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Chapter 1

Fundamentals of random
matrix theory and
numerical linear algebra

1.1 What is a random matrix?

There are two distinct points of view that one may adopt. On one hand, our
intuitive ideas of randomness are intimately tied to the notion of sampling a
realization of a random variable. Thus, given a random number generator,
one may build a random Hermitian matrix, M ∈ Her(n), by choosing its real
diagonal and complex upper-triangular entries independently at random. It is
conventional to assume further that all the diagonal entries have the same law,
that all the upper-triangular entries have the same law, and that the real and
imaginary parts of each off-diagonal entry are independent. For example, we
may assume that the entries on the diagonal are ±1 with probability 1/2, and
that the upper-triangular entries are ±1 ± i with probability 1/4. It is also
conventional to have the variance of the diagonal entries to be twice that of the
real part of the off-diagonal entries. Random matrices of this kind, are said to
be drawn from Wigner ensembles.

On the other hand, one may adopt a more analytic view. The Hilbert–
Schmidt inner product of two Hermitian matrices, Tr(M∗N) =

∑n
j,k=1 M̄jkNjk,

defines a natural metric Tr(dM2) and volume form DM on Her(n) (see Chap-
ter 2). In this text, unless otherwise stated, ‖M‖ =

√
TrM∗M). Thus, each

positive function p : Her(n)→ [0,∞) that decays sufficiently fast as ‖M‖ → ∞,
may be normalized to define a probability measure. A fundamental example is
the law of the Gaussian Unitary Ensemble (GUE)

pGUE(M)DM =
1

Zn
e−

1
2 Tr(M2)DM. (1.1.1)

Here Zn is a normalization constant that ensures pGUE is a probability density

9



10 CHAPTER 1. FUNDAMENTALS

(we use the same notation for different ensembles; thus the numerical value of Zn
must be inferred from the context). The term GUE was introduced by Freeman
Dyson [Dys62], and refers to an important invariance property of pGUE. Each
U ∈ U(n) defines a transformation Her(n)→ Her(n), M 7→ UMU∗. It is easily
checked that the volume form DM is invariant under the map M 7→ UMU∗, as
is the measure pGUE(M)DM . More generally, a probability measure on Her(n) is
said to be invariant if p(M) DM remains invariant under the map M 7→ UMU∗,
for each U ∈ U(n). Important examples of invariant ensembles are defined by
polynomials in one-variable of the form

g(x) = a2Nx
2N + a2N−1x

2N−1 + . . .+ a0, aj ∈ R, j = 0, 1, . . . , 2N, a2N > 0.
(1.1.2)

Then the following probability measure is invariant

p(M)DM =
1

Zn
e−Tr g(M)DM. (1.1.3)

We have assumed that all matrices are Hermitian for simplicity. The above
notions extend to ensembles of matrices from Symm(n) and Quart(n). The
notion of invariance in each case is distinct: for Symm(n), the natural transfor-
mation is M 7→ QMQT , Q ∈ O(n); for Quart(n) it is M 7→ SMSD, S ∈ USp(n).Is this USp(n)? Or Sp(2n, R)?

The standard Gaussian ensembles in these cases are termed GOE (the Gaussian
Orthogonal Ensemble) and GSE (the Gaussian Symplectic Ensemble), and they
are normalized as follows:

pGOE(M)dM =
1

Zn
e−

1
4 Tr(M2)dM, pGSE(M)dM =

1

Zn
e−Tr(M2)DM. (1.1.4)

The differing normalizations arise from the different volume forms on Symm(n),
Her(n) and Quart(n) as will be explained in Chapter 2. For now, let us note
that the densities for all the Gaussian ensembles may be written in the unified
form

Zn(β)−1e−
β
4 Tr(M2) (1.1.5)

where β = 1,2 and 4 for GOE, GUE and GSE respectively. While it is true
that there are no other ensembles that respect fundamental physical invariance
(in the sense of Dyson), many fundamental results of random matrix theory
can be established for all β > 0. These results follow from the existence of
ensembles of tridiagonal matrices, whose eigenvalues have a joint distribution
that interpolates those of the β = 1,2 and 4 ensembles to all β > 0 [DE02].

1.2 The Ginbre ensemble

The so-called Ginibre Ensemble can be seen as a fundamental building block to
define GOE and GUE. The real Ginbre ensemble, denoted GinR is an n×n ma-
trix of iid standard normal random variables. The Complex Ginibre Ensemble
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is then defined as

X ∼ GinC(n) ⇔ X ∼ 1√
2

(X1 + iX2), X1, X2 ∼ GinR(n),

where X1 and X2 are independent. Then it follows that

GOE(n)
1√
2

(X +XT ), X GinR(n),

GUE(n)
1√
2

(X +X∗), X GinC(n).

There is a related construction for GSE that avoids direct use of quarternions
using a 2n× 2n complex matrix. See [DE02] for the details.

1.3 The main limit theorems

The basic question in random matrix theory is the following: what can one
say about the statistics of the eigenvalues of a random matrix? For example,
what is the probability that the largest eigenvalue lies below a threshold? Or,
what is the probability that there are no eigenvalues in a given interval? The
difficulty here is that even if the entries of a random matrix are independent,
the eigenvalues are strongly coupled.

Gaussian ensembles play a very special, and important, role in random ma-
trix theory. These are the only ensembles that are both Wigner and invariant
(see Theorem 19 below). Pioneering, ingenious calculations by Dyson [Dys62],
Gaudin and Mehta [MG60, Meh04], on the Gaussian ensembles served to eluci-
date the fundamental limit theorems of random matrix theory. In this section
we outline these theorems, assuming always that the ensemble is GUE. Our
purpose is to explain the form of the main questions (and their answers) in
the simplest setting. All the results hold in far greater generality as is briefly
outlined at the end of this section.

By the normalization (1.1.1), a GUE matrix has independent standard nor-
mal entries on its diagonal (mean zero, variance 1). The complex off-diagonal
entries have independent real and imaginary parts with mean zero and variance
1/2. We denote the ordered eigenvalues of the GUE matrix by λ1 ≤ λ2 ≤ . . . λn.
A fundamental heuristic for GUE matrices (that will be proven later, and may
be easily simulated) is that the largest and smallest eigenvalues have size O(

√
n).

In fact, λ1 ≈ −2
√
n and λn ≈ 2

√
n as n → ∞. Since there are n eigenvalues,

the gap between these eigenvalues is typically O(1/
√
n). There are thus two

natural scaling limits to consider as n→∞:

1. Rescale M 7→ n−1/2M so that the spectral radius is O(1). In this scaling
limit, n eigenvalues are contained within a bounded interval, and we obtain
a deterministic limit called the semicircle law .
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2. Rescale M 7→ n1/2M so that the gaps between eigenvalues are O(1). In
this scaling limit, we expect a random limiting point process. The limiting
point process is a determinantal point process called the Sine2 process.

In fact, the situation is more subtle. While the expected value of the gap between
eigenvalues for a GUE matrix is indeed O(n−1/2), the gaps are O(n−2/3) about
the edge of the spectrum. There is an an entirely different scaling limit called
the Airy2 process obtained by rescaling the spectrum of M ± 2

√
nI.

In all that follows, we consider a sequence of random matrices of size n
sampled from GUE(n). To make this explicit, the matrix is denoted Mn, and

its ordered eigenvalues are denoted λ
(n)
1 ≤ λ(n)

2 ≤ · · · ≤ λ(n)
n .

1.3.1 The semicircle law

Definition 1. The probability density and distribution function

psc(x) =
1

2π

√
4− x2 1|x|≤2, Fsc(x) =

∫ x

−∞
psc(x′) dx′, (1.3.1)

are called the semicircle density and the semicircle distribution respectively.

Theorem 2. Let Mn be a sequence of GUE matrices of size n. The rescaled
empirical spectral measures

µn(dx) =
1

n

n∑
j=1

δ
n−1/2λ

(n)
j

(dx) (1.3.2)

converge weakly to the semicircle density almost surely.

Theorem 2 may also be interpreted as the statement that the empirical spec-
tral distribution of the matrices Mn/

√
n converges to the semicircle distribution.

The shortest proof of Theorem 2 uses the following integral transform.

Definition 3. Assume µ is a measure on R that satisfies the finiteness condition∫ ∞
−∞

1√
1 + x2

µ(dx) <∞. (1.3.3)

The Stieltjes transform of µ is the function

µ̂(z) =

∫ ∞
−∞

1

x− z
µ(dx), z ∈ C\R. (1.3.4)

The Stieltjes transform is of fundamental importance in the theory of or-
thogonal polynomials and spectral theory. This is because there are natural
Stieltjes transforms associated to the resolvent (M − z)−1, such as

Tr(M − z)−1 and v∗(M − z)−1v, v ∈ Cn, |v| = 1. (1.3.5)



1.3. THE MAIN LIMIT THEOREMS 13

The general proof of Theorem 2 uses a recursive expression for the law of Tr(z−
Mn)−1. As n → ∞, the fixed point of this recursion, Rsc solves the quadratic
equation

R2 − zR+ 1 = 0. (1.3.6)

It is then easy to verify that

Rsc(z) =
1

2

(
−z +

√
z2 − 4

)
, z ∈ C\[−2, 2]. (1.3.7)

We recover the semicircle law from Rsc(z) by evaluating the jump in Im(Rsc(z))
across the branch cut [−2, 2].

Remark 4. The heuristic to determine the typical spacings is the following.

Define γ
(n)
j ∈ [−2, 2] by the relation

j

n
=

∫ γ
(n)
j

−∞
psc(x)dx, j = 1, 2, . . . , n.

Then the approximation λ
(n)
j ≈

√
nγ

(n)
j should hold1. We have

1

n
=

∫ γ
(n)
j+1

γ
(n)
j

psc(x)dx ≈ (γ
(n)
j+1 − γ

(n)
j )psc(γ

(n)
j ). (1.3.8)

If j = j(n) is chosen so that γ
(n)
j → r, r ∈ (−2, 2) (i.e. in the “bulk”) we have

λ
(n)
j+1 − λ

(n)
j ≈ 1√

npsc(r)
.

At the edge, consider (noting that γ
(n)
1 > −2)

1

n
=

∫ γ
(n)
1

−2

psc(x)dx ≈
∫ γ

(n)
1

−2

1

π

√
2 + xdx =

2

3π

(
γ

(n)
1 + 2

)3/2

,

γ
(n)
1 + 2 ≈ c

n2/3
,

2
√
n+ λ

(n)
1 = O(n−1/6), λ(n)

n − 2
√
n = O(n−1/6), (1.3.9)

where the last equation follows from λ
(n)
j ≈

√
nγ

(n)
j and the natural symmetry

between λ
(n)
1 and λ

(n)
n .

1This is made rigorous and quantitative by Erdős, Yau and Yin [EYY12].
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1.3.2 Fluctuations in the bulk: the sine process

We now rescale so that the gaps between eigenvalues is O(1) and the scaling
limit is a random process. This random process will be denoted Sine2 (and Sineβ
for the general β-ensembles). Each realization of the Sine2 process is a countable
set of points {xk}∞k=−∞. One of the fundamental statistics associated to a point
process is the probability of having k points in an interval. In order to state
a typical fluctuation theorem that describes these probabilities, we must define
the sine-kernel and its Fredholm determinants.

Definition 5. The sine-kernel is the integral kernel on R× R given by

Ksine(x, y) =
sinπ(x− y)

π(x− y)
, x 6= y, (1.3.10)

and Ksine(x, x, ) = 1.

In the following theorem we will assume that x and y are restricted to a finite
interval (a, b). The sine-kernel defines an integral operator on L2(a, b) that we
denote by Ksine1(a,b). The kernel Ksine(x, y) is clearly continuous, thus bounded,
for x, y ∈ (a, b). Thus, Ksine1(a,b) defines an integral operator on L2(a, b) that
is trace-class, and it has a well-defined Fredholm determinant

det
(
1−Ksine1(a,b)

)
(1.3.11)

= 1 +

∞∑
m=0

(−1)m

m!

∫
(a,b)m

det (Ksine(xj , xk)1≤j,k≤m) dx1dx2 . . . dxm.

Though perhaps mysterious at first sight, the origin of this formula is rather
simple. Integral operators with some smoothness and boundedness (in particu-

lar, continuous integral operators K whose trace
∫ b
a
|K(x, x)|dx is finite) may be

approximated on a discrete-grid of size h by a finite-dimensional discretization
Kh. The determinant (I −Kh) is then the usual determinant of a matrix and
we may use the definition of the determinant to expand det(I −Kh) in a finite
series, which is nothing but the infinite series above in the instance when all
terms beyond m = rank(Kh) vanish. This approach was pioneered by Fredholm
in 1900 before the development of functional analysis and is turned into an effi-
cient numerical method in Section 10.1. From a probabilistic point of view, this
formula arises from the Inclusion-Exclusion Principle, taken to the limit. The
operator theory introduced by Fredholm allows for that limit to be understood.

Theorem 6 (Gaudin-Mehta [MG60]). For each finite interval (a, b) ⊂ R, and
r ∈ (−2, 2),

lim
n→∞

P
(√

npsc(r)
(
λ

(n)
k − r

√
n
)
6∈ (a, b), 1 ≤ k ≤ n

)
= det

(
1−Ksine1(a,b)

)
.

(1.3.12)

The probabilities of the Sine2 process can be expressed without reference to
the matrices Mn. For each interval (a, b) let N(a,b) =

∑∞
k=−∞ 1{xk∈(a,b)}. Then,

P
(
N(a,b) = 0

)
= det

(
1−Ksine1(a,b)

)
. (1.3.13)
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For comparison, if we had a Poisson process {x̃k}∞k=−∞ with rate λ(dx), the

associated count Ñ(a,b) would satisfy

P
(
Ñ(a,b) = 0

)
= exp

(
−
∫ b

a

λ(dx)

)
.

1.3.3 Fluctuations at the edge: the Airy point process

Remark 4 and Theorem 6 reveal that the gaps between consecutive eigenval-

ues λ
(n)
j and λ

(n)
j+1 is of O(n−1/2). However, the fluctuations at the edge are

much larger, of O(n−1/6). The point process of shifted and scaled eigenvalues
converges in distribution to a limiting point process, {yk}∞k=1 called the Airy2

process. In order to describe the law of this process, we must define the Airy
function and the Airy kernel.

Definition 7. The Airy function is defined by the oscillatory integral

Ai(x) =
1

2π

∫ ∞
−∞

eikxeik3/3 dk. (1.3.14)

The Airy function is one of the classical special functions [AS72]. It admits
several alternative definitions. For instance, the oscillatory integral in (1.3.14)
may be deformed into an absolutely convergent integral in the complex plane.
This argument allows us to establish that the Airy function is entire and to
determine its asymptotic expansions as x→ ±∞.

These properties may also be established using the theory of ordinary differ-
ential equations in the complex plane [Hil97]. It is easy to verify from (1.3.14),
after deformation, that Ai(x) satisfies the differential equation

ϕ′′(x) = xϕ, −∞ < x <∞. (1.3.15)

Equation (1.3.15) admits two linearly independent solutions, only one of which
decays as x → ∞. Up to a (fixed by convention, but otherwise arbitrary)
normalization constant, the decaying solution is Ai(x).

Definition 8. The Airy kernel is the continous integral kernel on R×R given
by

KAiry(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
, x 6= y,

and by continuity at x = y.

Observe that both the sine and Airy kernel have the form

K(x, y) =
f(x)f ′(y)− f ′(x)f(y)

x− y
, x 6= y (1.3.16)

where f solves a second-order linear differential equation. Similar kernels arise
in various limiting models in random matrix theory. For instance, the Bessel
kernel – corresponding to f(x) = Jα(x), the Bessel function with parameter α
– describes fluctuations about the singular values of random matrices.
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Theorem 9. For each interval (a, b) ⊂ R, −∞ < a < b ≤ ∞,

lim
n→∞

P
(
n1/6

(
λ

(n)
k − 2

√
n
)
6∈ (a, b), 1 ≤ k ≤ n

)
= det

(
1−KAiry1(a,b)

)
.

(1.3.17)

As in the remarks following Theorem 6, the expression det
(
1−KAiry1(a,b)

)
gives the probability that no points of a realization of the Airy2 point process
lie in (a, b).

1.3.4 Fredholm determinants, Painlevé equations, and in-
tegrable systems

It is immediate from Theorem 6 and Theorem 9 that the Fredholm determinants
det
(
1−Ksine1(a,b)

)
and det

(
1−KAiry1(a,b)

)
are positive for all (a, b). This is

astonishing if one treats (1.3.11) as a starting point, since it is by no means clear
that the signed infinite series sums to a positive number! It is in fact rather
challenging to extract meaningful information, such as the asymptotics of tails,
from the expression of probabilities as Fredholm determinants. A crucial piece
of the puzzle lies in the connection between Fredholm determinants and the
theory of integrable systems. More precisely, the Fredholm determinants satisfy
differential equations in a and b (or more generally in endpoints of intervals,
when one considers the obvious extensions of Theorem 6 and Theorem 9 to
a collection of intervals

∏m
j=1(am, bm)). These ordinary differential equations

have a special, integrable structure, that allows their analysis. The following
theorems illustrate this aspect of random matrix theory.

Theorem 10 (Jimbo-Miwa-Mori-Sato [JMMS80]). For all t > 0,

det
(

1−Ksine1(− t2 ,
t
2 )

)
= exp

(∫ t

0

σ(s)

s
ds

)
, (1.3.18)

where σ(t) is the solution to the Painlevé-5 equation

(tσ′′)
2

+ 4 (tσ′ − σ)
(
tσ′ − σ + σ2

)
= 0, (1.3.19)

which satisfies the asymptotic condition

σ(t) = − t
π
− t2

π2
− t3

π3
, t ↓ 0. (1.3.20)

Theorem 11 (Tracy–Widom distribution [TW94]). For all real t,

F2(t) := det
(
1−KAiry1(t,∞)

)
= exp

(
−
∫ ∞
t

(s− t)q2(s) ds

)
, (1.3.21)

where q is the solution to the Painlevé-2 equation

q′′ = tq + 2q3,−∞ < t <∞ (1.3.22)

which satisfies the asymptotic condition

q(t) ∼ Ai(t), t→∞. (1.3.23)
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We will discuss the basic properties of Painlevé equations and integrable
systems in Lecture ??. Here is a brief preview.

The Painlevé differential equations are a special family of nonlinear ordi-
nary differential equations that generalize the classical theory of linear dif-
ferential equations in the complex plane and the associated theory of special
functions [Hil97]. For example, the Painlevé-2 equation (1.3.22) may be viewed
as a nonlinear analogue of the Airy differential equation (1.3.15). Broadly, the
Painlevé differential equations represent a complete classification of second-order
differential equations with the Painlevé property — their only movable singular-
ities (movable by changing initial conditions) are poles — that are not solvable
with elementary functions. The theory of Painlevé equations was developed in
the early years 1900’s, by Boutroux and Painlevé, but fell into obscurity2. It
was reborn in the 1970s with the discovery of their importance in integrable
systems and exactly solvable models in statistical mechanics, such as the Ising
model in 2D [MW73]. We illustrate these links with a fundamental integrable
system: the Korteweg-de Vries (KdV) equation

ut + 6uux + uxxx = 0, −∞ < x <∞, t ≥ 0. (1.3.24)

Despite the fact that KdV is nonlinear, it may be solved explicitly through the
inverse scattering transform. We will not discuss this method in detail. But in
order to make the connection with random matrix theory, let us note that if one
seeks self-similar solutions to KdV of the form

u(x, t) =
1

(3t)2/3
q

(
x

(3t)2/3

)
(1.3.25)

then q = v2 + v′ and v satisfies the Painlevé-2 equation (1.3.22). It is in this
context that Hastings and McLeod established the existence of a solution to
(1.3.22) that satisfies the asymptotic condition (1.3.23) [HM80]. It is remarkable
that it is exactly this solution that describes the Tracy-Widom distribution
F2(t)!

1.3.5 Universality

We have restricted attention to matrices from GUE to present some of the
central theorems in the subject in an efficient manner. One of the main achieve-
ments of the past decade has been the establishment of universality – informally,
this is the notion that the limiting fluctuations in the bulk and edge described
by the Sine2 and Airy2 processes, hold for both Wigner and invariant ensembles
which satisfy natural moment assumptions. The idea of universality is of clear
practical importance (we need understand only a few universal limits). It also
appears to hold the key to some of the connections between random matrix the-
ory and other areas of mathematics. The explanation of these connections may

2Paul Painlevé was rather restless: he began in mathematics, became an early aviation
enthusiast and then turned to politics. He rose to become the Prime Minister of France for
part of World War I and was later the designer of the disastrous Maginot line.
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lie in the fact that determinantal point processes, such as the Sine2 and Airy2

process, have the simplest structure of strongly interacting point processes. By
contrast, Poisson processes, while universal, describe non-interacting points.

1.4 Connections to other areas of mathematics

Random matrix theory has deep connections with many areas of mathematics,
many of which are still poorly understood. A brief overview of some of these
connections is presented below. While some of these notions, such as the con-
nections with stochastic PDE require more background than we assume, some
other connections (e.g. with quantum gravity) are in fact more elementary (and
fundamental) than one may naively expect. Our purpose here is to present a
small sample of the rich set of ideas that make the subject so attractive.

1.4.1 Number theory

The Riemann zeta function is defined by the infinite sum

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1. (1.4.1)

The function ζ(s) is central to number theory, since it provides a generating
function for the distribution of the prime numbers via Euler’s product formula

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
, Re(s) > 1. (1.4.2)

For instance, the divergence of the harmonic series at s = 1 provides a proof
that there are infinitely many primes. The study of ζ(s) by complex analysis is
the cornerstone of analytic number theory. The basic facts are as follows. The
function ζ(z) extends to a meromorphic function on C by analytic continuation,
which has a simple pole at s = 1 where the residue is 1. A closely related
function is the Riemann ξ-function

ξ(s) =
1

2πs/2
s(s− 1)Γ

(s
2

)
ζ(s). (1.4.3)

Recall that the Γ function is a ‘continuous interpolation’ of the factorial, defined
by the integral

Γ(s) =

∫ ∞
0

e−xxs−1 dx, Re(s) > 0. (1.4.4)

The Γ-function extends to a meromorphic function C, which has simple poles at
. . . ,−2,−1, 0 where the residue is 1. These poles cancel the ‘trivial’ zeros of the
ζ function, and the essential difficulties related to the study of the ζ function
are more transparent for the ξ function. It satisfies the functional equation

ξ(s) = ξ(1− s), s ∈ C. (1.4.5)
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The celebrated Riemann Hypothesis is the conjecture that all zeros of the ξ
function lie on the critical line Re(s) = 1/2 (this line is the symmetry axis for
the functional equation above). In his fundamental paper on the distribution of
prime numbers (translated in [Edw74] and [Rie53]) Riemann presented a series
of asymptotic expansions that would imply rigorous bounds on the distribution
of primes if the Riemann Hypothesis is true.

The connection between random matrix theory and the Riemann Hypoth-
esis is two-fold. First, if one could construct a Hermitian operator with point
spectrum whose eigenvalues coincide with the zeros of ξ(i(s − 1/2) then the
Riemann Hypothesis would follow immediately (since all eigenvalues of a Her-
mitian operator are real). The catch, of course, is to determine such an operator.
Nevertheless, as we discuss below, random matrix theory has shed new light on
the spectral theory of several operators, deterministic and random. Thus, the
theory provides a catalog of ‘guesses’. Second, if one assumes the Riemann hy-
pothesis, the fluctuations in the zeros of ζ(s) are described by the sine-kernel!
Under the Riemann hypothesis, the non-trivial zeros of ζ(s) may be written
γn = 1

2 ± itn with 0 < t1 < t2 < . . .. Let

wn =
tn
2π

log

(
tn
2π

)
, and N(x) =

∞∑
k=1

1wn≤x. (1.4.6)

This rescaling is chosen so that limx→∞N(x)/x = 1 in accordance with the
Prime Number Theorem.

Despite the fact that the zeros wn are deterministic, we may introduce proba-
bilistic notions by counting the (rescaled) zeros upto a level x > 0. For example,
we may define the empirical probability measure

µ1(dw;x) =
1

N(x)

N(x)∑
k=1

δwk(dw). (1.4.7)

In order to study the gaps between eigenvalues, we must consider instead the
empirical measures

µ2(dl;x) =
1

x

∑
1≤j,k≤N(x);j 6=k

δwj−wk(dl). (1.4.8)

The expectation of a continuous function with respect to µ2(dl;x) is denoted

R2(f ;x) =

∫ ∞
−∞

f(l)µ2(dl;x) =
1

x

∑
1≤j<k≤N(x)

f (wj − wk) . (1.4.9)

Under the assumption that f is band-limited, i.e. that its Fourier transform has
compact support, Montgomery established the following

Theorem 12 (Montgomery). Assume the Riemann Hypothesis. Assume f is

a Schwartz function whose Fourier transform f̂ is supported in [−1, 1]. Then

lim
x→∞

R2(f ;x) =

∫ ∞
−∞

f(l)µ2(dl), µ2(dl) =

(
1−

(
sinπl

πl

)2
)

dl. (1.4.10)
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The point here is that the right hand side of (1.4.10) is precisely the 2-point
function for the sine process. More generally, Montgomery’s theorem is now
known to hold for the distribution of n-consecutive gaps. That is, the rescaled
fluctuations converge to the Sine2 process in distribution. Bourgade’s thesis
provides an excellent introduction to these topics [Bou09].

1.4.2 Combinatorics and enumerative geometry

We will present two problems of enumerative combinatorics that connect with
random matrix theory. As a first example, we note that the 2m-th moment of
the semicircle law ∫ 2

−2

x2mpsc(x) dx =
1

m+ 1

(
2m

m

)
= Cm, (1.4.11)

the m-th Catalan number. An analytic proof of this identity follows from a
comparison between the Stieltjes transform Rsc(z), and the generating function

Ĉ(x) =
∑
m≥0

Cmx
m =

1−
√

1− 4x

x
. (1.4.12)

The Catalan numbers describe the solution to many combinatorial problems 3.
For example, Cm enumerates the number of Bernoulli excursions or Dyck paths
of length 2m: these are walks Sk, 1 ≤ k ≤ 2m such that S0 = S2m = 0, Sk ≥ 0,
0 ≤ k ≤ 2m, and |Sk+1 − Sk| = 1.

A deeper set of connections between integrals on Her(n) and geometry was
first noticed by the physicist ’t Hooft [tH74]. Ignoring for now the physicists’
motivation, let us illustrate a particular computational technique that underlies
their work. Consider a matrix integral of the form

Zn(z) =

∫
Her(n)

eTr(−zM4)pGUE(M) DM, Re(z) > 0. (1.4.13)

The quartic nonlinearity prevents us from expressing this integral in closed form.
Nevertheless, this integral may be expanded in a Taylor series

Zn(z) =

∞∑
k=0

(−z)k

k!

∫ (
Tr(M4)

)k
pGUE(M) DM, Re(z) > 0. (1.4.14)

A fundamental lemma on Gaussian integrals (on RN ) (Wick’s lemma) allows us
to reduce each integral above to a sum over pairings of indices. It is convenient
to keep track of these pairings with a graphical description, called a Feynman
diagram. ’t Hooft observed that when RN ≡ Her(n) the Feynman diagram
associated to each term in (1.4.14) enumerates embedded graphs on a Riemann
surface. This characterization was independently discovered by mathematicians.

3Stanley lists 66 examples in [Sta11, Exercise 6.19].
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Lemma 1 (Harer-Zagier [HZ86]). Let εg(m) denote the number of ways to pair
the edges of a symmetric 2m-gon to form an orientable surface with genus g.
Then

f(m,n) =

∞∑
g=0

εg(m)nm+1−2g =

∫
Her(n)

Tr(M2m)pGUE(M) DM. (1.4.15)

Note that only finitely many terms in the sum are non-zero. The series above
is an instance of a genus-expansion. It illustrates the beautiful fact that matrix
integrals serve as the generating functions for Riemann surfaces with a given
combinatorial decomposition.

1.4.3 Random permutations

Consider the symmetric group S(n) of permutations of size n. Every element of
S(n) can be represented as a reordering of the integers 1, 2, . . . , n. For example,
three elements of S(5) are

π1 = 54312, π2 = 12435, π3 = 45123.

We define a function ` : S(5) → N by `(π) = length of the longest increasing
subsequence of π. For example,

`(π1) = 2, `(π2) = 4, `(π3) = 3.

There is a natural probability distribution Uni(n) on S(n), the uniform distri-
bution, or Haar measure. If Πn ∼ Uni(n) then P(Πn = π) = 1

n! for any π ∈ Sn
since |S(n)| = n!.

The law of l(Πn) when Πn ∼ Uni(n) was one of the first problems to be inves-
tigated by Monte Carlo simulation on a computer. Ulam performed simulations
in the early 60’s [Ula61] and conjectured that

1√
n
E [`(Πn)]→ c.

It was later independently established by Vershik and Kerov [VK77], and Logan
and Shepp [LS77] that c = 2. The detailed numerical computations of Odlyzko
and Rains [OR00] indicated

E [`(Πn)]− 2
√
n = O(n−1/6). (1.4.16)

The comparison between (1.3.9) and (1.4.16) should be striking. Indeed, the
following is often called the Baik–Deift–Johansson Theorem and it makes this
scaling rigorous.

Theorem 13 ([BDJ99]). Let S(n), ` and Πn be as above. Then for all t ∈ R

lim
n→∞

P
(
`(Πn)− 2

√
n

n1/6
≤ t
)

= det(1−KAiry1(t,∞)).

That is, the limit is the same as the largest eigenvalue of a random Hermitian
matrix.



22 CHAPTER 1. FUNDAMENTALS

This theorem is discussed in great detail in [BDS17]. This surprising con-
nection was explored further by Johansson [Joh00] leading to many connections
to random growth processes and the KPZ equation.

1.4.4 Spectral and inverse spectral theory of operators

While Theorem 2–Theorem 9 associate limits to the spectrum of the operators
Mn, it is natural to ask if there are limiting operators that may be naturally
associated to the limiting spectra. Thus, for Theorem 2 we ask for a ‘natural’
operator that has spectral density given by the semicircle law, psc, and for
Theorem 6 and Theorem 9 we seek ‘natural’ random operators that have pure
point spectra with the law of the Sine2 and Airy2 point processes. What is a
‘natural’ operator is, of course, a subjective idea, but convincing candidates
operators are suggested by inverse spectral theory.

We say that a matrix T ∈ Symm(n) is a Jacobi matrix if all its off-diagonal
entries are strictly positive. The spectral measure of a Jacobi matrix is the mea-
sure whose Stieltjes transform is eT1 (T −z)−1e1. There is a 1−1 correspondence
between the space of n×n Jacobi matrices and probability measures on the line
with n atoms. This correspondence extends naturally, but with some caveats,
to semi-infinite Jacobi matrices. The essence of this theory (due to Stieltjes) is
that the entries of T may be determined from the continued fraction expansion
of eT1 (T − z)−1e1. This correspondence will be considered in detail in Chap-
ter 3, but here is a concrete example. By applying Stieltjes’ procedure4 to the
semicircle law, we discover that psc(x) is the spectral density for the seminfinite
tridiagonal matrix that is 1 on the off-diagonal, and 0 in all other entries. This
follows from the continued fraction expansion

Rsc(−z) =
1

z −
1

z −
1

z − . . .

(1.4.17)

Ensembles of tridiagonal matrices are of practical important in numerical
linear algebra. For instance, a key pre-processing step while solving symmetric
linear systems is to transform the matrix to tridiagonal form by Householder’s
procedure (see Chapter 3). Dumitriu and Edelman pushed forward the Gaus-
sian measures under this procedure to obtain a family of tridiagonal ensembles,
known as the general-β ensembles [DE02]. Further, Edelman and Sutton made
a formal expansion of these operators, and observed that as n → ∞, the tridi-
agonal operators appeared to converge to the stochastic Airy operator [ES07]:

Hβ = − d2

dx2
+ x+

2√
β
ḃ, 0 < x <∞ (1.4.18)

4The Stieltjes’ procedure is the procedure by which an orthonormal basis of polynomials
is constructed by the Gram–Schmidt process, exploiting a three-term recurrence relation. It
is intimately connected with the Lanczos iteration.
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with Dirichlet boundary conditions at x = 0. Here ḃ denotes (formally) white
noise (it is not hard to define Hβ rigorously).

Theorem 14 (Ramirez-Rider-Virag [RRV11]). The spectrum σ(Hβ) of the op-
erator Hβ is almost surely a countably infinite number of eigenvalues µ1 < µ2 <
µ3 < . . .. Moreover, σ(Hβ) has the same law as the Airyβ point process.

In particular, for β = 2, the spectrum of the stochastic Airy operator de-
scribes the limiting fluctuations at the edge of the spectrum of GUE matrices.
Despite the simplicity of this characterization, it is not completely understood
how to recover the explicit determinantal formulas of Tracy and Widom from
this formulation (see [Rum15]).

1.4.5 Universality in numerical computation

It is quite natural to ask about other aspects of random matrices beyond prop-
erties of their eigenvalues. For example, what distributions “arise” in the com-
putation of the eigenvalues of a random matrix. And are these distributions
universal?

Before one can truly ask this question (and make it more precise) an algo-
rithm needs to be set. For example, one can use the power method to compute
the top eigenvalue, the QR eigenvalue algorithm to compute the entire spec-
trum, or if one is truly trying to be competative with the state of the art,
the implicitly shifted QR algorithm (i.e. Francis’ algorithm) [Fra61] (see also
[Wat11]) should be used.

And then the question of how a distribution can “arise” in a deterministic
algorithm needs to be addressed. The most natural way is to examine the
runtime distribution also called the halting time. Since eigenvalue computation
amounts to polynomial rootfinding, abstract theory (Galois theory, specifically)
tells us that if the degree is five or larger then any general algorithm to compute
the eigenvalues must be iterative.

It turns out that the so-called Toda algorithm is a natural algorithm to
use on symmetric indefinite matrices5. The Toda algorithm to compute the
eigenvalues of a symmetric (or Hermitian) matrix H is derived by discretizing
and numerically solving the matrix flow

X ′(t) = X(t)B(X(t))−B(X(t))X(t), B(X) = X− −X∗−, X(0) = H,

where X− is the strictly lower-triangular part of X. It follows from the fact
that B(X(t)) is skew-symmetric that the eigenvalues of X(t) do not change in
time — the flow is isospectral.

A measure of the error in computing the top eigenvalue of the matrix is

E(t) =

n∑
j=2

|X1j(t)|2

5This is not because of its efficiency but rather because of its mathematical properties.
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because if E(t) = 0 then we are guaranteed that X11(t) is an eigenvalue of
X(0) = H. The associated halting time is given by

Tε(H) = min{t ≥ 0 : E(t) ≤ ε2}.

The following is a consenquence of [DT18].

Theorem 15. Suppose H ∼ GOE(n) (β = 1) or H ∼ GUE(n) (β = 1) and
ε ≤ n−5/3−σ for σ > 0. Then

lim
N→∞

P
(

Tε(n
−1/2H)

n2/3(log ε−1 − 2/3 log n)
≤ t
)

= F gap
β (t), (1.4.19)

where

F gap
β (t) := lim

n→∞
P

(
1

n1/6(λ
(n)
n − λ(n)

n−1)
≤ t

)
.

The existence of the limit F gap
β (t) in the β = 2 case is implied by Theorem 59

below. An important additional fact that is also established in [DT18] is that
this theorem also holds, up to the modification of some ensemble-dependent
constants, if H is from a so-called generalized Wigner matrix or invariant en-
semble.
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Chapter 2

Integration on spaces of
matrices

In this section, we review the geometry of the classical Lie groups, as well as the
spaces Symm(n), Her(n) and Quart(n) and explain how to integrate over these
groups and spaces. Given an point on a manifold M ∈M, we use dM to denote
the differential of M , i.e., an infintesimal element on the tangent space TM (M)
at M . We reserve DM to refer to a (naturally induced) volume form defined
using an inner-product on the tangent space. Note that for x ∈ R, dx = Dx.
Our main goal is the following

Theorem 16 (Weyl’s formula).

DM ∝ |4(Λ)|β DΛ DU (2.0.1)

where 4(Λ) is the Vandermonde determinant

4(Λ) = (−1)
n(n−1)

2

∏
1≤j<k≤n

(λj − λk), Λ = diag(λ1, . . . , λn), (2.0.2)

DΛ is Lebesgue measure on Rn, and DU denotes (unnormalized) Haar measure1

on O(n), and an appropriately defined measure on U(n)/Tn ∼= {U ∈ U(n) : u1j > Since the set of all diagonal unitary
matrices is not a normal subgroup of
U(n), the quotient is not a group. So
we cannot define Haar measure on it.

0, j = 1, 2, . . . , n}, and USp(n)/Tn ∼= {V ∈ USp(n) : v1j > 0, j = 1, 2, . . . , n}
in the cases β = 1, 2 and 4 respectively.

The main strategy to prove Theorem 16 is to treat the mapping from ma-
trices with distinct eigenvalues to their eigenvalues and eigenvectors. Then we
identify the tangent spaces, and give a formula that relates the tangent space
for the eigenvalues and the tangent space for the eigenvectors to the tangent
space for the matrix. This formula allows one to change variables in the metric
tensor and therefore in the volume form.

1See Section B.4 for a discussion of Haar measure.
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Remark 17. It is common to normalize the Haar measure such that it is a
probability measure. We have ignored this constant here, though is is explored
in the exercises. The essential aspect of (2.0.1) is that the Jacobian for diago-
nalization is given by |4(Λ)|β . This has far-reaching consequences for random
matrix theory and has the interesting physical interpretation of eigenvalue re-
pulsion.

In what follows, we first present a detailed description of integration on O(n)
and Symm(n). The ideas are then extended to Her(n) and Quart(n).

2.1 Integration on O(n) and Symm(n)

A (linear) isometry of Rn is a linear transformation that leaves the inner-product
invariant The Lie group O(n) is the group, under composition, of linear trans-
formations of Rn that preserve the standard metric g = I. For each O ∈ O(n)
and each x ∈ Rn we must have (Ox)T (Ox) = xTx. Thus, O(n) is equivalent
to the group of matrices O such that OTO = I. The group operation is matrix
multiplication. It is easy to check that the group axioms are satisfied, but a
little more work is required to check that O(n) is a differentiable manifold, and
that the group operation is smooth.

We now introduce the natural volume forms on Symm(n) and O(n). We first
note that the space Symm(n) is isomorphic to Rp, p = n(n+ 1)/2 via the map

M 7→ (M11, . . . ,Mnn,M12, . . . ,Mn−1,n). (2.1.1)

Thus, all that is needed to define integrals over Symm(n) is a choice of inner-
product. We will always use the Hilbert–Schmidt inner product

Symm(n)× Symm(n)→ R, (M,N) 7→ Tr(MTN) = Tr(MN). (2.1.2)

The associated infinitesimal length element is

ds2 = Tr(dMTdM) =

n∑
j=1

dM2
jj + 2

∑
j<k

dM2
jk. (2.1.3)

In ξ coordinates on Rp, the associated metric tensor g is diagonal and takes
the value 1 for the first n coordinates (diagonal terms), and the value 2 for
all the other coordinates (off-diagonal terms). Thus, the metric tensor g ∈
Symm+(p) has determinant 2n(n−1)/2. We apply formula (B.2.2) to find the
following volume form on Symm(n),

DM = 2n(n−1)/4
n∏
j=1

dMjj

∏
1≤j<k≤n

dMjk. (2.1.4)

Each O ∈ O(n) defines a map Symm(n)→ Symm(n), M 7→ OMOT . This map
is an isometry on Symm(n) with the metric above. It is in this sense that (2.1.6)



2.1. INTEGRATION ON O(N) AND SYMM(N) 29

is the natural inner-product. Since this map is an isometry, the volume element
DM is also invariant.

O(n) is a differentiable manifold that is not flat. Thus, in order to define a
volume form on O(n), we must identify its tangent space TQO(n), Q ∈ O(n),
and then introduce an inner-product on TQO(n). Further, the ‘natural’ inner-
product should be invariant under the group operations. The tangent space at
the identity to O(n), TIO(n), is isomorphic to the Lie algebra, o(n), of O(n).
In order to compute o(n) we consider smooth curves (−a, a) → O(n), a > 0,
t 7→ Q(t) with Q(0) = I, differentiate the equation Q(t)TQ(t) = I with respect
to t, and evaluate at t = 0 to find

Q̇(0)T = −Q̇(0). (2.1.5)

Thus, each matrix in o(n) is antisymmetric. Conversely, given an antisymmetric
matrix A, the curve t 7→ etA gives a smooth curve in O(n) that is tangent to I
at t = 0. Thus,

TIO(n) = o(n) = {A
∣∣A = −AT }. (2.1.6)

The tangent space at arbitrary O ∈ O(n) is obtained by replacing (2.2.2) with
the condition that OT Ȯ is antisymmetric. Thus,

TOO(n) = {OA |A ∈ o(n)}. (2.1.7)

Finally, given A, Ã ∈ o(n), we define their inner product 〈A, Ã〉 = Tr(AT Ã) =
−Tr(AÃ). This inner-product is natural, because it is invariant under left-

translation. That is, for two vectorOA,OÃ ∈ TOO(n) we find Tr
(
OA)T (OÃ

)
=

Tr(AT Ã). The associated volume form on O(n) is called Haar measure. It is
unique, up to a normalizing factor, and we write

DO = 2n(n−1)/4
∏

1≤j<k≤n

dAjk. (2.1.8)

Now let f : O(n) → R be a bounded, measurable function. Define a neigh-
borhood of O ∈ O(n) by Bε(O) = {Õ ∈ O(n) : ‖O − Õ‖ < ε}. Then for
ε > 0, sufficiently small, we can find a diffeomorphism (i.e., a chart) ϕO : UO →
Bε(O) ⊂ O(n), UO open satisfying

0 ∈ UO ⊂ TOO(n), ϕO(0) = O (2.1.9)

Then for such ε > 0 define∫
Bε(O)

fDO = 2n(n−1)/4

∫
ϕ−1
O (Bε(O))

f(ϕO(A))
∏

1≤j<k≤n

dAjk. (2.1.10)

It can be verified that this is independent of the choice of ϕO. So, now consider
such mapping at the identity, ϕI . And choose

ϕO(A) = OϕI(O
TA). (2.1.11)
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We find∫
Bε(O)

fDO = 2n(n−1)/4

∫
Oϕ−1

I (Bε(I))

f(OϕI(O
TA))

∏
1≤j<k≤n

dAjk. (2.1.12)

We use the fact that O furnishes an isometry from TIO(n) to TOO(n) so that∫
Bε(O)

fDO = 2n(n−1)/4

∫
ϕ−1
I (Bε(I))

f(OϕI(A))
∏

1≤j<k≤n

dAjk. (2.1.13)

In particular, if we choose f ≡ 1, then
∫
Bε(O)

DO does not depend on O ∈ O(n),

showing that this is indeed uniform measure on O(n).

2.2 Weyl’s formula on Symm(n)

Let us now recall some basic facts about Symm(n). Each matrix M ∈ Symm(n)
has n real eigenvalues and an orthonormal basis of real eigenvectors. We write
Λ for the matrix diag(λ1, . . . , λn) of eigenvalues, and Q for a matrix whose k-
th column is a normalized eigenvector of M associated to the eigenvalue λk,
1 ≤ k ≤ n. Since the columns of Q are orthogonal and normalized to length 1,
it is immediate that Q ∈ O(n). Thus,

MQ = QΛ and M = QΛQT . (2.2.1)

In what follows, we will view the transformation M 7→ (Λ, Q) as a change
of variables, from Symm(n) → Rn × O(n). Strictly speaking, this change of
variables is not well-defined since (2.2.1) is unaffected if we replace the k-th
column Qk of Q by −Qk. This issue is considered more carefully in Lemma 3
and Lemma 5 below. In a loose sense, diagonalization is analogous to polar
coordinates in Rn,

Rn → [0,∞)× Sn−1, x 7→ (r, u) , r = |x|, u =
x

r
. (2.2.2)

Polar coordinates are natural for rotation invariant probability density on Rn.
For example, the standard Gaussian measure on Rn may be written

e−
|x|2

2 Dx = Cne
− r

2

2 rn−1 drDu, (2.2.3)

where Du denotes the normalized n − 1-dimensional measure on Sn−1 and Cn
is a universal constant. The factor rn−1 is the Jacobian of this transformation.
Weyl’s formula shows that the Jacobian for (2.2.1) is |4(Λ)|. The proof of
Weyl’s formula relies on an orthogonal decomposition of TMSymm(n).

Lemma 2. Let M have distinct eigenvalues. Then

TMSymm(n) ∼= Rn ⊕ o(n). (2.2.4)

with respect to the Hilbert–Schmidt inner product.In what sense are Λ̇ and Q̇ orthogo-
nal? I guess Q̇ has zero diagonals, so
this is true in the sense of Hilbert-
Schmidt.

I’m a bit confused by the following:
If Λ(0) = 0, then Ṁ = Λ̇. But
then my mapping from Rn ⊕ o(n) →
TM Symm(n) is (Λ̇, Q̇) → Λ̇ which is
not invertible, which tells me they are
not isomorphic. So I added the addi-
tional assumption.
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Proof. We first assume that M = Λ is diagonal. Consider a smooth curve
(−a, a) → Symm(n), a > 0, t 7→ M(t) = Q(t)Λ(t)Q(t)T such that M(0) =
Λ(0) = Λ, and Q(0) = I. We differentiate2 this expression with respect to t
and evaluate it at t = 0 to find the following expression for a tangent vector in
TΛSymm(n):

Ṁ = Λ̇ + [Q̇,Λ]. (2.2.5)

Here Λ̇ can be an arbitrary diagonal matrix, and Q̇ an arbitrary antisymmetric
matrix. By the assumption of distinct eigenvalues, given Ṁ , Λ̇ = diagonal(Ṁ)
and Λ, Q̇ is uniquely determined. Since the diagonal terms in the commutator
[Q̇,Λ] vanish, of Q̇ vanish, Q̇ and Λ̇ are orthogonal with respect to the Hilbert–
Schmidt inner product. Thus,

TΛSymm(n) ∼= Rn ⊕ o(n). (2.2.6)

When M = QMQT is not diagonal, we consider a curve M(t) as above, with
M(0) = M , Λ(0) = Λ and Q(0) = Q. Now equation (2.2.5) is replaced by

Ṁ = Q
(

Λ̇ + [QT Q̇,Λ]
)
QT . (2.2.7)

The matrices QT Q̇ are antisymmetric and span o(n). Again, Q̇ is uniquely
determined by Ṁ, Λ̇ and Λ. Moreover, the matrices [QT Q̇,Λ] and Λ̇ are orthog-
onal as before. For arbitrary Λ̇ and A we find M(t) := QetA(Λ + tΛ̇)e−tAQT is
a smooth curve in Symm(n), satisfying M(0) = M .

Lecture Note 1. In the above calculation we have implicitly assumed that t →
Λ(t) and t → Q(t) are also smooth. Certainly, such smooth curves exist. If
one only assumes that M(t) is smooth but ignores the distinct eigenvalue as-
sumption, because M(t) is always symmetric perturbation theory gives that the
eigenvalues (which are ordered) and associated projections can be chosen to be
differentiable functions of t [Kat95, Theorem 5.4]. But note that symmetry is
actually unnecessary as we have assumed distinct eigenvalues. The main point
is that one can build a matrix Q(t) by applying the projections to the standard
basis, allowing the computation of Λ̇ and Q̇, in a well-defined way.

Lecture Note 2. The fact that the commutator [QT Q̇,Λ] must be symmetric
implies that (QT Q̇)ij + (QT Q̇)ji = 0 for i 6= j and more specifically for λi 6=
λj . The diagonal entries of this product must vanish. So, for given distinct
eigenvalues we can define the mapping

Ṁ 7→
(

diagonal(QṀQT ), QT Q̇
)
. (2.2.8)

This maps TMSymm(n) onto Rn⊕ o(n). The inverse map is, of course, given by

Q
(

Λ̇ + [Ȧ,Λ]
)
QT , (Λ̇, Ȧ) ∈ Rn ⊕ o(n).
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Remark 18. The proof of Lemma 2 reveals that all matrices of the form I changed this statement, it used to

read Q
(
[QT Q̇,Λ]

)
QT but this is a

traceless matrix.

M +

∫ t

0

Q(s)
(

[Q(s)T Q̇(s),Λ]
)
Q(s)Tds (2.2.9)

lie on an isospectral manifold – i.e. a manifold of matrices in Symm(n) with
the same spectrum as Λ. And if one makes the ansatz Q(t) = etA for an
antisymmetric matrix A, one has

Ṁ = [A,M ]. (2.2.10)

Lecture Note 3. Conversely, if Ṁ = [A,M ] for a skew-symmetric matrix A then
M(t) is symmetric if M(0) is. And the trace of all powers are conserved, using
the cyclic properties of the trace,

d

dt
TrMk(t) = Tr

k∑
j=1

M j−1(t)Ṁ(t)Mk−j(t) = kTr Ṁ(t)Mk−1(t)

= kTr[A,M(t)]Mk−1(t) = k
[
A,Mk(t)

]
= 0.

(2.2.11)

This implies for λj = λj(t) we have
1 1 · · · 1

2λ1 2λ2 · · · 2λn
...

...
. . .

...
nλn−1

1 nλn−1
2 · · · nλn−1

n



λ̇1

λ̇2

...

λ̇n

 = 0. (2.2.12)

If the eigenvalues are distinct, this matrix is non-singular (see (2.6.6)) and spec-
trum of M is constant.

Proof of Weyl’s formula for β = 1. We now have two coordinate systems on
TMSymm(n) provided that the eigenvalues of M are distinct. We will show
that the set of all symmetric matrices with distinct eigenvalues is open, dense
and of full Lebesgue measure (see Lemma 5 and Corollary 1). The coordinates
ξα, 1 ≤ α ≤ p give the metric (2.1.3). A coordinate system, which is always lo-

cally defined, is
(

Λ̇, Ȧ
)

, where Λ̇ is a diagonal matrix and Ȧ is an antisymmetric

matrix. We use (2.2.7) to find the infinitesimal length element in this coordi-
nate system. On the subset of Symm(n) consisting of matrices with distinct
eigenvalues, using that M is symmetric, and QTdQ = dA, A ∈ o(n),

Tr dM2 = Tr(dM)TdM = TrQ(dΛ + [dA,Λ])T (dΛ + [dA,Λ])QT

= Tr dΛ2 + 2 Tr dΛ[dA,Λ] + Tr[dA,Λ]2

= Tr dΛ2 + Tr[dA,Λ]2.

(2.2.13)

2Differentiability is guaranteed by classical perturbation theory [Kat95, Theorem 5.4].
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Expanding out this last trace, we find

Tr[dA,Λ]2 = Tr(dAΛ− ΛdA)2

= Tr dAΛdAΛ + Tr ΛdAΛdA− Tr ΛdA2Λ− Tr dAΛ2dA

= 2

n∑
j=1

n∑
k=1

dAjkdAkjλkλj −
n∑
j=1

n∑
k=1

dAjkdAkjλ
2
j −

n∑
j=1

n∑
k=1

dAjkdAkjλ
2
k

= 2
∑
j<k

(λj − λk)2dA2
jk.

(2.2.14)

Therefore

ds2 = Tr(dM2) =

n∑
j=1

dλ2
j + 2

∑
1≤j<k≤n

(λj − λk)2dA2
jk. (2.2.15)

Thus, the metric tensor in these coordinates is a diagonal matrix in Symm+(p)
that takes the value 1 on the first n coordinates, and the value 2(λj − λk)2 for
each term Ajk. By (B.2.2), the volume form is

DM = 2n(n−1)/4
n∏
j=1

dλj
∏

1≤j<k≤n

|λj − λk|dAjk = |4(Λ)|DΛ DO. (2.2.16)

To interpret Weyl’s formula, in a neighborhood UM of a matrix with distinct
eigenvalues, one needs to construct an invertible map φ(M) = (Λ, Q) from
symmetric matrices in this neighborhood to these “spectral” variables. Then
for f with compact support in UM∫

f(M)DM =

∫
φ(UM )

f(QΛQT )|4(Λ)|DΛDO. (2.2.17)

We now work to understand how to define such a map, and why matrices with
repeated eigenvalues do not cause further issues.

2.3 Diagonalization as a change of coordinates

Some care is needed when treating the map M → (Λ, Q) as a change of vari-
ables. First, the map is not even well-defined in general, since the sign of each
normalized eigenvector is arbitrary. Second, even if we fix the signs, the choice
of eigenvectors is degenerate when M has repeated eigenvalues. Third, Λ is
not uniquely defined if we do not specify an ordering of the eigenvalues. The
following lemmas address this issue. Define the Weyl chamber

Wn = {Λ ∈ Rn |λ1 < λ2 < . . . < λn }. (2.3.1)
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Lemma 3. Assume M0 ∈ Symm(n) has distinct eigenvalues. Then there exists
ε > 0 such that for each s ∈ {±1}n, there is a C∞ map

h(s) : Bε(M0)→Wn × O(n), M 7→
(

Λ, Q(s)
)

that is a C∞ diffeomorphism onto its image.

