n—1 n—2
DM = C, [ da; TT 0"~ b [] Dwr (3.3.3)
j=1 k=1 =1

where Dw; denotes uniform measure on the sphere SIlF, and C,, is a normalization
constant.

For a vector w € C™ with independent standard normal complex entries,
w; o~ %(Nl + iNy), where Ny, Ny ~ N(0,1) are independent, %XQ,,,.

For a quarternion vector w, one finds |w| ~ % X4n- S0,  is introduced in this
way.

~

w

Remark 28. Note that the matrix T is always real, whereas the entries of M
and @ are in C or H.

| & ’s: I think this is correct...

)
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The proof of Theorem [27] is in the same vein as that of Theorem It is
only necessary to replace the Householder projections in O(n) with projections
in U(n) and USp(n). For example, given v € C" with |v| = 1, the associ-
ated Householder projection in U(n) is P, = I — 2vv*. Step 3 in the proof of
Theorem [27] also explains the role of the parameter 8 in the definition of the
Hermite-3 ensembles. The k-th step of the Householder transformation maps a
standard Gaussian vector in C"** to its magnitude and direction. The law of
the magnitude is now xa(n—) (or XB(n—k) With 8 = 2). Similarly, the direction
of the Gaussian vector is uniformly distributed on the unit sphere in C*~*~1.

3.4 Inverse spectral theory for Jacobi matrices

Bounded Jacobi operators admit a complete and beautiful spectral theory that
is intimately tied to orthogonal polynomials and continued fractions. We first
introduce this theory for finite Jacobi matrices, since it underlies Theorem
As usual, write

T =QAQT, Qe O0(n), (3.4.1)

for the diagonalization of T'. We also recall the
Wh={AeR" |\ <A <...< A} (3.4.2)
For each A € W™, its isospectral manifold is the set
My =A{T € W‘ T = QAQ”, for some Q € O(n) }. (3.4.3)

The following theorem shows that the interior of the isospectral manifold is
diffeomorphic to the positive orthant S}~ = {u € R"|[[lulls = 1, u; >0, j =
1,2,...,n} of the unit sphere. Given T, we uniquely define @ by forcing the
first non-zero entry in each column to be positive.

Theorem 29. The spectral mapping
S:lJac(n) 5> W x ST, T (A, QT er), (3.4.4)
s an analytic diffeomorphism.

We prove this in stages below. See Figure [3.4.1]

The isospectral manifold admits several distinct parametrizations. First, it is
clear that we could use the simplex ¥, instead of the orthant Sﬁfl. Indeed, let
u = QT ey denote the first row of the matrix of eigenvectors and define cj = u?,
1 <k <n. Since Q € O(n), > p_,ui =1. Thus, u € S" ! and ¢ € &,,. But,
we shall use Sﬁ_l. Lemma @ below shows that uj can be chosen to be strictly
positive, which allows us to restrict attention to the positive orthant Sffl

Theorem [29| may also be viewed as a mapping to the spectral measure

T— u(T) = Zu?é,\j = chd,\j. (3.4.5)
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{ag‘ ¥y {2 {m;}i2

3-term recurrence

T € Jac(n)

Monic OPs

Spe
Clra]
gy,

Spectral measure

(A, QTer) >, UG,

Figure 3.4.1: The construction of the spectral map and its inverse. The trans-
formation to spectral variables is computed by computing eigenvalues and taking
the first component of the (normalized) eigenvectors. Then a spectral measure
is created from this data and is used to define monic orthogonal polyno-
mials (3.4.16)). These polynomials satisfy a three-term recurrence relation (see
Lemmal|ll)) and the coefficients in the relation allow for the (unique) reconstruc-
tion of T, see . This shows the spectral map from Jac(n) to W™ x Si_l
is invertible.

It is often more convenient to work with the Cauchy transform of the spectral
measure, . Define the 7-function,

MHT(Z):/inzu(dx):Z)\uj ot z2€ C\{A1,..., A\n}. (3.4.6)

J

j=1

The inverse 7 — p is obtained by computing the poles and residues of 7.

The 7-function may also be written as a ratio of polynomials of degree n —1
and n respectively. Let Ty € Jac(k) denote the lower-right k£ x k submatrix of
T,1 <k <n. It follows from Cramer’s rule that

n—1,4(n—1)
_ =11
T(z) = el (T —2)"le; = dzt(T’;l IZI) - HJ::( J(n) )
et(T — zI) szl(/\j —2)

. (3.4.7)

where A®) denotes the diagonal matrix of eigenvalues of T}, and A = A. We
will show that the ordered eigenvalues of T,,_1 and T,, interlace, i.e.

A AT A A ) (3.4.8)

Thus, interlacing sequences provide another parametrization of Jac(n). A conve-
nient visal description of interlacing sequences, called diagrams, was introduced
by Kerov and Vershik [Ker(3]. The importance of these alternate parametriza-
tions (spectral measures, 7-function, diagrams) is that they provide a transpar-
ent framework for the analysis of the limit n — oo.
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The surprising aspect of Theorem is that the spectral data (A, u) provides
enough information to reconstruct the matrix 7. There are three reconstruc-
tion procedures. The first involves orthogonal polynomials, the second uses the
theory of continued fractions and a third involves the explicit solution of the
equation T'Q = AQ for T. We explain the use of orthogonal polynomials below,
and outline the theory of continued fractions in the exercises. In order to de-
velop these procedures, it is first necessary to establish basic properties of the
eigenvalues of Jacobi matrices.

Lemma 8. Assume T € Jac(n). Then

1. The first entry of each non-zero eigenvector is non-zero. In particular, we
may normalize the eigenvectors to ensure up, > 0 for 1 <k <n.

2. The eigenvalues of T are distinct.

Proof. We write the eigenvalue equation Tv = zv in coordinates.
br—1Vk—1 + (ar — 2) vk + brvgy1 =0, 1<k <mn, (3.4.9)

with the convention by = b, = 0. Since the off-diagonal terms by are strictly
positive, we may solve this linear system recursively. Given vy, we find

v1(z — ay) v

. vz = ((a2 — 2)(a1 — 2) — b3), ete. (3.4.10)
by bybo

Vg =

Thus, v = 0 € R" if v; = 0. Further, the solution space to the eigenvalue
equation Tv = Av has dimension at most 1. O

The next statement follows from Lemma [82) and (3.3.3), (3.2.3) because

the probability that any b; vanishes is zero.

Corollary 1. Suppose M ~ GOE(n), GUE(n) or GSE(n). Then the eigenval-
ues of M are distinct with probability one.

Lemma 9. The characteristic polynomials di(z) = det(zI — Ty) satisfy the
recurrence relations

dri1(2) = (2 — an_p)dp(2) =02 _,dr_1(2), 1<k<n-—1, (3.4.11)
with the initial condition dy(z) =1 and the convention b, = 0.

Proof. Expand the determinant det(zI — T}) about the k-th row, and compute
the minors associated to z — a,,—x and b,,_p. O

Lemma 10. The eigenvalues of Ty, and Tyy1 interlace, 1 <k <n —1.
Proof. We consider the 7-functions for the minors T},

. det(Ty — 2I) _ di(z)
Tr(2) = T =2~ deaile) (3.4.12)
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By the recurrence relation (3.4.11)), we have
1

Tk(z)

=2 —an_p +02_pTr1(2). (3.4.13)

We claim that on the real line, 7 (z) is strictly increasing between the zeros
of di. Indeed, it is clear that 71(z) = (a, — x)~! has this property, and upon
differentiating (3.4.13]) we find that

izf,g =1+4+b2_,mh_1 >0,
Tk
except at poles. The claim follows by induction.

Since 7y, is strictly increasing between poles, by the intermediate value theo-
rem, it has exactly one zero between any two poles. By (3.4.12)), the zeros of 74
are the eigenvalues of Tk, and the poles of 7 are the eigenvalues of Ty1. Thus,
they interlace. O

A remarkable feature of the spectral theory of Jacobi matrices is that the
orthogonal polynomials associated to the spectral measure p(7T) may be used to
reconstruct T'. In order to state this assertion precisely, let us recall some basic
facts about orthogonal polynomials. Assume given a probability measure p on
R that has finite-moments of all orders, i.e.,

/ |z|¢ p(dx) < 0o, o> 0. (3.4.14)
R

We may apply the Gram-Schmidt procedure to the monomials {z*}2°  to
construct a sequence of polynomials that are orthogonal in L?(R, z1). There are
two standard normalizations that one may adopt.

Orthonormal polynomials, denoted {py}7°,, have the property that py is
of degree k, k=0,1,2,..., and

/R pe(@)pi(z) p(dz) = o (3.4.15)

Monic polynomials, denoted {7 }72, have the property that m(x) is of
degree k and the coefficient of ¥ is 1. Further,

/]Rﬂk(x)m(:r) p(dz) =0, k#IL (3.4.16)

Lemma 11 (Three-term recurrence for orthogonal polynomials). Given (A, u) €
Wn x ST et p(A,u) = Yp_, u2da,. Then the associated monic orthogonal
polynomials {m}}_,, satisfy the three-term recurrence

me(2) = (z —ap)mp_1(2) —bi_  mp_2(2), 1<k<n, (3.4.17)
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where the coefficients ay and by are given by

a — Jpemi_y p(de) 2 _ Jg Tk (@) TR—1 () p(da)
* Jo i1 (@) p(da)’ F Jemi_q(x) p(dx)
(3.4.18)

with 71—y = 0 and hence by = 0. Recall that my = 1. The recurrence
defines a Jacobi matriz T ().

k=1,....,n,

Remark 30. If y is not a discrete measure of the form (3.4.5)), but has bounded
support, the recurrence (3.4.17)) defines a bounded Jacobi operator on [2(C).

Proof. Given any p as in , we obtain the sequence {7} using the Gram-
Schmidt procedure. When g is of the form (3.4.5) with (3.4.5)), the vector space
L?(R, i) has dimension n and the Gram-Schmidt procedure yields an orthogonal
basis {m, T1,...,mn_1} for L*(R, p).

The three-term recurrence for the orthogonal polynomials is obtained as
follows. Since zmg(x) is a polynomial of degree k + 1 it can be expressed as a

. S k41 . .
linear combination zm(x) = j:O ¢;xm;(x). Since the 7; are monic, we must
have cj41,5 = 1. Moreover, for y =0,...,k—2

[ oo @) de) = [ (oo @) uae) = o

R

since zm; lies in the span of {m,...,mx—1}. Thus, ¢; =0 for j =0,...,k—2
and we find

x7(x) = Thg1(x) + ek i (T) + ck—1,,6TE—1(2). (3.4.19)

It remains to show that cx_1 5 > 0. By orthogonality, fR ()T () p(de) =
Jg T 41 (2) p(da). Thus, ¢k g1 > 0 for all k such that 7,1 () does not vanish in
L?(R, p): Assume 7; does not vanish in L?(R, u) for [ = 0,1,2,...,k—1 <n—1.
Then this recurrence defines m; which is not the zero polynomial since it is
monic. For A € W", it has distinct diagonal entries, so p(x) # 0 implies
[ p*(z)u(dz) > 0 if p is a polynomial of degree less than n. This is
aside from a change in notation. O

Proof of Theorem[29 We have defined a forward map T — p(T) as follows.
The matrix T defines a 7-function 7(2) = eI (T — 2I)~'e;, which is expressed
as a ratio of characteristic polynomials in (3.4.7). The poles of 7(z) are the
eigenvalues of T. The norming constants are the residues at the poles, and are
given by
dp—1(A)
2 n—1\\k
w2 = LR <o, 3.4.20
The inverse map p — T'(p) is given by Lemma The orthogonal polynomials
defined by u satisfy a three-term recurrence whose coefficients determine T'.
We only need to show that the map u — T'(p) — p (T (@) is the identity.

Let p = (A,u) be given and define T'(u) by the recurrence relations. We will
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show that

(T —=z)"e = 3.4.21
T -an = [ - ZAH (3.421)
We first show that the eigenvalues of T' coincide with {Ax}. Define p;(z) =
’/Tj(x) Hi;:l b];17 7TO(x) = pO(x)a then
zpo(z) = a1po(z) + bip1 (),
zpi(z) = bppr—1(2) + ap+1Pk(T) + byropra(z), k> 0.

Because p,(\;) = 0 for all j, we conclude that

(Po(A7): p2(A7), - - P (X))

is a non-trivial eigenvector for eigenvalue A;. This shows that both the left and
right-hand sides of (3.4.21)) are rational functions of z with simple poles in the
same locations. We expand both sides of (3.4.21)) for large z, and if we establish

showed that the eigenvalues are equal,
then we show these moments are equal

the relation To establish what we want, don’t we
Tk & need something like k up to 2n — 17 I
61T61:/x,u(dx), 0<k<n-—1, (3.4.22)
R

then it follows that

eI(T — 20)~ Z )\k = oz 1
k=

as z — 00. And therefore

(H(z)\k)> (e?(TzI Z)\k—z>

k=1

is an entire function that decays at infinity — it must be identically zero.
To see why (|3.4.22]) holds, consider

Tey = ajer + byes,
Tey = br_1er—1 + arer + bregyr, k> 1.

Define new basis vectors f; = e; Hé: b, fi = e1 because b; > 0 for all j =
1,2,...,n— 1. We then have

Tf1=a1f1+ fa,
Tfe=0¢_1fe-1+arfe + for1, k>1.

We then diagonalize this, setting T = QAQT, fJ = QTfj to find

Afl = alfl + b%fh
Afr =03 foo1 +apfi + fopr, k> 1
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Component-wise, this is the same three-term recurrence as the monic polyno-
mials. So, taking into account f; = e1, we find

fi=m1(0)Q%er, f; =mj—1(T)er.
Then because z* = Z?:o cjrm;(z) we have Tkey = Z?:o cipmi(T)er = Z?:o Cjk€jt1
and
ekael = Cok-
Similarly,

k

[ i) = ey [ 7y(@hutds) = con

=0 &’

This proves the theorem and this approach extends to the semi-infinite Jacobi

operators [Dei99). O

Lecture Note 5. Alternate proof of Theorem [29 Lemmaestablishes that QTe; €
Sifl and A € W". Now, we explicitly construct the inverse map (A, QTe;) —
T. We follow [DNT83]. The algorithm to construct 7" uniquely is as follows.
We use conjugates so that it is clear how this generalizes.

1. Compute

n
T = Z Ai1Qul%,

j=1

Tf, = Z Q121N = Tua %,

i=1
1 .
Q2 = —(N\jQ1; —T11Q1;), j=1,2,...,n.
15

2. For k=2,3,...,n—1, compute

Tok = > A |Qusl*,

j=1
T i1 = D1\ = Tow)@nj — Tek-1@Qr—1,5],
j=1
1 .
Qr+1,j = m()\j@kj —Tpk—1Qr—1, — T Qrj), 7 =1,2,...,n.
Jot

3. Compute

n
Ton = D AjlQns*.
j=1
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This procedure will succeed if T}, ;41 7# O for all k. And if it succeeds it is easy
to check that the tridiagonal matrix 7" will satisfy T'QQ = QA and by assumption
no column of () vanishes identically. It remains to prove that T} 41 # 0 and
that @ has no columns that vanish identically. It easily follows that 175 # 0,
since the eigenvalues are distinct. We perform induction on k. Assume 7} ;41 #
for | =1,2,...,k—1. Also assume the vectors {g;}F_,, ¢ = (Qu1, Qi2, .-, Qin)”
are orthonormal. If T}, 11 = 0, we would have

()\j _Tkk)ij _Tk,klekfl,j :0, j = 1,2,...,77,. (3423)

This then implies that the k x k tridiagonal matrix (1};)1<i j<k, T1; = 0 if
|l — j| > 1, has n distinct eigenvalues, which is impossible. The fact that the
diffeomorphism is analytic followsEl from the fact that these expressions for T
are rational functions of A and Q7e;. O

Remark 31. Observe that the recurrence relation (3.4.17) may be rewritten as
the matrix equation,

ay — z 1 0 0
b? as — 2 1 0 7o(2) 0
m1(2) 0
0 b2 az — 2 0 . = :
5 1 Tn—1(2) —mn(2)
0 0 b721 1 an —
(3.4.24)

Since mp(z) = 1, each zero of 7 (z) is an eigenvalue of the matrix above. Thus,
mp(2) = det(zI — Ty) where T}, denotes the upper-left k x k submatrix of T
(compare with Ty and di(z) = det(zI — T})).

