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Overview

The term pattern theory describes a Bayesian formalism for inference that was
developed at Brown University by Ulf Grenander and his colleagues, especially
Stu Geman, Basilis Gidas and David Mumford. Several variants of these ideas
have been independently created and used by applied mathematicians, com-
puter scientists and electrical engineers across the scientific community. In my
view, what is distinctive about the work of my colleagues at Brown is a par-
ticular scientific spirit that bridges mathematical foundations with applications
in science and (increasingly) the humanities. The purpose of these notes is to
convey this spirit along with concrete mathematical techniques.

My interest in this circle of questions was stimulated by many years of ani-
mated conversations with Basilis Gidas. About five years ago, I began to engage
with these ideas more carefully, to try and learn what the fuss was all about. As
all mathematicians know, the best way to learn a subject is to teach it. Thus, I
developed a one-year sequence consisting of a rigorous treatment of information
theory in Fall, followed in Spring by a seminar that emphasized applications.
The material for the first semester was cast in stone – it is impossible to im-
prove on Shannon’s development of his ideas and it was impossible to do better
pedagogically than my colleagues Stu Geman and Matt Harrison. But there
was a great deal of variability in the topics in the Spring semester and it took
me three attempts to converge on a set of topics that felt about right. I ex-
press my gratitude to the many students whose enthusiasm for the material –
often presented in scratchy and half-formed lectures– helped me comprehend
the contours of this fascinating subject.

These notes are a faithful account of the topics presented in Spring 2020 to an
audience of about 50 students, roughly split between undergraduate and gradu-
ate students. Most of these students had a strong background in mathematics,
computer science, or physics. In contrast with courses in machine learning,
pattern theory stresses the mathematical (and even philosophical) foundations
of cognition and learning. The main challenge was to convey both foundations
and applications in a way that made sense to undergraduates headed to the tech
industry, as well as graduate students exploring topics for research. In order to
‘scale-up’ a seminar, the class was split into fast-moving lectures and substantive
projects that matched the lectures, but required computational skill to imple-
ment. The lectures emphasize mathematical foundations and some parts (e.g.
Ch.3–Ch. 6) are a crash course on stochastic processes. The projects in 2020
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ii OVERVIEW

involved breaking a substitution cipher, the recognition of a music score, and
character recognition from the MNIST database. I express my thanks to Zsolt
Veraszto for his able assistance with the projects.

The primary source for these notes is the book Pattern Theory by Mumford
and Desolneux [12]. These notes cover the same territory upto Chapter 7; the
main difference with [12] is expository. Mumford and Desolneux’s book was
designed for a graduate topics class and the ideas and exposition require greater
maturity than my students possessed. Thus, these notes include some back-
ground material, as well as a rearrangement of some of the material from [12].
The later chapters differ drastically from [12]. The main reason for this is that
the explosion of research in machine learning has revealed flaws in the pat-
tern theory formalism. While pattern theory remains a principled approach to
artificial intelligence as a science, it has been outgunned as a technology. Con-
volutional neural networks implemented on GPUs solve several pattern theory
problems (e.g. face recognition) in a fast and stable way. Therefore, while the
detailed construction of hierarchical priors for computer vision was an impor-
tant feature of pattern theory ten years ago, it doesn’t seem as relevant to me
today. Deep learning has won (albeit on a narrow class of cognition problems)
and the more urgent task is to teach the students about CNN’s, in order that
they understand what is beneath the hood in most machine learning applica-
tions, and to get them to think more carefully about why deep learning works
as well as it does.

My goal at the outset of the semester was to convey both these viewpoints.
First, to explain the pattern theory formalism in problems of increasing com-
plexity (text, music, speech, character recognition). Second, to explain the
deep learning paradigm along with an implementation of benchmark problems
such as character recognition and face recognition. I had also intended to treat
Chomsky’s grammars and the use of linguistic metaphors in pattern theory.

The class largely followed this plan, until the covid-19 crisis. The dismay of
many students at the disruption of their education, as well as the global crisis,
led me in a more introspective direction. My initial ambitions transmuted into
a broader goal to provide students with a sense of how applied mathematics
actually works – to demonstrate an interplay between modeling, analysis and
computation characteristic of our discipline – as well as to share the eternal
delight of beautiful mathematics. Thus, the later chapters are surveys in which
I have tried to communicate essential ideas, rather than detailed techniques.
These include two lectures on fast numerical methods and an introduction to
fundamental limits and thermodynamics. The latter topic was largely inspired
by Yann Le Cun’s talk at IAS in Spring 2019 on the epistemology of deep
learning. It leads naturally into the notion of reversible computation, with
applications in molecular biology, following the work of Bennett and Landauer,
but this must wait for another time (the interested reader is referred to [6,
Ch.5]). I chose instead to discuss the philosophical debates on the nature of
mathematics in the early 20th century that led to the creation of the computer
in the 1940s. There is to my mind no greater demonstration of the power of
mathematical thought to change the world.
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Chapter 1

The elements of style

1.1 Introduction

The main idea of pattern theory is as follows. We assume that the world is a
space of random signals. An observer records part of these signals and forms
inferences about the world. The process of inference is modeled with a Bayesian
paradigm. We assume the observer has a stochastic model that is capable of
generating signals that are similar to the true signal. Inference then reduces
to tuning the parameters of the model to obtain the best match between the
generated and observed signals (in technical terms, we maximize a posteriori
likelihood). The devil lies in the details since the difficulty of formulating a
stochastic model and optimizing the parameters depends on the complexity of
the underlying signal. For example, inferring properties of written text is much
simpler than detecting edges in an image. Text consists of a linearly ordered
string of a finite set of symbols. Human vision, on the other hand, decodes a
three-dimensional arrangement of objects in space based on a two-dimensional
projection onto the retina.

For these reasons, we study stochastic models of increasing complexity in tan-
dem with numerical algorithms for optimization. The simplest class of stochastic
models we consider are Markov chains. The purpose of this lecture is to review
the basics of Markov chains and to apply these ideas to a stochastic model for
written text introduced by Shannon [13, 14] 1 The power of these ideas is demon-
strated in the first project: you will be given a scrambled body of text and your
task is to decode it using the methods presented in the first two chapters.

1The first Markov chains were introduced to model problems of human cognition and
communication. Markov himself was introduced in analyzing style in poetry and modeled
Pushkin’s novel in verse Eugene Onegin by tabulating the frequencies of transitions between
consecutive vowels and consonants in the text (he did this by hand for 5446 lines of verse!).
This idea was rediscovered by Shannon, who developed a set of models for language that we
describe in Section 1.3 below.

1



2 CHAPTER 1. THE ELEMENTS OF STYLE

1.2 Markov chains

1.2.1 General theory
We assume given a finite set S called the state space of the Markov chain. In
some instances, such as modeling text, we denote the state space by A and call
it the alphabet. The variable t = 1, 2, 3, . . . is discrete time. We will study a
stochastic process {Xt}t∈N such that Xt takes values in S.
Definition 1. The stochastic process {Xt}, t ∈ N, is a Markov chain if for all t

P(Xt+1|X1, . . . , Xt) = P(Xt+1|Xt).

A Markov chain is the simplest instance of a more general class of stochastic
processes, called Markov processes. We use the term Markov chain when time
is discrete (as above). In the examples in this chapter, both time and the state
space are discrete. This allows us to build intuition, while also including many
interesting applications.

The main modeling assumption in Markov process theory is that the future
of the process depends on the current state, but not the past. This is the
probabilistic analogue of the idea of Newtonian determinism (that the evolution
of the future of a physical system can be completely determined by solving
equations of motion, given the current state). For Markov processes, we can
predict the law of the future evolution using the forward equation described
below. Another interpretation of the Markov property is that the future and
past are independent, conditional on the present. We typically simplify the
structure of Markov chains with the following assumption.

Definition 2. The Markov chain {Xt} is stationary if P(Xt+1|Xt) = P(X2|X1)
for all t ∈ N. The transition matrix for a stationary Markov chain is

Q(x, y) = P(X2 = y|X1 = x).

The most basic statistic associated to the Markov chain is the pmf (or law)
of the random variable Xt

2. We denote this by

πt(x) = P(Xt = x), x ∈ S. (1.2.1)

We use the Markov property to obtain the recurrence relation

πt+1(y) = P(Xt+1 = y) (1.2.2)

=
∑

x∈S
P(Xt+1 = y|Xt = x)P(Xt = x) =

∑

x

Q(x, y)πt(x),

when we assume that the chain is stationary. This calculation yields the forward
equation

πt+1 = πtQ, t ∈ N. (1.2.3)
2The abbreviation pmf stands for probability mass function. This term is used in applied

probability when we work with discrete random variables.
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Here we use the convention that πt is a row vector (which is why we multiply Q
by πt on the left). The forward equation is linear and explicitly solvable when
the chain is stationary. We proceed inductively to find

πt = π1Q
t, t ∈ N. (1.2.4)

One of the central questions in Markov chain theory is to understand the be-
havior of πt as t→∞.

Definition 3. The pmf π is an equilibrium (or stationary) distribution if

π = πQ, (1.2.5)

and π satisfies the normalization conditions

π(x) ≥ 0 for all x and
∑

x

π(x) = 1. (1.2.6)

The first equation expresses the fact that πt = π for all t if π1 = π. That is,
while the values of Xt change with time, its pmf does not. Thus, the equilibrium
distribution, or equilibrium measure, of a Markov chain captures the intuitive
idea of a dynamic equilibrium. The ‘macroscopic’ observable πt is independent
of t, whereas the ‘microscopic’ random variable Xt fluctuates in time.

Let us now turn to the task of computing π, given Q. Observe that π is a
left eigenvector of Q with eigenvalue 1. Further, 1 must always be an eigenvalue
of Q, since it corresponds to the right eigenvector (1, . . . , 1)T . Thus, if we
know how to solve for eigenvectors, we can determine π. What is interesting
in practice is actually the converse: for large transition matrices, say when |S|
is 106 × 106, it is more efficient to use Markov chains to approximate π, than
to use naive linear algebra. This observation plays an important role in web
crawlers and search engines (as discussed in Section 10.6).

A central question in Markov chain theory is to understand how fast it
‘mixes’. For example, how many shuffles does it take to obtain a truly random
distribution if one begins with a perfectly ordered deck of cards?

The mathematical formulation of this problem is the following. We assume
given a Markov chain with a unique equilibrium π, and we’d like to obtain rates
of convergence for πt to approach π. Thus, when shuffling a deck of cards, we
model it as a Markov chain in the permutation group on 52 symbols, with dif-
ferent forms of shuffling determining different random walks in the permutation
group. The act of shuffling a new pack of cards then translates into a random
walk in the permutation group that begins at the identity permutation. The
analysis of how fast the pmf πt approaches the uniform distribution is then
converted into the analysis of the eigenvalues of the transition matrix. An ex-
tensive study of these methods may be found in [5]. While we won’t consider
any rigorous theorems of this type in these notes, the following term will be
used.

Definition 4. A stationary Markov chain Xt is ergodic if it has a unique equlib-
rium distribution.
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Many conditions are known that ensure ergodicity. For example, if all terms
of Q are strictly positive, it is possible for any state to get to any other state,
and this ensures that the Markov chain is ergodic. This assumption is too
restrictive in practice, since we are mainly interested in Markov chains with
local moves such as random walks in a large state space. However, the Markov
chain is ergodic if for every pair x, y ∈ S there is an integer n(x, y) such that
Qn(x,y) > 0. Intuitively, this means that every state can visit every other state
given enough time. We will always assume that this property holds.

Physicists define the term ergodic to mean the following

lim
T→∞

1

T

T∑

t=1

f(Xt) = Eπ(f),

where π = πQ and f : S → R is arbitrary. This formulation has the interpre-
tation that a Markov chain is ergodic when the “time average” (the left hand
side) is equal to the “spatial average with respect to the equilibrium measure”
(the right hand side). For Markov chains, this property is a consequence of the
definition above, but it provides a different way to think about ergodicity for
other classes of stochastic processes (such as stationary processes, discussed in
Section 1.3 and Chapter 3).

Markov chains are important because they offer us a conceptually simple
theory with many applications. It is important to note the following typical
bottlenecks and simplifications.

1. S may be very large. For example S may be the permutation group SN
with size |SN | = N !.

2. Q(x, y) is typically sparse.

3. Often we don’t need π, all that we need is to evaluate Eπ(f), where f :
S → R is a given function and Eπ(f) =

∑
x∈S π(x)f(x). For example,

when studying the Ising model, our state space S = {−1, 1}N and we
‘move’ in this state space by locally flipping a plus one to a minus one
and vice versa. Rather than evaluate π in general, what we usually care
about is the average of functions f such as f(x) = {number of plus ones
in x ∈ S}.

1.2.2 Examples

Example 5 (Random walks on graphs). Let G = (V,E) be a graph with vertex
set V and edges E. Here the state space S consists of the vertices V . We may
use the edges to define distances on the graph in the natural way, by defining
|x− y| = 1 if x and y are joined by an edge. The degree of a vertex x is

d(x) =
∑

y→x
1.
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The uniform (or unbiased) random walk on G is the Markov chain with transi-
tion matrix

Q(x, y) =

{
0, if |x− y| 6= 1
1

d(x) , if |x− y| = 1.

Example 6 (Random walks in the permutation group). We consider the state
space S consisting of permutations on N symbols. More formally, recall that
a permutation on N symbols is a 1-1 function σ : {1, . . . , N} → {1, . . . , N},
12 . . . N 7→ σ1σ2 . . . σN . We denote the set of permutations by SN =. This
is our basic example of a large, finite set. Recall that |SN | = N ! and that
N ! ≈ NN by Stirling’s formula for large N .

In order to define Markov chains on SN , we typically pick a set of simple rules
that allow us to transform one permutation into another. One of the simplest
such rules, is to say that |σ−τ | = 1 when σ and τ are related by a transposition
of adjacent elements as illustrated in the figure on the left. Another natural
rule is to transpose any two symbols with equal probability. The number of
edges adjacent to each vertex in these schemes differ. If we only allow the
transposition of neighbors, σ has N − 1 elements. On the other hand, when we
allow transpositions of arbitrary pairs of symbols, for each pair of indices {j, k},
1 ≤ j < k ≤ N , we may join σ to τjk where τj = σk, τk = σj and τi = σi for all
other indices i. Thus, each permutation σ has

(
N
2

)
neighbors τ . Random walk

on this graph is ergodic and its equilibrium measure is uniform, that is

P(σ) =
1

N !
, σ ∈ SN .

In our model of text, N = 27, but this assumption is clearly not necessary for
the above argument.

Figure 1.2.1: In the first picture edges correspond to transpositions of adjacent
elements. In the second one the edges are transpositions of pairs of symbols.

Other rules may be introduced. In particular, different ways of shuffling a
deck of cards correspond to different notions of nearest neighbors in the permu-
tation groups.
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1.3 Shannon’s model of text (written language)
The main idea in Shannon’s model is that text is a stationary ergodic stochastic
process {Xt} taking values in an alphabet A = {a, b, c, . . . , z,_}. This model is
easily augmented to included punctuation and case, but we ignore these concepts
in the first approximation.

Note that we are not assuming that this process is a Markov chain. To clarify
this point, let us note that stationarity is distinct from the Markov property
(neither implies the other).

Definition 7. A discrete time stochastic process is stationary if the probabili-
ties are invariant under arbitrary shifts. More precisely,

P(X1 = x1, . . . , Xp = xp) = P(Xk+1 = x1, . . . , Xk+p = xp)

for all positive integers k and p.

Intuitively, this means that if we were to observe strings of length p, their
statistics are not changed by shifting them forward in time by an integer k.
For such processes, the notion of ergodicity again means that ‘time averages’
are equal to ‘spatial averages’, though now we must take functions of the form
fp(x1, x2, . . . , xp) and equate the time averages:

lim
T→∞

1

T

T−1∑

t=0

fp(Xt+1, Xt+2, . . . , Xt+p)

with the ‘spatial average’
E(fp(X1, . . . , Xp).

The above assumptions are introduced to conform to the idea that written
text contains many hierarchical structures: letters are joined by phonetic rules to
form words, words are linked by the rules of grammar into sentences, sentences
are organized into paragraphs, and so on. Nevertheless, these complex rules are
rapidly learnt by children, as they discover the rules empirically by playing with
constructions. Strange as it may seem at first sight, these rules can be effectively
modeled as random processes. The use of stationary ergodic processes provides
us with a definition that is flexible enough to include hierarchical structures
(though these may be complex to write down), and simple enough to allow us
to computationally test the power of this idea (as in your homework).

The relation between the above discussion and the previous sections is that
we may use Markov chains of increasing complexity to approximate the above
“true” language. We will denote the law of the stationary stochastic process
modeling written text by Ptrue. In practice, this law is approximated by mining
a large corpus (e.g. the works of Shakespeare) to determine the probabilities
Ptrue(a1, . . . , ap) for an arbitrary string (a1, . . . , ap) ∈ Ap, p ∈ N.
Example 8 (Digram model). The state space is the alphabet S = A =
{a, b, . . . , z,_}.

Q(2)(x, y) = Ptrue(X2 = y|X1 = x) =
Ptrue(X2 = y,X1 = x)

Ptrue(X1 = x)
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This is called the digram model because text is modeled as a Markov chain where
each letter depends only on the previous letter and nothing else. Intuitively, this
seems too naive, so we can try to improve it by including more ‘history’. For
example, we may consider a Markov chain where each letter depends on the two
preceding letters, not just its immediate predecessor. This yields

Example 9 (Trigram model). Now our state space consists of pairs of letters
S = A × A = {aa, ab, . . . , az, . . . ,_a, . . . ,__}. Let x = a1a2, y = b1b2. In
order to form a text of three letters from x and y, we must ensure that x and y
agree on their overlap. That is, we can only form a text when a2 = b1 so that
x and y combine to give us the string a1a2b2.

With this restriction on x and y we obtain the associated transition matrix

Q(3)(x, y) =
Ptrue(a1a2b2)

Ptrue(a1a2)

and Q(x, y) = 0 when a2 6= b1.

The obvious generalization of these examples is

Example 10 (n-gram model). The generalization of the above examples is as
follows. The state space is now S = An (the n-fold product of A). A state x,
say x = (a1, . . . , an) can be followed by a string y = (b1, . . . , bn) only if a2 = b1,
a3 = b2, . . . , an = bn−1. With this restriction, we find the transition matrix

Q(n)(x, y) =
Ptrue(a1, a2, . . . , an, bn)

Ptrue(a1, a2, . . . , an)
.

A more detailed analysis of these models and samples of text generated
by these Markov chains are presented in Section 3.3. Shannon proved that
as n → ∞, the law of text generated by the above Markov approximations
converges to the law of the true language. Note however that a good proof may
not correspond to a good algorithm. For example, as n increases, the size of
the state space grows exponentially, since it is |A|n. It follows that the matrix
Q(n) requires storage of size |A|2n, since its rows and columns are of size |A|n.
Worse yet, the size of the training data (to determine Q(n)(x, y) by mining),
also expands exponentially.

This follows the rules of everyday language. Once n gets large enough, say 5
or 6 in practice, it is much more efficient to make our fundamental unit words,
rather than letters, since the number of true words of length 5 is much lower
than the 265 combinations that are possible. This reflects the true nature of
the space _ as a special character denoting breaks between words. In effect, we
are still using the digram model, we have simply switched to a new ‘alphabet’
whose fundamental units are words along with a Markov chain on words.

The development of written language is a fascinating chapter in human his-
tory. The most common writing systems used today are the writing systems
developed in the Eurasian landmass. These show a sharp East-West divide.
In the West, writing systems coalesced into a small number of scripts (Greek,
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Latin, Cyrillic and a few related scripts). “Breaking the code” for an unknown
script is a challenging problem that requires a combination of cultural and sci-
entific knowledge. A striking example of this is Ventris’ work on Linear B, a
Minoan text from Crete, that was not expected to be a Greek language, until
Ventris showed this to be the case.

Much less is known about Eastern scripts, because of historical reasons and
the large number of written languages. Even the organization of the scripts used
today as a family tree with a clear origin, is challenging. The Brahmi script,
which is phonetic, originated in India at least as early as 500 BCE and has given
birth to a great diversity of written scripts used today in South and Southeast
Asia. The Chinese scripts are of a fundamentally different character from the
Brahmi tree. Several scripts, such as the Khitan scripts from Mongolia, remain
undeciphered. The development of Hangul in Korea served to greatly simplify
older writing systems and is a wonderful example of the improvement in mass
communication made possible by treating writing as a scientific problem.

I am not aware of careful mathematical models of the development of these
scripts, though it is certainly possible to model the evolution (and decoding) of
these scripts with the above ideas.

1.4 The Gibbs distribution
First, let us define the Gibbs distribution in the form in which it usually appears
in physics. The setup is as follows. We assume given a state space S, an energy
function E : S → R and an inverse temperature β > 0. The associated Gibbs
distribution is the pmf

pβ(x) =
e−βE(x)

Zβ
, x ∈ S (1.4.1)

where the normalization factor

Zβ :=
∑

y∈S
e−βE(y)

is called the partition function. An important task in statistical mechanics is to
compute the partition function, since all physical observables can be obtained
from it. These computations typically require great ingenuity.

The purpose of this section is to provide an explanation for the ubiquity
of the Gibbs distribution on Bayesian principles. This avoids the reliance on
heuristics from physics, in particular the use of ergodic theorems, and clarifies
the fundamental role of entropy in constructing models for inference. This
derivation is due to Jaynes (1957) and we will use it at several points in these
notes [9]. But first let us briefly provide some context on the origin of the Gibbs
distribution, since this has both cultural and scientific importance.

Statistical mechanics is the study of the macroscpic properties of matter
based on microscopic models. A fundamental example of a macroscopic prop-
erty are the laws of an ideal gas (such as the expression pV = nRT that may be
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familiar to you from high school chemistry). The microscopic model in this ex-
ample is Newtonian mechanics, used in the following way. The gas is assumed
to consist of a large number, say 1023, of hard spheres that undergo elastic
collisions when they meet. This model formalizes the question on whether New-
tonian mechanics can be scaled up to describe macroscopic matter. The study
of this problem caused a great deal of angst in the 19th century. First, the ex-
istence of atoms had not yet been established, so the microscopic assumptions
were a matter of doubt. Worse yet, that the macroscopic behavior is irreversible
(‘the arrow of time’) is familiar to us from our everyday experience. But New-
tonian mechanics is invariant under time reversal, so this problem carries subtle
paradoxes.

A similarly fundamental example, which is particularly relevant to pattern
theory is the Ising model. This model was introduced to explain how the mag-
netization of permanent magnets (such as in a compass), can be obtained from
a microscopic model of many small spins which balance energetic terms that
favor alignment of neighboring spins, with thermal effects that cause them to
fluctuate. For example, for a 1-D magnet, we have the following: S = { strings
of +,- of length N} and V (x) = a

∑N
i=1 xi + b

∑N−1
i=1 (xi − xi−1)2 where a and b

are fixed parameters. The study of this model has been very fruitful in physics:
in particular, it led to the development of Markov Chain Monte Carlo (MCMC),
a fundamental simulation technique that we will study in detail.

As noted by Geman and Geman [8], by changing the background energy,
essentially the same model can be used to study the (unphysical!) problem of
image segmentation (see Section 7.3). This connection raises a natural question:
why should physical heuristics work on problems that seem to have little to do
with physics? The answer lies in viewing information theory as a foundation
for inference. This approach, which is due to Jaynes, inverts the historical
development of ideas by viewing information theory as the primary model for
developing statistical mechanics, rather than viewing statistical mechanics as
the foundation for information theory. The simplicity of this line of reasoning is
best illustrated by the following Bayesian derivation of the Gibbs distribution.

We consider the following thought experiment: Suppose X is a discrete
random variable taking m values with probability {p1, . . . , pm}. We do not
assume that we know these probabilities (thus X is ‘hidden’ from us). However,
we suppose that we have observations of some function f(X), taking values fi,
for each state xi of X, so that we may assume that E(f(X)) = θ is known.

The question now is the following: What is the best guess Eg(X) where g is
some other function? This is essentially the same as asking for our best guess
of the pmf (p1, . . . , pm) of X. Naively, this is an ill-posed problem, in the sense
that we may have many answers depending on what our notion of ‘best’ means.
This is because there are m variables (p1, . . . , pm) subject to the constraints∑
pi = 1 and

∑
fipi = α, so clearly there are many answers to this question.

However, information theory provides a principled answer to this question.
Shannon postulates that given a pmf (p1, . . . , pn) for a random variableX taking
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m values, its entropy is

H(p) = −
m∑

i=1

pi ln pi.

The entropy of a random variable describes its uncertainty. In particular, the
notion of an optimal code tells us that entropy describes the optimal search
procedure to determine the value of X through a series of yes/no questions.
This is one of the basic interpretations of entropy in information theory. The
relevance of this interpretation here is that it tells us that the most unbiased
estimate of the pmf of X is obtained by maximizing the entropy of X subject
to the constraint:

Ef(X) =

n∑

i=1

pifi = θ,

where θ is given.
This use of information theory converts an ill-posed problem to a standard

constrained maximization problem:

p = argmaxp|∑ pifi=θ,
∑
pi=1H(p)

where we have used p to denote the pmf (p1, . . . , pm). When we solve this
maximization problem, we find that

pi =
e−βfi

Zβ
.

Thus, the above maximization of entropy principle recovers the Gibbs distri-
bution, without requiring any form of physical reasoning. This observation
explains the ubiquity of the Gibbs distribution in problems of inference.

Now let’s check the calculation. Let us introduce Lagrange multipliers α and
β and consider the unconstrained maximization problem for the function

J(p) = H(p)− β
(∑

i

fipi − θ
)
− α

(∑
pi − 1

)
.

We now use the maximization criterion from calculus: we require

∂J

∂pk
= 0

for k = 1, . . . ,m. Differentiating the above expression we find that

0 = −(1 + ln pk)− α− βfk

which may be solved to yield

pk =
1

Zβ
e−βfk , 1 ≤ k ≤ m.
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where we have written Zβ for e1+α. (This is just a convenient relabeling of the
Lagrange multiplier, since Zβ is the normalizing factor that ensures

∑
pi = 1.)

Thus, we have m equations for the unknown variables p1, . . . , pn. We also
have the equation ∑

fipi = θ,

which determines the Lagrange multiplier β. We use our formula for p to obtain

1

Zβ

∑
fie
−βfi = θ.

This shows that the inverse temperature β is the Lagrange multiplier corre-
sponding to the given constraint on E(f(X)). Finally, let’s observe that the
above equation may also be written as

− ∂

∂β
lnZβ = θ.

This equation reflects a common theme in statistical mechanics. Since observ-
ables may be obtained by differentiating the partitition function Zβ with respect
to the parameters of the model, the main task is to determine the partition func-
tion.

1.5 Bayesian inference and decoding text
In this section, we combine the ideas from the previous sections to develop a
Bayesian method to decode a scrambled text.

The basic ideas of Bayesian inference are as follows. First, we assume that
the world is stochastic and that inference may be modeled probabilistically using
Bayes rule for conditional probabilities. Our task is to determine the values of
a random variable, S, that is hidden from us, based on observations O. In the
example with scrambled text, the hidden state will be a permutation, while the
observation is a given string of scrambled text. The underlying probabilistic
model is that the ‘world’ consists of a true language that has been scrambled,
letter by letter, by a random permutation.

The mathematical formalism of Bayes rule is simple. If both S and O are
random events or random variables on the same probability space, we recall that
conditional probabilities are defined by

P(S ∩O) = P(S|O)P(O) = P(O|S)P(S)

Thus, we may rewrite this equation in the form

P(S|O)︸ ︷︷ ︸
posterior

=
P(O|S)P(S)

P(O)
∝ P(O|S)P(S)︸ ︷︷ ︸

prior

.

The terms prior and posterior reflect the use of Bayes formula in modeling.
The right hand side of the formula reflects our assumption that we have a



12 CHAPTER 1. THE ELEMENTS OF STYLE

probabilistic model, called the prior distribution, which generates the hidden
variable and the observed signals, conditional on the hidden variable. The left
hand side says that given an observation, we can use Bayes rules to update our
prior for the hidden variable to obtain a new distribution called the posterior.

A fundamental idea in Bayesian inference is to find the mode of the posterior.
More precisely, if what we have is our probabilistic model for interpreting the
world, then our best guess for the hidden state is the mode of the posterior

S∗ = argmaxSP(S|O) = argmaxSP(O|S)P(S). (1.5.1)

This simple idea acquires its richness from the diversity of its applications.
Thus, let us flesh it out by applying it to decoding scrambled text. In order to
get started we need a good probabilistic model for text as well as for the process
of scrambling.

We model the scrambler as a permutation σ ∈ S|A|, a permutation on |A|
symbols. The scrambler acts on the text letter by letter. That is, if a1a2 . . . an
is a string of true language, the scrambler converts this to a string b1, b2, . . . , bn
where bi = σ(ai). Since the permutation acts letter by letter, we also have

P(O = b1b2 . . . bn|S = σ) = P(scrambler input = σ−1(b1) . . . σ−1(bn)).

This expression holds for all the probabilistic models of text (true language,
n-gram approximations and word-based Markov chains) studied in Section 1.2.
For simplicity, we will explain the process of inference using the digram model;
other models may be explored in a similar way.

In the absence of any other information on the scrambling mechanism, the
most natural choice for a prior on S is to assume that it is chosen uniformly on
the permutation group. This ensures that P (S) is independent of S. This choice
of uniform measure should be intuitive, but note also that it is the maximizer
of entropy.

Combining the above ideas, we see that our best guess for the unknown
permutation σ∗ is

σ∗ = argmaxσ∈S|A|L(σ), (1.5.2)

where we have defined the likelihood or plausibility function

L(σ) = Ptrue(σ−1(b1))

n−1∏

j=1

Q(2)(σ−1(bj), σ
−1(bj+1)). (1.5.3)

At this stage, we have obtained a clear mathematical formulation for the prob-
lem of decoding a scrambled text. Now we need to see whether this idea works!
The catch is the following: in order to find the argmax, we must maximize the
likelihood function on a large space. This is computationally intractable without
a fundamental randomized algorithm: Markov Chain Monte Carlo (MCMC).
This is such an important subject that the next chapter is devoted to under-
standing this algorithm from different points of view.



Chapter 2

The Markov Chain Monte
Carlo method

2.1 Sampling from a Gibbs distribution
The Metropolis scheme is a randomized algorithm for sampling from a Gibbs
distribution. Let us briefly describe the sampling problem. We then connect it
to the problem of decoding scrambled text. The mathematics under the hood
is discussed in the next section.

Let us assume that we are given a finite state space S, an energy function
E : S → R, and an inverse temperature β. Our task is to sample from the Gibbs
distribution

pβ(x) =
e−βE(x)

Zβ
, x ∈ S. (2.1.1)

As discussed in Section 1.4 terms such as the Gibbs distribution, energy land-
scape and temperature have precise meaning even in the absence of an under-
lying physical model (such as our application to scrambled text).

Naively, sampling means that we’d like to generate an iid sequence, {Xt}∞t=1,
distributed according to pβ . The average of any observable f(X) may then be
approximated by the empirical mean

E(f(X)) =
∑

x∈S
f(x)pβ(x) ≈ 1

T

T∑

t=1

f(Xt). (2.1.2)

When S is large, generating iid sequences is prohibitively expensive. Instead,
the Metropolis scheme generates a Markov chain {Xt}∞t=1 which has pβ as an
equilibrium measure. Provided the underlying Markov chain is ergodic, we may
still use (2.1.2) to compute the expected value of an observable. The number
of steps T required to obtain a good estimate depends on how fast the Markov
chain decorrelates (i.e. the number of steps t needed so that X1 and Xt are
almost independent).

13
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Let us illustrate these ideas with our model of scrambled text. The state
space S is the set of permutations on 27 symbols, denoted S27. In accordance
with standard notation for permutations, we use σ instead of x to denote a point
in S. Let us define the energy function

E(σ) = − lnL(σ), (2.1.3)

and use (1.5.3) to obtain

E(σ) = − lnPtrue(σ−1(b1))−
n−1∑

j=1

lnQ(2)
(
σ−1(bj), σ

−1(bj+1)
)
. (2.1.4)

Rather than maximizing L, we must now minimize E, since

σ∗ = argmaxσL(σ) = argminσE(σ).

The energy function E is a sum of nearest-neighbor terms. This structure arises
because of our assumption that text is modeled by a Markov process, not because
there is any ‘physics’ underlying text (physical models such as the Ising model
have a similar structure; the common thread is the assumption of local spatial
dependence for the stochastic process Xt).

2.2 The Metropolis scheme
The Metropolis scheme relies on biasing an easily generated Markov chain, such
as a symmetric random walk, so that the new equilibrium distribution is pβ .
Assume given a Markov chain on S whose equilibrium distribution is uniform.
Let us first describe the scheme as a numerical recipe for decoding scrambled
text, so that its description is concrete:

1. Estimate Ptrue(a) for a ∈ A and Q2(a1, a2) for a1, a2 ∈ A by mining a
sufficiently large text such as War and Peace.

2. Generate a symmetric random walk in S27 using uniform random transpo-
sitions and bias it using the following acceptance/rejection rule. Consider
a proposed move σ 7→ τ , where σ and τ are related through transposition.
Compute ∆E = E(τ)−E(σ). If ∆E < 0 then accept the move. If ∆E ≥ 0
accept with probability exp(−β∆E) (where β > 0 is fixed, say β = 1 to
be concrete).