Proof of Lemma 3. An outline of the proof is presented. The remaining details
are left to the exercises. Standard perturbation theory (see [Kat95], for example)
demonstrates that the map is C∞. The choice of s corresponds to fixing the
signs of the eigenvectors as follows. Let a basis of normalized eigenvectors
of M0 be fixed. Call the associated matrix of eigenvectors Q0. For each s, let

Q
(s)
0 = diag(s1, . . . , sn)Q0. EachQ

(s)
0 is also an eigenvector matrix forM0. Since

the eigenvalues of M are distinct, we may use the implicit function theorem to
solve the algebraic equations that determine the eigenvalues and eigenvectors,
in a way that is consistent with the choice of s.

Lemma 4 (Weilandt–Hoffman inequality). Let M1,M2 ∈ Symm(n) and use
λj(Mi) to denote the jth eigenvalue (in increasing order) of Mi. Then

n∑
j=1

|λj(M1)− λj(M2)|2 ≤ ‖M1 −M2‖2.

Proof. See [Tao11, Section 1.3] for a particularly nice proof.

Lemma 5. Assume that M ∈ Symm(n) has a repeated eigenvalue. Then for
every ε > 0 there exists Mε ∈ Symm(n), such that ‖M − Mε‖ < ε and Mε

has distinct eigenvalues. Furthermore, the set of all matrices in Symm(n) with
distinct eigenvalues is open.

Proof. Exercise.

Lemma 3 shows that the map M 7→ (Λ, Q) provides a local coordinate
system near each matrix with distinct eigenvalues. Lemma 5 shows that set of
such matrices is dense. As has been noted, more is true. The set of all matrices
with both distinct eigenvalues and non-vanishing first entries in its eigenvectors
is of full measure. This follows from (3.3.3) and Lemma 8 below. One has to
note that the procedure of reducing a full matrix to a tridiagonal matrix that is
used to establish (3.3.3) does not affect the first row of the eigenvector matrix.

In fact, Weyl’s formula shows that the set of M ∈ Symm(n) with repeated
eigenvalues and at least one eigenvector with a zero first component has measure
zero with respect to DM . Let O> = {O ∈ O(n) | O1j > 0, j = 1, . . . , n} and
WR = {M = OΛOT ∈ Symm(n) | − R < λ1 < λ2 < · · · < λn < R,O ∈ O>}.
Then define ϕ(M) = (Λ, Q) uniquely by the convention that the first non-zero
entry in each column of Q is positive. Then we find∫

WR

DM =

∫
WR

|4(Λ)|DΛ

(∫
O>

DO

)
, (2.3.2)

WR = {Λ ∈ Rn | −R < λ1 < λ2 < · · · < λn < R}. (2.3.3)
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But ∫
WR

|4(Λ)|DΛ

(∫
O>

DO

)
=

∫
WR

|4(Λ)|DΛ

(∫
O>

DO

)
. (2.3.4)

This then implies, after changing variables back to M ,∫
WR

DM =

∫
WR

DM. (2.3.5)

This then implies that for S = {M ∈ Symm(n)|λj = λi for some i 6= j} has
measure zero. To see that ∫

O>

DO =

∫
O>

DO,

make a local change of variables to the tangent space in the neighborhood of
a matrix O ∈ O> \ O> via ϕO(A) = O(I − A)(A + I)−1. For O fixed, the
condition eT1 ϕO(A)e1 = 0 is the zero set of a function that is real-analytic in the
components of A. If it vanished on a set of positive measure (Lebesgue measure
on the entries of A), it would have to vanish identically. This shows the measure
of O> \O> that lies in this neighborhood is zero. Compactness of O> \O> can
then be used to prove it is measure zero.

2.4 Independence and Invariance implies Gaus-
sian

Fix M ∈ Symm(n) with spectrum σ(M). Fix an interval (a, b) ⊂ R and let
Symm(n)(a,b) denote the set of M ∈ Symm(n) with spectrum σ(M) ⊂ (a, b).
Each function f : (a, b) → R extends naturally to a map Symm(n)(a,b) →
Symm(n) as follows:

f(M) = Qf(Λ)QT , M = QΛQT , f(Λ) = diag(f(λ1), . . . , f(λn)). (2.4.1)

Clearly, Tr(f(M)) = Tr(f(Λ)) =
∑n
j=1 f(λj). Each f : R → R that grows

sufficiently fast as x→ ±∞ defines an invariant distribution on Symm(n)

µ(DM) =
1

Z
exp (−Tr(f(M))) DM. (2.4.2)

This is the most general form of an invariant probability distribution.
By contrast, a Wigner distribution relies on independence of the entries of

M . This means that if a Wigner distribution has a density, then it must be of
the form

µ(DM) =
1

Z

 n∏
j=1

fj (Mjj)
∏

1≤j<k≤n

fjk (Mjk)

DM. (2.4.3)
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Theorem 19. Assume a probability measure µ on Symm(n) is both a Wigner
distribution and an invariant distribution. Assume further that µ(DM) has a
strictly positive, smooth density of the form (2.4.2) and (2.4.3). Then µ(DM)
is a Gaussian ensemble,

µ(DM) =
1

Z
e−

1
2σ2 Tr(M−γI)2

DM, (2.4.4)

with variance σ2 and mean γ I, for some γ ∈ R.

Proof. We first illustrate the essential calculation for 2× 2 matrices. Suppose

µ(DM) = p(M) DM =
1

Z
f(M11)g(M22)h(M12)dM11dM12dM22. (2.4.5)

We compute the variation in µ along an isospectral curve (see Remark 18).
Consider the curve M(t) = Q(t)MQ(t)T with

Q(t) = etR, R =

(
0 −1
1 0

)
. (2.4.6)

The matrix R spans so(2). We differentiate M(t) with respect to t to obtain

Ṁ(0) = [R,M ] =

(
−2M12 M11 −M22

M11 −M22 2M12

)
(2.4.7)

Thus, the infinitesimal change in the density p(M(t)) is

1

p

dp

dt

∣∣∣∣
t=0

=
f ′(M11)

f(M11)
Ṁ11 +

g′(M22)

g(M22)
Ṁ22 +

h′(M12)

h(M12)
Ṁ12 (2.4.8)

= −2M12

(
f ′(M11)

f(M11)
− g′(M22)

g(M22)

)
+ (M11 −M22)

h′(M12)

h(M12)
.

On the other hand, since µ(DM) is invariant, p(M(t)) = p(M) and

dp

dt

∣∣∣∣
t=0

= 0. (2.4.9)

We equate (2.4.8) and (2.4.9), and separate variables to obtain

1

M11 −M22

(
f ′(M11)

f(M11)
− g′(M22)

g(M22)

)
= c =

1

2M12

h′(M12)

h(M12)
, (2.4.10)

for some constant c ∈ R. Equation (2.4.10) immediately implies that

h(M12) = h(0)ecM
2
12 . (2.4.11)

Separating variables again in (2.4.10), we find with a second constant b ∈ R,

f ′

f
= cM11 + b,

g′

g
= cM22 + b, (2.4.12)
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which integrates to

f(M11) = f(0)e
cM2

11

2 ebM11 , g(M22) = g(0)e
cM2

22

2 ebM22 . (2.4.13)

We combine all the terms to obtain

p(M) = f(0)g(0)h(0)ec
Tr(M2)

2 ebTr(M). (2.4.14)

Since p(M) integrates to 1, we must have c < 0, say c = −1/σ2. The scalar b is
arbitrary and contributes a shift in the mean that is a scalar multiple of I. The
combination of constants f(0)g(0)h(0) may be absorbed into the normalization
constant Z−1. We have thus proved Theorem 19 for n = 2.

In order to prove Theorem 19 for arbitrary n we generalize the above argu-
ment as follows. Fix a pair of off-diagonal indices 1 ≤ l < m ≤ n. We consider
a rotation in Rn that rotates the xlxm plane as above, and leaves the other co-
ordinates invariant. This entails replacing the matrix R in the argument above
with the matrix Rlm ∈ so(n) with coordinates Rlmjk = δjlδkm − δjmδkl. The
argument above now shows that the density of p in the Mll, Mlm and Mmm

coordinates is a Gaussian distribution of the form (2.4.14):

p(M lm) = ec
Tr((M lm)2)

2 ebTr(M lm), (2.4.15)

where M lm denotes the 2× 2 matrix

M lm =

(
Mll Mlm

Mlm Mmm

)
.

At this stage, the constants c and b depend on l and m. But now note that
since the same argument applies to every pair of indices 1 ≤ l < m ≤ n, the
constants c and b must be independent of l and m.

Lecture Note 4. Then

(Rlm)jk =


0 (j, k) 6= (l,m) or (k, j) 6= (l,m),

1 j = l, k = m,

−1 j = m, k = l.

(2.4.16)

Then for M(t) = Q(t)MQ(t)T , Q(t) = etR we have

Ṁ(0) = [M,Rlm],

(MRlm)jk =

n∑
`=1

Mj`(R
lm)`k =


0 k 6= l,m,

Mjl k = m,

−Mjm k = l,

(RlmM)jk =

n∑
`=1

(Rlm)j`M`k =


0 j 6= l,m,

−Mlk j = m,

Mmk j = l.

(2.4.17)
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Then we compute

Cjk := ([M,Rlm])jk =



0 j 6= l,m and k 6= l,m,

2Mml k = m, j = m,

−2Mml k = l, j = l,

Mll −Mmm k = m, j = l,

Mmm −Mll k = l, l = m,

Mjl k = m, j 6= l,m,

−Mjm k = l, j 6= l,m,

−Mlk j = m, k 6= l,m,

Mmk j = l, k 6= l,m.

(2.4.18)

Differentiating the density, using invariance, we find

0 =
1

p

dp

dt

∣∣∣∣
t=0

=
∑

1≤j≤k≤n

Cjk
f ′jk(Mjk)

fjk(Mjk)
, fjj = fj . (2.4.19)

Separating out terms, using l < m, we find

Cll
f ′l (Mll)

fl(Mll)
+ Cmm

f ′m(Mmm)

fm(Mmm)
+ Clm

f ′lm(Mlm)

flm(Mlm)

+

n∑
k=l+1,k 6=m

Clk
f ′lk(Mlk)

flk(Mlk)
+

m−1∑
j=1,j 6=l

Cjm
f ′jm(Mjm)

fjm(Mjm)
= 0.

(2.4.20)

Using the expressions for Cjk we have

2Mml

(
f ′m(Mmm)

fm(Mmm)
− f ′l (Mll)

fl(Mll)

)
+ (Mll −Mmm)

f ′lm(Mlm)

flm(Mlm)

+

n∑
k=l+1,k 6=m

Mmk
f ′lk(Mlk)

flk(Mlk)
+

m−1∑
j=1,j 6=l

Mjl

f ′jm(Mjm)

fjm(Mjm)
= 0

(2.4.21)

Then one separates variables. The last line of this equation contains only vari-
ables Mjk that are not included on the first line of this equation. So, we may
separate variables as in the 2× 2 case to find

fl(Mll)fm(Mmm)flm(Mlm)

is given by (2.4.15). It is straightforward to argue that if this is true for every
pair (l,m) then c and b cannot depend on l or m.

2.5 Integration on Her(n) and U(n)

The space of Hermitian matrices Her(n) is a vector-space of real dimension n2,

as may be seen by the isomorphism Her(n)→ Rn2

,

M 7→ (M11, . . . ,Mnn,ReM12, . . . ,ReMn−1,n, ImM12, . . . , ImMn−1,n) . (2.5.1)



2.5. INTEGRATION ON HER(N) AND U(N) 39

The Hilbert-Schmidt inner product on Her(n) is

Her(n)× Her(n)→ C, (M,N) 7→ Tr(M∗N). (2.5.2)

The associated infinitesimal length element is

ds2 = Tr(dM2) =

n∑
j=1

dM2
jj + 2

∑
1≤j<k≤n

(
dReM2

jk + d ImM2
jk

)
. (2.5.3)

Thus, in the coordinates ξ, the metric is an n2×n2 diagonal matrix whose first
n entries are 1 and all other entries are 2. We apply (2.2.1) to obtain the volume
form on Her(n)

DM = 2n(n−1)/2
n∏
j=1

dMjj

∏
1≤j<k≤n

dReMjk d ImMjk. (2.5.4)

The unitary group, U(n) is the group of linear isometries of Cn equipped
with the standard inner-product 〈x, y〉 = x∗y. Thus, U(n) is equivalent to the
group of matrices U ∈ Cn×n such that U∗U = I. The inner-product (2.5.3) and
volume form (2.5.4) are invariant under the transformation M 7→ UMU∗.

The Lie algebra u(n) is computed as in Section 2.1. We find

u(n) = TIU(n) =
{
A ∈ Cn×n |A = −A∗

}
, TUU(n) = {UA |A ∈ u(n)} .

(2.5.5)
The transformation M 7→ iM is an isomorphism between Hermitian and anti-
Hermitian matrices. In fact, the map Her(n) → U(n), M 7→ eiM is onto and
locally one-to-one. The inner-product A, Ã 7→ Tr(A∗Ã) is invariant under left
application of U(n). Thus, we obtain the volume form for Haar measure on U(n)

DŨ = 2n(n−1)/2
n∏
j=1

dAjj
∏

1≤j<k≤n

dReAjk d ImAjk. (2.5.6)

However, when viewing diagonalization M 7→ UΛU∗ as a change of variables
on Her(n), it is necessary to quotient out the following degeneracy: For each
θ = (θ1, . . . , θn) ∈ Tn, the diagonal matrix D = diag

(
eiθ1 , . . . , eiθn

)
is unitary

and M = UΛU∗ if and only if M = UDΛD∗U∗. Thus, for Her(n), the measure
DŨ must be replaced by Haar measure a measure on U(n)/Tn. The form of
this measure on Haar measure on U(n)/Tn follows from the following assertion,
which is proved as in Section 2.1.

Lemma 6. Each matrix Ṁ ∈ TMHer(n) is of the form

Ṁ = U
(

Λ̇ + [U∗U̇ ,Λ]
)
U∗, Λ̇ ∈ TΛRn, U̇ ∈ TUU(n), diagonal(U∗U̇) = 0.

(2.5.7)
The matrices Λ̇ and U∗U̇ are orthogonal under the inner-product (2.5.2).
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Thus, the volume form on the quotient U(n)/Tn is locally equivalent to a
volume form on the subspace of anti-Hermitian matrices consisting of matrices
with zero diagonal:

DU = 2n(n−1)/2
∏

1≤j<k≤n

dReAjk d ImAjk. (2.5.8)

Furthermore, B 7→ ϕ(B) = UeU
∗B provides a locally one-to-one mapping from

PTUU(n) = UTIU(n) to U(n)/Tn.
Lemma 6 shows that the mapping Rn ⊕ PTIU(n)→ TMHer(n), PTIU(n) =

{A ∈ TIU(n) | diag(A) = 0}, defined by (Λ̇, Ȧ) 7→ U(Λ̇ + [Ȧ,Λ])U∗ maps onto
TMHer(n). Again, the two spaces are isomorphic if M has distinct eigenvalues.

Proof of Weyl’s formula for β = 2. We write, on the subset of Symm(n) con-
sisting of matrices with distinct eigenvalues, using that M is Hermitian, and
U∗dU = dA, A ∈ TIU(n),diag(A) = 0,

Tr dM2 = Tr dΛ2 + 2 Tr dΛ[dA,Λ] + Tr[dA,Λ]∗[dA,Λ]

= Tr dΛ2 + Tr[dA,Λ]∗[dA,Λ].
(2.5.9)

Expanding out this last trace, using that dA = dReA + i dImA, we need only
collect the real partcheck

Tr[dA,Λ]∗[dA,Λ] = Tr(dReA)Λ(dReA)Λ + Tr Λ(dReA)Λ(dReA)

− Tr Λ(dReA)2Λ− Tr(dReA)Λ2(dReA)

+ Tr(d ImA)Λ(d ImA)Λ + Tr Λ(d ImA)Λ(d ImA)

− Tr Λ(d ImA)2Λ− Tr(d ImA)Λ2(d ImA)

= 2
∑
j<k

(λj − λk)2dReA2
jk + 2

∑
j<k

(λj − λk)2dImA2
jk.

(2.5.10)

Then it follows that the associated volume form satisfies

DM = |4(Λ)|2DΛDU. (2.5.11)

2.6 Integration on Quart(n) and USp(n)

The field of quaternions, H, is the linear space

x = c0 + c1e1 + c2e2 + c3e3, ci ∈ R, i = 0, 1, 2, 3, (2.6.1)

equipped with the non-commutative rules of multiplication

e21 = e22 = e23 = e1e2e3 = −1. (2.6.2)
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These rules ensure that the product of any two quaternions is again a quaternion.
Each x ∈ H has a complex conjugate x̄ = c0−c1e1−c2e2−c3e3, and its absolute
value |x| is determined by

|x|2 = x̄x = c20 + c21 + c22 + c23. (2.6.3)

Each non-zero x ∈ H has a multiplicative inverse 1/x = x̄/|x|2. Thus, H is
indeed a field.

The normed linear vector space Hn consists of vectors x = (x1, . . . , xn)T with
inner product 〈x, y〉 =

∑n
j=1 x̄jyj . The adjoint, M† of a linear transformation

M : Hn → Hn is defined by the inner-product

〈M†x, y〉 := 〈x,My〉. (2.6.4)

It follows that the entries of M† are Mjk = M̄kj . We say that an operator is self-
adjoint if M = M†. It is anti self-adjoint if M = −M†. The space of self-adjoint
operators is denoted Quart(n). We equip this space with the Hilbert-Schmidt
norm as before.

The group USp(n) is the set of linear transformations of Hn that preserve
this inner product. We thus require that for each x, y ∈ Hn

〈x, y〉 = 〈Ux,Uy〉 = 〈U†Ux, y〉. (2.6.5)

Thus, USp(n) is equivalent to U ∈ Hn×n such that U†U = I. As for U(n) we find
that its Lie algebra usp(n) is the space of anti self-adjoint matrices. The inner-
product on usp(n) and Haar measure are defined exactly as in Section 2.5, as is
the analogue of Lemma 6 and the Weyl formula. It is also clear from how the
proof of Weyl’s formula extends to β = 2, that because the field of quarternions
is a four-dimensional space, |4(Λ)|4 will arise, see (2.5.10).

Exercises

2.1. Show that

4(Λ) = det


1 . . . 1
λ1 . . . λn
...

...
λn−1

1 . . . λn−1
n .

 . (2.6.6)

2.2. The Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.6.7)

allow a representation of the quarternions in terms of Hermitian matrices.

(a) Show that the Pauli matrices together with the identity matrix span Her(2).

(b) Show that the matrices {iσ1, iσ2, iσ3} form a basis of su(2). (This is the
subalgebra of u(2) consisting of trace-free matrices).
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(c) Verify that if ej = iσj , the rules (2.6.2) hold (replace 1 by I2).

2.3. The canonical symplectic matrix of size 2n × 2n denoted Jn, or simply J ,
is the matrix

J =

(
0 I
−I 0

)
, (2.6.8)

where 0 and I denote the n×n zero and identity matrices. The symplectic group
Sp(2n,R) (not to be confused with the unitary symplectic group USp(n)!) is

Sp(2n,R) =
{
S ∈ Rn×n

∣∣STJS = J
}
. (2.6.9)

Verify that Sp(2n,R) is a group and compute its Lie algebra sp(2n,R).

2.4. Use the Gaussian integral∫
Rn

e−
|x|2

2 dx1 . . . dxn.

to compute the n− 1-dimensional volume ωn−1 of the unit sphere Sn−1. Deter-
mine the asymptotic behavior of ωn−1 as n→∞.
Hint : Do the integral two ways– once in Cartesian coordinates, and once in
polar coordinates.

2.5. Assume given a C1 function f : (a, b) → R, and extend it to a function
f : Symm(n)→ Symm(n) as in (2.4.1). Compute the Jacobian of this transfor-
mation. Apply this formula to the function f(x) = eix to compute the analogue
of Weyl’s formula on U(n) (note that each U ∈ U(n) is of the form eiM for some
M ∈ Her(n)).

2.6. Prove Lemma 4.

2.7. Let A ∈ Rm×n for m < n. Show that {x | Ax = 0} ⊂ Rn has zero Lebesgue
measure.

2.8. Assume f : R→ (0,∞) satisfies the functional equation

f(x+ y) = f(x)f(y), x, y ∈ R. (2.6.10)

It is easy to check that for each a ∈ R functions of the form f(x) = eax

solve (2.6.10). Show that these are the only solutions to (2.6.10) assuming
only that f is continuous. (Do not assume that f is differentiable).

Remark 20. The use of row operations in Problem (1) underlies the intro-
duction of orthogonal polynomials. Problems (2) and (3) may be combined to
show that Sp(2n,C) ∩ U(n) ∼= USp(n). The approach in Problem (4) yields
the volume of O(n), U(n) and USp(n) when applied to GOE, GUE and GSE.
The assumptions of Problem (7) may be weakened further – measurability is
enough! You could try to develop a similar approach for the functional equation
implicit in the proof of Theorem 19. That is, can you establish a stronger form
of Theorem 19 that does not assume differentiability ?
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2.9. Every V ∈ U(n) is of the form V = exp(iM) for M ∈ Her(n) (you can as-
sume this fact, but try and prove it). Thus, show that V = Udiag(eiα1 , . . . , eiαn)U∗

for real numbers α1, . . . , αn. Combine this with problem (4) to derive ...
I don’t know how to finish this...

2.10. Show that the mapping A 7→ (I − A)(A + I)−1 from o(n) to O(n) is
bijective in a neighborhood of 0 to a neighborhood of the identity. Construct
an atlas of O(n) using this mapping.

2.11. Using the Submersion Theorem [BL05, Proposition 3.42] (also called the
Regular Value theorem) show that O(n) is a smooth manifold.
Hint : Consider φ : Rn×n → Symm(n) defined by φ(X) = XTX. Then show
that I is a regular value and therefore φ−1(I) = O(n) is a smooth manifold.
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Chapter 3

Jacobi matrices and
tridiagonal ensembles

3.1 Jacobi ensembles

The space of real n × n tridiagonal matrices is denoted Tridiag(n). A typical
matrix in Tridiag(n) is written

T =



a1 b1 0 . . . 0
b1 a2 b2 0

0 b2 a3
. . .

...
...

. . .
. . . bn−1

0 0 . . . bn−1 an

 . (3.1.1)

Jacobi matrices, and their closure within the space Tridiag(n) are the manifolds

Jac(n) = {T ∈ Tridiag(n) | bj > 0, 1 ≤ j ≤ n}, (3.1.2)

Jac(n) = {T ∈ Tridiag(n) | bj ≥ 0, 1 ≤ j ≤ n}.

Jacobi matrices, or more generally Jacobi operators, are of fundamental impor-
tance in spectral theory. A self-adjoint operator K on a Hilbert space can be
decomposed using its cyclic subspaces. On each of these cyclic subspaces an or-
thonormal basis for span{Kjx | j = 0, 1, 2, . . . } can be found and the operator
K becomes tridiagonal in this basis. This is an idea used by conjugate gradient
algorithm [HS52]. They also play an important role in approximation theory,
the theory of orthogonal polynomials, and more widely in numerical linear alge-
bra. An essential step in the symmetric eigenvalue problem is the reduction of a
full symmetric matrix to an isospectral tridiagonal matrix (tridiagonalization)
by a sequence of orthogonal reflections. Under this procedure, the Gaussian
ensembles push forward to ensembles of tridiagonal matrices whose laws have
the following simple description.

45
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Definition 21 (Dumitriu–Edelman [DE02]). For each β > 0, the Hermite(β)
ensemble consists of T ∈ Tridiag(n) such that ak, 1 ≤ k ≤ n, are iid normal
random variables with mean zero and variance 2/β, and bk, 1 ≤ k ≤ n−1 where
are independent χ(n−k)β(1/β) random variables.I think I fixed this to say χ(n−k)β

instead of χkβ

The density for χk(σ2) is supported on [0,∞) and is proportional to

tk−1e−
t2

2σ2 .

The point here is that the Hermite(β) ensembles are the push-forwards of
the Gaussian ensembles when β = 1, 2 or 4. Then they interpolate Dyson’s
classification of ensembles to every β > 0. When combined with classical spec-
tral theory, they provide a distinct, and important, perspective on the limit
theorems of random matrix theory. Our immediate goal in this chapter is the
following

Theorem 22. Fix β > 0 and assume T ∼ Hermite(β). Then the marginal
distribution of its eigenvalues is

pHermite(β)(Λ)DΛ =
1

Zn,β
e−

β
4 Tr(Λ2)|4(Λ)|β DΛ. (3.1.3)

The chapter concludes with a more refined version of Theorem 22 that in-
cludes the distribution of the spectral measure of matrices T ∼ Hermite(β).

3.2 Householder tridiagonalization on Symm(n)

Each M ∈ Symm(n) may be diagonalized M = QΛQT . However, the computa-
tion of Λ depends on the solvability of the characteristic polynomial det(zI −
M) = 0. For n ≥ 5, there is no general closed form solution for the characteristic
polynomial1. Nevertheless, every matrix always admits the following reduction
that requires only a finite number of algebraic operations.

Theorem 23. For every M ∈ Symm(n) there exists a tridiagonal matrix T and
Q ∈ O(n) such that

M = QTQT . (3.2.1)

A decomposition (3.2.1) is given by a change of variables

Symm(n)→ Jac(n)×
(
Sn−2 × Sn−3 × . . . S1

)
. (3.2.2)

under which the volume form DM on Symm(n) transforms as follows:

DM = Cn

n∏
j=1

daj

n−1∏
k=1

b
(n−k)−1
k dbk

n−2∏
l=1

Dωl (3.2.3)

where Dωl denotes uniform measure on the sphere Sl−1, and Cn is the normal-
ization constant.

1Practical numerical schemes for eigenvalue decomposition are unaffected by this algebraic
obstruction, since they rely on iteration.
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To interpret this theorem one needs a mapping h

h : Sn−2 × Sn−3 × · · · × S1 7→ O(n), (3.2.4)

so that h(ωn−2, ωn−3, . . . , ω1) = Q. This mapping is given explicitly below
in terms of Householder reflections. As the dimension of the domain for this
mapping is less than 1

2n(n− 1), the dimension of O(n), not all matrices in O(n)
are attainable.

Remark 24. The space Tridiag(n) clearly inherits the inner-product Tr(T 2) =∑n
j=1 a

2
j + 2

∑n−1
j=1 b

2
j from Symm(n). However, the volume form obtained from

this metric is not the same as the volume form in (3.2.3) above.

Remark 25. (For algebraists!) The proof will also show that T and Q may be
computed with a finite number of the following algebraic operations: addition,
multiplication and square-roots.

Definition 26. Suppose v ∈ Rn is a unit vector. The Householder reflection
in v is the matrix

Pv = I − 2vvT . (3.2.5)

Lemma 7. The matrix Pv has the following properties:

(a) P 2
v = I.

(b) Pv ∈ O(n).

Proof. Decompose Rn into the orthogonal subspaces span{v} and v⊥. Then
Pvv = −v and Pv|v⊥ = I. Thus, P 2

v = I. This proves (a). By construction
PTv = Pv. Thus, by (a), we also have PTv Pv = I.

Proof of Theorem 23. 1 . The proof relies on a sequence of Householder reflec-
tions that progressively introduce zeros in a sequence of matrices similar to M .
The first such matrix is the following. Let w1 = (M21, . . . ,Mn1)T ∈ Rn−1 de-
note the last n− 1 entries of the first column of M . If the first coordinate of w1

is non-negative, and all other coordinates vanish there is nothing to do. If not,

we may choose a Householder reflection (in Rn−1) that maps w1 to ‖w1‖2e(n−1)
1

(here the superscript n−1 denotes that we consider the basis vector e1 ∈ Rn−1).
Geometrically, such a reflection is obtained by choosing v1 to be the unit vector

that lies in between w1 and ‖w1‖2e(n−1)
1 . Explicitly, we set2

ṽ1 = ‖w1‖2e(n−1)
1 − w1, v1 =

ṽ1

‖ṽ1‖2
, P (1) = Pv1

. (3.2.6)

2If one is using this method numerically and |ṽ1| is small, instabilities can be introduced.

In this case one should use −|w1|e(n−1)
1 − w1.
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By Lemma 7, P (1) ∈ O(n − 1) is a Householder reflection that maps w1 to

|w1|e(n−1)
1 . It may be extended to a Householder reflection in O(n), by defining

Q(1) =

(
1 0
0 P (1)

)
. (3.2.7)

Then the matrix

M (1) := Q(1)M
(
Q(1)

)T
= Q(1)MQ(1), (3.2.8)

is similar to M . By construction, the first row of M (1) is (M11, |w1|, 0, . . . , 0),
and the first column is (M11, |w1|, 0, . . . , 0)T . Thus, we may write

M (1) =

(
T (1) |w1|(e(n−1)

1 )T

|w1|e(n−1)
1 N (1)

)
, (3.2.9)

where T (1) is a (trivial) 1× 1 tridiagonal matrix and N (1) ∈ Symm(n− 1). See
Exercise 3.2 for the appropriate generalization of this step for the complex case
Cn×n.

2 . The proof is completed by induction. Assume that M (k) ∈ Symm(n) has
the form

M (k) =

(
T (k) |wk|(e(n−k)

1 )T

|wk|e(n−k)
1 N (k))

)
, (3.2.10)

where T (k) ∈ Tridiag(k) and N (k) ∈ Symm(n − k), 1 ≤ k ≤ n − 1. We apply
the procedure of step 1 to N (k) to obtain a vector vk, a Householder reflection
P (k) = Pvk , and an orthogonal transformation of M (k),

Q(k) =

(
Ik 0
0 P (k)

)
∈ O(n), M (k+1) = Q(k)M (k)Q(k). (3.2.11)

Note that Q(k) leaves the first k rows and columns of M (k) unchanged, thus
it does not destroy the tridiagonal structure of the first k rows and columns.
Thus, M (k+1) has the form (3.2.10) with the index k replaced by k + 1.

The procedure terminates when k = n− 2, and yields

M = QTQT , Q = Q(n−2)Q(n−3) . . . Q(1). (3.2.12)

3 . It is simplest to prove (3.2.3) probabilistically. Informally, the k-th step
of the procedure above is a change to polar coordinates in Rn−k, with bk ≥ 0
playing the role of the radius, and the factor bn−k−1

k dbkDωn−1−k being the
pushforward of Lebesgue measure in Rn−k to polar coordinates. More precisely,
assume that M ∼ GOE(n). We note that the first step of the above procedure
leaves M11 alone. Thus, a1 = M11 ∼ N (0, 1). Moreover, the term b1 is the
length of the first column of M , not including the diagonal term M11. Since a
χ2
m random variable has the same law as the length of a vector in Rm whose
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entries are iid N (0, 1) random variables, we see that b1 ∼ χn−1. Further, the
vector ω1 = w1/|w1| is uniformly distributed on Sn−2 and independent of both
a1 and b1 (see Exercise 3.1). We next observe that by the independence and
invariance of the Gaussian ensembles, the matrix N (1) in (3.2.9) ∼ GOE(n−1).
Indeed, M̃1, the lower-right (n − 1) × (n − 1) block of M , is a GOE(n − 1)
matrix, and the reflection P (1) is independent of M̃1. Thus, N (1) = P (1)M̃1P

(1)

has law GOE(n − 1) and is independent of b1, a1 and ω1 (see Exercise 3.3).
Thus, a2 ∼ N (0, 1) and b2 ∼ χn−2. An obvious induction now shows that if
M ∼ GOE then T ∼ Hermite(1), and the vectors ωk = wk/|wk|, are uniformly
distributed on Sn−1−k, 1 ≤ k ≤ n− 2. Comparing the two laws, we find (with
β = 1)

e−
β Tr(M2)

2 DM = Cne−
β Tr(T2)

2 daj

n−1∏
k=1

bn−k−1
k dbk

n−2∏
l=1

Dωl (3.2.13)

The exponential weights cancel, and yield the Jacobian formula (3.2.3).

3.3 Tridiagonalization on Her(n) and Quart(n)

Theorem 23 admits a natural extension to Her(n) and Quart(n).

Theorem 27. For every M ∈ Her(n) (resp. Quart(n)) there exists a tridiagonal
matrix T ∈ Jac(n) and Q ∈ U(n) (resp. USp(n)) such that

M = QTQ∗. (3.3.1)

The transformation (3.3.1) is given by a change of variables

Her(n)→ Jac(n)×
(
Sn−2
F × Sn−3

F × . . . S1
F
)
, (3.3.2)

where SlF denotes the unit sphere in Fl, with F = C (resp. H). The volume form
DM on Her(n) (resp. Quart(n)) transforms as follows: I added β to the exponents for the

bk’s. I think this is correct...

DM = Cn

n∏
j=1

daj

n−1∏
k=1

b
β(n−k)−1
k dbk

n−2∏
l=1

Dωl (3.3.3)

where Dωl denotes uniform measure on the sphere SlF, and Cn is a normalization
constant.

For a vector w ∈ Cn with independent standard normal complex entries,
wj ∼ 1√

2
(N1 + iN2), where N1, N2 ∼ N (0, 1) are independent, |w| ∼ 1√

2
χ2n.

For a quarternion vector w, one finds |w| ∼ 1
2χ4n. So, β is introduced in this

way.

Remark 28. Note that the matrix T is always real, whereas the entries of M
and Q are in C or H.
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The proof of Theorem 27 is in the same vein as that of Theorem 23. It is
only necessary to replace the Householder projections in O(n) with projections
in U(n) and USp(n). For example, given v ∈ Cn with |v| = 1, the associ-
ated Householder projection in U(n) is Pv = I − 2vv∗. Step 3 in the proof of
Theorem 27 also explains the role of the parameter β in the definition of the
Hermite-β ensembles. The k-th step of the Householder transformation maps a
standard Gaussian vector in Cn−k to its magnitude and direction. The law of
the magnitude is now χ2(n−k) (or χβ(n−k) with β = 2). Similarly, the direction

of the Gaussian vector is uniformly distributed on the unit sphere in Cn−k−1.

3.4 Inverse spectral theory for Jacobi matrices

Bounded Jacobi operators admit a complete and beautiful spectral theory that
is intimately tied to orthogonal polynomials and continued fractions. We first
introduce this theory for finite Jacobi matrices, since it underlies Theorem 22.
As usual, write

T = QΛQT , Q ∈ O(n), (3.4.1)

for the diagonalization of T . We also recall the

Wn = {Λ ∈ Rn |λ1 < λ2 < . . . < λn }. (3.4.2)

For each Λ ∈ Wn, its isospectral manifold is the set

MΛ = {T ∈ Jac(n)
∣∣ T = QΛQT , for some Q ∈ O(n)}. (3.4.3)

The following theorem shows that the interior of the isospectral manifold is
diffeomorphic to the positive orthant Sn−1

+ = {u ∈ Rn | ‖u‖2 = 1, uj > 0, j =
1, 2, . . . , n} of the unit sphere. Given T , we uniquely define Q by forcing the
first non-zero entry in each column to be positive.

Theorem 29. The spectral mapping

S : Jac(n)→Wn × Sn−1
+ , T 7→ (Λ, QT e1), (3.4.4)

is an analytic diffeomorphism.

We prove this in stages below. See Figure 3.4.1.
The isospectral manifold admits several distinct parametrizations. First, it is

clear that we could use the simplex Σn instead of the orthant Sn−1
+ . Indeed, let

u = QT e1 denote the first row of the matrix of eigenvectors and define cj = u2
k,

1 ≤ k ≤ n. Since Q ∈ O(n),
∑n
k=1 u

2
k = 1. Thus, u ∈ Sn−1 and c ∈ Σn. But,

we shall use Sn−1
+ . Lemma 8 below shows that uk can be chosen to be strictly

positive, which allows us to restrict attention to the positive orthant Sn−1
+

Theorem 29 may also be viewed as a mapping to the spectral measure

T 7→ µ(T ) =

n∑
j=1

u2
jδλj =

n∑
j=1

cjδλj . (3.4.5)
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T ∈ Jac(n)

{aj}nj=1 {bj}
n−1
j=1

(Λ, QT e1)

Tjj = aj, T
j,j+

1 = bj

Spectral map

M
on

ic
O

P
s

∑
j u

2
jδλj

Spectral measure

3-term recurrence

{πj}n−1
j=0

Figure 3.4.1: The construction of the spectral map and its inverse. The trans-
formation to spectral variables is computed by computing eigenvalues and taking
the first component of the (normalized) eigenvectors. Then a spectral measure
(3.4.5) is created from this data and is used to define monic orthogonal polyno-
mials (3.4.16). These polynomials satisfy a three-term recurrence relation (see
Lemma 11) and the coefficients in the relation allow for the (unique) reconstruc-
tion of T , see (3.4.21). This shows the spectral map from Jac(n) to Wn×Sn−1

+

is invertible.

It is often more convenient to work with the Cauchy transform of the spectral
measure, µ. Define the τ -function,

µ 7→ τ(z) =

∫
R

1

x− z
µ(dx) =

n∑
j=1

u2
j

λj − z
, z ∈ C\{λ1, . . . , λn}. (3.4.6)

The inverse τ 7→ µ is obtained by computing the poles and residues of τ .

The τ -function may also be written as a ratio of polynomials of degree n−1
and n respectively. Let Tk ∈ Jac(k) denote the lower-right k × k submatrix of
T , 1 ≤ k ≤ n. It follows from Cramer’s rule that

τ(z) = eT1 (T − z)−1e1 =
det(Tn−1 − zI)

det(T − zI)
=

∏n−1
j=1 (λ

(n−1)
j − z)∏n

j=1(λ
(n)
j − z)

, (3.4.7)

where Λ(k) denotes the diagonal matrix of eigenvalues of Tk and Λ(n) = Λ. We
will show that the ordered eigenvalues of Tn−1 and Tn interlace, i.e.

λ
(n)
1 < λ

(n−1)
1 < λ

(n)
2 < . . . < λ

(n−1)
n−1 < λ(n)

n . (3.4.8)

Thus, interlacing sequences provide another parametrization of Jac(n). A conve-
nient visal description of interlacing sequences, called diagrams, was introduced
by Kerov and Vershik [Ker03]. The importance of these alternate parametriza-
tions (spectral measures, τ -function, diagrams) is that they provide a transpar-
ent framework for the analysis of the limit n→∞.
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The surprising aspect of Theorem 29 is that the spectral data (Λ, u) provides
enough information to reconstruct the matrix T . There are three reconstruc-
tion procedures. The first involves orthogonal polynomials, the second uses the
theory of continued fractions and a third involves the explicit solution of the
equation TQ = ΛQ for T . We explain the use of orthogonal polynomials below,
and outline the theory of continued fractions in the exercises. In order to de-
velop these procedures, it is first necessary to establish basic properties of the
eigenvalues of Jacobi matrices.

Lemma 8. Assume T ∈ Jac(n). Then

1. The first entry of each non-zero eigenvector is non-zero. In particular, we
may normalize the eigenvectors to ensure uk > 0 for 1 ≤ k ≤ n.

2. The eigenvalues of T are distinct.

Proof. We write the eigenvalue equation Tv = zv in coordinates.

bk−1vk−1 + (ak − z) vk + bkvk+1 = 0, 1 ≤ k ≤ n, (3.4.9)

with the convention b0 = bn = 0. Since the off-diagonal terms bk are strictly
positive, we may solve this linear system recursively. Given v1, we find

v2 =
v1(z − a1)

b1
, v3 =

v1

b1b2

(
(a2 − z)(a1 − z)− b21

)
, etc. (3.4.10)

Thus, v ≡ 0 ∈ Rn if v1 = 0. Further, the solution space to the eigenvalue
equation Tv = λv has dimension at most 1.

The next statement follows from Lemma 8(2) and (3.3.3), (3.2.3) because
the probability that any bj vanishes is zero.

Corollary 1. Suppose M ∼ GOE(n),GUE(n) or GSE(n). Then the eigenval-
ues of M are distinct with probability one.

Lemma 9. The characteristic polynomials dk(z) = det(zI − Tk) satisfy the
recurrence relations

dk+1(z) = (z − an−k)dk(z)− b2n−k dk−1(z), 1 ≤ k ≤ n− 1, (3.4.11)

with the initial condition d0(z) ≡ 1 and the convention bn = 0.

Proof. Expand the determinant det(zI − Tk) about the k-th row, and compute
the minors associated to z − an−k and bn−k.

Lemma 10. The eigenvalues of Tk and Tk+1 interlace, 1 ≤ k ≤ n− 1.

Proof. We consider the τ -functions for the minors Tk,

τk(z) =
det(Tk − zI)

det(Tk+1 − zI)
= − dk(z)

dk+1(z)
. (3.4.12)
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By the recurrence relation (3.4.11), we have

− 1

τk(z)
= z − an−k + b2n−kτk−1(z). (3.4.13)

We claim that on the real line, τk(x) is strictly increasing between the zeros
of dk. Indeed, it is clear that τ1(x) = (an − x)−1 has this property, and upon
differentiating (3.4.13) we find that

1

τ2
k

τ ′k = 1 + b2n−kτ
′
k−1 > 0,

except at poles. The claim follows by induction.
Since τk is strictly increasing between poles, by the intermediate value theo-

rem, it has exactly one zero between any two poles. By (3.4.12), the zeros of τk
are the eigenvalues of Tk, and the poles of τk are the eigenvalues of Tk+1. Thus,
they interlace.

A remarkable feature of the spectral theory of Jacobi matrices is that the
orthogonal polynomials associated to the spectral measure µ(T ) may be used to
reconstruct T . In order to state this assertion precisely, let us recall some basic
facts about orthogonal polynomials. Assume given a probability measure µ on
R that has finite-moments of all orders, i.e.,∫

R
|x|α µ(dx) <∞, α > 0. (3.4.14)

We may apply the Gram-Schmidt procedure to the monomials {xk}∞k=0 to
construct a sequence of polynomials that are orthogonal in L2(R, µ). There are
two standard normalizations that one may adopt.

Orthonormal polynomials, denoted {pk}∞k=0, have the property that pk is
of degree k, k = 0, 1, 2, . . ., and∫

R
pk(x)pl(x)µ(dx) = δkl. (3.4.15)

Monic polynomials, denoted {πk}∞k=0 have the property that πk(x) is of
degree k and the coefficient of xk is 1. Further,∫

R
πk(x)πl(x)µ(dx) = 0, k 6= l. (3.4.16)

Lemma 11 (Three-term recurrence for orthogonal polynomials). Given (Λ, u) ∈
Wn × Sn−1

+ , let µ(Λ, u) =
∑n
k=1 u

2
kδΛk . Then the associated monic orthogonal

polynomials {πk}nk=0, satisfy the three-term recurrence (3.4.17)

πk(z) = (z − ak)πk−1(z)− b2k−1 πk−2(z), 1 ≤ k ≤ n, (3.4.17)
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where the coefficients ak and bk are given by

ak =

∫
R xπ

2
k−1 µ(dx)∫

R π
2
k−1(x)µ(dx)

, b2k =

∫
R xπk(x)πk−1(x)µ(dx)∫

R π
2
k−1(x)µ(dx)

, k = 1, . . . , n,

(3.4.18)
with π−1 = 0 and hence b0 = 0. Recall that π1 = 1. The recurrence (3.4.18)
defines a Jacobi matrix T (µ).

Remark 30. If µ is not a discrete measure of the form (3.4.5), but has bounded
support, the recurrence (3.4.17) defines a bounded Jacobi operator on l2(C).

Proof. Given any µ as in (3.4.14), we obtain the sequence {πk} using the Gram-
Schmidt procedure. When µ is of the form (3.4.5) with (3.4.5), the vector space
L2(R, µ) has dimension n and the Gram-Schmidt procedure yields an orthogonal
basis {π0, π1, . . . , πn−1} for L2(R, µ).

The three-term recurrence for the orthogonal polynomials is obtained as
follows. Since xπk(x) is a polynomial of degree k + 1 it can be expressed as a

linear combination xπk(x) =
∑k+1
j=0 cj,kπj(x). Since the πj are monic, we must

have ck+1,k = 1. Moreover, for j = 0, . . . , k − 2∫
R
xπk(x)πj(x)µ(dx) =

∫
R
πk(x)xπj(x)µ(dx) = 0,

since xπj lies in the span of {π0, . . . , πk−1}. Thus, cj,k = 0 for j = 0, . . . , k − 2
and we find

xπk(x) = πk+1(x) + ck,kπk(x) + ck−1,kπk−1(x). (3.4.19)

It remains to show that ck−1,k > 0. By orthogonality,
∫
R xπk(x)πk+1(x)µ(dx) =∫

R π
2
k+1(x)µ(dx). Thus, ck,k−1 > 0 for all k such that πk−1(x) does not vanish in

L2(R, µ): Assume πl does not vanish in L2(R, µ) for l = 0, 1, 2, . . . , k−1 < n−1.
Then this recurrence defines πk which is not the zero polynomial since it is
monic. For Λ ∈ Wn, it has distinct diagonal entries, so p(x) 6= 0 implies∫
p2(x)µ(dx) > 0 if p is a polynomial of degree less than n. This is (3.4.17)

aside from a change in notation.

Proof of Theorem 29. We have defined a forward map T 7→ µ(T ) as follows.
The matrix T defines a τ -function τ(z) = eT1 (T − zI)−1e1, which is expressed
as a ratio of characteristic polynomials in (3.4.7). The poles of τ(z) are the
eigenvalues of T . The norming constants are the residues at the poles, and are
given by

u2
k = −dn−1(λk)

d′n(λk)
, 1 ≤ k ≤ n. (3.4.20)

The inverse map µ→ T (µ) is given by Lemma 11. The orthogonal polynomials
defined by µ satisfy a three-term recurrence whose coefficients determine T .

We only need to show that the map µ 7→ T (µ) 7→ µ (T (µ)) is the identity.
Let µ ∼= (Λ, u) be given and define T (µ) by the recurrence relations. We will
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show that

eT1 (T − zI)−1e1 =

∫
R

1

x− z
µ(dx) =

n∑
k=1

u2
k

λk − z
. (3.4.21)

We first show that the eigenvalues of T coincide with {λk}. Define pj(x) =

πj(x)
∏j
k=1 b

−1
k , π0(x) = p0(x), then

xp0(x) = a1p0(x) + b1p1(x),

xpk(x) = bkpk−1(x) + ak+1pk(x) + bk+2pk+1(x), k > 0.

Because pn(λj) = 0 for all j, we conclude that

(p0(λj), p2(λj), . . . , pn−1(λj))
T

is a non-trivial eigenvector for eigenvalue λj . This shows that both the left and
right-hand sides of (3.4.21) are rational functions of z with simple poles in the
same locations. We expand both sides of (3.4.21) for large z, and if we establish
the relation To establish what we want, don’t we

need something like k up to 2n − 1? I
showed that the eigenvalues are equal,
then we show these moments are equal

eT1 T
ke1 =

∫
R
xkµ(dx), 0 ≤ k ≤ n− 1, (3.4.22)

then it follows that

eT1 (T − zI)−1e1 −
n∑
k=1

u2
k

λk − z
= O(z−n−1)

as z →∞. And therefore(
n∏
k=1

(z − λk)

)(
eT1 (T − zI)−1e1 −

n∑
k=1

u2
k

λk − z

)

is an entire function that decays at infinity — it must be identically zero.
To see why (3.4.22) holds, consider

Te1 = a1e1 + b1e2,

T ek = bk−1ek−1 + akek + bkek+1, k > 1.

Define new basis vectors fj = ej
∏j−1
k=1 bk, f1 = e1 because bj > 0 for all j =

1, 2, . . . , n− 1. We then have

Tf1 = a1f1 + f2,

T fk = b2k−1fk−1 + akfk + fk+1, k > 1.

We then diagonalize this, setting T = QΛQT , f̂j = QT fj to find

Λf̂1 = a1f̂1 + b21f̂1,

Λf̂k = b2k−1f̂k−1 + akf̂k + f̂k+1, k > 1.
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Component-wise, this is the same three-term recurrence as the monic polyno-
mials. So, taking into account f1 = e1, we find

f̂j = πj−1(Λ)QT e1, fj = πj−1(T )e1.

Then because xk =
∑k
j=0 cjkπj(x) we have T ke1 =

∑k
j=0 cjkπj(T )e1 =

∑k
j=0 cjkej+1

and

eT1 T
ke1 = c0k.

Similarly, ∫
R
xkµ(dx) =

k∑
j=0

cjk

∫
R
πj(x)µ(dx) = c0k.

This proves the theorem and this approach extends to the semi-infinite Jacobi
operators [Dei99].

Lecture Note 5. Alternate proof of Theorem 29. Lemma 8 establishes thatQT e1 ∈
Sn−1

+ and Λ ∈ Wn. Now, we explicitly construct the inverse map (Λ, QT e1)→
T . We follow [DNT83]. The algorithm to construct T uniquely is as follows.
We use conjugates so that it is clear how this generalizes.

1. Compute

T11 =

n∑
j=1

λj |Q1j |2,

T 2
12 =

n∑
j=1

|Q1j |2|λj − T11|2,

Q2j =
1

T21
(λjQ1j − T11Q1j), j = 1, 2, . . . , n.

2. For k = 2, 3, . . . , n− 1, compute

Tkk =

n∑
j=1

λj |Qkj |2,

T 2
k,k+1 =

n∑
j=1

|(λj − Tkk)Qkj − Tk,k−1Qk−1,j |2,

Qk+1,j =
1

Tk,k+1
(λjQkj − Tk,k−1Qk−1,j − TkkQkj), j = 1, 2, . . . , n.

3. Compute

Tnn =

n∑
j=1

λj |Qnj |2.
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This procedure will succeed if Tk,k+1 6= 0 for all k. And if it succeeds it is easy
to check that the tridiagonal matrix T will satisfy TQ = QΛ and by assumption
no column of Q vanishes identically. It remains to prove that Tk,k+1 6= 0 and
that Q has no columns that vanish identically. It easily follows that T12 6= 0,
since the eigenvalues are distinct. We perform induction on k. Assume Tl,l+1 6=
for l = 1, 2, . . . , k−1. Also assume the vectors {ql}kl=1, ql = (Ql1, Ql2, . . . , Qln)T

are orthonormal. If Tk,k+1 = 0, we would have

(λj − Tkk)Qkj − Tk,k−1Qk−1,j = 0, j = 1, 2, . . . , n. (3.4.23)

This then implies that the k × k tridiagonal matrix (Tlj)1≤l,j≤k, Tlj = 0 if
|l − j| > 1, has n distinct eigenvalues, which is impossible. The fact that the
diffeomorphism is analytic follows3 from the fact that these expressions for T
are rational functions of Λ and QT e1.

Remark 31. Observe that the recurrence relation (3.4.17) may be rewritten as
the matrix equation,

a1 − z 1 0 . . . 0
b21 a2 − z 1 . . . 0

0 b22 a3 − z
. . . 0

...
...

. . .
. . . 1

0 0 . . . b2n−1 an − z




π0(z)
π1(z)

...
πn−1(z)

 =


0
0
...

−πn(z)

 .

(3.4.24)
Since π0(z) = 1, each zero of πk(z) is an eigenvalue of the matrix above. Thus,
πk(z) = det(zI − T̃k) where T̃k denotes the upper-left k × k submatrix of T
(compare with Tk and dk(z) = det(zI − Tk)).

Thus, given µ, the entries of T are obtained from “top to bottom”. However,
given T , the τ -function is the limit of τ -functions −dk(z)/dk+1(z) computed
‘bottom-to-top’.

Remark 32. Consider the sequence of orthogonal polynomials

pk(x) =

 k∏
j=1

bk

−1

πk(x), k = 1, 2, . . . , n− 1. (3.4.25)

This is actually an orthonormal sequence which satisfies the three-term recur-
rence

bkpk(x) = (z − ak)pk−1(z)− bk−1pk−2(x). (3.4.26)

3The simplest way to do this is to realize this as a mapping from Wn × U where U is an
subset of Rn−1 found by mapping Sn−1

+ → Σn, and then mapping Σn to Rn−1. Then the
analytic implicit function theorem can be applied.
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3.5 Jacobians for tridiagonal ensembles

We can now combine Theorem 29 with the definition of Hermite-β ensembles
to state a refined version of Theorem 22.

Theorem 33. For each β > 0, the law of the Hermite(β) ensembles in spectral
variables (Λ, u) ∈ Wn × Sn−1

+ is given by

pHermite(Λ, u)DΛDu =
1

Zn,β

(
e−

β
4 Tr(Λ2)|4(Λ)|βDΛ

)  n∏
j=1

uβ−1
j

Du, (3.5.1)

where Du refers to uniform measure on Sn−1
+ , see Example 109. In particular,

Λ and u are independent.

Theorem 33 follows from a computation of the Jacobian of the spectral map
S : Jac(n)→Wn × Sn−1

+ .

Theorem 34. The volume forms on Jac(n) and Wn × Sn−1
+ are related by

DT =

n∏
j=1

daj

n−1∏
k=1

bn−k−1
k dbk = Cn4(Λ)DΛ

(
n∏
k=1

uj

)
Du. (3.5.2)

where Cn is a normalization constant.

Remark 35. We have suppressed the explicit form of the normalization con-
stants in the statement of the lemma to focus on the marginals on Wn and
Sn−1

+ respectively. The computation of the constants is an interesting exercise
(see [DE02]).