Thus, given p, the entries of T" are obtained from “top to bottom”. However,
given T, the 7-function is the limit of 7-functions —dj(z)/dk+1(z) computed
‘bottom-to-top’.

Remark 32. Consider the sequence of orthogonal polynomials
-1

k
pe(@)= | [[be] mr(z), kE=1,2,... n-1 (3.4.25)
j=1

This is actually an orthonormal sequence which satisfies the three-term recur-
rence

bkpk(l}) — (Z - (I,]g)pkfl(z) — bk,1pk,2(1?). (3.4.26)

3The simplest way to do this is to realize this as a mapping from W" x U where U is an
subset of R”~1 found by mapping S_’,i*l — 3, and then mapping 3, to R*~!. Then the
analytic implicit function theorem can be applied.
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3.5 Jacobians for tridiagonal ensembles

We can now combine Theorem with the definition of Hermite-3 ensembles
to state a refined version of Theorem 221

Theorem 33. For each 3 > 0, the law of the Hermite(3) ensembles in spectral
variables (A, u) € W™ x Si_l is given by

1
PHermite (A7 U)DADU =
Zn.p

8 T s
(e4 Tr<A2>|A<A)ﬂDA> [+ | pu, 35.1)
j=1
where Du refers to uniform measure on Sifl, see Example . In particular,
A and u are independent.

Theorem [33| follows from a computation of the Jacobian of the spectral map
St Jac(n) - W x ST

Theorem 34. The volume forms on Jac(n) and W™ x S~ are related by

n n—1 n
DT = [[ da; [ by """ dby = CLA(A)DA (H uj> Du. (3.5.2)
k=1

j=1 k=1
where C,, is a normalization constant.

Remark 35. We have suppressed the explicit form of the normalization con-
stants in the statement of the lemma to focus on the marginals on W" and
Si_l respectively. The computation of the constants is an interesting exercise
(see [DEO02]).

While Theoremis an analytic/geometric assertion, the simplest proof uses
probabilistic reasoning, as in step 3 of the proof of Theorem Since we have
computed the Jacobian for the diagonalizing map Symm(n) — R"x0O(n) (Weyl’s
formula) and the tridiagonalizing map Symm(n) — Jac(n) (Theorem [23)), the
ratio of these Jacobians may be used to compute the Jacobian of the spectral
map Jac(n) — W™ x S77'. The main point is that by the O(n) invariance
of GOE, the top row of the eigenvector matrix must be uniformly distributed
on S ! and is independent of A. This gives the term [];_, u; du; in equa-
tion . As Dumitriu and Edelman remark, this is a ‘true random matrix
theory’ calculation. Another approach to uses symplectic geometry.

Lemma 12 (Vandermonde determinant in (a,b) coordinates).

n—1;n—k
b
AN =TTy =) = ﬁ;fik (3.5.3)
<k j=1%j
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Proof. 1. Recall that A®) denotes the diagonal matrix of eigenvalues of Tj and
that d;(x) = Hé 1 (z )\;l)) Therefore, we have the identity

I -1 l -1
l -1 l 1—1
ITIT A=A = T () :’Hdl (W) es
j=1k=1 j=1 k=1
Since d;_1 and d; are related through the three-term recurrence
di(x) = ( — ar)dy-1(x) = b4 1di—2 (),
we have
Hdl )| =050 Hdl* )| =6tk Hdl 1 (
We apply this identity repeatedly, starting with [ = n to obtain
n—1 n—2
n—1 2(n—1 n—2
[T =) = 0" T daea (05 )
k=1 j=1
_ b2(n 1) 2(n 2) H d _2 )\(n 3) H (n— k)
k=1 k=1
2. The coeflicients u? are the residue of 7, (2) at the poles \;, i.e.
dn—1(\k)
P= |, 1<k<n. 3.5.5
Observe also that
d, (M) = [T (A = ), and ] di, (M) = A(A). (3.5.6)
j#k k=1
Therefore,
n b2(n k)
2 _
j=1
O

Proof of Theorem[34, 1. Our goal is to compute the Jacobian of the spectral
mapping S,

_ 9(T(a,b))
DT = WDADU, (3.5.8)

where Du is uniform measure on {u € R” | |u| = 1,u; > 0 for all j}. Rather
than compute the change of variables directly, we will compute the push-forward
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Hermite-1 Jac(n)

det z
ﬁo\)se‘“O\ CEG
=
GOE Symm(n) S
&
>
A
(Aa QTel)

Figure 3.5.1:  We have already computed the push-forward of GOE under
Householder reflections (3.2.13)) and the push-forward of GOE onto spectral
2.2.16)

variables via Weyl’s formula ( . The composition of the map to spectral
variables and the inverse spectral map must give us the reduction to tridiagonal
form via Householder reflections. This allows the computation of the Jacobian
of the inverse spectral map.

of GOE onto Jac(n) and W" x Sﬁﬁ_l separately, and obtain the Jacobian above,

see Figure 3.5.1]

2. Consider the push-forward of GOE under the map M — (A, u), where
M = QAQT is the diagonalization of M, with the normalization that the first
non-zero entry in each column is positive. Since A and the matrix of eigenvalues
Q are independent, A and u = QT e; are independent. Since Q is distributed
according to Haar measure on O(n), the vector w is uniformly distributed on
Sff__l and the push-forward of GOE is the measure

p(A, u)DADu = Cpe” 3 ) A(A)DADw. (3.5.9)

3. Next consider the push-forward of GOE under the map M + T , where
M = QTQT denotes the tridiagonalization of M. As we have seen in the proof
of Theorem 20, T" and U are independent, and the marginal distribution of T is
given by

n n—1
BT)DT = Cre™ 3 T I day [ bp=*" db. (3.5.10)
k=1

j=1
4. Since T € Jac(n) and (A,u) € W™ x S~ are in bijection, we have

(T (a,b))
(A, u) -

We compare the expressions in (3.5.9) and (3.5.10) and use Lemma[12] to obtain

O(T(a,0)) _ Cu ITiy b
A(A,u) en [Tm vy

The constants are computed in [DE02]. O

p(A,u) = p(T(A,w)) (3.5.11)

(3.5.12)
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Proof of Theorem[33 The law of We change variables using the spectral map-
ping and Theorem[34]to obtain the following identity for the law of the Hermite—
[ ensembles

n—1
Cpge” T T 6~V D1 (3.5.13)

k=1
= Cp (e 5™ A DA) | TTwf ™ | D (35.19)

j=1
Since the distribution factors, A and u are independent with the laws stated in
Theorem B3] O
Exercises

3.1. Let w € R™ have iid N(0,1) components. Show that |w| and w/|w| are
independent.

3.2. Suppose that z € C". And suppose that x; ¢ R. Define

e 7= (%—1') x,
o w=|Z|2e} + %, and
o v=w/|wls.
Show that P = —I%‘(I — 2uv*) satisfies
e PcU(n),
e Pz = ||z|2e}, and
e P is a function of z/||x||2 alone.

3.3. Let U € O(n) be a random orthogonal matrix. For example U could
be a Householder reflection associated to a random vector w. Then assume
A ~ GOE. Show that B := UAUT ~ GOE and B is independent of U. Hint:
Use Lemma [341

3.4. Write a numerical code to sample matrices from both GOE and the Hermite—
1 ensemble. Verify numerically that a suitably normalized density of eigenval-
ues for the GOE matrix approaches the semicircle law as n increases (n = 100
should be ample). Is the same true for the Hermite — 1 ensemble? Why or why
not?

3.5. Consider the tridiagonal matrix T € Jac(n) that has entries a; = 0, 1 <
i1<n,bpy=11<k<n—-1

(a) Compute explicitly the spectral measure using Chebyshev polynomials
(compare T with the recurrence relations for the Chebyshev polynomials).
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(b) Plot histograms of two distributions related to T" for n = 100: (i) the em-
pirical distribution of eigenvalues ( £ "7 8y, ); (ii) the spectral density
> h_j uzdy,. Can you identify the limit in (i)?

(This exercise will be relevant for an enumeration problem relating Brownian
excursion to the Riemann-¢ function).

3.6. Establish uniqueness and smoothness in the proof of Theorem [29]

3.7. Use equation (3.4.12)) to recursively expand 7, as a continued fraction.
Combine this with the uniqueness step in Q.2 to deduce an alternative approach
to Theorem [29] that avoids the theory of orthogonal polynomials.

3.8. The following property of the function —z~! is relevant in the contin-

ued fraction scheme. Symmetric matrices have a partial order: Given A, B €
Symm(n) we say that A > B if uT Au > u” Bu for every u € R™. Suppose
A > B >0. Show that —A~! > —B~1.

3.9. This problem is a follow-up to exercise 5 in HW 1. Given a map f as in
that exercise, compute an (explicit) expression for its derivative D f.

3.10. Compute the following normalization constants:

(a) The normalization constants Z,, g in the standard definitions of GOE,

B
GUE and GSE with exponential weight e™ 4 Tr(M?),

(b) The constant C,, 5 in (3.5.13]).

(¢) The constant C, in the Jacobian for ensembles (3.2.3)) (compare with your
calculation of the volume of the unit sphere in HW1).

3.11. The proofs of Dumitriu and Edelman finesse the following issue: given
T € Jac(n) it requires some care to find a decomposition for the tangent space
TrJac(n), especially the isospectral manifold, My , that is analogous to Lemma
2. As in that lemma, we may split TrJac(n) into orthogonal subspaces that
correspond to diagonal matrices A and QTQ € o(n). However, while each
QT Q € o(n) generates a curve in TpSymm(n) , not all Q7'Q give rise to curves
in TrJac(n). Verify this. Explore this issue further by trying to find a basis for
the isospectral manifold My (see equation (3.4.3)).



Chapter 4

Beyond the symmetric
eigenvalue problem

In this chapter we discuss other random matrix ensembles that differ funda-
mentally from GUE, GOE and GSE. For this discussion we concentrate on real
and complex matrices. The first ensembles we consider are the real and com-
plex Ginibre ensembledl] Ging(m, n) on R™*™ and Ging(m,n) on C™*". These
are ensembles of real and complex matrices of size m x n. without symmetry
conditions. Their densities are given by

1
Paing(Y)DY = Zie*% TY'YDY, painc(X)DX = ——e "X XDX,
R,m,n

Thus, the entries are distributed as independent (real or complex) normal ran-
dom variables. The definition DY and DX in each case follows directly from the
volume forms associated to the length elements Tr(dY7dY) and Tr(dX*dX).
When m = n we use the notation Ging(n) and Ging(n) and Zg ,, and Zg .

Our first task is to generalize Weyl’s formula to the Ginibre ensembles
Ging(n) and Ging(n). To compute this, we use the Schur decomposition. The
Schur decomposition is often seen as a numerical tool to perform a spectral de-
composition of non-normal matrices. The eigenvalue decomposition is unstable
to compute: matrices with distinct eigenvalues are dense and so, computing a
Jordan block of a non-normal matrix is a precarious task when round-off errors
are present. An arbitrarily small perturbation will lead to an O(1) change in
the eigenvalue matrix.

Theorem 36. All matrices Y € R"*" and X € C"*" have decompositions

Y =080T, X =UTU*,

LOften, the term Ginibre ensemble is reserved for square matrices, but we find it convenient
to keep it for all rectangular matrices.
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where O € O(n), U € U(n). Here T € C™*" is upper-triangular and S € R"*"
18 block-upper triangular with blocks of size 1 or 2. These 2 x 2 blocks have the
form

a =
<(5 oz)’ a€eR, 4,v>0. (4.0.1)

Furthermore, if the eigenvalues are distinct with a given ordering, and the eigen-
vectors are normalized (say, first non-zero component is positive), the decompo-
sition is unique.

This can be proved by first performing an eigenvalue decomposition and
second, performing a QR factorization of the eigenvector matrix. We now
describe the QR decomposition algorithm, using Householder reflections, for
real matrices. Another numerically viable, but less stable, algorithm is the
modified Gram—Schmidt procedure. Both algorithms extend to complex ma-
trices in a straightforward way (see Exercise [3.2)). Given a matrix Y € R™*™,
Y = (y1 Yo o yn)7 define v(y) by

v(y) =0/[0ll2, o= [lyll2el" —y
if y # 0 and v(0) = 0. Then,
Pv(y1)Y = (”91”26? Pv(yl)yZ Pv(y1)yn) . (4~0-2)

Let I; be the j x j identity matrix, then given y € R?, define Q, € O(m) by

Lo 0
o= (" 0 ). 103
Yy 0 Pv(y) ( )
The QR factorization of a matrix Y is then given via
v .=y,
Yy .= QUIY(O)’ v1 = Yl(:(:r)v,,lv
Y@= Qv W, =Y, (4.0.4)

. o —
vy .— Qqu(] O} v = yj(zn])
It follows that R = Y (min{m:n}) js upper-triangular and Y = QR where Q =
(Quaingmomy " Qua Qu,)T. We arrive at the following.

Theorem 37. Fvery matrix Y € R™*™ X € C™*" has a factorization Y =
QR, X =UT such that Q € O(m), U € U(m) where R,T are upper-triangular
with non-negative diagonal entries. The factorization is unique if X (resp. Y ) is
invertible. This is called the QR factorization, or decomposition, of the matriz.
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Figure 4.0.1: The full QR decomposition in the case m > n. The shaded area
columns and rows are removed to create the reduced QR decomposition.

This theorem gives the full QR decomposition. If m > n, then a m —
n columns of @,U are redundant, and m — n rows of R,T are as well, see
Figure After dropping these columns and rows, one obtains the reduced
QR decomposition.

If m > n, one can count the number of degrees of freedom to see that neither
@ nor U could ever be distributed according to Haar measure on U(m) or O(n)
for X ~ Ging(m,n) or Y ~ Ging(m,n), respectively. So, we instead consider
the QR factorization of the augmented matrices

(X X’) and (Y Y’), X' ~ Ging(m,m —n), Y’ ~ Ging(m,m —n),
(4.0.5)

for X’ and Y’ independent of X and Y, respectively. This can be performed
even if X and Y are deterministic matrices. So, in the real case, and similarly
in the complex case,

Yo (Y Y’):QR’HQR::QR’(IS):Y.

Since it is a non-classical theorem for the Schur decomposition, we state the
following.