The above scheme provides a Markov chain whose equilibrium distribution is
e−βE(σ)/Zβ , where E(σ) is defined in equation (2.1.3). The scheme pushes σ
‘down’ the energy landscape, while allowing it a small probability of escaping
local minima. In practice, given a sufficiently long string (i.e. when n is large
enough), the energy landscape is sharply concentrated around its minima at σ∗.
Thus, once the Markov chain hits the minima, it stays there forever. This is
why a randomized scheme can be used to solve a deterministic minimization
problem.
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2.3 Why does the Metropolis scheme work?

2.3.1 The biased scheme and its transition matrix
Let us now describe the mathematical structure of the Metropolis scheme more
carefully. We assume given a state space S, an energy function E : S → R and
an inverse temperature β > 0. The regime of interest is when S is so large that
it is impossible to evaluate the partition function

Zβ =
∑

x∈S
e−βE(x),

and thus the Gibbs distribution.
The Metropolis scheme relies on the existence of an easily sampled Markov

chain. In the first applications of the method, the underlying model was the
Ising model and the Markov chain was a random walk in the space of spins.
Configurations of spins are said to be neighbors when they are related by spin
flips as shown below.

Figure 2.3.1: A graph of spin states joined by single spin flips

It is not necessary to assume such a specific structure on S. Every transi-
tion matrix Q that is symmetric, i.e. Q(x, y) = Q(y, x) for all x,y ∈ S has a
uniform equilibrium distribution and may be used as a source of randomness
for a Metropolis scheme.

This may be seen as follows. The equilibrium distribution π for Q satisfies
the equation π(y) =

∑
x π(x)Q(x, y). We must show that π(x) = 1

|S| (i.e. π is
uniform). Observe that ∑

y

Q(x, y) = 1,

since probabilities have to sum up to one. But since Q(x, y) = Q(y, x) we also
have ∑

y

Q(y, x) = 1. (2.3.1)

Relabel indices to see that
∑
xQ(x, y) = 1 for every y. Thus, if π̃(y) = 1 for

each y, we may rewrite (2.3.1) as
∑

x

π̃(x)Q(x, y) = π̃(y), x, y ∈ S.
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Given a Markov chain generated by Q, we construct a new Markov chain
with equilibrium pβ by biasing this chain as follows. Define the transition matrix

B(x, y) =





Q(x, y), if pβ(x) < pβ(y)
pβ(y)
pβ(x)

Q(x, y), if pβ(x) ≥ pβ(y)

1−∑x′ B(x, x′) when x = y.

(2.3.2)

where pβ is the desired equilibrium distribution.

2.3.2 Detailed balance
The above biasing procedure looks ‘asymmetric’, but this is misleading. The
matrix B is naturally suited to pβ because of the following identity, which is
called detailed balance:

pβ(x)B(x, y) = pβ(y)B(y, x), x, y ∈ S. (2.3.3)

This identity is easily established. Without loss of generality assume that
pβ(x) ≥ pβ(y). Then

B(x, y) =
pβ(y)

pβ(x)
Q(x, y), and B(y, x) = Q(x, y),

which implies equation (2.3.3).
Detailed balance implies that the equilibrium of B is pβ . Indeed, summing

over x in the right hand side of equation (2.3.3) gives

pβ(y)
∑

x

B(y, x) =
∑

x

pβ(x)B(x, y),

which may be rewritten as the vector equation,

pβ = pβB.

The success of MCMC relies on the interplay between theoretical guarantees
and practical implementation that originate in the condition of detailed balance.
We consider some of these below.

2.3.3 Local moves
We wanted a Markov chain to sample from pβ(x), and we obtain it by biasing
Q(x, y) by pβ(y)

pβ(x)
. What makes the computation of pβ intractable is the sum

over states in (2.3.1). However, the ratio

pβ(x)

pβ(y)
=
e−βE(x)

Zβ

Zβ
e−βE(y)

= e−β(E(x)−E(y)),

depends only on the difference in energy between two states and this is easily
computed. In particular, for the Ising model, as well as the digram model of text,
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the change in energy between neighboring states x and y requires an update of
only a small number of terms. Thus, it is is inexpensive to compute.

This property reflect a typical strength and design principle for Metropolis
schemes: they must rely on updates ∆E that are cheap to compute. On the
other hand, this property also reflects a weakness of Metropolis schemes. If β∆E
is large, say at a local minimum of E, then many moves are rejected before the
state escapes from the local minimum. In such cases, the Metropolis scheme
must be replaced by modifications of it such as simulated annealing.

2.3.4 B generates a reversible Markov chain
While it is natural to think of increasing t as representing the arrow of time,
the Markov property requires only that the future and past be independent,
conditional on the present. Thus, given a transition matrix for a stationary
Markov chain, we may always construct a time reversed Markov chain as follows.
Since

Q(x, y) =
P(X1 = x,X2 = y)

P(X1 = x)
,

by conditioning onX2 instead ofX1 we obtain the reversed chain with transition
matrix

R(y, x) :=
P(X2 = y,X1 = x)

P(X2 = y)
=

P(X1 = x)

P(X2 = y)
Q(x, y).

The above equation may be rewritten as the identity

R(y, x)π(y) = Q(x, y)π(x), (2.3.4)

where π is the equilibrium for Q, and thus R. (Note that the chain is stationary).
In general, the time-reversed Markov chain generated by R is not the same

as the forward chain generated by Q. However, these are identical for the
Metropolis scheme. Indeed, replacing Q(x, y with B(x, y) and π(x) with pβ(x)
in equation ( 2.3.4), we find that the reversed chain satisfies

R(y, x) =
P(X1 = x,X2 = y)

P(X2 = y)
=

P(X1 = x,X2 = y)

pβ(y)
.

Thus, we may use equations (2.3.2) and (2.3.4) to see that

R(y, x) = B(y, x), x, y ∈ S,

so that the chains are equivalent.
This calculation reflects the fact that detailed balance is a condition of local

equilibrium between every pair of states in the Markov chain. This principle
plays an important role in the description of chemical reaction networks. In
this context, each state of the chain is a chemical compound, and the transition
rates B(x, y) and B(y, x) reflect the rates of forward and backward equations.
When the system is in equilibrium, each set of forward and backward reactions
must be balanced.
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2.3.5 B is a self-adjoint operator on L2
pβ

A set of positive weights m = (m1,m2, . . . ,mN ) may be used to define an inner
product on RN as follows:

〈v, w〉m :=

N∑

i=1

mi viwi. (2.3.5)

The adjoint , A†, of a linear operator A : RN → RN with respect to this inner-
product is defined by

〈A†v, w〉m = 〈v,Aw〉m, v, w ∈ Rn. (2.3.6)

Finally, we say that an operator is self-adjoint when A = A†.
Now let us apply this idea to R|S| choosing pβ(x) as the weight. This weight

determines the vector space L2
pβ
, which is simply R|S| equipped with the inner

product
〈v, w〉pβ :=

∑

x∈S
pβ(x) v(x)w(x). (2.3.7)

The adjoint of a linear operator A on L2
pβ

is given by

A†(x, y) =
pβ(x)

pβ(y)
A(x, y), x, y ∈ S.

In particular, detailed balance implies that B = B†. Thus, B is self-adjoint.
Self-adjoint operators are of fundamental importance in mathematics and

physics. They always have real eigenvaues and admit the following spectral
decomposition which is a general form of diagonalization familiar to you from
linear algebra. The spectral theorem states that every self-adjoint operator A
may be written in the form

A(x, y) = π(y)

|S|∑

i=1

αiψi(x)ψi(y), (2.3.8)

where the αi and ψi are the eigenvalues and eigenvectors of A. It then follows
that all powers of A may be expressed as

(An)(x, y) = π(y)

|S|∑

i=1

αni ψi(x)ψi(y), x, y ∈ S.

We may also write equation (2.3.8) in the form

A =
∑

i

αiψiψ
†
i ,

where given a column vector ψ with entries ψ(x), x ∈ S, its adjoint is a column
vectorψ† with entries π(y)ψ(y), y ∈ S. Then the rank-one operators Pi := ψψ†

are orthogonal projections in L2
pβ

onto the space spanned by the vector ψ. The
spectral theorem expresses A as a sum of projections onto the eigenspaces ψi,
each weighted by the eigenvalue αi.
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2.3.6 Convergence of Markov chains
Let us now return to Markov chains, contrasting the general theory of conver-
gence for Markov chains, with the theory for Markov chains with a transition
matrix that is self-adjoint.

Suppose given a transition matrix P on a state space of size N which deter-
mines an ergodic Markov chain with probability distribution π. We would like
to use the forward equation πn+1 = πnP to prove that limn→∞ πn = π. We
write vn = πn − π for the difference and use π = πP to obtain the equation

vn+1 = vnP = v1P
n,

by induction on n. Thus, if P = UΛU−1, where Λ is the diagonal matrix of
eigenvalues and U is a matrix of eigenvectors, we find that

vn+1 = v1UΛnU−1.

The asymptotics as n→∞ depend only on Λ. The entries of this matrix are the
eigenvalues of P , i.e. the roots of the characteristic polynomial det(λI−P ) = 0.
In general, these roots are complex numbers and about all that we can say for
an arbitrary transition matrix P is that all eigenvalues of P must all lie strictly
within the unit disk in the complex plane, with a unique eigenvalue on the
boundary of the disk at λ = 1 (this eigenvalue corresponds to the equilibrium).
These general assertions follow from the Perron-Frobenius theorem (you don’t
need to know this!). Since all eigenvalues except the first lie strictly within the
unit disk, as n→∞,

Λn =




1n 0 . . .
0 λn2 . . .
...

. . . λN


→




1 0 . . .
0 0 . . .
...

. . . 0


 .

It is in this sense that we may use linear algebra to understand the convergence
of Markov chains.

The problem with the general theory is that while it tells us that the chain
converges to equilibrium, what we care about in practice is the rate of conver-
gence, i.e. how fast all diagonal terms except the first converge to zero.

In general, we can’t say very much. However, for a reversible Markov chain,
such as the Metropolis scheme, we can say a lot more, using the fact that B
is self-adjoint in L2

pβ
and that it admits a spectral decomposition (2.3.8). In

this case, we may order the eigenvalues, 1 = λ1 > λ2 ≥ λ2 . . ., and we see
that the rate of convergence of the Markov chain is O(|λ2 − λ1|n) as n → ∞.
Various techniques exist to estimate this spectral gap based on the geometry of
the underlying state space (see [5] for examples on shuffling).
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Chapter 3

From text to machine
translation

In this section we first review some central ideas in information theory. These in-
clude the interpretation of entropy as the average depth of the optimal search to
find a random variable, the entropy rate of a stationary process, the convergence
of processes using relative entropy, and the mutual information. These ideas are
then illustrated by applications to Markov chain models of text. These include
the convergence of the n-gram approximations to true language as n → ∞
and the use of mutual information to design a parsing scheme to detect word
boundaries. The idea of a Hidden Markov model (HMM) is introduced in the
last section through an application to machine translation.

3.1 Entropy and entropy rate
The entropy of a random variable X taking values in a finite alphabet A is

H(X) = −
∑

x∈A
p(x) log p(x).

The entropy H(X1, . . . , Xn) of a finite sequence of random variables is also
defined by the above formula, since a finite sequence taking values in A may
be lumped into a single random variable Y := (X1, . . . , Xn) taking values in
An. However, in order to have a meaningful limit as n→∞, it is necessary to
normalize the entropy by the size of the sequence.

Theorem 11 (Entropy rate). Suppose {Xk}∞k=1 is a stationary stochastic pro-
cess taking values in a finite alphabet. Then the following limits exist and are
equal.

lim
n→∞

H(X1, . . . , Xn)

n
= lim
n→∞

H(Xn|Xn−1, . . . , X1) := F.

The limit F is called the entropy rate.

21
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Existence of the entropy rate. Let Fn = H(Xn|Xn−1, . . . , X1). Since condition-
ing reduces entropy 1 and the sequence is stationary,

Fn+1 = H(Xn+1|Xn, . . . , X1) ≤ H(Xn+1|Xn, . . . X2)

= H(Xn|Xn−1, . . . , X1) = Fn.

Thus, {Fn}∞n=1 is a decreasing sequence that is bounded below by zero. This
shows that F := limn Fn exists.

The equivalence of the two limits in the definition of the entropy rate is seen
as follows. We use the entropy chain rule to write

H(X1, . . . , Xn) = H(X1) +H(X2|X1) +H(X3|X1, X2) = F1 + · · ·+ Fn.

Since Fn → F , we see that for large n, we’re adding a series of terms that are
almost constant. We formalize this idea as follows. Let ε > 0 and choose k∗(ε)
so that |F − Fk| < ε for k > k∗(ε). We then split the sum into n − k∗ terms
that are ε-close to the limit F and a sum of k∗ initial terms as follows

H(X1, . . . , Xn)

n
=
F1 + · · ·+ Fk∗

n
+
Fk∗+1 + · · ·+ Fn

n
.

Since Fk is a positive decreasing sequence, the first term is bounded above and
below by

0 ≤ F1 + · · ·+ Fk∗
n

≤ F1
k∗
n
.

Similarly, the second term is bounded above and below by

F

(
1− k∗

n

)
≤ Fk∗+1 + · · ·+ Fn

n
≤ (F + ε)

(
1− k∗

n

)
,

using the fact that F ≤ Fk∗ < F + ε.

Example 12. Since a stationary Markov chain is also a stationary stochastic
process, we may use the above formula to compute its entropy rate. To this
end, suppose {Xk}∞k=1 is a Markov chain with transition matrix Q(x, y) and
equilibrium pmf π(x). We specialize the entropy rate formula as follows.

F = lim
n
H(Xn|Xn−1, . . . , X1) =︸︷︷︸

Markov property

lim
n
H(Xn|Xn−1) =︸︷︷︸

stationarity

H(X2|X1)

=
∑

x∈A
P(X1 = x)H(X2|X1 = x) = −

∑

X∈A
π(x)

∑

y∈A
Q(x, y) logQ(x, y).

3.2 Entropy and data compression

3.2.1 Entropy as coding length
One of the fundamental interpretations of entropy is that it corresponds to the
length of an optimal code. We first review this idea for binary prefix codes.

1The reader unfamiliar with these definitions will find complete proofs in [?].
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Suppose X is a random variable that takes values in a finite alphabet A =
{1, . . . ,m} with probabilities (p1, . . . , pm). A binary code is a map C : A →
{0, 1}∗ where {0, 1}∗ denotes the space of finite binary strings. We say that C
is a prefix code if no codeword C(x) is a prefix of another codeword C(y) for all
pairs x, y ∈ A. A prefix code is in one-to-one correspondence with a binary tree
whose leaves correspond to the codewords C(x), x ∈ A. This equivalence may
be seen by drawing a binary tree and labeling the vertices in lexicographical
order beginning with the root. The labels of the leaves are the codewords. In
what follows, we only consider prefix codes.

Given a code C, the length of the codeword for x, denoted l(x), is the
number of terms in the binary string C(x). Since every binary prefix code is in
correspondence with a binary tree, l(x) may also be interpreted as the length
of the path joining the root to the leaf C(x).

The fundamental bounds relating entropy to data compression are as follows.
First, every binary prefix code for X is bounded below by the entropy:

H(X) ≤ E(l(X)) :=
∑

x

p(x)l(x). (3.2.1)

A code is optimal if it achieves the minimum of E(l(X)) over the space of codes.
When C is optimal, the bound (3.2.1) has the matching upper bound

E(l∗(X)) < H(X) + 1, (3.2.2)

where we have denoted the optimal code by C∗ and its length by l∗ to distinguish
it from the lower bound (3.2.1). An optimal code may be computed using
Huffman’s algorithm as explained below.

The dangling 1 in equation (3.2.2) can be improved by considering a block
code, replacing the idea of entropy with entropy rate, and considering the code-
length per symbol. More precisely, we consider a sequence (X1, . . . , Xn), code it
with an optimal code Cn, and use ln = l(x1, . . . , xn)/n to denote the length per
symbol of the codewords. We then use equations (3.2.1) and equations (3.2.2)
to obtain the matching upper and lower bounds

1

n
H(X1, . . . , Xn) ≤ E(ln) <

1

n
H(X1, . . . , Xn) +

1

n
. (3.2.3)

These bounds show that the entropy rate of a stationary stochastic process is
the length per symbol of an optimal code.

3.2.2 Huffman’s algorithm
Given a pmf (p1, . . . , pm), an optimal code may be computed in O(m logm) steps
using Huffman’s algorithm. This is a greedy algorithm that recursively builds
a binary tree whose codewords are leaves. The algorithm has m steps and is
indexed downward beginning with m. At the beginning of the k-th step assume
given a pmf q(k) = (q1, . . . , qk) and a forest τ (k) := (τ1, . . . , τk) consisting of a
collection of binary trees τj , 1 ≤ j ≤ k. The algorithm is initialized at k = m
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with the given pmf p = (p1, . . . , pm) and a forest consisting of m trees each with
a single vertex. The k − 1-th iterate is then obtained as follows:

1. Rerank the pmf q(k) in decreasing order. More precisely, choose a permu-
tation σ ∈ Sk such that qσ1 ≥ qσ2 ≥ . . . qσk . Let s(k) denote the reordered
pmf, with sj = qσj .

2. Merge the two smallest probabilities sk−1 and sk to obtain q(k−1) =
(s1, s2, . . . , sk−1 + sk).

3. Use the permutation σ to relabel the trees within the forest, defining a
new forest τ̃ = (τσ1

, τσ2
, . . . , τσk) with k subtrees.

4. Merge the trees τσk−1
and τσk associated to the smallest probabilities

sk−1 and sk by adding a new root and two edges labeled with 0 and 1
respectively that connect the root to τσk−1

and τσk . Define τ (k−1) to be
the resulting modification of the forest τ̃ .

3.2.3 Typical sequences and the AEP

The entropy rate also quantifies the effective size of our probability space. Fix an
integer N and let ΩN denote the space of sequences {a ∈ AN |a = (a1, . . . , aN )}.
Given a stationary stochastic process {Xk}∞k=1 let PN denote the joint pmf of
(X1, . . . , XN ). The size of ΩN is |A|N = 2N log |A|. One of the fundamental
interpretations of entropy is that it ‘thins down’ the space of all sequences to
a set of ‘typical sequences’, which is of size 2NF , where F denotes the entropy
rate of {Xk}∞k=1. As in Section 3.2.1, this shows that entropy quantifies data
compression by focusing our attention on the ‘set of sequences that matter’.

The main idea is as follows. We fix an arbitrary error threshold ε > 0 and
define the typical set Aε,N to consist of sequences a ∈ ΩN such that

2−N(F+ε) ≤ PN (a1, . . . , aN ) ≤ 2−N(F−ε).

One may then use this definition and the weak law of large numbers for station-
ary processes to show that for every ε > 0, there is an N∗ such that for N > N∗
the probability and the size of the typical set satisfy the bounds

PN (Aε,N ) ≥ 1− ε, 2N(F−ε) ≤ |Aε,N | ≤ 2N(F+ε).

3.3 The entropy of English

3.3.1 Samples of random text

The entropy rate allows us to quantify the balance between freedom and re-
dundancy in a stochastic process. Let us illustrate this idea with the following
samples of randomly generated text, each of which is taken from Shannon’s
work [14].
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1. XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYDQPAAMK-
BZAACIBZHJQD

2. OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHEN-
HTTPA OOBTTVA NAH BRL

3. ON IE ANTSOUTINYS ARE T INCTORE ST BE SDEAMY ACHIN D
ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE
SEACE CTISBE

4. IN NO IST LAT WHEY CRACTICT FROURE BIRS GROCID PONDE-
NOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA
OF CRE

5. REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN
DIFFERENT NATURAL HERE HE THE A IN CAME THE TO OF TO
EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD
BE THESE

6. THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE AN-
OTHER METHOD FOR THE LETTERS THAT THE TIME OF WHO
EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

These strings are defined through the following stochastic processes respectively.

1. The letters form an iid sequence from the alphabet {A,B, . . . , Z,_} of 27
symbols. Each of these symbols is chosen with equal probability.

2. An iid sequence from the same alphabet, but with the probabilities of the
letters chosen according to their true frequencies in text. Thus, commonly
used letters such as E, T and O appear more frequently than in (1).

3. A 2-gram stationary Markov chain on {A,B, . . . , Z,_} with transition
rates Q(2) determined by true language.

4. A 3-gram stationary Markov chain on {A,B, . . . , Z,_} with transition
rates Q(3) determined by true language.

5. The underlying alphabet is now the lexicon of the English language (i.e.
the set of words in English). The text is an iid sequence of words, where
the words are chosen according to the frequencies at which they appear.
The spaces are added only to signify gaps between words.

6. A Markov chain on the lexicon which is the analogue of the 2-gram ap-
proximation in (3), replacing the alphabet of 27 letters with the lexicon.

These samples illustrate several ideas. Examples (1)–(4) show that the stochas-
tic processes mimic true language with greater fidelity as the underlying transi-
tion probabilities use more information on joint distributions of the underlying
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true language. Examples (5) and (6) illustrate a deeper principle: true language
carries a hierarchy of structures along with rules for binding these structures.
Examples (5) and (6) illustrate this principle with the simplest hierarchy – the
difference between letters and words. Even within our naive formalism for lan-
guage, this example shows that a true language can be modeled on different
probability spaces – sequences of letters or sequences of words. In order to de-
termine whether (5) is a better approximation than (6), we must formalize the
idea of mapping one space to the other. Mapping a word to a sequence of letters
is spelling; mapping a string of letters to a string of words is a type of parsing.

3.3.2 Markov chain models cannot be grammatical

The efficacy of Shannon’s model, both in generating the above sequences and
decoding scrambled text, should also give us pause. Even though the output of
(6) is more natural than any of the previous approximations, it clearly doesn’t
‘feel right’ because of the unusual construction of the sentence, as well as the
semantic flaws. How do we model this?

The underlying rules that determines a language constitute its grammar .
Native speakers of a language effortlessly perceive a violation of grammar as
we do when reading a sentence such as (6). Such violations may be modeled
within a Bayesian framework, since the notion that ‘something doesn’t feel right’
merely means that an observation is very unlikely within a probabilistic model.
But this also makes explicit the fact that in order to build a probabilistic model
of language that is more realistic than Shannon’s approximations, we need a
deeper mathematical model of grammar.

The modern study of grammar was revolutionized a few years after Shan-
non’s work by Chomsky [?]. In contrast with earlier work on linguistics that
focused on classifying the grammars of existing languages, Chomsky proposed
a set of generative rules that may be used to construct a language. A striking
assertion in Chomsky’s work, which provides an extreme counterpoint to Shan-
non’s models above, is that no finite alphabet Markov chain approximation can
constitute a true grammar (in Chomsky’s sense)!

This assertion seems to contradict the efficacy of the Markov chain model
in a practical setting such as decoding scrambling text, as well as the theorems
that follow proving that these rules converge in a precise sense to true language.
In order to resolve this (apparent) contradiction, it is necessary to consider
Chomsky’s definitions of grammars and hierarchy more carefully 2. For now,
we will view Shannon’s model as a starting point, and simply use it as a proof
of concept that language can be studied through probabilistic methods.

3.3.3 Convergence of the Markov chain models

We may now apply the ideas of the previous sections to form a precise notion
of the entropy rate of English.

2This will have to wait till the next iteration of these notes.
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1. We model English as a stationary stochastic process taking values in A =
{a, b, . . . , z,_}. Thus, its entropy rate exists.

2. We construct the n-gram Markov chain approximations with transition
matrix Q(n) and stationary distribution Ptrue independent of n. The
entropy rate of these Markov chains may be computed using equation
( 3.1.1).

3. As n → ∞ we show below that the approximations converge to true
language in the sense of relative entropy.

The notation differs slightly from Section 3.1. We now use Fn to denote the
entropy rate of the n-gram, letter-based, approximation to English. We will
consider the word-based approximation after this example has been understood.

In order to compute the entropy rate using equation (3.1.1), we let x =
a1a2 . . . an−1 and y = a2 . . . an and recall that the equilibrium distribution and
transition probability are given by

π(n)(x) = Ptrue(a1a2 . . . an−1), Q(n)(x, y) =
Ptrue(a1a2 . . . an)

Ptrue(a1a2 . . . an−1)
. (3.3.1)

Let Hn denote the entropy of the sequence (X1, X2, . . . , Xn−1). Since Ptrue and
the n-gram approximation agree on sequences of length n− 1, we find that

Hn = −
∑

a1,...,an−1

Ptrue(a1a2 . . . an−1) log (Ptrue(a1a2 . . . an−1)) .

This expression may be substituted in equation (3.3.1) to obtain

Fn = Hn −Hn−1, or Hn = F1 + F2 + . . . Fn.

An argument similar to Section 3.1 shows that Fn is a decreasing sequence and
that F = limn→∞ Fn is the entropy rate of the true language.

This calculation shows that the n-gram approximations converge to true
language, and thus so does the entropy rate. However, it does not provide
us with an efficient way to compute the entropy rate F . The catch is that
the alphabet size for the n-gram approximation has size 27n−1. It becomes
increasingly hard to estimate the parameters Q(n) as n increases. In order to
get a feel for the numbers involved, observe that 263 = 19683, 274 = 531441,
275 = 14348907. Shannon invented a guessing game that re-encodes English text
in a way that allows a relatively easy way to estimate the entropy of English.

The idea that the n-gram approximations converge to the true language is
formalized as follows. Both Ptrue and Q(n) define probability distributions on
the space of sequences of length N , ΩN , for every N . We fix the length N , as
well as the scale of approximation n and use Ptrue,N and PNn to denote these
probability distributions. We then compute the relative entropy D(Ptrue,N ‖
Pn,N ) as follows.
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First, we note that D(Ptrue,N ‖ Pn,N ) = 0 when n ≥ N , since both proba-
bility distributions agree on sequences of length n. Therefore, it is sufficient to
restrict attention to n < N . In this case, we obtain

D (Ptrue,N ‖ Pn,N ) =
∑

xN=a1...aN

Ptrue(xN ) log
Ptrue(xN )

P(n)
N (xN )

= H(PN,n)−H(Ptrue,N ),

where the last expression follows from expanding the term within the logarithm
and using the definition of P(n). As in Section 3.1 we find that

H(Ptrue,N ) = F1 + F2 + . . .+ FN .

Similarly, we use the entropy chain rule to find that

H(PN,n) = F1 + F2 + . . .+ Fn + (N − n)Fn.

Therefore, the normalized relative entropy satisfies the inequality

1

N
D (Ptrue,N ‖ Pn,N ) =

1

N

N∑

k=n+1

(Fn − Fk) ≤ N − n
N

(Fn − F )

where F = limn→∞ Fn. Thus,

lim sup
N→∞

1

N
D (Ptrue,N ‖ Pn,N ) ≤ (Fn − F ).

3.4 Words and word boundaries
In this section, we consider the word based Markov chains in more detail. We
first define the lexicon, L of a language to be the set of words that it contains.
Since we will need to distinguish between sequences of letters and words, let ΩL
and ΩA denote the space of sequences taking values in L and A respectively.

So far we have modeled true language as a probability distribution Ptrue on
the space ΩA. However, since language is a sequence of words, we could also
have chosen true language to be a probability distribution Qtrue on the space
ΩL. What’s going on here is that we need to distinguish between language as an
abstract construct and its representations in different forms (text, speech, strings
of words, etc.). Thus, in order to ensure that our definitions are consistent, we
must find an invertible map between ΩA and ΩL such that the probabilities of
corresponding events are equal.

This formal description has a familiar interpretation. The act of spelling
associates a unique sequence of letters to each word. Let us call this map
spell : L → A, so that spell(w) is a sequence of letters a1 . . . ap that spell
the word w. This extends to a sequence of words in ΩL as follows. A se-
quence {w1w2 . . . wp} is mapped to spell(w1)_spell(w2)_ . . . spell(wp)_.
Conversely, given a sequence in ΩA that is a sample of true language (i.e. lies
in the support of Ptrue), the associated sequence of words may be defined to be
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the letters between spaces. (Note that one needs to be more careful mapping
letters to words; a sequence of letters that isn’t part of the lexicon, does not
have a preimage. We avoid this issue by choosing only the sequences that live
in the support of Ptrue).

The use of a special character for the space is redundant. The fact that
texts without spaces cannot be read easily reflects only our training, not a
fundamental argument for the use of the space character. For example, it is
possible to read slowly and break a sentence into words, even when the space has
been removed. Similarly, several written scripts drop information (e.g. vowels
in Semitic languages), which experienced readers judge from context. This issue
becomes especially important when considering speech. By the same logic as
above, speech is a manifestation of true language. The fundamental unit of
speech is a phoneme, and the act of dictation is the conversion of a string in ΩA
to a string of phonemes. Unlike written text, words in speech are not separated
by spaces (that would sound like staccato speech, whereas we prefer words to
flow). Yet humans have no difficulty separating a sequence of phonemes into a
string of words.

This discussion suggests that the space character is redundant and that it
should be possible to parse a sequence of letters without spaces into a sequence
of words. We will call this map parse : ΩA → ΩL. In what follows we describe
a model that is similar to the digram model for text.

3.4.1 Parsing word boundaries
We adopt the following notation in this section. Let L denote the lexicon, which
may be thought of as an “alphabet” of words; let A∗ denote the space of infinite
sequences of letters in A = {a, b, . . . , z, “ ′′}; and let L∗ = space of sequences of
words. Observe that a Markov chain on L generates a sequence in L∗ whereas
the n-gram model generates a sequence in A∗. These spaces are related through
the following maps:

• spell: L→ A∗, ω 7→ a1a2 . . . am

• parse: A∗ → L∗, a1a2 . . . am 7→ ω1ω2 . . .

Parsing a string in A∗ is easy when A includes the space character. All we have
to do is to the letters at spaces.

It is a more interesting question to ask how one may parse a string when
we don’t have a special character for space. We approach this problem by
constructing an energy function that uses the mutual information. Given two
random variables X,Y with joint law PX,Y the mutual information is defined
as the relative entropy I(X,Y ) = D(PX,Y ||PXPY ). The first argument PX,Y is
the joint distribution of X and Y . The second is the product of the marginals
of X and Y , corresponding to the assumption that X and Y are independent.
Loosely speaking I(X,Y ) quantifies how strongly coupled X and Y are.

We define an energy for word boundaries as follows. Consider two strings
θ = a1 . . . am and τ = am+1 . . . an and let σ = θτ = a1 . . . amam+1 . . . an denote
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their concatenation. We assume that X and Y are consecutive strings drawn
from the true language, such that X = θ and Y = τ . Then the joint distribution
and marginals are

PX,Y (X = θ, Y = τ) = Ptrue(a1a2 . . . an+m),

PX(X = θ) = Ptrue(a1 . . . am), PY (Y = τ) = Ptrue(am+1 . . . an).

The mutual information of these random variables is

I(X;Y ) =
∑

θ,τ

Ptrue(θτ)

(
log

Ptrue(θτ)

Ptrue(θ)Ptrue(τ)

)

The mutual information vanishes when the strings X and Y are independent.
While we do not expect two distinct words to be independent, heuristically it
is clear that two consecutive strings from distinct words should be less closely
related than two strings that are part of the same word. The simplest version
of this idea is an analogue of the digram approximation. We consider two
consecutive pairs of letters, i.e. n = m = 2 ande we define the binding energy
for a sequence of four letters a1a2a3a4 to be

E(a1a2a3a4) = log

(
Ptrue(a1a2a3a4)

Ptrue(a1a2)Ptrue(a3a4)

)

The following numerical experiment may now be carried out: assume the law
of true English is known (say for all strings a1a2a3a4 of length 4). Now take
a corpus of English text and ‘clean’ it by removing all punctuation and case,
including the space character. This gives a string of letters in the Latin alphabet.
In order to determine the word boundaries in this text, we define the function
e(k) = E(akak+1ak+2ak+3), which computes the binding energy of consecutive
4-strings. We then place word boundaries at the minima of e(k). This naive
scheme works surprisingly well (see [12, Fig. 1.4]).

3.5 The HMM model for machine translation

Machine translation is a fundamental task in natural language processing. We
assume given a string of words or phrases in one language (say French). Our
task is to translate this string of words into another language (say English). The
difficulty of this task depends on the differences between the languages, but it
is challenging enough even for two languages within the same family, such as
French and English. One of the difficulties is that word for word translation often
provides poor results, since the use of different words in different languages relies
strongly on context. Thus, what follows is a simplified model which nevertheless
contains a central idea of succesful algorithms [?].

Assume given a sequence of words in French, which we denote by f =
f1f2 . . . fm. We seek a sequence of English words e = e1e2 . . . em that is a
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translation of f . 3 In order to apply the Bayesian paradigm to this problem we
must first associate a joint probability distribution to the strings e and f . We
may then apply Bayes rules as usual to obtain

P(e|f) ∝ P(f |e)P(e)︸ ︷︷ ︸
constructed using the prior

.

Here e is the hidden state – the unknown string in English, and f is the obser-
vation – the given English string. Our best guess of the translation is then

e∗ = argmaxe logP (f |e) P (e) (3.5.1)

We construct the prior using Markov chains. To this end, we assume that

• Step 1: e is a Markov chain (for example, as in Section 1.3).

• Step 2: We assume we have an English to French statistical dictionary that
provides probabilities P(f |e), i.e. the probability that an English word is
associated to a Fench word f . It should be familiar from experience with
a dictionary that a single word may have many meanings; in a similar
manner, an English word may have many possible translations. Thus,
all dictionaries are implicitly statistical, since a reader must typically use
context to determine the meaning or translation of a word.

Observe that the Markov chain uses only the structure of the language of the
observer. We use the transition kernel of this Markov chain to compute the
probability of a string of English words e = e1e2 . . . em

P(e) = P(e1)Q(e1, e2)Q(e2, e3) . . . Q(em−1, em), (3.5.2)

We then use the statistical dictionary to define the conditional probability

P(f ||e ) = P(f1|e1)P(f2|e2) . . .P(fm|em). (3.5.3)

With these two elements in place, the task of machine translation is reduced to
the task of computing the argmax in equation (3.5.1). This maximum may be
computed fast using the fact that the logarithm of the likelihood can be written
as a sum of terms. This algorithm is of independent interest and is treated in
the next section.