While Theorem 34 is an analytic/geometric assertion, the simplest proof uses
probabilistic reasoning, as in step 3 of the proof of Theorem 23. Since we have
computed the Jacobian for the diagonalizing map Symm(n)→ Rn×O(n) (Weyl’s
formula) and the tridiagonalizing map Symm(n) → Jac(n) (Theorem 23), the
ratio of these Jacobians may be used to compute the Jacobian of the spectral
map Jac(n) → Wn × Sn−1

+ . The main point is that by the O(n) invariance
of GOE, the top row of the eigenvector matrix must be uniformly distributed
on Sn−1 and is independent of Λ. This gives the term

∏n
k=1 uj duj in equa-

tion (3.5.2). As Dumitriu and Edelman remark, this is a ‘true random matrix
theory’ calculation. Another approach to (3.5.2) uses symplectic geometry.

Lemma 12 (Vandermonde determinant in (a, b) coordinates).

4(Λ) =
∏
j<k

(λj − λk) =

∏n−1
k=1 b

n−k
k∏n

j=1 uj
. (3.5.3)
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Proof. 1. Recall that Λ(l) denotes the diagonal matrix of eigenvalues of Tl and

that dl(x) =
∏l
j=1(x− λ(l)

j ). Therefore, we have the identity

l∏
j=1

l−1∏
k=1

∣∣∣λ(l)
j − λ

(l−1)
k

∣∣∣ =

∣∣∣∣∣∣
l∏

j=1

dl−1

(
λ

(l)
j

)∣∣∣∣∣∣ =

∣∣∣∣∣
l−1∏
k=1

dl

(
λ

(l−1)
k

)∣∣∣∣∣ . (3.5.4)

Since dl−1 and dl are related through the three-term recurrence

dl(x) = (x− al)dl−1(x)− b2n−l+1dl−2(x),

we have∣∣∣∣∣
l−1∏
k=1

dl(λ
(l−1)
k )

∣∣∣∣∣ = b
2(l−1)
n−l+1

∣∣∣∣∣
l−1∏
k=1

dl−2(λ
(l−1)
k )

∣∣∣∣∣ = b
2(l−1)
n−l+1

∣∣∣∣∣∣
l−2∏
j=1

dl−1(λ
(l−2)
j )

∣∣∣∣∣∣ .
We apply this identity repeatedly, starting with l = n to obtain∣∣∣∣∣

n−1∏
k=1

dn(λ
(n−1)
k )

∣∣∣∣∣ = b
2(n−1)
1

∣∣∣∣∣∣
n−2∏
j=1

dn−1(λ
(n−2)
j )

∣∣∣∣∣∣
= b

2(n−1)
1 b

2(n−2)
2

∣∣∣∣∣
n−3∏
k=1

dn−2(λ
(n−3)
k )

∣∣∣∣∣ = · · · =
n−1∏
k=1

b
2(n−k)
k .

2. The coefficients u2
j are the residue of τn(z) at the poles λj , i.e.

u2
k =

∣∣∣∣dn−1(λk)

d′n(λk)

∣∣∣∣ , 1 ≤ k ≤ n. (3.5.5)

Observe also that

d′n(λk) =
∏
j 6=k

(λj − λk), and

n∏
k=1

d′n(λk) = 4(Λ)2. (3.5.6)

Therefore,
n∏
j=1

u2
j =

1

4(λ)2

n∏
k=1

|dn−1(λk)| =
∏n−1
k=1 b

2(n−k)
k

4(λ)2
. (3.5.7)

Proof of Theorem 34. 1. Our goal is to compute the Jacobian of the spectral
mapping S,

DT =
∂(T (a, b))

∂(Λ, u)
DΛDu, (3.5.8)

where Du is uniform measure on {u ∈ Rn | |u| = 1, uj > 0 for all j}. Rather
than compute the change of variables directly, we will compute the push-forward
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GOE Symm(n)

Hermite-1 Jac(n)

(Λ, QT e1)

Householder

Spectral variables In
v
.

sp
ec

tr
al

m
a
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Figure 3.5.1: We have already computed the push-forward of GOE under
Householder reflections (3.2.13) and the push-forward of GOE onto spectral
variables via Weyl’s formula (2.2.16). The composition of the map to spectral
variables and the inverse spectral map must give us the reduction to tridiagonal
form via Householder reflections. This allows the computation of the Jacobian
of the inverse spectral map.

of GOE onto Jac(n) andWn×Sn−1
+ separately, and obtain the Jacobian above,

see Figure 3.5.1.
2. Consider the push-forward of GOE under the map M 7→ (Λ, u), where

M = QΛQT is the diagonalization of M , with the normalization that the first
non-zero entry in each column is positive. Since Λ and the matrix of eigenvalues
Q are independent, Λ and u = QT e1 are independent. Since Q is distributed
according to Haar measure on O(n), the vector u is uniformly distributed on
Sn−1

+ and the push-forward of GOE is the measure

p(Λ, u)DΛDu = cne−
1
4 Tr(Λ)2

4(Λ)DΛDu. (3.5.9)

3. Next consider the push-forward of GOE under the map M 7→ T , where
M = QTQT denotes the tridiagonalization of M . As we have seen in the proof
of Theorem 20, T and U are independent, and the marginal distribution of T is
given by

p̃(T ) DT = Cne−
1
4 Tr(T 2)

n∏
j=1

daj

n−1∏
k=1

bn−k−1
k dbk. (3.5.10)

4. Since T ∈ Jac(n) and (Λ, u) ∈ Wn × Sn−1
+ are in bijection, we have

p(Λ, u) = p̃(T (Λ, u))
∂(T (a, b))

∂(Λ, u)
. (3.5.11)

We compare the expressions in (3.5.9) and (3.5.10) and use Lemma 12 to obtain

∂(T (a, b))

∂(Λ, u)
=
Cn
cn

∏n−1
k=1 bk∏n
j=1 uj

. (3.5.12)

The constants are computed in [DE02].
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Proof of Theorem 33. The law of We change variables using the spectral map-
ping and Theorem 34 to obtain the following identity for the law of the Hermite−
β ensembles

Cn,βe−
β
4 Tr(T 2)

n−1∏
k=1

b
(β−1)(n−k)
k DT (3.5.13)

= Cn,β

(
e−

β
4 Tr(Λ2)4(Λ)β DΛ

) n∏
j=1

uβ−1
j

Du. (3.5.14)

Since the distribution factors, Λ and u are independent with the laws stated in
Theorem 33.

Exercises

3.1. Let w ∈ Rn have iid N (0, 1) components. Show that |w| and w/|w| are
independent.

3.2. Suppose that x ∈ Cn. And suppose that x1 6∈ R. Define

• x̃ =
(
|x1|
x1

)
x,

• w = ‖x̃‖2en1 + x̃, and

• v = w/‖w‖2.

Show that P = − |x1|
x1

(I − 2vv∗) satisfies

• P ∈ U(n),

• Px = ‖x‖2en1 , and

• P is a function of x/‖x‖2 alone.

3.3. Let U ∈ O(n) be a random orthogonal matrix. For example U could
be a Householder reflection associated to a random vector w. Then assume
A ∼ GOE. Show that B := UAUT ∼ GOE and B is independent of U . Hint:
Use Lemma 34.

3.4. Write a numerical code to sample matrices from both GOE and the Hermite−
1 ensemble. Verify numerically that a suitably normalized density of eigenval-
ues for the GOE matrix approaches the semicircle law as n increases (n = 100
should be ample). Is the same true for the Hermite− 1 ensemble? Why or why
not?

3.5. Consider the tridiagonal matrix T ∈ Jac(n) that has entries aj = 0, 1 ≤
j ≤ n, bk = 1, 1 ≤ k ≤ n− 1.

(a) Compute explicitly the spectral measure using Chebyshev polynomials
(compare T with the recurrence relations for the Chebyshev polynomials).
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(b) Plot histograms of two distributions related to T for n = 100: (i) the em-
pirical distribution of eigenvalues ( 1

n

∑n
k=1 δλk ); (ii) the spectral density∑n

k=1 u
2
kδλk . Can you identify the limit in (i)?

(This exercise will be relevant for an enumeration problem relating Brownian
excursion to the Riemann-ζ function).

3.6. Establish uniqueness and smoothness in the proof of Theorem 29.

3.7. Use equation (3.4.12) to recursively expand τn as a continued fraction.
Combine this with the uniqueness step in Q.2 to deduce an alternative approach
to Theorem 29 that avoids the theory of orthogonal polynomials.

3.8. The following property of the function −z−1 is relevant in the contin-
ued fraction scheme. Symmetric matrices have a partial order: Given A, B ∈
Symm(n) we say that A ≥ B if uTAu ≥ uTBu for every u ∈ Rn. Suppose
A ≥ B ≥ 0. Show that −A−1 ≥ −B−1.

3.9. This problem is a follow-up to exercise 5 in HW 1. Given a map f as in
that exercise, compute an (explicit) expression for its derivative Df .

3.10. Compute the following normalization constants:

(a) The normalization constants Zn,β in the standard definitions of GOE,

GUE and GSE with exponential weight e−
β
4 Tr(M2).

(b) The constant Cn,β in (3.5.13).

(c) The constant Cn in the Jacobian for ensembles (3.2.3) (compare with your
calculation of the volume of the unit sphere in HW1).

3.11. The proofs of Dumitriu and Edelman finesse the following issue: given
T ∈ Jac(n) it requires some care to find a decomposition for the tangent space
TT Jac(n), especially the isospectral manifold,MT , that is analogous to Lemma
2. As in that lemma, we may split TT Jac(n) into orthogonal subspaces that
correspond to diagonal matrices Λ̇ and QT Q̇ ∈ o(n). However, while each
QT Q̇ ∈ o(n) generates a curve in TTSymm(n) , not all QT Q̇ give rise to curves
in TT Jac(n). Verify this. Explore this issue further by trying to find a basis for
the isospectral manifold MT (see equation (3.4.3)).



Chapter 4

Beyond the symmetric
eigenvalue problem

In this chapter we discuss other random matrix ensembles that differ funda-
mentally from GUE, GOE and GSE. For this discussion we concentrate on real
and complex matrices. The first ensembles we consider are the real and com-
plex Ginibre ensembles1, GinR(m,n) on Rm×n and GinC(m,n) on Cm×n. These
are ensembles of real and complex matrices of size m × n. without symmetry
conditions. Their densities are given by

pGin,R(Y )DY =
1

ZR,m,n
e−

1
2 TrY TY DY, pGin,C(X)DX =

1

ZC,m,n
e−TrX∗XDX.

Thus, the entries are distributed as independent (real or complex) normal ran-
dom variables. The definition DY and DX in each case follows directly from the
volume forms associated to the length elements Tr(dY TdY ) and Tr(dX∗dX).
When m = n we use the notation GinC(n) and GinR(n) and ZR,n and ZC,m.

Our first task is to generalize Weyl’s formula to the Ginibre ensembles
GinR(n) and GinC(n). To compute this, we use the Schur decomposition. The
Schur decomposition is often seen as a numerical tool to perform a spectral de-
composition of non-normal matrices. The eigenvalue decomposition is unstable
to compute: matrices with distinct eigenvalues are dense and so, computing a
Jordan block of a non-normal matrix is a precarious task when round-off errors
are present. An arbitrarily small perturbation will lead to an O(1) change in
the eigenvalue matrix.

Theorem 36. All matrices Y ∈ Rn×n and X ∈ Cn×n have decompositions

Y = OSOT , X = UTU∗,

1Often, the term Ginibre ensemble is reserved for square matrices, but we find it convenient
to keep it for all rectangular matrices.
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where O ∈ O(n), U ∈ U(n). Here T ∈ Cn×n is upper-triangular and S ∈ Rn×n
is block-upper triangular with blocks of size 1 or 2. These 2× 2 blocks have the
form (

α −γ
δ α

)
, α ∈ R, δ, γ > 0. (4.0.1)

Furthermore, if the eigenvalues are distinct with a given ordering, and the eigen-
vectors are normalized (say, first non-zero component is positive), the decompo-
sition is unique.

Unify the following notation

This can be proved by first performing an eigenvalue decomposition and
second, performing a QR factorization of the eigenvector matrix. We now
describe the QR decomposition algorithm, using Householder reflections, for
real matrices. Another numerically viable, but less stable, algorithm is the
modified Gram–Schmidt procedure. Both algorithms extend to complex ma-
trices in a straightforward way (see Exercise 3.2). Given a matrix Y ∈ Rm×n,
Y =

(
y1 y2 · · · yn

)
, define v(y) by

v(y) = ṽ/‖ṽ‖2, ṽ = ‖y‖2em1 − y

if y 6= 0 and v(0) = 0. Then,

Pv(y1)Y =
(
‖y1‖2en1 Pv(y1)y2 · · · Pv(y1)yn

)
. (4.0.2)

Let Ij be the j× j identity matrix, then given y ∈ Rp, define Qy ∈ O(m) by

Qy =

(
Im−p 0

0 Pv(y)

)
, (4.0.3)

The QR factorization of a matrix Y is then given via

Y (0) := Y,

Y (1) := Qv1Y
(0), v1 = Y

(0)
1:m,1,

Y (2) := Qv2Y
(1), v2 = Y

(1)
2:m,2,

...

Y (j) := QvjY
(j−1), vj = Y

(j−1)
j:m,j .

(4.0.4)

It follows that R = Y (min{m,n}) is upper-triangular and Y = QR where Q =
(Qvmin{m,n} · · ·Qv2

Qv1
)T . We arrive at the following.

Theorem 37. Every matrix Y ∈ Rm×n, X ∈ Cm×n has a factorization Y =
QR, X = UT such that Q ∈ O(m), U ∈ U(m) where R, T are upper-triangular
with non-negative diagonal entries. The factorization is unique if X (resp. Y ) is
invertible. This is called the QR factorization, or decomposition, of the matrix.
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Y Q R

Figure 4.0.1: The full QR decomposition in the case m > n. The shaded area
columns and rows are removed to create the reduced QR decomposition.

This theorem gives the full QR decomposition. If m > n, then a m −
n columns of Q,U are redundant, and m − n rows of R, T are as well, see
Figure 4.0.1. After dropping these columns and rows, one obtains the reduced
QR decomposition.

If m > n, one can count the number of degrees of freedom to see that neither
Q nor U could ever be distributed according to Haar measure on U(m) or O(n)
for X ∼ GinC(m,n) or Y ∼ GinR(m,n), respectively. So, we instead consider
the QR factorization of the augmented matrices(

X X ′
)

and
(
Y Y ′

)
, X ′ ∼ GinC(m,m− n), Y ′ ∼ GinR(m,m− n),

(4.0.5)

for X ′ and Y ′ independent of X and Y , respectively. This can be performed
even if X and Y are deterministic matrices. So, in the real case, and similarly
in the complex case,

Y 7→
(
Y Y ′

)
= QR′ 7→ QR := QR′

(
In
0

)
= Y.

Since it is a non-classical theorem for the Schur decomposition, we state the
following.

Theorem 38. Let X(t), X : (−a, a) → Fn×n, a > 0, be a Ck matrix func-
tion. Assume X(0) has distinct eigenvalues. Then the induced factors X(t) 7→
(T (t), U(t)) or X(t) 7→ (S(t), O(t)) obtained by the Schur decomposition for
F = C or R are also Ck in a neighborhood of t = 0.

Add a proof of this.

Finally, before we proceed to pushing forward measure via these decom-
positions, we prove an elementary result for Ginibre ensembles using the QR
factorization.

Theorem 39. If X ∼ GinC(m,n), Y ∼ GinR(m,n), m ≥ n then

P (rankX < n) = 0 and P (rankY < n) = 0.
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Proof. We use induction on n for the real case. The complex case is similar. If
n = 1, then a Gaussian vector in Rn is non-zero with probability one. If n > 1,
n ≤ m− 1, assume

P (rankY < n) = 0, Y ∼ GinR(m,n).

Let b ∈ Rm be an independent Gaussian vector (b ∼ GinR(m, 1)). Then

P
(
rank

(
Y b

)
< n+ 1

)
= E

[
P
(
rank

(
Y b

)
< n+ 1 |Y

)]
.

On a set of full probability rankY = n. For such a matrix consider

P
(
rank

(
Y b

)
< n+ 1 |Y

)
.

Solve

Y x = b = QRx = b, Rx = QT b =: b̃,

and therefore b̃ ∼ GinR(m, 1). For this equation to have a solution x, Rx = b̃,
since R ∈ Rm×n, triangular, and n < m, the last entry of b̃ must vanish. Thus

P
(
rank

(
Y b

)
< m+ 1 |Y

)
= 0

almost surely. To truly make this rigorous, one should use Lemma 34. This
proves the claim.

Finally, we want to know that the probability of finding a Ginibre matrix
with an eigenvector that has a zero first component is zero.

Theorem 40. Assume X ∼ GinC(n), Y ∼ GinR(n). Then

P (∃λ ∈ C, v ∈ Cn, v 6= 0, Xv = λv and v1 = 0) = 0,

P (∃λ ∈ C, v ∈ Rn, v 6= 0, Y v = λv and v1 = 0) = 0.

Proof. We prove this for Y . The proof for X is similar. First, we write

Y =

(
y0 yT1
y2 Y ′

)
,

y0 ∼ GinR(1), y1, y2 ∼ GinR(n− 1, 1), Y ′ ∼ GinR(n− 1, n− 1),

mutually independent. Let

E =

{
∃λ ∈ C, v ∈ Rn−1, Y ′v = λv and Y

(
0
v

)
= λ

(
0
v

)}
.

It then follows that

P (∃λ ∈ C, v ∈ Rn, Y v = λv and v1 = 0) = P(E) = E [P(E|Y ′)] .
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Then

P(E|Y ′) = P
(
∃v ∈ Rn, yT1 v = 0, v is an eigenvector of Y ′|Y ′

)
.

For the eigenvalue λj of Y ′, let Vj =
(
v(1), . . . , v(`)

)
, ` ≤ n − 1 be a basis of

eigenvectors for this eigenvalue. Then

P

∃{cj} so that yT1

∑̀
j=1

cjv
(j)

 = 0

∣∣∣∣∣∣X ′
 = 0, a.s.

Because, given X ′, perform a QR factorization of Vj = QR, and consider
yT1 QRc = 0, c = (c1, . . . , cj)

T . But as R has rank `, this amounts to the con-
dition that (at least) one component of the Gaussian vector xT = yT1 Q has to
vanish, a probability zero event. A union bound over all the distinct eigenvalues
proves the result.

This theorem has an interesting implication. If a matrix Y has a repeated
eigenvalue and two linearly independent eigenvectors, then an eigenvector can
be constructed that has a zero first component. By the theorem, this event
occurs with probability zero for GinR(n), GinC(n). And so, if one shows that
Y is diagonalizable with probability one, then Y has distinct eigenvalues with
probability one. Nevertheless, it is actually easier to directly show this.

Theorem 41. Assume X ∼ GinC(n), Y ∼ GinR(n). Then

P (X has distinct eigenvalues ) = 1,

P (Y has distinct eigenvalues ) = 1.

Proof. We show that the Vandermonde squared 4(Λ)2 is a polynomial in the
entries of the matrix. Let λ1, . . . , λn be the eigenvalues of Y and consider

V = (Vij), Vjk = λk−1
j .

Then

4(Λ)2 = det(V )2 = det(V TV ), (V TV )jk =

n∑
`=1

λj+k−2
` = TrY j+k−2.

Now consider a rectangle R = [a, b]n
2 ⊂ Rn2

, and assume that∫
R

1{Y ∈Rn×n | |4(Λ)|=0}DY > 0.

Since the set of matrices with distinct eigenvalues is dense,4(Λ) 6= 0 for some Y .
But the only way for the zero locus of a polynomial in n variables to have positive
n-dimensional Lebesgue measure is for the polynomial to vanish identically. The
theorem follows.
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4.1 Schur decomposition of GinC(n)

Theorems 36 and 38 allow us to compute the distribution induced on U and T
in the Schur decomposition. We first identify the tangent space.

Theorem 42. Assume X ∈ Cn×n has distinct eigenvalues. Then

TX(Cn×n) ∼= Rn(n−1) ⊕ PTIU(n).

Proof. A straightforward computation, using the differentiability of the Schur
decomposition gives

Ẋ = U(Ṫ + [U∗U̇ , T ])U∗, (4.1.1)

after using X(t), t ∈ (−a, a), a > 0, differentiating and evaluating at t = 0. It
follows that S := U∗U̇ is skew-Hermitian. We then decompose T = Λ +T+ and
S = S0+S−+S+, where the ± refers to strict upper- and lower- triangular parts.
We can first solve for S− of S in the following way. Define S− 7→ ζ ∈ Cn(n−1)/2

by ordering the entries of using the following relations:

(i, j) < (i′, j′) if i− j < i′ − j′,
(i, j) < (i′, j′) if i− j = i′ − j′ and i < i′.

(4.1.2)

The first inequality orders entries by which diagonal they lie on. The second
orders within the diagonal. Then

Ẋ− = [S−,Λ] + [S−, T+].

With the chosen ordering

ζ 7→ [S−, T+] =: M−ζ (4.1.3)

is strictly lower triangular. Thus provided λi 6= λj for i 6= j, we can solve this

for S−. If we then make the choice that S0 = 0, we can clearly solve for Ṫ once
S is known. Finally, by adjusting Ṫ accordingly, it is clear that any Ẋ can be
achieved with S0 = 0.

Now, we give the analogue of Weyl’s formula for Cn×n.

Theorem 43. For X ∈ Cn×n,

DX = |4(Λ)|2 DT DU, (4.1.4)

where DT =
∏n
j=1 dReλjdImλj

∏
j<k dReTjkdImTjk and DU refers to the same

distribution as that of the eigenvectors of GUE(n).

Proof. We first map X to Cn2

in a consistent way. We order X− using (5.5.2)
giving ζX− . We then order diagonal(X) in the usual way. Then, finally we order
X+ using

(i, j) ≺ (i′, j′) if and only if (j, i) < (j′, i′),
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giving ζX+ , and X 7→ [ζX− , η, ζX+ ]T . We use ζS− and ζT+ in same way for S−
and T+, respectively. It then follows that, after ordering U∗dXU ,

U∗dXU =

Λ̃ +M− 0 0
D I 0
M+ 0 I

dζS−

dΛ
dζT+

 .

where Λ̃ζS− is defined through ζS− 7→ [S−,Λ], which is diagonal, Sjk 7→ (λk −
λj)Sjk. M+ and D are matrices whose exact form is irrelevant. Decomposing
all differentials into real and imaginary parts and computing the metric tensor

Tr dX∗dX,

we find (4.1.4) by using det(Λ̃ + M−) =
∏
j<k(λk − λj) and computing the

associate volume form. Here one has to use that if A : Cn → Cn induces B :
R2n → R2n (by separating real and imaginary parts), then detB = |detA|2.

Theorem 44. The Schur decomposition of GinC(n) is given by

pGin,C(X)DX =
1

ZC,n
e−TrT∗T |4(Λ)|2 DT DU. (4.1.5)

Note that this implies that the strict upper-triangular entries of T are all iid
complex normal random variables.

4.2 Eigenvalues and eigenvectors of GinR(n)

Computing the analogue of Weyl’s formula for GinR(n) is much more compli-
cated. This comes from the fact that complex eigenvalues must arise as complex
conjugate pairs. Furthermore, for finite n there is a non-zero probability that
the matrix with have k real eigenvalues. Thus the distribution on the eigenval-
ues is not absolutely continuous with respect to Lebesgue measure on C. We
first compute the tangent space, under the assumption of k real eigenvalues.

Theorem 45. Assume that Y has exactly k real eigenvalues. Assume further
that the real part of all the eigenvalues of Y (0) = Y in the closed upper-half plane
are distinct. Finally, assume that each 2×2 block in the real Schur factorization
has γ 6= δ in (4.0.1). Then

TY Rn×n ∼= Rn(n−1)/2 ⊕ o(n).

Proof. Assume Y (t) is a smooth curve in Rn×n such that Y (t) has k real eigen-
values for all t. As before, we have the relation

Ẏ = O(Ṡ + [OT Ȯ, S])OT .
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We need to show that the entries of Ṡ and Ȯ are uniquely determined by this
relation. We assume

S =



R1 × · · · · · · ×
0 R2 × · · · · · · ×
...

. . .
. . .

...
0 · · · 0 R` × · · · ×
0 · · · · · · 0 λ1 · · · ×
...

. . .
. . .

0 · · · · · · 0 λk


, Rj =

(
αj −γj
δj αj

)
,

where ` = (n− k)/2 and n− k is assumed to be even. The ordering is fixed by
αj < αj+1 and λj < λj+1. We also refer to the location of all the imposed zeros
in S as the generalized lower-triangular part of S, denoted LG(S). Similarly,
UG(S) = (LG(ST ))T and DG(S) = S − UG(S)− LG(S). So, we have

LG(OT Ẏ O) = LG ([A,S]) , AT = −A.

After careful consideration, we find

LG ([A,S]) = LG ([LG(A), UG(S)] + [LG(A), DG(S)])

by noting that

[A,S] = [LG(A), LG(S)] + [DG(A), LG(S)] + [UG(A), LG(S)]

+ [LG(A), DG(S)] + [DG(A), DG(S)] + [UG(A), DG(S)]

+ [LG(A), UG(S)] + [DG(A), UG(S)] + [UG(A), UG(S)],

LG(S) = 0, and any term involving only DG and UG or only UG does not con-
tribute to LG([A,S]). Then, it is a non-trivial but straightforward calculation
to find that LG([DG(A), DG(S)]) = 0. This gives a linear system of equations
for LG(A). Since it will be of use in computing the metric tensor below, we
compute the determinant of this matrix in the following lemma.

Lemma 13. There exists a trivial mapping LG(A) → ξ ∈ Rn(n−1)/2−` defined
by ordering the elements of LG(A) so that when M is the matrix representation
for ξ 7→ LG ([A,S]) we have

detM = 4k(Λ) :=

 ∏
1≤i<j≤k

(λj − λi)

 ∏
1≤j<k≤`

4(1)
ij

 ∏
1≤i≤k,1≤j≤`

4(2)
ij


where λ1, . . . , λk are the real eigenvalues, µj = αj + iβj, βj > 0 are the complex
eigenvalues (in the upper half plane) and

4(1)
ij = |µj − µi|2|µj − µ̄i|2 = |µj − µi|2|µ̄j − µi|2,

4(2)
ij = |µj − λi|2.



4.2. EIGENVALUES AND EIGENVECTORS OF GINR(N) 71

Proof of Lemma 13. The important aspect of this is to choose the ordering.
First split

LG(A) =

(
A(1,1) 0
A(2,1) A(2,2)

)
.

We order the 2× 2 blocks of A(1,1) according to (5.5.2). Within each block we
use this same ordering. We then order the entries of A(2,2) according to (5.5.2).
Finally, we order the 1 × 2 blocks of A(2,1) according to (5.5.2) and within
each block we use this same ordering. This defines LG(A) 7→ ξ ∈ Rn(n−1)/2−`.
Define L = LG(LG(A), UG(S)) and decompose L into L(i,j), i = 1, 2, j = 1, 2
in the same was as for LG(A). From the reasoning2 that went into (4.1.3), we
have that the (i, j) block of L(1,1) depends only on blocks (i′, j′) of A(1,1) for
(i′, j′) > (i, j) and entries in A(2,1). Similarly, the (i, j) entry of L(2,2) depends
only on entries (i′, j′) of A(2,2) for (i′, j′) > (i, j) and entries in A(2,1). Lastly,
one checks that block (i, j) of L(2,1) depends only on blocks (i′, j′) of A(2,1) for
(i′, j′) > (i, j). This gives a strong form of strict lower-triangularity for ξ 7→ L.

We now show that ξ 7→ K := LG(LG(A), DG(S)) is block-diagonal in a way
that does not overlap with this strict lower-triangularity. First, decompose K
into K(i,j), i = 1, 2, j = 1, 2 in the same was as for LG(A) and L. We obtain
the following relations for blocks of size 2× 2, 1× 1 and 1× 2, respectively:

K
(1,1)
ij = A

(1,1)
ij Rj −RiA(1,1)

ij ,

K
(2,2)
ij = A

(2,2)
ij (λj − λi),

K
(2,1)
ij = A

(2,1)
ij Rj − λiA(2,1)

ij .

The determinants of each of these linear transformations are

(αj − αi)4 + (δjγj − δiγi)2 + 2(αj − αi)2(δjγj + δiγi),

(λj − λi),
(αj − λi)2 + δjγj ,

respectively. For the non-real eigenvalues in the upper-half plane, we have
µj = αj + i

√
γjδj . This proves the lemma.

From this lemma, with our assumptions, we can uniquely find LG(A). But
as A is skew-symmetric, we have ` entries left undetermined. So, we consider

(OT Ẏ )2j,2j = (Ṡ + [A,S])2j,2j = (α̇j + (γj − δj)ṡ2j+1,2j) + f2j(LG(A)),

(OT Ẏ )2j+1,2j+1 = (Ṡ + [A,S])2j+1,2j+1 = (α̇j + (δj − γj)ṡ2j+1,2j) + f2j(LG(A)).

(4.2.1)

2The commutator of lower-triangular and upper triangular matrices at entry (i, j) only
depends on entries (i′, j′) of the lower-triangular matrix for j′ ≤ j with i = i′ and i′ ≥ i with
j = j′. With strict triangularity, fewer dependencies occur.
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for some functions fj . As LG(A) is known, this gives a solvable system for α̇j
and s2j+1,2j , with determinant 2`

∏`
j=1(γj−δj). The remaining entries of Ṡ are

given through the relation

Ṡ = OT Ẏ O − [A,S].

We now can compute the volume form.

Theorem 46. For Y ∈ Rn×n with k real eigenvalues,

DY = 2`|4k(Λ)|

∏̀
j=1

|γj − δj |

 DSDO, (4.2.2)

where

DS =
∏̀
j=1

dαjdγjdδj

k∏
j=1

dλj
∏

s∈UG(S)

ds, (4.2.3)

and DO refers to the same distribution as that of the eigenvectors of GOE(n),
i.e., Haar measure on O(n).

When we restrict to k real eigenvalues we use the notation

pGin,R,k(Y )DY =
1

Z
(k)
R,n

e−
1
2Y

TY
1{Y has k real eigenvalues}DY. (4.2.4)

Theorem 47. The real Schur decomposition of GinR(n) given k real eigenvalues
is

pGin,R,k(Y )DY =
2`

Z
(k)
R,n

e−
1
2 TrSTS |4k(Λ)|

∏̀
j=1

|γj − δj |

 DSDO. (4.2.5)

Note that this implies that the generalized upper-triangular entries of S are
all iid normal random variables.Compute probability of k real eigen-

values

Exercises

4.1. Complete the proof of Theorem 39 using Lemma 34.

4.2. Show that any given eigenvector of XGinR(n) can be taken to be uniformly
distributed on Sn−1



Chapter 5

Additional matrix
factorizations

Expand on this.

The Ginibre ensembles allow us to define the Laguerre ensembles as trans-
formations of GinC(m,n) and GinR(m,n).

Definition 48. The ensembles of positive (semi-) definite matrices defined by
X∗X/m where X ∼ GinC(m,n),GinR(m,n) are called the Laguerre Unitary
Ensemble (LUE(m,n)) and the Laguerre Orthogonal Ensemble (LOE(m,n)),
respectively.

The Laguerre ensembles, LOE and LUE, are often referred to as Wishart
and complex Wishart matrices, respectively [?]. They get their name from the
close connection to Laguerre polynomials. Sample covariance interpretation

Next, we turn to understanding the singular value decomposition of GinC(m,n)
and GinR(m,n) which will give the eigenvalue distribution of the Laguerre en-
sembles. The following is the famous singular value decomposition.

Theorem 49. Every matrix Y ∈ Rm×n and X ∈ Cm×n has a decomposition

Y = QΣOT , X = UΣV ∗,

where Q ∈ O(m), O ∈ O(n), U ∈ U(m), V ∈ U(m) and Σ ∈ Rm×n is a diagonal
matrix with non-negative diagonal entries.

The non-zero entries of Σ are called the singular values of the matrix in
question. The singular values of matrix X are precisely the square roots of the
non-zero eigenvalues of X∗X.

A main task of this chapter is to establish the following fact.

Theorem 50. Let x1, . . . , xn be the unordered eigenvalues of LUE(m,n) (β =
2) or LOE(m,n) (β = 1). The following gives the joint marginal distribution

73
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on the eigenvalues

1

Zn(β)

n∏
j=1

x
β
2 (m−n+1)−1
j

∏
j<k

|xj − xk|βe−
βm
2

∑n
j=1 xj1{xj≥0, for all j}dx1 · · · dxn.

(5.0.1)
Cite Wishart

5.1 QR decomposition of GinC(m,n)

We now consider the distribution induced on U and T by GinC(m,n). Following
the discussion in (4.0.5), we assume n ≥ m. We follow the push forward of the
distributions under the algorithm in (4.0.4). If X ∼ GinC(m,n) then it follows
that if we replace Qj with Uj and Yj with Xj in (4.0.5) then Xj and Uj are
independent for every j using the fact that the length of a Gaussian vector is
independent of its angle and UX is independent of U ∈ U(m) if U is independent
of X. And therefore, for X = UT , U is independent of T .

From the discussion in Section 3.2 it follows that the induced volume form
on T is

∝ e−
β
2 TrT∗T

m∏
j=1

T
2(m−j+1)−1
jj DT, β = 2,

where DT refers to standard Lebesgue measure on Rm+ × Cm(m−1)/2+m(m−n).
Note that all the strictly upper-triangular entries are standard complex normal
random variables and the entries on the diagonal are all chi-distributed. To
understand the distribution on U all we need to do use to use that for O ∈ U(m),
OX ∼ GinC(m,n) if X ∼ GinC(m,n). Then factorize

X = UT OX = U ′T ′.

From the uniqueness of the QR factorization (on set of full probability where X
is invertible), T = T ′ and U = OTU ′. But U and U ′ have the same distribution
and this distribution must therefore be invariant under left multiplication by
any element of U(m). We conclude U is distributed according to Haar measure
on U(m) [Nac76] and to proportionality constants:

e−
β
2 TrX∗XDX

QR−→ e−
β
4 TrT∗T

ñ∏
j=1

T 2m−2j+1
jj DTD Ũ , ñ = min{m,n},

where DŨ is defined in (2.5.8). The normalization constant is easily computed
in terms of Γ-functions. This can be seen as an equality when m ≤ n. For
m ≥ n, we add additional degrees of freedom to find DŨ , and so this is the
push-forward under a random transformation.
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5.2 QR decomposition of GinR(m,n)

It follows from the discussion in Section 5.1 that up to proportionality constants

e−
β
2 TrY TY DY

QR−→ e−
β
2 TrRTR

ñ∏
j=1

R
β(m−j+1)−1
jj DRDQ, β = 1, ñ = min{m,n},

where DR refers to standard Lebesgue measure on Rm+ × Rm(m−1)/2+m(m−n),
and DQ is Haar measure on O(n).

5.3 Bidiagonalization of Ginibre

We first consider the reduction of GinC(m,n) and GinR(m,n) to bidiagonal ma-
trices and, in the process, find a generalization of (5.0.1) to general β. This
is sometimes called Golub–Kahan bidiagonalization. The aim here is not to
preserve eigenvalues, but to preserve singular values as transformations are per-
formed. So, we can perform independent Householder reflections from the left
and the right. Recall the definition of Qy from (4.0.3). Let Y ∼ GinR(m,n) for
m ≥ n. Consider the transformations

Y (0) := Y,

Ỹ (1) := Qv1Y
(0), v1 = Y

(0)
1:m,1,

(Y (1))T := Qṽ1(Ỹ (1))T , ṽ1 = (Ỹ
(1)
1,2:n)T ,

Ỹ (2) := Qv2
Y (1), v2 = Y

(1)
2:m,2,

(Y (2))T := Qṽ2
(Ỹ (2))T , ṽ2 = (Ỹ

(2)
2,3:n)T ,

...

Ỹ (j) := QvjY
(j−1), vj = Y

(j−1)
j:m,j ,

(Y (j))T := Qṽj (Ỹ
(j))T , ṽj = (Ỹ

(j)
j,j+1:n)T .

(5.3.1)

Each step in this process eliminates all entries below the diagonal entry in the
jth column and all entries to the right of the superdiagonal entry in the jth row.
The algorithm terminates when j = n−1, returning Y (n−1) which is a bidiagonal
matrix with non-negative entries. Let (Y (n−1))jj = cj and (Y (n−1))j,j+1 = dj
for j = 1, 2, . . .. We find that (Qj , Q̃j , cj , dj)j≥1 is an independent set of random

variables, with Qj being defined by vj ∈ Sn−jR and Q̃j being defined by ṽj ∈
Sn−j−1
R (Qn−1 gives a sign flip of one entry). Under this change of variables,

following the arguments for (3.3.3), we have

DY ∝
n∏
j=1

cm−jj dcj

n−1∏
k=1

dn−k−1
k ddk

n−2∏
l=1

Dω̃k

n−1∏
p=1

Dωp,
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where Dω̃l and Dωp denote uniform measure on SlR and SpR, respectively. Simi-
larly, by applying this algorithm to X ∼ GinC(m,n) we find

DX ∝
n∏
j=1

c
2(m−j)+1
j dcj

n−1∏
k=1

d
2(n−k)−1
k ddk

n−2∏
l=1

Dω̃k

n−1∏
p=1

Dωp,

where Dω̃l and Dωp denote uniform measure on SlC and SpC, respectively.

5.4 The Cholesky decomposition

To compute the singular value decomposition of GinR(m,n) and GinC(m,n)
(the square roots of the eigenvalues of the Laguerre ensembles) we follow the
approach of Edelman [Ede89] and first compute the Cholesky decomposition.

Theorem 51. Every strictly positive definite matrix A ∈ Rn×n (or Cn×n) has
a unique decomposition

A = LLT (A = LL∗),

where L ∈ Rn×n (or Cn×n) is a lower-triangular matrix with positive diagonal
entries.

Proof. We concentrate on the real case and we first show uniqueness. Assume
A = LLT = L1L

T
1 for two different factorizations. Then

L−1
1 L = LT1 L

−T , where L−T = (L−1)T .

Since the non-singular upper- and lower-triangular matrices for groups, the left-
hand (right-hand) side is lower-triangular (upper-triangular). Therefore L−1

1 L
is a diagonal matrix that is equal to its own transpose-inverse: ejL

−1
1 Lej = ±1.

Positivity of the diagonal entries gives L1 = L. Now, by Gaussian elimina-
tion, without pivoting1 A = L̃U where L̃ is lower-triangular and U is upper-
triangular. Here L̃ has ones on the diagonal. We know that eTj Aej > 0

and therefore eTj L̃Uej = Ujj > 0. Then Let Ud = diagonal(U)1/2 and A =

L̃UdU
−1
d U . It follows from the symmetry of A that L = L̃Ud gives the Cholesky

factorization. Similar considerations follow for A ∈ Cm×n.

5.5 Change of variables for GinC(m,n)

We now consider the change of variables that closely resembles the singular
value decomposition, but differs in a fundamental way. For X ∈ Cm×n, full
rank, define

X = UT
QR7→ (U, T )

Inv. Cholesky7→ (U,A = T ∗T ) = (U, V ΛV ∗)
Spectral map7→ (U,Λ, V ).

(5.5.1)

1Pivoting is not required for strictly positive definite matrices because the upper left `× `
blocks are non-singular for every `.
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This is a well-defined, invertible mapping, provided that the first row of V con-
tains non-vanishing entries. It will follow from Section 5.3 that the probability
of this is one. But we emphasize that for this decomposition X 6= UΛV ∗, gen-
erally. We now show that if X ∼ GinC(m,n) then U,Λ, V are independent and
we then characterize the distribution of Λ and V .

Lemma 14 (Spectral variables for Her+(n)). If A ∈ Her+(n) is non-singular
with distinct eigenvalues then

TAHer+(n) ∼= Rn ⊕ PTIU(n).

Proof. The proof is essentially the same as Lemma 6, just using that the set of
strictly positive definite matrices is open.

We define DA in the natural way as the volume form induced by the metric
tensor Tr dA2. We then have the analogous formula to Theorem 16:

DA = |4(Λ)|2 DΛ DU.

Next, we compute the volume form associated with the change Cholesky change
of variables.

Lemma 15. Let A = LL∗ be the Cholesky decomposition for a non-singular
A ∈ Her+(n). Let DL be the natural volume form induced by Tr(dL∗dL). Then

DA = 2n
n∏
j=1

L
2(n−j)+1
jj DL.

Proof. We prove this by identifying that the Jacobian of the transformation is
triangular, and computing the diagonal entries. We first compute for j ≥ k

∂A

∂ReLjk
= eje

T
k L
∗ + Leke

T
j ,

∂A

∂ImLjk
= eje

T
k L
∗ − LekeTj .

Examine the structure of these matrices. Since eje
T
k L
∗ is the matrix that con-

tains the kth row of L∗ in its jth row, with all other row being zero we find the
following picture

∂A

∂ReLjk
=



0
...
0
Lkk
Lk+1,k

...
Lj−1,k

0 · · · 0 Lkk Lk+1,k · · · Lj−1,k 2ReLjk · · ·
...



.
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Here only the jth row and jth column have non-zero entries. Here 2ReLjk is
in the (j, j) entry. A similar picture holds for ∂A

∂ImLjk
, with 2ImLjk in the (j, j)

entry. We define a mapping ReL 7→ ξ ∈ Rn(n−1)/2 and ImL 7→ η ∈ Rn(n−3)/2 by
the ordering of the non-zero elements of L:

(j, k) < (j′, k′) if j < j′,

(j, k) < (j , k′) if k < k′.
(5.5.2)

This orders first by row, and then by columns within each row. Assume (i, `) <
(j, k), j ≥ k, i ≥ `. Then

∂Ai`
∂ReLjk

= 0,
∂Ai`
∂ImLjk

= 0.

because either i < j or ` < k′ if i = j. And, it is clear that

∂Ajk
∂ReLjk

= Lkk, j > k,
∂Ajk
∂ReLjk

= 2Lkk, j = k,

∂Ajk
∂ImLjk

= Lkk, j > k.

Then, if we define L 7→ ζ where ζ = (ξ1, η1, ξ2, η2, . . .)
T we find that the Jacobian

is triangular and

∂A

∂L
= 2n

n∏
j=1

L
2(n−j)+1
jj .

This theorem allows one to understand transformations of GinC(m,n). Fol-
lowing the transformation (5.5.1), with X ∈ Cm×n with m ≥ n using T = L∗

noting that

T =

(
T̃
0

)
.

where T̃ is a upper-triangular matrix with positive diagonal entries. ThenCHECK THIS!!!!!

DX
QR−→

n∏
j=1

T
2(m−j+1)−1
jj DT DŨ = 2−n

n∏
j=1

T
2(m−n)
jj DADŨ (5.5.3)

= 2−n
n∏
j=1

σ
2(m−n)
j |4(Σ2)|2D(Σ2) DŨ DV. (5.5.4)

Here DŨ is Haar measure on U(n) and DV represents the same distribution as
the eigenvectors of GUE(n). Also, DΣ is Lebesgue measure on Rn+. As noted
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below (5.5.1), this is not the singular value decomposition for X, but we claim,
it is in a distributional sense. For X ∼ GinC(m,n), m ≥ n and consider

X = U1ΣV, X̃ := UΣV

where (U, V,Σ) are independent with joint distribution (5.5.4), U1 is the matrix
of left singular vectors for X, and U is independent of U1. Then X̃ = UU∗1X,
but then by the invariance of U , for measureable sets S1 ⊂ U(m), S2 ⊂ Cm×m,

P(UU∗1 ∈ S1) = P(U ∈ S1U1) = P(U ∈ S1),

P(UU∗1 ∈ S1,X ∈ S2) = P(U ∈ S1U1, X ∈ S2)

=

∫
S2

(∫
S1U1

DU

)
pGin,C(X)DX = P(U ∈ S1)P(X ∈ S2).

So, UU∗1 is independent of X and therefore X̃ must have the same distribution
as X. This implies the singular value decomposition of GinC(m,n) is given by
(5.5.4).

Remark 52. If one wants to match of dimensions, then DU should be replaced
by the push-forward of uniform measure on Sm−1

C ×Sm−2
C × · · · ×Sm−n−1

C onto
U(m) via Householder reflections. Is this really correct? Dimensions

match, but....

5.6 Change of variables for GinR(m,n)

Similar considerations show for Y = QΣOT ∼ GinR(m,n) the singular value
distributions are given by

DY
QR−→ 2−n

n∏
j=1

Σm−n−1
j |4(Σ2)|DΣ2 DQDO

where DO is Haar measure on U(n), DQ is Haar measure on O(m) and DΣ is
as before.

In both cases, GinR(m,n) or GinC(m,n), if m < n, then same distribu-
tional description holds with the addition of n − m point masses at zero for
Σ1, . . . ,Σn−m (depending one’s ordering convention) to indicate the deficiency
of the matrix.

Exercises

5.1. Write a numerical code to compute the Cholesky decomposition of a sym-
metric positive-definite tridiagonal matrix.



80 CHAPTER 5. ADDITIONAL MATRIX FACTORIZATIONS



Chapter 6

Determinantal formulas:
From Vandermonde to
Fredholm

Our purpose in this section is to present the elegant determinantal formulas of
Dyson, Gaudin and Mehta for invariant matrix ensembles on Her(n). These
formulas combine three distinct elements: (i) the Weyl formula on Her(n); (ii)
the theory of orthogonal polynomials; (iii) Fredholm determinants. We first
introduce these formulas for GUE. We then use the asymptotic properties of
Hermite polynomials to establish their scaling limits (Theorem 2, Theorem 6
and Theorem 9). While the eigenvalues of GOE and GSE do not have a deter-
minantal structure, they have a related Pfaffian structure, which is described in
a later chapter.

6.1 Probabilities as determinants

In what follows we will adopt the following notation. In order to avoid confusion,
we let x = (x1(M), . . . , xn(M)) ∈ Rn denote the unordered eigenvalues1 of M ,
and λ = (λ1(M), . . . , λn(M)) ∈ Wn denote the ordered eigenvalues of M . We
use xj = xj(M) and λj = λj(M) when M is clear from context. The probability
density of x, denoted P (n)(x1, . . . , xn), is obtained from the Weyl’s formula

P (n)(x1, . . . , xn) =
1

Zn
4(x)2e−

1
2
∑n
k=1 x

2
k . (6.1.1)

Observe that P (n) is invariant under permutations (x1, . . . , xn) 7→ (xσ1
, . . . , xσn),

σ ∈ S(n). In practice, our interest lies not in the joint density of all n eigen-
values, but statistics such as the law of the largest eigenvalue. Thus, what is

1These is is clearly not well-defined. If M is random one can compute the eigenvalues and
then randomly permute them.
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required is an analytical technique to extract such information from (6.1.1) by
integrating out degrees of freedom to obtain information on the joint distribu-
tion of m-eigenvalues, 1 ≤ m ≤ n. More precisely, given m and a Borel function
f : Rm → R that is symmetric under permutations,I don’t think we need this condition,

the sum symmeterizes f, right?

f(x1, . . . , xm) = f(xσ1
, . . . , xσm), σ ∈ S(m), (6.1.2)

we consider random variables of the type

Nf =
∑

(j1,...,jm)∈J1,nKm, jkdistinct

f(xj1 , . . . , xjm). (6.1.3)

Expectations of random variables of the form (6.1.3) are given by

E(Nf ) =

∫
Rm

f(x1, . . . , xm)R(n)
m (x1, . . . , xm) dx1 . . . dxm, (6.1.4)

where Rm is the m-point correlation function

R(n)
m (x1, . . . , xm) (6.1.5)

=
n!

(n−m)!

∫
Rn−m

P (n)(x1, . . . , xm, xm+1, . . . , xn) dxm+1 . . . dxn.

The combinatorial factor in (6.1.3) arises as follows. There are
(
n
m

)
ways of

picking subsets of m distinct indices from J1, nK. On the other hand,

R(n)
m (x1, . . . , xm) = R(n)

m (xσ1 , xσ2 , . . . , xσm), σ ∈ S(m). (6.1.6)

and the integral on the right hand side of (6.1.6) appears m! times when in-
tegrating over the complementary n − m variables for each choice of indices
{j1, . . . , jm} ∈ J1, nKm. We state the following theorem which is proved in the
following sections.

Theorem 53. The joint density and m-point functions for GUE(n) are

P (n)(x1, . . . , xn) =
1

n!
det (Kn(xj , xk)1≤j,k≤n) , (6.1.7)

R(n)
m (x1, . . . , xm) = det (Kn(xj , xk)1≤j,k≤m) , (6.1.8)

where the integral kernel Kn is defined by the Hermite wave functions

Kn(x, y) =

n−1∑
k=0

ψk(x)ψk(y). (6.1.9)

Remark 54. The kernel Kn may be simplified using identities for the Hermite
polynomials. The Christoffel-Darboux formula (E.1.16) allows us to write

Kn(x, y) =
√
n
ψn(x)ψn−1(y)− ψn(y)ψn−1(x)

x− y
. (6.1.10)

Further, eliminating ψn−1 with the identity (E.1.14) yields

Kn(x, y) =
ψn(x)ψ′n(y)− ψn(x)ψn′(y)

x− y
− 1

2
ψn(x)ψn(y). (6.1.11)
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A particular consequence of Theorem 53 is the following fundamental for-
mula. Assume S is a bounded Borel set, let 1S denote its indicator function, and
let Am(S) denote the probability that the set S contains precisely m eigenvalues
for M ∈ GUE(n).

Theorem 55. The generating function of {Am(S)}∞m=0 is given by the formula

det (I − zKn1S) =

∞∑
m=0

Am(S)(1− z)m, z ∈ C, (6.1.12)

where det (I − zKn1S) denotes the Fredholm determinant of the kernel

Kn1S(x, y) =

n−1∑
k=0

1S(x)ψk(x)ψk(y)1S(y). (6.1.13)

Theorem 53 and Theorem 55 illustrate the general spirit of determinantal
formulas in random matrix theory. The density of a joint distribution is ex-
pressed as a determinant of an integral operator with finite rank. One may then
use the theory of orthogonal polynomials, in particular, results on the asymp-
totics of orthogonal polynomials, to establish the basic limit theorems outlined
in Chapter 1 (see Theorems 56 and Theorem 57 below).

Appendices E and D provide brief introductions to Hermite polynomials and
Fredholm determinants respectively.

6.2 The m-point correlation function

Proof of Theorem 53. We form linear combinations of the rows of the Vander-
monde matrix to obtain Check ±1 on Vandermonde throughout

4(x) = det


h0(x1) h0(x2) . . . h0(xn)
h1(x1) h1(x2) . . . h1(xn)

...
...

...
hn−1(x1) hn−1(x2) . . . hn−1(xn)

 . (6.2.1)

The calculations above would apply to any set of monic polynomials of degree
0, 1, 2, . . . , n − 1. The Hermite polynomials and wave functions are relevant
because they satisfy the orthogonality relations∫

R
hj(x)hk(x)

e−x
2/2

√
2π

dx = δjkk!, (6.2.2)

and allow the inclusion of an exponential weight. Precisely, the Hermite wave
functions

ψk(x) =
1√
k!
hk(x)

e−x
2/4

(2π)1/4
, (6.2.3)
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satisfy the orthogonality relation∫
R
ψj(x)ψk(x) dx = δjk, (6.2.4)

and form a basis for L2(R). Let H denote the matrix with entries Hjk =
ψj−1(xk). It follows from (6.2.1) and (6.2.3) that

e−
x2

2 4(x)2 ∝ detH2 = detHTH = det [Kn(xj , xk)]1≤j,k≤n , (6.2.5)

using the identity

(
HTH

)
jk

=

n∑
l=1

HljHlk =

n−1∑
l=0

ψl(xj)ψl(xk) = Kn(xj , xk). (6.2.6)

Therefore, the joint density P (n)(x) is proportional to detKn. To determine
the constant of proportionality we recall that the determinant of a matrix A =
[ajk]1≤j,k≤n satisfies

detA =
∑

σ∈S(n)

sgn(σ)

n∏
j=1

aσjj (6.2.7)

where sgn(σ) denotes the sign of the permutation σ. We then evaluate the
integral∫

Rn
det(H)2dx1 . . . dxn =

∫
Rn

(
det [ψj−1(xk)]1≤j,k≤n

)2

dx1 . . . dxn

=
∑

σ,τ∈S(n)

sgn(σ)sgn(τ)

∫
Rn

n∏
j=1

ψσj−1(xj)ψτj−1(xj) dx1 . . . dxn

(6.2.8)

=
∑

σ,τ∈S(n)

sgn(σ)sgn(τ)

n∏
j=1

δσj ,τj =
∑

σ,τ∈S(n)

1{σ=τ} = n! .

We combine (6.2.8) and (6.2.6) to obtain the first assertion in Theorem 53:

P (n)(x1, . . . , xn) =
1

n!
det [Kn(xj , xk)]1≤j,k≤n .

The formulas for the correlation functions may be obtained by induction,
beginning with

R(n)(x1, . . . , xn) = det [Kn(xj , xk)]1≤j,k≤n . (6.2.9)

First, the orthonormality relations (6.2.4) imply∫
R
Kn(x, x)dx = n,

∫
R
Kn(x, z)Kn(z, y) dz = Kn(x, y). (6.2.10)
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Assume (6.1.8) holds for an index m+ 1 ≤ n. We then have

R(n)
m (x1, . . . , xm) =

1

n−m

∫
R
R

(n)
m+1(x1, . . . , xm, xm+1) dxm+1

=
1

n−m

∫
R

det [Kn(xj , xk)]1≤j,k≤m+1 dxm+1

=
1

n−m
∑

σ∈S(m+1)

sgn(σ)

∫
R
Kn(x1, xσ1

) . . .Kn(xm+1, xσm+1
) dxm+1.