Theorem 38. Let X(t), X : (—a,a) — F**" a > 0, be a C* matriz func-
tion. Assume X (0) has distinct eigenvalues. Then the induced factors X (t) —
(T(t),U(t)) or X(t) — (S(t),0(t)) obtained by the Schur decomposition for
F = C orR are also C* in a neighborhood of t = 0.

|—(Add a proof of this.

Finally, before we proceed to pushing forward measure via these decom-
positions, we prove an elementary result for Ginibre ensembles using the QR
factorization.

Theorem 39. If X ~ Gingc(m,n), Y ~ Ging(m,n), m > n then
P(rank X <n) =0 and P(rankY <n)=0.
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Proof. We use induction on n for the real case. The complex case is similar. If
n = 1, then a Gaussian vector in R is non-zero with probability one. If n > 1,
n < m — 1, assume

P(rankY <n) =0, Y ~ Ging(m,n).
Let b € R™ be an independent Gaussian vector (b ~ Ging(m, 1)). Then
P(rank (Y b) <n+1)=E[P(rank (Y b)<n+1]|Y)].
On a set of full probability rank Y = n. For such a matrix consider
P (rank (Y b) <n+1]Y).
Solve
Ye=b=QRx=>b, Rx=Q"b=:b,

and therefore b ~ Ging(m, 1). For this equation to have a solution z, Rz = b,
since R € R™*™ triangular, and n < m, the last entry of b must vanish. Thus

P(rank (Y b) <m+1]Y)=0

almost surely. To truly make this rigorous, one should use Lemma This
proves the claim. O

Finally, we want to know that the probability of finding a Ginibre matrix
with an eigenvector that has a zero first component is zero.

Theorem 40. Assume X ~ Ging(n), Y ~ Ging(n). Then

P(EAeC,oeC v #0,Xv =X and v; =0) =0,
PEAxeC,oveR",v#£0,Yv = Av and v; =0) = 0.

Proof. We prove this for Y. The proof for X is similar. First, we write
T
Y = yo yl/ )
y2 Y
yo ~ Ging(1), y1,y2 ~ Ging(n — 1,1), Y’ ~ Ging(n — 1,n — 1),

mutually independent. Let

E= {HAEC,UER”_l,Y’v:)\U andY(S) :)\<2>}

It then follows that

P(EA € C,v e R",Yv = Xv and v; =0) =P(E) = E[P(E|Y)].
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Then
P(E|Y') =P (v eR", y{v=0, v is an eigenvector of Y’'|Y') .

For the eigenvalue A; of Y7, let V; = (v(l),...7v(€)), ¢ < n—1 be a basis of
eigenvectors for this eigenvalue. Then

¢
P | 3{c;} so that yi chv(j) =0/X"| =0, as.
j=1

Because, given X', perform a QR factorization of V; = QR, and consider
yTQRc =0, ¢ = (c1,...,¢;)T. But as R has rank £, this amounts to the con-
dition that (at least) one component of the Gaussian vector 7 = y¥'Q has to
vanish, a probability zero event. A union bound over all the distinct eigenvalues
proves the result. O

This theorem has an interesting implication. If a matrix Y has a repeated
eigenvalue and two linearly independent eigenvectors, then an eigenvector can
be constructed that has a zero first component. By the theorem, this event
occurs with probability zero for Ging(n), Ging(n). And so, if one shows that
Y is diagonalizable with probability one, then Y has distinct eigenvalues with
probability one. Nevertheless, it is actually easier to directly show this.

Theorem 41. Assume X ~ Ging(n), Y ~ Ging(n). Then

P (X has distinct eigenvalues ) =1,
=1

P (Y has distinct eigenvalues )

Proof. We show that the Vandermonde squared A(A)? is a polynomial in the
entries of the matrix. Let Aq,..., A\, be the eigenvalues of Y and consider

V=), Vie= )\ffl-

Then

AM)? =det(V)? = det(VTV), (VIV) = N2 = Trys+h-2,
=1

Now consider a rectangle R = [a,0]"" € R"”, and assume that

/ ]I{YGJR"X” ‘ \A(A)\:O}DY > 0.
R

Since the set of matrices with distinct eigenvalues is dense, A(A) # 0 for some Y.
But the only way for the zero locus of a polynomial in n variables to have positive
n-dimensional Lebesgue measure is for the polynomial to vanish identically. The
theorem follows. O
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4.1 Schur decomposition of Ging(n)

Theorems [36] and [38] allow us to compute the distribution induced on U and T'
in the Schur decomposition. We first identify the tangent space.

Theorem 42. Assume X € C"*™ has distinct eigenvalues. Then
Tx (C™*™) = R~ 1 g PT U(n).

Proof. A straightforward computation, using the differentiability of the Schur
decomposition gives

X =U(T +[UU, T)U*, (4.1.1)

after using X(t), t € (—a,a), a > 0, differentiating and evaluating at ¢ = 0. Tt
follows that S := U*U is skew-Hermitian. We then decompose T' = A + T, and
S = So+S5S_+54, where the + refers to strict upper- and lower- triangular parts.
We can first solve for S_ of S in the following way. Define S_ — ¢ € C*n—1/2
by ordering the entries of using the following relations:

(Z7J) < (ilvj/) if Z_J < i/_jlv

4.1.2
(i,9) < (', if i—j=4—j andi <. ( )

The first inequality orders entries by which diagonal they lie on. The second
orders within the diagonal. Then
X_ =[S, Al +[S_,T].
With the chosen ordering
C S, Ty = M_¢ (4.1.3)

is strictly lower triangular. Thus provided A; # A; for ¢ # j, we can solve this
for S_. If we then make the choice that Sy = 0, we can clearly solve for 7" once
S is known. Finally, by adjusting 7" accordingly, it is clear that any X can be
achieved with Sy = 0. O

Now, we give the analogue of Weyl’s formula for C™*".
Theorem 43. For X € C"*",
DX = |A(A)* DT DU, (4.1.4)

where DT = [[7_, dReX\;dImA; [, dReTj,dImT}y, and DU refers to the same
distribution as that of the eigenvectors of GUE(n).

Proof. We first map X to C™ in a consistent way. We order X_ using (5.5.2)
giving (X-. We then order diagonal(X) in the usual way. Then, finally we order
X, using

(i,7) < (7', 4") if and only if (5,i) < (§',4),
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giving ¢+, and X + [(X-,n,¢*+]T. We use ¢°- and ¢™* in same way for S_
and T, respectively. It then follows that, after ordering U*d XU,

A+M_ 0 0\ /d¢S-
U*dXU = D I 0 dA
M, 0 I) \d¢™+

where A¢S- is defined through ¢S~ + [S_, A], which is diagonal, S + (\x —
Aj)Sjk. My and D are matrices whose exact form is irrelevant. Decomposing
all differentials into real and imaginary parts and computing the metric tensor

TrdX*dX,

we find ([£.1.4) by using det(A + M_) = [T, (A — A;) and computing the
associate volume form. Here one has to use that if A : C* — C™ induces B :
R?" — R?" (by separating real and imaginary parts), then det B = |det A|>. O

Theorem 44. The Schur decomposition of Ging(n) is given by

1

- e” T T A(N)|> DT DU. (4.1.5)
ZC,n

Pain,c(X)DX

Note that this implies that the strict upper-triangular entries of T" are all iid
complex normal random variables.

4.2 Eigenvalues and eigenvectors of Ging(n)

Computing the analogue of Weyl’s formula for Ging(n) is much more compli-
cated. This comes from the fact that complex eigenvalues must arise as complex
conjugate pairs. Furthermore, for finite n there is a non-zero probability that
the matrix with have k real eigenvalues. Thus the distribution on the eigenval-
ues is not absolutely continuous with respect to Lebesgue measure on C. We
first compute the tangent space, under the assumption of k real eigenvalues.

Theorem 45. Assume that Y has exactly k real eigenvalues. Assume further
that the real part of all the eigenvalues of Y (0) =Y in the closed upper-half plane
are distinct. Finally, assume that each 2 x 2 block in the real Schur factorization

has v # 0 in (4.0.1). Then
Tanxn ~ Rn(n—l)/Q @ O(TL)

Proof. Assume Y () is a smooth curve in R"*” such that Y (¢) has k real eigen-
values for all £. As before, we have the relation

Y =0(S +[070,8)0".
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We need to show that the entries of § and O are uniquely determined by this
relation. We assume

Rl X X
0 R2 X x

s=| o 0 R| x x ,Rj@' ;%)
0 0 )\1 X J J
0o .- 0 M

where ¢ = (n — k)/2 and n — k is assumed to be even. The ordering is fixed by
aj < a1 and Aj < Ajp1. We also refer to the location of all the imposed zeros
in S as the generalized lower-triangular part of S, denoted Lg(S). Similarly,
Ug(S) = (Lg(ST))T and Dg(S) =5 Ug(S) - Lg(S). SO, we have

La(0TYO) = Lg ([A,S]), AT = —A.
After careful consideration, we find
Lg ([A,8]) = L ([La(A), Ua(S)] + [La(A4), Da(S)])
by noting that

[A,S] = [La(A), La(S)] 4+ [Da(A), La(S)] + [Ua(A), La(9)]
+ [Lg(A), Dg(S)] + [Dg(A), Dg(S)] + [Ug(A), Dg(S)]
+ [La(A), Ua(9)] + [Da(A), Uc(S)] + [Ua(A), Ua(S)],

Lg(S) =0, and any term involving only Dg and Ug or only Ug does not con-
tribute to Lg([4,S]). Then, it is a non-trivial but straightforward calculation
to find that Lg([Da(A), Dg(S)]) = 0. This gives a linear system of equations
for Lg(A). Since it will be of use in computing the metric tensor below, we
compute the determinant of this matrix in the following lemma.

Lemma 13. There exists a trivial mapping Lg(A) — & € R D/2=C defined
by ordering the elements of Lg(A) so that when M is the matriz representation
for & = Lg ([A, S]) we have

det M =Ak(A) = | J[ =) I 2y I 2%

]
1<i<j<k 1<j<k<t 1<i<k,1<j<t

ISR, IRTS

where A1, ..., A\, are the real eigenvalues, p; = o +1B;, B > 0 are the complex
eigenvalues (in the upper half plane) and
1 _ _
A = iy — il — al® = |y — il — il
2
A = |y — NP,

)
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Proof of Lemma[13 The important aspect of this is to choose the ordering.
First split

ALD 0
La(A) = ( 42D | 422 )

We order the 2 x 2 blocks of A1) according to . Within each block we
use this same ordering. We then order the entries of A2 according to (5.5.2).
Finally, we order the 1 x 2 blocks of A>1D according to (5.5.2) and within
each block we use this same ordering. This defines Lg(A) — & € RM=1/2=¢,
Define L = Lg(Lg(A),Uqg(S)) and decompose L into L) i = 1,2, j = 1,2
in the same was as for Lg(A). From the reasonindﬂ that went into (4.1.3)), we
have that the (i,5) block of LY depends only on blocks (i’,5’) of AT for
(i',4') > (i,7) and entries in AV, Similarly, the (i,j) entry of L2 depends
only on entries (i, ') of A2 for (i/,5") > (i,7) and entries in A, Lastly,
one checks that block (4,5) of L(>1) depends only on blocks (', j') of A1 for
(#',7") > (4,7). This gives a strong form of strict lower-triangularity for £ — L.
We now show that £ — K := Lg(Lg(A), Dg(S)) is block-diagonal in a way
that does not overlap with this strict lower-triangularity. First, decompose K
into K(4) 4 = 1,2, j = 1,2 in the same was as for Lg(A) and L. We obtain
the following relations for blocks of size 2 x 2, 1 x 1 and 1 x 2, respectively:

(1,1) _ 4(1,1) (1,1)
K, =A; R — RiA;;,
(2,2 (2,2)
K = Aij (A5 = i),
(2,1) _ 4(21) .y 420D
K = Aij R; )\,Aij .
The determinants of each of these linear transformations are
(o — i) + (6575 — 0vi)* + 2(0y — i) (8,75 + i),
()\j - )‘1)7
(@ = Xi)* + 057,
respectively. For the non-real eigenvalues in the upper-half plane, we have
tj = o +iy/7v;6;. This proves the lemma. O

From this lemma, with our assumptions, we can uniquely find Ls(A). But
as A is skew-symmetric, we have £ entries left undetermined. So, we consider

(OTY)252j = (S +[A, S])2j25 = (65 + (v; — 6;)82541,.25) + foi(La(A)),

(OTY)2j41.2j41 = (S + [A, SD2jr1.2i41 = (& + (8 — v5)d2j41,.2)) + fo;(La(A)).
(4.2.1)

2The commutator of lower-triangular and upper triangular matrices at entry (i,7) only
depends on entries (¢/,j’) of the lower-triangular matrix for 3/ < j with ¢ = ¢’ and ¢’ > ¢ with
j = j’. With strict triangularity, fewer dependencies occur.
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for some functions f;. As Lg(A) is known, this gives a solvable system for &;
and 8,41 2;, with determinant 2 H§:1(’Yj — ;). The remaining entries of S are
given through the relation

S=0TYO-[A,S9].

O
We now can compute the volume form.
Theorem 46. ForY € R™*™ with k real eigenvalues,
¢
DY = 2|Ax(A)| | [] 1 — 651 | DSDO, (4.2.2)
j=1
where
¢ k
DS = [[ dajdv;ds; [Tdr, [ ds, (4.2.3)
j=1 j=1 s€Uqg(S)

and DO refers to the same distribution as that of the eigenvectors of GOE(n),
i.e., Haar measure on O(n).

When we restrict to k real eigenvalues we use the notation

1 _aiyr
Z(k) € 2Y Y]]-{Y has k real eigenvalues}DY (424)
R,n

Painrk(Y)DY =

Theorem 47. The real Schur decomposition of Ging(n) given k real eigenvalues
18

14
Painri(Y)DY = ——e 2 S| A (W) | [] 1y — 65 | DSDO.  (4.2.5)

Jj=1

Note that this implies that the generalized upper-triangular entries of S are
[Compute probability of k real eigen- ]_all iid normal random variables.
values

Exercises

4.1. Complete the proof of Theorem [39] using Lemma [34]

4.2. Show that any given eigenvector of X Ging(n) can be taken to be uniformly
distributed on S™!



Chapter 5

Additional matrix
factorizations

,—(Expand on this.

The Ginibre ensembles allow us to define the Laguerre ensembles as trans-
formations of Ging(m,n) and Ging(m,n).

Definition 48. The ensembles of positive (semi-) definite matrices defined by
X*X/m where X ~ Ging(m,n), Ging(m,n) are called the Laguerre Unitary
Ensemble (LUE(m,n)) and the Laguerre Orthogonal Ensemble (LOE(m,n)),
respectively.

The Laguerre ensembles, LOE and LUE, are often referred to as Wishart
and complex Wishart matrices, respectively [?]. They get their name from the

close connection to Laguerre polynomials. —(sample covariance interpretation

Next, we turn to understanding the singular value decomposition of Ging(m, n)
and Ging(m, n) which will give the eigenvalue distribution of the Laguerre en-
sembles. The following is the famous singular value decomposition.

Theorem 49. Every matriz Y € R™*" and X € C™*" has a decomposition
Y =Qx0T, X =UxV*,

where Q@ € O(m), O € O(n), U € U(m), V € U(m) and ¥ € R™*" is a diagonal
matrixz with non-negative diagonal entries.

The non-zero entries of X are called the singular values of the matrix in
question. The singular values of matrix X are precisely the square roots of the
non-zero eigenvalues of X*X.