3.6 Dynamic programming (Bellman’s algorithm)
Effective implementation of the HMM model requires a fast algorithm to de-
termine the mode of the posterior. The log-likelihood of the posterior has the
feature that it decomposes into a sum of terms that depend only on their nearest
neighbors. This structure appears in several graphical models and it may be
exploited as follows.

3It is not essential that the strings have the same number of words since we may map words
to phrases, or map a word to a null character, but we will assume a word-to-word translation
for simplicity.
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Theorem 13 (Bellman’s algorithm). Assume given a function of the form

F (x1, . . . , xn) = f1(x1, x2) + f2(x2, x3) + · · ·+ fn−1(xn−1, xn), (3.6.1)

where the xk take values in a finite set Sk, such that |Sk| ≤ s for all k. Then
the minimum of F can be determined in O(ns2) steps.

Remark 14. The size of the search space is O(sn) since |Sk| = O(s) for each k.
The algorithm reduces the size of the search space dramatically using a recursive
strategy.

Proof. The algorithm relies on a recursive decomposition that provides the min
and argmin of partial sums. The last step is a form of back propagation that
provides the min and argmin of F .
Step 1. Forward iteration. We define

hk(xk) = min
x1,...,xk−1

[f1(x1, x2) + . . . fk−1(xk−1, xk)]

= min
xk−1

[
hk−1(xk−1) + fk−1(xk−1, x)

]
.

and let Φ(xk) denote the value of xk−1 at which the min is achieved:

Φk(xk) = argminxk−1

[
hk−1(xk−1) + fk−1(xk−1, x)

]

For each index k, we assume given a value xk and we must sweep through all
values of xk−1 to determine hk(xk) and Φk(xk). This requires at most s2 steps.
Since there are n possible indices, the entire procedure takes at most ns2 steps.

Step 2. Back substitution. When we get to the last step, we observe that the
minimum over xn of hn(xn) is the minimum of F . Let x̄n be this argmin. Then

hn(x̄n) = min
x1,x2,...,xn−1,xn

[f1(x1, x2) + · · ·+ fn(xn−1, xn)]

= min
x1,x2,...,xn−1,xn

F (x1, . . . , xn).

We determine the argmin of F by backsubstitution, setting

x̄n−1 = Φn(x̄n), x̄n−2 = Φn−1(x̄n−1), . . . , x̄1 = Φ2(x̄2).



Chapter 4

Gaussian processes and
Fourier analysis

4.1 Motivation

The Bayesian paradigm of inference relies on the construction of priors on the
space of signals. These lectures began with models of text because of its simple
structure: the signal {Xt}∞t=1 takes values in a finite alphabet and the time t is
discrete. When we extend our interest to signals such as music or speech, we
must consider continuous random variables {Xt} since the underlying auditory
signals are pressure waves. Music is typically less complex than speech, since
(many forms of) music can be transcribed with a score. Examples of such signals
are shown in the Figures below.

In order to apply the Bayesian paradigm to such signals we must construct
models that generate music or speech signals. This requires familiarity with
stochastic processes in continuous space and time. While a ‘proper’ mathemat-
ical treatment of this subject can seem forbiddingly abstract, the theory has a
strong intuitive foundation, since a small number of fundamental examples can
be used to construct signals of great complexity. The most important exam-
ples are Gaussian processes, compound Poisson processes, and continuous time
Markov processes. In each case, the underlying stochastic process is character-
ized by a relatively simple set of parameters (covariance kernels for Gaussians,
jump kernels for compound Poisson processes and generators for Markov pro-
cesses).

The purpose of this chapter and the next is to illustrate the Gaussian
paradigm. We first review Gaussians on Rn and the Fourier transform. These
ideas are then extended to random Gaussian functions and the construction of
stationary Gaussian processes. The unifying thread is that all Gaussian pro-
cesses are characterized by covariance matrices (which are called covariance
kernels when n → ∞). In the next chapter, these ideas culminate in theory of
Brownian motion.
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A central tool, especially when we consider random functions, is Fourier
analysis. The main idea here is to decompose a space of functions into simple
building blocks (a Fourier basis) and then to form random combinations of these
basis functions. Fourier analysis admits many variants depending on the domain
of the underlying function. When we consider periodic functions, we use the
term Fourier series, function on the line give rise to the Fourier transform, and
for discrete vectors we have the Discrete Fourier transform, which is simply a
change of basis on Cn. To be concrete, we first consider the Fourier transform
of functions on Rn. We then explain how these ideas extend to other forms of
Fourier analysis.

4.2 Gaussian distributions on Rn

A Gaussian random variable X is characterized by its mean, m = E(X), and
variance, σ2 = E (X −m)

2. It has the pdf

pm,σ2(x) =
1√

2πσ2
e−

(x−m)2

2σ2 , x ∈ R.

Next consider Gaussians on Rn. Write X = (X1, . . . , Xn) for the associated
random variable. Assume EXi = mi for all i and let Kij = E((Xi −mi)(Xj −
mj)) denote the covariance matrix. Then the pdf of X is

pm,K(x1, . . . , xn) =
1√

det 2πK
e−

1
2 (x−m)TK−1(x−m).

In what follows, we will typically set m = 0 and write pK instead of pm,K since
this makes the formula most transparent. The mismatch in notation between
Gaussians on the line and Gaussians on Rn is unfortunate, but conventional.
We assume that the covariance matrix K is symmetric and positive definite, so
that K−1 is well-defined. The formulas have natural limits when K is singular.

The theory of Gaussian processes and Fourier transforms are intimately re-
lated. The Fourier transform of a function f : Rn → R is defined by

f̂(ξ) :=

∫

Rn
e−ix·ξf(x)dx, ξ ∈ Rn.

The Fourier transform is its own inverse, except for a minor change in sign and
a normalizing factor of 2π

f(x) :=
1

(2π)n

∫

Rn
eix·ξ f̂(ξ)dξ.

There are several conventions for where one places the factors of 2π in the
Fourier transform. We use the probabilists convention since it provides simple
formulas for the Fourier transform of Gaussians.
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In probability theory, the Fourier transform is called the characteristic func-
tion of a random variable. Suppose X is a random variable in Rn. We then
define its characteristic function to be

ϕ(ξ) := E(e−iξ·X), ξ ∈ Rn.

When X has a pdf f(x), the characteristic function ϕ(ξ) is the same as f̂(ξ).
But the characteristic function is well-defined even when X does not have a pdf.
For example, when X = ±1 with probability 1/2, we find that

ϕ(ξ) =
1

2
eiξ +

1

2
e−iξ = cos ξ.

Assume X is a mean-zero Gaussian random variable with density

f(x) =
1√

2πσ2
e−x

2/2.

The Fourier transform of f may be computed by completing the square or using
Cauchy’s integral formula from complex analysis. We find that f̂ is again an
(un-normalized) Gaussian

f̂(ξ) = e−σ
2ξ2/2.

We may also express the above integral in probabilistic notation

E
(
e−iξX

)
= e−σ

2ξ2/2, ξ ∈ R, X ∼ N (0, σ2).

In the limit σ → 0, the random variable X takes the value 0 with probability 1.
In this limit, f̂(ξ) ≡ 1, so that all frequencies carry the same weight. Formally,
we say that f → δ, the Dirac δ at 0.

Consider a multivariate, mean-zero Gaussian with covariance K. We find
that its characteristic function is

ϕ(ξ) = e
1
2 ξ
TKξ, ξ ∈ Rn.

The entropy of an Rn valued random variable with pdf p is

H(X) = −
∫

Rn
p(x) ln p(x)dx.

When X ∈ Rn is Gaussian with covariance kernel K we may evaluate this
integral to find

H(X) =
1

2
ln (det (2πeK)) .

4.3 Gaussian random functions
We now construct random functions. The common underlying principle is that
we are given an orthonormal basis of vectors and we form linear combinations
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of these basis vectors. In Rn, the underlying orthonormal basis is the standard
basis {ei}ni=1, so that x =

∑n
i=1 xiei. Thus, when we form a Gaussian vector

X = X1e1 +X2e2 + . . .+Xnen, we are forming a random combination of basis
vectors. This idea extends without any change to spaces of functions.

Fourier series provide the most familiar example. We consider the space
L2(0, 1) of complex-valued functions on the interval [0, 1] with the inner product

〈f, g〉 :=

∫ 1

0

f(x)ḡ(x)dx.

The set {e2πikx}k∈Z is orthonormal in L2(0, 1), since

〈e2πikx, e2πilx〉 =

∫ 1

0

e2πi(k−l)xdx =

{
0 if k 6= l

1 if k = l.

The Fourier series of a function f ∈ L2(0, 1) is its expression in this basis:

f(x) =
∑

k∈Z
f̂(k)e2πikx, f̂(k) =

∫ 1

0

e−2πikxf(x) dx.

This series is convergent in L2 and it satisfies Parseval’s equality

‖f‖2L2(0,1) =

∫ 1

0

|f(x)|2 dx =
∑

k∈Z
|f̂(k)|2.

It is convenient to assume that f is complex valued, since the basis {e2πikx}k∈Z
is simpler to manipulate than a trigonometric basis. When f is real valued, the
Fourier coefficients satisfy the relation

f̂(k) = f̂(−k), k ∈ Z.

We may construct random functions by considering Fourier series with ran-
dom coefficients. To be concrete, suppose we have a sequence of positive num-
bers {σ2

k}k∈Z and a sequence of iid standard normal random variables {Xk}k∈Z,
and form the Fourier series

f(x) =
∑

k∈Z
σkXke

2πikx.

This series converges almost surely provided the variances σ2
k decrease fast

enough as |k| → ∞. We use Parseval’s equality and E(X2
k) = 1 for all k to

find that

E
(∫ 1

0

|f(x)|2 dx
)

=
∑

k

σ2
k,

which is finite when σ2
k decays fast enough.
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The above series is an example of a Gaussian random function. We saw
in the previous section that multivariate Gaussians are characterized by their
covariances. This idea extends to complex-valued Gaussian random functions
too. The Gaussian random function f is completely characterized through its
covariance kernel

K(x, y) := E
(
f(x)f(y)

)
= E


∑

k,l∈Z
f̂(k)f̂(l)e2πi(kx−ly)


 .

Since E(XkXl) = δkl all the cross-terms vanish and we obtain the covariance
kernel 1

K(x, y) =
∑

k∈Z
σ2
ke

2πik(x−y).

Thus, we see that the choice of a sequence {σ2
k}k∈Z determines a family of Gaus-

sian random functions. The most important example of such random functions
is Brownian motion. As a warm-up, let’s first revisit the central limit theorem
using Fourier analysis.

4.4 Fourier transforms and the central limit the-
orem

Theorem 15 (Central limit theorem). Assume {Xk}∞k=1 is an iid sequence such
that E(Xk) = 0 and E(X2

k) = 1. Then

lim
n→∞

P
(
a ≤ X1 + · · ·+Xn√

n
≤ b
)

=
1√
2π

∫ b

a

e−x
2/2dx, −∞ < a < b <∞.

(4.4.1)

Proof. The proof has two aspects. The first is a reformulation of convergence
in distribution of random variables in terms of convergence of their character-
istic functions. The second is an almost explicit calculation that reveals the
universality of Gaussians.

We won’t prove the first fact, but here is the essential idea. Suppose {Zn}∞n=1

is a sequence of real-valued random variables. We say that Zn converge in
distribution to a random variable Z, if limn→∞ P(Zn ≤ a) = P(Z ≤ a) for
every a ∈ R. This definition is equivalent to the following: Zn converges in
distribution to Z if

lim
n→∞

E(eiξZn) = E(eiξZ), ξ ∈ R.

The relation between these definitions is roughly as follows. The first criterion
may also be written as

lim
n→∞

E
(
1(−∞,a](Zn)

)
= E

(
1(−∞,a](Z)

)
, a ∈ R,

1The Kronecker δ symbol means that δkl = 0 unless k = l and δkl = 1 when k = l.
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where the indicator function 1(−∞,a](x) takes the value 1 when x ≤ a and
vanishes otherwise.

What is common to both definitions is the idea that we evaluate the expec-
tations of the random variables on a suitably rich family of functions. In the
above calculations, these are the functions eiξx or 1(−∞,a] for arbitrary a and ξ.
In order to show that both definitions are equivalent, we must show that it is
possible to approximate every function 1(−∞,a] by a linear combination of the
functions eiξx. To do this precisely requires some care, since 1(−∞,a] is discon-
tinuous. Such an approximation is obtained by first approximating the discon-
tinuous function 1(−∞,a] from above and below with piecewise linear continuous
functions. Then we note that continuous functions can be uniformly approxi-
mated by polynomials, and thus trigonometric polynomials, using Weierstrass’
theorem. Precise formulations of this idea may be found in [?].

The proof now reduces to a computation with characteristic functions. Since
the Xk are iid, they all have the same characteristic function

ϕ(ξ) := E(eiξXk).

We differentiate with respect to ξ to find that

ϕ′(ξ) = E(iXke
iξXk), ϕ′′(ξ) = E((iXk)2eiξXk). (4.4.2)

We evaluate these expressions at ξ = 0, and use the assumptions on Xk to
obtain

ϕ′(0) = iE(Xk) = 0, ϕ′′(0) = −E(Xk)2) = −1. (4.4.3)
Therefore, ϕ(ξ) has a Taylor series expansion near zero of the form

ϕ(ξ) = 1− ξ2

2
+ o(ξ2). (4.4.4)

For example, when Xk = ±1 with probability 1/2, ϕ(ξ) = cos ξ, which clearly
has the above Taylor expansion near zero.

We now combine these ideas. Equation (4.4.1) is equivalent to

E(e
iξ(X1+···+Xn)√

n )→ e−ξ
2/2, ξ ∈ R,

since the right hand side is the characteristic function of the standard Gaussian.
We then compute the left hand side. Clearly,

E
(
eiξ(X1+···+Xn)

)
= E

(
eiX1 , eiX2 . . . eiXn

)
.

Since the Xk are iid the above expression equals

= E
(
eiX1

)
E
(
eiX2

)
. . .E

(
eiXn

)
= ϕ(ξ)ϕ(ξ) . . . ϕ(ξ)︸ ︷︷ ︸

n times

= ϕ(ξ)n.

Now fix ξ, rescale by 1/
√
n and use the Taylor expansion (4.4.4) to see that

E
(
e
iξ√
n
(X1+···+Xn)

)
= ϕ

(
ξ√
n

)n
=

(
1− ξ2

2n
+ . . .

)n
→ e−ξ

2/2.
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This theorem reaches its full importance when used as the foundation for
the theory of Brownian motion. We now turn to this important subject.
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Chapter 5

Brownian motion

5.1 Introduction
The physical phenomenon of Brownian motion was first recorded by the botanist
Robert Brown in 1827. He observed the erratic motion of pollen grains under a
microscope, but did not provide an explanation for this motion. The origin of
this phenomena remained obscure until 1905, when Albert Einstein recognized
that the random motion of the pollen grains, or more generally colloidal par-
ticles, originated in a vast number of microscopic collisions with even smaller
particles, invisible under a microscope. This allowed Einstein to provide a micro-
scopic explanation for diffusion and a method to compute Avogadro’s number.
Einstein’s predictions were verified in Perrin’s experiments in 1908 and provided
evidence for the existence of atoms and molecules (see Figure 5.1.1).

The construction of a mathematical theory of Brownian motion, beginning
with the work of Norbert Wiener, is one of the triumphs of 20th century math-
ematics. Wiener modeled Brownian motion as a Gaussian random function,
writing it as a Fourier series of the form

B(t) = X0t+
√

2

∞∑

n=1

Xn

n
sinnπt, t ∈ [0, 1],

where {Xn}∞n=0 is an iid sequence of standard normal random variables.
This is a series of the type we saw in Section 4.3. The specific choice of

variance ensures that the process B(t) has the following properties:

1. B(0) = 0.

2. The increment B(t)−B(s) is independent of B(s) for all t > s.

3. The increment B(t) − B(s) is normal with mean zero and variance t − s
for all 0 ≤ s < t.

4. B(t) is continuous with probability 1.

41
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This construction reveals certain features of the Brownian motion, but ob-
scures others. The most delicate property to establish is (4). In order to un-
derstand some of the subtleties involved, let us formally differentiate the above
expression to obtain

B′(t)
?
= X0 +

√
2π

∞∑

n=1

Xn cosnπt.

In contrast with the series considered in Section 4.3, the above series diverges
almost surely. Thus, the erratic nature of (physically observed) Brownian mo-
tion is refected in the fact that the (mathematically constructed) function B(t)
is nowhere differentiable.

Figure 5.1.1: An image from Perrin’s 1908 observations of Brownian motion
.

A proof of these facts would take us too far afield, but one may get a feeling
for what is involved by studying simpler examples, called lacunary series. These
are Fourier series of the form

f(x) =

∞∑

n=1

sin(n!πx)

n2
, or g(x) =

∞∑

n=1

an sin(bnx),

with 0 < a < 1 < b. Such series are called lacunary because most Fourier
coefficients vanish (for example, in the first example f̂(k) =0, unless k is an
integer of the form k = n!). The graphs of these series are typical examples of
fractals, a term popularized in the 1970s by Benoit Mandelbrot.
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It is easy to establish the convergence of such series. Since | sin(y)| ≤ 1, we
find that

max
x∈[0,1]

|f(x)− fN (x)| ≤
∞∑

n=N+1

1

n2
= O(1/N),

where fN (x) denotes the finite sum

fN (x) =

N∑

n=1

1

n2
sin(n!πx).

In the late 1800s, Weierstrass proved that the uniform limit of continuous func-
tions on [0, 1] is continuous. In particular, fN converges uniformly to f , so that
f is continuous. The problem however is that the derivative of fN grows fast.
Indeed, we see that the partial sums

f ′N (x) =

N∑

n=1

n!

n2
cos(n!πx)

diverge as N →∞. With some work, one can deduce that the limiting function
f , while continuous, does not possess a derivative at any point x ∈ (0, 1).

Weierstrass’s construction of nowhere differentiable functions was rejected
by many mathematicians of his day. 1 Even many who accepted it, viewed such
functions as mathematical curiosities that were ‘unphysical’.

Today we recognize the work of Weierstrass and Wiener as a triumph of
reason. Nowhere differentiable functions are typical, not atypical, and their
construction and analysis has deep theoretical and practical consequences.

5.2 The Lévy-Ciesielski construction of Brown-
ian motion

The use of Fourier series makes Wiener’s original construction of Brownian
motion somewhat cumbersome. A simpler construction, in the same spirit, uses
the Haar basis for L2(0, 1). This basis is indexed by two positive integers:
n = 1, 2, 3, . . . is used to divide [0, 1] into dyadic intervals of length 2−n; and
k, an odd integer between 0 and 2n indexes an interval of length 2−n. We then
define the piecewise constant functions

H
(n)
k (t) =





2
n−1
2 , k−1n ≤ t < k

2n ,

−2
n−1
2 , k

2n ≤ t < k+1
2n ,

0 else.

1A typical example, is a remark in a letter from Hermite to Stieltjes in May,1893: I turn
away with fear and horror from the lamentable plague of continuous functions which do not
have derivatives.
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The normalizing factors are chosen to ensure that
∫ 1

0

(
H

(n)(t)
k

)2
dt =

1

2n−1
2n−1 = 1, and 〈H(n)

k , H
(m)
l 〉 = 0,

unless k = l and n = m. Next define the Schauder functions

S
(n)
k (t) =

∫ t

0

H
(n)
k ds.

The Haar functions form an orthonormal basis for L2[0, 1]. The Schauder func-
tions form a basis for continuous functions on [0, 1]. More precisely, every
f ∈ L2[0, 1] admits an expansion f(t) =

∑
fk,nH

(n)
k (t), and this expansion

is convergent in L2[0, 1]. Similarly, every g ∈ C([0, 1]) admits an expansion
g(t) =

∑
gk,nH

(n)
k (t) and this series converges in C([0, 1]).

We now define Brownian motion on [0, 1] as the random function

B(t) =

∞∑

n=1

∑

k odd

Xn
k S

(n)
k (t), t ∈ [0, 1],

where {X(n)
k } are iid standard Gaussians. The covariance kernel may be com-

puted using the above definitions and we find that

E (B(s)B(t)) = min(s, t).

If we take a finite set of points t1 < t2 < . . . < tm, we find that the covariance
of the Gaussian vector B(t1), B(t2), . . . , B(tm) is given by the matrix

K =




t1 t1 t1 . . . t1
t1 t2 t2 . . . t2
... t2 t3 . . . t3
...

...
...

. . .
...

t1 t2 t3 . . . tm



.

Finally, we may construct Brownian motion on the interval [0,∞) by proceeding
inductively from interval to interval. Assume that we have constructed Brow-
nian motion on [0, 1] as above. We then construct an independent copy of the
same process, denoted B̃t, t ∈ [0, 1], and we set Bt = B1 + B̃t−1 for t ∈ [1, 2].
Proceeding inductively, we obtain Brownian motion on the interval [0,∞).

5.3 The scaling limit of random walks
The above construction of Brownian motion has the advantage of being direct.
However, it obscures the Markov property of Brownian motion (properties (2)
and (3) above). This property is easier to see when we view Brownian motion
as the scaling limit of random walks.
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Suppose {Zk}∞k=1 are iid random variables such that E(Zk) = 0, E(Z2
k) = 1.

Let Sn = Z1 + · · ·+ Zn. Then the central limit theorem asserts that

lim
n→∞

P(a ≤ Sn√
n
≤ b) =

1√
2π

∫ b

a

e−s
2/2ds, −∞ < a < b <∞.

We may interpret the central limit theorem as a statement about random
walks in the following way. For each positive integer n, we define a random
function S(n) : [0,∞) → R by first defining its values on the grid of times
t = k/n by

S(n)(t) =
Z1 + · · ·+ Znt√

n
, t =

k

n
.

We then extend S(n) to a function on the interval t ∈ [0,∞) by piecewise
linear interpolation. The central limit theorem implies that S(n)(t) converges
to N(0, t) in distribution as n→∞ for each t > 0.

The Markov property of Brownian motion may be obtained from the above
approximation. Suppose 0 ≤ s < t and suppose for simplicity that k = sn and
l = tn are integers. Then

S(n)(s) =
Z1 + · · ·+ Zk√

n
, S(n)(t)− S(n)(s) =

Zk+1 + · · ·+ Zl√
n

,

and it is immediate that the increment S(n)(t)−S(n)(s) is independent of S(n)(s).
In the limit n→∞, we obtain properties (2) and (3) of Brownian motion.

A precise description of the probability of Brownian motion goes as follows.
We fix a finite set of times t1 < t2 < t3 < · · · < tm and m intervals [ai, bi] for
1 ≤ i ≤ m and define the probability that a Brownian motion passes through
these intervals at the given times as follows: 2

P (B(t1) ∈ [a1, b1], B(t2) ∈ [a2, b2], . . . , B(tm) ∈ [am, bm])

=

∫ b1

a1

∫ b2

a2

· · ·
∫ bm

am

gt1(x1)gt2−t1(x2 − x1) . . . gtm−tm−1(xm − xm−1) dx1 . . . dxm,

(5.3.1)

where

gt(x) =
1√
2πt

e−x
2/2t, −∞ < x <∞, t > 0.

This formula reflects the Markov property of Brownian motion. The factoriza-
tion in equation ( 5.3.1) should be compared with the analogous factorization
for Markov chains that we used in Chapter 1.1.

A deeper version of the central limit theorem, known as Donsker’s theorem,
establishes the convergence of the random functions S(n) to Brownian motion.

2Think of Brownian motion as a skier’s path, the times ti and intervals [ai, bi] defining a
set of “slalom gates” that the skier must pass through.



46 CHAPTER 5. BROWNIAN MOTION

One of the implications of this theorem is the following version of the central
limit theorem:

lim
n→∞

P
(
S(n)(t1) ∈ [a1, b1], S(n)(t2) ∈ [a2, b2], . . . , S(n)(tm) ∈ [am, bm]

)

is given by the expression in equation (5.3.1).

5.4 The heat equation
In order to understand what was novel about Einstein’s approach to the theory
of diffusion, it is necessary to first review the classical theory of diffusion (or
heat flow). The heat equation was first introduced in Fourier’s work in 1822. He
modeled heat flow with a partial differential equation (PDE) for the temperature
distribution ρ(x, t) and solved this equation using the method of (Fourier) series.
Let us first review this approach in its simplest setting.

The heat equation on the line is the PDE

∂tρ =
1

2
∂2xρ, −∞ < x <∞, t > 0 (5.4.1)

Here ρ(x, t) is a positive function describing the temperature in an infinitely
long bar. This equation also models diffusion (this is the process that describes
the spread of a dye in still water). In this context, ρ describes the density of
the dye. The initial value problem for the heat equation is to solve (5.4.1) for
ρ(x, t) subject to the condition ρ(x, 0) = ρ0(x), where ρ0(x) is a given initial
temperature.

In what follows, we assume that ρ(x, t) decays fast enough as |x| → ∞. Then
consider the Fourier transform

ρ̂(ξ, t) =

∫

R
e−iξxρ(x, t)dx, ξ ∈ R.

The Fourier transform allows us to transform differentiation (in x) into multi-
plication (by ξ), as follows:

∫

R
e−ixξ∂2xρ(x, t)dx =

∫

R
∂2x
(
e−ixξ

)
ρ(x, t)dx

= (−iξ)2
∫

R
e−2πixξρ(x, t)dx = (−ξ2)ρ̂(ξ, t).

Substituting this expression in the heat equation, we find that

∂tρ̂(ξ, t) = −ξ
2

2
ρ̂(ξ, t) (5.4.2)

Thus, we have converted the PDE into an infinite family of ODE, which may
be integrated explicitly. We solve equation ( 5.4.2) to obtain

ρ̂(ξ, t) = e−ξ
2t/2ρ̂0(ξ), ξ ∈ R.
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We now invert the Fourier transform to obtain the solution formula for the heat
equation:

ρ(x, t) =

∫

R
gt(x− y)ρ0(y)dy, (5.4.3)

where
gt(x) =

1√
2πt

e−x
2/t.

The function gt is called the fundamental solution to the heat equation, since it
is the solution to the heat equation with a Dirac initial condition.

The appearance of gt(x) in the above solution formula has the following
probabilistic interpretation. Formula (5.4.3) is equivalent to

ρ(x, t) = E (ρ0(x−B(t))) ,

where B(t) is Brownian motion, since P(x−B(t) = y) = gt(y).
This allows us to interpret the flow of heat, or diffusion, as arising from the

random motion of individual particles. Think of ρ0 as describing an initial pop-
ulation of particles. Each of these particles executes an independent Brownian
motion and in order to obtain the density at the point x at time t, we sum over
all the Brownian paths that end at (x, t).

In order to demonstrate the power of this viewpoint, we now explain its
utility in situations where there is no exact solution to a PDE.

5.5 The probabilistic solution of the Dirichlet prob-
lem

The Laplacian (written ∆) is the differential operator that acts on smooth func-
tions f : Rn → R by

∆f(x) = ∂2x1
f + · · ·+ ∂2xnf,

The heat equation in Rn is the equation

∂tρ =
1

2
∆ρ

A closely related PDE is Laplace’s equation is ∆u = 0. When solving a PDE,
we must also consider its initial values and boundary conditions. We will now
consider Laplace’s equation on a spatial domain D ⊂ Rn with boundary ∂D.
The Dirichlet problem is as follows: we assume given boundary data f : ∂D → R
and we must solve

∆u = 0, x ∈ D, (5.5.1)
u(x) = f(x), x ∈ ∂D. (5.5.2)

The Dirichlet problem is explicitly solvable on certain simple domains such as
the square or circle and their higher dimensional analogues. For example, when
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D ⊂ R2 is a square, we may use separation of variables and Fourier series to
solve the Dirichlet problem. However, this method is limited.

We will approach the problem in a different way. Let Bt now denote Brow-
nian in Rn (which is simply n independent copies of Brownian motion in R).
Given x ∈ D, let

Xx
t = x+Bt,

denote a Brownian path starting at x. Given Xx
t define the (random) first exit

time
T = min

t>0
{Xx

t does not lie in D}.

Then the solution to the Dirichlet problem has the probabilistic representation

u(x) = E (f(Xx
T )) . (5.5.3)

While it takes some work to establish this formula in full generality, the main
idea underlying this formula is the interplay between martingales and harmonic
functions, which can be understood in the simpler context of random walks on
a lattice. This formula may then be generalized to Brownian motion.

To this end, consider the integer lattice Zn. Given a function u : Zn → R,
define the discrete Laplacian

∆u(x) =
1

2n

∑

|x−y|=1

(u(y)− u(x)) , x ∈ Zn.

Given a subset D ⊂ Zn, we define its boundary ∂D to be the set of points x ∈ D
such that at least one neighbor of x does not lie in D. The discrete Dirichlet
problem is as follows. Given a function f : ∂D → R, we must solve

∆u = 0, x ∈ D, (5.5.4)
u(x) = f(x), x ∈ ∂D. (5.5.5)

This is the discrete analogue of equation (5.4.3). It admits an analogous prob-
abilistic solution formula.

Let Xx
t denote the simple random walk on Zn, starting at x and t =

0, 1, 2, . . . . Let T (Xx
t ) = denote the first time Xx

t hits ∂D. Then the solu-
tion to the discrete Dirichlet problem (5.5.5) is

u(x) = E (f(Xx
T )) . (5.5.6)

This is the discrete analog of equation (5.5.3).
Given a spatial domain and a Laplacian on it (such as either of the examples

above), we say that a function v : D → R is harmonic if it satisfies 4v(x) = 0
for each x ∈ D.

The precise definition of a martingale requires some care, since it involves
a description of measurable events that can be generated by a collection of
random variables. We will sweep these technicalities under the rug and adopt
the following working definition.
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A real-valued discrete time stochastic process {Yt} is a martingale with re-
spect to the filtration generated by the stochastic process {Zt} if

E (Yt+1 |Zt, . . . , Z1 ) = Yt.

The interplay between harmonic functions and martingales is captured in the
following.

Theorem 16. Suppose Bt is simple random walk on Zn and v : Zn → R is
harmonic. Then v(Bt) is a martingale with respect to the filtration generated by
Bt.

Proof. The proof is a calculation. We first observe that

E (v(Bt+1) |Bt, . . . , B1 ) = E (v(Bt+1) |Bt )

by the Markov property of simple random walk. Next, since the random walk
hops to each of its neighbors with probability 2−n, we find that

E (v(Bt+1) |Bt ) =
1

2n

∑

|y−Bt|=1

v(y) = v(Bt) +4v(Bt),

using the definition of the Laplacian. Since v is harmonic, 4v = 0, and we see
that

E (v(Bt+1) |Bt ) = v(Bt).

This theorem doesn’t really suffice to solve the Dirichlet problem in a bounded
domain D, but it does give us a feeling for what’s going on. In order to solve
the Dirichlet problem we want u such that ∆u = 0 in D and u = f on ∂D.

Let x be an interior point of D and let Xx
t denote a simple random walk

starting at x. A calculation as in the above theorem tells us that if u solves
∆u = 0 in D then u(Xx

t ) is a martingale provided Xx
t has not exit the domain

D. In order to state this precisely, we define the stopped process

Y xt = Xx
min(T,t), T = min

s
{Xx

s ∈ ∂D}.

It turns out that Y xt is also a Markov process and that we have the following
stronger version of Theorem 16:

E
(
u
(
Y xt+1

)
|Y xt

)
= u(Y xt ).

Therefore, taking (unconditional) expectations we see that

E
(
u
(
Y xt+1

))
= E (u(Y xt )) .

Proceeding inductively, we find that

E (u (Y xt )) = E (u(Y x0 )) = u(x).
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Now let t→∞ on the left hand side. If the domain is bounded, then limt→∞ Y xt =
Xx
T with probability one, so that

u(x) = E (u(Xx
T )) = E (f(Xx

T )) .

In conclusion, we see that the theory of Brownian motion provides a deeper
understanding of heat flow by focusing our attention on the stochastic process
that describes the ‘mechanism’ of heat flow. This viewpoint allows us to recover
the classical solution formulas for Laplace’s equation and the heat equation for
domains in Rn. Further, they provide us with a new mathematical structure
– martingales – that expand the reach of the classical ideas to spaces that are
very different from Rn (for example, the world-wide-web is a large graph, not a
Euclidean space; but we may still define the notion of heat flow on it to model
the transmission of information on the web).



Chapter 6

From Music to Markov
processes

6.1 Introduction

In this chapter and the next, we apply the Bayesian paradigm to model music
and character recognition. Music differs from text in that the underlying signal
– sound waves– while linearly ordered in time, are continuous. Characters (such
as letters of the alphabet or numbers) are collections of contours in the plane
that represent a finite alphabet. These signals are no longer linearly ordered,
but they are relatively simple because they represent a finite alphabet.

In order to apply the Bayesian paradigm to infer structure from noisy signals,
it is necessary to have a generative model, with both hidden and observed
variables, that can create the signals. Given an observation, such a model allows
us to infer the hidden state by maximizing likelihood. In both the examples
above, a subtle part of the modeling is to choose good priors for the continuous
part of these signals (a single note in music, or a single curve within a character,
such as the loop in an ‘e’). We will use the theory of Brownian motion and
stationary Gaussian processes to model this part of the signal.

These examples demonstrate the consistent nature of Bayesian modeling.
However, they also reveal some of its flaws. As the structure of the signal
becomes more complicated, the Bayesian paradigm may fail because the con-
struction of a realistic generative model is too complicated, or because the com-
putation of the posterior distribution is too expensive.