(6.2.11)

If σm+1 = m+ 1 in this sum, then the first equality in (6.2.10) implies∫
R
Kn(x1, xσ1

) · · ·Kn(xm+1, xσm+1
) dxm+1 (6.2.12)

= nKn(x1, xσ1
) · · ·Kn(xm, xσm).

If σm+1 6= m + 1, there exists j ≤ m and k ≤ m such that σj = m + 1 and
σm+1 = k. We then use the second equality in (6.2.10) to find∫

R
Kn(x1, xσ1

) · · ·Kn(xm+1, xσm+1
) dxm+1 (6.2.13)

=

∫
R
Kn(x1, xσ1) · · ·Kn(xj , xm+1) · · ·Kn(xm+1, xk) dxm+1

= Kn(x1, xσ′1) · · ·Kn(xm, xσ′m).

where σ′ is a permutation of {1, . . . ,m} such that σ′j = k and σ′l = σl if l 6= j.
Each permutation σ′ ∈ Sm may come from m permutations σ ∈ Sm+1. Further,
sgn(σ′) = −sgn(σ) since these permutations differ by a single swap. Therefore,
using equations (6.2.12) and (6.2.13) we have∫

R
det [Kn(xj , xk)]1≤j,k≤m+1 dxm+1 = (n−m) det [Kn(xj , xk)]1≤j,k≤m .

Lecture Note 6. Let σ′ ∈ S(m) and for 1 ≤ j ≤ m, define σ ∈ S(m + 1) by
σl = σ′l for 1 ≤ l ≤ m and l 6= j. Then σl = m + 1 and σm+1 = σ′j . Then this
procedure maps σ → σ′ and j is is arbitrary. And, if we swap σj with σm+1 we
then see that sgn(σ) = −sgn(σ′).

6.3 Determinants as generating functions

Proof of Theorem 55. The Fredholm determinant det (I − zKn1S) is an entire
function of z. Thus, equation (6.1.12) is equivalent to the statement

Am(S) =
1

m!

(
− d

dz

)m
det (I − zKn1S)|z=1 . (6.3.1)
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We first prove formula (6.3.1) in the case m = 0. Let 1 denote the charac-
teristic function of the set S. The probability that all eigenvalues lie outside S
is given by

∫
Rn

 n∏
j=1

(1− 1S(xj))

P (n)(x1, . . . , xn) dx1 . . . dxn (6.3.2)

=

n∑
j=0

(−1)j
∫
Rn
ρnj (1S(x1), . . . ,1S(xn))P (n)(x1, . . . , xn) dx1 . . . dxn,

where ρnj (x1, . . . , xn) is the j-th symmetric function in n variables. For example,

ρn0 (x) = 1, ρn1 (x) =
n∑
j=1

xj , ρn2 (x) =
n∑
j<k

xjxk, ρnn(x) =
n∏
j=1

xj .

Then, we can express

ρnj (x) =
1

j!

∑
(j1,...,jm)∈J1,nKj , jkdistinct

∏
k

xjk .

Since each term in ρnj consists of j products of the form 1S(xσj ) for some
permutation σ ∈ Sn, we integrate over the remaining n − j variables, and use

the permutation invariance of R
(n)
j Using the m-point correlation function, we

obtain using (6.1.4) with f(x1, . . . , xm) =
∏m
j=1 1S(xj),

E (Nf ) =

∫
Rn
ρnj (1S(x1), . . . ,1S(xn))P (n)(x1, . . . , xn) dx1 . . . dxn (6.3.3)

=
1

j!

∫
Rj

det [Kn1S(xk, xl)]1≤k,l≤j dx1 . . . dxj .

In the last equality, we have used (6.1.8) and multiplied the kernel on the left
and right by the diagonal matrix dS = diag(1S(x1), . . . ,1S(xj)), so that

1S(x1) . . .1S(xj)R
(n)
j (x1, . . . , xj) = 1

2
S(x1) . . .12

S(xj)R
(n)
j (x1, . . . , xj)

= det
(
dS [Kn(xk, xl)]1≤k,l≤j dS

)
= det [Kn1S(xk, xl)]1≤k,l≤j ,

where K(n)
1S is defined in (6.1.13). We now combine (6.3.2) and (6.3.3) to

obtain

n∑
j=0

(−1)j
∫
Rn
ρnj (1S(x1), . . . ,1S(xn))P (n)(x1, . . . , xn) dx1 . . . dxn

= det(I −Kn1S), (6.3.4)

using the infinite series (D.1.8) for the Fredholm determinant (only n terms are
non-zero, since K(n) has rank n, see Exercise 7.2).
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We now turn to the case m ≥ 1. Equation (6.3.2) must now be modified to
allow exactly m eigenvalues within S and n−m eigenvalues outside S. Define

f(x1, . . . , xn) =

m∏
j=1

1S(xj)

n∏
j=m+1

(1− 1S(xj)).

Then from (6.1.4), when we take into account the m! permutations of the first
m elements, and the (n−m)! permutations of the last n−m elements

Am(S) =
1

m!(n−m)!
E (Nf )

=
1

m!(n−m)!

∫
Rn
f(x1, . . . , xn)R(n)

n (x1, . . . , xn)dx1 · · · dxn.

We then write

f(x1, . . . , xn) =

m∏
j=1

1S(xj)

n−m∑
k=0

(−1)kρn−mk (1S(xm+1), . . . ,1S(xm+k))

We use the fact that ρn−mk (1S(xm+1), . . . ,1S(xn)) is given by a sum of
(
n−m
k

)
terms, each of which is product of k terms, and all terms integrate to the same
value. So,∫
Rn

m∏
j=1

1S(xj)ρ
n−m
k (1S(xm+1), . . . ,1S(xm+k))R(n)

n (x1, . . . , xn)dx1 · · · dxn

=

(
n−m
k

)∫
Rm+k

m+k∏
j=1

1S(xj)

(∫
Rn−m−k

R(n)
n (x1, . . . , xm+k)dxm+k+1 · · · dxn

)
× dx1 · · · dxm+k

=
(n−m)!

k!

∫
Rm+k

m+k∏
j=1

1S(xj)R
(n)
m+k(x1, . . . , xm+k)dx1 · · · dxm+k

=
(n−m)!

k!

∫
Rm+k

det (Kn1S(xj , xl)1≤j,l≤m+k) dx1 · · · dxm+k.

Then, it follows that

Am(S) =
1

m!

n−m∑
k=0

(−1)k

k!

∫
Rm+k

det (Kn1S(xj , xl)1≤j,l≤m+k) dx1 · · · dxm+k

=
1

m!

(
− d

dz

)m
det(I − zKn1S)|z=1 .
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Since there are
(
n
m

)
ways of selecting m distinct eigenvalues, we find

Am(S) (6.3.5)

=

(
n

m

)∫
Rn

m∏
j=1

1S(xj)

n−m∏
k=1

(1− 1S(xm+k))P (n)(x1, . . . , xn) dx1 . . . dxn

=

(
n

m

) n−m∑
k=0

(−1)k
∫
Rn
ρ

(n−m)
k (1S(xm+1), . . . ,1S(xn))

×

 m∏
j=1

1S(xj)

P (n)(x1, . . . , xn) dx1 . . . dxn.

We then express
As in (6.3.3) and (6.3.3) We use the fact that ρn−mk is given by a sum of(

n−m
k

)
terms, each of which is product of k terms, and all terms integrate to the

same value. Thus, the sum above is(
n

m

) n−m∑
k=0

(−1)k
(
n−m
k

)∫
Rn

m+k∏
j=1

1S(xj)P
(n)(x1, . . . , xn) dx1 . . . dxn

=
1

m!

n−m∑
k=0

(−1)k

k!

∫
Rm+k

m+k∏
j=1

1S(xj)R
(n)
m+k(x1, . . . , xm+k) dx1 . . . dxm+k

=
1

m!

n−m∑
k=0

(−1)k

k!

∫
Rm+k

det (Kn1S(xp, xq)1≤p,q≤m+k) dx1 . . . dxm+k

=
1

m!

(
− d

dz

)m
det(I − zKn1S)|z=1 . (6.3.6)

In the second equality, we have simplified the combinatorial factors as follows:

1

m!
=

(
n

m

)(
n−m
k

)
(n−m− k)!

n!
.

In the last line, we have used formula (D.1.11) for the derivative of a Fredholm
determinant.

Exercises

6.1. Plot the density 1
nKn(x, x) for various choices of n. Compare the extrema

of the density with the roots of the appropriately scaled Hermite wave functions.
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Chapter 7

Scaling limits

7.1 Scaling limits of independent points

Recall the semicircle density psc from (1.3.1). We show in the next section that
the global eigenvalue density, or density of states, for GUE(n) is given by psc as
n → ∞. Before we describe this more precisely, we consider a situation of iid
points to contrast with the distributions that arise in GUE(n).

Consider an iid vector Λ =
√
n(λ1, λ2, . . . , λn)T ∈ Rn where P(λj ∈ S) =∫

S
psc(x′)dx′. We form the empirical measure

Ln (dx) =
1

n

n∑
k=1

δΛk(dx), (7.1.1)

and consider the deterministic measure ELn defined by∫
f(x)ELn(dx) := E〈Ln, f〉 = E

1

n

n∑
k=1

f(λk), f ∈ C0(R). (7.1.2)

But, it is clear, and effectively by definition, that ELn(dx′) = p(x′)dx′ =
1√
n
psc

(
x′√
n

)
dx′ and hence

√
np(
√
nx′)dx′ = psc(x′)dx′.

Next, we consider a gap probability in the “bulk”. Let s ∈ (−2, 2), I ⊂ R
be an interval and consider the rescaled interval In =

√
n
(
s+ I

npsc(s)

)
. Then

by independence

P ( no λj ∈ In ) =

(
1− 1√

n

∫
In

psc

(
x′√
n

)
dx′
)n

. (7.1.3)

We directly find that

1√
n

∫
In

psc

(
x′√
n

)
dx′ =

|I|
n

(1 + o(1)) as n→∞. (7.1.4)
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From this it follows that

lim
n→∞

P ( no λj ∈ In ) = exp

(
−
∫
I

dx′
)
. (7.1.5)

This is, of course, the gap probability for a Poisson process.
We now consider the distribution of the maximum, i.e. at the “edge”. Let

λ̂ = maxj Λj . Then, by independence,

P(n1/6(2
√
n− λ̂) > t) =

(
1−

∫ 2

2−n−2/3t

psc (x′) dx′
)n

.

By direct calculation, replacing t with π2/3t2/3(3/2)2/3 we find, for t ≥ 0,

lim
n→∞

P(n1/6(2
√
n− λ̂) > t) = e−

2
3π t

3/2

. (7.1.6)

From this we see a (trivial) scaling limit of the density of states after rescaling
by 1/

√
n, gaps on the order of 1/n after this rescaling and a largest “eigenvalue”

that satisfies λ̂ ∼ 2
√
n+ξn1/6 for an appropriate random variable ξ. All of these

statements carry over to the random matrix setting, but the actual limits are
very different for local statistics.

7.2 GUE scaling limits I: the semicircle law

The empirical measure of the eigenvalues of GUE(n) is

Ln (dx) =
1

n

n∑
k=1

δλk(dx) (7.2.1)

has the expected density

ELn (dx) =
1

n
Kn(x, x) dx. (7.2.2)

This density is also referred to as the global eigenvalue density or the density of
states. The above expression is somewhat more transparent in its weak form,
using unordered x1, . . . , xn. For every f ∈ C0(R), we have

E〈Ln, f〉 =
1

n

∫
R
f(x)R

(n)
1 (x) dx =

1

n

∫
R
f(x)Kn(x, x) dx, (7.2.3)

by Theorem 53 and equation (6.1.4). The value of the kernel Kn on the diago-
nal is determined by the Christoffel-Darboux relation (6.1.10) and L’Hospital’s
lemma:

Kn(x, x) =
√
n
(
ψ′n(x)ψn−1(x)− ψn(x)ψ′n−1(x)

)
. (7.2.4)

The scaling limit of ELn is the semicircle law defined in (1.3.1)
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Lemma 16.

lim
n→∞

1√
n
Kn

(
x
√
n, x
√
n
)

= psc(x), x ∈ R. (7.2.5)

Further, for any ε > 0, the convergence is uniform on the set {x ||x− 2| ≥ ε}.

Proof. The lemma follows from the Plancherel-Rotach asymptotics for the Her-
mite wave functions (see Cases 1 and 2 and equations (E.1.39)–(??)) in Ap-
pendix E). Define the rescaled wave functions

Ψn+p(x) = n
1
4ψn+p(x

√
n), p = −2,−1, 0. (7.2.6)

We use the identity (E.1.14) to eliminate ψ′n and ψ′n−1 from (7.2.4) and find
after a few computations that

1√
n
Kn

(
x
√
n, x
√
n
)

= Ψ2
n−1(x)−

√
n− 1

n
Ψn−2(x)Ψn(x). (7.2.7)

We now use the asymptotic relations (E.1.40) and (??) depending on whether
|x| < 2 or |x| > 2. Since the region |x| > 2 corresponds to exponential decay
with a rate proportional to n, we focus on the region |x| < 2. In order to simplify
notation, let

θ = n

(
ϕ− 1

2
sin 2ϕ

)
− 1

2
ϕ− π

4
. (7.2.8)

(This is the argument of the cosine in (E.1.54) when p = −1.) Then (7.2.7) and
(E.1.40) yield

1√
n
Kn

(
x
√
n, x
√
n
)

∼ 1

π sinϕ

(
cos2 θ − cos(θ + ϕ) cos(θ − ϕ)

)
=

1

2π

√
4− x2,

using x = 2 cosϕ and the trigonometric formulae cos 2α = 2 cos2 α − 1 and
2 cos(θ+ ϕ) cos(θ− ϕ) = cos 2ϕ+ cos 2θ. A similar calculation with (??) shows
that the limit vanishes outside the set |x| > 2. The assertion of uniformity
in the convergence follows from the assertion of uniform convergence in the
Plancherel-Rotach asymptotics.

Using Exercise 7.9, Lemma 16 implies that ELn(dx), after rescaling, con-
verges weakly Include the variance estimate to state

this almost surely?

E

(
1

n

n∑
k=1

δxk/
√
n(dx)

)
→ psc(x)dx, weakly. (7.2.9)

This is called the averaged semicircle law. It is also worth noting that if f(x) =
1S then

E ( fraction of eigenvalues that lie in S) =

∫
f(x)ELn(dx) =

1

n

∫
S

Kn(x, x)dx.
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7.3 GUE scaling limits II: the sine kernel

Recall from Definition 5 that Ksine is the integral kernel on R× R given by

Ksine(x, y) =
sinπ(x− y)

π(x− y)
, x 6= y, (7.3.1)

and Ksine(x, x, ) = 1. It defines an integral operator on L2(S) for every bounded,
measurable set S. We can now prove a stronger version of Theorem 6.

Theorem 56. For each integer m = 0, 1, 2, . . . and bounded, Borel set S and
r ∈ (−2, 2)

lim
n→∞

P
(
M ∼ GUE(n) has m eigenvalues in

√
n

(
r +

S

npsc(r)

))
=

1

m!

(
− d

dz

)m
det (I − zKsine1S)|z=1 . (7.3.2)

The proof of Theorem 56 is a consequence of the following

Lemma 17. Let S be a bounded measurable set. Then for r ∈ (−2, 2)

lim
n→∞

sup
x,y∈S

∣∣∣∣ 1

psc(r)
√
n
Kn

(√
nr +

x

psc(r)
√
n
,
√
nr +

y

psc(r)
√
n

)
−Ksine(x, y)

∣∣∣∣ = 0.

(7.3.3)

Proof. For r ∈ (−2, 2) define ϕ(s) by x = r + πs
n sinϕ(0) = 2 cosϕ(s). We then

note that sinϕ(0)/π = psc(r). We expand, for sufficiently large n,

ϕ(s)− 1

2
sin 2ϕ(s) = ϕ(0)− 1

2
sin 2ϕ(0)− πs

n
+O(n−2). (7.3.4)

Define the new functions

Ψn,p(s) = n
1
4ψn+p

(
x
√
n
)
, (7.3.5)

From (E.1.40)

Ψn,p(s) ∼
1√

π sinϕ(0)
cos

[
n

(
ϕ(0)− 1

2
sin 2ϕ(0)

)
− πs+

(
p+

1

2

)
ϕ(0)− π

4

]
(7.3.6)

For fixed r, this is uniform for s in a compact set. We then use (6.1.10) and
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y = r − πt
n sinϕ(0) to find, for s 6= t,

π

sinϕ(0)
√
n
Kn(x

√
n, y
√
n) (7.3.7)

=
π

sinϕ(0)
√
n

ψn(x
√
n)ψn−1(y

√
n)− ψn(y

√
n)ψn−1(x

√
n)

x− y

=
Ψn,0(s)Ψn,−1(t)−Ψn,0(t)Ψn,−1(s)

s− t

∼ 1

π sinϕ(0)

cos(θn + s) cos(θn + t− ϕ(0))− cos(θn + t) cos(θn + s− ϕ(0))

t− s

=
sinπ(s− t)
π(s− t)

. (7.3.8)

Here we set θn = n
(
ϕ(0)− 1

2 sin 2ϕ(0)
)

+ 1
2ϕ(0)− π

4 and used the identity

cosα cos(β + γ)− cos(α+ γ) cosβ = sin γ sin(α− β). (7.3.9)

This is uniform for |t− s| ≥ δ. For |t− s| < δ, it is convenient to write

ψn(x)ψn−1(y)− ψn(y)ψn−1(x)

x− y
=
(
ψn(x) ψn−1(x)

) ∫ 1

0

(
−ψ′n(`x+ (1− `)y)
ψ′n−1(`x+ (1− `)y)

)
d`,

and establish uniform convergence of this, after rescaling as above, to

sinπ(s− t)
π(s− t)

=
(
sinπs cosπs

) ∫ 1

0

(
sin(π`s+ π(1− `)t)
cos(π`s+ π(1− `)t)

)
d`. (7.3.10)

With this proof, I don’t think we have
any need for the small x Hermite
asymptotics section in the appendix.
But is is nice and clean...Proof. Define the new rescaled wave function

Ψn(x) = n
1
4ψn(

x√
n

). (7.3.11)

The identity (E.1.14) now takes the form

Ψn−1(x) = Ψ′n(x) +
x

2n
Ψn(x), (7.3.12)

and the rescaled kernel takes the form

Kn

(
x√
n
,
y√
n

)
=

Ψn(x)Ψ′(y)−Ψ′n(x)Ψn(y)

x− y
− 1

2n
Ψn(x)Ψn(y). (7.3.13)

We now use (E.1.21) (when n is even) and (E.1.21) (when n is odd) to obtain
(7.3.1).
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Proof of Theorem 56. Let K̃n(x, y) denote the rescaled kernel 1
psc(r)

√
n
Kn(x

√
n, y
√
n),

x = r− s
npsc(r) , y = r− t

npsc(r) . It follows from Lemma 17, using Sections D.2.1

and D.2 that

lim
n→∞

det
(
I − zK̃n1S

)
= det (I − zKsine1S) , z ∈ C, (7.3.14)

and that the convergence is uniform in z for z in a bounded set. In particular,
the derivatives at z = 1 converge for all m, that is

lim
n→∞

(
− d

dz

)m
det
(
I − zK̃n1S

)∣∣∣
z=1

=

(
− d

dz

)m
det (I − zKsine1S)|z=1 .

(7.3.15)
By Theorem 55, this is equivalent to (7.12.3).

7.4 GUE scaling limits III: the Airy kernel

Recall from Definition 8 that KAiry is the continuous integral kernel on R × R
given by

KAiry(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
, x 6= y. (7.4.1)

The fluctuations at the edge of the spectrum are described as follows. Let
(x1, . . . , xn) denote the unordered eigenvalues of a matrix M ∈ GUE(n) and let
us consider the shifted and rescaled points

sk = n
1
6

(
x− 2

√
n
)
, k = 1, . . . , n. (7.4.2)

For each nonnegative integer m and bounded, measurable set S, let B
(n)
m (S)

denote the probability that exactly m of the points s1, . . . , sn lie in S when
M ∈ GUE(n). The following theorem is a consequence of Lemma 19 and the
discussion in Section D.2.

Theorem 57.

lim
n→∞

B(n)
m (S) =

1

m!

(
− d

dz

)m
det (I − zKAiry1S)|z=1 . (7.4.3)

Remark 58. The assumption that S is bounded is necessary for Ksine. The
sine-kernel has a (weak) rate of decay |x|−1 as |x| → ∞ and the Fredholm
determinant det(I − zKsine1S) is not finite unless S is bounded. However, the
Airy function, and the thus the Airy kernel, has strong decay as x and y →∞.
The Fredholm determinant det(I − zKAiry1S) is well-defined in L2(S) for sets
S that are bounded below, but not above, such as S = (a,∞) for any a ∈ R.
Such sets will be considered when we compute the Tracy-Widom distribution.
See Exercise 5.

The proof of Theorem 57 follows from the Plancherel-Rotach asymptotics for
the Hermite polynomials, in particular the Airy asymptotics in the transition
zone (see Case 3 and (E.1.42)–(E.1.44) in Appendix E). The following lemma
plays a role analogous to that of Lemma 17 in the proof of Theorem 56.
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Lemma 18. Let S be a bounded measurable set. Then

lim
n→∞

sup
x,y∈S

∣∣∣∣ 1

n
1
6

Kn

(
2
√
n+

x

n
1
6

, 2
√
n+

y

n
1
6

)
−KAiry(x, y)

∣∣∣∣ = 0. (7.4.4)

Lemma 19. For x 6= y, uniformly on bounded sets,

lim
n→∞

∣∣∣∣ 1

n
1
6

Kn

(
2
√
n+

x

n
1
6

, 2
√
n+

y

n
1
6

)
−KAiry(x, y)

∣∣∣∣ = 0 (7.4.5)

and there exists a function G(x, y) ∈ L2([C,∞)2) for all C ∈ R such that∣∣∣∣ 1

n
1
6

Kn

(
2
√
n+

x

n
1
6

, 2
√
n+

y

n
1
6

)∣∣∣∣ ≤ G(x, y). (7.4.6)

Proof. Convergence follows from (E.1.44). The function G(x, y) can be con-
structed using (E.1.82) and (E.1.83), see Exercise 7.3.

Proof. Let us define the rescaled wave-functions

Ψn(x) = n
1
12ψn

(
2
√
n+

x

n
1
6

)
. (7.4.7)

We then use identity (E.1.14) to find

n
1
6Kn

(
2
√
n+

x

n
1
6

, 2
√
n+

y

n
1
6

)
=

Ψn(x)Ψ′n(y)−Ψ′n(x)Ψn(y)

x− y
− 1

2n
1
3

Ψn(x)Ψn(y). (7.4.8)

As noted in Appendix E, as n→∞, Ψn(x) converges to Ai(x) and the conver-
gence is uniform for x in compact subsets of C. Thus, in addition, Ψ′n(x) →
Ai′(x) uniformly in compact sets, and (7.4.5) follows.

7.5 The eigenvalues and condition number of
GUE

Let M ∼ GUE(n). Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of M . A
consequence of Theorem 57 is the following, for all t ∈ R

lim
n→∞

P
(
n2/3

(
λn√
n
− 2

)
< t

)
= det(1−KAiry1(t,∞)) =: F2(t),

lim
n→∞

P
(
−n2/3

(
2 +

λ1√
n

)
< t

)
= F2(t).
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Then, Theorem 56 gives for t ≥ 0,

lim
n→∞

P
(√

n|λj |
π

> t for all j

)
= det(1−Ksine1(−t,t)) := S(t). (7.5.1)

The singular values σ1 ≤ σ2 ≤ . . . ≤ σn of a matrix M are the square roots
of the non-zero eigenvalues of M∗M . One can rewrite (7.5.1) as

lim
n→∞

P
(√

nσ1

π
> t

)
= S(t). (7.5.2)

The condition number is defined as κ(M) := σn/σ1.

Lemma 20. If M ∼ GUE(n), then for all t > 0

lim
n→∞

P
( π

2n
κ(M) < t

)
= S(t−1). (7.5.3)

Proof. We first show that λn/
√
n→ 2, λ1/

√
n→ −2 in probability. Fix ε > 0,

and let L > 0. Then

1 ≤ P
(∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ ε) = P
(
n2/3

∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ n2/3ε

)
≥ P

(
n2/3

∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ L) ,
provided n2/3ε ≥ L. So we, find

1 ≤ lim inf
n→∞

P
(∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ ε) ≥ F2(L)− F2(−L).

Letting L→∞ gives convergence in probability for λn/
√
n. Similar arguments

follow for λ1/
√
n. Next, define

Eε,n =

{∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ ε, ∣∣∣∣ λ1√
n

+ 2

∣∣∣∣ ≤ ε} .
We know that P(Eε,n)→ 1 as n→∞. Then

P
( π

2n
κ(M) < t

)
= P

( π
2n
κ(M) < t,Eε,n

)
+ P

( π
2n
κ(M) < t,Ecε,n

)
.

Because the second term must vanish as n→∞, we focus on the first term. On
Eε,n it follows that (2− ε)

√
n ≤ σn ≤ (2 + ε)

√
n and

P
(
π(2 + ε)

2nσ1
< t,Eε,n

)
≤ P

( π
2n
κ(M) < t,Eε,n

)
≤ P

(
π(2− ε)

2nσ1
< t,Eε,n

)
.

We find that for ε > 0

lim sup
n→∞

P
( π

2n
κ(M) < t

)
= lim sup

n→∞
P
( π

2n
κ(M) < t,Eε,n

)
≤ S

(
2− ε

2
t−1

)
,

lim inf
n→∞

P
( π

2n
κ(M) < t

)
= lim sup

n→∞
P
( π

2n
κ(M) < t,Eε,n

)
≥ S

(
2 + ε

2
t−1

)
.

If S is continuous at t, send ε ↓ 0 to obtain convergence in distribution. Since
S(t) is continuous, the result follows.

Discuss Folkmar’s work on the singu-
lar values of GUE.
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7.6 Tightness and joint distributions

In this section, we discuss some deeper topics concerning the convergence in
distribution of the eigenvalues near the upper edge of the spectrum.

7.6.1 The joint distribution of the top two eigenvalues

We first discuss the joint distribution of the top two (ordered) eigenvalues of
GUE noting that

FTop 2(t, s) := P(λn−1 ≤ t, λn ≤ s) = P(Ωt,s),

Ωt,s := { no eigenvalues in (s,∞), no more than 1 eigenvalue in (t,∞))}.

For s > t we have the disjoint union

Ωt,s = {no eigenvalues in (s,∞),no eigenvalues in (t,∞}
∪ {no eigenvalues in (s,∞), exactly one in (t,∞)}
= {no eigenvalues in (t,∞)}
∪ {no eigenvalues in (s,∞), exactly one in (t, s]}.

For s ≤ t

Ωt,s = {no eigenvalues in (s,∞)}.

The probability of the event {no eigenvalues in (s,∞), exactly one in (t, s]} needs
to be computed for s > t. To this end, consider

f(x1, . . . , xn) =

 n∏
j=1

(1− 1S(xj))

 n∏
j=2

(1− 1T (xj))

1T (x1),

S = (s,∞), T = (t, s].

Careful consideration reveals

E(Nf ) = (n− 1)!P(no eigenvalues in (s,∞), exactly one in (t, s]).

One does this by simply computing Nf on Ωs,t (Nf = (n − 1)!)) and on Ωcs,t
(Nf = 0). The function f must then be expanded using symmetric functions:

f(x1, . . . , xn) (7.6.1)

= −1T (x1)

n∑
k=0

n∑
`=1

(−1)k+`ρnk (1S(x1), . . . ,1S(xn))ρn−1
`−1 (1T (x2), . . . ,1T (xn)).

(7.6.2)

In order to further understand this expression, we consider matrix kernels as
described in (D.1.12). Consider the determinant

ds,t(z) := det

(
1−

[
zKn Kn

zKn Kn

]∣∣∣∣
L2(T )⊕L2(S)

)
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By definition, we have

ds,t(z) =

∞∑
k=0

(−1)k

k!

2∑
i1,...,ik=1

∫
Rk

det[Kij ,i`(xj , x`)]1≤j,`≤kdx1 · · · dxk,

where we extend Kj,` = 0 on the complement of Ij × I`. Define

Q(i1, . . . , ik) :=

∫
Rk

det[Kij ,i`(xj , x`)]1≤j,`≤kdx1 · · · dxk.

Then the set {(i1, . . . , ik) : ij ∈ 1, 2} can be expressed as the disjoint union of
sets

Ip = {(i1, . . . , ik) : ij ∈ 1, 2 and #{j : ij = 1} = p}.

Let σ ∈ S(k) and (i1, . . . , ik) ∈ Ip and consider

Q(iσ(1), . . . , iσ(k)) =

∫
Rk

det[Kiσ(j),iσ(`)
(xσ(j), xσ(`))]1≤j,`≤kdx1 · · · dxk

=

∫
Rk

detP [Kij ,i`(xj , x`)]1≤j,`≤kP
Tdx1 · · · dxk

for a permutation matrix P . Thus Q(iσ(1), . . . , iσ(k)) = Q(i1, . . . , ik) and

#Ip =

(
k

p

)
.

Thus set zpQ(p, k) = Q(i1, . . . , ik) where (i1, . . . , ik) ∈ Ip and ij ≤ ik for j < k.
We then have

ds,t(z) =

∞∑
k=0

(−1)k

k!

k∑
p=0

(
k

p

)
Q(p, k)zp.

Now, upon examining (7.6.1) we write, using k + ` 7→ k and ` 7→ p

f(x1, . . . , xn)

= −1T (x1)

2n∑
k=1

min{n,k}∑
p=1

(−1)kρnp−1(1T (x2), . . . ,1T (xn))ρnk−p(1S(x1), . . . ,1S(xn)).

So, specifically, we must consider the integral

I(p, k) :=

∫
Rn

1T (x1)ρnp−1(1T (x2), . . . ,1T (xn))

× ρnk−p(1S(x1), . . . ,1S(xn)R(n)
n (x1, . . . , xn))dx1 · · · dxn.

(7.6.3)
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Each of these symmetric functions can be expanded and we must consider inte-
grals of the form

∫
Rn

 p∏
j=1

1T (xj)

(k−p∏
`=1

1S(xi`)

)
R(n)
n (x1, . . . , xn)dx1 · · · dxn.

Because T and S are disjoint, the only integrals do not vanish occur when i` > p
for all `. It will suffice to compute

∫
Rn

 p∏
j=1

1T (xj)

 k∏
`=p+1

1S(x`)

R(n)
n (x1, . . . , xn)dx1 · · · dxn

= (n− k)!

∫
Rk

 p∏
j=1

1T (xj)

 k∏
`=p+1

1S(x`)

R
(n)
k (x1, . . . , xm)dx1 · · · dxk

= (n− k)!Q(p, k)

Counting the number of times this integral occurs in (7.6.3) we find

I(p, k) =
(n− k)!

n!

(
n− 1

p− 1

)(
n− p
k − p

)
Q(p, k) =

p

k!

(
k

p

)
Q(p, k)

and therefore

P(no eigenvalues in (s,∞), exactly one in (t, s]) = −
2n∑
k=1

min{n,k}∑
p=0

p
(−1)k

k!

(
k

p

)
Q(p, k)

Noting that the integral operator with kernel matrix[
zKn Kn

zKn Kn

]
has maximal rank 2n we find that Q(p, k) = 0 if either k ≥ 2n or p ≥ k. So, we
write

P(no eigenvalues in (s,∞), exactly one in (t, s])

= −
∞∑
k=1

k∑
p=0

p
(−1)k

k!

(
k

p

)
Q(p, k) = − d

dz

( ∞∑
k=0

k∑
p=0

zp
(−1)k

k!

(
k

p

)
Q(p, k)

)∣∣∣∣∣
z=1

= −d′s,t(1).

From this and the calculations in Section 7.4 we arrive at the following
theorem.
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Theorem 59. For s, t ∈ R

lim
n→∞

P(λn ≤ 2
√
n+ sn−1/6, λn−1 ≤ 2

√
n+ tn−1/6)

=


det(1−KAiry|L2((s,∞))) s ≤ t
det(1−KAiry|L2((t,∞)))

− d
dz det

1−

[
zKAiry KAiry

zKAiry KAiry

]∣∣∣∣∣
L2((t,s])⊕L2((s,∞))

∣∣∣∣∣∣
z=1

t < s.

Remark 60. It should be clear from this discussion that one can consider the
joint distribution of the top k eigenvalues with k fixed as n → ∞. This has a
(complicated) Fredholm determinant representation but it can be shown that if
Λk = [λn, λn−1, . . . , λn−k+1]T is the vector of the top k largest eigenvalues of
GUE(n) then

FΛk(2
√
n+ n−1/6t1, . . . , 2

√
n+ n−1/6tk)

n→∞−→ F2,k(t1, . . . , tk)

for every t1, . . . , tk ∈ R. Here F2,k is expressible in terms of Fredholm determi-
nants that only involve the Airy kernel.Should we be more explicit?

If I1, . . . , IN are disjoint intervals and mj ∈ N for j ∈ J1, NK then

P(exactly m1 eigenvalues in I1, . . . , exactly mN eigenvalues in IN )

=
(−1)

∑N
j=1 mj∏N

j=1mj !

N∏
j=1

∂mj

∂z
mj
j

dI1,...,IN (z1, . . . , zN ),

whereIf we want to include this, it needs to
be confirmed

dI1,...,IN (z1, . . . , zN ) = det

(
1− [zkKn]1≤j,k≤N

∣∣∣⊕N
j=1 L

2(Ij)

)
.

7.6.2 Tightness

We have shown that the rescaled distribution function for λn and the rescaled
joint distribution function for [λn, λn−1]T converge pointwise. For this to imply
convergence in distribution we need to establish that the function it converges
to is itself a distribution function.

We concentrate onUnify Fredholm determinant notation.
Need to make it work with the matrix
case.

F2(t) = det(1−KAiry|L2(t,∞))

We use two estimates to show, using elementary means, that this is a distri-
bution function. Since we have shown that there exists a sequence of random
variables Xn such that that FXn(t) → F2(t) pointwise, it suffices to show that
the sequence {Xn} is tight. The full estimates are based on two fundamental
estimates
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• If the eigenvalues (λj)j≥1 of a trace-class operator A satisfy λj ≤ 1 then
[?]

det(1−A) ≤ e−TrA.

• For a trace-class operator A

|1− det(1−A)| ≤ ‖A‖Tre
1+‖A‖Tr .

We first verify the hypotheses of the first statement for Kn. Using the notation
‖ · ‖ = ‖ · ‖L2([t,∞))

‖Kn|L2([t,∞))‖2 = sup
‖f‖=1

∫ ∞
t

(∫ ∞
t

Kn(x, y)f(y)dy

)2

dx

= sup
‖f‖=1

∫ ∞
t

(
n−1∑
k=0

ψk(x)

∫ ∞
t

ψk(y)f(y)dy

)2

dx

≤ sup
‖f‖=1

∫
R

(
n−1∑
k=0

ψk(x)

∫ ∞
t

ψk(y)f(y)dy

)2

dx

= sup
‖f‖=1

n−1∑
k=0

(∫ ∞
t

ψk(y)f(y)dy

)2

= sup
‖f‖=1

n−1∑
k=0

(∫
R
ψk(y)f(y)1[t,∞)(y)dy

)2

≤ 1.

Therefore, all the eigenvalues are contained in [−1, 1]. Define

K̂n(x, y) =
1

n
1
6

Kn

(
2
√
n+

x

n
1
6

, 2
√
n+

y

n
1
6

)
,

and we can then estimate

P(λn ≤ t) = det(1− K̂n1[t,∞)) ≤ e−
∫∞
t
K̂n(x,x)dx.

Then fix ε > 0, set t < 0 so that∫ 0

s

KAiry(x, x)dx =

∫ 0

s

[
[Ai′(x)]2 − xAi(x)2

]
dx ≥ log 4ε−1,

for all s ≤ t. Such a t exists because (see (C.3.2))

[Ai′(x)]2 − xAi(x)2 ∼ |x|
1/2

√
π
, x→ −∞.

Thus for sufficiently large n, n ≥ N , det(I−K̂n1[t,∞)) < ε/2 because K̂n(·, ·)→
KAiry(·, ·) uniformly on [t, 0] by Lemma 19. Then set Tε > 0, so that −Tε ≤ t

and det(I − K̂n1[Tε,∞)) < ε/2 for n = 1, 2, . . . , N − 1.



104 CHAPTER 7. SCALING LIMITS

By the second estimate, and the fact that ‖Kn‖Tr =
∫
Kn(x, x)dx, using a

similar argument, after possibly increasing Tε, we find that

P(|λn − 2
√
n|n1/6 > Tε) < ε.

and therefore the sequence of random variables ((λn − 2
√
n)n1/6)n≥1 is tight.

Therefore F2(t) is indeed a distribution function.

Remark 61. We do not take up this issue for the limiting joint distribution
functions Gk(t1, . . . , tk) but it does indeed follow that these are bonafide distri-
bution functions .Reference?

7.7 Circular law for complex Ginbre matrices

We now describe the global eigenvalue distribution for GinC(n) as n→∞. We
have the following distribution on the (unordered) eigenvalues Z = (z1, z2, . . . , zn)
from (4.1.4)

P̂ (n)(z1, . . . , zn)Dz =
1

Zn
|4(Z)|2e−

∑n
j=1 |zj |

2
n∏
j=1

dRe zjdIm zj .

Owing to the calculations that result in Theorem 53 we have

P̂ (n)(z1, . . . , zn) =
1

n!
det(K̂n(zj , zk)1≤j,k≤n),

R̂(n)
m (z1, . . . , zm) = det(K̂n(zj , zk)1≤j,k≤m), 1 ≤ m ≤ n,

K̂n(z, w) =

n−1∑
j=0

cjΦj(z)Φj(w), Φj(z) = cjz
je−

1
2 |z|

2

.

where R̂
(n)
m is the m-point correlation function defined by (6.1.5) with P̂ (n)

instead of P (n) and dRe zjdIm zj instead of dxj . To show that this is the correct

choice for K̂n and to determine cj we need to show that {Φj}n−1
j=0 are orthogonal

and choose cj > 0 to normalize the functions. Consider for j < k∫
C

Φj(z)Φk(z) dRez dImz = cj c̄k

∫
C
z̄k−j |z|2je−|z|

2

dRez dImz

= cj c̄k

∫ ∞
0

(∫ 2π

0

(cos θ + i sin θ)k−jdθ

)
rk+j+1e−|r|

2

dRez dImz = 0.

If j = k we find∫
C
|Φj(z)|2 dRez dImz = |cj |2

∫
C
|z|2je−|z|

2

dRez dImz,
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and using r =
√
s∫

C
|z|2je−|z|

2

dRez dImz = 2π

∫ ∞
0

r2j+1e−
1
2 r

2

dr = π

∫ ∞
0

sje−sds

= πΓ(j + 1) = π j!

so

cj =
1√
πj!

, cj
1√
j + 1

= cj+1.

So, we find a simple two-term recurrence formula

Φj+1(z) =
z√
j + 1

Φj(z), Φ0(z) =
1√
π
.

The corresponding Christoffel-Darboux-type formula is

K̂n(z, w) =
ezw̄

π

Γ(n, zw̄)

(n− 1)!
e−

1
2 (|z|2+|w|2).

where Γ(n, z) =
∫∞
z
tn−1e−tdt is the incomplete Gamma function. To see this

let fn(z) = ezΓ(n, z), and we find

f (j)
n (0) = (n− 1)!, j = 0, 1, 2, . . . , n− 1,

f (j)
n (0) = 0, j ≥ n,

so that

fn(z) =

n−1∑
j=0

(n− 1)!

j!
zj .

Define the rescaled empirical spectral measure

L̂n(Dz) =
1

n

n∑
k=1

δλk/
√
n(Dz), Dz = dRez dImz.

It then follows that for f ∈ C0(C) by (6.1.4)

E
(∫

f(z)L̂n(Dz)

)
=:

∫
f(z)ELn(Dz) =

∫
f(z)K̂n(z

√
n, z
√
n)Dz.

We then perform the asymptotic analysis of this density. Consider

Γ(n, zz̄)
z 7→z

√
n−→
∫ ∞
n|z|2

tn−1e−tdt.

Then ∫ ∞
n|z|2

tn−1e−tdt = nn
∫ ∞
|z|2

tn−1e−ntdt = nn
∫ ∞
|z|2

t−1e−ng(t)dt,
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where g(t) = t − log t. The stationary phase point here is t = 1, g′(1) = 0 and
g′′(1) = 1. So, if |z| ≤ 1 − ε, the stationary phase point is in the interval of
integration and

nn
∫ ∞
|z|2

t−1e−ng(t)dt = e−nnn−1/2
√

2π(1 +O(n−1)) = e−nnn−1
√

2πn(1 +O(n−1))

= (n− 1)!(1 +O(n−1))

uniformly as n → ∞ by Stirling’s approximation. Then for |z| ≥ 1 + ε, by
integrating by parts

In(z) :=

∫ ∞
|z|2

tn−1e−ntdt =
1

n
|z|2n−2e−n|z|

2

+
n− 1

n

∫ ∞
|z|2

tn−2e−ntdt

≤ 1

n
|z|2n−2e−n|z|

2

+
n− 1

n
In(z).

Therefore

In(z) ≤ |z|2n−2e−n|z|
2

.

From these estimates, the following lemma follows.

Lemma 21. Fix 0 < ε < 1. As n→∞, for |z| ≤ 1− ε

K̂n(z
√
n, z
√
n) =

1

π
+O(n−1),

uniformly. As n→∞, for |z| ≥ 1 + ε

K̂n(z
√
n, z
√
n) = O(n−1),

uniformly.

This shows that (see Exercise 7.9)

EL̂n(Dz)→ 1

π
1{|z|≤1}Dz

weakly. This is the averaged circular law.

7.8 LUE Scaling limits I: Marchenko–Pastur law

Again, consider X ∼ GinC(m,n) or Y ∼ GinR(m,n), m ≥ n, and consider the
sample covariance matrices X∗X/m and Y TY/m, and let x1, . . . , xn be their
unordered eigenvalues. Define the empirical spectral measure

Ľ(α)
n (dx) =

1

n

n∑
j=1

δxj (dx), α = m− n.

Assume further that d := n/m→ d ∈ (0, 1]. The Marchenko–Pastur law states
that



7.8. LUE SCALING LIMITS I: MARCHENKO–PASTUR LAW 107

Theorem 62.

ELn(dx)→ pMP(x; d)dx :=
1

2πd

√
|(λ+ − x)(x− λ−)|

x2
1[λ−,λ+](x)dx,

λ±(d) = (1±
√
d)2,

weakly as n→∞. If d = 0, then the limiting law is δ1(dx).

The case of d = 0 follows by the Law of Large Numbers.
In most of the calculations that follow it is convenient to use λ± = λ±(d).

We now establish the theorem for Y ∼ GinC(m,n), i.e., β = 2. Define the
Christoffel-Darboux kernel (α = m− n)

Ǩ(α)
n (x, y) =

n−1∑
k=0

k!m2

(k + α)!
L

(α)
k (my)L

(α)
k (mx) (mx)

α/2
(my)

α/2
e−

m
2 (x+y)

=
n!m

(n− 1 + α)!

L
(α)
n−1(mx)L

(α)
n (my)− L(α)

n−1(my)L
(α)
n (mx)

x− y
(
m2xy

)α/2
e−

m
2 (x+y).

Then using Theorem 53 applied to (5.0.1), we have the following expression for
the joint marginal density for the eigenvalues of X∗X/m

1

n!
det
(
Ǩ(α)
n (xj , xk)1≤j,k≤n

)
.

It follows (see (6.1.4)) that the density of EĽ(α)
n is given by

1

n
Ǩ(α)
n (x, x).

To now perform the asymptotics for this density, we refer to Appendix E, specif-
ically Section E.2. In that notation, we have

Ǩ(α)
n (x, y) =

(n+ α)!

(n− 1)!

l
(α)
n,−1

(
x
4d

)
l
(α)
n,0

(
y
4d

)
− l

(α)
n,−1

(
y
4d

)
l
(α)
n,0

(
x
4d

)
x− y

e−
n
2d (x+y)

(
n2xy

d2

)−α/2
,

giving

1

n
Ǩ(α)
n (x, x)

=
(n+ α)!

n!

[
d

dx
l
(α)
n,−1

( x
4d

)
l
(α)
n,0

( x
4d

)
− l

(α)
n,−1

( x
4d

) d

dx
l
(α)
n,0

( x
4d

)]
e−

n
d x
(nx

d

)−α
,

We then compute using Stirling’s approximation

(n+ α)!

n!

2

πn

(n
d

) d3/2(
√
x)2α−1(

√
d)2n−1en

x+1−d
d

[(x− λ−)(λ+ − x)]1/2
e−

n
d x
(nx

d

)−α
=

2

π

(
√
x)−1(

√
d)−1

[(x− λ−)(λ+ − x)]1/2
(
1 +O(n−1)

)
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We then consider the following combination

2 sin θ1 sin(θ1 + 2θ2 − θ3)− 2 sin(θ1 + θ2 − θ3) sin(θ1 + θ2)

= cos(2θ2 − θ3)− cos(2θ1 + 2θ2 − θ3)− cos θ3 + cos(2θ1 + 2θ2 − θ3)

= cos(2θ2 − θ3)− cos θ3 = 2 sin θ2 sin(θ3 − θ2).

If one chooses

θ1 = k/d arccos
x+ 1− d

2
√
x

+ (k + 1) arccos
1− x− d

2
√
dx

+
k

2d

√
(λ+ − x)(x− λ−)

+
1

2
arcsin

(
1√
d

(x+ 1− d)(1− d)− 2x

2x

)
,

θ2 = arccos
x+ 1− d

2
√
x

,

θ3 = arccos
1− x− d

2
√
dx

,

and uses the expansion (E.2.8), we have for 0 < d ≤ 1

1

n
Ǩ(α)
n (x, x) =

1

2πd

√
(λ+ − x)(λ− − x)

x
(1 +O(n−1)),

uniformly on compact subsets of ((1 −
√
d)2, (1 +

√
d)2). Note that the same

statement holds with d replaced with d.

7.9 LUE scaling limits II: the sine kernel

Now, let x = r + ρs
n , y = r + ρy

n where r ∈ (λ−(d), λ+(d)). We consider this
scaling limit of

ρ

n
Ǩ(α)
n (x, y).

Using (E.2.8)

ρ

n
Ǩ(α)
n (x, y) =

2(n+ α)!

πn!(s− t)

(
d

n

)α
d3/2(

√
d)2n−1en

1−d
d

[(x− λ−)(λ+ − x)]1/4[(y − λ−)(λ+ − y)]1/4
Rn(x, y)

where

Rn(x, y) = sin (nφ1(x) + φ2(x) + φ3(x)) sin (nφ1(y) + φ2(y))

− sin (nφ1(y) + φ2(y) + φ3(y)) sin (nφ1(y) + φ2(y))

and

φ1(x) = −1

d
arccos

x+ 1− d

2
√
x

+ arccos
1− x− d

2
√
dx

+
1

2d

√
(λ+ − x)(x− λ−)

φ2(x) = arccos
1− x− d

2
√
dx

+
1

2
arcsin

(
1√
d

(x+ 1− d)(1− d)− 2x

2x

)
φ3(x) = arccos

x+ 1− d

2
√
x
− arccos

1− x− d

2
√
dx

.
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We then write

nφ1(x) + φ2(x) = nφ1(r) + nφ′1(r)ρs+ φ2(r) +O(n−1),

φ3(x) = φ3(r) +O(n−1)

to find

Rn(x, y) = sin (φ′1(r)sρ+ nφ1(r) + φ2(r) + φ3(r)) sin (nφ1(r) + φ′(r)tρ+ φ2(r))

− sin (φ′(r)tρ+ nφ1(r) + φ2(r) + φ3(r)) sin (nφ1(r) + φ′1(r)sρ+ φ2(r)) +O(n−1).

Then

2 sin (φ′1(r)sρ+ nφ1(r) + φ2(r) + φ3(r)) sin (nφ1(r) + φ′(r)tρ+ φ2(r))

= cos(φ′(r)ρ(s− t) + φ3(r))− cos(φ′(r)ρ(s+ t) + 2nφ1(r) + 2φ2(r) + φ3(r))

so that the expression for Rn(x, y) simplifies to

Rn(x, y) =
1

2
(cos(φ′1(r)ρ(s− t) + φ3(r))− cos(φ′1(r)ρ(t− s) + φ3(r))) +O(n−1)

= − sin(φ3(r)) sin (φ′1(r)ρ(s− t)) +O(n−1).

We make the choice ρ = π/φ′1(r). It remains to simplify

−2 sinφ3(r)(n+ α)!

πn!(s− t)

(
d

n

)α
d3/2(

√
d)2n−1en

1−d
d

[(x− λ−)(λ+ − x)]1/4[(y − λ−)(λ+ − y)]1/4

=
(n+ α)!

πn!(s− t)

(
d

n

)α
(
√
d)2n+1en

1−d
d (1 +O(n−1)),

=
1

π(s− t)
(1 +O(n−1)),

where we used Stirling’s approximation and that

sinφ3(x) = − 1

2
√
d

√
(λ+ − x)(x− λ−).

And then compute

φ′1(x) =

√
(x− λ−)(λ+ − x)

2dx
,

so that ρ = 1/pMP(r; d). We have established the following1:

Lemma 22. Let S be a bounded measurable set and 0 < d ≤ 1. Suppose
d = n/m→ d as n→∞. Then for r ∈ [λ−(d), λ+(d)]

lim
n→∞

sup
x,y∈S

∣∣∣∣ 1

npMP(r; d)
Ǩ(m−n)
n

(
r +

s

npMP(r; d)
, r +

t

npMP(r; d)

)
−Ksine(x, y)

∣∣∣∣ = 0.

(7.9.1)

1To truly establish this theorem, one needs to deal with the case s ≈ t, see the proof of
Lemma 17



110 CHAPTER 7. SCALING LIMITS

From this lemma and the results of Section D.2 we have (recall the proof of
Theorem 56):

Theorem 63. Suppose n/m → d ∈ (0, 1] as n → ∞. For each integer k =
0, 1, 2, . . ., bounded, Borel set S and r ∈ (λ−(d), λ+(d))

lim
n→∞

P
(
W ∼ LUE(m,n) has k eigenvalues in

(
r +

S

npMP(r; d)

))
=

1

k!

(
− d

dz

)k
det (I − zKsine1S)|z=1 . (7.9.2)

7.10 LUE scaling limits III(a): the Bessel kernel
at the hard edge

Consider the case m = n + α for α ∈ N. Then the smallest eigenvalues of a
matrix distributed according to LUE(m,n) tends to zero as n → ∞. But the
matrix is positive (semi-)definite. Therefore the eigenvalues tend to “build up”

at this “hard edge”. Consider the kernel Ǩ
(α)
n (x, y). Rescale it according to√

x =
√
s/n,

√
y =
√
t/n, i.e.,

nx =
s

n
, ny =

t

n
.

Then use (E.2.7) for s bounded away from t

1

n2
Ǩ(α)
n (x, y) =

(n+ α)!

(n− 1)!

1

2n

[
Jα+1(

√
s)Jα(

√
t)− Jα+1(

√
t)Jα(

√
s) +O(n−1)

] e−
s+t
2n

(
1
n2

)−α/2
s− t

=

√
sJα+1(

√
s)Jα(

√
t)−
√
tJα+1(

√
t)Jα(

√
s)

2(s− t)
+O(n−1)

This is convergence is uniform2 for s, t in compact subsets of [0,∞). We have
mostly established the following.

Lemma 23. Let S be a bounded measurable set and α ∈ N is fixed. Then

lim
n→∞

sup
x,y∈S

∣∣∣∣ 1

n2
Ǩ(α)
n

( x
n2
,
y

n2

)
−K(α)

Bessel(x, y)

∣∣∣∣ = 0, (7.10.1)

where

K
(α)
Bessel(x, y) =

Jα(
√
x)
√
yJ ′α(

√
y)− Jα(

√
y)
√
xJ ′α(

√
x)

2(x− y)
.

Proof. We only have to establish that

Jα(
√
x)
√
yJ ′α(

√
y)− Jα(

√
y)
√
xJ ′α(

√
x)

=
√
xJα+1(

√
x)Jα(

√
y)−√yJα+1(

√
y)Jα(

√
x).

2Again, the case s ≈ t needs to be treated using the methodology in Lemma 17.



7.11. LUE SCALING LIMITS III(B): THE AIRY KERNEL 111

This follows from the identity [OLBC10][Section 10.2.(ii)]

J ′α(z) = −Jα+1(z) +
α

z
Jα(z).

Theorem 64. Fix α ∈ N and let S be a bounded measureable subset of [0,∞).
Then

lim
n→∞

P
(
W ∼ LUE(n+ α, n) has k eigenvalues in

S

n2

)
=

1

k!

