
A QUICK INTRODUCTION TO KINETIC THEORY

GOVIND MENON

Abstract. The purpose of these notes is to advertise kinetic theory to begin-
ning graduate students with an interest in analysis and differential equations.
Kinetic theory is a very active area of research in mathematics, yet there are
few introductory expositions to the field. These notes provide an overview of
some fundamental examples in kinetic theory, while including sufficient detail
to make it apparent that the subject has real mathematical depth.

The notes explore several themes. The first chapter consists of a set of ex-
amples from statistical physics. The second chapter is an introduction to the
Boltzmann equation, including its derivation from the BBGKY hierarchy. The
third chapter concerns the analysis of an exactly solvable example – Smolu-
chowski’s coagulation equation. The final chapter includes an exactly solvable
particle system introduced by Kac to illustrate Zermelo’s paradox.
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1. Examples of kinetic models

Kinetic theory provides an effective description of the dynamics of a large system
of interacting particles. The central idea is to replace a detailed description of the
dynamics in the state space by evolution equations for population densities. For
instance, the dynamics of N identical particles on the line is typically given by a
deterministic or stochastic rule for the evolution of states x = (x1, . . . , xn) ∈ RN .
In a kinetic model of such a system, the unknown is a number density f(x, t). Here
x ∈ R and f(x, t) denotes the typical number of particles at time t whose positions
are x. The link between the particle system and the kinetic equations are as follows.
For any −∞ < a < b <∞

(1.1)
1

b− a

∫ b

a

f(x, t) dx ≈ 1
N

N∑
i=1

1(a,b)(xi(t)).

Given the rule for the evolution of x(t), our task is to rigorously derive and analyze
an evolution equation for f(x, t). An important aspect of the theory are the prob-
abilistic assumptions – implicit and explicit – that allow us to replace the particle
dynamics with an averaged description of population densities.

Kinetic theory has traditionally been tied to foundational questions in physics –
in particular, the derivation of thermodynamics from Newton’s laws. A particularly
beautiful description of these ideas may be found in Kac’s book [7]. However, the
range of kinetic theory is much broader. Today we view it as a set of ideas that
provides a consistent method of averaging over interacting particles in widely dif-
ferent contexts. Thus, while the examples below are mainly drawn from statistical
physics, this should simply be seen as a reflection of my personal taste. New particle
systems continue to arise in applications, often in unexpected ways. For instance,
kinetic theory has been used to describe collective behavior in social networks [17].

1.1. The Boltzmann equation. The subject of kinetic theory, or more broadly
statistical mechanics, was founded by Boltzmann, Clausis and Maxwell in the period
1850-1875. At the time, the atomic hypothesis – the view that matter consists
of atoms – was not fully accepted. Their goal was to describe the macroscopic
properties of matter from an atomic hypothesis. In particular, their work provided
a consistent explanation for the laws of an ideal gas –Boyle’s, Charles’ law, and
Gay-Lussac’s law – that had been established empirically in the preceding centuries.
Their work also illustrated the subtle relation between irreversibility, disorder and
the second law of thermodynamics. Roughly speaking, in our extremely abbreviated
presentation, the empirical laws can be obtained from the equilibrium solutions
of the Boltzmann equation, while irreversibility is inextricably tied to the time
evolution of solutions to the Boltzmann equation. In this lecture, we introduce the
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Boltzmann equation, along with a heuristic derivation. A more careful derivation is
presented in Chapter 3 and the question of foundations is illustrated in Chapter 5.

Let Td denote the d-dimensional torus. We consider N identical hard spheres
of diameter 0 < δ � 1 in Td, d ≥ 2 that interact through elastic collisions. The
adjective ‘hard’ means that the spheres are not allowed to overlap. Thus, the
centers, {xi}Ni=1 of the particles must satisfy the constraint

(1.2) |xi − xj | ≥ δ, 1 ≤ i < j ≤ N.

Let MN
δ ⊂ TdN denote the set of points satisfying this constraint. The state space

of our system consists of vectors (x,v) ∈ MN
δ × RdN describing the positions and

velocities of the centers of each particle

(1.3) x = (x1, . . . , xN ) , v = (v1, . . . , vN ) .