6.2 The score and the spectrum

Let us begin by reviewing the spectrogram of a music score (Figure 6.2.1).
This image has two distinct structures. The first is a discrete ‘skeleton’, the

musical score, which consists of (at least) the following variables:
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1. A positive integer m, the number of notes.

2. A set of m intervals [tk−1, tk), k = 1, . . . ,m denoting the periods of notes.

3. A set of m positive real numbers, ωk, denoting the frequency of the k-th
note.

We may further simplify the score, so that the frequencies ωk take values in a
finite set of frequencies (pure tones). For brevity, we denote

ω = (ω1, ω2, . . . , ωn), t = (t1, t2, . . . , tm).

✐
✐

✐
✐

✐
✐

✐
✐

Figure 2.1. Three bars from an oboe playing Winter711 by Jan Beran: the spectrogram (top) and the
score as humans write it (bottom). The three bars are separated by vertical dotted white lines in the
spectrogram and are separated as usual in the human score. The spectrogram shows the distribution of
power across frequencies as time progresses. The oboe has a rich set of harmonics. Below the curving
white line is the fundamental note, in which the score is easily recognized (although stretched and
squeezed a bit). The pixelization of the spectrogram is an unavoidable consequence of Heisenberg’s
uncertainty: time and frequency cannot be simultaneously made precise. (See Color Plate I. We thank
Chris Raphael, whose playing is shown in the spectrogram and who supplied us with the score.)

Figure 6.2.1: This image is Figure 2.1 in [12]. The top image is a spectrogram
of an oboe playing a Beran cadenza. The spectrogram shows the power in dif-
ferent frequencies as a function of time (regions of high power are light colored).
Observe that the power is mainly distributed in the fundamental frequency and
harmonics. The variation of the fundamental frequency with time is described
by the music score.

The second part of the model is the structure of the signal s(t) in each
time interval. The difference in sound between the same note, when played
with different musical instruments, is the timbre of the instrument. Different
instruments sound different, even when they play the same note, because their
harmonics (multiples of the frequency of the note) are amplified differently.
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Mathematically, we model a single note with base frequency ω as the Gaussian
process

s(t) =
∑

k∈Z
Xke

ikωt,

where Xk = Ak + iBk, where Ak ∼ Bk ∼ N(0, σ2
k/2), and we require that

X̄k = −X−k so that s(t) is real, and {σ2
k}∞k=1 is a set of positive numbers that is

fixed for each instrument. The sequence {σk}∞k=1 describes the power E(|Xk|2)
in the kth harmonic of the frequency ω. It is called the power spectrum.

In summary, a minimal mathematical model of music consists of two types
of stochastic processes:

1. A continuous time discrete space Markov processes (in order to model the
score).

2. A stationary Gaussian process (in order to model the timbre of a single
note).

Our generative model consists of the random variables s(t), a real valued
signal for t ∈ [0, T ], and the score (m,ω, t). The separation of the discrete
structure of the score from the continuous structure of each note may be proba-
bilistically modeled by describing the law of each note, conditional on the score.
This assumption yields the law

P(s,m, ω, t) =

m∏

j=1

(
P(s|Ij |ωj)

)
︸ ︷︷ ︸

(a)

P(m,ω, t)︸ ︷︷ ︸
(b)

Part (a) is the law of an individual note of frequency ωj on the interval Ij =
[tj−1, tj). It is modeled as a stationary Gaussian process. Part (b) is the law of
the score. We model it as a continuous time Markov process.

For inference or parsing, we assume the observation s(t) is given. An ap-
plication of Bayes theorem then leads us back to the task of determining the
hidden variables (m,ω, t) to infer the score by maximum likelihood.

Finally, in order to implement such a model in practice, we need to choose
priors for the score and a note. We will use the following choices, both of which
are natural. The score is modeled as a compound Poisson process (which is
perhaps the simplest class of continuous time, discrete space, Markov processes).
We will also make a naive choice for the power spectrum of the instrument. We
set σ2

k = e−α|k|. The rest of this chapter is mainly a description of the structure
of such processes.

The model presented here is motivated by, and similar in spirit to, that
in [12, Ch. 2]. The main difference is that Mumford and Desolneux use a dis-
cretized version of this model in their book and suggest some parameter choices
for implementation [12]. The model chosen here is a continuous time Markov
processes. This is of roughly the same complexity in implementation, but it
has the advantage of introducing the reader to some fundamental probabilistic
models. The rest of this lecture is primarily a description of continuous time
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Markov processes. The implementation of this model to parse an audio signal
is part of the second project.

6.3 The generator of a Markov process
We first describe Markov processes {Xt} when the time is continuous, say t ∈
[0,∞), and Xt takes values in a discrete state space S.

As we have seen in Chapter 1.1, a discrete time homogeneous Markov chain
on a finite state space S is completely described by its transition matrix Qold
(we use the subscript old to distinguish this matrix from an analogous matrix
Qt for a continuous time Markov process). The probability that Xn takes a
value x ∈ S is denoted by πn(x) := P(Xn = x). By convention, πn is a row
vector. Given the initial law π0, it is determined by the forward equation

πn+1 = πnQold, (6.3.1)

where
∑
y Qold(x, y) = 1 and Qold(x, y) ≥ 0.

Continuous time Markov processes have a similar theory, except that the
role of the transition matrix Q is now played by an |S| × |S| matrix A, called
the generator of the Markov process. The generator satisfies the following prop-
erties:

1. A(x, y) ≥ 0 when x 6= y.

2.
∑
y A(x, y) = 0 for all x ∈ S. Given the off-diagonal elements, this condi-

tion may always be imposed by setting A(x, x) = −∑y 6=xA(x, y).

Now we must describe the law of {Xt}t≥0. Introduce the notation

πt(x) = P(Xt = x), Qt(x, y) = P(Xt = y|X0 = x), t ≥ 0.

The relation between pt, Qt and A is

πt = π0Qt, Qt = etA =
∞∑

m=0

(tA)m

m!
, t ≥ 0. (6.3.2)

Here exp(tA) is the matrix exponential, which can be defined by either the series
above, or as the fundamental solution to the matrix valued differential equation

Q̇ = AQ, Q(0) = Id,

where Id is the identity matrix. The pmf πt is a row-vector, just as when time
is discrete. Equation (6.3.2) should be compared to equation6.3.1 for a Markov
chain (in particular, compare Qt with Qnold when t = n).

The above formulation holds for any finite state space S. When |S| is infinite,
say S = R, the generator is a linear operator that could be unbounded. Many
aspects of theory continue to hold, but to build intuition it is helpful to first
consider the examples below.
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Example 17 (Random walk on the circle). Consider a continuous time sim-
ple random walk on a set of equally space points on a circle, labeled S =
{0, 1, . . . , N − 1}. The generator of this process is

A =




−2 1 0 . . . 1
1 −2 1 . . . 0
...

. . .
...

1 0 . . . 1 −2




The difference with a discrete time random walk lies only in the fact that the
time between jumps are iid exponential random variables.

Example 18. We may formally extend this example to random walk on the
lattice S = Z. The generator is then the infinite matrix

A =




. . . . . . . . .
1 −2 1 . . . 0
...

. . . . . .
...

... 0 1 −2 1 . . .
. . . . . . . . .




6.4 Poisson processes on the line

Poisson processes on the line are the ‘clocks’ for Markov processes. They may
be constructed as follows.

Suppose {Tk}∞k=1 are iid Exp(λ) random variables. This means that each Tk
has the distribution function

P(Tk > t) = λ

∫ ∞

t

e−λsds.

The mean of Tk is related to the rate λ > 0 as follows:

E(Tk) =

∫ ∞

0

te−λtλdt =
1

λ

∫ ∞

0

se−sds =
1

λ
.

We define the epochs t0 = 0, t1 = T1, t2 = T1+T2, . . ., such that tk+1 = tk+Tk.
It follows from the definition above that the expected number of points {tk}∞k=1

in a unit interval is λ. More generally, if we take a fixed interval I of length
a then the random variable #(I) := {# of points in I} is a Poisson random
variable with rate λa (written #(I) ∼ P (0, λa). Thus, for every integer m ≥ 0

P (#(I) = m)) =
(λa)m

m!
e−λa.
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Remark 19. Poisson processes are the fundamental probabilistic model to de-
scribe random collections of points. The main underlying assumption is that the
number of points in non-overlapping domains are independent Poisson random
variables. In particular, Poisson processes are not limited to one-dimensional
‘clock rings’ {tk}∞k=1, even if this example is of great utility. For example, if
you’re stuck in a rain shower, to a first approximation the locations at which
the raindrops hit the ground are a stationary Poisson process in R2. This means
that for each domain D ⊂ R2, #(D), the number of drops in D is a Poisson
random variable with law

P (#(D) = m) =
(λ|D|)m
m!

e−λ|D|,

where | · | = area of D and λ > 0 is a parameter called the rate of the process
(the expected number of points per unit area). Further, if D1 and D2 are two
regions of the plane that don’t overlap, then #(D1) and #(D2) are independent
random variables.

6.5 Compound Poisson processes
We now return to Poisson processes on the line and use them to build a class of
Markov process, called compound Poisson processes, using the following random
variables:

1. The clock increments {Tk}∞k=1. These are iid Exp(λ) random variables
that determine the jump times tk+1 = tk + Tk, k ≥ 1, t0 = 0.

2. The magnitude of jumps : an iid sequence {Xk}∞k=1 of real-valued random
variables, that is also independent of the clock.

We then define the continuous time processes

N(t) = argmink{tk ≥ t}, S(t) =

N(t)∑

k=1

Xk, t ≥ 0.

The process N(t) counts the number of jump times upto t and the process
S(t) is the value of a sum of N(t) iid increments with the law of X. Both
these processes are piecewise constant functions of time. By convention, these
processes are chosen to be continuous from the right at the jump locations.

Compound Poisson process are easy to simulate and to analyze. Despite the
fact that the state space is R, the generator of a compound Poisson processes
may be computed using Fourier transforms (characteristic functions) as follows.

Let ϕ(ξ) = E(exp(iξX)) denote the characteristic function (Fourier trans-
form) of a random variable with the law of Xk. In order to compute the law of
S(t) at any fixed t, it is enough to compute E(exp(iξSt)) for all ξ. We condition
on the values of N(t) to obtain

E
(
eiξSt

)
=

∞∑

m=0

E
(
eiξSt |N(t) = m

)
P(N(t) = m)
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Since the increments in jump times are iid Exp(λ) random variables, for each
t > 0, N(t) is a Poisson random variable with

P(N(t) = m) =
(λt)m

m!
e−λt.

Further, since the jump values Xk are iid

E
(
eiξSt |N(t) = m

)
= E

(
eiξ

∑m
j=1Xj

)
=︸︷︷︸
iid

m∏

j=1

E
(
eiξXj

)
= (ϕ(ξ))m.

We substitute in equation (6.5) to find that

E
(
eiξSt

)
= e−λt

∞∑

m=0

(λt)m

m!
(ϕ(ξ))m = e−λt(1−ϕ(ξ)).

6.6 Lévy processes
Compound Poisson processes allows us to generate all continuous time Markov
processes with independent increments. This approach was first investigated
by the pioneering French probabilist Paul Lévy, and the resulting processes are
called Lévy processes in his honor. The main idea is to begin with the com-
pound Poisson process, but then to go further by observing that the sum of two
independent compound Poisson processes is again a compound Poisson process,
but with a new rate and jump law (check!). Similarly, we can always add a drift
of the form ct for fixed c to S(t) without changing the fact that S(t) has inde-
pendent increments. This is useful since it allows us to build richer compound
Poisson processes by ‘layering’ jumps while subtracting a compensating drift to
keep things centered.

It would take us too far afield to describe these ideas in detail, but it is
instructive to construct Brownian motion as a scaling limit of compound Poisson
processes, since this provides some feeling for the theory.

Suppose {Xk} are iid with E(Xk) = 0 and E(X2
k) = δ2 > 0 and the jump

times {Tk} are Exp(λ) as above. We consider the limit λ → ∞, δ2 → 0 such
that λδ2 = 1. Since

ϕ(ξ) = E(eiξX) = 1− δ2ξ2

2
+ . . . , ξ → 0,

we find that

lim
λ→∞

λt(1− ϕ(ξ)) = −λt
(

1−
(

1− δ2ξ2

2

)
+ . . .

)
=
tξ2

2

(
λδ2
)
→ tξ2

2
.

Since this calculation holds for all t > 0 and ξ ∈ R, we have actually shown that

lim
λ→∞, δ→0, λδ2=1

E
(
eiξSt

)
= e−

tξ2

2 = E
(
eiξBt

)
, ξ ∈ R,
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where Bt is standard Brownian motion. Intuitively, this means that we have
approximated Brownian motion by a random walk with really small jumps.
What’s different from our earlier calculations is that the jump times are also
random, but this doesn’t affect the limit.

This calculation also provides the generator of Brownian motion. The main
conceptual shift is to think of the generator as a linear operator acting on test
functions, rather than a matrix. We say that a function f : S → R lies in the
domain of the generator A of a Markov process Xt when the limit

lim
t→0

1

t
(E(f(Xx

t ))− f(x)) := A(f)(x)

exists. Here Xx
t denotes the Markov process Xt conditioned to start at X0 = x.

When the state space is finite, every function f : S → R lies in the domain
of the generator. When Xt is a compound Poisson process, for each ξ ∈ R, the
function f(x) = eiξx lies in the domain of the generator. The calculation above
then shows that

A(eiξx) = −λ(1− ϕ(ξ))eiξx.

Thus, the functions eiξx, ξ ∈ R are eigenfunctions of A with eigenvalues −λ(1−
ϕ(ξ)). In the scaling limit, we see that the generator of Brownian motions acts
as follows:

Aeiξs = −ξ
2

2
eiξs.

It should then come as no surprise that the generator of Brownian motion is

A =
1

2

d2

dx2

and that the forward equation for Brownian motion is the heat equation

∂tp =
1

2

∂2p

∂x2
.



Chapter 7

Character recognition and
Gibbs distributions

7.1 The Bayesian paradigm for computer vision

Character recognition is perhaps the simplest cognitive task in vision. The
benchmark problem in this area is as follows: one is given a black and white
image that contains a (pixelized) image of handwritten characters from a fixed
set (see Figure 7.1.1). The task is to automatically associate an image with a
character.

Figure 7.1.1: Handwritten digits from the MNIST database.

The Bayesian approach to character recognition requires the construction of
a probabilistic model for the signals. As in our approach to music, we decompose
the model into a discrete part (a parse tree that describes how pen strokes fit
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together in a character) and a continuous part (contours that model a single pen
stroke). We will use Gibbs distributions and stochastic differential equations to
model contours.

The study of character recognition provides some appreciation for the sub-
tlety of the cognitive tasks in vision. The space of visual signals –and the way
humans process it – is very rich and we are far from a holistic understanding of
the problem. It is first necessary to develop stochastic models for specific tasks
such as edge detection, depth perception, face recognition, and the perception
of color and texture. Simple examples reveal that images carry a subtle hier-
archical decomposition of structure – a grammar in our linguistic metaphor–
but what exactly the rules of such a grammar may be remain unelucidated.
The study of stochastic models for images also leads into fascinating questions
regarding universal statistical regularities in natural images. The later chapters
of [12] explore these ideas.

The weakness of the Bayesian approach is that while it provides a principled
aproach to computer vision, modern technology ‘solves’ many of these problems
with a completely different paradigm: the training of neural networks to solve
classification problems. For this reason, this chapter also marks an end of our
use of the Bayesian paradigm. In the rest of these notes, we consider neural
networks, alternative ideas in statistical learning theory, and the mathemati-
cal infrastructure of numerical linear algebra and optimization, in a way that
provides some insight into deep learning. A central challenge in this area is to
understand why deep learning works as well as it does. For example, does it
have a Bayesian foundation?

7.2 The shape of a circle

We formalize the problem of character recognition as follows. Assume given
a finite alphabet A, such as the numerals {0, . . . , 9} or the Latin alphabet
{a, b, . . . , z}. The alphabet is an abstract set of symbols that is distinct from
our representation of them as symbols on paper or a screen. The visual repre-
sentation of the alphabet is a font, F . Each element f(a) ∈ F , a ∈ A, is an
idealized geometric shape consisting of a collection of curves linked through a
parse tree. More precisely, f(a) is a geometric algorithm to

1. Construct a parse tree that connects a finite collection of curves denoted
γa,j , j = 1, . . . ,m(a) for each a ∈ A. The number of contours m(a) and
the way that they are bound together is distinct for each letter a ∈ A.

2. A map uj,a : γj,a → R2 that embeds each curve into the plane. (An
embedding of a curve is a smooth map that has a non-vanishing derivative
at each point and never intersects itself.)

For simplicity, we have discounted the thickness of the contours in this model,
though all practical fonts include a thickness that scales in proportion to the
length of the contours.
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If these rules sound excessively formal, it is only because writing symbols
such as the numerals or Latin alphabet has become second nature to us after
years of practice. One acquires a better appreciation of the complexity of writing
when learning a foreign script, designing a font, or just admiring the patience
of a kindergarten teacher instructing young children to write.

These definitions separate the task of developing a probabilistic model for
character recognition into two parts: a discrete, or combinatorial, part that
describes the parsing and gluing rules that hold the contours γj,a together; and
a continuous part consisting of a prior for each individual curve γj,a in the
font. Modeling the combinatorial aspect is (mathematically) straightforward,
at least for small character sets, such as the numerals or the letters, since it
may be solved by listing the combinatorial rules for each symbol (i.e learning
an alphabet with all its quirks). While this task becomes more tedious for large
writing systems – for example, the Japanese Kanji system contains more than
50,000 characters– it can still be solved by exhaustive enumeration. Computer
fonts for all modern writing systems include such rules, since these are necessary
to represent fonts on a computer screen and for the code to drive printers.

Mathematically, the more subtle part of the problem is to develop priors on
curves. To understand the issue, pick the letter ‘o’. This is the simplest letter
combinatorially, since it consists of a single curve γ which we idealize as the unit
circle S1 = {(x, y) ∈ R2

∣∣x2 + y2 = 1}. Now make ten copies of this letter on a
sheet of paper. You will see that while each of these is a perfectly recognizable
‘o’ not a single one of them is a perfect circle!

There is a delicate mathematical problem lurking in the background: what
does a ‘typical’ embedding of a circle into R2 look like? This is the simplest
version of a central probabilistic question in the Bayesian approach to vision:
how does one construct tractable priors on geometric continua in accordance
with the natural symmetries of a problem?

In order to address this question, let us consider some of the probabilistic
models we have used:

1. Markov chains (to model text on a finite alphabet).

2. Stationary Gaussian functions (to model a single note of music).

3. Continuous time pure jump Markov processes (to model a musical score).

These models implicitly relied on the idea of a linear signal, i.e. a signal with
a clear ‘direction of time’. While each curve in a character can be similarly
parametrized, it is better to view the problem of designing priors from first
principles, since this approach also applies to two and three dimensional geome-
tries.

7.3 Gibbs distributions revisited
Let us first recall the structure of Gibbs distributions. We assume given a state
space S and an energy function E : S → R (energy function). Assume at first
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that |S| is finite. Then each state s ∈ S has the probability

pβ(s) =
1

Zβ
e−βE(s), Zβ =

∑

s∈S
e−βE(s).

where β > 0 is a fixed parameter.
When using Gibbs distributions as models in computer vision, we often use

heuristics from physics to associate energies to the states. Let us first illustrate
this interplay with an important example. 1

7.3.1 Ising models in vision
Example 20 ( Ising model on a graph). Consider a graph G = (V,E) and the
state space S = {s : V → {−1, 1}}. Let |G| denotes the number of vertices in
G, so that |S| = 2|V |.

A function s ∈ S is called a spin configuration, since this model was in-
troduced to study ferromagnetism. We say that x ∼ y, or that x and y are
neighbors, if x and y are linked by an edge. The energy of a spin configuration
is defined as follows:

E(s) = −α
∑

x∈V
s(x)

︸ ︷︷ ︸
total magnetization

+
∑

x∼y
(s(x)− s(y))

2

︸ ︷︷ ︸
penalizes gradients

Here α is a parameter called the applied field that biases the energy based on
the total magnetization, as shown in the figure. The second term is called the
interaction energy and it prefers neighbors to be aligned.

Figure 7.3.1: E(s) = −α|V |, E(s̃) = α|V |

Example 21 (Ising-like model for image segmentation). Image segmentation
is the task of labeling each pixel in an image with semantic attributes. In the

1The reader unfamiliar with statistical physics should note that as discussed in Chap-
ter 1.1, physical heuristics while historically useful, are not logically necessary here. Gibbs
distributions may be defined on any state space S provided one has a prior distribution on S,
a relative entropy with respect to the prior, and an energy E : S → R. In discrete systems,
the prior is the uniform distribution which is why the partition function takes the form it
does. When S is Rn a natural prior is often a Gaussian distribution.
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simplest setting, this is the task of classifying an image into two parts, labeled
±1, (these may be a classification of each pixel as ‘background’ or ‘foreground’
for example).

This problem was formalized as an Ising model in a seminal paper by Geman
and Geman [?]. Their formulation goes as follows. Assume that our graph is
a square 2D grid with N vertices a side. Assume given an image, modeled as
a greyscale function I : V → [−1, 1]. Now modify the applied field in the Ising
model so that it is aligned with the background image to obtain the energy

EI(s) = −α
∑

x∈V
I(x)s(x)

︸ ︷︷ ︸
favors alignment with background

+
∑

x∼y
(s(x)− s(y))

2

︸ ︷︷ ︸
penalizes edges

.

The task of image segmentation now becomes one of sampling from the Gibbs
distribution from this model. These samples reveal striking features, in partic-
ular the appearance of a phase transition at a critical temperature separating
order from disorder (see Figure 7.3.2).

The above examples reveal the utility of the Gibbs distribution. Let us now
develop similar ideas to model stochastic contours such as a typical ‘o’. We
need:

1. A systematic way to assign energies to curves (this is the theory of con-
tinuum mechanics).

2. A systematic way to define integration in infinite dimensions (Gaussian
process theory).

7.3.2 The Gibbs distribution for Brownian motion
Before considering the general theory, let us consider the simplest Ising-like
model that is inspired by the examples above. We will consider a Gibbs distri-
bution for the graph of a curve u : [0, 1]→ R that is pinned at its left endpoint,
i.e. u(0) = 0 with an energy that favors the flat configuration u(x) = 0, for all
x ∈ [0, 1]. Let’s first do this for the following discretization.

Fix an integer N > 0, consider the grid 0 = x0 < x1 < · · · < xN = 1 with
xj+1−xj = 1/N . Consider a function u(x) defined at the grid points and define
the Ising-like energy:

E(u) = N
(
(u1 − u0)2 + · · ·+ (uN − uN−1)2

)
.

Here we have used the notation uj = u(xj). We have removed the applied field
altogether, so the energy is minimized when u0 = u1 = . . . = uN = 0. Unlike the
Ising model, our random variables uj are real valued. The Gibbs distribution
has the pdf

pβ(u) du =
1

ZN,β
e−

Nβ
2

∑N−1
j=0 (uj+1−uj)2 du1du2 . . . duN , (7.3.1)
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Figure 4.4. Samples from the Ising model: the gray-level image in (a) is scaled to have max/min pixel
values 0 , +1 and is used as the external magnetic field I in the Ising model. The back/white image in
(b) is the mode of the probability distribution, the least energy field J , when the constant c = 4 in the
energy. The graph (c) shows values of the energy E(I, J) for J sampled from PT (J |I) at various
temperatures T . Images (d)–(h) are random samples J taken from the Ising model conditioned on
fixed I (i.e., from PT (J |I)) at temperatures T = 10 , 4 , 2 .5 , 1.5 , and 1, respectively. Note how the
shapes emerge between (e) and (f), where the mean energy, as seen in graph (c), has a large derivative
with respect to T .

At temperature T = 0 , the Ising model is supported at the global minimum
of E, the mode of all the probability distributions PT . Surprisingly, this mode
is not difficult to calculate exactly. The idea goes back to a paper by Gil Strang
[206], which was rediscovered and put in a vision context by Chan and Vese [47].
In the meantime, a nearly identical method was found by Greig, Porteous, and
Seheult [91]. Here’s how Strang’s idea works. Note that because J(α) ∈ {0 , 1},

Figure 7.3.2: Samples at different temperatures from a Gibbs distribution for
the Ising model of images. The image in the upper-left corner is the original
greyscale image; the image next to it is obtained by thresholding that yields
a black-and-white image (which may be normalized to the values {0,1}). This
background image is used to define an energy, and thus Gibbs distribution,
associated to the image. Images (d)–(h) show samples from the associated Gibbs
distribution at temperatues 10, 4, 2.5, 1.5 and 1 respectively, with α = 4 in the
energy. As the temperature decreases, a phase transition separating ‘order and
disorder’ takes place near temperature 2.5.
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where u is an abbreviation for (u1, . . . , uN ), and the partition function is defined
by

ZN,β =

∫

RN
e−

Nβ
2

∑N−1
j=0 (uj+1−uj)2 du1du2 . . . duN . (7.3.2)

Observe that we must integrate over an N -dimensional space since the random
function u(x) is determined by its values u1, . . . , uN at the N points x1, . . . , xN
respectively. Note also that the partition function ZN,β may be computed ex-
plicitly, since it is a Gaussian density. Indeed, change variables to

v1 = u1, v2 = u2 − u1, . . . , vN = uN − uN−1, (7.3.3)

whose inverse is

u1 = v1, u2 = v1 + v2, . . . uN = v1 + v2 + . . .+ vN . (7.3.4)

The Jacobian determinant of the linear transformations in ( 7.3.3) and ( 7.3.4) is
1 since they are represented by lower and upper triangular matrices respectively
with 1’s on the diagonal. Therefore, changing variables using ( 7.3.3),

ZN,β =

∫

RN
e−

Nβ
2

∑N
j=1 v

2
j dv1dv2 . . . dvN = (2πNβ)

N/2
. (7.3.5)

In summary, even though we began with a Gibbs distribution for an Ising-type
model, our probability measure (7.3.1) is nothing but the pdf of a collection of
N iid Gaussian random variables. Indeed, uk = v1 + . . . vk is simply a sum of
iid Gaussians with variance 1/Nβ.

Let us now consider the continuum limit as N → ∞. The normalization
factor of N in the energy is introduced so that we may take the continuum
limit. More precisely, we view the difference of nearest neighbors in the vector
u ∈ RN as the derivative of a piecewise linear function uN , with

uj+1 − uj =
1

N
u′(x), x = j/N.

In the limit N →∞, we obtain the energy

E[u] =

∫ 1

0

(u′(x))
2
dx. (7.3.6)

Here we use the notation [·] to remind ourselves that E is a functional (i.e.
a function of functions u : [0, 1] → R). This is our simplest example of a
continuum model, the Dirichlet energy.

Thus, our well-defined Gaussian pdf (7.3.1), has the suggestive, but formal,
limit

pβ(u) du =
1

Z
e−βE[u] du, E[u] =

∫ 1

0

(u′(x))
2
dx. (7.3.7)

This expression is an example of a path integral . The space over which we in-
tegrate is a space of functions u : [0, 1] → R each of which has energy E[u].
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But how precisely does one give meaning to integration over this space of func-
tions? That is, what does du even mean since it is (formally) an infinite product∏∞
j=1 duj?
We can resolve this issue by approaching the problem in a different way.

Equations (7.3.4) and (7.3.5) show that the random variables {uk}Nk=1 have the
same pdf as the random variables

UN (x) =
1√
Nβ

k∑

j=1

Xj , x =
k

N
, 1 ≤ k ≤ N, (7.3.8)

where {Xj}Nj=1 are iid standard normal random variables. The scaling limit of
this function is nothing but a Brownian motion with variance β. In this limit,
the space and probability measure over which we integrate are well-defined.

The fact that the simplest Ising-type model has led us back to Brownian
motion is neat, but we’re not out of the woods. Physicists often view Brownian
motion as the Gibbs distribution for curves with the Dirichlet energy (7.3.6).
Unfortunately, equation (7.3.7) has two sources of difficulty. Even if we use the
Wiener measure to make sense of integration over an infinite-dimensional space
(the space of continuous functions), it turns out that every Brownian motion is
nowhere differentiable and has E[u] =∞!

7.3.3 Energies for contours
This example reveals a serious problem in defining Gibbs distributions for con-
tinuous curves, which only becomes worse as we consider two-dimensional ran-
dom fields such as membranes. Resolving the divergences above is a subtle
problem in both physics and mathematics called renormalization.

From the standpoint of modeling, we can dodge these issues, though not in
an entirely satisfactory way, by using the following fixes:

1. Work with a large, but finite, discrete model.

2. Use SDE theory to build priors instead of using the Gibbs distribution.

3. Introduce penalty terms in the energy that force the curve to be smooth.

As an example of the penalty method, consider the energy

E[u] = α1

∫ 1

0

(u′)
2
dx+ α2

∫ 1

0

(u′′)
2
dx.

Our constructions of lacunary series for nowhere differentiable functions are
easily adapted to create functions u(x) such that |u′′| is divergent, but u′ is
continuous. Thus, the addition of the second derivative term in the energy
forces the curves to be smoother than those with just finite Dirichlet energy.

The penalty method is a quick fix. When possible, it is preferable to design
energy functions using the geometry of space curves. The main examples of this
type for contours are energies that penalize curvature.
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In order to introduce this model, let us recall the formulas for space curves
from calculus. Recall that the unit tangent vector t and curvature κ of a
parametrized curve γ : [0, 1] → R2 with coordinates x 7→ γ(x) = (γ1, γ2)(x)
are defined by

t(x) =
γ′(x)

|γ′(x)| ,
dt

ds
= κn, ds = |γ′(x)|dx.

Here ds denotes the arc length of the curve, κ is the curvature and n is the
unit normal. A fundamental example of a geometric energy function is that of
Euler’s elastica:

E[u] =

∫

γ

(κ)2ds, (7.3.9)

where we integrate over the length of the curve γ. The above parametriza-
tion of the integral is intrinsic (i.e. the curvature is treated as a function of
the arc length). The integral may be reduced to an integral on [0, 1] for any
parametrization γ : [0, 1]→ R2.

Energies such as (7.3.9) are systematically derived in continuum mechan-
ics by combining geometric assumptions on deformations with assumptions on
material properties. Euler and Bernoulli derived the above energy to describe
the deformation of beams. The geometric definition of a beam is that it is a
curve that is inextensible (i.e. its length does not change as it is deformed) but
resists bending (i.e. a change in its curvature from a fixed initial configuration).
The fact that the energy is proportional to the square of the curvature relies
on an additional geometric assumption and an assumption on the nature of the
material that defines the beam.

1. First, the geometric assumption: “fatten” the beam normally by giving it a
thickness that is uniform along the inextensible midline. We then assume
that plane sections normal to the midline, stay plane during deformation.
This allows us to assert that the strain above and below the inextensible
midline of the beam is linearly proportional to the curvature of the midline.

2. We assume the material that constitutes the beam is linearly elastic. That
is, the stress in the beam is linearly proportional to the strain.

Beam theory is important for civil and mechanical engineers, since it is used
to assess the strength of materials when constructing buildings and machines.
This example reveals that these theories remain relevant in the era of machine
learning. Our beams are ‘o”s on a sheet of paper but we may continue to model
them with the modified energy

E0[u] =

∫ 2π

0

(κ− κ0)2ds

which penalized deviations from a circle of radius κ−10 . Aside from the change
of scale and physical parameters, this is still governed by a model introduced
by Euler in the 1750s.
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We may similarly define the energy for two dimensional objects by using
natural geometric quantities such as the area, the perimeter and curvatures.
For example, soap films are described by surfaces with the least area for a given
boundary contour. This is an example of a theory of membranes. The two-
dimensional analogues of beam theory, which penalize curvatures, are known as
the theory of plates and shells.

The general theme here is that in order to define a prior on a geometric
object (characters, faces, images), we consider Gibbs distributions with energies
defined with continuum mechanics. The subtle part of the theory is that these
energies, while geometrically natural and supported by continuum mechanics,
must be renormalized so that they give rise to well-defined Gibbs distributions
on continua. This is an unsolved problem in general. Finally, another approach
to the problem of defining stochastic contours is through the formulation of
stochastic differential equations to generate contours. Several such examples
are discussed in [12, §3.2.2].

7.3.4 Constructing a character
We may summarize the Bayesian approach to character recognition as follows.

1. A stochastic model for each character is designed “by hand”. These models
use energies from continuum mechanics along with heuristics for binding
contours and the inclusion of other features such as thickness.

2. The model relies on a hierarchical decomposition of the character into
features. The lowest level is the raw greyscale image (a number in [0,1] for
each pixel). The highest level is an abstract character. Such a hierarchical
decomposition for the letter ‘A’ is shown in Figure 7.3.3).

3. Generating samples is much easier than inferring a character. That is given
character, it is (relatively) straightforward to sample a greyscale image.
However, given a greyscale image we must solve a hierarchical maximiza-
tion problem to determine the character. This is tricky to implement and
the difficulties are similar to those faced when parsing a music score.
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Figure 3.22. Parsing the letter A. There are four levels: the whole letter, its component strokes
and background rectangle, the maximal disks of the strokes, and the pixels. Labels, attributes, and
horizontal edges connecting adjacent structures are indicated.

we define

Ep1,p2(I(p1), I(p2), ci, co) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2((I(p1) − co)2 + (I(p2) − co)2) + b2(I(p1)
−I(p2))

2

if p1 and p2 are both outside the letter;
a2((I(p1) − co)2 + (I(p2) − ci)2)

if p1 is outside and p2 is inside the letter;
a2((I(p1) − ci)2 + (I(p2) − ci)2) + b2(I(p1)

−I(p2))
2

if p1 and p2 are both inside the letter.