(
− d

dz

)k
det
(
I − zK(α)

Bessel1S

)∣∣∣
z=1

. (7.10.2)

Corollary 2. Let x1 be the smallest eigenvalue of an LUE(n+α, n) matrix for
α ∈ N fixed. Then

lim
n→∞

P(x1 > t/n2) = det
(
I −K(α)

Bessel1[0,t)

)
.

In other words, n2x1 converges in distribution to 1− det
(
I −K(α)

Bessel1[0,t)

)
.

7.11 LUE scaling limits III(b): the Airy kernel
at the softened hard edge

Now, if n/m → d for d ∈ (0, 1) the smallest eigenvalues of an LUE(m,n)
matrix tend to lie away from zero. The “hard edge” effect is diminished and
the Tracy–Widom distribution reappears. From a special function perspective,
this can be understood using the fact that, in an appropriate scaling region,
Bessel functions Jα are well-approximated by Airy functions as α → ∞. This
scaling, though complicated, can be exploited to treat the α→∞ but α/n→ 0
case [DMT16, MT16]. Here, we do not take this approach but rather use direct
asymptotics because α/n→ 1− d > 0.

The scaling here is informed by (E.2.14):

x = λ+ −
s

n2/3

√
dλ

2/3
− , y = λ+ −

t

n2/3

√
dλ

2/3
− .

Then, we find, using (E.2.15): TODO: Modify this

Lemma 24. Suppose d→ d ∈ (0, 1]. For s 6= t, uniformly on bounded sets,

lim
n→∞

∣∣∣∣∣
√
dλ

2/3
−

n
2
3

Ǩ(α)
n

(
λ− −

s

n2/3

√
dλ

2/3
− , λ− −

t

n2/3

√
dλ

2/3
−

)
−KAiry(x, y)

∣∣∣∣∣ = 0

(7.11.1)
and there exists a function G(x, y) ∈ L2([C,∞)2) for all C ∈ R such that Unify the statement of all the kernel

limits lemmas∣∣∣∣∣
√
dλ

2/3
−

n
2
3

Ǩ(α)
n

(
λ− −

s

n2/3

√
dλ

2/3
− , λ− −

t

n2/3

√
dλ

2/3
−

)∣∣∣∣∣ ≤ G(s, t). (7.11.2)
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Theorem 65. Suppose d → d ∈ (0, 1] and let S be a measureable subset of R
that is bounded from below. Then

lim
n→∞

P
(
W ∼ LUE(n+ α, n) has k eigenvalues in λ− −

S

n2/3

√
dλ

2/3
−

)
=

1

k!

(
− d

dz

)k
det (I − zKAiry1S)|z=1 . (7.11.3)

7.12 LUE scaling limits III(c): the Airy kernel
at the soft edge

The requisite rescaling is informed by (E.2.11). So, set

x = λ+ +
s

n2/3

√
dλ

2/3
+ , y = λ+ +

t

n2/3

√
dλ

2/3
+ .

Then, we find, using (E.2.13):

Lemma 25. Suppose d→ d ∈ (0, 1]. For s 6= t, uniformly on bounded sets,

lim
n→∞

∣∣∣∣∣
√
dλ

2/3
+

n
2
3

Ǩ(α)
n

(
λ+ +

s

n2/3

√
dλ

2/3
+ , λ+ +

t

n2/3

√
dλ

2/3
+

)
−KAiry(x, y)

∣∣∣∣∣ = 0

(7.12.1)
and there exists a function G(x, y) ∈ L2([C,∞)2) for all C ∈ R such that∣∣∣∣∣
√
dλ

2/3
+

n
2
3

Ǩ(α)
n

(
λ+ +

s

n2/3

√
dλ

2/3
+ , λ+ +

t

n2/3

√
dλ

2/3
+

)∣∣∣∣∣ ≤ G(s, t). (7.12.2)

Theorem 66. Suppose d → d ∈ (0, 1] and let S be a measureable subset of R
that is bounded from below. Then

lim
n→∞

P
(
W ∼ LUE(n+ α, n) has k eigenvalues in λ+ +

S

n2/3

√
dλ

2/3
+

)
=

1

k!

(
− d

dz

)k
det (I − zKAiry1S)|z=1 . (7.12.3)

7.13 Notes on universality and generalizations

In this section we discuss two generalizations:

• Scaling limits for β = 1, 4.

• The case of non-Gaussian entries.

The calculations behind these results are the topic of a more advanced text such
as [DG09, Tao11].
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7.13.1 Limit theorems for β = 1, 4

When β 6= 2, the determinantal structure is lost. For β = 1 the correct technol-
ogy to use is Pffafians. For β = 4, one uses . In either case, Lemma 16 holds. add this

But the the other two scaling limits have different limits. Define (see [TW96]

F1(t) = exp

(
−1

2

∫ ∞
t

q(s)ds

)
(F2(t))1/2,

F4(t/
√

2) = cosh

(
1

2

∫ ∞
t

q(s)ds

)
(F2(t))1/2.

and How much detail to provide here?

H1(t) = ....

H4(t) = .....

Then Confirm the scaling of t

lim
n→∞

P
(
M ∼ GOE(n), λn ≤ 2

√
n+ n−1/6t

)
= F1(t),

lim
n→∞

P
(
M ∼ GSE(n), λn ≤ 2

√
n+ n−1/6t

)
= F4(t),

and

lim
n→∞

P
(
M ∼ GOE(n) has no eigenvalues in

√
n

(
r +

(− t
2 ,

t
2 )

npsc(r)

))
= H1(t),

lim
n→∞

P
(
M ∼ GSE(n) has no eigenvalues in

√
n

(
r +

(− t
2 ,

t
2 )

npsc(r)

))
= H4(t).

7.13.2 Universality theorems

The most basic universality theorem is the central limit theorem, Theorem 101.
It states that the sample average of n iid random variables, with finite variance,
after rescaling, converges in distribution to a normal random variable. It is also
important to note that in the central limit theorem, the identically distributed
assumption can be relaxed if one includes the so-called Lindeberg condition
[?, Need page]. So, beyond the first two moments which are used to define
the rescaling, the fluctuations are asymptotically universal — independent of
the finer details of the distribution. Similar phenomena is pervasive throughout
random matrix theory. To state these results, whose proofs are beyond the scope
this the current text, we have to be more precise in our definition of a Wigner
ensemble and describe the so-called invariant ensembles. The reader should
note that GOE and GUE are the only ensembles that lie in the intersection of
both invariant and Wigner ensembles. We only make universality precise in the
β = 1, 2 cases.
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Generalized Wigner ensembles

Definition 67 ([EYY12]). Consider a semi-infinite matrix M = (Mjk)j,k≥1 of
real (β = 1) or complex (β = 2) random variables such that Mjk = Mkj for all
j, k (Mjk)j≤k are independent random variables with

E[Mjk] = 0, Var(Mjk) = σ2
jk/N

such that

1. For any k fixed

n∑
j=1

σ2
jk = 1.

2. There is a constant C ≥ 1 such that for all j, k

1

C
≤ σ2

jk ≤ C.

3. In the complex case

E[M2
jk] = 0.

Then we say that M ∈ Cn×n (or Rn×n) is from a real or complex generalized
Wigner ensemble if M is the upper-left n× n subblock of M.

The following theorem gives universality for the largest k eigenvalues.

Theorem 68. [EYY12] Suppose Λk(β) = Λk = [λn, λn−1, . . . , λn−k+1]T is the
vector of the top k largest eigenvalues a GOE(n) (β = 1) or a GUE(n) (β = 2)
distributed matrix. Suppose Λ̂k(β) is the same random vector a real or complex
generalized Wigner ensemble with σjk = 1. Define the rescaled vectors

Γk(β) = (Λk(β)− 2
√
n)n1/6, Γ̂k(β) = (Λ̂k(β)− 2

√
n)n1/6.

Then there is an ε > 0 and δ > 0 such that for fixed k and N sufficiently large

FΛk(β)(t1 −N−ε, . . . , tk −N−ε)−N−δ

≤ FΛ̂k(β)(t1, . . . , tk) ≤

FΛk(β)(t1 +N−ε, . . . , tk +N−ε) +N−δ.

If the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn are almost deterministic and are
distributed according to psc(x)dx then, one would expect

λj ≈ γj ,
∫ γj

−∞
psc(x)dx =

j

n
, γj ≤ 2.
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Furthermore, the error in this approximation should be on the same order as
the distance between successive γj ’s. This heuristic gives

|λj − γj | = O

(
min
k 6=j
|γk − γj |

)
.

Then, one can estimate, for j < n, by the mean-value theorem

1

n
=

∫ γj+1

γj

psc(x)dx = psc(ξ)(γj+1 − γj),

min
k 6=j
|γk − γj | =

1

npsc(ξ)
≈ 1

npsc(γj)

where ξ some point between γj and its nearest neighbor. This is, in turn, only
useful if we can find a decent way to estimate psc(γj). For −2 ≤ x ≤ 0 we
estimate

1√
2π

√
x+ 2 ≤ psc(x) ≤ 1

π

√
x+ 2.

Then we define γ̃j and γ̂j , for j/n ≤ 4
3π∫ γ̃j

−2

1√
2π

√
x+ 2 dx =

j

n
,

∫ γ̂j

−2

1

π

√
x+ 2 dx =

j

n
.

The condition j/n ≤ 4
3π guarantees that γj , γ̃j , γ̂j ≤ 0 on which we have the

estimate. We then know

γ̂j ≤ γj ≤ γ̃j .

Or more specifically,

−2 +

(
3πj√

2n

)2/3

≤ γj ≤ −2 +

(
3πj

n

)2/3

.

Thus for such a γj

1√
2π

(
3πj√

2n

)1/3

≤ psc(γj) ≤
1

π

(
3πj

n

)1/3

.

Then, for γj where 4
3π <

j
n ≤ 1/2, we know that psc(γj) is bounded away from

zero. Thus, by symmetry for 1 > j/n ≥ 1/2, we have a uniform estimate: For
some C ≥ 1

1

C

(
dn(j)

n

)1/3

≤ psc(γj) ≤ C
(
dn(j)

n

)1/3

,

dn(j) = min{|j|, |n− j + 1|}.

A key ingredient in the proof of this result is the following rigidity estimate
and the heursitcs
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Theorem 69. [EYY12] Suppose λ1 ≤ · · ·λn are the eigenvalues of a generalized
Wigner matrix. Then for every ε > 0 and L > 0 there exists N = N(ε, L) > 0
such that for n ≥ N

P
(
|λj − γj | ≤ n−2/3dn(j)−1/3nε for all j

)
≥ 1− n−L.

This theorem says that on a set of nearly full probability, the eigenvalues
stick to their typical locations γj . One can also read this as a statement that
the probability that any eigenvalue, say λj , deviates from γj so much so that∣∣∣∣∣

∫ λj

−∞
psc(x)dx− j

n

∣∣∣∣∣ ≥ Cnε−1.

is effectively exponentially small.
Something that, for good reason, we have left undiscussed is the question of

what the eigenvectors look like. This is because we know that in the cases of
GUE, GOE and GSE, they can effectively be taken to be uniformly distributed
on the associated group under whose action the distribution is invariant. But
for generalized Wigner ensembles there is, in principle, no invariance. If the
entries in M are iid, we know that the marginal distribution on each eigen-
vector, modulo normalizations, is the same. This is because the distribution is
invariant under conjugations by permutation matrices. But generalized Wigner
ensembles do not need to have iid entries. Nonetheless, universality tells us that
for large enough n the eigenvectors should behave similarly. But what “behave
similarly” actual means is more ambiguous for the eigenvectors than it is for the
eigenvalues. We collect two properties of matrices in O(n) as n becomes large.

Theorem 70. Suppose Q is distributed uniformly on O(n) according to Haar
measure.

1. Let S = {j1, . . . , j`} ⊂ J1, nK with #S = ` and ` fixed. Then for k fixed as
n→∞

n1/2

Qj1k...
Qj`k

 dist.−→ N (0,1`).

2. Complete delocalization holds: If an →∞ as n→∞ then

P

(
sup

1≤j,k≤n
|Qjk| ≥ n−1/2an log n

)
= O

(
1

an

)
.

Proof. 1. Because the distribution Q is right invariant (under the action of
a permutation matrix), it suffices to set k = 1. Then because of left
invariance, again, under the action of permutation matrices, it suffices to
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take (j1, . . . , j`) = (1, 2, . . . , `). Then, using left invariance again it follows
that the distribution of the first column is uniform on Sn−1. This impliesQ11

...
Qn1

 ∼


X1

‖X‖2
...
Xn
‖X‖2

 ,
where (Xj)j≥1 is a collection of iid N (0, 1) random variables. The claim
then follows from from Lemma 35 and the weak law of large numbers
(Theorem 100) applied to the sum

∑
j X

2
j .

2. This claim concerns the maximum of n2 correlated, but compactly sup-
ported, random variables. Furthermore, because of the invariance of Haar
measure they are all identically distributed. Our main tool is the expo-
nential moment generating function: For s > 0

E

[
sup

1≤j,k≤n
|Qjk|

]
= sE

[
s−1 sup

1≤j,k≤n
|Qjk|

]
= s log expE

[
s−1 sup

1≤j,k≤n
|Qjk|

]
,

which, by Jensen’s inequality (Theorem 97), implies

E

[
sup

1≤j,k≤n
|Qjk|

]
≤ s logE

[
exp

(
s−1 sup

1≤j,k≤n
|Qjk|

)]
.

Then we estimate

E

[
sup

1≤j,k≤n
|Qjk|

]
≤ s logE

∑
j,k

exp(s−1|Qjk|)

 = s log n2E
[
exp(s−1|Q11|)

]
.

So, we set s = n−1/2 and we need to estimate

E
[
exp(n1/2|Q11|)

]
, (7.13.1)

and it is reasonable, in light of the previous result, to expect this to con-
verge to E [exp(|X|)] where X ∼ N (0, 1). Indeed this is true because
|Q11|2 is distributed as the first component of a 1-Dirichlet random vector
– it is beta distributed. Therefore, for n ≥ 2,

E
[
exp(n1/2|Q11|)

]
=

1

B(1/2, (n− 1)/2)

∫ 1

0

en
1/2√xx−1/2(1− x)n/2−3/2dx

=
2√

nB(1/2, (n− 1)/2)

∫ ∞
0

ey
(

1− y2

n

)n/2−3/2

1[0,
√
n](y)dy.

Stirling’s formula gives that
√
nB(1/2, (n− 1)/2)→

√
π and the limit can

be passed inside the integral because(
1− y2

n

)n/2−3/2

1[0,
√
n](y) ≤ e−y

2/2,
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and the dominated convergence theorem applies. Here one uses the in-
equality log(1−x) ≤ −x for x < 1. The point is that (7.13.1) is bounded,
independent of n by a constant C. And this gives the inequality

E

[
sup

1≤j,k≤n
|Qjk|

]
≤ n−1/2 log n2C

Then Markov’s inequality produces

P

(
sup

1≤j,k≤n
|Qjk| ≥ n−1/2x log n

)
≤ log n2C

x log n
.

So, provided that x→∞ with n, this probability decays.

Theorem 70 is now compared with a theorem about the eigenvectors for
generalized Wigner matrices. Define Tn,δ = J1, n1/4K∪ Jn1−δ, n− n1−δK∪ JN −
N1/4, NK. This result is summarized from results in [BY17, EYY12]

Theorem 71. Suppose λ1 ≤ · · · ≤ λn are the eigenvalues of a generalized
Wigner matrix. Suppose further that q1, . . . , qn are the associated orthonormal
eigenvectors and set Q = [q1, . . . , qn]. For fixed `, there exists δ > 0 such that
for any k ∈ Tn,δ and S = (j1, . . . , j`) ⊂ J1, nK, #J = `, as n→∞

√
n

|Qj1k|...
|Qj`k|

 dist.−→

|X1|
...
|X`|

 (β = 1),

√
2n

|Qj1k|...
|Qj`k|

 dist.−→


|X(1)

1 + iX
(2)
1 |

...

|X(1)
` + iX

(2)
` |

 (β = 2).

where Xj , X
(1)
j , X

(2)
j for j = 1, 2, . . . , ` are iid N (0, 1) random variables. Fur-

thermore, delocalization holds: For some C > 0

P
(

max
1≤j,k≤n

|Qjk| ≤ n1/2(log n)C log logn

)
→ 0,

as n→∞.

The reader should take note of the additional technicalities required to make
these statements as a harbinger of difficulties that arise in the proofs.

Invariant ensembles

The invariant ensembles are distributions on self-adjoint real, complex or quar-
terion matrices that are described by a potential function V : R→ R such that
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limx→±∞
V (x)

log(1+|x|) = +∞. The density is then given by

1

Z̃n,V (β)
e−n

β
4 TrV (M)∂M.

Using Weyl’s formula we obtain a marginal joint density for the eigenvalues

1

Zn,V (β)
|∆(Λ)|βe−n

β
4 TrV (Λ)DΛ.

For β = 2, in a natural way, one is led to analyze orthogonal polynomials with
respect to the varying weight

ωn(x)dx = e−
n
2 V (x)dx.

When V (x) is not a quadratic polynomial, correlations between the entries on
and above the diagonal are introduced. This destroys psc(x)dx as the global
limit of the spectrum. The discussion in Chapter 8 gives the methodology to
determine the new limit.

So, one might think that because the global picture is different, universality
fails. But, remarkably, the local picture is still the same. The orthogonal
polynomials with respect to ωn(x)dx can be analyzed asymptotically with the
help of steepest descent Riemann–Hilbert analysis3 [Dei00] and the sine kernel
is found as a scaling limit of gap probabilities in the bulk and the Airy kernel is
found (generically) as the scaling limit at the edges. This is true, at least when
V is convex. If V is not convex more exotic behavior can occur.

Exercises

7.1. Prove the Christoffel-Darboux identity (E.1.8) for Hermite polynomials.
(This is a standard relation and it is easy to find a proof in many texts, but try
to do it on your own.)

7.2. Show that ∫
Rk

det[K(xp, xq)]1≤p,q≤k dx1 · · · dxk = 0, (7.13.2)

for k > n, if K is of the form

K(x, y) =

n−1∑
j=0

gj(y)fj(x), fj , gj ∈ L2(R), j = 0, 1, . . . , n− 1. (7.13.3)

7.3. Finish the proof of Lemma 19 by constructing a function G(x, y).

7.4. Establish (7.5.1).

3In general, there will be no contour integral representation of the polynomials to exploit.
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7.5. Use the method of steepest descent to establish the asymptotic formula
(C.3.1) for the Airy function. This is an easy application of the method of
steepest descent.

7.6. In order to appreciate the power of the Plancherel-Rotach asymptotics,
some numerical calculations will help.

(a) Develop a numerical scheme to compute all the roots of the n-th Hermite
polynomial hn. Plot the empirical distribution of roots for n = 100. Can
you determine the limiting density of suitably rescaled roots?

(b) Numerically compute the Hermite wave functions for large n, say n =
100, and compare the rescaled wave function with the Plancherel-Rotach
asymptotic formulas in all three regions (oscillatory, decaying and transi-
tion).

7.7. Use the method of steepest descent to establish the Plancherel-Rotach
asymptotics in the region of exponential decay (equation (??)). This requires
more care than Q.2.

7.8. Establish the following a priori bound on the Airy kernel. For any a ∈ R,

sup
x,y

ex+y|KAiry(x, y)| <∞. (7.13.4)

Let S be the semi-infinite interval (a,∞). Use the above estimate to establish
that the Fredholm determinant det(I − zKAiry1S) is an entire function.

7.9. Let ρn(x), n = 1, 2, . . . be probability densities on R that converge al-
most uniformly to ρ(x) with respect to Lebesgue measure on R. Assume ρ has
compact support. Show that

lim
n→∞

∫
R
f(x)ρn(x)dx =

∫
R
f(x)ρ(x)dx

for every continuous function f with compact support.



Chapter 8

The equilibrium measure

In this section we establish properties of the equilibrium measure for general
invariant ensembles. We also relate the equilibrium measure to the classical
theory of orthogonal polynomials and Fekete points.

8.1 The log-gas

Let V : R → R denote a potential such that V (x) → ∞ sufficiently rapidly as
|x| → ∞. The log-gas with size n and potential nV is a system of n identi-
cal charged particles constrained to the line interacting via pairwise Coulomb
repulsion and the potential nV (we have scaled the potential V by n in order
to ensure a scaling limit). The total energy of the system in any configuration
x ∈ Rn is given by

E(x) = n

n∑
j=1

V (xj) +
1

2

∑
j 6=k

log
1

|xj − xk|
. (8.1.1)

A fundamental postulate of equilibrium statistical mechanics is that the
probability density of finding the system in a state x at inverse temperature
β > 0 is

1

Zn,V (β)
e−βE(x), (8.1.2)

where Zn,V is the partition function

Zn,V (β) =

∫
Rn
e−βE(x)Dx. (8.1.3)

The log-gas provides us with a physical caricature of eigenvalue repulsion. On
one hand, we see that the energy E(x) has two complementary terms: the
logarithmic potential drives charges apart, but the potential V confines them
in space. On the other hand, let V define an invariant probability measure of
the form (1.1.3) on Symm(n), Her(n) or Quart(n). As a consequence of Weyl’s

121
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formula (Theorem 16), the equilibrium density (8.1.2) is precisely the joint law
of the eigenvalues for these ensembles at β = 1, 2 and 4 respectively. It is in
this sense that the ‘eigenvalues repel’.

We have scaled the energy V with n in (8.1.1) in order to obtain a simple
description of the scaling limit when n → ∞. In order to study this limit, we
view the energy function as a functional of the empirical measure, Ln, rather
than a configuration x ∈ Rn. For (r, s) ∈ R2 let

e(r, s) =
1

2
V (r) +

1

2
V (s) + log

1

|r − s|
, (8.1.4)

and given a probability measure µ on the line, define the functional

I[µ] =

∫
R

∫
R
e(r, s)µ(dr)µ(ds). (8.1.5)

Observe that if Ln is the empirical measure associated to x ∈ Rn, then

E(x) = n2

 1

n

n∑
j=1

V (xj) +
1

n2

∑
j 6=k

log
1

|xj − xk|

 = n2Ĩ[Ln], (8.1.6)

and we may rewrite the partition function in the form

Zn,V (β) =

∫
Rn
e−n

2βĨ[Ln]Dx. (8.1.7)

Here Ĩ[Ln] denotes the renormalized functional

Ĩ[µ] =

∫
R

∫
R
1r 6=se(r, s)µ(dr)µ(ds), (8.1.8)

that takes into account all interaction terms in I[µ], except the singular self-
interaction term from I[µ]. The logarithmic singularity in e(r, s) is integrable if
µ(ds) has an absolutely continuous density. Thus, if the particles in the log-gas
spread out sufficiently as n→∞, we expect that µ has a smooth density, and

lim
n→∞

1

n2
logZn,V (β) = min

µ
I[µ]. (8.1.9)

In order to establish this relation, it is first necessary to obtain a precise ana-
lytical understanding of this minimization problem. We first prove such results
under the formal assumption that there exists an R > 0 such that V (x) = +∞
for |x| > R. This simply means that we first restrict attention to measures with
support within the interval [−R,R]. Once the ideas are clear in this setting, we
turn to measures with support on the line.
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8.2 Energy minimization for the log-gas

8.2.1 Case 1: bounded support

Let PR denote the set of probability measures on the interval [−R,R]. Recall
that the natural topology on PR is the weak topology (we adopt the probabilists
convention for what is conventionally termed the weak-∗ topology). A sequence
of measures {µk}∞k=1 ∈ PR converges weakly to µ ∈ PR if

lim
n→∞

〈µn, f〉 = 〈µ, f〉, (8.2.1)

for every function f ∈ C(R). This topology is natural, because it yields com-
pactness by Helly’s theorem: Each sequence {µk}∞k=1 ∈ PR has a subsequence
that converges weakly to a measure in PR.

Theorem 72. Assume V is a continuous function on [−R,R]. There exists a
unique probability measure µ∗ ∈ PR such that

I[µ∗] = min
µ∈PR

I[µ]. (8.2.2)

The proof of Theorem 72 is a demonstration of the classical method of the
calculus of variations. There are two distinct ideas at work: existence follows
from the fact that the functional I[µ] is weakly lower semicontinuous; uniqueness
follows from the fact that I[µ] is a strictly convex function on PR.

Lemma 26. Suppose the sequence {µn}∞n=1 ∈ PR converges weakly to µ ∈ PR.
Then

I[µ] ≤ lim inf
n→∞

I[µn]. (8.2.3)

Lemma 27. Let µ0 6= µ1 be two measures in PR and let µθ = (1− θ)µ0 + θµ1

denote their convex combination for each θ ∈ (0, 1). Then

I[µθ] < (1− θ)I[µ0] + θI[µ1]. (8.2.4)

Proof of Theorem 72. Existence. Since V is bounded, the function e(x, y) is
bounded below on [−R,R]. Therefore, infµ∈PR I[µ] > −∞. Further, since the
logarithmic singularity is integrable, I[µ] <∞ for any measure that is absolutely
continuous. Thus, we may assume that there is a sequence of measures {µk}∞k=1

such that
lim
k→∞

I[µk] = inf
µ∈PR

I[µ] < infty. (8.2.5)

Since PR is compact in the weak topology, we may extract a convergent
subsequence, also labeled {µk}∞k=1 for simplicity. Let µ∗ denote the weak limit
of this subsequence. We then use Lemma 26 to obtain the chain of inequalities

inf
µ∈PR

I[µ] ≤ I[µ∗] ≤ lim inf
k→∞

I[µk] = inf
µ∈PR

I[µ]. (8.2.6)

Thus, µ∗ is a minimizer.
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Uniqueness. Assume µ∗ and ν∗ are two distinct minimizers. We apply
Lemma 27 to their convex combination with θ = 1/2 to obtain the contradiction

inf
µ∈PR

I[µ] ≤ I[
1

2
µ∗ +

1

2
ν∗] <

1

2
(I[µ∗] + I[ν∗]) = inf

µ∈PR
I[µ]. (8.2.7)

8.2.2 Weak lower semicontinuity

We now turn to the proof of Lemma 26. We first observe that for each monomial
rjsk in the variables r and s, the quadratic functional

µ 7→
∫ R

−R

∫ R

−R
rjsk µ(dr)µ(ds) =

(∫ R

−R
rjµ(dr)

)(∫ R

−R
skµ(ds)

)

is weakly continuous since it is the product of two bounded linear functionals
on PR. Since each polynomial p(r, s) in the variables (r, s) is a finite sum of
monomials, the functional

µ 7→
∫ R

−R

∫ R

−R
p(r, s)µ(dr)µ(ds)

is also weakly continuous. Finally, since each continuous function f ∈ C([−R,R]2)
may be uniformly approximated by polynomials, the quadratic functional

µ 7→
∫ R

−R

∫ R

−R
f(r, s)µ(dr)µ(ds)

is weakly continuous.
The function e(s, t) defined in (8.1.4) is not continuous on [−R,R]2 since the

logarithmic term is unbounded on the diagonal s = t. However, for any M > 0,
the truncated function eM (r, s) = min(e(r, s),M) is continuous. Thus, given a
weakly convergent sequence of measures {µk}∞k=1 with limit µ ∈ PR we find∫ R

−R

∫ R

−R
eM (r, s)µ(dr)µ(ds) = lim

k→∞

∫ R

−R

∫ R

−R
eM (r, s)µk(dr)µk(ds)

≤ lim inf
k→∞

∫ R

−R

∫ R

−R
e(r, s)µk(ds)µk(ds) = lim inf

k→∞
I[µk].

We let M →∞ on the left hand side and use the monotone convergence theorem
to obtain (8.2.3).

8.2.3 Strict convexity

Lemma 27 is a particular consequence of a general fact in potential theory. The
essential idea is to recognize that the function z 7→ − log |z| is the fundamental
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solution to Laplace’s equation in C ∼= R2. More precisely, given a signed measure
µ with a smooth density ρ(z), supported in the ball BR ⊂ C the unique solution
to Poisson’s equation with Dirichlet boundary condition

−4ψ = µ, z ∈ C\Ω, ψ(z) = 0, |z| = R, (8.2.8)

is given by the integral formula

ψ(z) =

∫
BR

G(z, w)ρ(w)Dw, z ∈ BR, (8.2.9)

where Dw denotes the two-dimensional area element in C and G(z, w) is the
Green’s function for Poisson’s equation in the ball BR with Dirichlet boundary
conditions,

G(z, w) =
1

2π
log

(
|w|
R

|z − wR|
|z − w|

)
, wR =

R2w

|w|2
, z, w ∈ BR. (8.2.10)

The function G(z, w) is obtained by the method of images: the image point
wR is the reflection of the point w ∈ BR in the circle ∂BR [Joh91, §4.1]. What
matters here is that the dominant term in the Green’s function is the logarithmic
term − log |z − w|, just as in equation (8.1.5), and the positivity of∫
BR

∫
BR

G(z, w)µ(dz)µ(dw) = −
∫
BR

ψ(w)4ψ(w) ds =

∫
BR

|∇ψ(w)|2Dw > 0.

(8.2.11)
However, in contrast with (8.1.5) here we have assumed that µ(dw) has a smooth
density ρ(w), whereas the measures of interest in (8.1.5) are concentrated on an
interval, and may have no regularity. Thus, some care is needed in formulating
and proving a theorem on positivity analogous to (8.2.11).

Recall that a signed Borel measure µ on the line may be uniquely decomposed
into two positive measures µ± respectively such that µ = µ+−µ−. The Fourier
transform of a measure is defined by

µ̂(u) =

∫
R
e−ius µ(ds), u ∈ R. (8.2.12)

The Fourier transform is a well-defined distribution. If µ± are finite measures
on [−R,R], the Fourier transform is a continuous function of u that decays to
zero as |u| → ∞ by the Riemann-Lebesgue lemma.

Lemma 28. Assume µ = µ+ − µ− is a signed measure on [−R,R] such that∫ R

−R
µ+(dr) =

∫ R

−R
µ−(dr) <∞. (8.2.13)

Then we have the identity∫ R

−R

∫ R

−R
log

1

|r − s|
(µ+(dr)µ+(ds) + µ−(dr)µ−(ds)) (8.2.14)

=

∫ R

−R

∫ R

−R
log

1

|r − s|
(µ+(dr)µ−(ds) + µ−(dr)µ+(ds)) +

∫ ∞
0

|µ̂(u)|2

u
du.
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In particular, I[µ] > 0 if µ is non-zero and satisfies (8.2.13).

Remark 73. Equation (8.2.14) simply says that∫ R

−R

∫ R

−R
log

1

|r − s|
µ(dr)µ(ds) =

∫ ∞
0

|µ̂(u)|2

u
du. (8.2.15)

for a signed measure µ with
∫ R
−R µ(ds) = 0. This identity has been written in

the form (8.2.14) in order to ensure that there are no ill-defined terms of the
form ∞ −∞. It is now clear from (8.1.4) and (8.1.5) that I[µ] > 0 for such
measures.

Proof. This proof is from [DLW96, p.142]. We first regularize the logarithm at
0 and use the following integral representation. For any real s and ε > 0

log(s2 + ε2) = log ε2 + 2 Im

∫ ∞
0

e−εu
eisu − 1

iu
du. (8.2.16)

We apply this integral representation to the following regularization of I[µ], and

use the fact that
∫ R
−R µ(dr) = 0, to obtain∫ R

−R

∫ R

−R
log
(
(r − s)2 + ε2

)
µ(dr)µ(ds)

= 2 Im

∫ ∞
0

e−εu
∫ R

−R

∫ R

−R

ei(r−s)u − 1

iu
µ(dr)µ(ds) du

= 2 Im

∫ ∞
0

e−εu
|µ̂(u)|2

iu
du = −2

∫ ∞
0

e−εu
|µ̂(u)|2

u
du.

We may rewrite this identity in terms of µ± as follows:∫ R

−R

∫ R

−R
log

1√
(r − s)2 + ε2

(µ+(dr)µ+(ds) + µ−(dr)µ−(ds)) (8.2.17)

=

∫ R

−R

∫ R

−R
log

1√
(r − s)2 + ε2

(µ+(dr)µ−(ds) + µ−(dr)µ+(ds)) +

∫ ∞
0

e−εu
|µ̂(u)|2

u
du.

We now let ε ↓ 0 and use the monotone convergence theorem to obtain (8.2.14)

Finally, let us prove Lemma 27. Suppose µ0 and µ1 be two measures in PR
as in (8.2.4). The difference

(1−θ)I[µ0]+θI[µ1]−I[µθ] = θ(1−θ)
∫ ∫

log
1

|r − s|
(µ0 − µ1) (dx) (µ0 − µ1) (dx)

in the sense of signed measures. Thus, it is strictly positive when µ0 6= µ1 by
Lemma 28.
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8.2.4 Case 2: Measures on the line

Having explained the main ideas behind Theorem 72 for finite measures, let us
turn to the measures on the line. The proof of uniqueness requires no change,
since it is easily verified that Lemma 28 holds for measures in PR. However,
it is necessary to modify the proof of existence to account for a possible loss
of compactness: a sequence of measures in PR may drift off to infinity (e.g.
µk = δk, k ∈ Z). The appropriate condition required for compactness here is
the following.

Definition 74. A sequence of measures {µk}∞k=1 ∈ PR is tight if for every ε > 0
there exists Mε > 0 such that

sup
k≥1

µk (R\[−Mε,Mε]) < ε. (8.2.18)

Compactness of measures in PR is provided by the Prokhorov-Varadarajan
criterion: the sequence {µk}∞k=1 ∈ PR has a subsequence that converges to
a measure µ ∈ PR if and only if the sequence {µk}∞k=1 is tight [Str10]. In
practice, application of this criterion requires a uniform estimate on the tails
of the measures {µk}∞k=1. Such a bound is possible only if the growth of the
confining potential V (x) as |x| → ∞ is faster than the divergence of log |x| as
|x| → ∞. We formalize this requirement as follows. For any ε > 0, observe that

|r − s| = |r − 1− (s− 1)| ≤
√
r2 + 1

√
s2 + 1. (8.2.19)

Therefore, we have the lower bound

log
1

r − s
≥ 1

2

(
log

1

r2 + 1
+ log

1

s2 + 1

)
. (8.2.20)

Let us define the function

l(s) =
1

2
log

1

s2 + 1
+

1

2
V (s). (8.2.21)

If l(s) is bounded below, then by adding a constant to V if necessary, we can
ensure that l(s) ≥ 0 for all s. Clearly, this does not change the nature of the
minimization problem.

Theorem 75. Assume V (s) is a continuous function such that l(s) is bounded
below and l(s)→∞ as |s| → ∞.

(a) There exists a unique probability measure µ∗ ∈ PR such that

I[µ∗] ≤ min
µ∈PR

I[µ]. (8.2.22)

(b) The support of the measure µ∗ is contained within a finite interval.
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Proof. (a) Since V is bounded below and the addition of a constant to V does
not change the minimization problem, we may assume that l(s) ≥ 0. Then

e(r, s) = log
1

|r − s|
+

1

2
V (r) +

1

2
V (s) ≥ l(r) + l(s) ≥ 0, (8.2.23)

and c := infµ∈PR I[µ] ≥ 0. Suppose µk
∞
k=1 is an infimizing sequence: i.e.

limk→∞ I[µk] = c. Without loss of generality, we may assume that I[µk] ≤ c+1
for all k. Tightness of the sequence {µk}∞k=1 follows from the following (Cheby-
shev) inequality. For any M > 0,

c+ 1 ≥ I[µk] =

∫
R

∫
R
e(r, s)µk(dr)µk(ds) (8.2.24)

≥ 2

∫
R
l(s)µk(ds) ≥ 2lM

∫
|s|>M

µk(ds) = 2lMµk(R\[−M,M ]),

where lM = inf |s|≥M l(s). Since lim|s|→∞ l(s) =∞, lM →∞ as M →∞. Thus,
for any ε > 0, we may choose M = Mε large enough so that (8.2.18) holds. The
rest of the proof of part (a) follows that of Theorem 72.

(b) For any M > 0, let SM denote the set (−∞,M)∪ (M,∞). We will show
that µ∗(SM ) = 0 if M is large enough. The proof relies on varying the measure
µ∗ by adding more mass proportional to µ∗ in the set SM . More precisely, let
ν denote the restriction of µ∗ to the set SM , and for any t ∈ (−1, 1), define the
measures

µt =
µ∗ + tν

1 + tν(SM )
. (8.2.25)

We then find that I[µt] is a differentiable function of t, with

0 =
dI[µt]

dt

∣∣∣∣
t=0

= 2

∫
SM

ν(ds)

∫
R
µ∗(dr)e(r, s)− 2ν(SM )I[µ∗]. (8.2.26)

The estimate (8.2.23) and positivity of l yields the lower bound

2

∫
SM

ν(ds)

∫
R
µ∗(dr)e(r, s) (8.2.27)

≥
∫
SM

l(s)ν(ds) +

∫
R
l(r)µ∗(dr) ≥

∫
SM

l(s)ν(ds) ≥ lMν(SM ).

As in part (a), lM → ∞ as M → ∞. Thus, for M sufficiently large, we have
lM − I[µ∗]) > 0 and since ν is a positive measure, we have the (trivial) estimate

2(lM − I[µ∗])ν(SM ) ≥ 0. (8.2.28)

On the other hand, the inequalities (8.2.26) and (8.2.27) yield the opposite
inequality

2(lM − I[µ∗])ν(SM ) ≤ 0. (8.2.29)

Thus, ν(SM ) = 0 for all M such that lM > I[µ∗].
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8.3 Fekete points

A second approach to the energy minimization problem relies on a study of the
minimizers of the function E(x) defined in (8.1.1) for x ∈ Rn, and a potential
V that satisfies the assumptions of Theorem 75. For any such potential, 0 ≤
E(x) < ∞ for any x ∈ Rn such that xj 6= xk, j 6= k. Thus, for each n, there
exists a set of points Fn ⊂ Rn, such that

E(x∗) = min
x∈Rn

E(x), x∗ ∈ Fn. (8.3.1)

The set Fn is called the set of n-Fekete points. The Fekete points are natu-
rally connected to the minimization problem for the functional I[µ] through the
modified functional H[Ln], where Ln(x) is the empirical measure associated to
a point x ∈ Rn. Let δn denote the rescaled energy of Fekete points

δn =
1

n(n− 1)
E(x(n)). (8.3.2)

The main result is then the following

Theorem 76. Assume V satisfies the assumptions of Theorem 75. Let {x(n)}∞n=1

be a sequence of points x(n) ∈ Fn and Then

(a) The rescaled energy of Fekete points increases monotonically to I[µ∗].

0 ≤ δn ≤ δn+1 ≤ I[µ∗]. (8.3.3)

(b) The empirical measures L(x(n)) converge weakly to µ∗.

Proof of (a). We first prove the estimates (8.3.3). The uniform upper bound on
E(x(n)) is obtained as follows. Fix a positive integer n and a point x(n) ∈ Fn.
By definition, for any s = (s1, . . . , sn) ∈ Rn,

E(x(n)) ≤ E(s) =
1

2

n∑
j,k=1

(V (sj) + V (sk)) +

n∑
j 6=k=1

log
1

|sj − sk|
. (8.3.4)

Let µ(ds) be any probability measure on the line. We integrate (8.3.4) with
respect to the n-fold tensorized probability measure µ ⊗ µ · · · ⊗ µ on Rn to
obtain

E(x(n)) (8.3.5)

≤
∫
Rn

1

2

n∑
j,k=1

(V (sj) + V (sk)) +

n∑
j 6=k=1

log
1

|sj − sk|

µ(ds1)µ(ds2) · · ·µ(dsn)

= n(n− 1)

∫
R

∫
R

e(r, s)µ(ds)µ(dr) = I[µ],

since for each value of the indices j and k only the integrals over µ(dsj) and
µ(dsk) give contributions that are not unity and there are n(n − 1) possible
unordered pairings of j and k. In particular, E(x(n)) ≤ n(n− 1)I[µ∗].
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The monotonicity of δn follows from the following argument. Suppose x(n+1) =
(x1, . . . , xn+1) is point in the Fekete set Fn+1. We fix an index m, 1 ≤ m ≤ n+1
and use the definition of E in (8.1.1) to obtain

e
− 1
n(n+1)E(x(n+1))

=

 ∏
1≤j 6=k≤n+1

|xj − xk| e−
V (xj)

2 e−
V (xk)

2


1

n(n+1)

(8.3.6)

=

∏
j 6=m

|xj − xm| e−
V (xj)

2 −
V (xm)

2


2

n(n+1)
 ∏
j,k 6=m

|xj − xk| e−
V (xj)

2 e−
V (xk)

2


1

n(n+1)

≤

∏
j 6=m

|xj − xm| e−
V (xj)

2 e−
V (xm)

2


2

n(n+1)

e
−δn

n−1
n+1

since the second term is the energy E(x̂) of the point x̂ ∈ Rn obtained from
x(n) by projecting out the coordinate xm.

Since m is arbitrary, we take the product over 1 ≤ m ≤ n+ 1 to obtain

e−
1
nE(x(n+1)) ≤ e−(n−1)δn

 ∏
1≤m≤n+1

∏
1≤j≤n+1,j 6=m

|xj − xm| e−
V (xj)

2 −
V (xm)

2


2

n(n+1)

= e−(n−1)δne
− 2
n(n+1)E(x(n+1))

. (8.3.7)

This inequality simplifies to δn ≤ δn+1.

Proof of (b). While the self-energy of all the Fekete points is infinite, inequality
(8.3.3) shows that a suitably renormalized energy is finite, and bounded above
by I[µ∗]. This inequality, in combination with an easy modification of the
Chebyshev inequality (8.2.24) also shows that the empirical measures L(x(n))
are tight. Thus, there exists a convergent subsequence and a limiting probability
measure ν ∈ PR such that the empirical measures L(n) defined by the Fekete
points x(n) converge weakly to ν as n→∞.

For any M > 0, we introduce the cut-off energy eM (r, s) = min(M, e(r, s))
and observe that

δn =
1

n(n− 1)
E(x(n)) =

n2

n(n− 1)

∫
R

∫
R
1r 6=se(r, s)L

(n)(dr)L(n)(ds)

≥ n2

n(n− 1)

∫
R

∫
R
eM (r, s)L(n)(dr)L(n)(ds)− M

n− 1
.

Since the function eM (r, s) is continuous and 0 ≤ eM (r, s) ≤ M , we may inter-
change limits as n→∞, and use Theorem 76(a) to obtain

I[µ∗] ≥ lim inf
n→∞

δn ≥
∫
R

∫
R
eM (r, s)ν(dr)ν(ds). (8.3.8)
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We now let M → ∞ and use the monotone convergence theorem and the fact
that µ∗ is a minimizer to obtain

I[µ∗] ≥ I[µ] ≥ I[µ∗]. (8.3.9)

Since µ∗ is unique, it follows that µ∗ = ν.
This argument proves that every subsequential limit of L(n) is µ∗. Thus, the

entire sequence converges to µ∗.

8.4 Exercises

The first three questions are related. The goal is to formulate and analyze the
equation for the equilibrium measure µ∗ associated to the potential V (x). In
order to simplify your calculations, assume that µ∗ has a continuous density ψ,
in all the problems below. The last two questions discuss enumeration problems
related to the Catalan numbers.

1. Basics of the Hilbert transform. Let G(z) denote the Stieltjes transform

G(z) =

∫ ∞
−∞

1

s− z
µ∗(ds) =

∫ ∞
−∞

1

s− z
ψ(s)(ds), z ∈ C\supp(µ∗). (8.4.1)

The Hilbert transform of ψ is the limit of the Stieltjes transform as z → x ∈ R.
The Hilbert transform also differs from the Stieltjes transform by the inclusion
of a factor of π (since this makes the Fourier transform of the operator H
particularly simple). That is, given µ∗ as above, we set

Hψ(x) =
1

π
p.v.

∫ ∞
−∞

ψ(s)

x− s
ds := lim

ε→0

∫ ∞
−∞

x− s
(x− s)2 + ε2

ψ(s) ds. (8.4.2)

(a) Show that Hψ is a bounded function when ψ(x) is continuous.

(b) Show that µ∗ may be recovered from G by evaluating the jump in the
imaginary part of G across the support of µ∗:

lim
ε→0

1

2πi
(G(x+ iε)−G(x− iε)) = ψ(x). (8.4.3)

(c) Compute the Hilbert transform of the following functions to obtain a feel
for it (answers are on wikipedia):

eix, δ0(x), 1[a,b](x).

2. Integral equation for ψ. Assume V is differentiable and satisfies the assump-
tions of Theorem 75 so that µ∗ has compact support. Show that if µ∗ has a
density ψ as above, then it satisfies the integral equation

Hψ(x) =
1

2π
V ′(x) on supp(µ∗). (8.4.4)

3. Fixed point equation for the resolvent. One solution to (8.4.4) uses the
Stieltjes transform G(z). Assume that V (x) is a polynomial of degree d ≥ 2.
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(a) Show that G satisfies the quadratic equation

G2(z) + V ′(z)G(z) + P (z) = 0, (8.4.5)

where P (z) is a polynomial of degree d − 2 whose coefficients are deter-
mined by the moments of µ∗ of degree lower than d. The solution branch
is determined by the requirement that G(z) ∼ −1/z as z → ∞ which is
immediate from (8.4.1).

(b) Equation (8.4.5) may be solved by making further assumptions on the
form of µ∗. In particular, assume that V (z) is even, that the support of
µ∗ is a single interval [−2a, 2a], and show that (8.4.5) simplifies to

G(z) = Q(z)
√
z2 − 4a2 − 1

2
V ′(z) (8.4.6)

where Q(z) is a polynomial of degree d − 2 whose coefficients are deter-
mined by the condition that G(z) ∼ −1/z as z →∞.

(c) Apply these ideas to compute the equilibrium measure for the quartic
potential

V (x) =
1

2
x2 +

g

4
x4. (8.4.7)

Show that

G(z) =

(
1

2
+
g

2
x2 + ga2

)√
x2 − 4a2 − 1

2

(
x+ gx3

)
, (8.4.8)

where a2 solves the quadratic equation

3ga4 + a2 − 1 = 0. (8.4.9)

(d) Compute the associated density ψ(x) and plot it as g varies.

4. Establish the identity (1.4.11).

5. Show that the Catalan numbers enumerate the number of Dyck paths as
discussed below equation (1.4.12).



Chapter 9

Iterative methods and flows

9.1 Lanczos Iteration

In this section, we will consider applying the Lanczos iteration to a random
matrix M . In the end, we will consider M ∼ GOE(n),GUE(n),LOE(m,n), or
LOE(m,n). The Lanczos iteration is the following:

Algorithm 1: Lanczos Iteration

1. q1 is the initial vector. Suppose ‖q1‖22 = q∗1q1 = 1

2. Set b0 = −1, q0 = 0

3. For k = 1, 2, . . . , n

(a) Compute ak = (Mqk − bk−1qk−1)∗qk.

(b) Set vk = Mqk − akqk − bk−1qk−1.

(c) Compute bk = ‖vk‖2 and if bk−1 6= 0, set qk+1 = vk/bk. Otherwise
terminate.

Before considering random matrices, we establish properties of this iteration.
Define

Qk =
[
q1 q2 · · · qk

]
, Tk =



a1 b1
b1 a2 b2

b2
. . .

. . .

. . .

bk−1

bk−1 ak


.
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It follows directly from step 3(b) that

MQk = QkTk + bkqk+1e
T
k . (9.1.1)

We make an important distinction between these calculations and that in Sec-
tion 3.4. Here Tk will end up denoting the upper-left k × k submatrix of a
larger Jacobi matrix whereas in Section 3.4 it represented the lower-right k× k
submatrix.

Lemma 29. Suppose M is a symmetric matrix. And suppose that the Lanczos
iteration does not terminate before k = n. For k = 2, 3, . . . , n,

q1, . . . , qk

is an orthonormal basis for the Krylov subspace Kk = span{q1,Mq1, . . . ,M
k−1q1}.

Proof. It is clear that step 3(c) enforces that q1, . . . , qk are all unit vectors.
Suppose that q1, . . . , qk−1 satisfy

δij = q∗i qj , 1 ≤ i, j ≤ k − 1.

Then consider

q∗i qk =
1

bk−1
q∗i (Mqk−1 − ak−1qk−1 − bk−2qk−2) .

For i < k − 2 we have

q∗i qk =
1

bk−1
q∗iMqk−1 =

1

bk−1
(Mqi)

∗qk−1.

From (9.1.1) Mqi is a linear combination of {qi−1, qi, qi+1}. And therefore
q∗i qk = 0. Next, for i = k − 2

q∗i qk =
1

bk−1
q∗k−2 (Mqk−1 − bk−2qk−2) =

1

bk−1
((Mqk−2)∗qk−1 − bk−2) .

Again, from (9.1.1)

Mqk−2 = ak−2qk−2 + bk−2qk−1 + bk−3qk−3.

This shows that

(Mqk−2)∗qk−1 = bk−2

and q∗i qk = 0. Lastly, for i = k − 1

q∗i qk =
1

bk−1
q∗k−1 (Mqk−1 − ak−1qk−1) =

1

bk−1

(
q∗k−1Mqk−1 − ak−1

)
.

We then need to use that

ak−1 = (Mqk−1 − bk−2qk−2)∗qk−1 = q∗k−1Mqk−1,

to determine that q∗i qk = 0. This concludes the proof.
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The following gives the distribution of Tk throughout the Lanczos iteration.

Theorem 77. Suppose M ∼ GOE(n),GUE(n),LOE(m,n),LUE(m,n). For
any given q1 ∈ Rn (or Cn for GUE,LUE) with probability one, the Lanczos
iteration does not terminate before k = n. And the distribution on ak, bk,
k = 1, 2, . . . , n does not depend on q1. In a distributional sense it suffices to
take q1 = e1 and therefore the distribution is determined by the Householder
tridigaonalization of M .

Proof. To establish the first claim it suffices to establish the linear independence
of

q1,Mq1, . . . ,M
n−1q1.

Then, diagonalize M = UΛU∗:[
q1 Mq1 · · · Mn−1q1

]
7→ U

[
U∗q1 ΛU∗q1 · · ·Λn−1U∗q1

]
= Udiag(U∗q1)

1 x1 x2
1 · · · xn−1

1
...

...
...

1 xn x2
n · · · xn−1

n


Here x1, . . . , xn are the eigenvalues of M . Therefore the determinant of this ma-
trix is non-zero provided that (x1, . . . , xn) are distinct and no component of U∗b
vanishes. By Lemma ??, (5.3.1) (for LOE,LUE) and (3.3.3) (for GOE,GUE)
it follows that the eigenvalues are distinct with probability one. Then because
the eigenvectors of M can be take to be Haar distributed on U(n) or O(n), U∗b
is uniformly distributed on the sphere in Rn (or Cn). So, then then |U∗b|2,
taken componentwise, is β-Dirichlet distributed. And therefore, no component
vanishes, with probability one. To establish the second claim consider the QR
factorization [

q1 Mq1 · · · Mn−1q1

]
=
[
q1 q2 · · · qn

]
R.

Let Q0 be an orthogonal (or unitary) matrix so that q1 = Q0e1. Then

Q∗0
[
Q0e1 MQ0e1 · · · Mn−1Q0e1

]
=[

e1 Q∗0MQ0e1 · · · Q∗0M
n−1Q0e1

]
= Q∗0

[
q1 q2 · · · qn

]
R.

The invariance of M implies that M ∼ Q∗0MQ0. So, the Lanczos iteration
applied to the matrix M with starting vector q1 gives

T = Q∗MQ, Q =
[
q1 q2 · · · qn

]
.

And then the Lanczos iteration applied to the matrix Q∗0MQ0 with starting
vector e1 gives

T̃ = Q̃∗Q∗0MQ0Q̃, Q̃ = Q∗0
[
q1 q2 · · · qn

]
.
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We see that T̃ = T . And then T̃ is equal in distribution to that which is found
apply the Lanczos iteration to M with staring vector q1 = e1. From the scheme
that is reflected in Figure 3.4.1, the spectral measure of a Jacobi matrix T ,
(3.4.5), encodes T itself. That is, T is determined by its eigenvalues and the
absolute values of the first components of its normalized eigenvectors. Because
the first column of Qn is e1, it is clear that the first components of the eigen-
vectors of T coincide with those of M . The same is true of tridiagonalization
by Householder reflections. Thus Lanczos with q1, run to completion, coincides
with Householder tridiagonalization.

The behavior of this algorithm in floating-point/finite-precision arithmetic
is an extremely important topic. In this text, however, we ignore this, and
suppose exact arithmetic.

9.2 An alternate proof of the semicircle law

To give an alternate proof the the semicircle law, we use the method of moments.
The following two theorems give the foundations for the method.

Theorem 78 (Hamburger moment problem). Let (mk)k≥0 be a sequence of real
numbers such that the upper-left `× ` subblocks of the Hankel matrix

m0 m1 m2 · · ·
m1 m2 m3 · · ·
m2 m3 m4 · · ·
...

...
...

. . .


are positive definite for every ` ≥ 1. Then there exists a (positive) Borel measure
µ on R such that

mk =

∫
xkµ(dx).

Furthermore, if there exists constants C,D > 0 such that

|mk| ≤ CDkk!

then µ is unique.

The most important portion of the previous theorem for the following de-
velopments is the uniqueness. The existence, in our case, will be evident.