A main task of this chapter is to establish the following fact.

Theorem 50. Let x1,...,x, be the unordered eigenvalues of LUE(m,n) (8 =
2) or LOE(m,n) (8 = 1). The following gives the joint marginal distribution
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on the eigenvalues

1 i B (m—n+1)—1 Bm ~n
2 . Ba— j=1%j ) ce
Zn(/B) I | €T I | |:Cj xk| e 2 =t ]]‘{ZEJ'ZO, for all]}dzl dzy,.
Jj=1 i<k

(5.0.1)

5.1 QR decomposition of Ging(m,n)

We now consider the distribution induced on U and T by Ging(m,n). Following
the discussion in , we assume n > m. We follow the push forward of the
distributions under the algorithm in ([4.0.4). If X ~ Ging(m,n) then it follows
that if we replace Q; with U; and Y; with X in then X; and U; are
independent for every j using the fact that the length of a Gaussian vector is
independent of its angle and U X is independent of U € U(m) if U is independent
of X. And therefore, for X = UT, U is independent of T

From the discussion in Section [3.2]it follows that the induced volume form
on T is

m
-yl * 2(m—j+1)—1
x e 2TYTTHTjj(m DT, g=2,
Jj=1

where DT refers to standard Lebesgue measure on R’ x Cmm=1)/2+m(m=n)
Note that all the strictly upper-triangular entries are standard complex normal
random variables and the entries on the diagonal are all chi-distributed. To

understand the distribution on U all we need to do use to use that for O € U(m),
OX ~ Ging(m,n) if X ~ Ging(m,n). Then factorize

X=UT OX=UT.

From the uniqueness of the QR factorization (on set of full probability where X
is invertible), = T’ and U = OTU’. But U and U’ have the same distribution
and this distribution must therefore be invariant under left multiplication by
any element of U(m). We conclude U is distributed according to Haar measure
on U(m) |[Nac76] and to proportionality constants:

n

B * R _8 * —2j 7 5 i

e 5 Tr X XDX Q S e 7 T I I szjm 23+1DTDU, n:mln{m,n},
j=1

where DU is defined in . The normalization constant is easily computed
in terms of I'-functions. This can be seen as an equality when m < n. For
m > n, we add additional degrees of freedom to find DU, and so this is the
push-forward under a random transformation.
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5.2 QR decomposition of Ging(m,n)

It follows from the discussion in Section [5.1]that up to proportionality constants

n
e 2 ™Y Ypy W s mRIRTT RIMIDTIDRDQ, =1, @ =min{m,n},
j=1

where DR refers to standard Lebesgue measure on R x Rm(m—1)/2+m(m=n)
and D@ is Haar measure on O(n).

5.3 Bidiagonalization of Ginibre

We first consider the reduction of Ging(m,n) and Ging(m,n) to bidiagonal ma-
trices and, in the process, find a generalization of (5.0.1) to general 5. This
is sometimes called Golub—Kahan bidiagonalization. The aim here is not to
preserve eigenvalues, but to preserve singular values as transformations are per-
formed. So, we can perform independent Householder reflections from the left
and the right. Recall the definition of @, from . Let Y ~ Ging(m,n) for
m > n. Consider the transformations

vy .=y,
Yy .= Qle(O), v = v

1:m,1>
(YO)T = Qs (YT, 5y = (V5,7
Y@= Qu,vW, w=vi),,

- - 3.1
YO = Qs (VO)T, 5, = (VD)7 (5:3.1)

Y0 = Q, YD, 4 —yU-D
J )

Jim,g o
(YO = Qo (YN, 3 = (V7))

Each step in this process eliminates all entries below the diagonal entry in the
jth column and all entries to the right of the superdiagonal entry in the jth row.
The algorithm terminates when j = n—1, returning Y (=) which is a bidiagonal
matrix with non-negative entries. Let (Y1), = ¢; and (Y("™Y); ;11 = d;
for j =1,2,.... Wefind that (Q;, Qj, ¢;,d;j)j>1 is an independent set of random
variables, with @); being defined by v; € S]g_j and Qj being defined by v; €
Sﬁ{j*l (Qn—1 gives a sign flip of one entry). Under this change of variables,
following the arguments for 7 we have

n n—1 n—2 n—1
DY o [[ e de; [[ dp " 'ddi [] Daow [] Dy,
j=1 k=1 =1 p=1
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where D&, and Dw, denote uniform measure on Sk and Sk, respectively. Simi-
larly, by applying this algorithm to X ~ Ging(m,n) we find

n n—1 n—2 n—1
DX o [T " dey T di™ ™~ ddy, [ Dan [] Dwys
j=1 k=1 =1 p=1

where D&; and Dw,, denote uniform measure on Sfc and SZ, respectively.

5.4 The Cholesky decomposition

To compute the singular value decomposition of Ging(m,n) and Ging(m,n)
(the square roots of the eigenvalues of the Laguerre ensembles) we follow the
approach of Edelman [Ede89] and first compute the Cholesky decomposition.

Theorem 51. Ewvery strictly positive definite matriz A € R"*™ (or C"*") has
a unique decomposition

A=LLY (A=LL"),

where L € R™*™ (or C"*") is a lower-triangular matriz with positive diagonal
entries.

Proof. We concentrate on the real case and we first show uniqueness. Assume
A= LLT = L1 LT for two different factorizations. Then

Li'L=L{L™", where LT =(L"Y".

Since the non-singular upper- and lower-triangular matrices for groups, the left-
hand (right-hand) side is lower-triangular (upper-triangular). Therefore LIIL
is a diagonal matrix that is equal to its own transpose-inverse: ele_lLej =+1.
Positivity of the diagonal entries gives L1 = L. Now, by Gaussian elimina-
tion, without pivotin A = LU where L is lower-triangular and U is upper-
triangular. Here L has ones on the diagonal. We know that eJTAej > 0
and therefore eij/Uej = Uj;; > 0. Then Let U; = diagonal(U)/? and A =
iUdUglU. It follows from the symmetry of A that L = LUy gives the Cholesky
factorization. Similar considerations follow for A € C™*". O

5.5 Change of variables for Ging(m,n)

We now consider the change of variables that closely resembles the singular
value decomposition, but differs in a fundamental way. For X € C™*"  full
rank, define

x =T & U,1) ™ B (U, A = T = (U, VAVF) T P (AL V).
(5.5.1)

IPivoting is not required for strictly positive definite matrices because the upper left £ x £
blocks are non-singular for every £.
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This is a well-defined, invertible mapping, provided that the first row of V' con-
tains non-vanishing entries. It will follow from Section that the probability
of this is one. But we emphasize that for this decomposition X # UAV™*, gen-
erally. We now show that if X ~ Ging(m,n) then U, A,V are independent and
we then characterize the distribution of A and V.

Lemma 14 (Spectral variables for Hery (n)). If A € Hery(n) is non-singular
with distinct eigenvalues then

TaHer, (n) = R" @ PT;U(n).

Proof. The proof is essentially the same as Lemma[6] just using that the set of
strictly positive definite matrices is open. O

We define DA in the natural way as the volume form induced by the metric
tensor TrdA?. We then have the analogous formula to Theorem

DA = |A(A)]* DADU.

Next, we compute the volume form associated with the change Cholesky change
of variables.

Lemma 15. Let A = LL* be the Cholesky decomposition for a non-singular
A € Hery(n). Let DL be the natural volume form induced by Tr(dL*dL). Then

DA =2" [ L3 *'DL.

Jj=1

Proof. We prove this by identifying that the Jacobian of the transformation is
triangular, and computing the diagonal entries. We first compute for 7 > k

0A 0A
TL* + Lege?

T 1% T
—— = e¢je ———— =eje;. L™ — Lege: .
OReLj, i QmLy, Uk g

Examine the structure of these matrices. Since ejefL* is the matrix that con-
tains the kth row of L* in its jth row, with all other row being zero we find the
following picture

0
0
Ly
OA L1k
6Reij_
L 1
0 -+ 0 Lgg Lps1r -+ Lj_1x | 2ReLy;
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Here only the jth row and jth column have non-zero entries. Here 2ReL;j, is
in the (j,4) entry. A similar picture holds for %’EM, with 2lmLj;, in the (3, j)
entry. We define a mapping ReL — ¢ € R™"~1/2 and ImL — n € R*"=3)/2 by
the ordering of the non-zero elements of L:

k) < (3, k) if 5 <j',
DR 552
(k) < (4, k) if k<K
This orders first by row, and then by columns within each row. Assume (i,¢) <
(4, k), >k, 3> Then
aAiZ 81415

8Reij - 8Iijk N

because either i < j or £ < k' if i = j. And, it is clear that

94, ‘ 04, ,
=1L k 12 —9f =k
3Reij kky, J > K, 6ReL]k kk, J 9
OAje .
8Iijk o ka’ J > k.

Then, if we define L + ¢ where ¢ = (£1,71,&2,72,...)T we find that the Jacobian
is triangular and

0A n TT 7 2(n—j)+1
oL — 2 H Li; :
j=1

O

This theorem allows one to understand transformations of Ging(m, n). Fol-
lowing the transformation (5.5.1)), with X € C™*™ with m > n using T' = L*

noting that
T
r- (1.

- where T is a upper-triangular matrix with positive diagonal entries. Then

DX B [ "7 'DTD = 2" [[ 12" "' DADU (5.5.3)
j=1 j=1
=27"[[ ;"™ |A(2?)*D(2) DU DV. (5.5.4)
j=1

Here DU is Haar measure on U(n) and DV represents the same distribution as
the eigenvectors of GUE(n). Also, DX is Lebesgue measure on R’}. As noted
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below ([5.5.1]), this is not the singular value decomposition for X, but we claim,
it is in a distributional sense. For X ~ Ging(m,n), m > n and consider

X =U,2V, X:=UXV

where (U, V, X)) are independent with joint distribution (5.5.4), Uy is the matrix
of left singular vectors for X, and U is independent of U;. Then X = UU; X,
but then by the invariance of U, for measureable sets S; C U(m), Sy C C™*™,

P(UU{ € Sl) = ]P)(U S SlUl) = P(U S Sl),
]P(UUl* €5,X € 52) = P(U e SU,X € 52)

_ /S 2 ( /S B DU) pamc(X)DX = P(U € $1)P(X € S).

So, UU7 is independent of X and therefore X must have the same distribution
as X. This implies the singular value decomposition of Ging(m,n) is given by
(15.5.4)).

Remark 52. If one wants to match of dimensions, then DU should be replaced
by the push-forward of uniform measure on S~ x S =2 x -+ x S~ onto

U(m) via Householder reflections. B i i meeity @ommae? Dimemstens ]
( mateh, but....

5.6 Change of variables for Ging(m,n)

Similar considerations show for Y = QX0 ~ Ging(m,n) the singular value
distributions are given by

Dy & o= [T £~} A(£?)|DE2 DQ DO
j=1

where DO is Haar measure on U(n), DQ is Haar measure on O(m) and DX is
as before.

In both cases, Ging(m,n) or Ging(m,n), if m < n, then same distribu-
tional description holds with the addition of n — m point masses at zero for
Y1,...,Xn—m (depending one’s ordering convention) to indicate the deficiency
of the matrix.

Exercises

5.1. Write a numerical code to compute the Cholesky decomposition of a sym-
metric positive-definite tridiagonal matrix.
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Chapter 6

Determinantal formulas:

From Vandermonde to
Fredholm

Our purpose in this section is to present the elegant determinantal formulas of
Dyson, Gaudin and Mehta for invariant matrix ensembles on Her(n). These
formulas combine three distinct elements: (i) the Weyl formula on Her(n); (ii)
the theory of orthogonal polynomials; (iii) Fredholm determinants. We first
introduce these formulas for GUE. We then use the asymptotic properties of
Hermite polynomials to establish their scaling limits (Theorem [2, Theorem @
and Theorem @) While the eigenvalues of GOE and GSE do not have a deter-
minantal structure, they have a related Pfaffian structure, which is described in
a later chapter.

6.1 Probabilities as determinants

In what follows we will adopt the following notation. In order to avoid confusion,
we let z = (z1(M),...,z,(M)) € R denote the unordered eigenvalued!] of M,
and A = (A {(M),..., \,(M)) € W™ denote the ordered eigenvalues of M. We
use x; = x;(M) and \; = A\;(M) when M is clear from context. The probability
density of x, denoted P (z1,...,2n), is obtained from the Weyl’s formula

1 1<
PM(xy,.. . 2,) = 7A($)2672E’“:11i. (6.1.1)
Zn
Observe that P(") is invariant under permutations (21, ..., ) = (T, ..., s, ),

o € S(n). In practice, our interest lies not in the joint density of all n eigen-
values, but statistics such as the law of the largest eigenvalue. Thus, what is

IThese is is clearly not well-defined. If M is random one can compute the eigenvalues and
then randomly permute them.

81
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required is an analytical technique to extract such information from (6.1.1]) by
integrating out degrees of freedom to obtain information on the joint distribu-
tion of m-eigenvalues, 1 < m < n. More precisely, given m and a Borel function

Tldon it think we need thislcandition, : R™ — R that is symmetric under permutations,
the sum symmeterizes f, right?

flze,....zm) = f(26,, ..., T0,,), o €S(m), (6.1.2)
we consider random variables of the type
Ny = > F@j, e m). (6.1.3)

(1 seeerfm)E[L,n]™, jrdistinet

Expectations of random variables of the form (6.1.3)) are given by

E(Ny) = i f@1, .. xm) R (21, ... x) day . Az, (6.1.4)

where R,, is the m-point correlation function
R (1, ..., zm) (6.1.5)
= (nn'm)' /nim P(”)(gjl, ey Ty Tt Ly - e s L) ATt « o - ATy
The combinatorial factor in arises as follows. There are (') ways of
picking subsets of m distinct indices from [1,n]. On the other hand,
RW(xy, ... 2m) = R (24, %0y, ..., 2s, ), o€ S(m). (6.1.6)

and the integral on the right hand side of appears m! times when in-
tegrating over the complementary n — m variables for each choice of indices
{j1,.--yim} € [1,n]™. We state the following theorem which is proved in the
following sections.

Theorem 53. The joint density and m-point functions for GUE(n) are

1
P(n)(l‘l,...,l‘n) = adet (Kn(xj,xk)lgj,kgn), (617)
R,(g)(xl,...,xm) = det (Kn(xj,$k)1gj7k§m), (618)

where the integral kernel K, is defined by the Hermite wave functions

n—1
Kn(z,y) =Y (@)t (y)- (6.1.9)
k=0
Remark 54. The kernel K,, may be simplified using identities for the Hermite
polynomials. The Christoffel-Darboux formula (E.1.16)) allows us to write

Ko ):\/ﬁwn(x)wn—l(y)—%(2/)%—1(“3). (6.1.10)

n(%, Y
T—y
Further, eliminating v,_; with the identity (E.1.14) yields

"/Jn(x)wn(y) (6.1.11)
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A particular consequence of Theorem is the following fundamental for-
mula. Assume S is a bounded Borel set, let 1¢ denote its indicator function, and
let A,,(S) denote the probability that the set S contains precisely m eigenvalues
for M € GUE(n).