Figure 7.3.3: An example of hierarchical decomposition of characters in the
Bayesian approach [12, p.160]. The character A is decomposed into four levels:
the character, the strokes that constitute it, maximal disks for each stroke, and
finally individual pixels.
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Figure 3.23. Three samples from the final stochastic model of images of the letter A.

used a Mumford-Shah (MS) model for the gray levels (see Section 4.2.3). The
first two samples can be thought of as letters with a bit of fancy penmanship, and
the last one as a muddy license plate.

The model combines (i) the modeling of contours or axes by shapes, (ii) the
modeling of regions by sweeping out circles (i.e., by medial axis), and (iii) the use
of context-sensitive grammar rules to finally assemble the letter. Doing inference
with a model this complex is not easy. There are no longer any tricks like dynamic
programming. The most promising approach is to use a combination of top-down
and bottom-up approaches; see, for example, [29] and Chapter 8 in [234]. These
algorithms are not guaranteed to find the minimum of the energy, but they seek a
good guess by refining hypotheses over multiple top-down and bottom-up passes.
This means that, starting from evidence at the image level, we seek higher-level
hypotheses that integrate this evidence—in our example, first medial points, then
strokes, then full letters. Given some support for a high-level hypothesis, we then
ask for weaker evidence in the image that confirms the hypothesis. Thus, one
line may be clear but another indistinct (as in the letter F in the bottom of Figure
3.5) and, once having proposed that a certain letter may be present, we check for
further evidence. These algorithms are still experimental and will not be pursued
here.

3.6 Exercises

1. Edge Detectors

We have presented a level-lines algorithm and snakes as methods for tracing contours in
images. We chose these because they exemplified basic statistical techniques and stochastic

Figure 7.3.4: Samples of the character A using the hierarchical model described
above. This figure is taken from [12, p.163]; the details on the generation of this
image may be found there.
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Chapter 8

Feed forward neural networks

8.1 Introduction

This chapter marks the end of our use of the Bayesian paradigm of pattern the-
ory. In this chapter, we introduce the use of neural networks and the paradigm
of statistical learning theory. There are many sources on this material, as well
as several software packages that focus on fast implementations of convolutional
neural networks (CNNs) for character and handwriting recognition (see [?, 16]
for applications and theory respectively). Since our emphasis is on the math-
ematical underpinnings of these ideas, we will first focus on the simpler class
of feed forward neural networks in order to introduce the ideas of gradient de-
scent and the backpropagation algorithm. This is followed in the next chapter
by an explanation of the modifications in architecture that are necessary for
convolutional neural networks, along with some of their biological motivation.

The main advantage of the Bayesian approach is that it is principled. More
precisely, the problem of inference and the generation of samples are treated
together in a statistically consistent way. The previous chapters provide several
examples of such stochastic models. The primary weakness, as seen in Sec-
tion 7.3.4, is that the construction of priors on curves and membranes is sub-
tle because of divergences caused by integrating on infinite-dimensional spaces.
Further, the complexity of hand-designed feature (such as those in Figure 7.3.3)
makes the task of inference inefficient.

The use of neural networks for problems of inference relies on a different
paradigm, that of statistical learning theory. In this paradigm, character recog-
nition is modeled as a classification problem for functions that map a high-
dimensional input space to a low-dimensional output space. To be concrete,
consider the problem of optical character recognition (OCR) of digits. Here one
is given an input greyscale image and the task is to classify the image as a digit
in the set {0, 1, . . . , 9}. We may model the domain and range of our classifying
function as follows: the input space is [0, 1]n, where n is the number of pixels
and the greyscale intensities of each pixel are normalized to [0, 1]. Let the output

71
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space be [0, 1]; let m denote the number of distinct characters; and let us further
assume that the k-th character corresponds to the interval [k/m, (k + 1)/m). 1

Each function f : [0, 1]n → [0, 1] may be used to partition the space [0, 1]n into
the decision regions, f−1([k/m, (k + 1)/m)). The decision region for the k-the
character is then the set of input images in [0, 1]n that map to the k-th interval
of length 1/m in [0, 1].

Once one adopts the paradigm of statistical learning theory, the main task is
to compute a classifier . This simply means that we must (somehow) construct
a function from raw images to characters, so that when given an image, we may
evaluate the value of this function and determine the character.

8.2 What is a neural network?
Neural networks may be thought of informally as “function machines with many
knobs”. A set of training data is used to adjust these knobs, providing us with
a classifier. Let us now describe these “function machines” in greater detail.

A neural network consists of the following elements:

1. An architecture (a directed graph organized by depth and width). We use
the term neuron, node and vertex in a loosely equivalent manner.

2. States. These are normalized values yi ∈ [0, 1] at each node of the network.

3. Weights. These are real parameters denoted wij (on the edge linking nodes
i and j), and θi (at each node).

4. An integrate and fire rule at each neuron. We assume that all neurons are
identical and that there is a sigmoidal function, g(y), which mimics the
function of true biological neurons. The example we use is

g(x) =
1

2

(
1 +

tanhx

2

)
. (8.2.1)

An example of the architecture of the neural network is shown in Figure 8.2.1.
The weights and states are shown in Figure 8.2.2.

The integrate and fire rule at each neuron is as follows. The ‘integrate’
step involves summing over weighted inputs to a neuron. The ‘fire’ step is the
application of the sigmoid function. We write this as

xi =
∑

j

wijyj + θi, yi = g(xi). (8.2.2)

The function g(x) is a ‘soft’ approximation to the thresholding function
max{0, x}. The role of the parameter θi is to shift the location of the threshold,

1This choice is simply for conceptual simplicity. During implementation, intervals [0, 1]m,
one interval for each character, are a better choice). The integer m should be thought of as
much less than n)
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i.e. g(x + θ) ≈ max{−θ, x}. The parameters wij amplify, attenuate or flip the
sign of the input.

The description of a neural network as a “function machine” is as follows.
Denote the values at the input and output layer as X = (X1, . . . , Xn) ∈ [0, 1]n

and Y1, . . . , Ym respectively. Let us also use W to denote the set of all weights
θi and wij . Then the neural network is simply a function

Y = F (X;W ), X ∈ [0, 1]n, Y ∈ [0, 1]m. (8.2.3)

The integrate and fire model for the operation of an individual neuron is a
caricature of the operation of biological neurons. Biophysical models of elec-
trical activity in neurons were studied by Hodgkins and Huxley in 1952. They
introduced a system of nonlinear differential equations to model the propagation
of signals in the squid giant axon (a particularly large neuron). The model in
equation (8.2.2) is a drastic simplification of these ideas. The sigmoid arises as
a traveling wave solution to the partial differential equation

vt + vvx = 0, −∞ < x <∞, t > 0. (8.2.4)

Traveling waves are solutions of the form

v(x, t) = w(x− ct), (8.2.5)

where the parameter c is the speed of the wave (thus, the profile w is steady in
a frame of reference that moves with the wave). Substitution of the form of v
in equation (8.2.4) gives an ordinary differential equation for w. The function g
is the solution to this ordinary differential equation with the limits 0 and 1 at
±∞.

Input layer

Output layer

Hidden layers}

Width

Depth

Architecture of a feed-forward network

Neuron

Figure 8.2.1: The architecture of a neural network
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= shift/bias at neuron i

Figure 8.2.2: Weights leading into neuron i.

8.3 Supervised learning
Let us now assume that the architecture is fixed. The functions that may be
produced with a given architecture are determined by the choice of weights.
These weights are determined by training the network on a set of training data,
denoted (X(p), Y (p)), 1 ≤ p ≤ P , that index known input and output relations
on a data set of size P .

The weights are chosen by minimzing a loss function on the training set. A
typical loss function has the form

L(W ) =

P∑

p=1

|Y (p) − F (X(p),W )|2. (8.3.1)

The weights for the network are determined by

W∗ = argminWL(W ). (8.3.2)

But how does one minimize this function? A key idea in the success of neural
networks is that the loss function is best minimized through gradient descent. 2

That is, we may solve the differential equations

ẇij = − ∂L

∂wij
, θ̇i = − ∂L

∂θi
, (8.3.3)

in order to drive the weights W (t) to a minimizer of a loss function L(W ).
Since this is an important idea, we switch notation slightly to illustrate the

general principle. Suppose E : Rn → R is a smooth function (often called an
energy) and consider the gradient flow

ẋ = −∇E(x), x ∈ Rn. (8.3.4)
2In this book, we usually use the term gradient descent to refer to gradient flows in con-

tinuous time.
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Now evaluate the change in energy along a solution to (8.3.5). We find that

d

dt
E(x(t)) = −∇E(x) · ẋ = −|∇E(x)|2 ≤ 0. (8.3.5)

Thus, the energy decreases along solutions to (8.3.5) and the decrease is strict
unless x(t) is an equilibrium (i.e. x(t) is a constant, say x∗, independent of time
and ∇E(x∗) = 0).

8.4 The backpropagation algorithm
The conceptual structure of gradient descent is best seen in continuous time. In
practice, we approximately solve (8.3.3) by discretization. What this means is
that we fix a step size ε and obtain a set of discrete updates

w
(k+1)
ij = w

(k)
ij − ε

∂L

∂wij
(W (k)), θ

(k+1)
i = θ

(k)
i − ε

∂L

∂θi
(W (k), (8.4.1)

stopping when the gradients become sufficiently small.
The effective implementation of gradient descent to train the neural network

relies fundamentally on the fact that we can compute gradients fast using the
hierarchical architecture of the network. This is the backpropagation algorithm.

Let us first illustrate this hierarchical structure in a simple network. We
then state the ideas in generality. Consider the network with depth two shown
in Figure 8.4.1 and the loss function

L(w0, w1) =
1

2
(y2 − Y )2,

where Y is a fixed value. Observe that the states depend only on the weights
in the layers below them; that is y2 = y2(w0, w1), but y1 = y1(w0). When the
gradient of L is computed using the chain rule we find that

∂L

∂w1
=

∂L

∂y2

∂y2
∂w1

,
∂L

∂w0
=

∂L

∂y2

∂y2
∂y1

∂y1
∂w0

.

These formulas show that the gradient of an arbitrary loss function can be
determined once we have computed the derivatives

∂y2
∂w1

,
∂y2
∂y1

,
∂y1
∂w0

. (8.4.2)

Therefore, let us look at these terms more carefully. Recall that g is the sig-
moidal function from equation (8.2.1). It is easy to check that g satisfies the
differential equation 3

g′ = g(1− g). (8.4.3)

We now compute the derivatives (8.4.2) using equation (8.4.3) to find
3This may look like magic, but this differential equation is ‘built into’ the theory of neural

networks. It can be traced to the modeling assumption of Hodgkins and Huxley that neurons
work through the propagation of electrical pulses, the simplification (8.2.4) of the Hodgkins-
Huxley idea, and equation (8.2.5) satisfied by the traveling wave profiles.
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Feeding forward

Given the weights, the output is determined by starting at 
the input layer and propagating upward. Thus, the weights on 

any layer do not affect the values below that layer. 

x0
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Figure 8.4.1: An illustration of the hierarchical structure of backpropagation

∂y2
∂w1

= y2(1− y2),
∂y2
∂y1

= y2(1− y2)w1,
∂y1
∂w0

= y1(1− y1)w0.

Thus, the gradient of the loss term is

∂L

∂w1
=

∂L

∂y2
y2(1− y2),

∂L

∂w2
=

∂L

∂y2
y1(1− y1)y2(1− y2)w0w1. (8.4.4)

In summary, the gradient of the loss function depends on its derivative with
respect to the state variables at the highest level, along with a computation of
Jacobian derivatives.

The general structure of the above formula, which is the main observation
that underlies the backpropagation algorithm, is that these derivatives may be
computed sequentially, going down the network from the top to the bottom.
That is, the order of the computation is inverse to the dependence of the state
variables yi on the weights. Let us make this precise, using the notation shown
in Figure 8.4.2.

General structure of the gradient
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Index states and 
weights by depth.

Loss function 
depends on weights 

at all depth.

Figure 8.4.2: The hierarchical structure of backpropagation in a general network.
The index k denotes the depth. All the weights and states at depth k are indexed
by the depth.
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The output of the network is built upwards, level by level. We write this in
the form

Y (k) = G(k)(W (k), Y (k−1)), 1 ≤ k ≤ N. (8.4.5)

As seen in the equation (8.4.4), the gradient of the loss function is determined
by the Jacobian derivatives

∂G(k)

∂W (k)
and

∂G(k)

∂Y (k)
. (8.4.6)

These are polynomials that are quadratic in Y and linear in W . For large
problems, it is more efficient to compute the Jacobian derivatives on the fly
rather than to store the values. Once these derivatives are known, the gradient
of the loss function may be computed as follows. Let us denote

W =
(
W (0),W (1), . . . ,W (N−1)

)
, ∇L =

(
∂L

∂W (0)
,
∂L

∂W (1)
, . . . ,

∂L

∂W (N−1)

)
.

(8.4.7)
It then follows from (8.4.5) that

∂L

∂W (k)
=

∂L

∂Y (k)

∂G(k)

∂W (k)
,

∂L

∂Y (k−1) =
∂L

∂Y (k)

∂G(k)

∂Y (k−1) . (8.4.8)

Both the above terms are products of matrices; the indices of the terms in
the matrix have been suppressed in order to make the hierarchical structure
apparent. The term

∂L

∂Y (k)

is obtained from computations at level k + 1. Given this term, the other two
terms on the right hand side of equation (8.4.8),

∂G(k)

∂W (k)
and

∂G(k)

∂Y (k−1) ,

are given by the Jacobians at level k. In this manner, we compute the gradient
of the loss function with respect to the weights at level k, propagating down the
network layer by layer.

8.5 Why neural nets work
Now that the notion of a neural network and its use in supervised learning has
been established, let us return to the conceptual notion that neural networks
are “function machines”. 4

Much of math relies on building complicated functions from simpler ones.
For example, we first learn about polynomials, we then use polynomials to un-
derstand Taylor series, trigonometric polynomials, and finally Fourier series.

4The title and content of this section follow [10].
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While these examples are familiar, it is not necessary to use such specific for-
mulae to construct functions. Another method of building smooth functions is
by adding together “bump” functions. This is done in the following way. First
we construct a smooth cut-off function, such as

ϕ(x) =

{
e−1/x

2

, x > 0
0, x ≤ 0.

(8.5.1)

This specific form is chosen so that the function ϕ is infinitely differentiable
at zero (this is a calculation you should attempt). We may then rescale and
shift ϕ, and take linear combinations and products of such functions. Thus, for
example the function

ψθ(x) = 1− 1

2
(ϕ(θx) + ϕ(−θx)) , (8.5.2)

depending on the parameter θ, takes approximately equal to 1 in the neigh-
borhood |x| � θ−1 and approaches 0 when |x| � θ−1. Similarly, the product
ϕ(x)ϕ(1− x) provides a function which vanishes outside the interval [0, 2].

Specific formulae such as (8.5.1) are useful for our understanding, but they
are not necessary for the idea of constructing bump functions. What matters
simply is that we have a “machine” to construct bump functions. We will show
that a simple neural network with two hidden layers, described by the motif
shown in Figure 8.5.1 can build bump functions. Increasing the depth and
width of the network has the effect of building more complex functions. This
motif constructs bump functions in stages, as shown in Figures 8.5.2–8.5.9.
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The basic motif

Figure 8.5.1: A neural network of depth two that builds a bump function on
R2.

.

x1

<latexit sha1_base64="E8XghyITZbfuIPIu0E7HWHKoO/E=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgECwk7omi5YGMZ0VwgWcLsZDYZMju7zMyKYUljb2OhiK1PZCH4Bj6DlZNLoYk/DHz8/znMOSdIBNfGdT+dhcWl5ZXV3Fp+fWNza7uws1vTcaooq9JYxKoREM0El6xquBGskShGokCwetC/GOX1W6Y0j+WNGSTMj0hX8pBTYqx1fdfG7ULJLbtjoXnAUyh5xY/v+6/hUaVdeG91YppGTBoqiNZN7CbGz4gynAo2zLdSzRJC+6TLmhYliZj2s/GoQ3RgnQ4KY2WfNGjs/u7ISKT1IApsZURMT89mI/O/rJma8NzPuExSwySdfBSmApkYjfZGHa4YNWJggVDF7ayI9ogi1Njr5O0R8OzK81A7LuOT8ukVLnkeTJSDPdiHQ8BwBh5cQgWqQKELD/AEz45wHp0X53VSuuBMe4rwR87bD7cSkdk=</latexit>

1

<latexit sha1_base64="Sa5egt+V16UueFnRGlJ/U99g/mM=">AAAB6XicbZDLSgMxFIbPeK31Vi87N8EiuCozoujOggtdVrEXaIeSSTNtaJIZkoxQh76BGxeKuHXvU/gE7lz6JmbaLrT1h8DH/59DzjlBzJk2rvvlzM0vLC4t51byq2vrG5uFre2ajhJFaJVEPFKNAGvKmaRVwwynjVhRLAJO60H/Isvrd1RpFslbM4ipL3BXspARbKx14+XbhaJbckdCs+BNoHj+cf99+b6bVtqFz1YnIomg0hCOtW56bmz8FCvDCKfDfCvRNMakj7u0aVFiQbWfjiYdogPrdFAYKfukQSP3d0eKhdYDEdhKgU1PT2eZ+V/WTEx45qdMxomhkow/ChOOTISytVGHKUoMH1jARDE7KyI9rDAx9jjZEbzplWehdlTyjksn116xXIaxcrAH+3AIHpxCGa6gAlUgEMIDPMGz03cenRfndVw650x6duCPnLcf6rmQrg==</latexit>

2

<latexit sha1_base64="fRKdCEWVaqpnkUUvi4bS98+wd+E=">AAAB6XicbZC7SgNBFIbPxluMt/XS2QwGwSrsBkU7AxZaRjEXSJYwO5lNhszOLjOzQlzyBjYWitja+xQ+gZ2lb+JskkITfxj4+P9zmHOOH3OmtON8WbmFxaXllfxqYW19Y3PL3t6pqyiRhNZIxCPZ9LGinAla00xz2owlxaHPacMfXGR5445KxSJxq4cx9ULcEyxgBGtj3ZQLHbvolJyx0Dy4Uyief9x/X77vpdWO/dnuRiQJqdCEY6VarhNrL8VSM8LpqNBOFI0xGeAebRkUOKTKS8eTjtChcbooiKR5QqOx+7sjxaFSw9A3lSHWfTWbZeZ/WSvRwZmXMhEnmgoy+ShIONIRytZGXSYp0XxoABPJzKyI9LHERJvjZEdwZ1eeh3q55B6XTq7dYqUCE+VhHw7gCFw4hQpcQRVqQCCAB3iCZ2tgPVov1uukNGdNe3bhj6y3H+w+kK8=</latexit>

Choose equal weights, but 
different shifts.

w

<latexit sha1_base64="77yUVeTK9p1LngIr/BdO0IMgtmI=">AAAB6XicbZC7TsMwFIZPyq2UW7lsLBYVElOVIBBsVGKAsSB6kdqoclynteo4ke2AStQ3YGEAIVZ2noInYGPkTXCaDtDyS5Y+/f858jnHizhT2ra/rNzc/MLiUn65sLK6tr5R3NyqqzCWhNZIyEPZ9LCinAla00xz2owkxYHHacMbnKd545ZKxUJxo4cRdQPcE8xnBGtjXd8VOsWSXbbHQrPgTKB09nH/ffG+k1Q7xc92NyRxQIUmHCvVcuxIuwmWmhFOR4V2rGiEyQD3aMugwAFVbjKedIT2jdNFfijNExqN3d8dCQ6UGgaeqQyw7qvpLDX/y1qx9k/dhIko1lSQ7CM/5kiHKF0bdZmkRPOhAUwkM7Mi0scSE22Okx7BmV55FuqHZeeofHzllCoVyJSHXdiDA3DgBCpwCVWoAQEfHuAJnq2B9Wi9WK9Zac6a9GzDH1lvP1UmkPQ=</latexit>

y1

<latexit sha1_base64="mQ5zoMDxnpsgvXoQmaBeNrOsqSk=">AAAB63icbZDLSsNAFIZP6q3WW9WVuHCwCK5KIoouA25cVrAXaEOYTCft0MlMmJkIIXTtzo0LRdz6Qt35HL6ASduFtv4w8PH/5zDnnCDmTBvb/rJKK6tr6xvlzcrW9s7uXnX/oKVloghtEsml6gRYU84EbRpmOO3EiuIo4LQdjG6LvP1IlWZSPJg0pl6EB4KFjGBTWKnvVPxqza7bU6FlcOZQc4+efDk5+W741UmvL0kSUWEIx1p3HTs2XoaVYYTTcaWXaBpjMsID2s1R4IhqL5vOOkZnudNHoVT5EwZN3d8dGY60TqMgr4ywGerFrDD/y7qJCW+8jIk4MVSQ2UdhwpGRqFgc9ZmixPA0B0wUy2dFZIgVJiY/T3EEZ3HlZWhd1J3L+tW9U3NdmKkMx3AK5+DANbhwBw1oAoEhPMMrvFmR9WK9Wx+z0pI17zmEP7I+fwAOp5FK</latexit>

y2

<latexit sha1_base64="9+nmGFPT6/en9ldSNMBav8y7QQA=">AAAB63icbZDLSsNAFIZPvNZ6q7oSFw4WwVVJiqLLgBuXFewF2hAm00k7dDITZiZCCF27c+NCEbe+UHc+hy9g0nahrT8MfPz/Ocw5J4g508a2v6yV1bX1jc3SVnl7Z3dvv3Jw2NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoORrdF3n6kSjMpHkwaUy/CA8FCRrAprNSvl/1K1a7ZU6FlcOZQdY+ffDk5/W74lUmvL0kSUWEIx1p3HTs2XoaVYYTTcbmXaBpjMsID2s1R4IhqL5vOOkbnudNHoVT5EwZN3d8dGY60TqMgr4ywGerFrDD/y7qJCW+8jIk4MVSQ2UdhwpGRqFgc9ZmixPA0B0wUy2dFZIgVJiY/T3EEZ3HlZWjVa85l7ereqbouzFSCEziDC3DgGly4gwY0gcAQnuEV3qzIerHerY9Z6Yo17zmCP7I+fwAQLJFL</latexit>

✓2

<latexit sha1_base64="iPxJCUJbSyDaAjF0CG3wmYAlDXI=">AAAB73icbZC7SgNBFIbPeo3xFk1pMxgECwm7QdFywcYygrlAsoTZyWwyZPbizFkhLGl8BBsLRWx9HQvBN/AZrJxcCk38YeDj/89hzjl+IoVG2/60lpZXVtfWcxv5za3tnd3C3n5dx6livMZiGaumTzWXIuI1FCh5M1Gchr7kDX9wOc4bd1xpEUc3OEy4F9JeJALBKBqr2cY+R9qpdAolu2xPRBbBmUHJLX5833+NTqqdwnu7G7M05BEySbVuOXaCXkYVCib5KN9ONU8oG9AebxmMaMi1l03mHZEj43RJECvzIiQT93dHRkOth6FvKkOKfT2fjc3/slaKwYWXiShJkUds+lGQSoIxGS9PukJxhnJogDIlzKyE9amiDM2J8uYIzvzKi1CvlJ3T8tm1U3JdmCoHB3AIx+DAObhwBVWoAQMJD/AEz9at9Wi9WK/T0iVr1lOEP7LefgB6XJQG</latexit>

✓1

<latexit sha1_base64="0LFbSdwJl4I05l/K9QLWINhSuAo=">AAAB73icbZC7SgNBFIbPxluMt2hKm8UgWEjYFUXLBRvLCOYCyRJmJ7PJkNnZdeasEJY0PoKNhSK2vo6F4Bv4DFZOLoUm/jDw8f/nMOecIBFco+N8Wrml5ZXVtfx6YWNza3unuLtX13GqKKvRWMSqGRDNBJeshhwFayaKkSgQrBEMLsd5444pzWN5g8OE+RHpSR5yStBYzTb2GZKO2ymWnYozkb0I7gzKXunj+/5rdFztFN/b3ZimEZNIBdG65ToJ+hlRyKlgo0I71SwhdEB6rGVQkohpP5vMO7IPjdO1w1iZJ9GeuL87MhJpPYwCUxkR7Ov5bGz+l7VSDC/8jMskRSbp9KMwFTbG9nh5u8sVoyiGBghV3Mxq0z5RhKI5UcEcwZ1feRHqJxX3tHJ27ZY9D6bKwz4cwBG4cA4eXEEVakBBwAM8wbN1az1aL9brtDRnzXpK8EfW2w942JQF</latexit>

y1 = g(wx1 + ✓1)

<latexit sha1_base64="LKXQi5M1ac06rt/wp2SRlRUBEBA=">AAAB/nicbVDJSgNBEO2JS2LcRsWTl8YgRIQwLQa9CAEvHhMwCyRh6Ol0kiY9C901ahgC/ooXD4p49Tu8+QPiZ9hZDpr4oODxXhVV9bxICg2O82mllpZXVtOZtez6xubWtr2zW9NhrBivslCGquFRzaUIeBUESN6IFKe+J3ndG1yN/fotV1qEwQ0MI972aS8QXcEoGMm194cuwZe9/N29S05a0OdAXXLs2jmn4EyAFwmZkVwJV76/Muli2bU/Wp2QxT4PgEmqdZM4EbQTqkAwyUfZVqx5RNmA9njT0ID6XLeTyfkjfGSUDu6GylQAeKL+nkior/XQ90ynT6Gv572x+J/XjKF70U5EEMXAAzZd1I0lhhCPs8AdoTgDOTSEMiXMrZj1qaIMTGJZEwKZf3mR1E4L5KxQrJBcqYSmyKADdIjyiKBzVELXqIyqiKEEPaJn9GI9WE/Wq/U2bU1Zs5k99AfW+w/UJpcN</latexit>

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

w

<latexit sha1_base64="t2VvmVeOBaIpV7D8SJNWcFtg9SU=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09ShzyBF48KOLVB/ApfAJvHn0TO8tBoz80fPx/FV1VfsyZ0o7zaWXm5hcWl7LLuZXVtfWN/OZWTUWJpFilEY9kwycKORNY1UxzbMQSSehzrPv981Fev0GpWCSu9CBGLyRdwQJGiTZW5badLzhFZyz7L7hTKJy9331dvO2k5Xb+o9WJaBKi0JQTpZquE2svJVIzynGYayUKY0L7pItNg4KEqLx0POjQ3jdOxw4iaZ7Q9tj92ZGSUKlB6JvKkOiems1G5n9ZM9HBqZcyEScaBZ18FCTc1pE92truMIlU84EBQiUzs9q0RySh2twmZ47gzq78F2qHRfeoeFxxC6USTJSFXdiDA3DhBEpwCWWoAgWEe3iEJ+vaerCerZdJacaa9mzDL1mv3yCjkOA=</latexit>

y2 = g(wx1 + ✓2)

<latexit sha1_base64="NyYts02XRRtu3b4wO2Wy6OeLQvw=">AAAB/XicbVDJSgNBEO2JS2LcxuXmpTEIESHMBINehAEvHhMwCyRh6Ol0kiY9C9016hiCv+LFgyJe/Q9v/oD4GXaWgyY+KHi8V0VVPS8SXIFlfRqppeWV1XRmLbu+sbm1be7s1lQYS8qqNBShbHhEMcEDVgUOgjUiyYjvCVb3Bpdjv37DpOJhcA1JxNo+6QW8yykBLbnmfuIWL3r52zvXPmlBnwFxi8eumbMK1gR4kdgzknNw5fsrky6VXfOj1Qlp7LMAqCBKNW0rgvaQSOBUsFG2FSsWETogPdbUNCA+U+3h5PoRPtJKB3dDqSsAPFF/TwyJr1Tie7rTJ9BX895Y/M9rxtA9bw95EMXAAjpd1I0FhhCPo8AdLhkFkWhCqOT6Vkz7RBIKOrCsDsGef3mR1IoF+7RQqtg5x0FTZNABOkR5ZKMz5KArVEZVRNE9ekTP6MV4MJ6MV+Nt2poyZjN76A+M9x9+bpbl</latexit>

Figure 8.5.2: Each branch of the network at depth one, is used to build two
sigmoids shifted relative to one another.

.
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y1 = g(wx1 + ✓1)

<latexit sha1_base64="LKXQi5M1ac06rt/wp2SRlRUBEBA=">AAAB/nicbVDJSgNBEO2JS2LcRsWTl8YgRIQwLQa9CAEvHhMwCyRh6Ol0kiY9C901ahgC/ooXD4p49Tu8+QPiZ9hZDpr4oODxXhVV9bxICg2O82mllpZXVtOZtez6xubWtr2zW9NhrBivslCGquFRzaUIeBUESN6IFKe+J3ndG1yN/fotV1qEwQ0MI972aS8QXcEoGMm194cuwZe9/N29S05a0OdAXXLs2jmn4EyAFwmZkVwJV76/Muli2bU/Wp2QxT4PgEmqdZM4EbQTqkAwyUfZVqx5RNmA9njT0ID6XLeTyfkjfGSUDu6GylQAeKL+nkior/XQ90ynT6Gv572x+J/XjKF70U5EEMXAAzZd1I0lhhCPs8AdoTgDOTSEMiXMrZj1qaIMTGJZEwKZf3mR1E4L5KxQrJBcqYSmyKADdIjyiKBzVELXqIyqiKEEPaJn9GI9WE/Wq/U2bU1Zs5k99AfW+w/UJpcN</latexit>

x

<latexit sha1_base64="8HLboL0qM6mAc9l7fptAcrGpUpg=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09YhzyBF48KOLVB/ApfAJvHn0TO8tBoz80fPx/FV1VfsyZ0o7zaWXm5hcWl7LLuZXVtfWN/OZWTUWJpFilEY9kwycKORNY1UxzbMQSSehzrPv981Fev0GpWCSu9CBGLyRdwQJGiTZW5badLzhFZyz7L7hTKJy9331dvO2k5Xb+o9WJaBKi0JQTpZquE2svJVIzynGYayUKY0L7pItNg4KEqLx0POjQ3jdOxw4iaZ7Q9tj92ZGSUKlB6JvKkOiems1G5n9ZM9HBqZcyEScaBZ18FCTc1pE92truMIlU84EBQiUzs9q0RySh2twmZ47gzq78F2qHRfeoeFxxC6USTJSFXdiDA3DhBEpwCWWoAgWEe3iEJ+vaerCerZdJacaa9mzDL1mv3yInkOE=</latexit>

x

<latexit sha1_base64="8HLboL0qM6mAc9l7fptAcrGpUpg=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09YhzyBF48KOLVB/ApfAJvHn0TO8tBoz80fPx/FV1VfsyZ0o7zaWXm5hcWl7LLuZXVtfWN/OZWTUWJpFilEY9kwycKORNY1UxzbMQSSehzrPv981Fev0GpWCSu9CBGLyRdwQJGiTZW5badLzhFZyz7L7hTKJy9331dvO2k5Xb+o9WJaBKi0JQTpZquE2svJVIzynGYayUKY0L7pItNg4KEqLx0POjQ3jdOxw4iaZ7Q9tj92ZGSUKlB6JvKkOiems1G5n9ZM9HBqZcyEScaBZ18FCTc1pE92truMIlU84EBQiUzs9q0RySh2twmZ47gzq78F2qHRfeoeFxxC6USTJSFXdiDA3DhBEpwCWWoAgWEe3iEJ+vaerCerZdJacaa9mzDL1mv3yInkOE=</latexit>

y2 = g(wx2 + ✓2)

<latexit sha1_base64="6zlBI8cwCffy6behbDqsQqid2GU=">AAAB/XicbVDJSgNBEO2JS2Lc4nLz0hiEiBBmBoNehAEvHhMwCyRh6Ol0kiY9C901ahyCv+LFgyJe/Q9v/oD4GXaWgyY+KHi8V0VVPS8SXIFpfhqppeWV1XRmLbu+sbm1ndvZrakwlpRVaShC2fCIYoIHrAocBGtEkhHfE6zuDS7Hfv2GScXD4BqGEWv7pBfwLqcEtOTm9oeufdEr3N659kkL+gyIax+7ubxZNCfAi8SakbyDK99fmXSp7OY+Wp2Qxj4LgAqiVNMyI2gnRAKngo2yrVixiNAB6bGmpgHxmWonk+tH+EgrHdwNpa4A8ET9PZEQX6mh7+lOn0BfzXtj8T+vGUP3vJ3wIIqBBXS6qBsLDCEeR4E7XDIKYqgJoZLrWzHtE0ko6MCyOgRr/uVFUrOL1mmxVLHyjoOmyKADdIgKyEJnyEFXqIyqiKJ79Iie0YvxYDwZr8bbtDVlzGb20B8Y7z9//Jbm</latexit>

Figure 8.5.3: The role of the shift.
.

450 

The T's and (Ps are specific numbers specified by the training algorithm, 
so that after training is finished one has a relatively complicated formula (12a, 
12b) that expresses the Output value as a specific, known, function of the Input 
values: 

Ot == 1(117 12," .lm). 
A functional relation of this form, when there is only one output, may be 

viewed as surface in m + 1 dimensional space, in exactly the same manner 
one interprets the formula z == f(x,y) as a two dimensional surface in three 

' dimensional space. The general structure of fO as determined by Eqn. (12a, 
12b) is in fact quite simple. From Eqn. (12b) we see that one first forms a sum 
of gO functions (where gO is s sigmoidal function) and then from Eqn. (12a) 
one (orms yet another sum involving gO functions. It may at first be thought 
that this special, simple form of fO restricts the type of surface that may be 
represented by Ot = f(Ii)' This initial tl.ought is wrong - the special form of 
Eqn. (12) is actually a general representation for quite arbitrary surfaces. 