Theorem 79 (Weak convergence via moments). Let (Xn)n≥1 be a sequence of
random variables. Suppose further that that there is a random variable X with
E[|X|k] <∞ for all k ≥ 0 and

lim
n→∞

E[Xk
n] = E[Xk] =: mk.
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Lastly, suppose that there is only one Borel measure µ on R with moment se-
quence (mk)k≥0. Then

Xn
dist.−→ X,

as n→∞.

Proof. First, it follows immediately from the k = 2 moment condition that
(Xn)n≥1 is tight. So, every subsequence contains a further subsequence that
converges in distribution to a probability measure µ. To avoid a flood of sub-
scripts, just suppose (Xn)n≥1 is the first subsequence. Then let t be a point of
continuity for µ((∞, t]). Then for the further subsequence

lim
`→∞

FXn(`)
(t) = µ((∞, t]).

We can assume, without loss of generality, that Xn(k) → Y a.s. where FY (t) = Reference Theorem 3.2.2 in Durrett,
or add it here?

µ((∞, t]) Then for k fixed, consider

lim sup
`→∞

E[Xk
n(`)] ≤ lim sup

`→∞
E[fR(Xn(`))] + lim sup

`→∞
E[Xk

n(`) − fR(Xn(`))]

where fR(x) = xk if |x| ≤ R and is equal to zero otherwise. The dominated
convergence theorem implies lim`→∞ E[fR(Xn(`))] = E[fR(Y )]. Then for R ≥ 1

lim sup
`→∞

E[Xk
n(`)] ≤ E[fR(Y )] +R−km2k.

Sending R → ∞ gives lim sup`→∞ E[Xk
n(`)] ≤ E[Y k]. The same approach with

a lim inf gives the reverse inequality. This shows that the measure µ is the
same for every subsequence (and the further subsequence). This then implies,

by Lemma 33, that Xn
dist.−→ X as n→∞.

The last fact we use concerns numerical integration.

Theorem 80 (Gaussian quadrature). Let T be a n×n Jacobi matrix for n ≤ ∞
with spectral measure1 µT . For k < n, let Tk be the upper-left k × k subblock of
T . Then∫

xjµTk(dx) = eT1 T
j
ke1 = eT1 T

je1 =

∫
xjµT (dx), 0 ≤ j ≤ 2k − 1,

where µTk is the spectral measure for Tk.

Proof. The first equality follows from the definition of µTk . The second equality
is seen by noting that for any Jacobi matrix T (with diagonal entries a1, a2, . . . ,
and off diagonal entries b1, b2, . . .)

eT1 T
je1

1The spectral measure of a finite Jacobi matrix is defined (3.4.5). For a semi-infinite Jacobi
matrix T the spectral measure is the measure with respect to which the polynomials defined
by the three-term recurrence given by T are orthogonal.
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depends only on a1, b1, a2, b2, . . . , a j+1
2

if j is odd and a1, b1, a2, b2, . . . , a j
2
, b j

2
if

j is even. So, if (j + 1)/2 ≤ k (j is odd) and j/2 ≤ k − 1 (j is even)

eT1 T
j
ke1 = eT1 T

je1.

The conditions on j are equivalent to j ≤ 2k − 1 in both cases.
The last equality follows from applying (3.4.22) to Tk for j ≤ 2k − 1.

Let (x1, x2, . . . , xn) be the eigenvalues of M ∼ GOE(n) (β = 1) or M ∼
GUE(n) (β = 2). Define the scaled empirical spectral measure

Sn(dx) =
1

n

∑
k=1

δxk/
√
n(dx).

Recall that the averaged semicircle law states thatAn inconsistency exists in the test
with weak vs. distributional conver-
gence notation, etc.

ESn(dx)
dist.−→ psc(x)dx, (9.2.1)

as n→∞. By the method of moments, it suffices to show that∫
xkESn(dx) = E

1

n

k∑
j=1

(
xj√
n

)k
→
∫
xkpsc(x)dx.

Note that because psc(x)dx has compact support it is clear that it is uniquely
determined by its moments. The classical method of moments for GOE or GUE
works by noting that

E
1

n

k∑
j=1

(
xj√
n

)k
= E

1

n
Tr

(
M√
n

)k
,

and using combinatorial methods to enumerate the contributions to this trace,
to leading order. This is where our approach deviates. Let e1 be the first
standard basis vector and consider the modified moments

E eT1
(
M√
n

)k
e1.

To connect this to a measure, we employ the Lanczos iteration, Algorithm 1 with
q1 = e1. Then we have, from (9.1.1), with the convention that bn, qn+1 = 0,

(
M√
n

)
Qk = QkTk + bkqk+1e

T
k , Tk =



a1 b1
b1 a2 b2

b2
. . .

. . .

. . . bk−1

bk−1 ak

 .
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And we are led to consider the distribution of the entries. By Theorem 77
T = Tn coincides with the tridiagonalization found by Householder reflections.
So, √

βn aj ∼ N (0, 2),√
βn bj ∼ χβ(n−j).

(9.2.2)

for j = 1, 2, . . . , n, where these variables are jointly independent.
With the additional convention that b0 = 0, p−1 = 0, p0 = 1, we define a

sequence of polynomials via

(aj − x)pj−1(x) + bjpj(x) + bk−2pj(x) = 0, j = 1, 2, . . . , k − 1. (9.2.3)

By Theorem 29, or more precisely the constructive proof described in Fig-
ure 3.4.1, and Remark 32, these polynomials pj , j = 0, 1, 2, . . . , k − 1 are or-
thonormal with respect to the spectral measure for Tk, and also with respect to
the spectral measure for T`, ` > k.

Next, we consider

Tj ∼



N (0, 1/n) 1√
βn
χβ(n−1)

1√
βn
χβ(n−1) N (0, 1/n) 1√

βn
χβ(n−2)

1√
βn
χβ(n−2)

. . .
. . .

. . . 1√
βn
χβ(n−j+1)

1√
βn
χβ(n−j+1) N (0, 1/n)


(9.2.4)

Then the central limit theorem (Theorem 101) implies

√
k

(
1

k
χ2
k − 1

)
dist.−→ N (0, 2),

as k →∞, and therefore

χk −
√
k
dist.−→ N (0, 1/2), (9.2.5)

as k →∞.
This implies that for any fixed j

lim
n→∞

E [Tj ] = Tj :=



0 1
1 0 1

1
. . .

. . .

. . . 1
1 0

 .

Beyond that, suppose F is a continuous function of a m ×m Jacobi matrix in
a neighborhood of Tm and that F (T ) ≤ C(1 + ‖T‖)q for some C, q > 0 then prove this?
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lim
n→∞

EF (Tj) = F (Tj).

Then we choose F (Tj) = eT1 T
j
j e1. And, then using Theorem 80 we have shown

lim
n→∞

E eT1
(
T jj

)
e1 = lim

n→∞
E eT1

(
T jj

)
e1

= lim
n→∞

∫
xjEµT (dx) = eT1 T

j
je1.

We now must identify the sequence eT1 T
j
je1, j = 1, 2, . . . with the moment

sequence of the semicircle distribution. The second-kind Chebyshev polynomials
(Un)n≥0 are orthonormal polynomials on [−1, 1] with respect to the measure
2
√

1−x2

π dx satisfying

U0(x) = 1,

U1(x) = 2x,

1

2
Uk+1(x)− xUk(x) +

1

2
Uk−1(x) = 0, k ≥ 1.

Define Ûk(x) = Uk(x/2) and then the sequence (Ûn)n≥0 are orthonormal poly-
nomials on [−2, 2] with respect to the semicircle law psc, satisfying the recurrence

Û0(x) = 1,

Û1(x) = x,

Ûk+1(x)− xÛk(x) + Ûk−1(x) = 0, k ≥ 1.

We then conclude from Theorem 80 that

eT1 T
j
je1 =

∫ 2

−2

xjpsc(x)dx.

This shows that

EµT (dx)
dist.−→ psc(x)dx.

Our last task is to compare EµT (dx) and ESN (dx). We recall from Weyl’s
formula (2.0.1) that one can take the eigenvectors to be distributed according
to Haar measure on O(n) or U(n) depending on β = 1, 2. And then we know
from Theorem 37 that the first column of such a random matrix is distributed
uniformly on the sphere in Rn or Cn (again, depending on β = 1, 2). As O(n)
and U(n) are compact groups they are unimodular [Fol99] and therefore if Q is
Haar distributed on O(n) then so is Q−1 = QT (similarly if U is Haar distributed
on U(n) for U−1 = U∗). So, we find that the first components of the eigenvectors
have the β-Dirichlet distribution and it is elementary that each component has
mean 1/n.

The following lemma completes the proof of (9.2.1).
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Lemma 30. Suppose M ∼ GOE(n) (β = 1) or M ∼ GUE(n) (β = 2). Then

ESn = EµT .

Proof. We check the action on polynomials. By the independence of eigenvalues
and eigenvectors

∫
xjEµT (dx) = E

 n∑
j=1

u2
j

(
λk√
βn

)j =

n∑
j=1

E[u2
j ]E

[(
λk√
βn

)j]
=

∫
xjESn(dx).

Discuss upgrading this to a weak, al-
most sure convergence and discuss lim-
itations.

9.3 The conjugate gradient algorithm

The conjugate gradient algorithm (CGA) for the solution of Mx = b is given
by the following:

Algorithm 2: Conjugate Gradient Algorithm

1. x0 is the initial guess.

2. Set r0 = b−Mx0, p0 = r0.

3. For k = 1, 2, . . . , n

(a) Compute ak =
r∗k−1rk−1

r∗k−1Mpk−1
.

(b) Set xk = xk−1 + akpk−1.

(c) Set rk = rk−1 − akMpk−1. If rk = 0, terminate.

(d) Compute bk = − r∗krk
r∗k−1rk−1

.

(e) Set pk = rk − bkpk−1.

It is important to note that the ak’s and bk’s that are generated here are
not the same as those generated in the Lanczos iteration, although there is a
bijection.

All properties of the CGA are now developed directly from this iteration. It
is important to note that the historical development is not as we present it2.
We also use x0 = 0 in all our calculations. Throughout what follows we set
` = max{k : rk 6= 0} ≤ n.

2To derive Algorithm 2 from first principles, one uses the Lanczos iteration to find a square,
tridiagonal approximation of the linear system and then solves that by Gaussian elimination.
This can be one iteratively, reusing the previously derived LU factorization at each step.
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Lemma 31. For k = 0, 1, 2, . . . , `+ 1

rk = b−Mxk.

Proof. The proof is by induction. Suppose that rk−1 = b −Mxk−1. We first
compute

akMpk−1 = M(xk − xk−1).

Then

rk = b−Mxk−1 − akMpk−1 = b−Mxk.

We then examine additional properties of the vectors rk and pk.

Lemma 32. For k < `, ak is well-defined and the vectors r0, . . . , rk form an
orthogonal basis of Kk+1 = span{b,Mb, . . . ,Mkb} with respect to the inner prod-
uct 〈x, y〉2 = x∗y. The vectors p0, . . . , pk form an orthogonal basis of Kk+1 with
respect to the inner product 〈x, y〉M = x∗My.

Proof. This is also established by induction. Since the claim is clearly true for
k = 0, suppose the claim is true for k + 1 replaced with k ≥ 0 and we show it
holds for k + 1. To see that the algorithm is well-defined one notes that, based
on the induction hypothesis,

r∗k−1Mpk−1 = (pk−1 + bk−2pk−2)∗Mpk−1 = p∗k−1Mpk−1 6= 0. (9.3.1)

From the relation,

pj = rj − bjpj−1,

it follows that pk ∈ span{r0, r1, . . . , rk} and

rk ∈ span{pk−1, pk} ⊂ span{p0, p1, . . . , pk}.

It also follows that the spans of these two collections of vectors are both sub-
spaces of Kk. Since orthogonal vectors can only fail to be linearly independent
if they vanish, we show none vanish: Since k ≤ `, it follows by assumption that
rk 6= 0 and that span{r0, r1, . . . , rk} = Kk+1. From step 3(e), if pk = 0, then
rk ∈ span{p0, p1, . . . , pk−1} ⊂ Kk = span{r0, r1, . . . , rk−1}, contradicting the
linear independence of {r0, r1, . . . , rk}. Thus span{p0, p1, . . . , pk} = Kk.

Then, using the definition of ak

r∗k−1rk = r∗k−1rk−1 − akr∗k−1Mpk−1 = 0.

For j ≤ k − 2

r∗j rk = −akr∗jMpk−1.
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Then the fact that rj ∈ span{pj−1, pj} and the orthogonality of the pj ’s implies
that r∗j rk = 0. Now, for j < k, we consider

(Mpk)∗pj = r∗kMpj − bkp∗k−1pj .

For j ≤ k − 2 we have

(Mpk)∗pj = r∗kMpj .

Then Mpj ∈ Kj+2 = span{r0, r1, . . . , rj+1} implying that r∗kMpj = 0. Then for
j = k − 1

(Mpk)∗pj = r∗kMpk−1 − bkp∗k−1Mpk−1,

=
1

ak
r∗k (rk−1 − rk) +

r∗krk
r∗k−1rk−1

p∗k−1Mpk−1

= r∗krk

(
− 1

ak
+
p∗k−1Mpk−1

r∗k−1rk−1

)
= 0,

by (9.3.1). This completes the proof.

Remark 81. Replacing b with b − Mx0 in the previous statement gives its
extension to the case of non-zero initial guess x0.

Remark 82. In the notation of Lemma 32, it is clear that M−1b ∈ K`+1 since
r`+1 = 0.

Theorem 83. For k ≤ `+ 1

xk = argminy∈Kk‖x− y‖W , ‖ · ‖2W = 〈·, ·〉W ,
Kk = span{b,Mb, . . . ,Mk−1b}.

Proof. The vectors p1, . . . , pk−1 are the correct orthogonal basis of Kk to con-
sider. Since r`+1 = 0 implying that x`+1 = x = M−1b we know

x =

`+1∑
j=1

ajpj−1, y =

k∑
j=1

αjpj−1.

Then by orthogonality

‖x− y‖2W =

k∑
j=1

|αj − aj |2‖pj−1‖2W +

`+1∑
j=k+1

|aj |2‖pj−1‖2W ,

This expression is minimized choosing αj = aj for j ≤ k, i.e., choosing y =
xk.
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Working directly with this optimization problem we see that

y =

k∑
j=1

αjpj−1 =

k−1∑
j=0

cjW
jb,

for some choice of coefficients cj . Then using that b = Wx we find that

x− y =

k∑
j=0

c̃jW
jx, c0 = 1.

Theorem 84. For k ≤ `+ 1

‖x− xk‖W = minp∈Pk‖p(W )x‖W , ‖ · ‖2W = 〈·, ·〉W ,
Pk = {p : p is a polynomial of degree ≤ k, p(0) = 1}.

This theorem allows one to then characterize the minimizing polynomial. For
an arbitrary polynomial, after diagonalizing M = UΛU∗ and using x = M−1b
we find

‖p(W )x‖2W =

∞∑
j=1

|p(λj)|2

λj
|uj |2 =

∫
p(λ)

µ(dλ)

λ

where

µ =

n∑
j=1

|uj |2δλj , u = U∗b.

Let p̌k ∈ Pk be the polynomial that minimizes ‖p(W )x‖W . Let δp be a poly-
nomial of degree at most k that preserves the normalization, i.e., δp(0) = 0.
Then

‖p(W )x‖2W =

∫
|p̌k(λ)|2µ(dλ)

λ
+ 2Re

∫
p̌k(λ)δp(λ)

µ(dλ)

λ
+

∫
|δp(λ)|2µ(dλ)

λ
.

For p̌k to indeed be the minimizers, all “directional derivatives” need to vanish,
and so ∫

p̌k(λ)δp(λ)
µ(dλ)

λ
= 0

for all such δp. This implies that p̌k must be proportional to the k orthogonal
polynomial with respect to µ.

To make the most important connection of the CGA to the Lanczos iteration,
we compute the first components of the eigenvectors of the matrix T obtained
by applying Algorithm 77 to M with starting vector b:

T = Q∗MQ, Q =
[
b q2 · · · qn

]
.
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Here we suppose that ‖b‖2 = 1. Then

T = V ΛV ∗, V = Q∗U.

The (complex conjugates of the) first components of the eigenvectors of T are
given by

(Q∗U)∗e1 = U∗Qe1 = U∗b.

The spectral measure µT for T coincides with µ. So,

p̌k(λ) =
πk(λ)

πk(0)
=
pk(λ)

pk(0)
,

where πk (resp., pk) is the kth monic (resp., normalized) orthogonal polynomial
with respect to µ = µT . One can then verify that

πk(λ) = det(λI − Tk)

and this gives the well-known expression

p̌k(λ) =
det(λI − Tk)

detTk
,

that appears in [Gre89], for example.
It will turn out that this polynomial is best analyzed after we have preformed

a Cholesky decomposition of Tk, i.e., write

Tk = HkH
T
k , Hk =


α1

β1 α2

β2 α3

. . .
. . .

βk−1 αk

 , (9.3.2)

where all entries are non-negative, because the same is true of Tk. Then we note This is correct. But do we want to
add Cholesky to the text?

that

a1 = α2
1, aj = α2

j + β2
j−1, j > 1,

bj = αjβj , j ≥ 1.

We immediately see that πk(0) =
∏k
j=1 α

4
j . But more is true, because of Re-

mark 32, we see that ∫
πk(λ)2µ(dλ) =

k∏
j=1

β2
jα

2
j .

This gives the rather remarkable relation

‖b−Mx‖22 =

∫
p̌k(λ)2µ(dλ) =

k∏
j=1

β2
j

α2
j

. (9.3.3)



146 CHAPTER 9. ITERATIVE METHODS AND FLOWS

To obtain an analogous expression for ‖x− xk‖2M one has to work a bit harder.
Define the Stieltjes transforms of the monic polynomials

ck(z) =

∫
πk(λ)

λ− z
µ(dλ).

It is straightforward to show that these ck(z) satisfy the same three-term recur-
rence as πk(z) with initial conditions c−1(z) = −1 and

c0(z) =

∫
µ(dλ)

λ− z
.

Recall in Algorithm 1 we use the convention that b0 = −1. This is necessary here.
One more definition is needed. Define π̃k(x) to be a sequence of polynomials
defined by the same three-term recurrence as πk(x) but with initial conditions
π̃−1(x) = 1, π̃0(x) = 0. This implies that

ck(z) = c0(z)πk(z)− π̃k(z).

Compute

‖x− xk‖2W =

∫
p̌k(λ)2µ(dλ)

λ
=

∫
πk(λ)2

πk(0)2

µ(dλ)

λ

=
1

πk(0)2

∫
πk(λ)

[
πk(0)

λ
+ `k(λ)

]
µ(dλ)

=
ck(0)

πk(0)

because `k is ,at most, a degree k− 1 polynomial and it is therefore orthogonal
to πk. The final expression becomes

‖x− xk‖2W = c0(0)− π̃k(0)

πk(0)
.

9.4 Asymptotic analysis of the CGA applied to
LOE,LUE

We now consider the solution of

Mx = b, M ∼ LOE(m,n),LUE(m,n),

as n → ∞ and b = bn is any sequence of unit vectors. We also assume that
m = dnd e for 0 < d < 1.

The key asymptotic fact in doing the following analysis is (9.2.5). This is be-
cause if we take a matrix M distributed according to LOE(m,n) or LUE(m,n),
m ≥ n, apply the Lanczos iteration (Algorithm 1) with starting vector b, ob-
tain a tridiagonal matrix T = Tn, and then compute its Cholesky decomposi-
tion T = HnH

T
n , by Theorem 77, we know that Hn has the same distribution
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as that of the first n columns of the bidiagonalization of GinR(n,m)/
√
m or

GinC(n,m)/
√
m. See Section 5.3. So, for 1 ≤ k ≤ n

Tk = HkH
T
k , Hk ∼

1√
βm


χβm

χβ(n−1) χβ(m−1)

χβ(n−2) χβ(m−2)

. . .
. . .

χβ(n−k+1) χβ(m−k+1)

 .

where all entries are jointly independent. We then obtain, in the notation of
(9.3.2)

√
2βm

(
αj
βj
−
√
d

)
dist.−→ Z1 −

√
dZ2

as n→∞ where Z1, Z2 ∼ N (0, 1) are independent. Let (Zj)j≥1 be a process of
iid N (0, 1) random variables. We then see that in a distributional sense

k∏
j=1

αj
βj
≈

k∏
j=1

(√
d+

Z2j−1√
2βm

−
√
d
Z2j−2√

2βm

)

= dk/2 +
d
k−1

2

√
2βm

k∑
j=1

(Z2j−1 −
√
dZ2j−2) +O(m−1).

This calculation implies

√
2βm

(
‖b−Mxk‖2 − dk/2

)
dist.−→ d

k−1
2

k∑
j=1

(Z2j−1 −
√
dZ2j−2).

From this characterization the asymptotic covariance of ‖b−Mxk‖2, ‖b−Mx`‖2
can easily be obtained. And, in particular,√

2βm
(
‖b−Mxk‖2 − dk/2

)
dist.−→ N

(
0, kdk−1(1 + d)

)
as n→∞.

Exact, non-asymptotic expressions such as

E‖b−Mxk‖2 =

k∏
j=1

β(N − j)
β(M − j + 1)− 2

,

can also be obtained from this formulation. Here one just has to use indepen-
dence and that

E
[
χ2
k

]
= k, k ≥ 0, E

[
1

χ2
k

]
=

1

k − 2
, k > 2.
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Chapter 10

Numerical methods for
random matrix theory

In this text, we have seen how random matrices have applications to numerical
analysis by giving a class of distribution on which to test algorithms and deter-
mine an average-case behavior. In this chapter we explore the use of tools from
numerical analysis to gain insignt into random matrix theory. The distributions
that arise in random matrix theory are transcendental functions and computing
them is a non-trivial matter. Furthermore, there are many distributions from
random matrix theory that one wants to be able to draw samples from.

10.1 Computing Fredholm determinants

The expression for D(z) = det (1− zK) as given in (D.1.8) is not a useful ex-
pression from a numerical analysis perspective — we begin with the problem
computing the determinant of an integral operator acting in one spatial dimen-
sion and we have to then compute integrals over increasingly higher-dimensional
spaces. What is more fruitful is going back to the original motivation of Fred-
holm and considering the discretization (D.1.4) of (D.1.1) and modifying it to
use a more effective quadrature routine.

The underpinnings of developing highly-accurate quadrature rules was al-
ready introduced in Section 9.2, see Theorem 80, and it can be summarized as
follows: Given a sequence of orthgonal polynomials with respect to a probability
measure µ, take the upper-left k × k subblock of the associated Jacobi matrix
and use the eigenvalues as quadrature nodes x̌1 = x̌1(k), . . . , x̌k = x̌k(k) and
use the squared modulus of the first components of the normalized eigenvectors
as weights w1 = w1(k), . . . , wk(k). Theorem 80 then implies that

k∑
j=1

p(x̌j)wj =

∫
p(x)µ(dx),

149
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for all polynomials P2k−1 of degree ≤ 2k− 1. For general functions f , the error
estimate takes the form∣∣∣∣∣∣
k∑
j=1

f(x̌j)wj −
∫
f(x)µ(dx)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
k∑
j=1

(f(x̌j)− p(x̌j))wj

∣∣∣∣∣∣+

∣∣∣∣∫ (f(x)− p(x))µ(dx)

∣∣∣∣
where p ∈ P2k−1. Then in the case that the support of µ is an interval, it follows
that the eigenvalues of Tk all must lie in this interval and therefore∣∣∣∣∣∣

k∑
j=1

f(x̌j)wj −
∫
f(x)µ(dx)

∣∣∣∣∣∣ ≤ 2 min
p∈P2k−1

sup
x∈suppµ

|p(x)− f(x)|.

If f is continuous on suppµ it can be approximated uniformly with polynomials.
This tells us that

k∑
j=1

f(x̌j)wj →
∫
f(x)µ(dx),

for all continuous functions f on suppµ. Of course, the convergence can be
much better and we will establish just how much better it can be in a bit. We
will conjecture the existence of a second measure σ that is absolutely continuous
with respect to Lebesgue measure with a bounded density so that

1

k

k∑
j=1

f(x̌j)→
∫
f(x)σ(dx),

for all continuous functions f on suppµ.
To then get a handle on how small supx∈suppµ |p(x) − f(x)| can be, we

discuss interpolation. And while this expression is independent of the choice
of interpolation nodes, one can get an upper bound on the minimum of P2k−1

using (any) prescribed interpolation nodes. For the sake of simplicity, we will
assume that f is analytic interior to a simple smooth curve Γ that encircles the
interval [a, b]. Let a ≤ x̌1 < x̌2 < · · · < x̌k ≤ b be a interpolation nodes, we
wish to construct a polynomial p of degree at most k such that p(x̌j) = f(xj).
One such way to do this is by using a formula due to Hermite:

f(x)− p(x) =
1

2πi

∫
Γ

νk(x)

νk(z)

f(z)

z − x
dz, νk =

k∏
j=1

(x− x̌j), x ∈ [a, b].

To verify this formula it is easy to first check that the right-hand side vanishes
at x̌j for each j. And then a residue calculation confirms that the right-hand
side is indeed equal to f(x) plus a polynomial. One then finds that

|f(x)− p(x)| ≤
‖f‖L1(Γ)

2π

maxx∈[a,b] |νk(x)|
minz∈Γ |νk(z)|

. (10.1.1)
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To begin to estmate the remaining terms here, we note that

|νk(z)| = exp

(
−k
∫

log
1

|z − t|
µk(dt)

)
, µk =

1

k

k∑
j=1

δx̌j .

If z 6∈ [a, b] then log 1
|z−t| is a smooth function of t we see that as k →∞

|νk(z)| = exp

(
−k
(∫

log
1

|z − t|
σ(dt) + o(1)

))
. (10.1.2)

Furthermore, (∫
log

1

|z − t|
µk(dt)

)
k≥1

,

is an equicontinuous family for z ∈ Γ, implying that it converges uniformly, and
therefore the error term in (10.1.2) can be taken to be uniform in z ∈ Γ.

Then for x 6∈ [a, b], the function t 7→ log 1
|x−t| is lower semicontinuous.

This implies that there exists a sequence of increasing continuous functions
(`j(x, t))j≥1 with this function as its pointwise limit. Indeed, these functions
are easily constructed by “cutting off” the singularity of the logarithm. We
compute

gk(x) :=

∫
log

1

|x− t|
σ(dt)−

∫
log

1

|x− t|
µk(dt)

=

∫
`j(x, t) (σ(dt)− µk(dt)) +

∫ (
log

1

|x− t|
− `j(x, t)

)
σ(dt)

+

∫ (
`j(x, t)− log

1

|x− t|

)
σ(dt).

The last term here is non-positive. The second term is k-independent and tends
to zero as j →∞. We arrive at the upper bound

gk(x) ≤
∫
`j(x, t) (σ(dt)− µk(dt)) + o(1),

where this error term is uniform in x owing to the fact that σ has a bounded den-
sity. From here, one can send k →∞, then j →∞, to see that lim supk→∞ gk(x) ≤
0. But next, we see that for fixed j the family of functions(∫

`j(x, t) (σ(dt)− µk(dt))

)
k≥1

is equicontinuous and this imples that pointwise convergence is upgraded to
uniform, in x, convergence. For fixed j, this implies

lim sup
k→∞

max
x∈[a,b]

gk(x) ≤ o(1), j →∞.
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And sending j →∞, we find

lim sup
k→∞

max
x∈[a,b]

gk(x) ≤ 0.

What we have shown is that for every ε > 0 there exists K = K(ε) so that
for k ≥ K(ε)∫

log
1

|x− t|
σ(dt)−

∫
log

1

|x− t|
µk(dt) ≤ ε, for all x ∈ [a, b],∫

log
1

|z − t|
σ(dt)−

∫
log

1

|z − t|
µk(dt) ≥ ε, for all z ∈ Γ.

This, in turn, implies

max
x∈[a,b]

|νk(x)| ≤ exp

(
−k
[

min
x∈[a,b]

∫
log

1

|x− t|
σ(dt)− ε

])
,

min
z∈Γ
|νk(z)| ≥ exp

(
−k
[
max
z∈Γ

∫
log

1

|x− t|
σ(dt) + ε

])
,

giving the important estimate

maxx∈[a,b] |νk(x)|
minz∈Γ |νk(z)|

≤ ek(2ε+∆(Γ;σ)), (10.1.3)

∆(Γ;σ) := max
z∈Γ

∫
log

1

|x− t|
σ(dt)− min

x∈[a,b]

∫
log

1

|x− t|
σ(dt).

(10.1.4)

And we conclude that the interpolant converges at a geometric rate if ∆(Γ;σ) <
0.

10.1.1 Gauss-Legendre quadrature

Arguably, the most important case is where µ is uniform on [−1, 1] and the
associated polynomials (pk)k≥0 are the normalized Legendre polynomials. The
three-term recurrence for these polynomials is encapsulated in the Jacobi matrix
JLeg
k of the form (3.1.1) with

aj = 0, bj =
j√

(2j − 1)(2j + 1)
, j = 1, 2, . . . .

The quadrature rule that results is called the Gauss-Legendre rule. To establish
the asymptotic distribution of the associated nodes we consider the Chebyshev
polynomials of the first kind, associated with the Jacobi matrix JCheb

k with

aj = 0, bj =

{
1/
√

2 j = 1,

1/2 j > 1
, j = 1, 2, . . . .
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It is straighforward to see that there exists an absolute constant C > 0 such
that ‖JLeg

k − JCheb
k ‖ ≤ C where ‖ · ‖ is the Hilbert-Schmidt norm. Define

x̌1 < x̌2 < · · · < x̌k to be the eigenvalues of JLeg
k and define y̌1 < y̌2 < · · · < y̌k

to be the eigenvalues of JCheb
k . We leave it as an exercise to first show that

y̌j = cos

(
2(k − j + 1)− 1

k
π

)
,

and then to show that for any function f , continuous on [−1, 1]

lim
k→∞

1

k

k∑
j=1

f(y̌j) =
1

π

∫ 1

−1

f(x)
dx√

1− x2
,

i.e., 1
k

∑
j δy̌j (dt)→

1
π

dt√
1−t21[−1,1](t) weakly.

Now, suppose that f is uniformly Lipschitz continuous on [−1, 1] so that
there exists L > 0 such that |f(x)− f(y)| ≤ L|x− y|. And consider∣∣∣∣∣∣1k

k∑
j=1

f(y̌j)−
1

k

k∑
j=1

f(x̌j)

∣∣∣∣∣∣ ≤ L

k

√
k‖JLeg

k − JCheb
k ‖,

where we used the Cauchy-Schwarz inequality and Lemma 4. This vanishes
as k → ∞. Then using the fact that general continuous functions can be
approximated by polynomials (which are, of course, uniformly Lipschitz) we
conclude that 1

k

∑
j δx̌j (dt)→

1
π

dt√
1−t21[−1,1](t) weakly.

In the notation of the previous section we have identified

σ(dt) =
1

π

dt√
1− t2

1[−1,1](t).

We then claim that∫
log

1

|t− z|
σ(dt) = −Re log

(
z +
√
z2 − 1

2

)
. (10.1.5)

Here
√
z2 − 1 has its branch cut on [−1, 1] and it tends to z as |z| → ∞. If

−1 ≤ z ≤ 1 then |z +
√
z2 − 1|2 = z2 + z2 − 1 = −1 and Re log

(
z+
√
z2−1
2

)
is

constant in z and equal to log 2.
An easy way to understand what the function η(z) = z+

√
z2 − 1 looks like

off [−1, 1] is to understand it as an inverse of

z = z(η) =
1

2

(
η +

1

η

)
.

This map is called the Joukowsky map and it maps the unit circle in the η-
plane to the interval [−1, 1] in the z-plane. Our previous calculation confirmed
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this. One inverse of the Joukowsky map will map C \ [−1, 1] in the z-plane
to the interior of the unit circle in the η plane and the other inverse will map
C \ [−1, 1] to the exterior of the unit circle in the η plane. So, it remains to
determine which inverse we are dealing with. Indeed, as |z| → ∞ we can see
that z +

√
z2 − 1 blows up indicating that |z +

√
z2 − 1| > 1 for z 6∈ [1, 1]. All

of this implies

∆(Γ, σ) = max
z∈Γ

(
− log

∣∣∣∣∣z +
√
z2 − 1

2

∣∣∣∣∣
)
− log 2,

= −min
z∈Γ

log
∣∣∣z +

√
z2 − 1

∣∣∣ < 0,

provided that Γ ∩ [−1, 1] = 0. The following theorem gives a general geometric
rate of convergence for analytic functions.

Theorem 85. Suppose f is analytic in an open set Ω that contains the unit
interval [−1, 1]. Let pk(x) be the polynomial interpolant of f at −1 ≤ x̌1 < x̌2 <
· · · < x̌k ≤ 1 where (x̌j)

k
j=1 = (x̌j(k))kj=1 are the eigenvalues of a sequence of

Jacobi matrices Jk satisfying

sup
k
‖Jk − JCheb

k ‖ <∞.

Then

lim sup
k→∞

1

k
log max

x∈[−1,1]
|f(x)− pk(x)| < 0.

Furthermore, if Ω contains the Bernstein ellipse

Bγ =

{
1

2

(
η +

1

η

)∣∣∣∣ η = reiθ, 1 ≤ r ≤ γ, 0 ≤ θ < 2π
}
, γ > 1,

then

lim sup
k→∞

1

k
log max

x∈[−1,1]
|f(x)− pk(x)| ≤ − log γ.

Corollary 3. Suppose Jk is as in the previous theorem with (x̌j)
k
j=1 = (x̌j(k))kj=1

being the eigenvalues of Jk and w1, . . . , wk being the squared modulus of the first
components of the normalized eigenvectors of Jk. Suppose further f is analytic
in Bγ that Jk is the upper-left k × k subblock of a semi-infinite Jacobi matrix
whose entries for the three-term recurrence for a sequence of polynomials or-
thogonal with respect to µ which is supported on [−1, 1]. Then

lim sup
k→∞

1

k
log

∣∣∣∣∣∣
k∑
j=1

f(x̌j)wj −
∫
f(x)µ(dx)

∣∣∣∣∣∣ ≤ −2 log γ.
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Consider a self-adoint operator K with kernel K : [−1, 1]2 → R, K(x, y) =
K(y, x). Since p`(x)pm(y) for `,m = 0, 1, 2, . . . forms an orthonormal basis for
L2([−1, 1]2). We first suppose that K(x, y) can be expressed as a finite linear
combination of this basis:

K(x, y) =

k−1∑
`=0

k−1∑
m=0

α`,mp`(x)pm(y). (10.1.6)

And, for simplicity, we write this as

K(x, y) =

k−1∑
`=0

q`(x)p`(y), q` ∈ P`.

We then consider the series (D.1.8). Since this kernel induces a finite-rank
operator the series truncates at k − 1 terms. The first term is given by∫ 1

−1

K(x1, x1)dx1 =

∫ 1

−1

k−1∑
`=0

q`(x1)p`(x1)dx1 =

k∑
j1=1

k−1∑
`=0

q`(x̌j1)p`(x̌j1)wj1

=

k∑
j1=1

K(x̌j1 , x̌j1)wj1

where the xj1 ’s and the wj1 ’s are nodes and weights associated to the Gauss-

Legendre quadrature rule. Note that because
∫ 1

−1
dx = 2 the weights should be

normalized to
∑
j wj = 2. And so, on hopes that all integrals in (D.1.8) can be

turned into sums using the quadrature rule. To see this is true in general, use
a cofactor expansion down the last column

det(K(xp, xq))1≤p,q≤n+1 = (−1)n−1
n+1∑
i=1

(−1)iK(xi, xn+1) det(K(xp, xq))1≤p≤n+1,p6=i,
1≤q≤n

For the determinants in the first n terms, perform a cofactor expansion across
the nth row. This gives

det(K(xp, xq))1≤p,q≤n+1 = K(xn+1, xn+1) det(K(xp, xq))1≤p,q≤n

+

n∑
i=1

K(xi, xn+1)

n∑
j=1

(−1)j+i−1K(xn+1, xj) det(K(xp, xq))1≤p≤n,p 6=i,
1≤q≤n,q 6=j

.

From this it is apparent that this determinant is a polynomial of degree at most
2k − 2 in xn+1. The same holds for any other xj . Therefore∫

[−1,1]n
det(K(xp, xq))1≤p,q≤ndx1 . . . dxn

=

k∑
j1,...,jn=1

det(K(x̌jp , x̌jq ))1≤p,q≤nwj1 . . . wjn .
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Furthermore, it follows that

det (1− zK) = det(δpq − zK(x̌p, x̌q)wq)1≤p,q≤k.

In the general case, let Kk(x, y) be a polynomial interpolant of the form
(10.1.6) of a general continuous kernel K(x, y) such that Kk(x̌p, x̌q) = K(x̌p, x̌q)
for all choices of (p, q), 1 ≤ p, q ≤ k and denote the associated operator by Kk.
Then

|det(δpq − zK(x̌p, x̌q)wq)1≤p,q≤k − det (1− zK) |

≤
k∑
`=1

|z|`

`!

∫
[−1,1]`

|det(K(xp, xq))1≤p,q≤` − det(Kk(xp, xq))1≤p,q≤`|dx1 · · · dx`

+

∞∑
`=k+1

|z|`

`!

∫
[−1,1]`

|det(K(xp, xq))1≤p,q≤`|dx1 · · · dx`.

Now, suppose that

|K(x, y)| ≤M(x), |K(x, y)−Kk(x, y)| ≤ N(x, k).

Then the basic estimates are:

|det(K(xp, xq))1≤p,q≤`| ≤ ``/2M(x1) · · ·M(x`).

and

|det(K(xp, xq))1≤p,q≤` − det(Kk(xp, xq))1≤p,q≤`|

≤
∑̀
j=1

N(xj , k)``/2

(
j−1∏
q=1

M(xq)

) ∏̀
q=j+1

[M(xq) +N(xq, k)]

 .

To see how to establish the latter, let A0 = (K(xp, xq))1≤p,q≤` and A` =
(Kk(xp, xq))1≤p,q≤` and for j = 1, 2, . . . , ` − 1 define Aj to be the matrix that
has its first j columns coincide with A0 and its last `− j columns coincide with
A`. Then

A0 −A` =

`−1∑
j=0

(Aj −Aj+1).

Then the difference Aj −Aj+1 is estimated by

|Aj −Aj+1| ≤ N(xj , k)``/2 (M(x1) · · ·M(xj−1))

× ((M(xj+1) +N(xj+1; k)) · · · (M(x`) +N(x`; k))) .

This is found by performing a cofactor expansion down the jth column and
accounting for the first j − 1 columns and then for the last `− j − 1 columns.



10.1. COMPUTING FREDHOLM DETERMINANTS 157

From these basic estimates, one obtains∫
[−1,1]`

|det(K(xp, xq))1≤p,q≤` − det(Kk(xp, xq))1≤p,q≤`|dx1 · · · dx` ≤ ``/2+1ck(C + ck)`,∫
[−1,1]`

|det(K(xp, xq))1≤p,q≤`|dx1 · · · dx` ≤ ``/2C`,

where C =
∫
M(x)dx, ck =

∫
N(x, k)dx. It is then important to use Stirling’s

formula to estimate

``/2

`!
=

γ`√
2π`

e`

``/2
, γ` = 1 + o(1), `→∞.

This, of course, decays to zero super-exponentially. It can also be established
that γ` ≤ 1. To find a final estimate for the error, define the, in particular
continuous, function

G(c) =

∞∑
j=1

(
c√
j

)j
, c ≥ 0.

This then gives the estimate

|det(δpq − zK(x̌p, x̌q)wq)1≤p,q≤k − det (1− zK) |

≤ ck
k∑
`=1

`
|z|`

``/2
√

2π`
(e(C + ck))` +

∞∑
`=k+1

|z|`

``/2
√

2π`
(eC)`,

≤ ck

√
k

2π
G (|z|e(C + ck)) +

1√
2πk

(
|z|eC√
k

)k
G(|z|eC).

Since the second term tends to zero so quickly, one can often infer that det(δpq−
zKk(x̌p, x̌q)wq)1≤p,q≤k tends to det (1− zK) at a rate determined by, up to a

factor of
√
k, ck.

Theorem 86. Suppose K : [−1, 1]2 → R is analytic in the sense that it can be
represented as

K(x, y) = − 1

4π2

∫
Γ

∫
Γ

K(z, w)

(z − x)(w − y)
dwdz,

where Γ is a simple smooth curve that encircles [−1, 1]. Then the unique bi-

variate polynomial interpolant Kk at the eigenvalues x̌1, . . . , x̌k of JLeg
k satisfies

max
(x,y)∈[−1,1]2

|Kk(x, y)−K(x, y)| ≤ Ce−kδ

for some δ > 0.
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Proof. We first construct the interpolant after fixing x:

K(x, y) = pk(y;x) + ek(y;x).

From (10.1.1) and (10.1.3) it follows that |ek(y;x)| ≤ ‖K(x,·)‖L1(Γ)

2π e−kδ for some
δ > 0 that is independent of both x and y. We then write the interpolant in the
Lagrange form

pk(y;x) =

k∑
j=1

K(x, x̌j)`j(y),

where `j(x̌i) = δij . We then apply the same procedure to K(x, x̌j) arriving at

K(x, x̌j) = qk(x; j) + ěk(x; j), |ěk(x; j)| ≤
‖K(x̌j , ·)‖L1(Γ)

2π
e−kδ.

The interpolation formula takes the form

K(x, y) =

k∑
j=1

[qk(x; j) + ěk(x; j)] `j(y) + ek(y;x),

where

k∑
j=1

qk(x; j)`j(y)

interpolates K(x, y). There exists a constant C > 0 such that ek, ěk ≤ Ce−kδ.
It then remains to estimate

Λk max
y∈[−1,1]

k∑
j=1

|`j(y)|.

This is the so-called Lebesgue constant. Estimating this is not simple. The clas-
sic book by Szegő demonstrates that Λk = O(n1/2) for Legendre polynomials.
The theorem then holds by replacing δ any smaller value.

We conclude that

det(δpq − zK(x̌p, x̌q)wq)1≤p,q≤k → det (1− zK) (10.1.7)

at a geometric rate.
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10.1.2 An implementation in Julia

Here we use the Julia programming language to compute Fredholm determi-
nant and thus compute the limiting distributions that have appear previously.

The following code constructs the nodes xj and weights wj for Gauss-Legendre
quadrature on an interval [a, b].

using LinearAlgebra

function Jacobi(a,b,k) # creates k x k Jacobi matrix

SymTridiagonal ([a(i) for i in 1:k],[b(i) for i in 1:k-1])

end

aj = j -> 0.0; bj = j -> j/sqrt ((2j+1)*(2j-1))

L = Jacobi(aj ,bj ,10) |> eigen

xj = (a+b)/2 .+ (b-a)/2*L.values

wj = abs2.(L.vectors [1 ,:])*(b-a)

In some situations it maybe be advisable to use orthogonal polynomials on a
semi-infinite interval [a,∞), such as Laguerre polynomials, to compute Fredholm
determinants. We leave this as an exercise. For our examples, the only time we
will compute the Fredholm determinant for an operator posed on an unbounded
domain will be for the Airy kernel. In this case we have clear decay estimates
for the kernel and the truncation of the “infinite” Fredholm determinant to one
on a finite interval will be straightforward, with accuracy guarantees.

The sine kernel determinant

The following simple code now evaluates the sine kernel determinant to within
nearly 16 digits.

function Ksine(x,y)

return sinc(x-y)

end

function SineDet ()

# k is the number of quadrature nodes

k = 30; L = Jacobi(aj ,bj ,k) |> eigen

function freddet(a,b) # a < b

xj = (a+b)/2 .+ (b-a)/2*L.values

wj = abs2.(L.vectors [1 ,:])*(b-a)

X = repeat(xj ,1,k)

Kmat = map(Ksine ,X,X |> transpose )*diagm(sqrt.(wj))

return I - diagm(sqrt.(wj))* Kmat |> det
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end

end

SD = SineDet (); SD( -0.1 ,0.1)

Also of note is the fact that we actually evaluate

det(δpq − z
√
wpK(x̌p, x̌q)

√
wq)1≤p,q≤k

which, of course, is the same as the desired determinant (10.1.7) but it involves
the determinant of a symmetric matrix when K(x, y) = K(y, x). The execution
of F2(2.0) takes on the order of 10−3 seconds on a laptop.

The Airy kernel determinant

The following simple code evaluates F2 with nearly 16 digits of accuracy. If
the density is desired, one can differentiate the distribution function using the

expression F ′2(t) ≈ Im
(
F2(t+ih)

h

)
for h small. Note that the code below is written

to avoid any complex conjugation X |> transpose instead of X’ to allow for
the code to produce an analytic function of t. With h = 10−6 the density can
be approximated to around 12 digits of accuracy using this method.

The only additional complications one encounters in this code is the truca-
tion of the domain (the l parameter takes care of this) and the definition of the
kernel itself.

Ai = x -> airyai(x); DAi = x -> airyaiprime(x)

function Kairy(x,y)

if x == y

return DAi(x)^2 - x*Ai(x)^2

else

return (Ai(x)*DAi(y)-Ai(y)*DAi(x))/(x-y)

end

end

function TracyWidom ()

# k is the number of quadrature nodes

# l is the trucation paramater ,

# the upper bound on the interval length

k = 30; l = 8; L = Jacobi(aj ,bj ,k) |> eigen

function freddet(t)

if real(t) > real(l)

return 1

else
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xj = (t+l)/2 .+ (l-t)/2*L.values

wj = abs2.(L.vectors [1 ,:])*(l-t)

X = repeat(xj ,1,k)

Kmat = map(Kairy ,X,X |> transpose)

Kmat = Kmat*diagm(sqrt.(wj))

return I - diagm(sqrt.(wj))* Kmat |> det

end

end

end

F2 = TracyWidom (); F2(-2.0)

The Bessel kernel determinant

The Bessel kernel K
(α)
Bessel(x, y) introduces some additional complications. First,

it is not clear if and when the kernel is smooth when x, y ≈ 0. And secondly,

it is rather involved to compute K
(α)
Bessel(x, x). We use the relations [OLBC10,

10.6.2]

J ′α(z) = −Jα+1(z) +
α

z
Jα(z),

⇒ d

dx
Jα(
√
x) =

1

2
√
x

(
−Jα+1(

√
x) +

α√
x
Jα(
√
x)

)
,

J ′α(z) = Jα−1(z)− α

z
Jα(z),

⇒ d

dx

√
xJα+1(

√
x) =

1

2
√
x

(√
xJα(

√
x)− αJα+1(

√
x)
)
,

and from the proof of Lemma 23 we write

K
(α)
Bessel(x, y) =

√
xJα+1(

√
x)Jα(

√
y)−√yJα+1(

√
y)Jα(

√
x)

2(x− y)
.

Then

K
(α)
Bessel(x, x) =

1

4

(
Jα+1(

√
x)2 + Jα(

√
x)2 − 2α√

x
Jα+1(

√
x)Jα(

√
x)

)
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10.2 Sampling determinantal point processes

10.3 Sampling unitary and orthogonal ensem-
bles

10.4 Brownian bridges and non-intersecting Brow-
nian paths

10.5 Exercises

1. Chebyshev nodes 2. Distribution of Chebyshev nodes 3. Logarithmic po-
tential of arcsine law with hint: Write it as as the real part of log transform,
differentiate, solve with Cauchy transform. Reference hilbert transform from
previous chapter. 4. Fredhold det with Laguerre polynomials
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Appendix A

Elementary probability
theory

A.1 Axioms of probability

Let (Ω,B,P) be a probability space. Here B is a σ-algebra of subsets of Ω and
P is a measure on B with total mass one, P(Ω) = 1. Thus we have the axioms
of the measure

• P(∅) = 0, and

• if E1, E2, . . . is a sequence of disjoint sets from B

P

⋃
j

Ej

 =
∑
j

P(Ej).

These axioms give the following properties.

Theorem 87. 1. If E1, E2 ∈ B, E1 ⊂ E2 then P(E1) ≤ P(E2).

2. For sets E1, E2, . . . from B that are not disjoint, we have the union bound

P

⋃
j

Ej

 ≤∑
j

P(Ej).

3. For sets E1, E2, . . . from B with Ej ⊂ Ej+1 for all j

P

⋃
j

Ej

 = lim
j→∞

P(Ej).

165



166 APPENDIX A. ELEMENTARY PROBABILITY THEORY

4. For sets E1, E2, . . . from B with Ej ⊃ Ej+1 for all j

P

⋂
j

Ej

 = lim
j→∞

P(Ej).

A random variable X is a measurable function, defined on Ω, taking values
in a measurable space (Σ,S), X : Ω → Σ. The only properties of X we are
allowed to take into account is its distribution. That is, we can observe

P(X ∈ R) = P(X−1(R)) ∈ [0, 1],

for each R ∈ S. We do not characterize the exact value of X(ω) for ω ∈ Ω.
To emphasize this fact we will often introduce X using the notation X ∈ Σ to
indicate the codomain of X, ignoring its domain. In every case we consider, Σ
can be identified with a subset of Rk for some k, and S = Sk will be the Borel
σ-algebra generated by open sets, in the relative topology.

Now consider f : Σ→ Σ′, measureable, where (Σ′,S ′) is another measurable
space. Define Y = f(X). The distribution of Y , given by,

P(Y ∈ R′) = P(f(X) ∈ R′) = P(X ∈ f−1(R′))

is called the pushforward of X under f . In the case where Σ = R, define the
(cumulative) distribution function for X by

FX(t) = P(X ≤ t).

From Theorem 87, we have that FX(t) ≤ FX(s) if t ≤ s. But more is true. Let
tj ≥ t with tj → t monotonically. Then

P(X ≤ t) = P

⋂
j

{X ≤ tj}

 = lim
j→∞

P(X ≤ tj).

Now, assume tj ≥ t, tj → t, without any monotonicity assumption. Recall the
following fact.

Lemma 33. Let (sn)n≥1 be a sequence in a metric space S, and let s ∈ S. If
every subsequence of (sn)n≥1 has a further subsequence that converges to s, then
limn→∞ sn = s.

Now, every subsequence of (tj)j≥0 has a monotonically converging, further
subsequence. Then P(X ≤ tj), along this further subsequence, has a limit of
P(X ≤ t). Therefore limj→∞ P(X ≤ tj) = P(X ≤ t). This shows that FX(t) is
right-continuous. Any function F that satisfies these properties

• F is right-continuous, and

• F (t)− 1[0,∞)(t) decays for large |t|

is called a distribution function.
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A.2 Multivariate distributions and independence

Now, consider the case where Σ = Rk for some k, i.e, X is vector valued. Let
Xj , 1 ≤ j ≤ k, be the components of X. Then the (cumulative) distribution
function for X is given by

FX(t1, . . . , tk) = P(X1 ≤ t1, . . . , Xk ≤ tk).

The distribution function has three main properties:

1. 0 ≤ F (t1, . . . , tk) ≤ 1 for all t1, t2, . . . , tk ∈ R,

2. For fixed t`, ` 6= j, F (t1, . . . , tj−1, ·, tj+1, . . . , tk) is a distribution function,
and

3. F (t1, . . . , tk)− 1 + (1−
∏k
j=1 1[0,∞)(tj) decays to zero as maxj |tj | → ∞.

A point (t1, . . . , tk) is a continuity point of F if F is continuous at (t1, . . . , tk).

The components of X are said to be independent if for every choice of sets
Bi ∈ S1, 1 ≤ i ≤ k,

P(X1 ∈ B1, . . . Xk ∈ Bk) =

k∏
j=1

P(Xj ∈ Bj).

An important tool in establishing that two random variables are independent
is the conditional expectation. First, for a random variable Y define

σ(Y ) := {Y −1(B)|B ∈ S}.

Definition 88 (Conditional expectation). The conditional expectation of X
given Y , denoted E [X|Y ] is any random variable Z such that

1. Z is σ(Y )-measurable, and

2. for all S ∈ σ(Y ), E[X1S ] = E[Z1S ].

Importantly, it turns out that the conditional expextation exists and is
unique. The main way in which we use the conditional expectation is in the
context of the following lemma.

Lemma 34. Suppose X and Y are independent random variables with1 Σ = Rn.
Let ϕ : Σ× Σ→ C be so that E [|ϕ(X,Y )|] <∞. Then

E [ϕ(X,Y )|Y ] = G(Y ), G(y) = E [ϕ(X, y)] .

1Here it is not required that n is the same for X and Y . Furthermore, X and Y could be
matrix valued.
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Proof. It suffices to show that for any S ∈ σ(Y ) we have

E[G(Y )1S ] = E[ϕ(X,Y )1S ].

The important observation is that S = Y −1(B) for some B ∈ S implying that
1S = 1B(Y ) and then

E[G(Y )1S ] =

∫
g(y)1B(y)ν(dy)

where ν is the distribution of Y . Then

g(y) =

∫
ϕ(x, y)µ(dx)

where µ is the distribution of X. By independence joint distribution of (X,Y )
is the product measure µ(dx)ν(dy) so that∫

g(y)1B(y)ν(dy) =

∫
1B(y)ϕ(x, y)ν(dy)µ(dx) = E[ϕ(X,Y )1S ].