The particles stream freely between collisions, that is

(1.4) ẋi = vi, v̇i = 0, i = 1, . . . N,

and the velocity jumps at each collisions. The jump condition at collisions is de-
termined as follows.

When two spheres A and B with incoming velocities v and w collide elasti-
cally, the outgoing velocities, denoted v′ and w′, are determined by conservation of
momentum and energy:

(1.5) v + w = v′ + w′, |v|2 + |w|2 = |v′|2 + |w′|2.
The solution to these equations has an elegant expression. Let l ∈ Sd−1 denote the
unit vector connecting the center of sphere A to B. Then (as shown in Section 2
below)

(1.6) v′ = v − ((v − w) · l) l, w′ = w + ((v − w) · l) l.
Let Al : R2d → R2d denote the linear transformation (v, w) 7→ (v′, w′) defined
by (1.6) above. The transformation Al is reversible: that is, Al(v′, w′) = (v, w)
and det(Al) = −1 (see Lemma 2.1 below). Further, Al = A−l. We will use these
properties below.

Thus, when two spheres, say j and k, collide in the direction l at time t , equation
(1.5) must be augmented with the jump condition

(1.7) (vj(t+), vk(t+)) = Al(vj(t−), vk(t−)), vi(t+) = vi(t−), i 6= j, k.

It is not apparent that we have a well-defined particle system! For instance, by
arranging N particles on a line in ‘pathological’ initial conditions, it is possible to
arrange for triple collisions, as well as higher order collisions. In fact, viewed as a
classical dynamical system, the analysis of the hard sphere gas is very subtle. But
it is reasonable to assume that for a very dilute gas, binary collisions are dominant.
This is the regime described by the Boltzmann equations. We replace a detailed
description of the states (x,v) with a number density f(x, v, t), (x, v) ∈ Td × Rd
in the dilute limit N → ∞, δ → 0, Nδd−1 → c > 0. 1 In this limit, the fraction
of space occupied by the particles vanishes, because this volume is proportional
to Nδd. However, as we see below, the scaling Nδd−1 → c > 0 ensures that the
frequency of collisions betweens particles remains O(1).

1The Boltzmann equation conserves the total number of particles, and it may always be nor-
malized to a probability density. However, we prefer the term number density to probability
density since in many kinetic applications f is not a probability density.
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Figure 1. The influence of l on the rate of collisions. With-
out loss of generality, we may assume that the sphere on the right
moves with the velocity difference w−v and that the sphere on the
left is stationary. A collision occurs in time dt if the sphere on the
right intersects the collision cylinder with volume δd−1dl(w−v)·ldt.
The factor δd−1dl is the base of the cylinder, and (w− v) · ldt is its
length.

It is simplest to describe the Boltzmann equation under the assumption that f
does not depend on x. This corresponds to the assumption that the particles are
equally distributed in space. If at time t, the centers of two spheres are as shown
in Figure 1, and (v−w) · l > 0, these particles collide in the time interval [t, t+ dt].
Let nA ≈ Nf(v, t) denote the particles with velocity v and nB = Nf(w, t) denote
the number of particles with velocity B. Each such collision creates nAnB particles
with velocities v′ and w′ in the time interval [t, t+dt]. Since, the collision process is
reversible, analogous collisions between n′A and n′B particles with velocity v′ and w′

create n′An
′
B particles with velocity v and w. Summing over all collisions, collecting

the factors ofN and using the scalingNδd−1 = 1, we obtain the Boltzmann equation
for the hard-sphere gas

(1.8) ∂tf(v, t) =
∫

Rd

∫
Sd−1

(f(v′, t)f(w′, t)− f(v, t)f(w, t)) ((v − w) · l)+ dl dw.