To prove that Eqn. (12) is a reasonable representation for surfaces we 
first point out that surfaces may be approximated by adding up a series of 
"bumps" that are appropriately placed. An example of this occurs in familiar 
Fourier analysis, where wave trains of suitable frequency and amplitude are 
added together to approximate curves (or surfaces). Each half period of each 
wave of fixed wavelength is a "bump," and one adds all the bumps together to 
form the approximant. Let us noW see how Eqn. (12) may be interpreted as 
adding together bumps of specified heights and positions. First consider SUMk 
which is a sum of g( ) functions. In Figure (4) we plot an example of such a gO 
function for the case of two inputs. 

Figure 4. A sigmoidal surface. 

Each of these functions gives a sigmoidal 
surfaces (since we have        not just (x1, x2)

<latexit sha1_base64="xeNLhgcc7+QibHw1QmwhlHl2qCM=">AAAB8HicbZDLSgMxFIbP1EtrvVVdugkWoYKUmWLR5YAbly3YVmmHIZOmbWgyMyQZaRn6FG5cKOLWx3HnC4iPYXpZaOsPgY//P4ecc4KYM6Vt+9PKrK1vbGZzW/ntnd29/cLBYVNFiSS0QSIeybsAK8pZSBuaaU7vYkmxCDhtBcPrad56oFKxKLzV45h6AvdD1mMEa2Pdl0a+cz7yK2d+oWiX7ZnQKjgLKLqo/v2Vy1ZrfuGj041IImioCcdKtR071l6KpWaE00m+kygaYzLEfdo2GGJBlZfOBp6gU+N0US+S5oUazdzfHSkWSo1FYCoF1gO1nE3N/7J2ontXXsrCONE0JPOPeglHOkLT7VGXSUo0HxvARDIzKyIDLDHR5kZ5cwRneeVVaFbKzkW5WneKrgtz5eAYTqAEDlyCCzdQgwYQEPAIz/BiSevJerXe5qUZa9FzBH9kvf8A+2uSKA==</latexit>

x1

<latexit sha1_base64="E8XghyITZbfuIPIu0E7HWHKoO/E=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgECwk7omi5YGMZ0VwgWcLsZDYZMju7zMyKYUljb2OhiK1PZCH4Bj6DlZNLoYk/DHz8/znMOSdIBNfGdT+dhcWl5ZXV3Fp+fWNza7uws1vTcaooq9JYxKoREM0El6xquBGskShGokCwetC/GOX1W6Y0j+WNGSTMj0hX8pBTYqx1fdfG7ULJLbtjoXnAUyh5xY/v+6/hUaVdeG91YppGTBoqiNZN7CbGz4gynAo2zLdSzRJC+6TLmhYliZj2s/GoQ3RgnQ4KY2WfNGjs/u7ISKT1IApsZURMT89mI/O/rJma8NzPuExSwySdfBSmApkYjfZGHa4YNWJggVDF7ayI9ogi1Njr5O0R8OzK81A7LuOT8ukVLnkeTJSDPdiHQ8BwBh5cQgWqQKELD/AEz45wHp0X53VSuuBMe4rwR87bD7cSkdk=</latexit>

Figure 8.5.4: The sigmoidal surface corresponding to the function y1 in Fig-
ure 8.5.2. The function y2 is similar. Image from [10].

.
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x1

<latexit sha1_base64="E8XghyITZbfuIPIu0E7HWHKoO/E=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgECwk7omi5YGMZ0VwgWcLsZDYZMju7zMyKYUljb2OhiK1PZCH4Bj6DlZNLoYk/DHz8/znMOSdIBNfGdT+dhcWl5ZXV3Fp+fWNza7uws1vTcaooq9JYxKoREM0El6xquBGskShGokCwetC/GOX1W6Y0j+WNGSTMj0hX8pBTYqx1fdfG7ULJLbtjoXnAUyh5xY/v+6/hUaVdeG91YppGTBoqiNZN7CbGz4gynAo2zLdSzRJC+6TLmhYliZj2s/GoQ3RgnQ4KY2WfNGjs/u7ISKT1IApsZURMT89mI/O/rJma8NzPuExSwySdfBSmApkYjfZGHa4YNWJggVDF7ayI9ogi1Njr5O0R8OzK81A7LuOT8ukVLnkeTJSDPdiHQ8BwBh5cQgWqQKELD/AEz45wHp0X53VSuuBMe4rwR87bD7cSkdk=</latexit>

1

<latexit sha1_base64="Sa5egt+V16UueFnRGlJ/U99g/mM=">AAAB6XicbZDLSgMxFIbPeK31Vi87N8EiuCozoujOggtdVrEXaIeSSTNtaJIZkoxQh76BGxeKuHXvU/gE7lz6JmbaLrT1h8DH/59DzjlBzJk2rvvlzM0vLC4t51byq2vrG5uFre2ajhJFaJVEPFKNAGvKmaRVwwynjVhRLAJO60H/Isvrd1RpFslbM4ipL3BXspARbKx14+XbhaJbckdCs+BNoHj+cf99+b6bVtqFz1YnIomg0hCOtW56bmz8FCvDCKfDfCvRNMakj7u0aVFiQbWfjiYdogPrdFAYKfukQSP3d0eKhdYDEdhKgU1PT2eZ+V/WTEx45qdMxomhkow/ChOOTISytVGHKUoMH1jARDE7KyI9rDAx9jjZEbzplWehdlTyjksn116xXIaxcrAH+3AIHpxCGa6gAlUgEMIDPMGz03cenRfndVw650x6duCPnLcf6rmQrg==</latexit>

2

<latexit sha1_base64="fRKdCEWVaqpnkUUvi4bS98+wd+E=">AAAB6XicbZC7SgNBFIbPxluMt/XS2QwGwSrsBkU7AxZaRjEXSJYwO5lNhszOLjOzQlzyBjYWitja+xQ+gZ2lb+JskkITfxj4+P9zmHOOH3OmtON8WbmFxaXllfxqYW19Y3PL3t6pqyiRhNZIxCPZ9LGinAla00xz2owlxaHPacMfXGR5445KxSJxq4cx9ULcEyxgBGtj3ZQLHbvolJyx0Dy4Uyief9x/X77vpdWO/dnuRiQJqdCEY6VarhNrL8VSM8LpqNBOFI0xGeAebRkUOKTKS8eTjtChcbooiKR5QqOx+7sjxaFSw9A3lSHWfTWbZeZ/WSvRwZmXMhEnmgoy+ShIONIRytZGXSYp0XxoABPJzKyI9LHERJvjZEdwZ1eeh3q55B6XTq7dYqUCE+VhHw7gCFw4hQpcQRVqQCCAB3iCZ2tgPVov1uukNGdNe3bhj6y3H+w+kK8=</latexit>

y2

<latexit sha1_base64="9+nmGFPT6/en9ldSNMBav8y7QQA=">AAAB63icbZDLSsNAFIZPvNZ6q7oSFw4WwVVJiqLLgBuXFewF2hAm00k7dDITZiZCCF27c+NCEbe+UHc+hy9g0nahrT8MfPz/Ocw5J4g508a2v6yV1bX1jc3SVnl7Z3dvv3Jw2NIyUYQ2ieRSdQKsKWeCNg0znHZiRXEUcNoORrdF3n6kSjMpHkwaUy/CA8FCRrAprNSvl/1K1a7ZU6FlcOZQdY+ffDk5/W74lUmvL0kSUWEIx1p3HTs2XoaVYYTTcbmXaBpjMsID2s1R4IhqL5vOOkbnudNHoVT5EwZN3d8dGY60TqMgr4ywGerFrDD/y7qJCW+8jIk4MVSQ2UdhwpGRqFgc9ZmixPA0B0wUy2dFZIgVJiY/T3EEZ3HlZWjVa85l7ereqbouzFSCEziDC3DgGly4gwY0gcAQnuEV3qzIerHerY9Z6Yo17zmCP7I+fwAQLJFL</latexit>

y1

<latexit sha1_base64="mQ5zoMDxnpsgvXoQmaBeNrOsqSk=">AAAB63icbZDLSsNAFIZP6q3WW9WVuHCwCK5KIoouA25cVrAXaEOYTCft0MlMmJkIIXTtzo0LRdz6Qt35HL6ASduFtv4w8PH/5zDnnCDmTBvb/rJKK6tr6xvlzcrW9s7uXnX/oKVloghtEsml6gRYU84EbRpmOO3EiuIo4LQdjG6LvP1IlWZSPJg0pl6EB4KFjGBTWKnvVPxqza7bU6FlcOZQc4+efDk5+W741UmvL0kSUWEIx1p3HTs2XoaVYYTTcaWXaBpjMsID2s1R4IhqL5vOOkZnudNHoVT5EwZN3d8dGY60TqMgr4ywGerFrDD/y7qJCW+8jIk4MVSQ2UdhwpGRqFgc9ZmixPA0B0wUy2dFZIgVJiY/T3EEZ3HlZWhd1J3L+tW9U3NdmKkMx3AK5+DANbhwBw1oAoEhPMMrvFmR9WK9Wx+z0pI17zmEP7I+fwAOp5FK</latexit>

1

<latexit sha1_base64="q/3aVAkqIHcHuj0QknK6ozl9m9o=">AAAB5HicbZBLSgNBEIZr4iuOryju3DQGwVWYEUV3BlzoMoJ5QDKEnk4ladPTM3T3CHHICdy4UNx6Ak/hCdy59CZ2Ehea+EPDx/9X0VUVJoJr43mfTm5hcWl5Jb/qrq1vbG4V3O2ajlPFsMpiEatGSDUKLrFquBHYSBTSKBRYDwcX47x+h0rzWN6YYYJBRHuSdzmjxlrXfrtQ9EreRGQe/B8onr/ff12+7WaVduGj1YlZGqE0TFCtm76XmCCjynAmcOS2Uo0JZQPaw6ZFSSPUQTYZdEQOrNMh3VjZJw2ZuL87MhppPYxCWxlR09ez2dj8L2umpnsWZFwmqUHJph91U0FMTMZbkw5XyIwYWqBMcTsrYX2qKDP2Nq49gj+78jzUjkr+cemkWC7DVHnYg304BB9OoQxXUIEqMEB4gCd4dm6dR+dlWphzfjp24I+c1289fo9z</latexit>

�1

<latexit sha1_base64="rAb6xiyb+jp9a94OmCdh5lk4NfU=">AAAB6XicbZA7SwNBFIXvqokxvqKWNoNBsDHsiqLlgo1lFPOAZAmzk9lkyMzsMjMrhCWtlY2FImJn66+x84fYO3kUmnhg4OOce5l7b5hwpo3rfjlLyyu5/Gphrbi+sbm1XdrZres4VYTWSMxj1QyxppxJWjPMcNpMFMUi5LQRDi7HeeOOKs1ieWuGCQ0E7kkWMYKNtW6OvU6p7FbcidAieDMo+/m3b/lxn6t2Sp/tbkxSQaUhHGvd8tzEBBlWhhFOR8V2qmmCyQD3aMuixILqIJtMOkKH1umiKFb2SYMm7u+ODAuthyK0lQKbvp7PxuZ/WSs10UWQMZmkhkoy/ShKOTIxGq+NukxRYvjQAiaK2VkR6WOFibHHKdojePMrL0L9pOKdVs6uvbLvw1QF2IcDOAIPzsGHK6hCDQhE8ABP8OwMnEfnxXmdli45s549+CPn/QeVU5Br</latexit>

This gives a bump function in one 
variable x1

<latexit sha1_base64="E8XghyITZbfuIPIu0E7HWHKoO/E=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgECwk7omi5YGMZ0VwgWcLsZDYZMju7zMyKYUljb2OhiK1PZCH4Bj6DlZNLoYk/DHz8/znMOSdIBNfGdT+dhcWl5ZXV3Fp+fWNza7uws1vTcaooq9JYxKoREM0El6xquBGskShGokCwetC/GOX1W6Y0j+WNGSTMj0hX8pBTYqx1fdfG7ULJLbtjoXnAUyh5xY/v+6/hUaVdeG91YppGTBoqiNZN7CbGz4gynAo2zLdSzRJC+6TLmhYliZj2s/GoQ3RgnQ4KY2WfNGjs/u7ISKT1IApsZURMT89mI/O/rJma8NzPuExSwySdfBSmApkYjfZGHa4YNWJggVDF7ayI9ogi1Njr5O0R8OzK81A7LuOT8ukVLnkeTJSDPdiHQ8BwBh5cQgWqQKELD/AEz45wHp0X53VSuuBMe4rwR87bD7cSkdk=</latexit>

g(wx1 + ✓1) � g(wx1 + ✓2)

<latexit sha1_base64="crThFzCxroHLBjEe7f9rmtYzeg4=">AAACCnicbVDJSgNBEO2JS2Lcoh69tAYhQQwzwaDHAS8eEzALJMPQ0+kkTXoWumvUEHL24q948aCIV7/Amz8gfoad5WASHxQ83quiqp4XCa7ANL+MxMrq2noytZHe3Nre2c3s7ddUGEvKqjQUoWx4RDHBA1YFDoI1IsmI7wlW9/pXY79+y6TiYXADg4g5PukGvMMpAS25maNu7u7etU5b0GNAXCt/Ni8U824maxbMCfAysWYka+PKz3cqWSq7mc9WO6SxzwKggijVtMwInCGRwKlgo3QrViwitE+6rKlpQHymnOHklRE+0Uobd0KpKwA8Uf9ODImv1MD3dKdPoKcWvbH4n9eMoXPpDHkQxcACOl3UiQWGEI9zwW0uGQUx0IRQyfWtmPaIJBR0emkdgrX48jKpFQvWeaFUsbK2jaZIoUN0jHLIQhfIRteojKqIogf0hF7Qq/FoPBtvxvu0NWHMZg7QHIyPX1Q0m7E=</latexit>

Now add with opposite signs...

Figure 8.5.5: The left half of the motif in Figure 8.2.1 constructs a function that
is localized in x1, but is independent of x2.

.

450 

The T's and (Ps are specific numbers specified by the training algorithm, 
so that after training is finished one has a relatively complicated formula (12a, 
12b) that expresses the Output value as a specific, known, function of the Input 
values: 

Ot == 1(117 12," .lm). 
A functional relation of this form, when there is only one output, may be 

viewed as surface in m + 1 dimensional space, in exactly the same manner 
one interprets the formula z == f(x,y) as a two dimensional surface in three 

' dimensional space. The general structure of fO as determined by Eqn. (12a, 
12b) is in fact quite simple. From Eqn. (12b) we see that one first forms a sum 
of gO functions (where gO is s sigmoidal function) and then from Eqn. (12a) 
one (orms yet another sum involving gO functions. It may at first be thought 
that this special, simple form of fO restricts the type of surface that may be 
represented by Ot = f(Ii)' This initial tl.ought is wrong - the special form of 
Eqn. (12) is actually a general representation for quite arbitrary surfaces. 

To prove that Eqn. (12) is a reasonable representation for surfaces we 
first point out that surfaces may be approximated by adding up a series of 
"bumps" that are appropriately placed. An example of this occurs in familiar 
Fourier analysis, where wave trains of suitable frequency and amplitude are 
added together to approximate curves (or surfaces). Each half period of each 
wave of fixed wavelength is a "bump," and one adds all the bumps together to 
form the approximant. Let us noW see how Eqn. (12) may be interpreted as 
adding together bumps of specified heights and positions. First consider SUMk 
which is a sum of g( ) functions. In Figure (4) we plot an example of such a gO 
function for the case of two inputs. 

Figure 4. A sigmoidal surface. 

451 

The orientation of this sigmoidal surface is determined by T sit the position by 
8;'1 and height by T"'i. Now consider another gO function that occurs in SUM",. 
The 8;, of the second gO function is chosen to displace it from the first, the Tii 
is chosen so that it has the same orientation as the first, and T "'i is chosen to 
have opposite sign to the first. These two g( ) functions occur in SUM"" and 
so to determine their contribution to SUM", we sum them together and plot the 
result in Fi ure 5. The result is a ridged surface. 

Figure 5. A ridge. 

Since our goal is to obtain localized bumps we select another pair of gO functions 
in SUMk, add them together to get a ridged surface perpendicular to the first 
ridged surface, and then add the two perpendicular ridged surfaces together to 
see the contribution to SUMk. The result is plotted in Figure (6). 

Figure 6. A pseudo-bump . 

So we've gone from two 
sigmoidal surfaces to a  
ridge.

Figure 8.5.6: The construction of a ridge. Images from [10].
.
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x1

<latexit sha1_base64="E8XghyITZbfuIPIu0E7HWHKoO/E=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgECwk7omi5YGMZ0VwgWcLsZDYZMju7zMyKYUljb2OhiK1PZCH4Bj6DlZNLoYk/DHz8/znMOSdIBNfGdT+dhcWl5ZXV3Fp+fWNza7uws1vTcaooq9JYxKoREM0El6xquBGskShGokCwetC/GOX1W6Y0j+WNGSTMj0hX8pBTYqx1fdfG7ULJLbtjoXnAUyh5xY/v+6/hUaVdeG91YppGTBoqiNZN7CbGz4gynAo2zLdSzRJC+6TLmhYliZj2s/GoQ3RgnQ4KY2WfNGjs/u7ISKT1IApsZURMT89mI/O/rJma8NzPuExSwySdfBSmApkYjfZGHa4YNWJggVDF7ayI9ogi1Njr5O0R8OzK81A7LuOT8ukVLnkeTJSDPdiHQ8BwBh5cQgWqQKELD/AEz45wHp0X53VSuuBMe4rwR87bD7cSkdk=</latexit>

x2

<latexit sha1_base64="LEPTrMAa9809kXqcDJJgBDunzSA=">AAAB63icbZC7SgNBFIbPxluMt2hKm8EgWEjYDREtF2wsI5gLJEuYncwmQ2Zml5lZMSxpfAAbC0VsfSELwTfwGazcTVJo4g8DH/9/DnPO8SPOtLHtTyu3srq2vpHfLGxt7+zuFfcPmjqMFaENEvJQtX2sKWeSNgwznLYjRbHwOW35o8ssb91SpVkob8w4op7AA8kCRrDJrLtetdArlu2KPRVaBmcOZbf08X3/NTmt94rv3X5IYkGlIRxr3XHsyHgJVoYRTieFbqxphMkID2gnRYkF1V4ynXWCjlOnj4JQpU8aNHV/dyRYaD0WflopsBnqxSwz/8s6sQkuvITJKDZUktlHQcyRCVG2OOozRYnh4xQwUSydFZEhVpiY9DzZEZzFlZehWa04tcrZtVN2XZgpD4dwBCfgwDm4cAV1aACBITzAEzxbwnq0XqzXWWnOmveU4I+stx/tr5Hu</latexit>

1

<latexit sha1_base64="Sa5egt+V16UueFnRGlJ/U99g/mM=">AAAB6XicbZDLSgMxFIbPeK31Vi87N8EiuCozoujOggtdVrEXaIeSSTNtaJIZkoxQh76BGxeKuHXvU/gE7lz6JmbaLrT1h8DH/59DzjlBzJk2rvvlzM0vLC4t51byq2vrG5uFre2ajhJFaJVEPFKNAGvKmaRVwwynjVhRLAJO60H/Isvrd1RpFslbM4ipL3BXspARbKx14+XbhaJbckdCs+BNoHj+cf99+b6bVtqFz1YnIomg0hCOtW56bmz8FCvDCKfDfCvRNMakj7u0aVFiQbWfjiYdogPrdFAYKfukQSP3d0eKhdYDEdhKgU1PT2eZ+V/WTEx45qdMxomhkow/ChOOTISytVGHKUoMH1jARDE7KyI9rDAx9jjZEbzplWehdlTyjksn116xXIaxcrAH+3AIHpxCGa6gAlUgEMIDPMGz03cenRfndVw650x6duCPnLcf6rmQrg==</latexit>

2

<latexit sha1_base64="fRKdCEWVaqpnkUUvi4bS98+wd+E=">AAAB6XicbZC7SgNBFIbPxluMt/XS2QwGwSrsBkU7AxZaRjEXSJYwO5lNhszOLjOzQlzyBjYWitja+xQ+gZ2lb+JskkITfxj4+P9zmHOOH3OmtON8WbmFxaXllfxqYW19Y3PL3t6pqyiRhNZIxCPZ9LGinAla00xz2owlxaHPacMfXGR5445KxSJxq4cx9ULcEyxgBGtj3ZQLHbvolJyx0Dy4Uyief9x/X77vpdWO/dnuRiQJqdCEY6VarhNrL8VSM8LpqNBOFI0xGeAebRkUOKTKS8eTjtChcbooiKR5QqOx+7sjxaFSw9A3lSHWfTWbZeZ/WSvRwZmXMhEnmgoy+ShIONIRytZGXSYp0XxoABPJzKyI9LHERJvjZEdwZ1eeh3q55B6XTq7dYqUCE+VhHw7gCFw4hQpcQRVqQCCAB3iCZ2tgPVov1uukNGdNe3bhj6y3H+w+kK8=</latexit>

w

<latexit sha1_base64="77yUVeTK9p1LngIr/BdO0IMgtmI=">AAAB6XicbZC7TsMwFIZPyq2UW7lsLBYVElOVIBBsVGKAsSB6kdqoclynteo4ke2AStQ3YGEAIVZ2noInYGPkTXCaDtDyS5Y+/f858jnHizhT2ra/rNzc/MLiUn65sLK6tr5R3NyqqzCWhNZIyEPZ9LCinAla00xz2owkxYHHacMbnKd545ZKxUJxo4cRdQPcE8xnBGtjXd8VOsWSXbbHQrPgTKB09nH/ffG+k1Q7xc92NyRxQIUmHCvVcuxIuwmWmhFOR4V2rGiEyQD3aMugwAFVbjKedIT2jdNFfijNExqN3d8dCQ6UGgaeqQyw7qvpLDX/y1qx9k/dhIko1lSQ7CM/5kiHKF0bdZmkRPOhAUwkM7Mi0scSE22Okx7BmV55FuqHZeeofHzllCoVyJSHXdiDA3DgBCpwCVWoAQEfHuAJnq2B9Wi9WK9Zac6a9GzDH1lvP1UmkPQ=</latexit>

w

<latexit sha1_base64="77yUVeTK9p1LngIr/BdO0IMgtmI=">AAAB6XicbZC7TsMwFIZPyq2UW7lsLBYVElOVIBBsVGKAsSB6kdqoclynteo4ke2AStQ3YGEAIVZ2noInYGPkTXCaDtDyS5Y+/f858jnHizhT2ra/rNzc/MLiUn65sLK6tr5R3NyqqzCWhNZIyEPZ9LCinAla00xz2owkxYHHacMbnKd545ZKxUJxo4cRdQPcE8xnBGtjXd8VOsWSXbbHQrPgTKB09nH/ffG+k1Q7xc92NyRxQIUmHCvVcuxIuwmWmhFOR4V2rGiEyQD3aMugwAFVbjKedIT2jdNFfijNExqN3d8dCQ6UGgaeqQyw7qvpLDX/y1qx9k/dhIko1lSQ7CM/5kiHKF0bdZmkRPOhAUwkM7Mi0scSE22Okx7BmV55FuqHZeeofHzllCoVyJSHXdiDA3DgBCpwCVWoAQEfHuAJnq2B9Wi9WK9Zac6a9GzDH1lvP1UmkPQ=</latexit>

w

<latexit sha1_base64="77yUVeTK9p1LngIr/BdO0IMgtmI=">AAAB6XicbZC7TsMwFIZPyq2UW7lsLBYVElOVIBBsVGKAsSB6kdqoclynteo4ke2AStQ3YGEAIVZ2noInYGPkTXCaDtDyS5Y+/f858jnHizhT2ra/rNzc/MLiUn65sLK6tr5R3NyqqzCWhNZIyEPZ9LCinAla00xz2owkxYHHacMbnKd545ZKxUJxo4cRdQPcE8xnBGtjXd8VOsWSXbbHQrPgTKB09nH/ffG+k1Q7xc92NyRxQIUmHCvVcuxIuwmWmhFOR4V2rGiEyQD3aMugwAFVbjKedIT2jdNFfijNExqN3d8dCQ6UGgaeqQyw7qvpLDX/y1qx9k/dhIko1lSQ7CM/5kiHKF0bdZmkRPOhAUwkM7Mi0scSE22Okx7BmV55FuqHZeeofHzllCoVyJSHXdiDA3DgBCpwCVWoAQEfHuAJnq2B9Wi9WK9Zac6a9GzDH1lvP1UmkPQ=</latexit>

w

<latexit sha1_base64="77yUVeTK9p1LngIr/BdO0IMgtmI=">AAAB6XicbZC7TsMwFIZPyq2UW7lsLBYVElOVIBBsVGKAsSB6kdqoclynteo4ke2AStQ3YGEAIVZ2noInYGPkTXCaDtDyS5Y+/f858jnHizhT2ra/rNzc/MLiUn65sLK6tr5R3NyqqzCWhNZIyEPZ9LCinAla00xz2owkxYHHacMbnKd545ZKxUJxo4cRdQPcE8xnBGtjXd8VOsWSXbbHQrPgTKB09nH/ffG+k1Q7xc92NyRxQIUmHCvVcuxIuwmWmhFOR4V2rGiEyQD3aMugwAFVbjKedIT2jdNFfijNExqN3d8dCQ6UGgaeqQyw7qvpLDX/y1qx9k/dhIko1lSQ7CM/5kiHKF0bdZmkRPOhAUwkM7Mi0scSE22Okx7BmV55FuqHZeeofHzllCoVyJSHXdiDA3DgBCpwCVWoAQEfHuAJnq2B9Wi9WK9Zac6a9GzDH1lvP1UmkPQ=</latexit>

Ridge in x1

<latexit sha1_base64="E8XghyITZbfuIPIu0E7HWHKoO/E=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgECwk7omi5YGMZ0VwgWcLsZDYZMju7zMyKYUljb2OhiK1PZCH4Bj6DlZNLoYk/DHz8/znMOSdIBNfGdT+dhcWl5ZXV3Fp+fWNza7uws1vTcaooq9JYxKoREM0El6xquBGskShGokCwetC/GOX1W6Y0j+WNGSTMj0hX8pBTYqx1fdfG7ULJLbtjoXnAUyh5xY/v+6/hUaVdeG91YppGTBoqiNZN7CbGz4gynAo2zLdSzRJC+6TLmhYliZj2s/GoQ3RgnQ4KY2WfNGjs/u7ISKT1IApsZURMT89mI/O/rJma8NzPuExSwySdfBSmApkYjfZGHa4YNWJggVDF7ayI9ogi1Njr5O0R8OzK81A7LuOT8ukVLnkeTJSDPdiHQ8BwBh5cQgWqQKELD/AEz45wHp0X53VSuuBMe4rwR87bD7cSkdk=</latexit>

Ridge in x2

<latexit sha1_base64="vQjLpjw+7B8rJYeRx/Sr2hr1jDk=">AAAB6nicbZC7SgNBFIbPxluMt2hKm8EgWEjYDYqWCzaWEc0FkiXMTmaTIbOzy8ysGJY09jYWitj6RBaCb+AzWDnJptDEHwY+/v8c5pzjx5wpbdufVm5peWV1Lb9e2Njc2t4p7u41VJRIQusk4pFs+VhRzgSta6Y5bcWS4tDntOkPLyZ585ZKxSJxo0cx9ULcFyxgBGtjXd91q91i2a7YU6FFcGZQdksf3/df4+Nat/je6UUkCanQhGOl2o4day/FUjPC6bjQSRSNMRniPm0bFDikykuno47RoXF6KIikeUKjqfu7I8WhUqPQN5Uh1gM1n03M/7J2ooNzL2UiTjQVJPsoSDjSEZrsjXpMUqL5yAAmkplZERlgiYk21ymYIzjzKy9Co1pxTiqnV07ZdSFTHvbhAI7AgTNw4RJqUAcCfXiAJ3i2uPVovVivWWnOmvWU4I+stx+4lpHa</latexit>

Now we add two ridges  in two orthogonal 
directions...

Figure 8.5.7: The use of ridges in both x1 and x2 gives a ‘pseudo-bump’ as
shown in Figure 8.5.8.

.

x1

<latexit sha1_base64="E8XghyITZbfuIPIu0E7HWHKoO/E=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgECwk7omi5YGMZ0VwgWcLsZDYZMju7zMyKYUljb2OhiK1PZCH4Bj6DlZNLoYk/DHz8/znMOSdIBNfGdT+dhcWl5ZXV3Fp+fWNza7uws1vTcaooq9JYxKoREM0El6xquBGskShGokCwetC/GOX1W6Y0j+WNGSTMj0hX8pBTYqx1fdfG7ULJLbtjoXnAUyh5xY/v+6/hUaVdeG91YppGTBoqiNZN7CbGz4gynAo2zLdSzRJC+6TLmhYliZj2s/GoQ3RgnQ4KY2WfNGjs/u7ISKT1IApsZURMT89mI/O/rJma8NzPuExSwySdfBSmApkYjfZGHa4YNWJggVDF7ayI9ogi1Njr5O0R8OzK81A7LuOT8ukVLnkeTJSDPdiHQ8BwBh5cQgWqQKELD/AEz45wHp0X53VSuuBMe4rwR87bD7cSkdk=</latexit>

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

1

<latexit sha1_base64="q/3aVAkqIHcHuj0QknK6ozl9m9o=">AAAB5HicbZBLSgNBEIZr4iuOryju3DQGwVWYEUV3BlzoMoJ5QDKEnk4ladPTM3T3CHHICdy4UNx6Ak/hCdy59CZ2Ehea+EPDx/9X0VUVJoJr43mfTm5hcWl5Jb/qrq1vbG4V3O2ajlPFsMpiEatGSDUKLrFquBHYSBTSKBRYDwcX47x+h0rzWN6YYYJBRHuSdzmjxlrXfrtQ9EreRGQe/B8onr/ff12+7WaVduGj1YlZGqE0TFCtm76XmCCjynAmcOS2Uo0JZQPaw6ZFSSPUQTYZdEQOrNMh3VjZJw2ZuL87MhppPYxCWxlR09ez2dj8L2umpnsWZFwmqUHJph91U0FMTMZbkw5XyIwYWqBMcTsrYX2qKDP2Nq49gj+78jzUjkr+cemkWC7DVHnYg304BB9OoQxXUIEqMEB4gCd4dm6dR+dlWphzfjp24I+c1289fo9z</latexit>

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

Approximate description of values of ridge in

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

1

<latexit sha1_base64="q/3aVAkqIHcHuj0QknK6ozl9m9o=">AAAB5HicbZBLSgNBEIZr4iuOryju3DQGwVWYEUV3BlzoMoJ5QDKEnk4ladPTM3T3CHHICdy4UNx6Ak/hCdy59CZ2Ehea+EPDx/9X0VUVJoJr43mfTm5hcWl5Jb/qrq1vbG4V3O2ajlPFsMpiEatGSDUKLrFquBHYSBTSKBRYDwcX47x+h0rzWN6YYYJBRHuSdzmjxlrXfrtQ9EreRGQe/B8onr/ff12+7WaVduGj1YlZGqE0TFCtm76XmCCjynAmcOS2Uo0JZQPaw6ZFSSPUQTYZdEQOrNMh3VjZJw2ZuL87MhppPYxCWxlR09ez2dj8L2umpnsWZFwmqUHJph91U0FMTMZbkw5XyIwYWqBMcTsrYX2qKDP2Nq49gj+78jzUjkr+cemkWC7DVHnYg304BB9OoQxXUIEqMEB4gCd4dm6dR+dlWphzfjp24I+c1289fo9z</latexit>

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

Approximate description of values of ridge in x2

<latexit sha1_base64="vQjLpjw+7B8rJYeRx/Sr2hr1jDk=">AAAB6nicbZC7SgNBFIbPxluMt2hKm8EgWEjYDYqWCzaWEc0FkiXMTmaTIbOzy8ysGJY09jYWitj6RBaCb+AzWDnJptDEHwY+/v8c5pzjx5wpbdufVm5peWV1Lb9e2Njc2t4p7u41VJRIQusk4pFs+VhRzgSta6Y5bcWS4tDntOkPLyZ585ZKxSJxo0cx9ULcFyxgBGtjXd91q91i2a7YU6FFcGZQdksf3/df4+Nat/je6UUkCanQhGOl2o4day/FUjPC6bjQSRSNMRniPm0bFDikykuno47RoXF6KIikeUKjqfu7I8WhUqPQN5Uh1gM1n03M/7J2ooNzL2UiTjQVJPsoSDjSEZrsjXpMUqL5yAAmkplZERlgiYk21ymYIzjzKy9Co1pxTiqnV07ZdSFTHvbhAI7AgTNw4RJqUAcCfXiAJ3i2uPVovVivWWnOmvWU4I+stx+4lpHa</latexit>

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

1

<latexit sha1_base64="q/3aVAkqIHcHuj0QknK6ozl9m9o=">AAAB5HicbZBLSgNBEIZr4iuOryju3DQGwVWYEUV3BlzoMoJ5QDKEnk4ladPTM3T3CHHICdy4UNx6Ak/hCdy59CZ2Ehea+EPDx/9X0VUVJoJr43mfTm5hcWl5Jb/qrq1vbG4V3O2ajlPFsMpiEatGSDUKLrFquBHYSBTSKBRYDwcX47x+h0rzWN6YYYJBRHuSdzmjxlrXfrtQ9EreRGQe/B8onr/ff12+7WaVduGj1YlZGqE0TFCtm76XmCCjynAmcOS2Uo0JZQPaw6ZFSSPUQTYZdEQOrNMh3VjZJw2ZuL87MhppPYxCWxlR09ez2dj8L2umpnsWZFwmqUHJph91U0FMTMZbkw5XyIwYWqBMcTsrYX2qKDP2Nq49gj+78jzUjkr+cemkWC7DVHnYg304BB9OoQxXUIEqMEB4gCd4dm6dR+dlWphzfjp24I+c1289fo9z</latexit>

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

Approximate values of the "pseudo-bump" function 

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

1

<latexit sha1_base64="q/3aVAkqIHcHuj0QknK6ozl9m9o=">AAAB5HicbZBLSgNBEIZr4iuOryju3DQGwVWYEUV3BlzoMoJ5QDKEnk4ladPTM3T3CHHICdy4UNx6Ak/hCdy59CZ2Ehea+EPDx/9X0VUVJoJr43mfTm5hcWl5Jb/qrq1vbG4V3O2ajlPFsMpiEatGSDUKLrFquBHYSBTSKBRYDwcX47x+h0rzWN6YYYJBRHuSdzmjxlrXfrtQ9EreRGQe/B8onr/ff12+7WaVduGj1YlZGqE0TFCtm76XmCCjynAmcOS2Uo0JZQPaw6ZFSSPUQTYZdEQOrNMh3VjZJw2ZuL87MhppPYxCWxlR09ez2dj8L2umpnsWZFwmqUHJph91U0FMTMZbkw5XyIwYWqBMcTsrYX2qKDP2Nq49gj+78jzUjkr+cemkWC7DVHnYg304BB9OoQxXUIEqMEB4gCd4dm6dR+dlWphzfjp24I+c1289fo9z</latexit>

1

<latexit sha1_base64="q/3aVAkqIHcHuj0QknK6ozl9m9o=">AAAB5HicbZBLSgNBEIZr4iuOryju3DQGwVWYEUV3BlzoMoJ5QDKEnk4ladPTM3T3CHHICdy4UNx6Ak/hCdy59CZ2Ehea+EPDx/9X0VUVJoJr43mfTm5hcWl5Jb/qrq1vbG4V3O2ajlPFsMpiEatGSDUKLrFquBHYSBTSKBRYDwcX47x+h0rzWN6YYYJBRHuSdzmjxlrXfrtQ9EreRGQe/B8onr/ff12+7WaVduGj1YlZGqE0TFCtm76XmCCjynAmcOS2Uo0JZQPaw6ZFSSPUQTYZdEQOrNMh3VjZJw2ZuL87MhppPYxCWxlR09ez2dj8L2umpnsWZFwmqUHJph91U0FMTMZbkw5XyIwYWqBMcTsrYX2qKDP2Nq49gj+78jzUjkr+cemkWC7DVHnYg304BB9OoQxXUIEqMEB4gCd4dm6dR+dlWphzfjp24I+c1289fo9z</latexit>

1

<latexit sha1_base64="q/3aVAkqIHcHuj0QknK6ozl9m9o=">AAAB5HicbZBLSgNBEIZr4iuOryju3DQGwVWYEUV3BlzoMoJ5QDKEnk4ladPTM3T3CHHICdy4UNx6Ak/hCdy59CZ2Ehea+EPDx/9X0VUVJoJr43mfTm5hcWl5Jb/qrq1vbG4V3O2ajlPFsMpiEatGSDUKLrFquBHYSBTSKBRYDwcX47x+h0rzWN6YYYJBRHuSdzmjxlrXfrtQ9EreRGQe/B8onr/ff12+7WaVduGj1YlZGqE0TFCtm76XmCCjynAmcOS2Uo0JZQPaw6ZFSSPUQTYZdEQOrNMh3VjZJw2ZuL87MhppPYxCWxlR09ez2dj8L2umpnsWZFwmqUHJph91U0FMTMZbkw5XyIwYWqBMcTsrYX2qKDP2Nq49gj+78jzUjkr+cemkWC7DVHnYg304BB9OoQxXUIEqMEB4gCd4dm6dR+dlWphzfjp24I+c1289fo9z</latexit>

2

<latexit sha1_base64="7QE2e2NpDfV861Ym3MYQvzCTl5A=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2synE7X3CKzlj2PLhTKFx83H9fve+l5Xb+s9WJaBKi0JQTpZquE2svJVIzynGYayUKY0L7pItNg4KEqLx0POjQPjROxw4iaZ7Q9tj93ZGSUKlB6JvKkOiems1G5n9ZM9HBuZcyEScaBZ18FCTc1pE92truMIlU84EBQiUzs9q0RySh2twmZ47gzq48D7XjontSPK24hVIJJsrCPhzAEbhwBiW4hjJUgQLCAzzBs3VrPVov1uukNGNNe3bhj6y3H7gAkJs=</latexit>

Figure 8.5.8: Approximate values of the pseudo-bump function obtained by
adding the values of the ridge in x1 and the ridge in x2.