Theorem 55. The generating function of { A (S)}_, is given by the formula

det (I —zK,1g) = i Apn(S)(1—-2)™, zeC, (6.1.12)

m=0

where det (I — 2K, 1g) denotes the Fredholm determinant of the kernel

n—1
Kols(z,y) =Y Ts(x)yu(x)ve(y)Ls(y). (6.1.13)
k=0

Theorem and Theorem illustrate the general spirit of determinantal
formulas in random matrix theory. The density of a joint distribution is ex-
pressed as a determinant of an integral operator with finite rank. One may then
use the theory of orthogonal polynomials, in particular, results on the asymp-
totics of orthogonal polynomials, to establish the basic limit theorems outlined
in Chapter (1| (see Theorems |56] and Theorem [57] below).

Appendices[E] and [D] provide brief introductions to Hermite polynomials and
Fredholm determinants respectively.

6.2 The m-point correlation function

Proof of Theorem[53 We form linear combinations of the rows of the Vander-
monde matrix to obtain rCheck £1 on Vandermonde throughout )

Aw)=det | D . (6.2.1)
Bt (1) Bo1(@2) oor Booi(zn)

The calculations above would apply to any set of monic polynomials of degree
0,1,2,...,n — 1. The Hermite polynomials and wave functions are relevant
because they satisfy the orthogonality relations

2
e~ 7 /2

[ osm@ = s (622)

and allow the inclusion of an exponential weight. Precisely, the Hermite wave

functions
2
e T /4

wk(l’) = Wa

br(x) (6.2.3)

1
VE!
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satisfy the orthogonality relation
/ Yi(x)Yr(z) de = i, (6.2.4)
R

and form a basis for L?(R). Let H denote the matrix with entries Hj, =
Yj_1(xg). It follows from (6.2.1) and (6.2.3) that

22
e T A(x)? oc det H? = det HT H = det [Kn (@), 20)] 1 < j o » (6.2.5)

using the identity
(H'H), ZHUHM = Zwl zj) () = Kn (25, 28). (6.2.6)

Therefore, the joint density P (zx) is proportional to det K,. To determine
the constant of proportionality we recall that the determinant of a matrix A =
[ajr]i<jk<n satisfies

det A = Z sgn(o Ha(w (6.2.7)
o€S(n)

where sgn(o) denotes the sign of the permutation o. We then evaluate the
integral

2
/ det(H)*dx; ...dx, = / (det [wjfl(xkﬂgj,kgn) dzy...dz,

= Z sgn(o)sgn(7) /Rn H VYo, ~1(2j)r, —1(xj) day ... dzp

o,7€S(n)
(6.2.8)

Z Sgn Sgl’l ﬁ o'],'rJ - Z 1{0‘:7‘} =n!.

o,7€S(n) o,7€S(n)
We combine (6.2.8) and (6.2.6)) to obtain the first assertion in Theorem
" 1
PO (xy, ... ) = ] det [Ko (5, 25)] < j e -

The formulas for the correlation functions may be obtained by induction,
beginning with

R™(zy,...,2,) = det [K,(z;, k) 1< pn - (6.2.9)

First, the orthonormality relations (6.2.4]) imply

/K 2,2)d /K 2, 2) Ko (2, 1) dz = Ko (2, y). (6.2.10)
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Assume (6.1.8)) holds for an index m + 1 < n. We then have

Rﬁg)($1,...,xm):n_ /Rm+1 xl,...,xm,xm+1)dxm+1
= n—m / det [K mka)]lq k<m+1 dw 41 (6.2.11)
1
- m Z Sgn(g) /]RKn(zla xal) cee Kn(xm+17 xom+1) d$m+1-
oceS(m+1)

If 0,,41 = m + 1 in this sum, then the first equality in (6.2.10|) implies

/ Ko(1,20,) K (Tms1s Top ) ATt (6.2.12)
R
= nKn(zla‘rtTl) T K"(xm’xom)'

If o1 # m + 1, there exists j < m and & < m such that o; = m + 1 and
Om+1 = k. We then use the second equality in (6.2.10]) to find

/Kn(xh xal) e Kn(merlv maerl) dmerl (6213)

/K xhxal "'Kn(xjymerl)'"Kn(xm+17$k)dxm+1
(xhxdl)" K (xmaxa'/)

where o’ is a permutation of {1,...,m} such that 0% =k and 0] = 0y if | # j.
Each permutation ¢’ € S,,, may come from m permutations o € S,,+1. Further,
sgn(c’) = —sgn(o) since these permutations differ by a single swap. Therefore,
using equations (6.2.12) and (6.2.13) we have

/det w (T, k) < p<mpr d@mrr = (n—m) det [Kn (), 1)l < parm -

Lecture Note 6. Let ¢’ € S(m) and for 1 < j < m, define o € S(m + 1) by
op=o) for1 <1 <mandl7éj Then oy = m+ 1 and 0,41 —a . Then this
procedure maps 0 — o’ and j is is arbitrary. And, if we swap o; Wlth Om+1 We
then see that sgn(o) = —sgn(o”).

O

6.3 Determinants as generating functions

Proof of Theorem[55. The Fredholm determinant det (I — zK,1g) is an entire
function of z. Thus, equation (6.1.12)) is equivalent to the statement

1/ d\™
An(8) = — (-dZ> det (I — 2K, 1s)|,_, - (6.3.1)
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We first prove formula (6.3.1)) in the case m = 0. Let 1 denote the charac-
teristic function of the set S. The probability that all eigenvalues lie outside S
is given by

/ H 1—1g(zy)) P(")(;vl,...,xn) dzq...dz, (6.3.2)

3 ,_.

— (_1)J'/ Pt (Ls(@1),..., Ls(zn)) P™ (21, ..., 2) day ... day,
=0 e

where p}/ (71, ..., 2y) is the j-th symmetric function in n variables. For example,

n
pi() =1, pi(x wa Py (x Z%xk, p(x H

i<k
Then, we can express
1
n — .
Pj (z) = ﬁ E H"Tjk'
" (G1yeerdm)E[L,n]Y, jrdistinct k

Since each term in p} consists of j products of the form 1g(z,,) for some

p(lllllll(lll()ll o c S,, we 1111(01(11( over the l(lll(lllllllf‘ n — / \(llld})l(% and use

the permutation invariance of Hg” Using the m-point correlation function, we

obtain using (6.1.4) with f(z1,...,2m) = [T5%, Ls(z)),
E(N;) = / Pt (Ls(@1),..., Ls(zn))P™ (21, ..., 2p)doy ... d2y,  (6.3.3)

1
== det [K, ]lS(xk7$l)]1<kl< dz; ...dz;.
VANEY =/
In the last equality, we have used (6.1.8)) and multiplied the kernel on the left
and right by the diagonal matrix dg = diag(1s(z1),..., Ls(z;)), so that
Ls(z1)... Ls(z) R (21, 2y) = 13(2) .. 13 (a) RS (21, ., 25)
— det (ds Ko (2 )] < ds) = det [K, Ls(r, 20)] 1 i

where K(M1g is defined in We now combine and to

obtain

Z /pj ls(z1), ..., Ls(zn)P™ (21,...,20) dey ... dxy,

Jj=
= det(I — Kn1g), (6.3.4)

using the infinite series (D.1.8)) for the F‘redholm determinant (only n terms are
non-zero, since K™ has rank n, see Exermse
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We now turn to the case m > 1. Equation (6.3.2) must now be modified to
allow exactly m eigenvalues within S and n — m eigenvalues outside S. Define

m n

flar,. . zn) = [ 1s(z;) J[ Q- 1s(z))).

j=1 j=m+1

Then from ((6.1.4)), when we take into account the m! permutations of the first
m elements, and the (n —m)! permutations of the last n — m elements

1

Am SY= ——FE(N
(5)= i = B
1
= m - f(xla-..7xn)R£Ln)($17...,xn)dxl-..dxn'
We then write
f(wly...71'n):H]]_ k n m ]lS(xm+1),...7]lS(xm+k))
Jj=1 k:O

")

We use the fact that pf ™™ (Ls(Tm+1),-- -, Ls(x,)) is given by a sum of (",
terms, each of which is product of k terms, and all terms integrate to the same
value. So,

/ H]ls ()pr " (Lg(@me1), - ]ls(:vm+k))R£L”)(x1,...7:cn)d:v1--~dxn

- (n— )/ H Ts(zj) (/ R(")(xlv~-~,$m+k)d$m+k+1~-~dmn)
e S

X d!El s dmerk

(n . m+k
:7/ H Ig(z;)R (ml,...,mm+k)d:v1~-~dmm+k
Rtk S
(n —m)!
= T . det (Knls(xjazl)lgj,lgm—i-k) dxy ~'~dl‘m+k.
. ]RW‘L

Then, it follows that

n—m

—

/ det (K 1s(zj, 21)1<ji<mtr) A1 - - - dTppp
o Rm+k

( ;) det(I — zK,1g)|,_; -

3\)- 3
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n

Since there are (m

) ways of selecting m distinct eigenvalues, we find

Am(S) (6.3.5)

( )/ HILS (z;) [T (1 = Ls(@man)) P (21, 20) day . dayy
" k

1

(TZ) nzm(*l)k / AT (s (@) Ls ()

k=0

X H Lg(z;) P<”)(:£1, cooyp)day L. day,.

We then express

As in (6.3.3) and (6.3.3) We use the fact that pr~ " is given by a sum of
(" Am) terms, each of which is product of k terms, and all terms integrate to the
same value. Thus, the sum above is

n—m m-+k
n n—m
E — || 1g(xz;) P\ (xq,...,x, n)dzy ... dz,
(7’71) k:()( ( ) /" = 1, y L ) L1 T

n—m m-+k

— R'E::ik( i $77L+]») dxl dxﬂ?ﬁ‘rk
Rk S
- ml k:l / T det (Kpls(zp, 2q)1<p,g<m+k) d21 ... Tk
k=0 R
1 d m
- E <dZ> dOt(I o ZK’H,HS)‘zzl . (636)

In the second equality, we have simplified the combinatorial factors as follows:

1 (n\(n-—m\({—m-—k)!
ml - \m k n! '

In the last line, we have used formula (D.1.11f) for the derivative of a Fredholm
determinant. O
Exercises

6.1. Plot the density %Kn(x, x) for various choices of n. Compare the extrema
of the density with the roots of the appropriately scaled Hermite wave functions.
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Chapter 7

Scaling limits

7.1 Scaling limits of independent points

Recall the semicircle density pg. from . We show in the next section that
the global eigenvalue density, or density of states, for GUE(n) is given by ps. as
n — oo. Before we describe this more precisely, we consider a situation of iid
points to contrast with the distributions that arise in GUE(n).

Consider an iid vector A = \/n(A1, Aa,..., A\,)T € R™ where P()\; € S) =
J5 Psc(z’)da’. We form the empirical measure

Ly, (dz) Z% dz), (7.1.1)
and consider the deterministic measure EL,, defined by
[1@RL @) =B, ) =EL Y 00, seam.  @12)
x n xr) = ns - . I N
n 0

k=1

But, it is clear, and effectively by definition, that EL,(dz’) = p(2')da’ =
ﬁpse (\%) dz’ and hence /np(y/nz’)dz’ = pg.(z')dz’.

Next, we consider a gap probability in the “bulk”. Let s € (—2,2), I C R
be an interval and consider the rescaled interval I,, = \/n (s T G )) Then
by independence

P(no\ €l,)= (1 - % /I Dee (%) da:> (7.1.3)

We directly find that

\f/ Dsc ( ) da’ = |i| (14 0(1)) as n — oo. (7.1.4)

91
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From this it follows that
1i_>m P(no A €l,)=exp <—/da:’) ) (7.1.5)
n o0 I

This is, of course, the gap probability for a Poisson process.
~ We now consider the distribution of the maximum, i.e. at the “edge”. Let

A =max; A;. Then, by independence,

2

P(n'/%(2y/n — X) > t) = <1 - /2 Psc (1) dT>

—n—2/3¢

By direct calculation, replacing ¢ with 72/3t%/3(3/2)%/3 we find, for ¢t > 0,

lim P(n/5(2y/n — ) > t) = e aet"", (7.1.6)
n—oo
From this we see a (trivial) scaling limit of the density of states after rescaling
by 1/4/n, gaps on the order of 1/n after this rescaling and a largest “eigenvalue”
that satisfies \ ~ 2\/ﬁ+£n1/6 for an appropriate random variable £. All of these
statements carry over to the random matrix setting, but the actual limits are
very different for local statistics.

7.2 GUE scaling limits I: the semicircle law

The empirical measure of the eigenvalues of GUE(n) is

1 n
Ly (dz) = — > 0x,(dx) (7.2.1)
k=1
has the expected density
1
EL, (dz) = ﬁKn(w,x) dz. (7.2.2)

This density is also referred to as the global eigenvalue density or the density of
states. The above expression is somewhat more transparent in its weak form,
using unordered x1,...,z,. For every f € Co(R), we have

E(L,., f) = % /R F@)R™ () de = % /R F@)Kn(z, ) da, (7.2.3)

by Theorem [53| and equation (6.1.4). The value of the kernel K, on the diago-
nal is determined by the Christoffel-Darboux relation ((6.1.10|) and L’Hospital’s

lemma:
Ko (2, 2) = Vit ($p(@)tbns (&) — (@) (2)) (7.2.4)
The scaling limit of EL,, is the semicircle law defined in (1.3.1))



7.2. GUE SCALING LIMITS I: THE SEMICIRCLE LAW 93

Lemma 16.

nh—{%o TK (zv/n,zv/n) = pec(z), xR, (7.2.5)

Further, for any € > 0, the convergence is uniform on the set {x ||z —2| > ¢}.

Proof. The lemma follows from the Plancherel-Rotach asymptotics for the Her-
mite wave functions (see Cases 1 and 2 and equations (E.1.39)—(?7)) in Ap-
pendix [E]). Define the rescaled wave functions

Ui (2) = nihyyp(ay/n), p=-2,—1,0. (7.2.6)

We use the identity (E.1.14) to eliminate 1), and 4;,_; from (7.2.4) and find

after a few computations that

%Kn (zvn,av/n) = 2 _ (z) — 4/ n; lllfn_g(a:)\lln(x). (7.2.7)

We now use the asymptotic relations and (??) depending on whether
|x] < 2 or || > 2. Since the region || > 2 corresponds to exponential decay
with a rate proportional to n, we focus on the region |z| < 2. In order to simplify
notation, let

1 1
9:n<g0—2sin2ap) —590—%. (7.2.8)

(This is the argument of the cosine in (E.1.54) when p = —1.) Then (7.2.7) and
(E.1.40) yield

L K, (zv/n,zv/n)
1

NG
! (cos? 0 — cos(0 + @) cos(0 — ) = —/4 — 22,

T sin ¢ 2m

~

using x = 2cosp and the trigonometric formulae cos2a = 2cos? a — 1 and
2 cos(0 + ¢) cos(0 — @) = cos 2p + cos 20. A similar calculation with (??) shows
that the limit vanishes outside the set || > 2. The assertion of uniformity
in the convergence follows from the assertion of uniform convergence in the
Plancherel-Rotach asymptotics. O

Using Exercise Lemma implies that EL, (dx), after rescaling, con-

verges Weakly _(Include the variance estimate to state ]

Lthis almost surely?