This collision kernel admits some slightly different formulations because Al = A−l
and uniform measure on Sd−1 under l 7→ −l. This symmetry may be used to replace
the kernel ((v − w) · l)+ by the kernel ((w − v) · l)+ (in each case, the integrand is
non-zero only on a hemisphere). Similarly, we may replace the kernel ((v − w) · l)+
by |(v − w) · l| at the cost of a factor of 1/2:

(1.9) ∂tf = Q(f, f) := Q+(f, f)−Q−(f, f),

where the collision kernel Q has been split into birth and death terms, Q+ and Q−
respectively, given by

Q−(f, f)(v, t) =
1
2

∫
Rd

∫
Sd−1

f(v, t)f(w, t) |(v − w) · l| dl dw,(1.10)

Q+(f, f)(v, t) =
1
2

∫
Rd

∫
Sd−1

f(v′, t)f(w′, t) |(v − w) · l| dl dw,(1.11)

where (v′, w′) = A(v, w). In (1.10), the term f(v, t) does not depend on either
variable of integration w, and the term f(w, t) is independent of l. However, the
collision term has a symmetric appearance when it is written as above.
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Finally, here is the non-homogeneous Boltzmann equation for f(x, v, t). The free
streaming of each equation gives rise to the transport term v ·∇f and if we assume
that the combined effect of streaming and collisions is additive (again, a reasonable
assumption in the dilute limit), we find

(1.12) ∂tf + v · ∇xf = Q(f, f),

with the collision kernel defined in (1.9)–(1.11). We will derive (1.12) from the
BBGKY hierarchy in Chapter 3.

1.2. Kac’s caricature of the Boltzmann equation. Much of the modern math-
ematical interest in the Boltzmann equations was stimulated by Mark Kac’s work
in the 1950s [7]. He emphasized the importance of a careful examination of the
probabilistic assumptions that underly Boltzmann’s theory, and introduced several
simplified examples that yield interesting insights into the Boltzmann equation.
One such model, is a caricature of the Boltzmann equation based on a stochastic
particle system that conserves energy, but not momentum. In the previous section,
we introduced the Boltzmann equation in space dimension d ≥ 2. The restric-
tion d ≥ 2 is necessary, because when d = 1 the hard sphere gas is trivial! In
one-dimensional collisions, the particles exchange velocity upon collision, and the
overall effect of the collision is simply an exchange in particle labels. However, it
would greatly simplify the analysis of the Boltzmann equation if we could identify
a simple one-dimensional model. Kac’s idea was to retain some key assumptions of
the Boltzmann theory – binary collisions and an angle dependent collision kernel,
and conservation of energy – in order to obtain an integral equation of Boltzmann
type that could be analyzed in detail.

In order to define Kac’s model, we first define a discrete Markov chain, and then
an associated continuous time Markov process. The states of the model are velocity
vectors v ∈ RN such that

∑N
i=1 |vi|2 = 2EN for some fixed energy E > 0 that is

independent of N . Each state v jumps to a new state v′ defined as follows. A
pair of indices (j, k) such that j < k is chosen with equal probability from all

(
N
2

)
pairs and an angle θ ∈ [0, 2π) is chosen with uniform probability. The state v′ has
coordinates

(1.13)
(
v′j
v′k

)
= B(θ)

(
vj
vk

)
, B(θ) =

(
cos θ sin θ
− sin θ cos θ

)
,

and v′i = vi for i 6= j, k.
This rule for obtaining new velocities is a one-dimensional analog of the collision

rule (1.6) with θ ∈ S1 playing the role of l ∈ Sd−1, and B(θ) : R2 → R2 playing the
role of the linear transformation A : R2d → R2d. As in the case of elastic collisions,
energy is conserved

(1.14) |v′|2 =
N∑
i=1

|v′i|2 =
N∑
i=1

|vi|2 = |v|2 = 2EN.

The above procedure defines a discrete time Markov chain. Each orbit of the chain is
a set of states v0,v1, . . . ,vn, . . . where vn+1 is obtained from vn by the rules above.
Finally, we may convert the Markov chain to a continuous time Markov process
by assuming that the transition rates are a constant multiple of the transition
probabilities defined above.
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Kac’s kinetic equation describes the N →∞ limit of this Markov process. Sum-
ming over binary collisions as in the Boltzmann equation,

(1.15) ∂tf = Q(f, f) = Q+(f, f)−Q−(f, f),

where the collision kernel is defined by

(1.16) Q+(f, f)(v, t) =
∫

R

∫ 2π

0

f(v cos θ + w sin θ, t)f(−v sin θ + w cos θ, t) dθ dw,

and

(1.17) Q−(f, f)(v, t) =
∫

R

∫ 2π

0

f(v, t)f(w, t) dθ dw.