.

x1

<latexit sha1_base64="E8XghyITZbfuIPIu0E7HWHKoO/E=">AAAB6nicbZC7SgNBFIbPeo3xFk1pMxgECwk7omi5YGMZ0VwgWcLsZDYZMju7zMyKYUljb2OhiK1PZCH4Bj6DlZNLoYk/DHz8/znMOSdIBNfGdT+dhcWl5ZXV3Fp+fWNza7uws1vTcaooq9JYxKoREM0El6xquBGskShGokCwetC/GOX1W6Y0j+WNGSTMj0hX8pBTYqx1fdfG7ULJLbtjoXnAUyh5xY/v+6/hUaVdeG91YppGTBoqiNZN7CbGz4gynAo2zLdSzRJC+6TLmhYliZj2s/GoQ3RgnQ4KY2WfNGjs/u7ISKT1IApsZURMT89mI/O/rJma8NzPuExSwySdfBSmApkYjfZGHa4YNWJggVDF7ayI9ogi1Njr5O0R8OzK81A7LuOT8ukVLnkeTJSDPdiHQ8BwBh5cQgWqQKELD/AEz45wHp0X53VSuuBMe4rwR87bD7cSkdk=</latexit>

x2

<latexit sha1_base64="LEPTrMAa9809kXqcDJJgBDunzSA=">AAAB63icbZC7SgNBFIbPxluMt2hKm8EgWEjYDREtF2wsI5gLJEuYncwmQ2Zml5lZMSxpfAAbC0VsfSELwTfwGazcTVJo4g8DH/9/DnPO8SPOtLHtTyu3srq2vpHfLGxt7+zuFfcPmjqMFaENEvJQtX2sKWeSNgwznLYjRbHwOW35o8ssb91SpVkob8w4op7AA8kCRrDJrLtetdArlu2KPRVaBmcOZbf08X3/NTmt94rv3X5IYkGlIRxr3XHsyHgJVoYRTieFbqxphMkID2gnRYkF1V4ynXWCjlOnj4JQpU8aNHV/dyRYaD0WflopsBnqxSwz/8s6sQkuvITJKDZUktlHQcyRCVG2OOozRYnh4xQwUSydFZEhVpiY9DzZEZzFlZehWa04tcrZtVN2XZgpD4dwBCfgwDm4cAV1aACBITzAEzxbwnq0XqzXWWnOmveU4I+stx/tr5Hu</latexit>

y

<latexit sha1_base64="YAVE2KRZd+NkPktW2mLn/Y0EizM=">AAAB6XicbZDLSgMxFIbPeK31VnUlLgwWwVWZEUWXBTcuq9gLtEPJpJk2NJMMSUYYhq7duHGhiFvfqDufwxcw03ahrT8EPv7/HHLOCWLOtHHdL2dpeWV1bb2wUdzc2t7ZLe3tN7RMFKF1IrlUrQBrypmgdcMMp61YURwFnDaD4U2eNx+p0kyKB5PG1I9wX7CQEWysdZ8Wu6WyW3EnQovgzaBcPXzqyvHxd61bGnd6kiQRFYZwrHXbc2PjZ1gZRjgdFTuJpjEmQ9ynbYsCR1T72WTSETq1Tg+FUtknDJq4vzsyHGmdRoGtjLAZ6PksN//L2okJr/2MiTgxVJDpR2HCkZEoXxv1mKLE8NQCJorZWREZYIWJscfJj+DNr7wIjfOKd1G5vPPK1SpMVYAjOIEz8OAKqnALNagDgRCe4RXenKHz4rw7H9PSJWfWcwB/5Hz+AOiakKY=</latexit>

1

<latexit sha1_base64="Sa5egt+V16UueFnRGlJ/U99g/mM=">AAAB6XicbZDLSgMxFIbPeK31Vi87N8EiuCozoujOggtdVrEXaIeSSTNtaJIZkoxQh76BGxeKuHXvU/gE7lz6JmbaLrT1h8DH/59DzjlBzJk2rvvlzM0vLC4t51byq2vrG5uFre2ajhJFaJVEPFKNAGvKmaRVwwynjVhRLAJO60H/Isvrd1RpFslbM4ipL3BXspARbKx14+XbhaJbckdCs+BNoHj+cf99+b6bVtqFz1YnIomg0hCOtW56bmz8FCvDCKfDfCvRNMakj7u0aVFiQbWfjiYdogPrdFAYKfukQSP3d0eKhdYDEdhKgU1PT2eZ+V/WTEx45qdMxomhkow/ChOOTISytVGHKUoMH1jARDE7KyI9rDAx9jjZEbzplWehdlTyjksn116xXIaxcrAH+3AIHpxCGa6gAlUgEMIDPMGz03cenRfndVw650x6duCPnLcf6rmQrg==</latexit>

2

<latexit sha1_base64="fRKdCEWVaqpnkUUvi4bS98+wd+E=">AAAB6XicbZC7SgNBFIbPxluMt/XS2QwGwSrsBkU7AxZaRjEXSJYwO5lNhszOLjOzQlzyBjYWitja+xQ+gZ2lb+JskkITfxj4+P9zmHOOH3OmtON8WbmFxaXllfxqYW19Y3PL3t6pqyiRhNZIxCPZ9LGinAla00xz2owlxaHPacMfXGR5445KxSJxq4cx9ULcEyxgBGtj3ZQLHbvolJyx0Dy4Uyief9x/X77vpdWO/dnuRiQJqdCEY6VarhNrL8VSM8LpqNBOFI0xGeAebRkUOKTKS8eTjtChcbooiKR5QqOx+7sjxaFSw9A3lSHWfTWbZeZ/WSvRwZmXMhEnmgoy+ShIONIRytZGXSYp0XxoABPJzKyI9LHERJvjZEdwZ1eeh3q55B6XTq7dYqUCE+VhHw7gCFw4hQpcQRVqQCCAB3iCZ2tgPVov1uukNGdNe3bhj6y3H+w+kK8=</latexit>

Now feed this into the last neuron to threshold the "pseudo-bump"

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

0

<latexit sha1_base64="dUH2MqhWlLo7LL9qrXbvkPRR8Mo=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8EgeAozoujNgAc9JmAWSIbQ06lJ2vT0DN09QhzyBF48KOLVB/ApfAJvHn0TO8tBE39o+Pj/Krqq/JgzpR3ny8osLC4tr2RXc2vrG5tb+e2dmooSSbFKIx7Jhk8Uciawqpnm2IglktDnWPf7l6O8fodSsUjc6EGMXki6ggWMEm2sitPOF5yiM5Y9D+4UChcf999X73tpuZ3/bHUimoQoNOVEqabrxNpLidSMchzmWonCmNA+6WLToCAhKi8dDzq0D43TsYNImie0PXZ/d6QkVGoQ+qYyJLqnZrOR+V/WTHRw7qVMxIlGQScfBQm3dWSPtrY7TCLVfGCAUMnMrDbtEUmoNrfJmSO4syvPQ+246J4UTytuoVSCibKwDwdwBC6cQQmuoQxVoIDwAE/wbN1aj9aL9TopzVjTnl34I+vtB7T4kJk=</latexit>

0
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Figure 8.5.9: The last neuron provides a threshold that constructs a localized
bump whose (approximate) values are shown in the image on the right.

.



Chapter 9

Convolutional neural
networks: from biology to
technology

9.1 Generalizability

The use of neural networks is a computationally effective method for approx-
imating functions with applications to supervised learning. However, feed-
forward neural networks without any additional structure have several limi-
tations, most notably the size of the network needed for a specific learning task.
Since the size of the training data must scale with the set of parameters, training
the network could be too expensive when there are too many parameters. For
example, consider an image consisting of 10 × 10 pixels and assume that the
architecture has depth 2, with all-to-all connectivity from layer to layer. Since
we have 100 neurons at input, we then have 10,000 edges in the first two layers
and we need to fit at least 20,000 parameters just for these two layers.

Analysis of the number of parameters needed to train the network is of cen-
tral importance in supervised learning. In broad strokes, there are two distinct
undesirable scenarios – underfitting and overfitting (see Figure 9.1.1). Under-
fitting means that the model has too few parameters to capture the features of
the training data. Overfitting means that the approximation captures too many
details of the training data and is liable to fail when it is applied to the test
data, i.e. when applied in practice.

A central concern in this approach to machine learning is generalizability.
The generalization error is defined to be:

G(F (W )) = E(X,Y )(L(X;Y,W )), (9.1.1)
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What is the right number of parameters?

In the supervised learning paradigm,  learning = function approximation,  
choosing parameters by minimizing loss on a training set. 

Underfitting: does not capture the features of the training data.  
Approximation model is too simple.

Overfitting: the approximation captures too many details of the 
training data. It is liable to fail on the test data (i.e. when 
applied in practice).

Figure 9.1.1: Underfitting and overfitting. (Image: wiki images)
.

and the empirical error is

Gn(F (W )) =
1

n

n∑

k=1

L(Xk;Yk,W ).

Here L is the loss function, W is the set of weights, (which defines the input-
output relation F (W )), and the expectation is taken over an unknown law of
the input and output vectors X and Y . The empirical error can be measured,
whereas the generalization error cannot. A significant part of the theoretical
analysis in supervised learning is to prove that the empirical error is close to the
generalization error. These topics lie beyond the scope of these lectures [16].

In contrast, the main unresolved theoretical issue in deep learning is that
while the number of trainable parameters is so large that one would naively
expect the neural network to overfit data, this does not happen in practice.
Training through gradient descent of a loss function seems to be a mechanism
that keeps the generalization error of the network in the sweet spot between
underfitting and overfitting.

9.2 Convolutional neural networks
In this section, we discuss LeNet5, a convolutional neural network (CNN) in-
troduced in [11] (see Figure 9.2.5). This network is one of the foundational
examples in deep learning. It was introduced to solve the problem of hand-
writing recognition; however, we will restrict attention to its use for character
recognition. The success of LeNet5 depended on both theoretical and imple-
mentational factors. Since there are many sources for this material – and the
primary source is very readable – we will present only an outline of the main
ideas. These are:

1. Convolutional neural networks retain the flexibility of neural networks to
approximate functions.
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Architecture of LeNet-5 

1) The C-layers are "local"  linear operations that average a small 
block of pixels against a set of fixed kernels (e.g. to find an 
edge). Here its a 5x5 block, which is what takes us down from 32x32 
to 28x28. Weights are distinct for each feature map. (We're 
"lumping" the nonlinearity into the next layer).

2) The S-layers are "local" neural networks that perform nonlinear 
thresholding over non-overlapping 2x2 blocks (perform average, add 
bias, then threshold). Takes us down to 14x14 from 28x28.

Figure 9.2.1: The architecture of LeNet5. Image from [11].
.

2. The number of weights is reduced by using spatial symmetries of the data
(characters) to repeat important geometric motifs. Examples of such mo-
tifs are provided below.

3. Convolutional neural networks retain the hierarchical nature of Bayesian
models with feature maps. However, the features are (mainly) trained by
the machine, and are not designed ‘by hand’ as in the Bayesian model of
character recognition discussed in Section 7.3.4.

As seen in Figure 9.2.1, the architecture of LeNet5 consists of a hierarchy of
layers. The main layers are of two types: Convolutional filters and sub-sampling
layers (“C-” and “S-layers” respectively). The output layer (there are 10 units
for digit recognition) is not the naive choice discussed in the previous chapter.
Instead, a standard pixelated image is constructed for each digit, and a loss
function that measures the difference between the output of the layer F6 and
these standard digits is computed. Let us now discuss the C- and S-layers in
more detail.

The task of the C-layers is to amplify features in their input. Simple ex-
amples of features are the geometric motifs shown in Figure 9.2.2. These are
of obvious importance in character recognition. A convolutional filter that de-
tects an edge is shown in Figure 9.2.3. An essential aspect of LeNet5 is that
the same weights act locally on contiguous blocks on the input layer. Thus, in
Figure 9.2.3, the filter has 9 = 3×3 weights, and the same filter acts on all 3×3
square subunits of the 6× 6 input layer. This has the effect of reducing the size
of the output as shown. Similarly, we see that the first layer of LeNet5 has the
effect of reducing an input images with 32 × 32 pixels into a feature map with
28× 28 pixels.

The task of the S-layer is to coarse-grain the input from the C-layer in a
manner that removes unecessary information. For example, when detecting
features such as endpoints or edges, what matters is whether the feature is
present in a region of the image. Its precise location and size within the region
is largely irrelevant. An example of this idea is presented in Figure 9.2.5. Once
we know that we have an endpoint, a corner and an edge in the blocks shown,
we know that the character is a ‘7’. The relative placement of these features in
these blocks is irrelevant. Several choices of nonlinearity may be used for sub-
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Examples of simple features

1)  Oriented edges and arcs

2) Endpoints of segments.

3) Corners

Figure 9.2.2: Examples of features.
.

Example of a filter for edge detection

(Image taken 
from the web)

A filter designed for vertical edges has the effect of amplifying the signal 
near an edge and attenuating it in regions where the signal is constant.

Exercise: design analogous filters for a corner.

Figure 9.2.3: An example of a convolutional filter to detect a vertical edge.
Image from the web.

.
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(Humans can do a great deal with simple features)✐

✐
✐

✐

✐
✐

✐
✐

146 3. Character Recognition and Syntactic Grouping

(a) (b)

Figure 3.18. (a) The famous Kanizsa phantom triangle, an example of “amodal completion;” (b)
another Kanizsa demonstration, a phantom pear occluding six ring-like structures

the pear and amodal. In natural images, visual contours are often cut into several
pieces due to occlusions. But just as in Kanizsa’s demonstrations, we reconstruct
in our minds the full contour even though the amodal part is totally absent in the
actual image and the modal part may be indistinct. This is a great example of our
use of Bayesian priors: without some prior knowledge of what object boundaries
usually are like and of how objects occlude each other, we would be unable to
guess what the hidden parts of the object were or even that there were hidden
parts. We need to combine this prior knowledge with the evidence given by the
image to reconstruct the hidden parts of the objects.

Grouping principles are also present in the problem of character recognition.
We begin with a grouping of the edges of a character into extended contours, then
we group together the contours on opposite sides of each stroke and model this
group with the axis. Each alpha-numeric character is then made up of a small
number of elementary parts: straight lines and smooth nearly circular arcs. Then
these must be grouped by using relations between these elementary parts: which
strokes connect to which strokes and with what proportions and angles. In ad-
dition, some general Gestalt rules are used. For capital letters, in some cases
edges are supposed to be (roughly) parallel: horizontal edges in E, F, and Z;
vertical edges in H, M, N, and U. In some cases, there is reflectional symme-
try about a vertical axis: A, H, M, O, T, U, V, X, and Y. In Figure 3.1, it is
clear that where shadows and dirt obscure the characters; completing the pattern
to form the appropriate parallel and symmetric strokes will often find the full
character.

Kanisza's phantoms (MD, pp. 146)

Figure 9.2.4: We infer shapes from their absence in the images on the left.
The image on the right reveals a caricaturist’s ability to reduce an image to its
essentials.

.

sampling, including averaging over the pool, choosing the max (Figure 9.2.6)
and the rectified linear unity (ReLU) pooling shown in Figure 9.2.7.

These descriptions are intuitive. But they don’t quite explain the mysterious,
almost magical, ability of this network to recognize characters so effectively. In
particular, we should note that while both the C- and S- layers can be initialized
based on our visual intuition of what constitutes features (as in Figure 9.2.2
and Figure 9.2.5) there are more feature and sub-sampling layers than these.
Further, all the weights for all these layers are chosen by training on data.

Thus, while these visual examples serve as good seeds for training for the first
layer, as well as for our intuition, the deeper principles on why the structure
works cannot be understood based only on these examples. In fact, CNNs
work for several other recognition tasks where the notion of “features” is not
as visually apparent. They also (as of May 2020) fail to work for sufficiently
distorted characters (e.g. CAPTCHA), so at least some aspects of internet
security remain intact.

9.3 Biological inspiration for LeNet5

The design of architectures remains a mysterious feature of deep learning. One
of the most interesting aspects of LeNet5 is that it was inspired – and should
be seen as a part of – the interplay between biology and technology.

The primary biological inspiration for LeNet5 was the experimental work of
Hubel and Wiesel on vision in cats [?]. In their experiments, electrodes were
implanted in an anesthesized cat’s brain, the cat was subjected to visual stimuli
and the output of the electrode was recorded when neurons fire. The main
finding was that a subset of neurons fired for edges at a 45o angle, whereas
another set fired for edges at another angle. Thus, contiguous sets of neurons
serve to identify specific edge orientations. This architecture of neurons in the
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Endpoint Corner

Edge

Endpoint Corner

Edge

For character recognition, the natural completion now is:

Caveat:  

Here we rely strongly 
on the fact that we 

know a priori that the 
image represents one 
of 10 possible digits. 

Figure 9.2.5: Once the features have been identified in the regions shown, it
can immediately be inferred that the character is a seven. The relative place-
ment, scale and distortion of these features does not affect this conclusion. Sub-
sampling is introduced to capture this aspect of character recognition.

.

The subsampling layers

(Image taken from the web)

Could vary the width of 
the pool, as well as the 
thresholding function.

Subsampling works because global structure is 
insensitive to small local variations. For example, 
what matters to "recognize" the character 7 is mainly 
the relative positions of the endpoint, corner and 
edge, not their precise locations or scale.

Figure 9.2.6: An example of subsampling with max-pooling.
.
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ReLU thresholding (later addition to CNNs)

ReLU = rectified linear unit (circuit design jargon)

     318

Deep Sparse Rectifier Neural Networks

Figure 2: Left: Sparse propagation of activations and gradients in a network of rectifier units. The

input selects a subset of active neurons and computation is linear in this subset. Right: Rectifier and softplus
activation functions. The second one is a smooth version of the first.

3 Deep Rectifier Networks

3.1 Rectifier Neurons

The neuroscience literature (Bush and Sejnowski,
1995; Douglas and al., 2003) indicates that corti-
cal neurons are rarely in their maximum saturation
regime, and suggests that their activation function can
be approximated by a rectifier. Most previous stud-
ies of neural networks involving a rectifying activation
function concern recurrent networks (Salinas and Ab-
bott, 1996; Hahnloser, 1998).

The rectifier function rectifier(x) = max(0, x) is one-
sided and therefore does not enforce a sign symmetry1

or antisymmetry1: instead, the response to the oppo-
site of an excitatory input pattern is 0 (no response).
However, we can obtain symmetry or antisymmetry by
combining two rectifier units sharing parameters.

Advantages The rectifier activation function allows
a network to easily obtain sparse representations. For
example, after uniform initialization of the weights,
around 50% of hidden units continuous output val-
ues are real zeros, and this fraction can easily increase
with sparsity-inducing regularization. Apart from be-
ing more biologically plausible, sparsity also leads to
mathematical advantages (see previous section).

As illustrated in Figure 2 (left), the only non-linearity
in the network comes from the path selection associ-
ated with individual neurons being active or not. For a
given input only a subset of neurons are active. Com-
putation is linear on this subset: once this subset of
neurons is selected, the output is a linear function of

1The hyperbolic tangent absolute value non-linearity
| tanh(x)| used by Jarrett et al. (2009) enforces sign symme-
try. A tanh(x) non-linearity enforces sign antisymmetry.

the input (although a large enough change can trigger
a discrete change of the active set of neurons). The
function computed by each neuron or by the network
output in terms of the network input is thus linear by
parts. We can see the model as an exponential num-
ber of linear models that share parameters (Nair and
Hinton, 2010). Because of this linearity, gradients flow
well on the active paths of neurons (there is no gra-
dient vanishing e↵ect due to activation non-linearities
of sigmoid or tanh units), and mathematical investi-
gation is easier. Computations are also cheaper: there
is no need for computing the exponential function in
activations, and sparsity can be exploited.

Potential Problems One may hypothesize that the
hard saturation at 0 may hurt optimization by block-
ing gradient back-propagation. To evaluate the poten-
tial impact of this e↵ect we also investigate the soft-
plus activation: softplus(x) = log(1+ex) (Dugas et al.,
2001), a smooth version of the rectifying non-linearity.
We lose the exact sparsity, but may hope to gain eas-
ier training. However, experimental results (see Sec-
tion 4.1) tend to contradict that hypothesis, suggesting
that hard zeros can actually help supervised training.
We hypothesize that the hard non-linearities do not
hurt so long as the gradient can propagate along some
paths, i.e., that some of the hidden units in each layer
are non-zero. With the credit and blame assigned to
these ON units rather than distributed more evenly, we
hypothesize that optimization is easier. Another prob-
lem could arise due to the unbounded behavior of the
activations; one may thus want to use a regularizer to
prevent potential numerical problems. Therefore, we
use the L1 penalty on the activation values, which also
promotes additional sparsity. Also recall that, in or-
der to e�ciently represent symmetric/antisymmetric
behavior in the data, a rectifier network would need

g(x) = tanh(x)
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Image: Glorot, Bordes, Bengio (2011)

Figure 9.2.7: The sigmoid nonlinearity of neurons can be replaced by the Rec-
tified Linear Unit (ReLU) nonlinearity. This imposes sparsity in the network.

.

From biology to technology: Fukushima's neocognitron

K. Fukushima,"Neocognitron: A self-organizing neural network model for a mechanism of pattern 
recognition unaffected by shift in position," Biological Cybernetics, 36 (1980) 93-202.

The main idea: alternate 
simple and complex cells as in 
the Hubel-Wiesel findings.  

First true artifical 
multilayer neural network for 
pattern recognition.

Contains the architecture but 
no effective training 
mechanism. 

Figure 9.2.8: The architecture of the neocognitron contains alternating layers of
simple and complex cells as in the findings of Hubel and Wiesel. Image from [7].

.
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visual cortex is called “ocular dominance columns”. The general conclusion of
these seminal studies is that edge detectors, motion detectors, stereo vision,
depth detection are developed in early childhood by specialization of simple
and complex cells.

An important attempt to use this biological architecture for artifical pattern
recognition was in the construction of a neural network called the neocognitron
by [7]. See Figure 9.2.8. This neural network is the first true artificial multilayer
neural network for pattern recognition. The main weakness of Fukushima’s
model is that it contained no true training mechanism. It also preceded the
availability of training data and computational power that made LeNet5 so
succesful.

In summary, the architecture of LeNet5 builds on empirical knowledge gained
on predecessors of this model, as well as biological inspiration. The main insight
is the repeated use of local units and the interspersing of feature extracting layers
and sub-sampling in order to capture aspects of the image that are invariant
under shift, scale and distortion. This significantly decreases the number of
weight (there are 340,908 edges in LeNet5, but only 60,00 weights, since these
are shared across a layer).



Chapter 10

Fast methods I: the FFT and
numerical linear algebra

10.1 What is a fast method?

The purpose of this chapter, and the ones that follow, is to provide a bird’s-
eye view of some of the mathematical infrastructure that underlies the modern
world. The success of any technique in machine learning ultimately relies on
the availability of data to train models, inexpensive computational power and
energy and (here is where the math comes in) fast algorithms. The purpose
of this chapter is to provide examples of fast algorithms in different areas of
scientific computing – Fourier analysis, numerical linear algebra, optimization –
along with some of the beautiful mathematics that underlies these algorithms.

The notion of ‘fast’ is theoretical: we look at the operation count for some
algorithms (FFT, matrix multiplication) where the essential argument can be
seen without much mathematical background. For certain methods, such as
iterative algorithms in numerical linear algebra, the precise notion of rates of
convergence is more subtle.

One of the main purposes of this chapter is to illustrate the mathematical
depth of what seem at first sight to be routine tasks requiring not much more
than linear algebra and some calculus. These include the task of multiplying two
matrices, solving linear systems, computing integrals (the Fourier transform),
finding roots, and finding the maximum of an affine function on a convex domain
(linear programming). All practising applied mathematicians know that the
truth is very different from this perception: it is often the most simply stated
problems that are the hardest to resolve. At the time of this writing, we still do
not know what the optimal algorithm is for matrix multiplication. This is not
just a theoretical issue. As an increasing range of our interactions moves online,
the development of fast numerical methods is intimately tied to the energy usage
by society.

91



92CHAPTER 10. FAST METHODS I: THE FFT AND NUMERICAL LINEAR ALGEBRA

10.2 The Fast Fourier Transform
Let us first recall the definitions of the continuous and discrete Fourier trans-
forms. An integrable function f : R → R is related to its Fourier transform f̂
through

f̂(k) =

∫ ∞

−∞
e−ikxf(x) dx, f(x) =

1

2π

∫ ∞

−∞
eikxf̂(k) dk. (10.2.1)

The discrete Fourier transform is a linear transformation between vectors f and
f̂ in Cn. In a manner similar to equation (10.2.1) we set

f̂k =

N−1∑

n=0

e−2πiknfn, fn =
1

N

N−1∑

n=0

e−2πiknf̂k. (10.2.2)

Here k and n are integers taking the values 0, 1, . . . , N − 1. There is always
some wiggle room in where one places the normalizing factors of 2π and N
in equations (10.2.1) and (10.2.2) respectively. We have chosen these factors
so that the exposition of the FFT does not rely on these factors. It is also
convenient to write

f̂k =

N−1∑

n=0

znkfn, fn =
1

N

N−1∑

n=0

z−nkf̂k, z = e−2πi/N .

This allows us to write the discrete Fourier transform as a matrix-vector product

f̂ = FN (z)f, f =
1

N
FN (z̄)f̂ , (FN (z))kn = zkn.

Observe that z̄ = z−1.
Since the matrix FN (z) has N2 entries and f is a vector of length N , we

expect this product to require N2 multiplications. This is not true! The Fast
Fourier Transform uses the structure of the matrix FN (z) to compute the dis-
crete Fourier transform of an arbitrary vector f in N logN operations.

There are several versions of the FFT. We will restrict ourselves to the
Cooley-Tukey algorithm in the simplest setting. 1 To this end, we assume that
N = 2p so that the divide-and-conquer nature of the scheme is transparent. We
begin by separating the sum in equation (10.2.2) into odd and even terms as
follows

f̂k =
∑

even n

fnz
nk
N +

∑

odd n

fnz
nk
N . (10.2.3)

The algorithm is recursive. We now further split the input as follows. Let g and
h be the vectors of length N/2 defined by

g := (g0, . . . , gN/2−1) = (f0, f2, . . . , fN−2), (10.2.4)
h := (h0, . . . , hN/2−1 = (f1, f3, . . . , fN−1).

1The original paper is a short and attractive read. See [2].
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Let us now consider the sum of the even terms. We observe that

∑

even n

fnz
nk
N =

N/2−1∑

m=0

gme
− 2πi
N 2mk =

N/2−1∑

m=0

gme
− 2πi
N/2mk = ĝk, (10.2.5)

provided that 0 ≤ k ≤ N/2 − 1. (We need this restriction since the Fourier
transform ĝk is only defined for k in this range). A similar calculation for the
odd terms yields

∑

odd n

fnz
nk
N =

N/2−1∑

m=0

hme
− 2πi
N (2m+1)k = zkN

N/2−1∑

m=0

hme
− 2πi
N/2mk = zkN ĥk.

(10.2.6)
Thus, we have obtained the identity

f̂k = ĝk + zkN ĥk, 0 ≤ k ≤ N/2− 1. (10.2.7)

We then revisit the above calculations to obtain the complementary identity

f̂k+N/2 = ĝk − zkN ĥk, 0 ≤ k ≤ N/2− 1. (10.2.8)

The identities (10.2.7) and (10.2.8) capture the recursive nature of the FFT. We
next apply these identities to g and h respectively reducing the computation of
these two terms to DFT’s for vectors of length N/4 respectively.

We assumed that N = 2p. Thus, p = log2N steps are needed to hit the
lowest depth. We also need N/2 multiplications in each step (one for each value
of k in equations (10.2.8) and (10.2.8) respectively). Thus, the total number of
multiplications required is (N/2) log2N .

While there are several variants in the implementation of this algorithm,
especially when N is not a power of 2, this fundamental scheme underlies all
modern digital signal processing applications.

10.3 Fast Matrix multiplication

How many multiplications does one need to multiply two 2 × 2 matrices? The
naive answer is, of course, 8. Indeed, lets just work it out and count the number
of operations when we multiply two 2× 2 matrices, A and B to obtain C = AB

(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
.

(10.3.1)
We are implicitly assuming here that multiplications are more expensive than
additions.

An ingenious multiplication scheme of Strassen shows that we can do better
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than 8 multiplications [?]. Form the intermediate products

x1 = (a11 + a22)(b11 + b22),

x2 = (a21 + a22)b11,

x3 = a11(b12 − b22),

x4 = a22(b21 − b11),

x5 = (a11 + a12)b22,

x6 = (a21 − a11)(b11 + b12),

x7 = (a12 − a22)(b21 + b22).

It then turns out that

c11 = x1 + x4 − x5 + x7,

c12 = x3 + x5,

c21 = x2 + x4,

c22 = x1 − x2 + x3 + x6.

There is only one way to get a feel for these calculations, which is to work it all
out, tedious as it seems, and check that it holds!