A.2.1 Integration and Lp spaces

The expectation of a complex-valued random variable X is defined by

E [X] =

∫
Ω

XdP,

provided that this integral exists. When Ω ⊂ Rk for some k we often use the
notation

E [X] =

∫
Ω

X(ω)P(dω).

We say that X ∈ Lp(Ω,B,P) = Lp(Ω) for 0 ≤ p <∞ if

E [|X|p] <∞.

A.2.2 Modes of convergence

We first discuss the convergence of scalar-valued random variables. Let (Xn)n≥1,
X be a sequence of random variables defined on a common probability space
(Ω,B,P)2. We have four types of convergence:

1. Almost sure convergence: Xn → X almost surely (Xn
a.s.−→ X) if

P
(

lim sup
n

Xn = lim inf
n

Xn = X

)
= 1.

2Kolmogorov extension theorem....
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2. Lp convergence: Suppose Xn ∈ Lp(Ω) for every n and X ∈ Lp(Ω). Then

Xn → X in Lp(Ω) (Xn
Lp(Ω)−→ X) if

E [|Xn −X|p]
n→∞−→ 0.

3. Convergence in probability: Xn → X in probability (Xn
prob.−→ X) if for

every ε > 0

P (|Xn −X| > ε)
n→∞−→ 0.

4. Convergence in distribution: Xn → X in distribution (Xn
dist.−→ X) if for

every t at which FX(t) is continuous

FXn(t)
n→∞−→ FX(t).

To check convergence in distribution one needs to see that FXn(t)→ F (t) for
some function F (at all its points of continuity) and that F is itself a distribution
function. Include proofs and/or references.

Definition 89. A sequence of random variables (Xn)n≥1 is tight if for every
ε > 0 there exists R such that

lim sup
n→∞

P(|Xn| > R) < ε.

Definition 90. Suppose for some Borel measure µ, a sequence of random vari-
ables (Xn)n≥1 satisfies

FXn(t)
n→∞−→ F (t) := µ((−∞, t])

at all the continuity points of F . Then FXn is said to converge to F vaguely.

Alternatively, we say that Xn
v−→ µ as n→∞.

It is important to note that µ is not necessarily a probability measure. If it
is then we have convergence in distribution. Tightness guarantees this.

Theorem 91. A sequence random variables (Xn)n≥1 is tight if and only if every
vaguely convergent subsequence converges to a probability measure.

Theorem 92 (Helly’s selection theorem). Let (Xn)n≥1 be a sequence of real-
valued random variables. Then there exists a subsequence (Xn(k))k≥1 and a

measure µ such that Xn(k)
v−→ µ as k →∞.

An important consequence is that if (Xn)n≥1 is a tight sequence of random
variables then there exists a subsequence that converges in distribution to a
probability measure µ (i.e., a random variable X with distribution µ).

All of these notion extend to the multi-variate case by replacing the absolute
value with a norm ‖ · ‖ and replacing (t) with (t1, . . . , tk) in the definition of



170 APPENDIX A. ELEMENTARY PROBABILITY THEORY

convergence in distribution. The following theorem is not needed often in the
text, but it is necessary to understand the statement of many results in the
literature. Another consequence, is that if, for example FXn(t) → F (t) for
every t ∈ R, F is continous, and (Xn)n≥1 is tight, then F is a distribution
function.

Theorem 93. Let (Xn)n≥1 be a sequence of vector-valued random variables
taking values in Cn (or Rn). Then as n→∞

Xn
dist.−→ X

for a random variable X if and only if

E[F (Xn]→ E[F (X)]

for all bounded, infinitely differentiable functions functions F : Cn → R (or
F : Rn → R).

Another convenient characterization of convergence in distribution is the
following.

Theorem 94 (Levy continuity theorem). Let (Xn)n≥1 be a sequence of vector-
valued random variables taking values in Rn. Then as n→∞

Xn
dist.−→ X

for a random variable X if and only if

E[ei〈t,Xn〉]→ E[ei〈t,X〉] for all t ∈ Rn.

This theorem provides a convenient way to prove the following result.

Lemma 35. Suppose (Yn)n≥1 is a sequence of real-valued random variables
and suppose (Xn)n≥1 is a sequence of vector-valued random variables taking

values in Rn. Suppose that as n → ∞, Yn
prob.−→ c ∈ R and Xn

dist.−→ X then

YnXn
dist.−→ cX.

Proof. Fix ε > 0. Because the sequence (Xn)n≥1 converges in distribution, it is
tight. This means that there exits R > 0 such that P(‖Xn‖2 ≥ R) ≤ ε for all n.
Then for n sufficiently large, we know that

P(|Yn − c| ≥ ε/R) ≤ ε.

With this in hand we estimate∣∣∣E[ei〈t,YnXn〉]− E[ei〈t,cXn〉]
∣∣∣ =

∣∣∣E [ei〈t,cXn〉(ei〈t,YnXn〉−i〈t,cXn〉 − 1)
]∣∣∣

≤ E
[∣∣∣ei〈t,(Yn−c)Xn〉 − 1

∣∣∣]
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Then write∣∣∣ei〈t,(Yn−c)Xn〉 − 1
∣∣∣ =

∣∣∣ei〈t,(Yn−c)Xn〉 − 1
∣∣∣1{‖Xn‖2<R}∩{|Yn−c|≤ε/R}

+
∣∣∣ei〈t,(Yn−c)Xn〉 − 1

∣∣∣1{‖Xn‖2≥R}∪{|Yn−c|>ε/R}.
We use the elementary inequality for x ∈ R

|eix − 1| ≤ |x|,

to bound, on the set {‖Xn‖2 < R} ∩ {|Yn − c| ≤ ε/R},∣∣∣ei〈t,(Yn−c)Xn〉 − 1
∣∣∣ ≤ |〈t, (Yn − c)Xn〉| ≤ ‖t‖2|Yn − c|‖Xn‖ ≤ ε‖t‖2.

Then by the union bound, for n sufficiently large

E
[∣∣∣ei〈t,(Yn−c)Xn〉 − 1

∣∣∣1{‖Xn‖2≥R}∪{|Yn−c|>ε/R}]
≤ 2P ({‖Xn‖2 ≥ R} ∩ {|Yn − c| > ε/R}) ≤ 4ε.

As ε is arbitrary we conclude that∣∣∣E[ei〈t,YnXn〉]− E[ei〈t,cXn〉]
∣∣∣→ 0,

and the proof is finished by simply observing that E[ei〈t,cXn〉 → E[ei〈t,cX〉].

A.3 Classical distributions

We now describe some classical distributions that will play a significant role in
what follows. First the abbreviation iid is short for independent and identi-
cally distribution. So, a collection of random variables (Xn)n≥1 is iid if it is
independent and

FXj = FX1
for all j.

1. Normal (Gaussian) random variable: X ∈ R is normally distributed with
mean µ and standard deviation σ > 0 (X ∼ N (µ, σ2)) if

FX(t) =
1

σ
√

2π

∫ t

−∞
e−(x−µ)2/(2σ2)dx.

2. Multi-variate normal random variable: X ∈ Rn is normally distributed
with mean µ ∈ Rn and covariance Σ ∈ Rn×n, Σ > 0 (X ∼ N (µ,Σ)) if

FX(t1, . . . , tn) =
1

(2π)n/2
√

det Σ

∫ t1

−∞
· · ·
∫ tn

−∞
e−

1
2 (x−µ)TΣ−1(x−µ)Dx.
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3. Standard complex normal random variable: X ∈ C has a standard complex
normal distribution if

X ∼ Y T
[
1
i

]
, Y ∼ N

(
0,

[
1/2 0
0 1/2

])
.

4. Exponential distribution: X ∈ R+ is exponentially distributed with rate
λ > 0 (mean 1/λ) if

FX(t) = 1− e−λt.

5. Chi-squared distribution: X ∈ R+ has a chi-squared distribution with m
degrees of freedom (X ∼ χ2

m) if

X ∼
m∑
j=1

Xj , (Xj)
m
j=1 iid, X1 ∼ N (0, 1).

In other words,

FX(t) =
1

2m/2Γ(m/2)

∫ t

0

xm/2−1e−x/2dx,

where Γ(·) is the Gamma function. Note that this second expression can
be use to extend the definition to non-integer m.

6. Chi distribution: X ∈ R+ has a chi distribution with m degrees (X ∼ χm)
of freedom if

X ∼
√
Y , Y ∼ χ2

m.

It follows that

FX(t) =
1

2m/2−1Γ(m/2)

∫ t

0

xm−1e−x
2/2dx.

7. β-Dirichlet distribution: X ∈ Rn has the β-Dirichlet distribution3 if

X ∼ Y/‖Y ‖1, Y =
[
Y1 · · · Yn

]T
, (Yj)

n
j=1 iid, Y1 ∼ χ2

β .

8. Beta distribution: X ∈ [0, 1] is beta distributed with parameters (α, β) if

FX(t) =
1

B(α, β)

∫ t

0

xα−1(1− x)β−1dx, B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

It should be noted that the marginal distribution of each component of a
β-Dirichlet distribution is the beta distribution with parameters (β/2, (n−
1)β/2).

3This is note the classical definition of the Dirichlet distribution but it is convenient for
our purposes.
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A.4 Other measure-theoretic facts

Lemma 36. Suppose P (x1, . . . , xk) is a polynomial,

P (x1, . . . , xk) =

n∑
d=0

∑
(i1, . . . , id) ∈ J1, kKd

i1 ≤ i2 ≤ · · · ≤ id

c(i1,...,id)xi1 · · ·xid .

If P vanishes on set of positive k-dimensional Lebesgue measure, then P ≡ 0.

Proof. We prove this by induction on k. For k = 1 the claim follows because
an analytic function that vanishes on a set with a limit point must vanish
identically. Assume the lemma for k − 1. Suppose R is chosen such that {x ∈
Rk : P (x) = 0}∩B(0, R) has positive Lebesgue measure. Under the hypotheses
of the lemma, there exists an infinite number of distinct values aj , j ≥ 0, so
that the polynomial in k − 1 variables

P (x1, . . . , xk−1, aj) =

n∑
d=0

pd(x1, . . . , xk−1)adj (A.4.1)

vanishes on set of positive (k−1)-dimesional Lebesgue measure. To see this, let
F (x) = 1{P=0}∩B(0,R)(x) and consider

0 <

∫
Rk
F (x)Dx =

∫ R

−R

(∫
Rk−1

F (x, xk)Dx

)
dxk.

Therefore there must exists an infinite number of points xk where
∫
Rk−1 F (x, xk)Dx

does not vanish. By the induction hypothesis (A.4.1) vanishes on Rk−1 for each
j. We obtain a system of d+ 1 linear equations

n∑
d=0

pd(x1, . . . , xk−1)adj = 0, j = 0, 1, . . . , d, (x1, . . . , xk−1) ∈ Rk−1.

This is a Vandermonde system (see 2.6.6) and it implies that pd = 0 for each
d.

Theorem 95. Let (Ω,B, µ) be a measure space. Let fk be a sequence of in-
tegrable functions such that fk → f almost everywhere. Further, suppose that
|fk| ≤ g for all k and

∫
g dµ <∞. Then

lim
k→∞

∫
fkdµ =

∫
fdµ.

Theorem 96 (Borel-Cantelli, if needed?).

Theorem 97 (Jensen’s inequality).

Theorem 98 (Markov’s inequality).
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A.5 Classial limit theorems

In order to put limit theorems from random matrix theory in their correct
context, we briefly review the two main limit theorems from classical probability.
The strong law of large numbers states the following.

Theorem 99 (Strong law of large numbers). let (Xn)n≥1 be a sequence of iid
real random variables with µ = E[X1] <∞. Consider the sample average

Sn =
1

n

n∑
j=1

Xj .

Then

P( lim
n→∞

Sn 6= µ) = 0,

that is, Sn
a.s.−→ µ.

The strong law of large numbers implies the weak law of large numbers.

Theorem 100 (Weak law of large numbers). let (Xn)n≥1 be a sequence of iid
real random variables with µ = E[X1] <∞. Consider the sample average

Sn =
1

n

n∑
j=1

Xj .

Then Sn
prob.−→ µ.

The central limit theorem concerns the correction term ξn in the expansion
Sn = µ+ ξn.

Theorem 101 (Central limit theorem). In the setting of the previous theorem,
suppose, in addition, that σ2 = Var(X1) <∞. Then for all t ∈ R

lim
t→∞

P
(
Sn − µ
σ/
√
n
≤ t
)

=
1√
2π

∫ t

−∞
e−x

2/2dx.

In other words, if Y ∼ N (0, 1) then

Sn − µ
σ/
√
n

dist.−→ Y,

as n→∞.

In a distributional sense, the central limit theorem states

Sn ≈ µ+
σY√
n

or Sn ≈ N (µ, σ2/n).



A.6. POINT PROCESSES ON R 175

A.6 Point processes on R
The simplest point processes on R comes from a finite-dimensional distribution.
For example, if X ∼ N (µ,Σ) is a n-dimensional normal random variable we can
consider the point process {X1, X2, . . . , Xn} ⊂ R or represent the process as a
random measure

µX :=

n∑
j=1

δXj .

It turns out that this representation of the point process is often convenient. In
this notation, the distribution of the largest component of X would be given by

P(max
j
Xj ≤ t) = P (µX((t,∞)) = 0) .

Furthermore, the random measure interpretation makes it clearer why this is
indeed a stochastic process: Define a stochastic process (Zt)t∈R by

Zt = µX((−∞, t]).

A.6.1 Homogeneous Poisson point process

The most famous instance of a point process is the Poisson point process. Here
we only discuss its homogeneous incarnation on R. Let λ > 0 be the rate for
the process. The the Poisson point process is given by a Borel random measure
µλ that satisfies

1. µλ(B) ∈ N for any Borel set B,

2. µλ({a}) = 0 almost surely, for some a ∈ R,

3. for any t0 < t1 < · · · < tm the increment random variables

Ij = µλ((tj , tj+1]), 0 ≤ j ≤ m− 1,

are independent, and

4. for a < b

P(µλ((a, b]) = k) =
(λ(b− a))k

k!
e−λ(b−a).

The last property implies exponentially-distributed gap probabilities

P(µλ((a, b]) = 0) = e−λ(b−a).

Then compute, for ελ ≤ 1,

P(µλ([c, c+ ε)) ≥ 1) =

∞∑
k=1

(λε)k

k!
e−λε ≤ ελe

ε↓0−→ 0,
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giving that P(µλ({c}) ≥ 1) = 0.
Next, consider the spacing statistics in an interval (a, b]. SinceN := µλ((a, b])

is almost surely finite, define X1, . . . , XN , to be all the points in (a, b] such that

µλ({Xj}) 6= 0,

ordered in weakly increasing order, counted according to multiplicity. For ex-
ample, if P(µλ({X1}) = j then X1 = X2 = · · · = Xj . For t1, t2 ≥ 0, by
independence

P(X1 ≤ t1, X2 −X1 ≤ t2) = P (µλ((a, t1]) ≥ 1, µλ([t1, t1 + t2]) ≥ 1)

= P (µλ((a, t1]) ≥ 1, µλ((t1, t1 + t2]) ≥ 1)

= (1− e−λ(t1−a))(1− e−λt2).

So, we conclude that X1 and the increment X2−X1 are independent. Further-
more, P(X1 = X2) = 0. Thus the Poisson point process is simple: µλ({c}) ∈
{0, 1} almost surely.

A.6.2 Characterization of a point process

A set A ⊂ R is said to be a locally finite point configuration if |A ∩ B| < ∞
whenever B is bounded. Here | · | denotes the cardinality of the set. Define
P to set of all locally finite point configurations. Then let P be the smallest
σ-algebra generated by the sets

{A ∈ P : |A ∩B| = m}, B ∈ B, m ∈ N.

Definition 102. A point process X is a measurable mapping from a probability
space to P . The distribution of X is the function Fpp,X(Z) = P(X ∈ Z) defined
on P. The induced random measure is given by µX(B) = |X ∩B| for B ∈ B.

Two point processes X1 and X1 are equal in distribution if Fpp,X1
(Z) =

Fpp,X2
(Z) for all Z ∈ P. It is an important fact that the distribution of a

simple point process is completely determined by its gap probabilities.

Theorem 103 (ref here, supposedly Renyi 1967 but that doesn’t completely
narrow it down). The distribution of a simple point process4 X on R is uniquely
determined by its gap probabilities

P(µX(B) = 0), B ∈ B, B bounded.

4This holds more generally on metric spaces.
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Elementary differential
geometry

Differential geometry, and more specifically, integration on manifolds, plays a
fairly significant role in this text. We only treat manifolds that are subsets of
real or complex vector spaces.

Definition 104. Suppose S is a normed vector space over R (or C). A smooth
manifold in S is a subset M ⊂ S equipped with a countable collection of contin-
uous, injective mappings ϕj : Ωj → Rp, j = 1, 2, . . . such that

• 0 ∈ ϕj(Ωj),

• Ωj is relatively open for each j,

•
⋃
j

Ωj = M, and

• T`,j := ϕ` ◦ ϕ−1
j |ϕj(Ωj∩Ω`) is a C∞ transformation whenever ϕj(Ωj ∩ Ω`)

is non-empty.

The collection ((Ωj , ϕj))j≥1 is called an atlas for M and p is the dimension of
M.

The main tool to allow us to integrate on manifolds is the idea of a partition
of unity.

Definition 105. Let (Uα)α∈I be an open cover of a metric space Ω. A partition
of unity subordinate to this open cover is a collection of continuous functions
(fα)α∈I such that suppfα ⊂ Uα, fα(x) ∈ [0, 1] and for each x ∈ Ω there exits a
neighborhood V of x such that |{α : f(V ) 6= {0}}| <∞ and∑

α∈I
fα(x) = 1.
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A general fact (reference?) is that a smooth manifold M with atlas ((Ωj , ϕj))j≥1

possesses partition of unity (fj)j≥1 subordinate to (Uj)j≥1 such that fj ◦ ϕ−1
j

is a C∞ function on ϕj(Ωj).

B.1 The tangent space

Let M be a smooth manifold of dimension k. Fix a point M ∈M, where M ∈ Ωj .
Let γ : (−ε, ε)→M be a curve that passes through M , γ(0) = M . The curve is
said to be differentiable if ϕj ◦ γ is differentiable in the classical sense. Because
S is a normed vector space we can just impose that1 there exists γ′(t) ∈ S such
that

γ(s) = γ(t) + γ′(t)(s− t) + o(|s− t|).

Recall

g(s) = o(|s|) if lim
s→0

‖g(s)‖
|s|

= 0,

where ‖ · ‖ is the norm on S. Two such curves γ1, γ2 are equivalent if γ′1(0) =
γ′2(0). The tangent space TM (M) at M is the set of all equivalence classes of
differentiable curves passing through M .

Lemma 37.

TM (M) ∼= {x ∈ Rp : γ′(0) = x, γ is a differentiable curve passing through M },

and the latter is a subspace of Rp.

Proof. The congruence is clear. Now, suppose x, y ∈ TM (M) and let c1, c2 ∈ R.
Then we have γx and γy such that γ′x(0) = x and γ′y(0) = y. Consider

γ̃(t) = γx(c1t) + γy(c2t),

so that γ̃′(0) = c1x+ c2y ∈ TM (M).

B.2 Metric tensors, Jacobians and integration

There is a natural volume form on each finite-dimensional inner-product space
of dimension p. For example, on Rp, the standard inner product defines the
metric with infinitesimal length element ds2 =

∑p
j=1 dx2

j and the volume form
Dx = dx1dx2 . . . dxp (we follow the notation of [Zub12] for volume forms). More
generally, each g ∈ Symm+(p) defines an inner-product and metric on Rp:

〈x, y〉g =

p∑
j,k=1

gjkxjyk, ds2 =

p∑
j,k=1

gjkdxjdxk. (B.2.1)

1If S was not a normed vector space we would need to consider the derivative of ϕj ◦ γ.
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The associated p-dimensional volume form is

Dx =
√

det(g) dx1 . . . dxp. (B.2.2)

A smooth manifold M inherits the topology of the ambient metric space S.
Therefore we have a natural Borel σ-algebra BM generated by the (relatively)
open sets of M. Suppose we have a measure space (M,BM, µ), then for example,
continuous functions F : M→ R are measurable and we can define∫

M
Fdµ

in the standard measure-theoretic manner. But we wish to do two additional
operations:

• Show the existence of such a measure µ using integrals on Rp.

• Express this integral in terms of integrals on Rp.

For a general manifold M a metric tensor ds2 is a non-negative bilinear form
gM on TM (M) × TM (M). Fix a basis X1, . . . , Xp for TM (M), and define, with
some abuse of notation, the matrix g(M) = (gjk(M))j,k, gjk(M) = gM (Xj , Xk).
This parameterization gives a natural invertible mapping φ from Rp onto TM (M)
given by

x =

x1

...
xp

 φ7→
∑
j

xjXj = X.

The metric tensor is then written in this basis

ds2 =
∑
j,k

gjk(M)dxjdxk = 〈dx, dx〉g(M).

Now, let U be a (relatively) open subset of M. Let ψ : V → U be a bijective
diffeomorphism on an open set V ⊂ Rp. Then if M = ψ(y), the Jacobian Dψ(y)
is an invertible linear transformation from Rp onto TM (M) and we write

ds2 = 〈Dφψ(y)dy,Dφψ(y)dy〉g(ψ(y)). (B.2.3)

where we use Dφψ(y) to denote the matrix for the linear transformation φ−1 ◦
Dψ(y) : Rp → Rp in the standard basis.

Then (B.2.3) induces the volume form√
det(g(ψ(y)))|det Dφψ(y)|dy1 · · · dyp.

As a consistency check, suppose a different basis (Zj)j≥1 is chosen, Xj =∑
k `kjZk. Then

X =
∑
j

xjXj =
∑
k

xk
∑
j

`jkZj =
∑
j

(∑
k

`jkxk

)
Zj =

∑
j

zjZj .
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And then it follows that z = Lx where L = (`jk)j,k. And then

ds2 = 〈L−1dz, L−1dz〉g(M) = 〈dz,dz〉L−T g(M)L−1 .

We need to change basis for the Jacobian Dψ(y) and consider the matrix for
Lφ−1 ◦Dψ(y) and we find

ds2 = 〈Dφ◦L−1ψ(y)dy,Dφ◦L−1ψ(y)dy〉L−T g(ψ(y))L−1

= 〈LDφψ(y)dy, LDφψ(y)dy〉L−T g(ψ(y))L−1 .

This produces the same volume form as (B.2.3).
Let f : M→ R be supported in U , we then define∫

fdµg :=

∫
V

f ◦ ψ(y)
√

det(g(ψ(y)))|det Dψ(y)|dy1 · · · dyp. (B.2.4)

This is well-defined (i.e., independent of the choice of parameterization ψ) be-
cause of the standard change-of-variables formula on Rp. By the Riesz Repre-
sentation Theorem µg extends to a measure on the measureable space (M,BM).

For the second task we use a partition of unity (fj)j≥1 subordinate to an
atlas (Ωj , ϕj)j≥1 and, just for a matter of simplicity, we assume the atlas is
finite2, j ∈ J1, qK. For a measurable function F : M→ R,

F =

q∑
j=1

Ffj ,

so that ∫
M
Fdµ =

q∑
j=1

∫
Ωj

Ffjdµ.

Then, define the pushforward of µ|Ωj under ϕj : νj(B) := µ(ϕ−1
j (B)) for a Borel

measurable B ∈ ϕj(Ωj) ⊂ Rp. Then∫
Ωj

Ffjdµ =

∫
ϕj(Ωj)

F (ϕ−1
j (x))fj(ϕ

−1
j (x))νj(dx).

B.3 Implicit function theorem
add this, analytic version too

B.4 Lie groups and Haar measure

A Lie group G is a group that is also a smooth manifold. Furthermore, the
group operations must be smooth. That is:

g ∗ h g−1h

2In what follows we will be largely concerned with compact manifolds and this restriction
will suffice.
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must depend smoothly on (g, h) ∈ G×G. In general, definition of smoothness
needs to be understood via the manifold’s differential structure. Because the
Lie groups we consider can be identified with subsets Rp this extra step is
unnecessary.

The associated lie algebra g is the tangent space at the identity g := Tid(G).
Additional topics related to Lie groups and Lie algebras are not needed for the
developments in this text. But, due to the importance of Lie groups in the wider
mathematical literature we use this notation.

Given a topological group, such as a Lie group, Haar measure is a natural
measure determined by the group structure itself. The simplest example is
viewing R as the additive group and then Haar measure coincides with Lebesgue
measure. The existence and properties are described in the following theorem
originally due to Weil [Wei51] but translated in [Nac76].

Theorem 106 ([Wei51]). Let G be a locally compact Hausdorff topological
group. Then, up to a unique multiplicative constant, there exists a unique non-
trivial Borel measure µ such that

• µ(gS) = µ(S) for all g ∈ G and S a Borel set,

• µ is countably additive,

• µ(K) <∞ for K compact,

• µ is inner regular on open sets and outer regular on Borel sets3.

B.5 Examples

Example 107. The canonical example of a manifold is the sphere in n di-
mensions, denoted Sn−1 ⊂ Rn consisting of all unit vectors. And, generalized
spherical coordinates give Rn = R+×Sn−1. Natural parameterizations are given
in standard multivariable calculus courses for S1 and S2. We demonstrate the
use of metric tensors to compute the change of variables formula for spherical
coordinates. The first calculation we perform holds for all n while the actual
parametrization we use clearly holds only for n = 3. Set

x = rω, r > 0, ω ∈ Sn−1.

Then

dx = drω + rdω.

Using the standard metric on Rn we have

ds2 =
∑
j

dx2
j = dr2

∑
j

ω2
j + 2rdr

∑
j

ωjdωj + r2
∑
j

dω2
j .

3Inner regularity states that any set can be approximated, in measure, by compact subsets.
Outer regularity states the same approximation by open supersets.
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This is then simplified noting that
∑
j ω

2
j = 1 and therefore

∑
j ωjdωj = 0,

giving

ds2 = dr2 + r2
∑
j

dω2
j .

So, we find

T(r,ω) = R× {y ∈ Rn : 〈ω, y〉 = 0}.

Now for n = 3 we parameterize for 0 ≤ θ < 2π, 0 ≤ ϕ < π:

ω1 = cos θ sinϕ,

ω2 = sin θ sinϕ,

ω3 = cosϕ.

This provides the linear transformation J(θ, ϕ) onto the tangent space

dω = J(θ, ϕ)

[
dθ
dϕ

]
=

− sin θ sinϕ cos θ cosϕ
cos θ sinϕ sin θ cosϕ

0 − sinϕ

[dθ
dϕ

]
.

The metric tensor becomes

ds2 = dr2 + r2

〈
J(θ, ϕ)

[
dθ
dϕ

]
, J(θ, ϕ)

[
dθ
dϕ

]〉
.

Then using

det J(θ, ϕ)TJ(θ, ϕ) = sin2 ϕ,

we find the volume form

r2 sinϕdrdθdϕ,

as is expected.

Example 108. The orthogonal group, denoted O(n) ⊂ Rn×n ≡ Rn2

, is the
subset of real n× n matrices O that satisfy OTO = I. This is clearly a closed,
compact subgroup of all invertible matrices and it is also a Lie group. So, there
is exists a unique measure left-invariant Haar measure µ normalized such that
µ(O(n)) = 1. Compactness guarantees that this measure is also right-invariant
[Fol99].

The tangent space o(n) at the identity, i.e., the Lie algebra, is computed in
Chapter 2. It is given by the subspace of all n× n skew-symmetric matrices

o(n) ∼= {A ∈ Rn×n | AT = −A}.

Furthermore, for O ∈ O(n)

TOO(n) ∼= Oo(n).
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One can compute the associated metric tensor by restricting the standard
metric on Rn2

: For X = (xjk) ∈ Rn×n we map it to O(n) by performing Gram-
Schmidt on the columns, i.e. the QR factorization of X. The standard metric
can be written as

ds2 =
∑
j,k

dx2
j,k = Tr

(
dXTdX

)
.

Then we write X = OR which implies dX = dOR + OdR = OdAR + OdR =
O(dAR + dR). We then artificially set R = I and dR = 0 in the same way
one sets r = 1 and dr = 0 to find the measure induced on Sn−1 in the previous
example, up to a possible normalization constant. So,

ds2 ∝ Tr dATdA = −Tr dA2.

This gives the metric tensor on O(n) in induced from Lebesgue measure on Rn2

.
It turns out that this gives the correct volume form for Haar measure on O(n)
using (B.2.4).

Example 109. Consider the problem of determining the density of Z =
√
X

where X ∈ Rn has the β-Dirichlet distribution. We consider the entrywise
square root of X so that Z ∈ Sn−1. We use the Gaussian distribution on Rn
as a proxy to compute this density. We say in Example 107 that the standard
metric tensor on Rn induces a volume form on Sn−1 with associated probability
measure σn−1. Transforming the n-dimensional standard normal density Is Dσn−1 really the notation we want

to use here?

1

(2π)n/2
e−

1
2

∑
j x

2
jDx =

1

2n/2−1Γ
(
n
2

)rn−1e−
r2

2 drDσn−1(ω).

Often, in this text, we write Dω in place of Dσn−1(ω) when its meaning is clear
from context. Next, we consider what the transformation ω 7→ |ω| := τ(ω),
where the absolute value is applied elementwise, does to the measure σn−1. The
induced measure σ+

n−1 is just the pushforward of σ+
n−1 under τ : σ+

n−1(S) =
σn−1(τ−1(S)) = 2nσn−1(S) for S ⊂ Sn−1, contained in the positive orthant
Sn−1

+ of Sn−1. We refer to σ+
n−1 as uniform measure on Sn−1

+ . As with σn−1

sometimes we will write Dω in place of Dσ−n−1(ω). Then a vector Y ∈ Rn of
independent χβ random variables has joint density

1

2(nβ)/2−nΓ
(
β
2

)n
 n∏
j=1

yβ−1
j

 e−
1
2

∑
j y

2
j1{yj>0 for all j}.

Define a new vector X by Xj = δjYj where the iid random variables δj , in-
dependent of Y , satisfy δj = ±1 each with probability 1/2. Then X has joint
density

1

2(nβ)/2Γ
(
β
2

)n
 n∏
j=1

|xj |β−1

 e−
1
2

∑
j x

2
j
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giving the relation (xj = rωj)

1

2(nβ)/2Γ
(
β
2

)n
 n∏
j=1

|xj |β−1

 e−
1
2

∑
j x

2
jDx

=
(2π)n/2

2(nβ)/2Γ
(
β
2

)n
2n/2−1Γ

(
n
2

)rβn−1e−
1
2 r

2

 n∏
j=1

|ωj |β−1

 drDσn−1(ω).

And then the distribution of Z ∼ |Y |/‖Y ‖2 is given by the joint density (with
respect to σn−1) of |ω|. The following gives the joint density of |Y | in polar
coordinates

πn/2

2(nβ)/2−n−1Γ
(
β
2

)n
Γ
(
n
2

)rβn−1e−
1
2 r

2

 n∏
j=1

ωβ−1
j

 drDσn−1(ω)1{ωj>0 for all j}.

Integrating out the r variable we obtain the joint density for Z

2nπn/2Γ
(
nβ
2

)
Γ
(
β
2

)n
Γ
(
n
2

)
 n∏
j=1

ωβ−1
j

Dσn−1(ω)1{ωj>0 for all j}.
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The Airy function

C.1 Integral representation

There are several different conventions for the definition of the Airy function.
The standardization adopted here follows [AS72]. The Airy function, Ai(x) is
defined as the oscillatory integral

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt =

1

π
lim
b→∞

∫ b

0

cos

(
t3

3
+ xt

)
dt. (C.1.1)

This is an improper integral, that is, the integral converges conditionally, not
absolutely. In order to obtain an absolutely convergent integral, it is necessary
to work in the complex plane. Let C denote a contour in the complex plane
that starts and ends at the point at infinity, and is asymptotically tangent to
the rays e−iπ/3 and e+iπ/3 respectively. Then first setting t = −iz and then
deforming the contour, we have

Ai(x) =
1

2πi

∫ ∞
−∞

e
i
(
z3

3 −xz
)

dz =
1

2πi

∫
C

e
i
(
z3

3 −xz
)

dz. (C.1.2)

The integral is absolutely convergent for every x ∈ C on the contour C. Indeed,
with z = reiθ,

∣∣∣∣ei
(
z3

3 −xz
)∣∣∣∣ ≤ e|x|re−r

3 cos(3θ)/3 ∼ e−r
3/3er|x| (C.1.3)

as z →∞ along the rays θ = ±π/3. Thus, Ai(x) is an entire function.
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C.2 Differential equation

We differentiate under the integral sign (justified by (C.1.3)) and integrate by
parts to obtain

Ai′′(x) =
1

2πi

∫
C

z2e

(
z3

3 −xz
)
dz (C.2.1)

=
1

2πi

∫
C

d

dz
e
z3

3 e−xz dz = − 1

2πi

∫
C

e
z3

3
d

dz
e−xz dz = xAi(x).

Thus, Ai(x) satisfies the Airy differential equation

y′′ = xy, x ∈ C. (C.2.2)

This differential equation has a scaling invariance: if y(x) is a solution, so
are y(ωx) and y(ω2x) where ω = e2πi/3 is a cube root of unity. Thus, both
Ai(ωx) and Ai(ω2x) solve (C.2.2). Each of these solutions is linearly independent
of Ai(x). A solution to (C.2.2) that is real when x is real, and is linearly
independent from Ai(x), is obtained from the linear combination

Bi(x) = eπi/6Ai(ωx) + eπ−i/6Ai(ω2x). (C.2.3)

C.3 Asymptotics

The functions Ai(x) and Bi(x) have the following asymptotic properties.

Asymptotics as x→∞.

ζ =
2

3
x

3
2 , Ai(x) ∼ e−ζ

2x
1
4
√
π
, Bi(x) ∼ 1

x
1
4
√
π
eζ ,

Ai′(x) ∼ −x
1
4 e−ζ

2
√
π
, Bi′(x) ∼ x

1
4
√
π
eζ

(C.3.1)

Asymptotics as x→ −∞.

ζ =
2

3
(−x)

3
2 , Ai(x) ∼ 1

(−x)
1
4
√
π

sin
(
ζ +

π

4

)
, Bi(x) ∼ 1

(−x)
1
4
√
π

cos
(
ζ +

π

4

)
,

Ai′(x) ∼ x
1
4
√
π

cos
(
ζ +

π

4

)
, Bi′(x) ∼ − x

1
4
√
π

sin
(
ζ +

π

4

)
.

(C.3.2)
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Fredholm determinants

D.1 Definitions

Our purpose in this section is to explain the notion of a Fredholm determi-
nant and resolvent in a simple and concrete setting. The ideas presented here
originated in Fredholm’s attempt to find a solution formula akin to Cramer’s
rule for linear integral equations. The notion of a determinant for an infinite-
dimensional linear operator is, of course, of independent interest and has at-
tracted the interest of many mathematicians. Simon’s book provides an excel-
lent overview of current knowledge [Sim05].

Assume a given continuous kernel K : [0, 1] × [0, 1] → R and a continuous
function h : [0, 1]→ R. Fix a spectral parameter z ∈ C and consider the linear
integral equation

ϕ(x)− z
∫ 1

0

K(x, y)ϕ(y) dy = h(x), x ∈ [0, 1]. (D.1.1)

The integral equation (D.1.1) may be written in the more compact form

(1− zK)ϕ = h, (D.1.2)

where I − zK denotes the bounded linear operator on L2([a, b]) defined by

ϕ 7→ (1− zK)ϕ, (1− zK)ϕ(x) = ϕ(x)− z
∫ b

a

K(x, y)ϕ(y) dy x ∈ [a, b].

(D.1.3)
Integral equations such as (D.1.1) may naturally be viewed as continuum

limits of linear equations. More precisely, we fix a positive integer n, consider
a uniform grid xj = j/n, with uniform weights wj = 1/n, define the vector

h
(n)
j = h(xj), matrix K

(n)
j,k = wjK(xj , xk), 1 ≤ j, k ≤ n and discretize (D.1.1)

by the linear equation

ϕ
(n)
j − z

n∑
k=1

K
(n)
j,k ϕ

(n)
k = h

(n)
j , 1 ≤ j ≤ n. (D.1.4)
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Equation (D.1.4) has a unique solution if and only if det(In − zK(n)) 6= 0. By
linearity, the solution for arbitrary h(n) is determined by the resolvent R(n) =
(1n − zK(n))−1, which is given by Cramer’s rule.

Remark 110. If one wants to compute a Fredholm determinant numerically
and K is a smooth function, quadrature rules (such as Gaussian quadrature
or Clenshaw–Curtis quadrature) can be used to choose xj and wj . See, for
example, [Bor10].

R
(n)
j,k = (−1)j+k

det(Mjk)

det(1n − zK(n))
, (D.1.5)

where Mjk denotes the matrix obtained from In − zK(n) by removing the j-
th row and k-th column. Further, if zj , j = 1, . . . n, denote the zeros of the
polynomial det(In − zK(n)), the eigenvalues of K(n) are given by 1/zj . Both
these notions may be extended to (D.1.1) via the Fredholm determinant. The
basic observation that allows passage to the limit is the identity

det(1n − zK(n)) = (D.1.6)

1− z

n

n∑
j1=1

K(xj1 , xj1) +
z2

2!

1

n2

n∑
j1,j2=1

∣∣∣∣ K(xj1 , xj1) K(xj1 , xj2)
K(xj2 , xj1) K(xj2 , xj2)

∣∣∣∣+ . . .

The coefficient of zk in the expansion above may be computed by differentiating
the left hand side k times with respect to z, and setting z = 0. Since K is
continuous, as n→∞, the k-th term in the sum above converges to the integral

(−z)k

k!

∫
[0,1]k

det (K(xp, xq)1≤p,q≤k) dx1 . . . dxk. (D.1.7)

Definition-Theorem 111. The Fredholm determinant of the operator 1−zK
is the entire function of z defined by the convergent series

D(z) = det (1− zK) := 1+

∞∑
k=1

(−z)k

k!

∫
[0,1]k

(det(K(xp, xq)1≤p,q≤k)) dx1 · · · dxk.

(D.1.8)

Proof. It is only necessary to show that the series(D.1.7) is convergent for all z ∈
C. The determinant of a k×k matrix A with columns a1, . . . , ak is the (signed)
volume of the parallelopiped spanned by the vectors a1, . . . , ak. Therefore,

|det(A)| ≤ |a1||a2| · · · |ak| ≤
(

max
1≤j≤k

|aj |
)k

. (D.1.9)

We have assumed that K is bounded on [0, 1] × [0, 1], say max |K| ≤ M < ∞.
By the inequality above,

|(det(K(xp, xq)1≤p,q≤k))| ≤ kk/2Mk. (D.1.10)
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Thus, the k-term in the series (D.1.8) is dominated by∣∣∣∣∣ (−z)kk!

∫
[0,1]k

det [K(xp, xq)]1≤p,q≤k dx1 · · · dxk

∣∣∣∣∣
≤ (|z|M)k

kk/2

k!
∼ 1√

2π
(|z|Me)k

1

k
k+1

2

,

where we have used Stirling’s approximation in the last step.

Remark 112. If [0, 1] is replaced by a general Borel set S, we assume

|K(x, y)| ≤M(x),

where M ∈ L1(S). The same statements about the determinant follow.

Since D(z) is entire, we may differentiate term-by-term to obtain(
− d

dz

)m
det(1− zK) (D.1.11)

=

∞∑
k=0

(−z)k

k!

∫
[0,1]m+k

det [K(xp, xq)]1≤p,q≤m+k dx1 · · · dxm+k

for m ≥ 1. Recall that the zeros of a non-zero entire function form a discrete,
countable set. The entire function det(1−λ−1K) is an infinite-dimensional gen-
eralization of the characteristic polynomial of the matrix K(n) in the following
sense:

Theorem 113 (Eigenvalues of K). Assume that K is a continuous kernel. The
complex number λ is an eigenvalue of K if and only if D(λ−1) = 0.

In certain situations it is convenient to use the equivalent notation

det
(
1− zK|L2(S)

)
:= det (1− zK1S) = det (1− zK) .

Here the last determinant is only unambiguous if K : S × S → R and S
is clear from context. This presents a dichotomy in the theory of Fredholm
determinants – a kernel-focused theory and an operator focused theory. The
kernel-focused theory defines the determinant using the kernel function as in
Definition-Theorem 111. The operator-focused approach defines the determi-
nant in terms of the operator K = K|L2(S) defined by Kf(x) =

∫
S
K(·, y)f(y)dy

posed on L2(S). By making appropriate definitions one can avoid referring to
the kernel function, see [Sim05]. The theories are equivalent when they both
apply.

We will need to extend the notion of a determinant to systems of integral
equations and we do this with the operator-focused notation. Consider the
integral operator on

⊕N
`=1 L

2(I`) for intervals I` ⊂ R

K

 f1

...
fN

 =


∑N
`=1K1,`f`

...∑N
`=1KN,`f`
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where

Kj,`g =

∫
I`

Kj,`(x, y)g(y)dy

for a continuous kernel Kj,` : Ij × I` → R, g ∈ L2(I`). It is then clear that K is
completely determined by its kernel matrix

K ↔ K :=

K1,1 · · · K1,N

...
. . .

...
KN,1 · · · KN,N

 .
Then define [?] (or another reference?)

det(1−K) =

∞∑
k=0

(−1)k

k!

N∑
i1,...,ik=1

∫
Ii1×···×Iik

det
[
Kij ,i`(xj , x`)

]
1≤j,`≤k dx1 · · · dxk.

(D.1.12)

We remark that this description can be captured in the following notation

det(1−K|⊕N
`=1 L

2(I`)
) = det(I −K).

For more on Fredholm determinants, see [Lax02, Ch.24] and [Sim05].

D.2 Convergence

Suppose a kernel Kn(x, y) → K∞(x, y), (x, y) ∈ S2, pointwise. One needs the
additional convergence criteria to conclude

det(1−Kn)→ det(1−K∞). (D.2.1)

The following are from [Sim05] using the operator-focused approach. Let Kn
and K∞ be the operators on L2(S) with kernels Kn and K∞, respectively. Then
the trace norm of an operator K is given by

‖K‖Tr = Tr
√
K∗K, (D.2.2)

where K∗ is the adjoint of K. The general definition of
√
K∗K for general

operators is unimportant for us and an operator with finite trace norm is said
to be trace class. But, for example, if K is a non-negative self-adjoint operator
with continuous kernel K then

‖K‖Tr =

∫
S

K(x, x)dx. (D.2.3)

Alternatively, one can use the definition that for a self-adoint operator K on
L2(S),

TrK =
∑
k

〈Kek, ek〉, (D.2.4)

for any orthonormal basis (ek)k≥1 of L2(S).
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Theorem 114. The map K 7→ det(1+K) is a continuous function on the space
of trace-class operators (i.e. operators with ‖K‖Tr <∞) and

|det(1 +K)− det(1 + L)| ≤ ‖K − L‖Tr exp(‖K‖Tr + ‖L‖Tr + 1). (D.2.5)

Theorem 115. Suppose Kn,K are trace class. If Kn → K, |Kn| → |K| and
|K∗n| → |K∗| all weakly, then ‖Kn −K‖Tr → 0.

In our cases, |Kn| = Kn = |K∗n|, so to show that det(I −Kn)→ det(I −K)
it suffices to show for each f, g ∈ L2(S) that∫

S

∫
S

Kn(x, y)f(x)g(y)dxdy →
∫
S

∫
S

K(x, y)f(x)g(y)dxdy. (D.2.6)

Two such conditions for this to occur are

1. If S is bounded then

sup
x,y∈S

|Kn(x, y)−K(x, y)| → 0. (D.2.7)

2. If S is unbounded then we require

Kn(x, y)→ K(x, y), (D.2.8)

for each x, y ∈ S and there exists G(x, y) ∈ L2(S2) such that |Kn(x, y)| ≤
G(x, y). This allows one to use the dominated convergence theorem.

D.2.1 Change of variables and kernel extension

Let K : S2 → R be a kernel. Let x = r(t) and y = r(s) for s, t ∈ T where r′

exists, is continuous and does not vanish. Define

K̂(s, t) =
1

r′(s)
K (r(s), r(t)) , s, t ∈ T 2. (D.2.9)

Then

det(1−K) = det(1− K̂). (D.2.10)

D.3 Separable kernels
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Appendix E

Classical orthogonal
polynomials

In this appendix we consider detailed properties of Hermite and Laguerre poly-
nomials.

E.1 Hermite polynomials

In this section, µ denotes the measure

µ(dx) =
1√
2π

e−
x2

2 dx. (E.1.1)

The (probablilists’) Hermite polynomials {hk}∞k=0 are the monic family of poly-
nomials of degree k orthogonal with respect to the weight µ.

E.1.1 Basic formulas

hk(x) = e
x2

2

(
− d

dx

)k
e
−x2

2 . (E.1.2)

hk(x) =
1√
2π

∫
R

(−iξ)ke−
1
2 (ξ−ix)2

dξ. (E.1.3)

1√
2π

∫
R
hk(x)hl(x)e−

x2

2 dx =
√

2πk!δkl. (E.1.4)

xhk(x) = hk+1(x) + khk−1(x), k ≥ 1. (E.1.5)

h′k(x) = khk−1(x). (E.1.6)

193
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h′′k(x)− xh′k(x) + khk(x) = 0. (E.1.7)

k−1∑
j=0

1

j!
hj(x)hj(y) =

(hk(x)hk−1(y)− hk−1(x)hk(y))

(k − 1)!(x− y)
, x 6= y. (E.1.8)

Relation (E.1.2) may be treated as an alternate definition of the Hermite poly-
nomials. On the other hand, since we have defined the Hermite polynomials
as the monic orthogonal polynomials obtained by applying the Gram-Schmidt
procedure to the set {1, x, x2, . . .} in L2(R, µ), equation (E.1.2) may be verified
as follows. First, it is clear from (E.1.2) that hk(x) is a monic polynomial of
degree k and that h0(x) = 1, h1(x) = x. By induction, if it has been established
that property (E.1.2) defines the Hermite polynomials for j ≤ k − 1, then it is
only necessary to show that the monic polynomial

Pk(x) = e
x2

2

(
− d

dx

)k
e−

x2

2 ,

is the same as hk. The polynomial Pk is orthogonal to hj , 0 ≤ j ≤ k−1 because,
using integration by parts,∫

R
Pk(x)hj(x)µ(dx) =

∫
R

(
d

dx

)k
hj(x)µ(dx) = 0,

since Hj has degree less than k. Since Pk is monic, it must be hk. The same
calculation serves to establish (E.1.4).

The integral representation (E.1.3) follows from the formula for the Fourier
transform of a Gaussian

e−
x2

2 =
1√
2π

∫
R

eiξxe−
ξ2

2 dξ, (E.1.9)

and the identity (E.1.2).
The two-term recurrence relation follows from (3.4.18) and (E.1.4) (see also

Remark 30). The coefficient ak vanishes because equation (E.1.2) shows that
h2
k is an even polynomial for all k. The coefficient b2k may be rewritten

b2k =

∫
xhk−1(x)hk(x)µ(dx)∫

h2
k−1µ(dx)

=

∫
xhk−1(x)hk(x)µ(dx)∫

h2
kµ(dx)

∫
h2
k(x)µ(dx)∫
h2
k−1µ(dx)

= 1 · k2,

(E.1.10)
by (E.1.4).

The differential equation (E.1.6) is obtained by rewriting (E.1.2) in the form

e−
x2

2 hk(x) = (−1)k
(

d

dx

)k
e−

x2

2 ,

differentiating both sides, and then multiplying by e
x2

2 . Equation (E.1.7) is ob-
tained by differentiating (E.1.6) and using (E.1.5). The proof of the Christoffel-
Darboux identity is left as an exercise to the reader.
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E.1.2 Hermite wave functions

The Hermite wave functions {ψ}∞k=0 are defined by

ψk(x) =
1√
k!

e−x
2/4

(2π)1/4
hk(x), k = 0, 1, 2, . . . (E.1.11)

The following properties of the Hermite wave-functions follow immediately from
the corresponding properties of the Hermite polynomials.

∫
R
ψk(x)ψl(x) dx = δkl. (E.1.12)

xψk(x) =
√
k + 1ψk+1(x) +

√
kψk−1(x). (E.1.13)

ψ′k(x) = −x
2
ψk(x) +

√
kψk−1(x). (E.1.14)

ψ′′k (x) +

(
k +

1

2
− x2

4

)
ψk(x) = 0. (E.1.15)

n−1∑
k=0

ψk(x)ψk(y) =
√
n

(ψn(x)ψn−1(y)− ψn−1(x)ψn(x))

x− y
. (E.1.16)

E.1.3 Small x asymptotics

The following classical formulas capture the asymptotics of the Hermite poly-
nomials near the origin [AS72, §22.15].

lim
n→∞

(−1)n

2n

√
n

n!
h2n

(
x√
2n

)
=

1√
π

cosx. (E.1.17)

lim
n→∞

(−1)n

2n n!
h2n+1

(
x√
2n

)
=

√
2

π
sinx. (E.1.18)

Further, the convergence to the limit is uniform over x in a bounded interval.
In comparing equations (E.1.17) and (E.1.18) with a standard reference such

as [AS72], the reader should note that there are two conventions in the definition
of Hermite polynomials. The exponential weight in earlier sources was chosen
to be e−x

2

, which differs from our choice (E.1.1). The relation between the
Hermite polynomials, {Hn(x)} in [AS72], and those used here are:

Hn(x) = 2
n
2 hn(x

√
2), hn(x) = 2−

n
2 Hn

(
x√
2

)
. (E.1.19)
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These formulas may be immediately translated into asymptotic formulas for
the Hermite wave functions, using Stirling’s approximation for the factorial:

n! =
√

2πn
(n

e

)n
(1 +O(n−1)) as n→∞. (E.1.20)

lim
n→∞

(2n)1/4(−1)n ψ2n

(
x√
2n

)
=

1√
π

cosx. (E.1.21)

lim
n→∞

(2n)1/4(−1)nψ2n+1

(
x√
2n

)
=

1√
π

sinx. (E.1.22)

The asymptotic formulas (E.1.17) and (E.1.18) are proved by applying Laplace’s
method to the integral formula (E.1.3). We only explain how to prove (E.1.17)
since equation (E.1.18) is similar. Since (i)2n = (−1)n, we take the real part
of (E.1.3) to find

(−1)2nh2n

(
x√
2n

)
=

√
2

π
e
x2

4n

∫ ∞
0

ξ2ne−
ξ2

2 cos

(
xξ√
2n

)
dξ

=
2n+1nn+ 1

2

√
π

∫ ∞
0

e−n(t2−2 log t) cosxt dt, (E.1.23)

by rescaling ξ =
√
n t. We now apply Laplace’s method to the integral above.

The function g(t) = t2 − 2 log t has a single minimum on the interval (0,∞) at
t = 1. At this point

g(1) = 1, g′(1) = 0, g′′(1) = 4. (E.1.24)

Laplace’s approximation now yields∫ ∞
0

e−ng(t) cosxt dx ∼ e−n
√

π

2n
cosx, (E.1.25)

which when combined with (E.1.23) implies

(−1)2nh2n

(
x√
2n

)
∼ 2n+ 1

2nne−n cosx. (E.1.26)

Equation (E.1.26) is equivalent to (E.1.17) by Stirling’s approximation (E.1.20).
Further, it is easy to check that the error is uniformly small for x in a bounded
set.

E.1.4 Steepest descent for integrals

Consider the integral ∫
Γ

f(t)e−nΦ(t)dt (E.1.27)
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where f and Φ are entire functions. Assume Φ(t∗) = 0, Φ′(t∗) = 0, Φ′′(t∗) 6= 0,
ImΦ(t) = 0 for t ∈ Γ. Further assume Γ is the path of steepest ascent for Φ,
i.e. the path of steepest descent for −Φ(t). Having ImΦ(t) = 0 is enough to
ensure that Γ is either the path of steepest ascent (locally) or steepest descent:
Let t = x(s) + iy(s) be a smooth local parameterization of Γ, then by the
Cauchy–Riemann equations

0 =
d

ds
ImΦ(t) = ImΦx(t)

dx

ds
+ ImΦy(t)

dy

ds
= −ReΦx(t)

dx

ds
+ ReΦx(t)

dy

ds
.

This shows that ∇ReΦ is orthogonal to the tangent vector (−y′(s), x′(s)), im-
plying that Γ is in the direction of greatest increase/decrease for ReΦ.

Performing a Taylor expansion, we have

Φ(t) =
Φ′′(t∗)

2
(t− t∗)2(1 +O(|t− t∗|). (E.1.28)

The point is that Φ is locally quadratic at t∗ and we use this to inform the
change of variables. But if we näıvely looked to solve

Φ(t∗ + v) = s2,

for v as a function of s, v(0) = 0, we would fail. The implicit function theorem
fails because we have two solution branches! Instead we consider

Φ(t∗ + sv)

s2
− 1 = 0 =

Φ′′(t∗)

2
v2 − 1 +O(|sv3|). (E.1.29)

We can choose v = ±R−1/2e−iφ/2 where Φ′′(t∗)
2 = Reiφ. For either choice, we can

apply the implicit function theorem (the derivative with respect to v, evaluated
at (s, v) = (0,±R−1/2e−iφ/2) does not vanish). We use v = ±R−1/2e−iφ/2 to
obtain v(s), and our local parameterization of Γ: t(s) = t∗ + sv(s). We use
this a change of variables, within a neighborhood B(t∗, ε) on which the implicit
function theorem applies (here we assume the orientation of Γ is the same as
the induced orientation on t((−δ1, δ2)))∫

Γ\B(t∗,ε)

f(t)e−nΦ(t)dt =

∫ δ2

−δ1
f(t∗ + sv(s))e−ns

2

(v(s) + sv′(s)) ds, δ1, δ2 > 0.