1 n
E (n Zéxk/\/ﬁ(dx)> — psc(z)dz, weakly. (7.2.9)

k=1

This is called the averaged semicircle law. Tt is also worth noting that if f(z) =
1s then

E ( fraction of eigenvalues that lie in S) / f(z)EL,(dz) / Ky (z,z)d
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7.3 GUE scaling limits II: the sine kernel
Recall from Definition [5| that Kgne is the integral kernel on R x R given by

sinm(z —y)

Ksine(xa y) = 7T(:L' _ y)

, T FEY, (7.3.1)

and Kgne(z,x,) = 1. It defines an integral operator on L?(S) for every bounded,
measurable set S. We can now prove a stronger version of Theorem [6]

Theorem 56. For each integer m = 0,1,2,... and bounded, Borel set S and
re(—2,2)

S
lim P (]W ~ GUE(n) has m eigenvalues in v/n (r + )>

n—00 NPsc (7)

(7.3.2)

z=1"

1 d m
=—|——) det(I— zKqnel
m! < dz> et(l -2 s)

The proof of Theorem [56] is a consequence of the following

Lemma 17. Let S be a bounded measurable set. Then for r € (—2,2)

1 T Y
lim sup |——=K <\/ﬁT+,\/ﬁr+> — Kgine(z,y ‘ =0.
% S ety Y Y ity ) et d)
(7.3.3)
Proof. For r € (—2,2) define ¢(s) by v = r + e o) — 2¢0S ©(s). We then
note that sin ¢(0)/7m = psc(r). We expand, for sufficiently large n,
1 . 1 . TS o .
p(s) — 5 sin 20(s) = p(0) — 5 sin 20(0) — o +0(n™%). (7.3.4)
Define the new functions
U p(s) = n%wnﬁn (»L\/ﬁ) ) (7.3.5)
From (E.1.40))
1 1 1 T
W, »(8) ~ ———=cos |n 0) — =sin2p0) | —ws+ [ p+ = 0)——
) ~ s cos [0 (1(0) = gsin200)) — s+ (v 3) 910~ §]
(7.3.6)

For fixed r, this is uniform for s in a compact set. We then use ((6.1.10) and



7.3. GUE SCALING LIMITS II: THE SINE KERNEL 95

y:r_#;(o)toﬁnd,fors#t,

_ ™ Un(2v/n)n—1(yvn) — n(yvn)dn-_1(zvn)

sin p(0)y/n x—y
_ \I/n’o(S)\I/n’,l(t) — \I/nyo(t)\:[/nﬁfl(s)

s—1

N 1 cos(0, + s) cos(0, +t — p(0)) — cos(by, + t) cos(0,, + s — ©(0))

7 sin (0) t—s
_ sin7m(s —1)
-y (7.3.8)

Here we set 0,, = n (¢(0) — 3 sin2¢(0)) + 2¢(0) — T and used the identity
cosacos(ff + ) — cos(a + ) cos f = sinysin(a — ). (7.3.9)

This is uniform for |t — s| > §. For |t — s| < J, it is convenient to write

Un(@)n-1(y) = Pn(y)n-a(z) _ (vl (1= 0y)
p— = (¥n(2) ¥na(@)) /O < Ll (1 — z)y)> de,

and establish uniform convergence of this, after rescaling as above, to

sin7(s —t) (sinms coss) /1 (sin(m?s +m(1— 5)1;)

(s —t)  \cos(mts + m(1 - 0) )> de. (7.3.10)

O

any need for the small z Hermite
asymptotics section in the appendix.

With this proof, I don’t think we have
But is is nice and clean...

Proof. Define the new rescaled wave function

U, (2) = nig,(—=). (7.3.11)

Si=

The identity (E.1.14}) now takes the form

\1171,71('/1") - \I//n(x) + l

5 Vn(2), (7.3.12)

and the rescaled kernel takes the form

T —y 2n
We now use (E.1.21) (when n is even) and (E.1.21)) (when n is odd) to obtain
3. O
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Proof of Theorem [56, Let K, (z,y) denote the rescaled kernel mKn(x\/ﬁ, yv/n),

T=r— sy =T — np%c(r). It follows from Lemma |17} using Sections
and [D-2] that

lim det (I _ zf(n]ls> = det (I — 2Kgnels), z€C, (7.3.14)

n— oo

and that the convergence is uniform in z for z in a bounded set. In particular,
the derivatives at z = 1 converge for all m, that is

. d\"™ ~ a\"
Tim. <—dz> det (I . an]lS) = (—d2> det (I — 2Knels)|._, -
(7.3.15)
By Theorem this is equivalent to ([7.12.3]). O

7.4 GUE scaling limits III: the Airy kernel

Recall from Definition |§| that Kajy is the continuous integral kernel on R x R
given by

Ai(z)Ai' (y) — Ai'(z)Ai
The fluctuations at the edge of the spectrum are described as follows. Let
(z1,...,2y) denote the unordered eigenvalues of a matrix M € GUE(n) and let

us consider the shifted and rescaled points

sk:né(aﬁ—%/ﬁ), k=1,...,n. (7.4.2)

For each nonnegative integer m and bounded, measurable set S, let B )(S)
denote the probability that exactly m of the points si,...,s, lie in S when
M € GUE(n). The following theorem is a consequence of Lemma (19 and the
discussion in Section [D.2]

Theorem 57.

(7.4.3)

z=1"

1 d\"
lim_ BM(S) = — (—dz> det (I — 2zKpiry1s)|
Remark 58. The assumption that S is bounded is necessary for Kgne. The
sine-kernel has a (weak) rate of decay |z|~! as || — oo and the Fredholm
determinant det(] — zKgnels) is not finite unless S is bounded. However, the
Airy function, and the thus the Airy kernel, has strong decay as x and y — co.
The Fredholm determinant det(] — zKajyls) is well-defined in L?(S) for sets
S that are bounded below, but not above, such as S = (a,00) for any a € R.
Such sets will be considered when we compute the Tracy-Widom distribution.
See Exercise 5.

The proof of Theorem [57]follows from the Plancherel-Rotach asymptotics for
the Hermite polynomials, in particular the Airy asymptotics in the transition

zone (see Case 3 and (E.1.42)—(E.1.44) in Appendix . The following lemma
plays a role analogous to that of Lemma [17]in the proof of Theorem
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Lemma 18. Let S be a bounded measurable set. Then

lim sup
n—00 4 yes

71 <2ﬁ+ 2/ + ) —KAiry(an,y)' =0. (744)

ne n o
Lemma 19. For x # y, uniformly on bounded sets,

lim
n—oo

Lk (s Zoavie B) Kt =0 @9

ne
and there exists a function G(z,y) € L*([C,00)?) for all C € R such that

1

7]6

<2\F+ 1,2f+)‘<G(x,y). (7.4.6)

Proof. Convergence follows from (E.1.44). The function G(x,y) can be con-
structed using (E-1.82) and (E.1.83)), see Exercise[7.3] O

Proof. Let us define the rescaled wave-functions
U, () = ni=ey, <2\m + “> . (7.4.7)
ne
We then use identity (E.1.14]) to find

ns K, (2\/5—5— % 2v/n + yl)

ne ne
v, (x \Ij,n y) — ‘1];, )W, (y 1
_ W@ - V@T) Ly gy
Tr—y 2ns

As noted in Appendix [E} as n — oo, ¥,,(x) converges to Ai(z) and the conver-
gence is uniform for z in compact subsds of C. Thus, in addition, ¥/ (z) —
Ai’(x) uniformly in compact sets, and (7.4.5)) follows. O

7.5 The eigenvalues and condition number of

GUE

Let M ~ GUE(n). Let \y < Ao < -+ < A, be the eigenvalues of M. A
consequence of Theorem p7]is the following, for all t € R

An
lim P <n2/3 (\/ﬁ - 2) < t) = det(1 — KairyLit,00)) =: Fa(t),

n— oo

A
lim P(—n?3 (24 22 ) <t] = ().
fim (o (24 ) <t) = R0
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Then, Theorem [56] gives for ¢ > 0,

lim P <\/ﬁ|)‘3 > ¢ for all j) = det(1 = Kainel(—¢,4)) := S(2). (7.5.1)
T

n—o0

The singular values 07 < 05 < ... < g, of a matrix M are the square roots
of the non-zero eigenvalues of M*M. One can rewrite ([7.5.1) as

lim P (‘/ﬁal > t) = S(t). (7.5.2)

n— o0 s

The condition number is defined as k(M) := 0,,/071.

Lemma 20. If M ~ GUE(n), then for allt >0

lim P (Qin(M) < t) =S, (7.5.3)

n—r00 n

Proof. We first show that \,,/\/n — 2, \;/y/n — —2 in probability. Fix e > 0,

and let L > 0. Then

A A
1<P(|Z22 —2l<e| =P (n?3 n 9l <[
- (\/ﬁ ‘J) (n Vn “ )

provided n?/3¢ > L. So we, find

An
ﬁ —2’ < n2/36> > P <n2/3

n—oo

An
1 < liminfP (‘\/ﬁ — 2‘ < e> > Fy(L) — Fa(—L).

Letting L — oo gives convergence in probability for A, /4/n. Similar arguments
follow for A\;/y/n. Next, define

A

Ly 2‘ < e} .

An
Een: 7*2§a
’ {\/ﬁ ’ “|Va

We know that P(E. ) — 1 as n — co. Then

P (%H(M) < t) =P (%H(M) <t, En) +P (%H(M) <t En) .

Because the second term must vanish as n — 0o, we focus on the first term. On
E., it follows that (2 — €)y/n < o, < (2+ €)y/n and

2 2=
P w<t,Een S]}D(lff(M)<t7Ee">§P u<taEsn .
2no 7 2n 7 2noy ,

We find that for ¢ > 0

92—
limsup P (2l/<(M) < t) = limsupP (%K](M) < t,EQn) <S ( €t1> ,
n

. 7r . ™ 24¢€,_ 4
liminf P (—H(M) < t) = limsup P (—K(M) <t,FE. n) >S5 ——t :
n—00 2n n—s00 2n ’ 2

If S is continuous at ¢, send € | 0 to obtain convergence in distribution. Since
S(t) is continuous, the result follows. O

Discuss Folkmar’s work on the singu-
lar values of GUE.
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7.6 Tightness and joint distributions

In this section, we discuss some deeper topics concerning the convergence in
distribution of the eigenvalues near the upper edge of the spectrum.

7.6.1 The joint distribution of the top two eigenvalues

We first discuss the joint distribution of the top two (ordered) eigenvalues of
GUE noting that

Frop 2(t,s) :=P(An_1 < t, A < 5) = P(Qy6),
Qs := { no eigenvalues in (s, 00), no more than 1 eigenvalue in (¢,00))}.
For s > t we have the disjoint union
Qs = {no eigenvalues in (s, 00), no eigenvalues in (¢, 00}

U {no eigenvalues in (s, 00), exactly one in (¢,00)}

= {no eigenvalues in (¢, 00)}

U {no eigenvalues in (s, 00), exactly one in (¢, s]}.
For s <t

Qs = {no eigenvalues in (s, 0)}.

The probability of the event {no eigenvalues in (s, 00), exactly one in (¢, s]} needs
to be computed for s > t. To this end, consider

n n

e = ([ T10 =15t | [ IO - 1r6) | 1o,

j=1 j=2
S =(s,00), T=(t,s]
Careful consideration reveals
E(Ny) = (n — 1)!P(no eigenvalues in (s, 00), exactly one in (¢, s]).

One does this by simply computing Ny on Qg ; (Ny = (n — 1)!)) and on Qf,
(Ny =0). The function f must then be expanded using symmetric functions:

[, ) (7.6.1)
= —lp(21) > > (D) pp(s(@r), ..., Ls(xn))pp ) (Ir(z2), . ., Ir(2n)).
o (7.6.2)

In order to further understand this expression, we consider matrix kernels as
described in (D.1.12)). Consider the determinant

dys(2) = det (1 - {iﬁn féﬂ

Lz(T)@L2(5)>
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By definition, we have

fe%e] (_1)k 2
dst(2) = Z I Z . det[Ky, i, (2, z0)]1<je<pdzy - - - day,
k=0 T g, eig=1

where we extend K;, = 0 on the complement of I; x I;. Define

s

Q(’il, N ,’ik) = /;. det[KijM (.’Ej, xg)}lgj’ggkdxl e d.’bk.
Rk

Then the set {(i1,...,ix) : i; € 1,2} can be expressed as the disjoint union of
sets

I, ={(i1,...,ix) :4; € 1,2 and #{j : i; = 1} = p}.

Let o € S(k) and (41, ...,i,) € I, and consider

Qo) Tor) = /Rk det[ K, ) i) (To()s To()1<je<hdar - - - day

= . det P[Kij7i2 (a:j, xz)]lgj,gSkPTdel - dayg
R

for a permutation matrix P. Thus Q(iy(1),-- -, %ek)) = Q(i1,...,ix) and

()

Thus set 2”Q(p, k) = Q(i1,...,4x) where (i1,...,i) € I, and i; < i), for j < k.
We then have

00 (_1)]4} k k )
dey(z) =) o > ) Q(p, k)=P.
k=0 p=0
Now, upon examining (7.6.1)) we write, using k + ¢ — k and £ — p
flz1,... z,)
2n min{n,k}

=—lr(z1)) Y (D op i (r(@s), . Ir(n)ph_p(Ls(z1), -, Ls(xa)).
k=1 p=1
So, specifically, we must consider the integral

I(p, k) := /n ]lT(zl)pz_l(]lT(xg), oo Lp(ay))

X pr_p(Ls(@1), ..., Ls(a)R{ (21, . .., 2n))day - - Ay

(7.6.3)
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Each of these symmetric functions can be expanded and we must consider inte-
grals of the form

P k—p
/ H]lT(:vj) (H ]lg(aci[)> R™ (xy,... 2p)dzy - - - day,.
" \j=1 =1

Because T and S are disjoint, the only integrals do not vanish occur when iy > p
for all £. It will suffice to compute

k
/ HHT(xj) H Is(we) R;n)(.%‘l,...,xn)dxl-ndxn

j=1 t=p+1

P k
:(n_k)!/Rk HHT(aCj) H Ts(xp) ngn)(xl,...,xm)dxl--~dxk
i=1

l=p+1

Counting the number of times this integral occurs in ((7.6.3) we find

1) =P (D (L2 e = () ewn)

and therefore

2n min{n,k} (_1)k k
P(no eigenvalues in (s, 00), exactly one in (¢, s]) = — Z Z P (
: p
k=1 p=0

) Q(p. k)
Noting that the integral operator with kernel matrix

2K, K,
2K, K,

has maximal rank 2n we find that Q(p, k) = 0 if either k¥ > 2n or p > k. So, we
write

P(no eigenvalues in (s, 00), exactly one in (¢, s])

c© k o k
_ (=1)"* (& _d oD (k
—- > 5 ()ewn =5 (;_OZO . (p)@(uk))

z=1

From this and the calculations in Section [7.4] we arrive at the following
theorem.
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Theorem 59. For s,t € R

lim PO\, < 2vn 4 sn /% \,_1 < 2v/n +tn~1/)

n—oo
det(l — KAiry|L2((s,00))) =
det(1 — Kairy| £2((t,00))
== K ir K ir
— et [1— [T A DA t<s
2Kniry  Kairy

L2((sD®L2((s,20)) /) | ;=1

Remark 60. It should be clear from this discussion that one can consider the
joint distribution of the top k eigenvalues with k fixed as n — oo. This has a
(complicated) Fredholm determinant representation but it can be shown that if

Ak = My A1,y da_ka1]T is the vector of the top k largest eigenvalues of
GUE(n) then

Fa, v +n"Y0, 2y 4+ 07 00) 25 By oty .. 1)

for every t1,...,t; € R. Here Fy, is expressible in terms of Fredholm determi-
(hould we be more explicit? nants that only involve the Airy kernel.