1.3. Smoluchowski’s coagulation equations. The basic kinetic description of
clustering was introduced by Smoluchowski in 1917 to model the coagulations of
colloids. The same kinetic description has been used to model clustering in a wide
range of applications such as the formation of clouds; the formation of smoke, dust
and haze; gravitational accretion; and the evolution of animal populations, such as
schools of fish. Colloids are suspensions of small particles in a fluid. The particles
are small enough that they are subject to Brownian motion, but sufficiently larger
than the atomic scale that they admit a classical description (the typical size of
a colloidal particle is between 10−8 − 10−6m). Smoluchowski assumed that the
colloidal particles would execute Brownian motions, sticking together when they
meet. He postulated a kinetic equation for the number density f(x, t) of particles
of mass x per unit volume. 2 Smoluchowski’s coagulation equations are

(1.18) ∂tf = Q(f, f) = Q+(f, f)−Q−(f, f),

where the birth and death terms are of the form

Q+(f, f)(x, t) =
1
2

∫ x

0

f(x′, t)f(x− x′, t)K(x′, x− x′) dx′,(1.19)

Q−(f, f)(x, t) =
∫ x

0

f(x, t)f(x′, t)K(x, x′) dx′.(1.20)

All the details of the interaction of particles have been lumped into the symmetric
rate kernel K(x, y) which describes the rate at which a particle of size x meets a
particle of size y. Each time a particle of size x collides with another particle, it
becomes larger. This explains the form of the death term. Similarly, a particle of
size x is created each time a particle of size x′, with 0 ≤ x′ ≤ x meets a particle
of size x − x′. In order to avoid double-counting, it is necessary to introduce the
factor of 1/2 in the growth term.

For coagulation of colloidal particles, Smoluchowski derived the rate kernel

(1.21) K(x, y) =
(
x1/3 + y1/3

)(
x−1/3 + y−1/3

)
.

This kernel is certainly less intuitive than the kernel for the Boltzmann equation,
but perhaps the following heuristic explanation will help. The factor of 1/3 appears
because we assume the particles are spherical with constant density – then since x
is the mass, x1/3 is the typical length scale of a particle. The factors x1/3 and y1/3

in the rate correspond to a greater collision cross-section for larger particles. The
factors x−1/3 and y−1/3 arise from the Stokes-Einstein relation for the diffusion

2Its more suggestive to write m for mass, but these equations apply in other contexts, and
since the variable x is ‘standard’ notion for a variable, we will use x instead.
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constant of a spherical particle – large particles move slower. It is hard to analyze
(1.18) with this kernel and Smoluchowski used the following dubious approximation

(1.22) K(x, y) =
(
x1/3 + y1/3

)(
x−1/3 + y−1/3

)
?= 2,

obtained by ignoring the cross-terms x1/3y−1/3 and x−1/3y1/3!
We will not view this as an approximation. Instead, we will view the kernelK = 2

as an example that is of interest in its own right. This is because Smoluchowski’s
equation (1.18) appears in a diverse range of applications and in each application
kernels are derived in a similar heuristic manner. In order to establish the validity
of these approximations, it is necessary to gain some insight into the behavior
of solutions to (1.18). As we will see below, the kernel K = 2, and two other
kernels, K(x, y) = x + y and K(x, y) = xy, are exactly solvable. Further, they
may be rigorously associated to particle systems that have nothing to do with the
coagulation of colloids [1, 13].

1.4. Mean curvature networks. The main question in the theory of the Boltz-
mann equation and in Kac’s caricature is to understand the relaxation to equi-
librium. That is, we expect typical initial conditions to approach an equilibrium
solution, and we would like to prove this fact. In contrast, clustering transfers mass
to larger and larger scales, so the coagulation equations do not have non-trivial
equilibria with finite mass 3 The growth of large domains, at the expense of smaller
domains, is a central feature of the kinetics of phase transitions, where it is called
domain coarsening . It is also common in nature – a froth of soap bubbles, or the
head of a glass of beer – gradually coarsens in time as small bubbles pop.

In materials science, it has long been known that the properties of metals and
alloys depend on their microstructure. A polycrystalline material consists of crys-
talline domains called grains that meet at grain boundaries. Within each crystalline
domain, the atoms of the metal or alloy are aligned in a well-defined lattice. There
is a lattice mismatch between grains at each grain boundary. This mismatch gives
rise to a surface tension, and the grain boundaries move in order to decrease the
surface energy, and over time the domains coarsen.