The full power of these calculations only becomes apparent when we use the
divide-and-conquer idea as in the FFT. Suppose A and B are 4 × 4 matrices.
We may break these matrices into 2 × 2 blocks and use Strassen’s algorithm
recursively. That is, write

C = AB =

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
, (10.3.2)

where each Aij and Bij is a 2 × 2 matrix. Now using Strassen’s algorithm, we
only need 7 block multiplications, each of which requires only 7 multiplications.
Thus, instead of 43 = 64 multiplications, we need 72 = 49 multiplications.

Proceeding inductively, suppose N = 2p, then we need to repeat this loop p
times with cost

7p = 7log2N = N log2 7 ≈ N2.8074.

This must be compared with the naive cost of multiplying matrices which is
N3. Some landmark results that build on Strassen’s work, systematizing it
with algebra and group theory, are listed below:

Authors Year Exponent
Strassen 1969 log2 7 ≈ 2.8074
Coppersmith, Vinograd 1990 2.375477
Stothers, Williams, LeGall 2014 2.3728639.

All of this begs the question: is this the best one can do? What is the com-
plexity of matrix multiplication? Is there an algorithm that multiplies matrices
in O(N2 logN) operations? The answer to this problem is not known. I can
think of few problems in mathematics that are as simple to state, and are of
such importance, that remain tantalizingly open.
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10.4 The QR factorization

Numerical linear algebra is the art and science of two problems of primary
importance: (i) solving linear systems (always written Ax = b) and (ii) the
computation of eigenvalues. The simplicity and flexibility of these problems
ensure that they have a wide range of applications. With some exaggeration
one may say that a typical google search (or more precisely an implementation of
the PageRank algorithm) is a computation of the top eigenvalue of a stochastic
matrix whose size is on the order of billions. While one learns in elementary
linear algebra that a square matrix A is invertible if and only if detA 6= 0, and
that the eigenvalues of A are the roots of the polynomial det(λI − A), the one
thing everyone should know about numerical linear algebra is that computing
the inverse or eigenvalues of a matrix using determinants is just about the worst
possible way of approaching these problems. In practice, it is necessary to pay
close attention to the context when solving linear systems since the solution
methods for a linear system Ax = b depend strongly on the size and structure of
A. Linear systems that arise from discretizations of partial differential equations
are often sparse and symmetric. Even when A is symmetric, the methods for
symmetric, positive definite A are different from methods for arbitrary A.

The central idea in numerical linear algebra is to compute fast, numerically
stable matrix factorizations and then to use these to solve linear systems and
for eigenvalue computation. This section provides an introduction to one such
factorization, the QR factorization, along with applications to solving linear
systems and eigenvalue computation. Good references for the material in this
section are the books [4, 15].

Every finite dimensional inner product space V has an orthonormal basis
that may be computed by the Gram-Schmidt procedure. Suppose dim(V ) = n
and let S = {v1, v2, . . . , vn} be a set of linearly independent vectors in V . Denote
the inner product of two vectors v and v′ in V by 〈v, v′〉. We may construct an
orthonormal basis Q from the basis S as follows. Let

w1 = v1, q1 =
w1

|w1|
, |w| := 〈w,w〉1/2.

Next let
w2 = v2 − 〈v2, q1〉q1, q2 =

w2

|w2|
.

We have subtracted off the projection of v2 onto the vector q1 and normalized.
This ensures that 〈q1, q2〉 = 0 and |q1| = |q2| = 0. Let S2 = span{q1, q2}.
Proceed inductively, setting

wk = v3 − 〈v2, q1〉q1 − . . .− 〈vk, qk−1〉qk−1, qk =
wk
|wk|

.

Our assumption that S is a basis ensures that wk does not vanish (if not, wk
would lie in Sk−1 = span{w1, . . . , wk−1}). The procedure terminates at the
n-the step, yielding a set of orthonormal vectors Sn.
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The QR factorization

A = QR
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This pattern corresponds to underdetermined linear systems. 
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Figure 10.4.1: A caricature of the QR factorization. All blank entries are zero.
The figure on the left corresponds to an overdetermined system. That on the
right is underdetermined.

.

The QR factorization is a numerical interpretation of the Gram-Schmidt
procedure. Assume given anm×n matrix A with linearly independent columns.
We apply the above procedure to the column space S = span{A1, . . . , An} ⊂
Rm, to obtain a set of column vectors Q1, . . . , Qn which have the same span as
S. Here {Aj}nj=1 denote the columns of A. Conversely, we form the matrix

Q =
(
Q1 Q2 . . . Qn

)
.

By construction,

span{A1, . . . , Ak} = span{Q1, . . . , Qk}, 1 ≤ k ≤ n.

Therefore, we may write

A = QR, QTQ = In×n. (10.4.1)

The caricatures shown in Figure 10.4.1 are a useful mnemonic.

10.5 Solving linear systems
Let us now use the QR factorization to solve the linear equation

Ax = b. (10.5.1)

Despite its simplicity, there are two fundamentally distinct classes of linear
systems, as shown in Figure 10.5.1. In order to keep things concrete, we will
focus on the least squares solution for overdetermined systems. An example of
a least squares problem is as follows. Suppose we are given m data points of the
form {(ti, yi)}mi=1 and we’d like to fit a functional relation of the form y = f(t)
to this data. One way of constructing such a fit, is to choose a family of basis
function, say polynomials {pj(x)}mj=1 and to guess that

f(t) =

n∑

j=1

cjpj(t).
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Solving linear systems

=
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Overdetermined Underdetermined

Ex. Least squares, 
linear regression

Compressed sensing, 
inverse problems, 
matrix completion

Ax = b
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Figure 10.5.1: Overdetermined systems often arise in least squares and linear
regression. Undetermined systems arise in applications such as compressed sens-
ing and inverse problems.

.

The function f(t) is a perfect fit if it satisfies

fi =

m∑

j=1

cjpj(ti), 1 ≤ i ≤ m, (10.5.2)

which is of the form Ax = b, with

xj = cj , bj = yj , Aij = pj(ti), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

In practice, we do not expect an exact fit and our task is to find a principled
solution to the problem that accounts for this fact.

The least squares solution is obtained by replacing the equation Ax = b
(which does not have a solution) with the equation ATAx = AT b, (which does
have a solution). This is best seen geometrically: multiplying a vector y by AT
is equivalent to orthogonal projection of y onto the column space of A. It is
immediate that the matrix ATA is symmetric. Further, it is at least positive
semi-definite, since

xTATAx = |Ax|2 ≥ 0,

and it is strictly positive definite when the columns ofA are linearly independent.
This is a mild assumption that usually holds in practice.

Let us now explain how the QR factorization may be used to solve the least
squares problem. We substitute A = QR in the the least squares equation

ATAx = b,

and use the fact that QTQ = I to obtain the equation

RTRx = RTQT b.

Since ATA is invertible, so is R, and the least squares solution satisfies

Rx = QT b.
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This system is lower-triangular and may be solved by backsubstitution. To see
this, assume that n = 3, write c = QT b and observe that we have the system

r11x1 + r12x2 + r13x3 = c3,

r22x2 + r23x3 = c2,

r33x3 = c3.

We first solve for x3, then for x2, and then x1. Clearly, this procedure works
for all n.

10.6 The power method
The symmetric eigenvalue problem is one of the fundamental problems in nu-
merical linear algebra. We assume given a real symmetric matrix A. Our task
is to compute its eigenvalues. The method we choose depends strongly on our
needs. For example, in applications such as search engines, what matters the
most are the top eigenvalues of a large matrix (in particular, we don’t need all
the eigenvalues). On the other hand, if our goal is to understand the linear
stability of a control system, we may well need all the eigenvalues of A.

We have encountered a simple, but important, method to compute the top
eigenvector of a matrix in the very first section of this book: the equilibrium
distribution for a stationary ergodic Markov chain is the unique left eigenvector
with eigenvalue 1. All other eigenvalues of the Markov chain lie within the
unit disk in the complex plane. This is an important example (for example,
it has the same structure as PageRank) and it is helpful to think dynamically.
We expect the pmf of a Markov chain to approach its equilibrium distribution
as time increases. Further, we also know that the pmf of the Markov chain
evolves according to the forward equation. This suggests the following iterative
algorithm called the power method . Suppose the eigenvalues of A are ordered
in absolute value such that

|λ1| > |λ2| ≥ . . . |λk| . . . ≥ |λn|.

We have assumed the top eigenvalue is distinct for simplicity. Choose a random
initial vector x0, normalize it to length 1, and define the sequence

xk = Akx0, k ≥ 0.

Since x0 is a linear combination of the eigenvectors {vj}nj=1 of A, we have

x0 = c1v1 + c2v2 + . . . cnvn,

and
xk = c1λ

k
1v1 + . . . cnλ

k
nvn.

Dividing through by λ1, we see that

xk = λk1

(
c1v1 + (

λ2
λ1

)kv2 + . . .+ (
λn
λ1

)kvn

)
.
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As k → ∞, all terms of this sum decay exponentially fast to zero. Therefore,
normalizing by the length, we see that

lim
k→∞

xk
|xk|

= v1.

10.7 The QR algorithm and the the QR flow
The QR factorization is also the foundation for a successful algorithm for diago-
nalizing a matrix. The simplest version of this method goes as follows. Assume
given a real symmetric matrix A. We construct a sequence of matrices {Ak}∞k=0

with the initial condition A0 = A as follows. First factor

A0 = Q0R0

and then intertwine the factors setting

A1 = R0Q0.

Now proceed inductively, factoring and intertwining

Ak = QkRk, Ak+1 = RkQk, k ≥ 0.

Since Q is orthogonal, QT = Q−1, and we find that

Ak+1 = QTkAkQk.

This ensures that all the matrices Ak have the same eigenvalues (we say that
they are isospectral). We may also write this sequence in the form

Ak+1 = UTk A0Uk, Uk = Q0Q1 · · ·Qn. (10.7.1)

For typical initial conditions 2

lim
k→∞

Ak = Λ, lim
k→∞

Uk = U,

where Λ and U are the diagonal matrix of eigenvalues, and the matrix of eigen-
vectors respectively in the diagonalization

A = UΛUT .

This algorithm is a striking demonstration of the power of the QR factorization.
Practical implementation of the QR algorithm requires both preprocessing

and acceleration. The preprocessing step is another factorization: a symmetric
matrix A may be tridiagonalized through a sequence of easily computed rota-
tions called Housholder matrices. It turns out that the QR algorithm preserves
the tridiagonal structure; thus, we usually assume that the initial matrix A is

2That is, implement this scheme in MATLAB and check that this works!
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tridiagonal. A second crucial modification of the QR algorithm is to shift it with
a carefully chosen diagonal matrix prior to each factorization step, and then to
‘unshift’ at the end of the factorization step. We will not consider these steps
here; see [15].

The convergence of the QR algorithm reflects a subtle mathematical struc-
ture. 3 In order to illustrate this structure, we first introduce a characterization
of orthogonal matrices. Let

O(n) = {Q ∈Mn×n
∣∣QTQ = I } (10.7.2)

One may think about O(n)in several different ways. First, it is the solution
set for n(n + 1)/2 quadratic equations (since QTQ is symmetric, the matrix
equation QTQ = I is equivalent to n(n + 1)/2 scalar equations). So we may
think about it as an n(n − 1)/2 dimensional “surface” in the n2 dimensional
space Mn×n.

More importantly, O(n) is a group. This means that O(n) is closed under
multiplication, that it has an identity element and that the inverse of any el-
ement is also in O(n). We won’t verify all these properties, but in order to
help the reader get started, here is how one checks that O(n) is closed under
multiplication. Consider the product Q1Q2 of two matrices Q1 and Q2 in O(n).
Then

(Q1Q2)TQ1Q2 = QT2Q
T
1Q1Q2 = QT2Q2 = I,

so that Q1Q2 ∈ O(n).
The elements of the group O(n) are generated by solutions to the linear

differential equation
U̇ = UK, U(0) = I, (10.7.3)

where the matrix K is skew-symmetric, i.e.,

K = −KT . (10.7.4)

Equation (10.7.3) is a (matrix-valued) linear differential equation with constant
coefficients, and it can be solved in much the same way as the linear differential
equations you have seen in your first class on the subject. The solution is

U(t) = etKU(0), etK =

∞∑

m=0

1

m!
(tK)m. (10.7.5)

In fact, if one has a curve K(t) in the space of skew-symmetric matrices, it is
always the case that the solution to the differential equation

U̇ = UK(t), U(0) = I (10.7.6)

is a curve U(t) in O(n). This observation provides a way to generate isospectral
curves in the space of symmetric matrices. Assume given a curve K(t), let U(t)

3There are other ways to prove convergence of the QR algorithm. Our purpose here is to
illustrate an unexpected connection with differential equations.
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solve equation 10.7.6, assume that B0 is a real symmetric matrix and consider
the matrices B(t) defined by

B(t) = U(t)TB0U(t). (10.7.7)

We differentiate equation (10.7.7) and use equation (10.7.6) to find

Ḃ = BK −KB := [B,K], (10.7.8)

where we have defined the bracket [·, ·] in the second equality. 4

We need two more notions. Given any matrix M ∈ Mn×n, let M−, denotes
the matrix whose strictly lower-triangular entries are the same as M and other
entries are zero; let M0 be the diagonal matrix whose entries are the diagonal
of M ; and let M+ be the strictly upper-triangular matrix analogous to M−.
Clearly,

M = M− +M0 +M+.

We define the projection of a matrix onto the space of skew-symmetric matrices
through the relation

PsM := M− −MT
− .

The second notion we need is that of the logarithm of a matrix. Given a real
symmetric matrix A, with diagonalization A = UΛUT , we define the matrix

lnA = U ln ΛUT , ln Λ = diag(lnλ1, . . . , lnλn).

Here finally is the link between the QR algorithm and differential equations.
Consider the initial value problem

Ȧ = [A,Ps lnA], A(0) = A0, (10.7.9)

where A0 is the initial condition for the QR algorithm. Let A(t) denote the
solution to equation (10.7.9). We call this the QR flow. Then the QR flow and
the QR algorithm agree at integer times: that is,

A(k) = Ak, k ≥ 0. (10.7.10)

A full explanation of these facts requires more machinery than we can develop
here. The interested reader is referred to [3]. Our purpose is to illustrate some
of the ‘magic’ – in the sense of unexpected connections between areas– that lives
behind successful algorithms.

4This is called the Lie (pronounced Lee) bracket.
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Chapter 11

Fast methods II: Gradient
flows

11.1 Introduction

All problems in machine learning require a fast method to approximate the
minimum of a function. Bayesian methods require a computation of the maxi-
mum a posteriori estimate and neural nets rely on training by minimizing a loss
function. In the previous chapters, we have encountered three algorithms that
address this problem:

1. Markov Chain Monte Carlo (e.g. when deciphering a substitution cipher).

2. Dynamic programming (e.g. when parsing a music score).

3. The backpropagation algorithm (when training a feed-forward neural net-
work).

In this chapter, we step away from learning and focus on optimization. This
allows us to illustrate a central question in applied mathematics “ How does one
find the minimum of a function?”

We will study this question through the lens of gradient flows, paying ex-
plicit attention to the underlying Riemannian metric. This topic, along with
the closely related idea of mass transportation, has been an important devel-
opment in applied mathematics in the past twenty years. We illustrate these
ideas through numerical applications (root finding, linear and semidefinite pro-
gramming), and examples of non-Euclidean geometry. The relation between
these ‘applied’ and ‘pure’ ideas is that Karmarkar’s method, a fundamental in-
terior point scheme for linear and semidefinite programming is a gradient flows
with respect to a non-Euclidean geometry. Similarly, the heat equation is the
gradient descent of entropy with respect to a Wasserstein geometry.
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11.2 Newton’s method

In this section, we assume given a function f : Rd → R. Our task is to find
its minima. We used gradient flows and gradient descent to solve this problem
in Section 8.3. The term gradient flow always refers to ordinary differential
equations like

ẋ = −∇f(x), x ∈ Rd, (11.2.1)

and its generalization to Riemannian metric later in this chapter. The term
gradient descent is used to describe discrete time evolution, as in the following
discretization of equation (11.2.1)

xn+1 = xn − λn∇f(xn), n ≥ 0. (11.2.2)

Here the parameter λn denotes the size of the (continuous) time increment at
the (discrete) time n. The interplay between gradient flows and gradient descent
is as follows. It is conceptually simpler to work in continuous time. For example,
the convergence of gradient flows is typically easier to establish. On the other
hand, numerical implementations are always in discrete time.

Newton’s method (or the Newton-Raphson method) was initially viewed as
a numerical scheme to determine the roots of a function g : Rd → R. But since
the critical points of a function f : Rd → R are also the zeros of g(x) := ∇f(x)
the same method may be used for optimization.

We first illustrate the method for functions g : R → R and then extend it
to g : Rd → R. We generate a sequence of approximants {xn}∞n=1 to a root x∗
as follows. Given xn, we shoot forward from (xn, g(xn)) along a ray with slope
g′(xn) until it intersects the x-axis as shown in Figure 11.2.1. Given an initial
guess x0, this geometric rule yields the iterative scheme

xn+1 = xn −
g(xn)

g′(xn)
, n ≥ 0. (11.2.3)

When this scheme converges, it works like a charm, because of the quadratic
rate of convergence. This error analysis goes as follows. We expand the function
g(x) in a neighborhood of x∗ using Taylor series to obtain

g(x) = g(x∗) + g′(x∗)(x− x∗) +
1

2
g′′(x∗)(x− x∗)2 + . . . (11.2.4)

= g′(x∗)(x− x∗) +
1

2
g′′(x∗)(x− x∗)2 + . . . ,

since g(x∗) = 0. Similarly, we may also expand the slope

g′(x) = g′(x∗) + g′′(x∗)(x− x∗) + . . .

to find
g(xn)

g′(xn)
= (xn − x∗)−

g′′(x∗)
2g′(x∗)

(xn − x∗)2 + . . . (11.2.5)
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Figure 11.2.1: Newton’s method on the line. Given (xn, g(xn) and the slope
g′(xn), the next point xn+1 is determined as shown in the figure. These iterates
xn converge to the root x∗ of g.

.

The definition of the iteration and equation (11.2.5) now yield the approximation

xn+1 − x∗ =
g′′(x∗)
2g′(x∗)

(xn − x∗)2 + . . . (11.2.6)

This is the quadratic relationship that underlies the fast convergence of New-
ton’s method. Rather than pin down error rates with an ε − δ argument, we
illustrate the main idea through a comparison between two recurrence relations:
the linear recurrence with a parameter θ > 1

an+1 =
1

θ
an, (11.2.7)

and the quadratic recurrence with parameter κ ∈ (0,∞)

bn+1 = κb2n. (11.2.8)

The solution to the linear recurrence is

an = θ−na0 = e−n ln θa0. (11.2.9)

Thus, an → 0 exponentially with rate ln θ. On the other hand, the solution to
the quadratic recurrence is

bn = κ2
n−1b2

n

0 , (11.2.10)

so that bn → 0 at a super-exponential rate provided κ2b20 < 1. This rate is
the margin of victory for Newton’s method. The main subtlety in Newton’s
method, however, is that may not converge at all if the initial condition of the
scheme is not chosen appropriately.
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Let us now explain how to extend this method to optimization. Assume
given a function f : Rd → R. In order to determine a minimum of f , we apply
Newton’s scheme to find the zeros of ∇f . This yields the iteration

xn+1 = xn − (D2f(xn))−1∇f(xn), n ≥ 0. (11.2.11)

The gradient ∇f is the vector-valued replacement for the term g(x) and the
inverse of the Hessian matrix replaces the term 1/g′(x) in equation (11.2.3).
When we compare equation (11.2.11) with equation (11.2.2), we see that the
time step λn has been replaced with the inverse of the Hessian.

When choosing between gradient descent (11.2.2) and Newton’s method (11.2.11),
we must balance the cost of computing the Hessian (O(d2) terms to be evalu-
ated at each time step) against the accelerated rate of convergence of Newton’s
method.

The primary global criterion for the convergence of (11.2.11) is convexity . A
function f : Rd → R is said to be convex if

f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y), x, y ∈ Rd, θ ∈ (0, 1). (11.2.12)

We say that f is strictly convex, if the above inequality is strict whenever x and
y are distinct points. When f is twice differentiable equation (11.2.12) implies
that the Hessian matrix D2f(x) is positive definite for each x ∈ Rd.

Theorem 22. Assume f : Rd → R is strictly convex. Then f has a unique
minimizer.

Proof. Suppose f has two distinct minimizers x and y and consider the value
of f at the midpoint of the segment joining x and y. Equation 11.2.12 then
implies

f(
1

2
(x+ y)) <

1

2
f(x) +

1

2
f(y), (11.2.13)

contradicting the assumption that x and y are minimizers.

Theorem 23. Assume f : Rd → R is strictly convex and twice differentiable.
Then the gradient flow (11.2.1) converges to the unique minimizer x∗.

Proof. This is an easy consequence of the basic energy estimate for gradient
flows. We evaluate f(x(t)) along a solution to find that

df(x(t))

dt
= ∇f(x) · ẋ = −|∇f(x)|2 ≤ 0,

with strict inequality unless x(t) = x∗. Thus, f(x(t)) decreases in time and is
bounded below by f(x∗). Thus, limt→∞ f(x(t)) exists and by the above calcu-
lation, it must be f(x∗). Since f is strictly convex, it has a unique minimum,
and limt→∞ x(t) = x∗.

The convergence of Newton’s method ( 11.2.11), assuming convexity of f ,
should seem intuitively natural based on Figure 11.2.1. However, the above
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estimates do not extend to ( 11.2.11). It is only possible to establish convergence
of Newton’s method in a neighborhood of x∗. In general, the convergence of
Newton’s method is subtle. Striking examples of non-convergence have been
studied in the field of complex dynamics (one typically considers a polynomial
p : C → C and we seeks its zeros using Newton’s method). This should be a
simple situation, but it is not!

11.3 Riemannian metrics

In this section, we introduce the idea of a Riemannian metric in preparation
for the idea of a gradient flow relative to a metric. These notions are usually
discussed in classes in differential geometry. We will discuss these ideas in a more
formal manner, illustrating them with examples. This treatment will suffice for
a users-end view of gradient flows, while still providing enough motivation for
the mathematically inclined reader to learn more about these ideas.

To get started, lets recall the geometry of curves in the plane. Assume given
a smooth curve γ : [0, 1] → R2 in the plane. The derivative γ̇(t) is a tangent
vector ‘rooted’ at the point γ(t) and the length of the curve is defined to be

L[γ] =

∫ 1

0

|γ̇(t)| dt, |v| :=
√
v21 + v22 , v ∈ R2. (11.3.1)

This expression should be familiar. An underlying assumption, which we will
soon modify, is that the length of a vector v rooted at γ(t), does not depend on
γ(t), and is given by the expression in equation (11.3.1). The set of all vectors
‘rooted at γ(t)’ is called the tangent space at γ(t). In the case of Rn, the tangent
space at any point x ∈ Rn is a copy of Rn. However, this is not true for even
the simplest surfaces, such as spheres, which is why it is necessary to separate
the concept of the tangent space from that of the ambient space.

Let P+(n) denote the space of (real, symmetric) positive definite matrices.
A Riemannian metric on Rn (or metric for short, when the context is clear) is
a map g : Rn → P+(n). Given a metric g on Rn, the length of a vector v rooted
at x is defined by

|v|2g(x) := vT g(x)v =

n∑

i,j=1

gij(x)vivj . (11.3.2)

The positive definite matrix g allows us to introduce anisotropy as shown in
Figure 11.3.1. Aside from this, familiar formulas work in much the same way.
For example, the length of a parametrized curve γ : [0, 1]→ Rn is then given by

Lg(γ) =

∫ 1

0

|γ̇(t)|g(γ(t)) dt. (11.3.3)
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Intuition for positive definite matrices

A positive definite matrix defines an ellipsoid (ellipse in 2D). 

Unit ball for standard metric Unit ball for metric g 

vT gv = 1
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Figure 11.3.1: The unit ball in a non-Euclidean metric defines an ellipsoid in
Euclidean space.

.

The shortest path between two points a and b, also called the geodesic con-
necting a and b, satisfies the following nonlinear differential equation

ẍi + Γijkẋj ẋk = 0, (11.3.4)

with the boundary conditions x(0) = a and x(1) = b. The terms Γijk are defined
through the metric

Γijk =
1

2

∑

l

gil
(
∂glj
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

)
, glm := (g−1)lm (11.3.5)

Equation (11.3.4) is obtained by computing the first variation of the length L[γ]
as follows. Let η : [0, 1]→ Rn be a smooth function such that η(0) = η(1) = 0.
We define the derivative of L in the direction η through the formula

dL[γ](η) :=
d

dτ
L[γ + τη]

∣∣∣∣
τ=0

. (11.3.6)

This definition provides a way to extend the calculus criterion for a extremum
(that the derivative of a function vanishes at a critical point), to functionals like
L[γ]. The reader should compute this derivative by differentiating with respect
to τ under the integral sign, then integrating by parts to obtain an integrand
that is a multiple of η, and then finally using the fact that η is arbitrary to
deduce equation (11.3.5). It is somewhat simpler to first do the calculation for
the action functional

Ag[γ] =
1

2

∫ 1

0

|γ̇(t)|2g(γ(t)) dt. (11.3.7)

Historically, the idea of a metric arose from mathematical, physical and
philosophical considerations on the nature of space in the 19th century. The
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The Poincare metric and hyperbolic space 

Geodesic = circle perpendicular to the boundary 
that joins the two points.

Figure 11.3.2: Geodesics in the upper half plane with the metric (11.3.8).
.

fundamental question considered at the time, especially by the German math-
ematician Bernhard Riemann, was whether space is absolute or relative and
whether one could deduce the properties of space from local measurements. The
importance of these ideas for physics only became apparent in the early 20th
century when Einstein introduced the general theory of relativity, abandoning
Newton’s theory of gravitation.

Today, the idea of Riemannian geometry serves as a unifying tool for sev-
eral areas, including the rather pragmatic considerations of this chapter. In
order to make this connection, we briefly discuss a high point of 19th century
mathematics: hyperbolic space. Consider the upper-half plane with metric

H = {(x, y) ∈ R2, y > 0}, g(x, y) =
1

y2

(
1 0
0 1

)
. (11.3.8)

In this case, the geodesic connecting two points may be computed explicitly
and is shown in Figure 11.3.2. One way to prove this fact is to substitute the
above expression for g in equation (11.3.4) and to solve the resulting differential
equation. Despite the fact that equation (11.3.4) is nonlinear, these equations
can be solved and the solutions expressed in terms of hyperbolic sines and
cosines.

Aside from their intrinsic beauty (and artistic possibilities; see Figure 11.3.4)
these geodesic reveal a new geometric idea: intrinsic curvature. Given a Rie-
mannian metric on Rn and three distinct points a, b and c in Rn we define
the geodesic triangle abc to be the polygon whose sides are the geodesics ab,
bc and ca. We may measure the angle between tangents to these geodesics at
each vertex of abc. Unlike Euclidean space, the sum of the angles at the three
vertices of the triangle is strictly less than π. The hyperbolic plane is negatively
curved as shown in Figure 11.3.3! 1

1A precise notion of intrinsic curvature is more subtle and it turns out that the space
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The curvature of surfaces 

Positive curvature Negative curvature

Sphere Hyperboloid

Figure 11.3.3: Geodesic triangles on surfaces of constant curvature.
.

Escher's tilings: define polygons with geodesics and use 
these to tile space.  

Essentially the same rules apply to every simply connected 
subset of the plane (except for the entire plane).

Figure 11.3.4: Tilings of the upper-half plane in the work of the Dutch artist
M.C. Escher.

.
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The hyperbolic plane is just the first of a fascinating collection of negatively
curved spaces. Another space, which is directly relevant to us, is a generalization
of H to positive-definite matrices. We illustrate this idea with two explicit
examples of metrics on matrices, one flat and one negatively curved.

1. The space Mm,n of real m× n matrices with metric

‖M‖22 :=
∑

j,k

M2
jk.

This metric is called the Frobenius metric (or Frobenius norm) and it is
the generalization to matrices of the usual Euclidean norm |x|2 =

∑
j x

2
j

for x ∈ Rn. It is a flat metric.

2. The space P(n) of positive definite matrices with the metric

g(P )(X,X) := Tr(P−1XP−1X).

Here X is a real symmetric matrix and is a tangent vector rooted at P .
The above formula defines its length. The notational shift from lower-case
to upper-case letters is to remind us that we’re working with matrices, not
vectors. This metric is called the trace metric . 2

The geodesic equations may be solved for both these geometries. Given two
matrices M0 and M1 in Mm,n, the geodesic joining them is (as expected) the
straight line

M(t) = (1− t)M0 + tM1, t ∈ [0, 1].

The trace metric is more interesting and the geodesic connecting A and B in
P(n) is

P (t) = A1/2
(
A−1/2BA−1/2

)t
A1/2, 0 ≤ t ≤ 1.

This is a more subtle formula. Each positive definite matrix has a unique pos-
itive definite square-root and these square-roots are used here. Similarly, the
power P t of a positive definite matrix is defined using its diagonalization. This
geometry is discussed at length in [1, Ch. 6]. The space P(n) is negatively
curved.

11.4 Gradient flows

We will distinguish between the differential of a function and its gradient. The
differential of a function f : Rn → R is defined using the notion of a smooth
curve in Rn alone, as shown in Figure 11.4.1. As an operator, the differential

H has constant negative curvature, while the two-sphere has constant positive curvature.
Nevertheless, the use of geodesic triangles is a robust idea and provides valuable intuition for
what curvature means.

2The trace of a square matrix A, written Tr(A), is the sum of its diagonal entries
∑
j ajj .
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�(t)
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The differential is given by the formula:

�(0) = x, �̇(0) = v
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df(x)(v) := d
dtf(�(t))
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t=0
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Figure 11.4.1: The differential of a function depends only on the tangent to the
curve at a point, not on the underlying metric.

.

of f takes as input a tangent vector v in the tangent space at x and spits out
a number df(x)(v) (read the differential of f at x acting on v). Thus, the
differential df(x) is an element of the dual space to the tangent space at x.

On the other hand, the gradient of a function at x, written gradf(x) is a
vector in the tangent space at x. It is defined by duality as follows:

(gradf(x), v)g = df(x)v, (11.4.1)

for every vector v in the tangent space at x. On the left hand side, we have the
inner-product between the vectors v and gradf(x). On the right hand side, we
have the differential acting on v. Since this equality holds for all v, it determines
the gradient completely.

The main reason for being so cautious with this definition is that the idea of
differentiation is distinct from the idea of distance. Conceptually, the notion of
differentiation requires only the notion of a smooth curve. The role of the metric
is to convert the differential into a tangent vector at x as shown in Figure 11.4.1.

Gradient flows may now be defined in a form that is the natural generaliza-
tion of equation (11.2.1)

ẋ = −gradgf(x). (11.4.2)

The fundamental estimate for gradient flows remains largely the same, though
we must use inner-products with respect to the metric g. Thus, when x(t) solves
( 11.4.3) we have

d

dt
f(x(t)) = −(gradgf(x), ẋ)g = −|gradf(x)|2g. (11.4.3)
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11.5 Linear programming and Karmarkar’s flow
We illustrate the idea of a gradient flow on two fundamental classes of optimiza-
tion problems, linear and semidefinite programming (abbreviated LP and SDP
respectively).

Linear programming was independently formulated during the 1940s in the
US (by Dantzig, Koopmans, von Neumann) and the former Soviet Union (by
Kantorovich). These methods were introduced to solve problems of logistics and
economic planning during the second world war. Today they constitute one of
the major applications of mathematics and underly all modern scheduling appli-
cations (e.g. communication and transportation systems). The main modeling
ideas in LP and SDP are

1. Affine equalities are used to model constraints (e.g on resources).

2. The cost function is affine.

The standard form of a linear program is as follows. We seek to maximize the
cost function

cTx, (11.5.1)

subject to m constraints
aTk x ≤ bk, (11.5.2)

and the positivity constraint

xj ≥ 0, 1 ≤ j ≤ n. (11.5.3)

Here n is the dimension of the ambient space; x, c and each aj are vectors in
Rn. The number of constraints, m, has no relation to n.

The constraints (11.5.2) and (11.5.3) determine a convex polytope P, called
the feasible region. Since a linear function achieves its maximum on a convex
set at a boundary point, it is immediate that the solution to (11.5.1) must lie
on the boundary S = ∂P.

The main computational task in linear programming is to find extremizing
boundary point(s) efficiently. In order to get a feel for this task, let us consider
a specific linear programming problem called the assignment problem, shown in
Figure 11.5.1. Assume the number of vertices, indexed by i in Figure 11.5.1, is
n.

Strictly speaking, the state space for this is the set of permutations on n
symbols. We may reduce it to a linear programming problem in Rn by embed-
ding the set of permutations into Rn as follows: map each permutation σ (which
is a map from i ∈ {1, . . . , n} to {1, . . . , n}) to the point (σ(1), . . . , σ(n)) ∈ Rn.
These points form the vertices of a convex polytope called the permutohedron.
The cost function in Figure 11.5.1 is now well-defined at each vertex, and by
linearity, on each point in the interior of the permutohedron. This example
illustrates a typical challenge in linear programming: we have a minimization
problem that is simple to state, but it is defined on a finite set that is too large
to search (n! in this case).
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The assignment problem

Given

1) A bipartite graph.

2) A weight C(i,j) for the 
edge linking i and j.

Goal: Find the assignment (permutation) that minimizes 

f(⇡) =
P

i C(i,⇡(i))
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This is equivalent to a linear program.

Figure 11.5.1: The assignment problem
.
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