If I,...,Iy are disjoint intervals and m; € N for j € [1, N] then

P(exactly my eigenvalues in I, ..., exactly my eigenvalues in Iy)

(_1)2?:1 m; N gm;
= N | P) m; dIh---,IN(Zla-"aZN)a
[T=imyt 555 9%

If we want to include this, it needs to Where
be confirmed

d s =det(1-— K, i ‘ ’
hedn (21500 2) = de ( erKonlispsn eB;LlLQ(Ij))

7.6.2 Tightness

We have shown that the rescaled distribution function for A,, and the rescaled
joint distribution function for [A,, \,_1]7 converge pointwise. For this to imply
convergence in distribution we need to establish that the function it converges
to is itself a distribution function.

[Unify Fredholm determinant notation. }_‘ ‘We concentrate on

Need to make it work with the matrix
case.

Fg(t) = det(l - KAiryILQ(t,oo))

We use two estimates to show, using elementary means, that this is a distri-
bution function. Since we have shown that there exists a sequence of random
variables X, such that that Fx, (t) — F»(t) pointwise, it suffices to show that
the sequence {X,,} is tight. The full estimates are based on two fundamental
estimates
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o If the eigenvalues (\;);>1 of a trace-class operator A satisfy A; < 1 then
7]
det(1 — A) < e Tr4,
e For a trace-class operator A

|1 —det(1 — A)| < ||Al|pet TlAIT

We first verify the hypotheses of the first statement for K,,. Using the notation
=11 22 tt.00))

1Koz oepl = sup. / ( / Ko(o.9)f )dy) Ny
sl 1/ (; (@) /toowk@)f(y)dy)de
< [ (Zwk ) [ty dy>2dw
= S (] wk@)f(y)dy)

n 1 2
( [ ontw w(y)dy) <1
IIfH 1k ‘

Therefore, all the eigenvalues are contained in [—1,1]. Define
1
ns

and we can then estimate
P(\, < t) = det(1 — f(nﬂ[t,oo)) < e S Bnwa)de,

Then fix € > 0, set t < 0 so that

0 0
/ Kairy(z, z)dz = / [[Ai'(x)]2 — :cAi(:E)Q] dz > log4e™?

for all s < ¢. Such a t exists because (see (C.3.2))

‘x|1/2

VT
Thus for sufficiently large n, n > N, det(I—f(n]l[t’oo)) < €/2 because K, (-,-) —
Kairy(+, -) uniformly on [¢,0] by Lemma Then set T, > 0, so that —T, < ¢
and det(I — IA(n]l[Tmoo)) <e/2forn=1,2,...,N —1.

T — —OQ.

[Ai'(2)]? — zAi(z)? ~
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By the second estimate, and the fact that | K, |1 = [ K, (z,z)dz, using a
similar argument, after possibly increasing 7., we find that

P(|\, — 2vn|n/8 > T,) < e.

and therefore the sequence of random variables ((A, — 2v/n)n'/%),>; is tight.
Therefore F»(t) is indeed a distribution function.

Remark 61. We do not take up this issue for the limiting joint distribution
functions G (t1,...,tx) but it does indeed follow that these are bonafide distri-

) bution functions .

7.7 Circular law for complex Ginbre matrices

We now describe the global eigenvalue distribution for Ging(n) as n — co. We
have the following distribution on the (unordered) eigenvalues Z = (z1, 22, ..., 2n)

from (4.1.4)

~n 1 B n . n
P™(z,...,2,)Dz = Z—n|A(Z)|2e =1 2] jl:[ldRezjdlmzj.

Owing to the calculations that result in Theorem [63] we have

~ 1 ~
P(n) (21, ey Zn) = ﬁ det(Kn(zj, Zk)lgj,kgn)7

]A%g,?)(zl, oo zm) = det(Kp (25, 26)1<j,k<m), 1 <m <n,

n—1
IA(n(Z,w) = ZC]'(I)]'(Z)W’ @J(z) — cjzje—%\z .
7=0

where R(” is the m-point correlation function defined by (6.1.5) with P
instead of P(™) and dRe z;dIm z; instead of dz;. To show that this is the correct

choice for K,, and to determine ¢; we need to show that {®; };Z& are orthogonal
and choose ¢; > 0 to normalize the functions. Consider for j < k

/ ®;(2)Pr(2) dRezdlmz = cjék/ Ek_j|z|2je_|2|2dRez dimz
C c
00 2
= cj(_:k/ (/ (cos @ +isin G)kjd9> rFtitle=Ir qRez dImz = 0.
0 0
If j = k we find

/|‘I)j(z)\2dRezdlmz: |cj|2/ |z|2je_|z|2dRezdlmz,
c C
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and using r = /s
. 2 0 . 1.2 S
/ |z|%e71*" dRez dImz = 27‘(‘/ r2itle=2" dr = 7r/ se”%ds
C 0 0

=7l'(j+1) =nj!

S0
1 1
= =, Cj—= = Cjt1-
vyl Vi+1

So, we find a simple two-term recurrence formula

Cj

z
Vil

The corresponding Christoffel-Darboux-type formula is

(bj+1(2:) = @j(z), (Do(z) =

1
=

Rzw) = o D020 o,

7w (n—1

where T'(n, z) = [°¢""le~'dt is the incomplete Gamma function. To see this
let f,(z) = e*T'(n, z), and we find

so that

Define the rescaled empirical spectral measure

1 n
L,(Dz) = - Z Ox,/ym(Dz), Dz =dRezdlmz.
k=1

It then follows that for f € Cy(C) by (6.1.4))

B ([ 100802 = [ 1EEL.D:) = [ f:)F ViD=

We then perform the asymptotic analysis of this density. Consider

(oo}

I'(n,2Z) gy / t"letdt.

2|2

o0 oo oo
/ t"lemtdt = n”/ t"lem Mt = n"/ t~te (M) gy,
n)z[2 |22 |22

Then
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where g(t) = ¢t — logt. The stationary phase point here is t = 1, ¢’(1) = 0 and
¢”(1) = 1. So, if |2| < 1 — ¢, the stationary phase point is in the interval of
integration and

n”/ t7le WAL = e V227 (1 4+ O(n7Y)) = e V2 (1 4+ O(n™ 1))
|

z|?

=(n-1I(1+0m™Y)

uniformly as n — oo by Stirling’s approximation. Then for |z| > 1+ €, by
integrating by parts

I,(z2) = / t"lemtdt = f|,z|2"_2e_”|’z|2 + 2 / t"2eT M dt
\ |

z|2 n n z|?
1 -1
< Z|Z|2n_2e_”|z|2 TP ).

Therefore
I(2) < |z|2"2e =",

From these estimates, the following lemma follows.
Lemma 21. Fiz 0 <e<1. Asn — oo, for |z| <1 —¢

Ro(ov/in, 2vi) = = +0(n™),
uniformly. Asn — oo, for |z| > 1+e€

K, (2v/n, zv/n) = O(n™1),

uniformly.

This shows that (see Exercise

1
IELn(Dz) — 7]1{‘Z‘<1}DZ
- <

weakly. This is the averaged circular law.

7.8 LUE Scaling limits I: Marchenko—Pastur law

Again, consider X ~ Ging(m,n) or Y ~ Ging(m,n), m > n, and consider the
sample covariance matrices X*X/m and YTY/m, and let z1,...,z, be their
unordered eigenvalues. Define the empirical spectral measure

Li9(dz) = 1 Z(Szj (dz), a=m-—n.
n
j=1

Assume further that 0 := n/m — d € (0,1]. The Marchenko—Pastur law states
that
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Theorem 62.

z)(x — A_
)(2 ) Iia_ gy (z)de,

EL,(dz) — pump(z;d)dx := 271rd\/|()\+ _
Ar(d) = (1 £ Va)?,

X

weakly as n — oo. If d = 0, then the limiting law is 61(dx).

The case of d = 0 follows by the Law of Large Numbers.

In most of the calculations that follow it is convenient to use A+ = AL ().
We now establish the theorem for Y ~ Ging(m,n), ie., 8 = 2. Define the
Christoffel-Darboux kernel (& = m —n)

K (z,y) ) (my) LY (ma) (max)*/? (my)®/? e~ @+v)

B nlm lea_)l(ma:)L%a)(my) - L;ofl(my)L%a)(mx
 (n—1+a)! x—y

Then using Theorem [53] E applied to , we have the following expression for
the joint marginal density for the elgenvalues of X*X/m

) (mQasy)a/2 e~ Tty

1 5
— det (K,(L“) (x, a:k)1§j,kgn) .

n.

It follows (see (6.1.4)) that the density of EL{ is given by

1.
— K .
K (2, 2)

To now perform the asymptotics for this density, we refer to Appendix [E] specif-
ically Section In that notation, we have

(a) T (o) (a) a) (x —a/2
[((a)(x y) = (n+a)lly =y (4a) b0 (l) — b2 (%) 0 (E)e—%(m—ky) n*ry /
no (n—1)! r—vy 02 ’
giving
K(a)( )

S [ (£ () () s () ()

We then compute using Stirling’s approximation

(nta)l 2 /ny B2V (Vo) len T L oy o
. 3(5)0 [<x_x,><£-x>ﬁx2 <5 (3)

z+1—2
B

n! ™

2 (VD) (W) ]
T [(z— M)Ay — x)]L/2 (1 +0(n 1))
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We then consider the following combination
2sin 6y sin(fy + 2605 — 03) — 2sin(01 + 02 — 03) sin(6; + 62)
= cos(20 — 03) — cos(201 + 205 — 03) — cos O3 + cos(261 + 202 — 03)
= cos(203 — 03) — cos O3 = 2sin Oy sin(f3 — 65).

If one chooses

z+1-0 l—z—-0 &k
01 =k/o —— + (k+1 —— =V (s - - A
1 /0 arccos NG + (k + 1) arccos o +20 VO —z)(z )

1($+1—0)(1—0)—2x>
Vo 2z ’

r+1-0

2/x

1—xz—-0

20/or
and uses the expansion ([E.2.8]), we have for 0 < d <1

1 .
+ 5 arcsin (
05 = arccos

03 = arccos

Lo a,a) = YO =IO 0y o)),

uniformly on compact subsets of ((1 —+/d)?, (1 + v/d)?). Note that the same
statement holds with ? replaced with d.

7.9 LUE scaling limits II: the sine kernel

Now, let © = r + 22, ¢y = 7 4 2% where r € (A_(d), A4 (d)). We consider this
scaling limit of

PR (@,y).
Using
P i)y :M 2 a 03/2(\6)2"_16"1% )
nKn (z,9) mnl(s —t) (n> [(mf/\_)(AJr,x)]1/4[(y7)\_)(>\+7y)]1/4Rn( ,Y)
where

Ry (z,y) = sin (né1(z) + ¢2(x) + ¢3(z)) sin (né1(y) + ¢2(y))
— sin (ng1(y) + ¢2(y) + ¢3(y)) sin (né1(y) + d2(y))

and
1 r+1-0 l—-2-0 1
== -0 =0 — )@ — A
¢1(x) 5 arccos NG + arccos W —&—20\/( +—x)(x )
l—z-02 1 . 1 (x+1—b)(1—0)—2x>
x) = arccos ———— + — arcsin | —
¢2(2) Wor 2 (ﬁ 2z
1-9 l1—2-0
¢3(x) = arccos rrl-o_ arccos i

2\/x 2¢/0x
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We then write

ng () + ¢2(x) = nd1(r) + g} (r)ps + ¢2(r) + O(n™1),
¢3(x) = ¢3(r) + O(n™?)
to find
Ry (z,y) = sin (¢} (r)sp +né1(r) + ¢2(r) + ¢3(r)) sin (nd1(r) + ¢'(r)tp + ¢a(r))
—sin (¢/(r)tp + nd1(r) + ¢2(r) + ¢3(r)) sin (ng1 (r) + ¢ (r)sp + ¢2(r)) + O(n ™).
Then
2sin (¢ (r)sp + ng1(r) + ¢2(r) + d3(r)) sin (ng1(r) + ¢'(r)tp + da(r))
= cos(¢'(r)p(s — t) + ¢3(r)) — cos(¢'(r)p(s + 1) + 2nd1(r) + 2¢2(r) + ¢3(r))

so that the expression for R, (z,y) simplifies to

R (z,y) Zé(COS(QS’l(T) (5 — 1) + ¢3(r)) — cos(@ (r)p(t — 5) + ¢3(r))) + O(n™")

= —sin(¢s(r)) sin (¢ (r)p(s — 1) + O(n™").
We make the choice p = /@] (r). It remains to simplify
_ 2sings(r)(n +a)! (D ¢ 03/2(\/o)2n—len’st
mnl(s —t) n) @ = A) Ay =)y = A ) (A =y
- W(Zfsf); (D (Vo) e 55 (14 0(n ™)),
__ 1 -1

where we used Stirling’s approximation and that

. 1
sin ¢3(x) = _2\75\/()\4_ —z)(x — A_).
And then compute
(25/1(26) _ \/(.13 — /\—)()‘-‘r - $)

20z ’
so that p = 1/pmp(r;0). We have established the followingﬂ

Lemma 22. Let S be a bounded measurable set and 0 < d < 1. Suppose
d=n/m—d asn — oo. Then forr € [A_(d), A\+(d)]

1 .
lim sup |———K(m=™) (7"—|—
n—00 ; yes | npmp(r;d) "

S t
, T+
npmp (750) npap(r;0)

) — Ksine(l‘,y)’ =0.
(7.9.1)

ITo truly establish this theorem, one needs to deal with the case s = t, see the proof of

Lemma E
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From this lemma and the results of Section we have (recall the proof of
Theorem :

Theorem 63. Suppose n/m — d € (0,1] as n — oo. For each integer k =
0,1,2,..., bounded, Borel set S and r € (A_(d), A+ (d))

S
lim P (W ~ LUE(m,n) has k eigenvalues in (r + ))
n—oo npwp (r; d)

1 d\"
=al % det (I — zKsinels)|,_; - (7.9.2)

7.10 LUE scaling limits ITI(a): the Bessel kernel
at the hard edge

Consider the case m = n + « for @ € N. Then the smallest eigenvalues of a
matrix distributed according to LUE(m,n) tends to zero as n — co. But the
matrix is positive (semi-)definite. Therefore the eigenvalues tend to “build up”

at this “hard edge”. Consider the kernel K,Sa)(x,y). Rescale it according to

Vr =+/s/n, VY= \/2?/’1% i.e.,

Then use (E.2.7) for s bounded away from ¢

S o [ (VMo (V) = Jaia (VO (v5) + O] &

_ \/EJOH-I(\/E)J&(\/%) - \/EJOH-I(\/E)JCM(\/E)
2(s—1)

1
ﬁ n (xvy) =

+0(n™1)

This is convergence is unifornrﬂ for s,t in compact subsets of [0,00). We have
mostly established the following.

Lemma 23. Let S be a bounded measurable set and o € N s fized. Then

i L (2 Y (@)
D, Sup pell (? ?) - KBesseI(m7y)‘ =0, (7.10.1)
where
K (o) — O ONIa(/D) = Tl DV (/D)
Bessel T,y .