Let us now describe the simplest formulation of this problem. The natural
evolution of the polycrystalline material is a gradient flow that minimizes the surface
energy 4. If we assume that the material is two-dimensional and that the surface
tension is isotropic (i.e. that it does not depend upon the angle at which two grains
meet), then the surface energy is simply the perimeter of the grain boundaries. The
gradient descent of this energy is motion by curvature of each curve along with the
Herring boundary condition – all grain boundaries meet at equal angles at triple
junctions. This boundary condition may be understood intuitively –all junctions
of higher valence are unstable, since a small perturbation can reduce the surface
energy (e.g. see the picture on the right in Figure 4).

The evolution of such a grain boundary network is illustrated in Figure 3. At
first glance, Figure 3 suggests that this problem is too complex to be amenable to
kinetic theory. Indeed, what are the underlying populations? For the hard sphere

3This roughly corresponds to the economic maxim that ‘the rich get richer and the poor get
poorer’. In fact, the coagulation equations have been used to model the decrease in the number
of financial insititutions as big banks swallow smaller banks.

4The precise formulation of this, and related gradient flows, may be found in an excellent set
of lecture notes by Pego [16].
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Figure 2. Vanishing of grains and the change in the number of
sides of their neighbors. The mutation events of Figure 4 depend
on the topology of the vanishing grain.

gas or spherical colloids, a kinetic description is natural – we simply count particles
with a given velocity (hard spheres) or mass (colloids). But how do we account for
the varying shapes of grains?

A kinetic description works in this problem because of a surprising simplification
discovered by Von Neumann and Mullins. The topology of two-dimensional grains
is easy to describe – each grain is an n-gon, with n ≥ 2. The geometry varies, but
is irrelevant, when one considers the evolution of area. As noted by Von Neumann
(with an incorrect proof!), and proved more carefully by Mullins, if a grain boundary
network evolves smoothly, the area A(t) of an n-gon in the network grows linearly
in time (in a suitable time scale) according to the relation [15, 18]

(1.23)
dA

dt
= n− 6.

Thus, all grains with fewer than 6 sides shrink and vanish in finite time.
While surprising at first sight, the formula is easy to derive. The rate of change

of area of an n-gon with bounding curves {Γi}ni=1, is obtained by integrating the
change in area swept out by each bounding curve in a small interval of time. The
area swept out by an arc Γ with length element ds if it moves with normal velocity
v is simply

(1.24)
dA

dt
=
∫

Γ

v ds

Now in angular coordinates ds = κ−1dθ, and for motion by curvature v = κ, thus
the rate of change of area, is simply the jump in the tangent across the endpoints
of the arc. By the Herring boundary condition, these jumps sum to 2π/3(n−6) for
an n-gon. Rescaling time, we obtain (1.23).

The Mullins-von Neumann rule allows a natural kinetic description of the grain
boundary system. We consider a set of populations, {fn(x, t)}∞n=2, that count the
number of (topological) n-gons with area x at time t. This corresponds to extracting
‘particles’ from the detailed description of Figure 3 as shown in Figure 4. Our analog
of collisions are ‘vanishing events’ when an n-gon, with n ≥ 2 has zero area. When
a grain vanishes, as shown in Figure 2, the number of sides of its neighbors can
change, while the area of the neighboring grains varies smoothly. In terms of the
particle system of Figure 4, this means that the particles ‘mutate’ from one n-gonal
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species to another. The complexity of the kinetic equations lies in assigning rates
to this process of mutation.

In the 1980s and 1990s several physicists and material scientists suggested kinetic
equations for this model, that differ in the mutation rules [3, 4, 11]. These equations
have the common form
(1.25)

∂tfn + (n− 6)∂xfn =
5∑
l=2

(l − 6)fl(0+, t)

( ∞∑
m=2

Alm(t)fm(x, t)

)
, n = 2, . . . ,∞.