(E.1.30)

Now let δ = min{δ1, δ2}. It follows that on Γδ = Γ \ t(−δ, δ), Φ(t) ≥ δ2. Then∣∣∣∣∫
Γδ

f(t)e−nΦ(t)dt

∣∣∣∣ ≤ e−nδ
2

∫
Γδ

|f(t)|e−n(Φ(t)−δ2)dt. (E.1.31)

For n ≥ 1, we have∫
Γδ

|f(t)|e−n(Φ(t)−δ2)dt ≤
∫

Γδ

|f(t)|e−(Φ(t)−δ2)dt := M. (E.1.32)
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And therefore (E.1.31) is exponentially small in n, less than Me−nδ
2

. Now,
consider ∫ δ

−δ
f(t∗ + sv(s))e−ns

2

(v(s) + sv′(s)) ds (E.1.33)

and we can directly apply Laplace’s method. Taylor expand the function

f(t∗ + sv(s))(v(s) + sv′(s))

at s = 0, and term by term integration gives an expansion in powers of n−1/2

with the leading order term being∫
Γ

f(t)e−nΦ(t)dt

=

∫ δ

−δ
f(t∗ + sv(s))e−ns

2

(v(s) + sv′(s))ds+O(n−α)

=

∫ δ

−δ
f(t∗)v(0)(1 +O(s))e−ns

2

ds+O(n−α), for all α > 0. (E.1.34)

Performing a change of variables s = y/
√

2n we have∫ δ

−δ
e−ns

2

ds =
1√
2n

∫ √2nδ

−
√

2nδ

e−y
2/2dy =

√
π

n
+O(n−α), for all α > 0,∫ δ

−δ
|s|e−ns

2

ds =
1√
2n

∫ √2nδ

−
√

2nδ

|y|e−y
2/2dy =

C

n
+O(n−α), for all α > 0.

(E.1.35)

So, we have∫
Γ

f(t)e−nΦ(t)dt =

√
2π

n
f(t∗)|Φ′′(t∗)|−1/2e−iφ/2 +O(n−1) as n→∞.

(E.1.36)

In our setting, we will want Φ to depend on an additional parameter. So, we
need a couple results to allow for uniformity in estimates with respect to this
parameter. First, we need to understand the domain on which v(s) is defined
by (E.1.29), and derive an upper bound on v(s) over this domain. We follow
[?].We have a theorem that is a more de-

tailed version of what preceeded it.
Remove what came before or reword?

Unify ”ball” notation

Theorem 116 (Quantitative implicit function theorem). For R1, R2, ε > 0,
suppose F (s, v) is an analytic function for (s, v) ∈ BR1+ε(0) × BR2+ε(0). Sup-
pose further that F (0, 0) = 0 and ∂vF (0, 0) = a 6= 0 and |F (s, v)| ≤ M on
BR1+ε(0) × BR2+ε(0). Then there exists an analytic function z(s) such that
F (s, z(s)) = 0 for

s ∈ BR̃(0), R̃ =
R1|a|r
M

− r2R1

R2(R2 − r)
, r <

R2

1 + M
|a|R2

,

one has z(s) ∈ Br(0).
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Proof. As a first estimate, we have

F (0, v) = az +

∞∑
j=2

F (j)(0, 0)
zj

j!
.

By the boundedness |F (0, v)| ≤M , |v| ≤ R2 and Cauchy’s integral formula, we
have

F (j)(0, 0)

j!
=

1

2πi

∫
∂BR2

(0)

F (0, z)

zj+1
dz,

|F (j)|(0, 0)

j!
≤MR−j2 .

This gives

|F (0, v)| ≥ |az| −M
∞∑
j=2

(
|z|
R2

)j
= |az| −M |z|2

R2
2 − |z|R2

.

This lower bound is positive provided

|z| ≤ r < R2

1 + M
|a|R2

.

Next, we recall Rouché’s theorem which states that if f, g are analytic in a
neighborhood of a simple closed contour C and that |g(v)| > |f(v)| on C, then
f(v) and f(v) + g(v) have the same number of zeros inside C. So, for each fixed
s, we consider

g(v) = F (0, v), f(v) = F (0, v)− F (s, v),

and choose C = ∂Br(0).
We can also bound |∂sF (0, v)| using Cauchy’s integral formula by

|∂sF (0, v)| ≤ M

R1
.

This implies that

|f(v)| ≤ M

R1
|s|.

Therefore, we can apply Rouché’s theorem if

|s| < R̃ :=
R1|a|r
M

− r2R1

R2(R2 − r)
.

So, for each s there exists only one (simple) zero z(s) ∈ Br(0) satisfying
F (s, z(s)) = 0 as s varies in BR̃(0). The analytic implicit function theorem
can be applied in a neighborhood of any of these these points (s, z(s)) to verify
the analyticity of z(s).
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To make this theorem a bit more convenient to use, we note that if we choose
the parameter ρ = M/(|a|R2) and set

r = α
R2

1 + ρ
, 0 < 1 < α,

and we conclude that

R̃ =
αR1

ρ

1− α
1− α+ ρ

.

Then we note that because z(s) is analytic in an open neighborhood of BR̃(0),
we can estimate derivatives

|z(j)(s)| ≤ 2jr

R̃j
, s ∈ BR̃/2(0).

In particular, this gives

|z′(s)| ≤ 2
R2

R1

ρ
1+ρ
1−α

1−α+ρ

≤ R2

R1

2ρ

1− α
, s ∈ BR̃/2(0). (E.1.37)

The following theorem gives sufficient conditions for the error term derived in
the method of steepest descent for integrals to be uniformly valid with respect
to non-asymptotic parameters.

Theorem 117. Consider the integral

Ix,n =

∫
Γx
f(t)e−nΦ(t;x)dt, n ∈ N+, x ∈ X, (E.1.38)

where f and Φ are analytic functions of t in a neighborhood Ux of Γx. Assume
Φ(t∗;x) = 0, Φ′(t∗;x) = 0, Φ′′(t∗;x) 6= 0, ImΦ(t;x) = 0 for t ∈ Γx. Further
assume Γx is a subset of of a path of steepest ascent for Φ passing through t∗ and
t∗ is not an endpoint of Γx. If there exists C,D, δ, ε > 0, N ≥ 0, independent of
x, and functions h(x), g(x) ≥ 0 such that

Bε(t
∗) ⊂ Ux, |Φ′′(t∗)| ≥ δ, sup

t∈Bε(t∗)

∣∣∣∣ Φ′′′(t)

Φ′′(t∗)

∣∣∣∣ ≤ C,∫
Γxγ

|f(t)|e−N(Φ(t;x)−γ2) ≤ g(x), sup
Γx\Γxγ

|f ′(t)| ≤ h(x),

for all 0 ≤ γ ≤ D, where Γxγ = Γx ∩ {t : Φ(t;x) > γ2}. Then

Ix,n =
e−iφ/2√

2πn|Φ′′(t∗)|
f(t∗) + Ex,n,

where

|Ex,n| ≤ e−nδ
′2
g(x) +

1

n

(√
8

δ
h(x) +

8M

δε

)∫ √2nδ′

−
√

2nδ′
|y|e−y

2/2dy,

M = 3 + 4Cε
3 and δ′ is any number satisfying 0 < δ′ < min{ ε

√
δ

4
√

2M
1

1+M , D}.
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Before we prove this theorem, there are some important points to highlight.
First, there is no reason that δ cannot be large, or even increasing. Also, if X is
just a singleton set then these estimates are trivial and this gives the standard
leading-order behavior by the method of steepest descent.

In the cases we need to analyze, Φ′′ will not depend on the non-asymptotic
parameter x, but the point t∗ will. So, if t∗, as x varies, is bounded away from
singularities of Φ′′ and f , only finding g is necessary.

The actual size of the error term in the above approximation is O(n−
3
2 )

because
∫ δ′
−δ′ yey

2

dy = 0. One has to perform a Taylor expansion to one more
order than is used in the proof of the theorem. This results in more complicated
expressions. We leave this extension as an exercise for the reader as this fact is
not needed in the analysis of random matrices.

Remark 118. Suppose C ≤ cn1/3 and δ ≥ cn−1/3. Then M ≤ c0n
1/3 and

δ′ ≤ c1n−1/3 and while it is not lower-order than the “leading” term, one derives
estimates of the form:

|Ix,n| ≤ Cn−
1
3 |f(t∗)|+ e−c

2
1n

1/3

g(x) + 2

(√
8

c
n−

5
6h(x) +

8c0n
− 1

3

εc

)

Proof of Theorem 117. To find the (local) change of variables we apply the
quantitative implicit function theorem to

F (s, v) =
Φ(t∗ + s(v∗ + v))

s2
− 1,

in a neighborhood of (s, v) = (0, 0), where v∗ := R−1/2e−iφ/2 and Φ′′(t∗)/2 =
Reiφ. The implicit function theorem gives v = v(s). We write

F (s, v) =

∞∑
j=2

Φ(j)(t∗)

j!
sj−2(v∗ + v)j − 1.

This power series is guaranteed to converge provided that |s(v∗ + v)| < δ, so
we consider (s, v) ∈ Bε/(2|v∗|)(0) × B|v∗|(0), and we then need to compute an
upper-bound on F . We write

Φ(t) = Φ(t∗) + Φ′(t∗)(t− t∗) +
Φ′′(t∗)

2
(t− t∗)2 +

∫ t

t∗

∫ t′

t∗

∫ t′′

t∗
Φ′′′(t′′′)dt′′′dt′′dt′

were we integrate along the line connecting t to t∗. We find

F (s, v) = −1 +
Φ′′(t∗)

2
(v∗ + v)2 + s−2

∫ t∗+s(v∗+v)

t∗

∫ t′

t∗

∫ t′′

t∗
Φ′′′(t′′′)dt′′′dt′′dt′
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Then we bound |Φ′′′(t′′′)| ≤ C|Φ′′(t∗)| to find

|F (s, v)| ≤ |Φ
′′(t∗)|
2

(2v∗v + v2) + C
|Φ′′(t∗)|

6
|s(v∗ + v)3|

≤ 3 + C
|Φ′′(t∗)|

6
8|s||v∗|3

≤ 3 + C
2|Φ′′(t∗)|

3
ε|v∗|2

≤ 3 +
4Cε

3
=: M = M(C, ε)

By (E.1.37), for any choice of 0 < α < 1double check these bounds

|v′(s)| ≤ 4M

ε(1− α)|Φ′′(t∗)|
, for |s| < αε|Φ′′(t∗)|1/2√

8M

1− α
1 + M

2 − α
.

These inequalities are then simplified using the lower bound on |Φ′′(t∗)| and
setting α = 1/2, for example:

|v′(s)| ≤ 8M

δε
, for |s| < ε

√
δ

4
√

2M

1

1 +M
.

Most importantly, this gives us a uniform lower bound on the size the inter-
val over which v is defined. So, we choose δ′ to be some number less than

min{ ε
√
δ

4
√

2M
1

1+M , D}.
The integral Ix,n can be truncated to Γxδ′ at a cost of an error bounded by

g(x)e−δ
′2n, see (E.1.31). Following (E.1.34) we find∫
Γx\Γx

δ′

f(t)e−nΦ(t)dt =

∫ δ′

−δ′
f(t∗ + sV (s))e−ns

2

(V (s) + sV ′(s))ds,

V (s) = v∗ + v(s),

Expanding all but the exponential:

f(t∗ + sV (s)) = f(t∗) +

∫ t∗+sV (s)

t∗
f ′(s′)ds′,

V (s) + sV ′(s) = V (0) + sV ′(s) +

∫ s

0

V ′(s′)ds′.

We know that for |s| ≤ δ′, |sV (s)| ≤ ε and |V (s)| ≤ 2|v∗| so that∣∣∣∣∣
∫ t∗+sV (s)

t∗
f ′(s′)ds′

∣∣∣∣∣ ≤ 2|s||v∗|h(x) ≤
√

8

δ
|s|h(x),∣∣∣∣sV ′(s) +

∫ s

0

V ′(s′)ds′
∣∣∣∣ ≤ |s|8Mδε .

Then, using the estimates from (E.1.35) the theorem follows.



E.1. HERMITE POLYNOMIALS 203

E.1.5 Plancherel–Rotach asymptotics

Another asymptotic regime is obtained when we consider x = O(
√
n) and let

n→∞. Plancharel–Rotach asymptotics refer to the asymptotics of polynomials
scaled by their largest zero. The limit is oscillatory or exponential depending
on the range of x. This is to be expected: for each n, the polynomial hn(x),
and thus the wave function ψn(x), has n zeros. The largest and smallest of the
zeros are approximately ±

√
(n+ 1/2). The oscillatory regime is obtained when

x(n + 1/2)−1/2 lies well within the interval (−1, 1). Outside this interval, the
Hermite wave function decays exponentially fast. A more delicate calculation,
using the Airy function, is required to understand the transition from oscillatory
to exponential behavior.

We will prove a weaker version of the Plancherel-Rotach formulas, that suf-
fices for our needs. These formula are as follows.

Case 1. Oscillatory behavior.

x = 2 cosϕ, 0 < ϕ < π. (E.1.39)

n
1
4ψn+p

(
x
√
n
)

=
1√

π sinϕ

(
cos

[
n

(
ϕ− 1

2
sin 2ϕ

)
+

(
p+

1

2

)
ϕ− π

4

]
+O(n−1)

)
.

(E.1.40)
The convergence is uniform for ϕ in a compact closed subset of (0, π). Don’t we need this kind of uniformity?

Case 2. Exponential decay.

|x| = 2 coshϕ, 0 < ϕ. (E.1.41)

n
1
4ψn+p

(
x
√
n
)

=
(sgn(x))n+p

2n
1
4

e(p+1/2)ϕe
−n2

(
x2

2 −1−e−2ϕ−2ϕ
)

√
π sinhϕ

(
1 +O(n−1)

)
,

=
(sgn(x))n+p

2n
1
4

e(p+1/2)ϕe−
n
2 (sinh(2ϕ)−2ϕ)

√
π sinhϕ

(
1 +O(n−1)

)
.

The convergence is uniform for ϕ in a closed subset of (0,∞). Observe
that sinh(2ϕ)− 2ϕ > 0 when ϕ > 0, ensuring exponential decay.

Case 3. The transition region.

x = 2
√
n+

s

n
1
6

s ∈ C, (E.1.42)

n
1
12 ψn(x) ∼ Ai(s) +O

(
n−

2
3

)
. (E.1.43)

n
1
12ψn+p(x

√
n) = Ai(s) + n−1/3

(
1

2
− p
)

Ai′(s) +O(n−2/3). (E.1.44)

The convergence is uniform for s in a compact subset of C.
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All three asymptotic relations are obtained by the method of steepest descent
for integrals. Assume x ∈ R. We fix an integer p, use the integral identity
(E.1.3) with k = n+ p, and rescale ξ = nt to obtain

hn+p

(
x
√
n
)

=
(
−i
√
n
)n+p

√
n

2π

∫ ∞
−∞

tn+pe−
n
2 (t−ix)2

dt (E.1.45)

=
(
−i
√
n
)n+p

√
n

2π

(∫ ∞
0

tn+pe−
n
2 (t−ix)2

dt+ (−1)n+p

∫ ∞
0

tn+pe−
n
2 (t+ix)2

dt

)
:=
(
−i
√
n
)n+p

√
n

2π

(
In,p(x) + (−1)n+pIn,p(−x)

)
. (E.1.46)

The integral In,p(x) may be rewritten in the form

In,p(x) =

∫ ∞
0

tpe−ng(t) dt, g(t) =
1

2
(t− ix)2 − log t. (E.1.47)

As is usual, the first step is to determine the critical points where g′(t) = 0.
This reduces to the quadratic equation t2 − ixt − 1 = 0. The three distinct
asymptotic limits arise from the three distinct possibilities for the roots.

(a) |x| < 2. The function g has two critical points on the unit circle, given by

t± =
ix±

√
4− x2

2
= ie∓iϕ, (E.1.48)

where x and ϕ are related through (E.1.39).

(b) |x| > 2. The two critical points lie on the imaginary axis, and may be
written in the form

t± = i

(
x±
√
x2 − 4

2

)
= i sgn(x)e±ϕ, (E.1.49)

where each branch of ϕ is defined through the relation (E.1.41).

(c) |x| = 2. The two critical points coalesce into a single value t = i. A further
blow-up is necessary to obtain the Airy asymptotics (E.1.44).

Let us first consider the integral In,p(x) in case (a), and let us assume that
x > 0 to be concrete. We deform the integral over (0,∞) a contour Γ which is
the path of steepest descent that passes through the critical point t+ as shown
in Figure E.1.1. The existence of such a contour may be deduced by continuity,
beginning with the observation that when x = 0, Γ is simply the segment (0,∞)
along the real line. While in general, Γ is given by the equation Im(g(t)) =
Im(g(t+)). It is not important for us to solve for the contour explicitly: all
that is required is to understand the phase of g′′(t+), check that 0 ∈ Γ and the
integral over (0,∞) can be deformed to an integral over Γ.
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t+t−

0

π
4 −

ϕ
2

(0,∞)

Γ

Figure E.1.1:

t+

t−

0 (0,∞)

Figure E.1.2:

Lecture Note 7. As Γ is traversed the imaginary part of g(t) is constant and,

leaving t+, the real part of g(t) will only increase from its value of 1
2 −

x2

4 . Also,
Γ can only fail to be defined at either a singularity, ∞ or another critical point.
By checking the imaginary part of g on the positive imaginary axis, and then
the negative real axis (noting that it then must approach from below) we can
rule out Γ crossing these axes. By checking the real part of g on the unit circle

and determining that 1
2 −

x2

4 is its maximum, we see that Γ can only intersect
the unit circle at t+. As Im g(t) is harmonic in {|t| < 1 | Re t > 0 or Im t < 0}
it cannot have any closed level curves. Therefore 0 ∈ Γ. For t = α + iβ and α
fixed, Im (g(t)−g(t+)) = 0 gives an implicit function for β = β(x), and β(x) has
a bounded derivative, uniform in α. Thus Γ must remain in a strip containing
the real axis. So, we can deform (0,∞) to Γ.
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It is easy to check that when |x| < 2

g′′(t+) = 1 +
1

t2+
= 1− e2iϕ =

(
−ieiϕ

)
(2 sinϕ) . (E.1.50)

Thus, we have

In,p(x) =

∫ ∞
0

tpe−ng(t) dt = e−ng(t+)

∫
Γ

tpe−n(g(t)−g(t+)) dt

= e−ng(t+)tp+
dt

ds

∣∣∣∣
t+

∫ ∞
−∞

e−
n
2 |g
′′(t+)|s2 ds+O(n−1). (E.1.51)

In the second line, we have used the fact that Im(g(t)−g(t+)) = 0 on Γ, and we
have further approximated the integral over Γ by an integral over the tangent
to Γ at t+. More precisely, the approximation here is

g′′(t+)(t− t+)2 = |g′′(t+)|s2,

which implies
dt

ds

∣∣∣∣
t+

= ei(π4−
ϕ
2 ). (E.1.52)

We now combine the values

t+ = ie−iϕ, g(t+) = −e2iϕ

2
+ i
(
ϕ− π

2

)
,

with (E.1.51) and (E.1.52) to obtain

In,p(x) = e
n
2 cos 2ϕ

√
π

n sinϕ

(
ei(n2 sin 2ϕ+(n+p+ 1

2 )(π2−ϕ)) +O(n−
1
2 )
)
. (E.1.53)

Finally, since x is real, we have In,p(x) = In,p(−x). We combine (E.1.46) with
(E.1.53) to obtain

hn+p(x
√
n) = n

n+p
2

√
2

sinϕ
e
n
2 cos 2ϕ (E.1.54)

×
(

cos

[
n

(
ϕ− 1

2
sin 2ϕ

)
+

(
p+

1

2

)
ϕ− π

4

]
+O(n−

1
2 )

)
,

where x and ϕ are related via (E.1.39). We now use (E.1.11) and Stirling’s
approximation (E.1.20) to obtain (E.1.40). The error term is uniform for x in
closed subsets of (−2, 2) by Theorem 117.

The asymptotics in case (b) are obtained as follows. Since the stationary
phase points are on the imaginary axis, it pays to work directly with (E.1.45).
The path of steepest descent from t− extends vertically. The path of steepest
descent through t+ is locally horizontal. And, so we just move the integral
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in (E.1.45) to a (locally) horizontal contour that passes through t+, see Fig-
ure E.1.2. Using |x| = 2 sinhϕ this gives

hn+p(x
√
n) = (

√
n)n+p(sgn(x))n+p e(n+p)ϕe

n
2 (eϕ−x)2√

2e−ϕ sinhϕ
(1 +O(n−1)).

Using (E.1.20) one obtains (E.1.41). Those calculations are left to the reader.

The remaining calculations are left to the reader. The final asymptotic
relation is

hn+p(x
√
n) = n

n+p
2

e−
n
2

√
sinhϕ

e(p+ 1
2 )ϕ−n2 (sinh(2ϕ)−2ϕ)(1 + o(1)), (E.1.55)

which combines with (E.1.11) and Stirling’s approximation (E.1.20) to yield
(??).

We now turn to case (c). We only present the main change of variables
that underly the result. We begin with the integral representation(E.1.45) and
substitute

t = i +
r

n
1
3

, x = 2
√
n+

s

n
1
6

, (E.1.56)

moving the integral over R to an integral over the line i + R, to obtain

hn(x
√
n) = (−i

√
n)n

n
1
6

√
2π

∫ ∞
−∞

enh(r) dr, (E.1.57)

where

h(r) = log

(
i +

r

n
1
3

)
− 1

2

((
i +

r

n
1
3

)
− i

(
2 +

s

n
2
3

))2

=
1

2
+ log i +

s

n
2
3

+
1

n

(
isr +

i

3
r3

)
+

s2

2n
4
3

+O(n−
4
3 r4), (E.1.58)

using the Taylor expansion of the logarithm. The terms that depend on s may
be pulled out of the integral and we are left with

hn(x
√
n) ≈ n

n
2 + 1

6

√
2π

e
n
2 esn

1
3

∫ ∞
−∞

eisr+ i
3 r

3

dr (E.1.59)

hn(x
√
n) =

√
2πn

n
2 + 1

6 e
n
2 esn

1
3 (Ai(s) +O(n−1/3))

We now use the definition (E.1.11) and Stirling’s approximation (E.1.20) to
obtain (E.1.44). To make this rigorous, and to obtain the next term in the
expansion, We take the integral

hn+p(x) =

√
n

2π
(−i
√
n)n+p

∫
R
tpe−n( 1

2 (t−ix)2−log t)dt (E.1.60)
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and deform to i + R. Then, let t = i + r and we arrive at

hn(x) =

√
n

2π
(−i
√
n)n+p

∫
R

(i + r)pe−n( 1
2 (r+i(1−x))2−log(i+r))dr. (E.1.61)

Then this can be deformed to a contour Γ = e−iπ/6(−∞, 0] ∪ eiπ/6[0,∞).
Then, we perform a Taylor expansion of the logarithm to find, for H(r) =

1
2 (r + i(1− x))2 − log(i + r) and x > 1,

e−
n
2 (1−x)2

∫
Γ

(i + r)pe−nH(r)dr (E.1.62)

+O(e−n(x−1)δ) (E.1.63)

= einπ2

∫
Γ∩B(0,δ)

ein(x−2)r+in r
3

3

(
ip + rpip−1 +O(r2)− nip

r4

4
+ nO(r5)

)
dr

(E.1.64)

We compute ∫ δ

0

e−n
y3

3 yαdy = O(n−(α+1)/3),

so that

e−
n
2 (1−x)2

∫
Γ

(i + r)pe−nH(r)dr = einπ2

∫
Γ∩B(0,δ)

(
ip + pip−1r − nip

r4

4

)
ein(x−2)r+in r

3

3 dr

+O(n−1).

Finally, it follows that if x = 2 + sn−2/3 and setting r = k/n−1/3∫
Γ∩B(0,δ)

ein(x−2)r+in r
3

3 rγdr = 2πn−(γ+1)/3(−i)γAi(γ)(s) +O(n−α) for all α > 0.

(E.1.65)

This gives

ψn+p(x
√
n) = (2π)1/4

√
n

e−n
x2

4 e
n
2 (1−x)2√

(n+ p)!
n
n
2 + p

2 n−1/3 (E.1.66)

×
(

Ai(s) + n−1/3

(
−pAi′(s)− 1

4
Ai(4)(s)

)
+O(n−2/3)

)
.

(E.1.67)

We compute

e−n
x2

4 e
n
2 (1−x)2

= e
−n4 (4+4 s

n2/3
+ s2

n4/3
)
e
n
2 (1+2 s

n2/3
+ s2

n4/3
)

= e−
n
2 e

s2n−1/3

4 , (E.1.68)



E.1. HERMITE POLYNOMIALS 209

and use Stirling’s approximation to write

(2π)1/4

√
n!

e−
n
2 n

n
2 =

(2πn)1/4

√
n!

e−
n
2 n

n
2 n−1/4 (E.1.69)

= n−1/4(1 +O(n−1)). (E.1.70)

Continuing, we obtain

ψn+p(x
√
n) = n−1/12+p/2

√
n!

(n+ p)!
e
s2n1/3

4 (E.1.71)

×
(

Ai(s) + n−1/3

(
−pAi′(s)− 1

4
Ai(4)(s)

)
+O(n−2/3)

)
(E.1.72)

= n−1/12+p/2

√
n!

(n+ p)!
(E.1.73)

×
(

Ai(s) + n−1/3

(
−pAi′(s) +

1

4
(s2Ai(s)−Ai(4)(s))

)
+O(n−2/3)

)
(E.1.74)

= n−1/12+p/2

√
n!

(n+ p)!
(E.1.75)

×
(

Ai(s) + n−1/3

(
1

2
− p
)

Ai′(s) +O(n−2/3)

)
, (E.1.76)

where we used Ai(4)(s) = s2Ai(s) + 2Ai′(s) in the last line.

Uniform bounds

We need uniform estimates when x = 2 + sn−2/3 and 0 ≤ s ≤ n2/3 to allow
us to transition into case (b), (E.1.49). We could use asymptotics of Airy
functions and Airy-like integrals to extend (E.1.76) to s = O(n2/3) with a
uniform error term. We take a different approach and work from first principles.
Let Γ = e−iπ/6(−∞, 0] ∪ eiπ/6[0,∞).

e−
n
2 (1−x)2

∫
Γ

e−nH(r)dr = einπ2

∫
Γ∩B(0,δ)

e−nH(r)dr +O(e−n(x−1)δ).

Then, we deform

e−
n
2 (1−x)2

∫
Γ∩B(0,δ)

e−nH(r)dr = e−
n
2 (1−x)2

∫
C

e−nH(r)dr (E.1.77)

to a horizontal contour connecting its endpoints. Then on this contour,

e−
n
2 (1−x)2

∫
C

(e−nH(r) − e
n
2 (1−x)2

)dr (E.1.78)

=

∫
C

einr(x−2)
[
e−n

r2

2 +inr+n log(i+r) − ein r
3

3

]
dr. (E.1.79)
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For r ∈ C, |einr(x−2)| ≤ enδ/
√

2(x−2), and we find∣∣∣∣e−n2 (1−x)2

∫
C

(e−nH(r) − e
n
2 (1−x)2

)dr

∣∣∣∣ ≤Mn−2/3enδ/
√

2(x−2). (E.1.80)

Then, define fn(s) = n1/3

2π

∫
C

ein(x−2)r+in r
3

3 dr and we have∣∣∣∣∣n1/12−p/2ψn+p(x
√
n)−

√
n!

(n+ p)!
e
s2n−1/3

4 fn(s)

∣∣∣∣∣ ≤Mn−2/3e
s2n1/3

4 −nδ/
√

2(x−2).

(E.1.81)

Choosing δ =
√

2, we find e
s2n1/3

4 −nδ/
√

2(x−2) ≤ e−s
3
4n

1/3

. A similar estimate
follows for ψn+p and we obtain that there exist a constant M > 0 such that for
0 ≤ s ≤ n2/3∣∣∣∣n1/12ψn(x

√
n)− e

s2n−1/3

4 fn(s)

∣∣∣∣ ≤Mn−2/3e−s
3
4n

1/3

,∣∣∣∣n1/12ψn−1(x
√
n)− e

s2n−1/3

4 fn(s)

∣∣∣∣ ≤Mn−2/3e−s
3
4n

1/3

.

(E.1.82)

For s ≥ n2/3, we can use (??) to find

n1/4(|ψn(x
√
n)|+ |ψn−1(x

√
n)|) ≤Me−s

3
4n

1/3

. (E.1.83)

E.2 Laguerre polynomials
Include this logical derivation? Or
just list the properties like Hermite?

Consider polynomial solutions to the differential equation

xy′′ + (α+ 1− x)y′ + ky = 0. (E.2.1)

Such functions are called generalized Laguerre polynomials. For each choice of
α > −1 and n ∈ N there exists one and only one such solution. This follows
from the following fact:

Lemma 38. Any polynomial solution of (E.2.1) must be of degree k.

Proof. Suppose y is polynomial of degree m, with non-zero leading coefficient.
As |x| → ∞ in (E.2.1) we have

−xy′(x) + ky(x) = O(|x|m−1).

Then xy′(x) = my(x) + O(|x|m−1) and the condition k = m must be satisfied.
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So, if there existed two linearly independent polynomial solutions of (E.2.1)
a linear combination would also be a solution and the combination could be
taken so that it is a degree < k polynomial, contradicting the lemma.

One can then check directly that

L
(α)
k (x) =

x−αex

k!

dk

dxk
(
e−xxk+α

)
(E.2.2)

is the polynomial solution of (E.2.1). And from this it follows that∫ ∞
0

L
(α)
k (x)L

(α)
j (x)xαe−xdx = δjk

Γ(k + α+ 1)

k!
. (E.2.3)

An explicit formula also follows

L
(α)
k (x) =

k∑
j=0

(−1)j
(
k + α

k − j

)
xj (E.2.4)

and then the Laplace transform can be computed explicitly∫ ∞
0

xαL
(α)
k (x)e−sxdx =

(k + α)!

k!

(
1− 1

s

)k
1

sα+1
.

Inverting this transform gives the integral representation,

xαL
(α)
k (x) =

1

2πi

(k + α)!

k!

∫ i∞+ε

−i∞+ε

(
1− 1

s

)k
exs

sα
ds

s
, ε > 0. (E.2.5)

As a precursor to asymptotic analysis we compute(
1− 1

s

)k
exs

sα
= ek`(s;α), `(s;α) = log

(
1− 1

s

)
− α

k
log s+

x

k
s.

Then, looking for stationary points, set

`′(s;α) =
1

s(s− 1)
− α

k

1

s
+
x

k
= 0,

and the two roots are

s±(α) =

α+x
k ±

√(
α+x
k

)2 − 4xk
(
1 + α

k

)
2xk

.

The asymptotics will change for values of x where the two roots coincide. So,
examine (

α+ x

k

)2

− 4
x

k

(
1 +

α

k

)
=
α2 + x2 − 2αx− 4xk

k2
= 0.

This gives

x±(α) = 2k + α±
√

(2k + α)2 − α2 = (
√
k + α±

√
k)2.

We highlight the α-dependence of x± and suppress the k-dependence for future
convenience. Additionally, because (E.2.5) is straightforward to differentiate
with respect to x, we will include asymptotics for derivatives.
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E.2.1 Fixed α > −1
Here we suppose α is fixed and we write (E.2.5) as

xαL
(α)
k (x) =

1

2πi

(k + α)!

k!

∫ i∞+ε

−i∞+ε

ek`(s;0) 1

sα+1
ds, for any ε > 0.

Note that we could absorb the s−α factor in the exponent but this formulation
is more convenient. Additionally, for α small this integral is just conditionally
convergent and it can assist in the analysis to deform it to a contour

Γε = eiθ[0,∞) ∪ e−iθ[0,∞) + ε, −π < θ < −π/2

oriented with increasing increasing imaginary part. But more can be done. For
x� 0 the contour of integration can be truncated at the cost of an exponentially
small error.

Consider the function

|ek`(s;0)|, s ∈ eiθ[0,∞) + ε.

For |s| ≥ R and s = ε+ re±iθ

|ek`(s;0)| ≤ exp

(
k log

(
1 +

1

R

)
+ x(ε− r| cos θ|)

)
≤ exp

(
k

R
+ x(ε− r| cos θ|)

)
Define

Γε,R = eiθ[0, R) ∪ eiθ[0, R) + ε.

Estimate, for R > ε,∫ ∞
R

|ek`(ε+re
iθ;0)| dr

|ε+ reiθ|α+1
≤
∫ ∞
R

exp

(
k

r − ε
+ x(ε− r| cos θ|)

)
(r − ε)−α−1dr

≤
exp

(
k

R−ε + xε
)

(R− ε)α+1

e−Rx| cos θ|

x| cos θ|
.

To summarize, let R > ε let g(s) be analytic in the region

∆ = {s ∈ C | s = ε+ re±iφ, r ∈ (0,∞), φ ∈ (−π/2, θ)},

and bounded on the closure. Then∣∣∣∣∣
∫ i∞+ε

−i∞+ε

ek`(s;0) 1

sα+1
g(s)ds−

∫
Γε,R

ek`(s;0) 1

sα+1
g(s)ds

∣∣∣∣∣ (E.2.6)

≤ sup
s∈Γε

|g(s)|
exp

(
k

R−ε + xε
)

(R− ε)α+1

e−Rx| cos θ|

2x| cos θ|
.
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We will mainly consider this estimate when x ≥ δk, in which case exponential
decay is realized for R| cos θ| > ε+ 1

δ(R−ε) .

Next, the stationary phase points are

s±(0) =
1±

√
1− 4kx

2

with

x±(0) = (
√
k ±
√
k)2 = 4k, 0.

Define

l
(α)
k,p(x) =

(k + p)!

(k + p+ α)!
(4kx)

α
L

(α)
k+p(4kx)

so that we consider modifications of x± and s±

s̃±(0) =
1±

√
1− 1

x

2
, x̃±(0) = 1, 0.

Bulk asymptotics

Fix 0 < δ < 1. We consider the asymptotics of l
(α)
k (x) for δ ≤ x ≤ 1 − δ. The

following expansions will be uniform by Theorem 117. Indeed, by Theorem 117

l
(α)
k,0 (x) =

x
α+1

2 2α(−1)ke2kx

√
2πkx3/4(1− x)1/4

×
(
Re
[
ie−2ik arccos

√
xe2ik

√
x(1−x)e−i(α+1) arccos

√
xe3iπ/4

]
+O

(
1√
k

))
and therefore

l
(α)
k,0 (x) =

x
α+1

2 2α(−1)ke2kx

√
2πkx3/4(1− x)1/4

×
(

sin
[
(2k + α+ 1) arccos

√
x− 2k

√
x(1− x) +

π

4

]
+O

(
1

k

))
.

In this calculation we used that

2s̃+(0) = 1 +

√
1− 1

x
=

√
x+ i

√
1− x√
x

=
1√
x

ei arccos
√
x.

More generally, by the method of steepest descent

dj

dxj
l
(α)
k,p(x) = (4k)j

x
α+1

2 2α(−1)ke2kx

√
2πkx3/4(1− x)1/4

×
(
Re

[(
1− 1

s̃+(0)

)p
s̃+(0)j ie−2ik arccos

√
xe2ik

√
x(1−x)e−i(α+1) arccos

√
xe3iπ/4

]
+O

(
1

k

))
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and therefore

dj

dxj
l
(α)
k,p(x) = (4k)j

x
α−j+1

2 2α(−1)k+pe2kx

√
2πkx3/4(1− x)1/4

×
(

sin
[
(2k − j + α+ 2p+ 1) arccos

√
x− 2k

√
x(1− x) +

π

4

]
+O

(
1

k

))
.

The quantity that arises in the global eigenvalue distribution is proportional to

x−αe−4kx

[
l
(α)
k,0 (x)

d

dx
l
(α)
k,−1(x)− l

(α)
k,−1(x)

d

dx
l
(α)
k,0 (x)

]

x−αe−4kxl
(α)
k,0 (x)

d

dx
l
(α)
k,−1(x) ∼ 4k

2α(−1)2k−122α−1

x
√

2πk
√

1− x

× sin
[
(2k + α+ 1) arccos

√
x− 2k

√
x(1− x) +

π

4

]
× sin

[
(2k + α− 2) arccos

√
x− 2k

√
x(1− x) +

π

4

]

x−αe−4kx d

dx
l
(α)
k,0 (x)l

(α)
k,−1(x) ∼ 4k

2α(−1)2k−122α−1

x
√

2πk
√

1− x

× sin
[
(2k + α− 1) arccos

√
x− 2k

√
x(1− x) +

π

4

]
× sin

[
(2k + α) arccos

√
x− 2k

√
x(1− x) +

π

4

]
Then set

Θ = (2k + α+ 1) arccos
√
x− 2k

√
x(1− x) +

π

4
,

ϕ = − arccos
√
x.

We need to examine the quantity

f(Θ, ϕ) = sin(Θ + 3ϕ) sin Θ− sin(Θ + 2ϕ) sin(Θ + ϕ)

and we claim that

f(Θ, ϕ) = −2 cos(−ϕ) sin2(−ϕ).

This follows using

2 sin y sin z = cos(x+ y)− cos(x− y).
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Airy asymptotics

Define

˜̀(s;α) = log

(
1− 1

s

)
− α

k
log s+ 4xs

As x → 1, the stationary phase points, the zeros of ˜̀′, collapse at s = 1/2. To
capture the behavior there we expand ˜̀(s; 0) about s = 1/2

˜̀(s; 0) = iπ + 2x+ 4(x− 1)

(
s− 1

2

)
− 16

3

(
s− 1

2

)3

+O

(
s− 1

2

)5

.

Then we choose

x = 1 +
y

2
2
3 k

2
3

, s =
1

2
+ i

r

2
4
3 k

1
3

.

The exponents of 2/3 and 1/3 are chosen so that k ˜̀(s; 0), when expanded in
powers of r, will have no k-dependence at order 1, 2 or 3. Indeed,

˜̀
(

1

2
+ i

r

2
4
3 k

1
3

; 0

)
= iπ + 2x+

iy

k
r +

i

3k
r3 +O

(
r5k−5/3

)
.

Using (E.2.6) with ε = 1/2, θ = −2π/3 and x replaced with 4kx it follows that
for R = 3

lαk,p(x) =
1

2πi

∫
Γ1/2,3

ek
˜̀(s;0)

(
1− 1

s

)p
ds

sα+1

+O

(
e

2
5k−4kx

kx

)
.

Then we expand(
1− 1

s

)p
1

sα+1
=

(1− s)p

sα+p+1
= (−1)p2α+1

[
1− 2(2p+ a+ 1)

(
s− 1

2

)]
+O

(
s− 1

2

)2

.

Therefore

1

2πi

∫
Γ1/2,3

ek
˜̀(s;0)

(
1− 1

s

)p
ds

sα+1

=
(−1)k+pe2kx2α+1

2
4
3 k

1
3 2π

∫
Γ̂k

eiyr+ i
3 r

3

(
1− 2i(2p+ α+ 1)

r

2
4
3 k

1
3

+O((r2 + r5)k−2/3)

)
dr

=
(−1)k+pe2kx2α+1

2
4
3 k

1
3

(
Ai(y)− (2p+ α+ 1)

Ai′(y)

2
1
3 k

1
3

+
Gk(y)

k
2
3

)
dr,

where

Γ̂k = ei5π/6[0, 3 · 2 4
3 k

1
3 ] ∪ eiπ/6[0, 3 · 2 4

3 k
1
3 ],

and Gk(y) is such that G(y) := supk |Gk(y)| decays exponentially as y → +∞.
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Bessel asymptotics

Next, we consider the case where x ≈ 0. Note that the stationary phase points
head off to infinity as x → 0. So, we need to rescale the integral to pull
the stationary phase points back to zero. We first send s → s/

√
x so that

ds→ ds/
√
x and deform back to the contour:

l
(α)
k,p(x) =

1

2πi

∫ i∞+ε

−i∞+ε

(
1− 1

s

)k
e4kxs ds

sα+1
=

(x)
α
2

2πi

∫ i∞+ε

−i∞+ε

(
1−
√
x

s

)k+p

e4k
√
xs ds

sα+1

Then set
√
x = c1

√
ykγ and s = c2tk

δ. We choose c1, c2, δ, γ so that 4k
√
xs =

√
yt

2 and
√
x
s =

√
y

2kt . We find that γ = −1, δ = 0, c2 = 1/2 and c1 = 1/4. Then,

l
(α)
k,p(x) =

(4x)
α
2

2πi

∫ i∞+ε

−i∞+ε

(
1−
√
y

2kt

)k
e
√
yt

2
dt

tα+1
.

Now, this integral must be deformed to reveal its true asymptotic form. Cauchy’s
Theorem allows us to deform this to a circle C0, of any radius, with counter-
clockwise orientation, that is centered at the origin for integer α. Then, compute

log

(
1−
√
y

2kt

)
= −
√
y

2kt
− 1

2

(√
y

2kt

)2

+O(k−3).

dj

dxj
l
(α)
k,p(x) =

(4k)j(4x)
α−j

2

2πi

∫
C0

e
√
y

2 (t− 1
t )
(

1−
√
y

4tk

(
2p+

√
y

2t

)
+O(k−2)

)
dt

tα−j+1

= (4k)j(4x)
α−j

2

[
Jα−j(

√
y)−

p
√
y

2k
Jα−j+1(

√
y)− y

8k
Jα−j+2(

√
y) +O(k−2)

]
.

(E.2.7)

Here Jα(y) is the Bessel function of order α

Jα(y) :=
1

2πi

∫
C0

e
y
2 (t− 1

t ) dt

tα+1
.

E.2.2 Increasing α

Now, we consider the case where

α =

(
1

d
− 1

)
k + ck, 0 < d < 1, sup

k
|ck| <∞.

For simplicity, we impose that ck must be chosen so that α is an integer. We
write

lαk,p

( x
4d

)
=

1

2πi

∫ i∞+ε

−i∞+ε

ek
ˆ̀(s;d)

(
1− 1

s

)p
ds

s
,
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where d is defined by d−1 − 1 = α
k ,

ˆ̀(s; d) = log

(
1− 1

s

)
−
(

1

d
− 1

)
log s+

xs

d
,

and we see that d → d as k → ∞ and therefore 0 < d < 1 for sufficiently large
k. The stationary points are then given by

ŝ±(d) =
x+ 1− d±

√
(x− λ+)(x− λ−)

2x
, λ± = λ±(d) = (1±

√
d)2.

Trigonometric asymptotics

Fix δ > 0, sufficiently small, and consider (1 −
√
d)2 + δ ≤ x ≤ (1 +

√
d)2 − δ.

This ensures that for sufficiently large k, the two stationary points are both
bounded and bounded away from each other. We then find

ˆ̀′′(s; d) =
(1− d)s2 − 2s+ 1

ds2(s− 1)2
.

To simplify this expression, when s = ŝ±(d) we note that

|ŝ±(d)| = 1√
x
, |1− ŝ±(d)| =

√
d√
x
.

Then

√
xŝ±(d) =

x+ 1− d±
√

(x− λ+)(x− λ−)

2
√
x

,

so that

ŝ±(d) =
1√
x

e
±i arccos x+1−d

2
√
x

Similarly,

ŝ±(d)− 1 =

√
d√
x

e
±i arccos 1−x−d

2
√

dx .

We also compute

|(1− d)ŝ±(d)2 − 2s±(d) + 1| =
√
d

x

√
(x− λ−)(λ+ − x).

and

(1− d)ŝ±(d)2 − 2s±(d) + 1

=

√
d

x

√
(x− λ−)(λ+ − x) exp

(
iπ − i arcsin

(
1√
d

(x+ 1− d)(1− d)− 2x

2x

))
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Then, by the method of steepest descent

dj

dxj
l
(α)
k,p

( x
4d

)
= 2Re

(k
d

)j
(ŝ+(d))j−p−1−k/d(ŝ+(d)− 1)p+k

1

i
√

2πk

ei(π2−
θ
2 )+

kxŝ+(d)

d√
|`′′(ŝ+(d))|

(
1 +O

(
1

k

)) .
where

θ = π − arcsin

(
1√
d

(x+ 1− d)(1− d)− 2x

2x

)
− 2 arccos

1− x− d

2
√
dx

− 2 arccos
x+ 1− d

2
√
x

.

This, more explicitly, is

dj

dxj
l
(α)
k,p

( x
4d

)
(E.2.8)

=

√
2

πk

(
k

d

)j
d3/4(

√
x)α−j(

√
d)p+kek

x+1−d
2d

[(x− λ−)(λ+ − x)]1/4

(
sin

[
(j − p− k/d) arccos

x+ 1− d

2
√
x

(E.2.9)

+(p+ k + 1) arccos
1− x− d

2
√
dx

+
k

2d

√
(λ+ − x)(x− λ−) +

θ̂

2

]
+O

(
1

k

))
(E.2.10)

where

θ̂ = arcsin

(
1√
d

(x+ 1− d)(1− d)− 2x

2x

)
.

Airy asymptotics: Right edge

For x ≈ λ+ the stationary phase points are close to s∗ := 1/
√
λ+. The Taylor

expansion of ˆ̀ near s∗ gives

ˆ̀(s; d) = iπ +
(1− d) log λ+

2d
+

x

d
√
λ+

+ log
(√

λ+ − 1
)

+

(
(d− 1)

√
λ+

d
+
x

d
− λ+√

λ+ − 1

)
(s− s∗)

+
1

2
λ+

(
1

d
− 1(√

λ+ − 1
)2
)

(s− s∗)2

+
1

3
λ

3/2
+

(
−1

d
− 1(√

λ+ − 1
)3
)

(s− s∗)3

+
1

4
λ2

+

(
1

d
− 1(√

λ+ − 1
)4
)

(s− s∗)4

+O(s− s∗)5.
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Using that
√
λ+ − 1 =

√
d this expression is simplified to

ˆ̀(s; d) = iπ +
(1− d) log λ+

2d
+

x

d
√
λ+

+ log
(√

λ+ − 1
)

+

(
x− λ+

d

)
(s− s∗)

+
1

3
λ

3/2
+

(
−1

d
− 1

d3/2

)
(s− s∗)3

+
1

4
λ2

+

(
1

d
− 1

d2

)
(s− s∗)4

+O(s− s∗)5.

The strategy is to shift and scale x and s so that the first and third order
terms are on the same order and have simple coefficients. Perform a change of
variables

x = λ+ +
y

kδ

√
dλ

2/3
+ , s = s∗ + i

t

kγ

√
d

λ
2/3
+

. (E.2.11)

with the constraint that δ + γ = 3γ. And since one must consider ek
ˆ̀(s;d), take

γ = 1/3 implying δ = 2/3. The truncation of the integral formula for lαk,p
(
x
4d

)
to a small finite contour Γ

1/
√
λ+,ε

of integration can be justified using (E.2.6)

at the cost of exponentially small errors. Then using(
1− 1

s

)p
sj−1 = (−1)pdp/2λ

1−j
2

+

(
1−

√
λ+

d

[√
d(1− j) +

√
λ+p

]
(s− s∗)

)
+O(s− s∗)2

dj

dxj
l
(α)
k,p

( x
4d

)
= exp

(
k

(
iπ +

(1− d) log λ+

2d
+

x

d
√
λ+

+ log
(√

λ+ − 1
)))
(E.2.12)

×

(−1)p
d
p+1

2 −jλ
1−j

2 −
2
3

+

2πk1/3

∫
C

eiyt+ i
3y

3

(
1− i

√
λ+

d

[√
d(1− j) +

√
λ+p

]
t

√
d

k1/3λ
2/3
+

+
1

4λ
2/3
+

(d− 1)t4 +O(t2k−2/3)

)
dt

)

= (−1)p+kλ
1−j

2 −
2
3

+

d
p+k−2j+1

2

k1/3
exp

(
k(1− d) log λ+

2d
+

kx

d
√
λ+

)(
Ai(y)

− 1

k
1
3λ

1
6
+

[√
d(1− j) + p

√
λ+

]
Ai′(y) +

1

4λ
2/3
+

(d− 1)Ai(4)(y) +
G(y; d, k, p)

k
2
3

)
(E.2.13)
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where C =
(
e−iφ(−∞, 0] ∪ eiφ[0,∞)

) λ2/3
+√
d
k2/3 and |G(y; d, k, p))| ≤ Gd(y) de-

cays exponentially as t→∞.

Airy asymptotics: Left edge

Following similar arguments as in the previous section, for x ≈ λ− the stationary
phase points are close to s∗ := 1/

√
λ−. The Taylor expansion of ˆ̀ near s∗ now

gives

ˆ̀(s; d) =
(1− d) log λ−

2d
+

x

d
√
λ−

+ log
(

1−
√
λ−

)
+

(
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d

)
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+
1

3
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3/2
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(
−1

d
+

1

d3/2

)
(s− s∗)3

+
1

4
λ2
−

(
1

d
− 1

d2

)
(s− s∗)4 +O(s− s∗)5.

In this case, we set

x = λ− +
y

k
2
3

√
dλ

2
3
−, s = s∗ + i

t

k
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√
d

λ
2
3
−
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to find

dj
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( x
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2
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k(1− d) log λ−
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− 1

k
1
3λ

1
6
−

[√
d(1− j) +

√
λ−p

]
Ai′(−y) +

d− 1

4λ
2/3
− k

1
3
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k
2
3

)
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where |R(y; d, k, p))| ≤ Rd(y) decays exponentially as y →∞.

Decay estimates: Right edge

We now look at the behavior of Laguerre polynomials off the interval [λ−(d), λ+(d)]
for d ∈ (0, 1]. Suppose x ≥ λ+(d) + δ for some δ > 0. The method of steepest
descent using only ŝ−(d) gives

l
(α)
k,p

( x
4d

)
=

1√
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1− 1
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kxŝ−(d)

d

(
1 +O(k−1/2)

)
,
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where the error term is uniform on closed subsets of (λ+(d),∞) supposing that
d → d ∈ (0, 1] as n → ∞. Here one uses Theorem 117. One has to be careful
though because the stationary phase point ŝ−(d) approaches the origin where

the phase function ˆ̀ is singular. In the language of Theorem 117, for some c > 0

C ∼ x, δ ∼ x2, ε ∼ 1/x.

Then

M ∼ 1, δ′ ∼ 1, δε ∼ x,

and therefore the expansion is valid for all x > λ+(d).
Then, to utilize this expression, consider the combination, using Stirling’s

approximation√
(k + α)!

k!
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(
kx

d
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,

=: (−1)kekγ(x;d). (E.2.16)

It is easy to check that when x = λ+ this expression is equal to unity, i.e.,
γ(λ+; d) = 0. Furthermore, one can readily check that for fixed d, γ is a strictly
decreasing function of x and limx→∞ γ′(x; d) = − 1

2d . This implies that the
leading-order behavior of√

(k + α+ p)!

(k + p)!

dj

dxj
l
(α)
k,p

( x
4d

)(kx
d

)−α2
e−

kx
2d

is that of exponential decay for x ≥ λ+ + δ, as k → ∞. The rate of decay
increases as x increases.

The previous estimate can be used, to some effect, down to x = λ+ +
O(n−2/3). Because then ˆ̀′′(s−(d), d) = O(n−1/3). We can then use Remark 118
to state that for λ+ + Cn−2/3 ≤ x ≤ λ+ + δ∣∣∣∣∣
√

(k + α+ p)!

(k + p)!

dj

dxj
l
(α)
k,p

( x
4d

)(kx
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ŝ−(d)−j−1.

(E.2.17)

Decay estimates: Left edge

In the case d ∈ (0, 1) we perform an analysis for x ∈ (0, λ− − δ] for δ small.
Then we extend the calculation, as in the previous section to allow δ to decrease
obtaining only bounds.
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The method of steepest descent using only ŝ+(d) gives

l
(α)
k,p

( x
4d

)
=

1√
2πk|ˆ̀′′(ŝ+(d); d)|

(
1− 1

ŝ+(d)

)k+p

× ŝ+(d)(1−d−1)k−j−1e
kxŝ+(d)

d

(
1 +O(k−1/2)

)
.

To establish that the error term is uniform all the way down to x = 0, we note
that s+(d)→ +∞ as x→ 0. Then, again, in the language of Theorem 117, for
some c > 0

C ∼ x, δ ∼ x2, ε ∼ 1/x.

Then, as before,

M ∼ 1, δ′ ∼ 1, δε ∼ x.

So, δε has the same order as
√
δ and

√
|ˆ̀′′(ŝ+(d); d)| and this implies that the

error term is uniform on (0, λ− − δ]. We leave it as an exercise to follow the
prescription in the previous section and derive the analogs of expression (E.2.16)
and estimate (E.2.17).Doing this more carefully is abso-

lutely critical for condition number
tail bounds, should we do it?
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the halting time, 23
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