2(x —y)
Proof. We only have to establish that
Ja(\/f)\/@]&(\/g) - Ja(\/y)\/iJéy(\/%)
= \/-EJa-i-l(\/E)Ja(\/?j) - \/:'jJa-H(\/@Ja(\/E)-

2 Again, the case s & t needs to be treated using the methodology in Lemma
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This follows from the identity [OLBCI0][Section 10.2.(ii)]

I (2) = —Jag1(z) + %Ja(z).
O

Theorem 64. Fiz o € N and let S be a bounded measureable subset of [0,00).
Then

n— 00 n2

S
lim P (W ~ LUE(n + a, n) has k eigenvalues in )

! a)" (@)
N y (_dz> det ( o ZKBessel]ls) ‘z:l . (7.10.2)

Corollary 2. Let x1 be the smallest eigenvalue of an LUE(n + a, n) matriz for
a €N fized. Then

nhango ]P(le > t/n2) = det (I - Ké(zs)sel]]‘[oat)) :

In other words, n?z, converges in distribution to 1 — det (I — Kl(azs)seﬂl[O,t))'

7.11 LUE scaling limits III(b): the Airy kernel
at the softened hard edge

Now, if n/m — d for d € (0,1) the smallest eigenvalues of an LUE(m,n)
matrix tend to lie away from zero. The “hard edge” effect is diminished and
the Tracy—Widom distribution reappears. From a special function perspective,
this can be understood using the fact that, in an appropriate scaling region,
Bessel functions J, are well-approximated by Airy functions as v — oco. This
scaling, though complicated, can be exploited to treat the & — oo but a/n — 0
case [DMT16l [MT16]. Here, we do not take this approach but rather use direct
asymptotics because a/n — 1 —d > 0.
The scaling here is informed by :

S VN =y - Lo,

T=Ar— n2/3

n2/3

Then, we find, using (E : TODO: Modify this
Lemma 24. Suppose 0 — d € (0,1]. For s #t, uniformly on bounded sets,

li \[/\2/3 K(a \[)\2/3 A \[)\2/3 ~ Ka -0
oo | n3 o7t 2/3 iy (2,9)| =
(7.11.1)
and there exists a function G(z,y) € L*([C,00)?) for all C € R such that [Unify the statement of all the kernel ]
limits lemmas
VoSS

n2/3 n2/3 < G(s,t).  (7.11.2)

— K (A_ — 2 VRl - fAz/?’)
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Theorem 65. Suppose 0 — d € (0,1] and let S be a measureable subset of R
that is bounded from below. Then

lim P (W ~ LUE(n + a,n) has k eigenvalues in A_ — \[)\2/3>

n—00 n2/3

1 d\"
= E _£ det (I - ZKAiry]]-S)|Z:1 . (7113)

7.12 LUE scaling limits ITI(c): the Airy kernel
at the soft edge

The requisite rescaling is informed by (E.2.11)). So, set

=AM+ — VA y =2+ VoA

n2/3
Then, we find, using (E.2.13)):

Lemma 25. Suppose d — d € (0,1]. For s # t, uniformly on bounded sets,

2/3
Vo

TL

2/3

lim =0
n—o0

K <>\++2/3f>\2/3 A+

\[)\2/3) - KAiry(xv y)

(7.12.1)
and there exzists a function G(z,y) € L*([C,00)?) for all C € R such that

n2/3

2/3 2/3 < G(s,t). (7.12.2)

3A2/3
“f S (A++\f)\2/3 A++\f>\2/3)

Theorem 66. Suppose ? — d € (0,1] and let S be a measureable subset of R
that is bounded from below. Then

lim P <W ~ LUE(n + a,n) has k eigenvalues in Ay + \f/\z/?’)

n—00 n2/3

1 d\"
= y _a det (I - ZKAiry]]-S)|z:1 . (7123)

7.13 Notes on universality and generalizations

In this section we discuss two generalizations:
e Scaling limits for 8 = 1,4.
e The case of non-Gaussian entries.

The calculations behind these results are the topic of a more advanced text such
as [DGOY, [Taoll].
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7.13.1 Limit theorems for g =14

When 8 # 2, the determinantal structure is lost. For 8 = 1 the correct technol-
ogy to use is Pffafians. For § = 4, one uses . In either case, Lemma [16] holds.

|—(add this

But the the other two scaling limits have different limits. Define (see [TW96]
1 oo
R0 =ex (4 [ als)as) (R,
¢
1 o0
Fy(t/V2) = cosh (2 / q(s)ds> (Fy(t))Y2.
¢

|—(How much detail to provide here?

|—(Confirm the scaling of t

and
Hi(t) = ...
Hy(t) = ...
Then
Tim P (M ~ GOE(n), A < 2V + n*l/f‘t) — (1),
lim P (M ~ GSE(n), Ap < 2V + n—1/6t) — Fy(b),
and

_t
lim P (M ~ GOE(n) has no eigenvalues in y/n <r + (=3, 2>)> = Hy(t),

n—oo npSC(r)
_t 1

lim P (M ~ GSE(n) has no eigenvalues in /n <r + (=3, 2)>> = Hy(t).
n— oo npsc(’l")

7.13.2 Universality theorems

The most basic universality theorem is the central limit theorem, Theorem [101

It states that the sample average of n iid random variables, with finite variance,
after rescaling, converges in distribution to a normal random variable. It is also
important to note that in the central limit theorem, the identically distributed
assumption can be relaxed if one includes the so-called Lindeberg condition
[?, Need page]. So, beyond the first two moments which are used to define
the rescaling, the fluctuations are asymptotically universal — independent of
the finer details of the distribution. Similar phenomena is pervasive throughout
random matrix theory. To state these results, whose proofs are beyond the scope
this the current text, we have to be more precise in our definition of a Wigner
ensemble and describe the so-called invariant ensembles. The reader should
note that GOE and GUE are the only ensembles that lie in the intersection of
both invariant and Wigner ensembles. We only make universality precise in the
B =1,2 cases.
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Generalized Wigner ensembles

Definition 67 ([EYY12]). Consider a semi-infinite matrix M = (M,); x>1 of

real (8 = 1) or complex (8 = 2) random variables such that M;, = My, for all
J. k (Mji)j<r are independent random variables with

E[M;;] =0, Var(Mj;) = J?k/N
such that

1. For any k fixed

2 _
Ujk =1.
=1

2. There is a constant C' > 1 such that for all j, k

<oj <C.

Ql+=

3. In the complex case
E[M?,] =0.
Then we say that M € C™*™ (or R"*™) is from a real or complex generalized
Wigner ensemble if M is the upper-left n x n subblock of M.
The following theorem gives universality for the largest k& eigenvalues.

Theorem 68. [EYY12] Suppose Ar(B) = Ar = [Mys M1y oy A_ra1]? is the
vector of the top k largest eigenvalues a GOE(n) (8 =1) or a GUE(n) (8 =2)
distributed matriz. Suppose Ay (B) is the same random vector a real or complex
generalized Wigner ensemble with o, = 1. Define the rescaled vectors

T(8) = (Ax(B) —2v/m)n'/®, Tw(8) = (An(B) — 2v/)n'/".
Then there is an € > 0 and § > 0 such that for fized k and N sufficiently large

FAk(B)(tl —N7¢ ...t —N*E) _ N9
< Fip(te, - te) <
Frp(ti+ N7 i+ N7+ N7,

If the eigenvalues Ay < Ay < .-+ < A, are almost deterministic and are
distributed according to ps.(z)dx then, one would expect

o7 j
Aj R, / Psc(x)dr = o v < 2.

— 00
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Furthermore, the error in this approximation should be on the same order as
the distance between successive v;’s. This heuristic gives

|Aj =il =0 (gl;gll% —w) :

Then, one can estimate, for j < n, by the mean-value theorem

1 Yi+1

= / Pse(2)dx = pec(§) (Vi1 — 75),

J

1
npsc(g) - npsc(’Yj)

min vk — 5| =

where ¢ some point between v; and its nearest neighbor. This is, in turn, only
useful if we can find a decent way to estimate ps.(7;). For —2 < z < 0 we
estimate

L
V2r

Then we define 4; and 4;, for j/n < =

[t

Ve +2 < pglx) < =vr+2.

3

Yoo j Y1 j
—Vzr+2dx ==, —Vr+2dx==.
_92 \/571‘ n o T n

The condition j/n < % guarantees that v;,%;,9; < 0 on which we have the
estimate. We then know

Y <S5

Or more specifically,

.\ 2/3 N 2/3
3y 377])

o4 () <y <2+ (22
(ﬁn) B ( n

Thus for such a ~;

1(3@)”2 (<
\/57‘( \/in _psc ’Yj -

Then, for v; where % < % < 1/2, we know that ps.(v;) is bounded away from
zero. Thus, by symmetry for 1 > j/n > 1/2, we have a uniform estimate: For

some C' >1
1 (da()\"° d,(j)\"*
— < pq )<
C’( n ) Spse(n) <€ n ’

dn(5) = min{[j], [n — j + 1[}.

A key ingredient in the proof of this result is the following rigidity estimate
and the heursitcs
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Theorem 69. [EYYT2] Suppose A1 < --- A, are the eigenvalues of a generalized
Wigner matriz. Then for every e > 0 and L > 0 there exists N = N(e,L) > 0
such that for n > N

P (\)\j — ;] <n72B3d, ()30 for all j) >1-nL

This theorem says that on a set of nearly full probability, the eigenvalues
stick to their typical locations 7y;. One can also read this as a statement that
the probability that any eigenvalue, say \;, deviates from 7; so much so that

me&wf—g

is effectively exponentially small.

Something that, for good reason, we have left undiscussed is the question of
what the eigenvectors look like. This is because we know that in the cases of
GUE, GOE and GSE, they can effectively be taken to be uniformly distributed
on the associated group under whose action the distribution is invariant. But
for generalized Wigner ensembles there is, in principle, no invariance. If the
entries in M are iid, we know that the marginal distribution on each eigen-
vector, modulo normalizations, is the same. This is because the distribution is
invariant under conjugations by permutation matrices. But generalized Wigner
ensembles do not need to have iid entries. Nonetheless, universality tells us that
for large enough n the eigenvectors should behave similarly. But what “behave
similarly” actual means is more ambiguous for the eigenvectors than it is for the
eigenvalues. We collect two properties of matrices in O(n) as n becomes large.

> Cnc L

Theorem 70. Suppose Q is distributed uniformly on O(n) according to Haar
measure.

1. Let S ={j1,...,7¢} C [1,n] with #£S = ¢ and ¢ fized. Then for k fized as
n — 00
Qjik _
a2l A0, 1)
Qjiek

2. Complete delocalization holds: If a,, — oo as n — oo then

1
P ( sup |Qjk| > n~?a, logn) =0 <> .
1<j,k<n an

Proof. 1. Because the distribution @ is right invariant (under the action of
a permutation matrix), it suffices to set k& = 1. Then because of left
invariance, again, under the action of permutation matrices, it suffices to
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take (j1,...,7¢) = (1,2,...,¢). Then, using left invariance again it follows
that the distribution of the first column is uniform on S™~!. This implies

X
Qu TXT
. AX:” ?
Qm 1XTl2

where (X;);>1 is a collection of iid N(0, 1) random variables. The claim
then follows from from Lemma and the weak law of large numbers

(Theorem [100) applied to the sum > Xz

. This claim concerns the maximum of n? correlated, but compactly sup-

ported, random variables. Furthermore, because of the invariance of Haar
measure they are all identically distributed. Our main tool is the expo-
nential moment generating function: For s > 0

E| sup |Qjxl

1<j,k<n

=sE [S_l sup ijﬂ = slogexpE [5_1 sup ijﬂ ,
1<j,k<n 1<j,k<n

which, by Jensen’s inequality (Theorem 7 implies
exp (s‘l sup |ij|>] i
1<j,k<n

1<s_ukp< |Q]k] < slogE Zexp(,g*l@jk‘) = slogn’E [exp(5*1|Q11|)} .
SJ,Rsn gk

E

1<j,k<n

sup |ij] < slogE

Then we estimate

E

So, we set s =n~'/? and we need to estimate

E [exp(n1/2|Q11|) , (7.13.1)

and it is reasonable, in light of the previous result, to expect this to con-
verge to E [exp(|X])] where X ~ N(0,1). Indeed this is true because
|Q11/? is distributed as the first component of a 1-Dirichlet random vector
— it is beta distributed. Therefore, for n > 2,

1 1 nl/2 _ _
12 <n71>/2>/0 R G

E [exp<n1/2|Q11|)} =3

9 ) . yg n/2—3/2
~ VnB(1/2, (n — 1)/2)/0 ¢ (1 - n) Lo, (y)dy.

Stirling’s formula gives that v/nB(1/2, (n —1)/2) — /7 and the limit can
be passed inside the integral because

y2 n/2—-3/2 ,
<1 - n) Lo, m(y) <e /2,
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and the dominated convergence theorem applies. Here one uses the in-
equality log(1 —x) < —z for < 1. The point is that (7.13.1]) is bounded,
independent of n by a constant C'. And this gives the inequality

E| sup |Qjil| < n~?1logn*C
1<j,k<n
Then Markov’s inequality produces
_1/2 logn?C
P sup |Qjx]>n zlogn | < .
1<j,k<n zlogn

So, provided that x — oo with n, this probability decays.
O

Theorem is now compared with a theorem about the eigenvectors for
generalized Wigner matrices. Define T, s = [1,n"/*]JU[n' =%, n —n'OJU[N —
N1/4.NJ. This result is summarized from results in [BY17, EYY12]

Theorem 71. Suppose A\; < --- < A\, are the eigenvalues of a generalized
Wigner matrix. Suppose further that q1,...,q, are the associated orthonormal
eigenvectors and set Q = [qu,...,qn]. For fized £, there exists § > 0 such that
forany ke T,s and S = (j1,...,5¢) C[1,n], #J =¥, as n — o0

[1Qj 5] [1X4]
Nl B e (B=1),
1@yl L[Xel
Q] [IX(V +ix{?)]
Van | p | s (8=2)
[1Qjekl] [x Y+ ix )

where Xj,X§1),X§2) for 3 =1,2,....¢ are 1d N(0,1) random variables. Fur-
thermore, delocalization holds: For some C' > 0

< pl/2 Cloglogn
P <1<IIJl%)in |Qjk| <n*/*(logn) — 0,

as n — Q.

The reader should take note of the additional technicalities required to make
these statements as a harbinger of difficulties that arise in the proofs.
Invariant ensembles

The invariant ensembles are distributions on self-adjoint real, complex or quar-
terion matrices that are described by a potential function V : R — R such that
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limg,_ 400 % = +00. The density is then given by
1
Zn,v (B)

Using Weyl’s formula we obtain a marginal joint density for the eigenvalues

e_ng TV (M) gL,

_
Zn,V(ﬂ)

For 8 = 2, in a natural way, one is led to analyze orthogonal polynomials with
respect to the varying weight

[A(A)]Pe T TVNDA,

wn(z)de = e 2V @ dg.

When V(z) is not a quadratic polynomial, correlations between the entries on
and above the diagonal are introduced. This destroys ps.(z)dz as the global
limit of the spectrum. The discussion in Chapter [§] gives the methodology to
determine the new limit.

So, one might think that because the global picture is different, universality
fails. But, remarkably, the local picture is still the same. The orthogonal
polynomials with respect to w,(z)dz can be analyzed asymptotically with the
help of steepest descent Riemann-Hilbert analysisﬂ [Dei00] and the sine kernel
is found a