Here x ∈ [0,∞). There is no boundary condition on the left-moving particles
(n = 2, . . . , 5) and the right-moving particles n ≥ 6 satisfy fn(0, t) = 0. The
left-hand side of equation (1.25) describes the free streaming of the area of grains
given by the Mullins-von Neumann rule. It is the analog of the transport term
v · ∇f in the non-homogeneous Boltzmann equation (1.12). On the right hand side
of (1.25), we again have a binary collision term, that accounts for the mutation
between species each time a grain vanishes. It involves an interaction between the
rates at which grains vanish, (l−6)fl(0, t), l = 2, . . . , 5, and the mutations between
topological ‘species’. The mutation rates are given by matrix Alm(t) describes the
rates at which species mutate into one another. In each model, it is derived from
ad hoc geometric assumptions about the manner in which an l-gonal cell vanishes
from the system.

Grain boundary evolution and equation (1.25) represent an important aspect
of modern kinetic theory. In many applications, the collision rules can be very
subtle, and the number of particles not very large (106 grains in a polycrystalline
network is much less than 1023 hard spheres in an ideal gas). There is plenty of
room for mathematicians to contribute to this area, since it is necessary to clarify
the validity of assumptions that underly a model. For instance, in light of extensive
computations on the evolution of grain boundary networks, it is conceivable that
the ‘best’ model could be determined by parametric estimation of computational
data. Further, the analysis of the derivation of the kinetic equations, even the
simplest setting, requires some care when we seek quantitative estimates for the
difference between the finite N system and the kinetic equations [8].

1.5. The impatient customer queue. In order to get a feel for these equations,
let us introduce the simplest model in its class. We consider a system of N -particles
at positions xi ∈ (0,∞), that moves to the left with unit velocity. When a par-
ticle hits zero, it is removed from the system, along with another particle chosen
uniformly from the remaining particles. If we view the points as customers in a
queue, then we see that one impatient customer leaves the queue each time the first
customer reaches the top of the line. So we call this model the impatient customer
queue. The kinetic equation in this case is

∂tf(x, t)− ∂xf(x, t) = −f(0, t)
M(t)

f(x, t), 0 < x <∞,(1.26)

M(t) =
∫ ∞

0

f(x, t) dx.(1.27)

This equation may be solved exactly. There are two effects – transport to the
left at constant rate and a nonlinear decay. For simplicity, let us first ignore the
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While these results show the evolution behavior of entire
systems, the exact von Neumann–Mullins relation (Eq. (1))
describes how each individual grain evolves, i.e. at a constant
rate that depends only on its number of sides. Fig. 10 shows
the area growth rates at a single time step for each of the
20,000 grains in a system that was evolved from a 25,000

grain Voronoi microstructure using the Brakke and pro-
posed methods together with a refined discretization. When
Mc ¼ 1, these figures should show sharp, horizontal lines at
integer values of 3DA

pDt , where each line corresponds to a differ-
ent number of grain neighbors n. Fig. 10b is an excellent
description of the results for the proposedmethod.However,

(a) t=0, 1000 grains. (b) t=0.0001, 982 grains (c) t=0.001, 571 grains

(d) t=0.005, 157 grains (e) t=0.01, 82 grains (f) t=0.1, 12 grains

Fig. 7. Temporal evolution of a microstructure based upon the proposed method for McL2 ¼ 1. This microstructure was initialized as a Voronoi
tessellation of the unit square into 1000 grains.

(a) Brakke method (b) Proposed method

Fig. 8. Microstructures evolved from a single Voronoi tessellation of 1000 grains after half of the grains have been consumed, using (a) the Brakke method
and (b) the proposed method.

E.A. Lazar et al. / Acta Materialia 58 (2010) 364–372 369

Figure 3. Grain boundary networks. The evolution of a net-
work of smooth embedded curves in R2 all of which meet at equal
angles in triple-junctions. Each curve evolves by motion by mean
curvature. As time increases the number of domains decrease and
the typical size of a domain grows. While the domains with fewer
than 6 sides vanish as their area shrinks by Von Neumann’s rule,
new domains with fewer than 6 sides may be nucleated at times
when a grain vanishes. Numerical simulations of Lazar, MacPher-
son, and Srolovitz [10].

8−gons  

7−gons  

3−gons  

4−gons  

6−gons  

8−gons  

3−gons  

4−gons  

6−gons  

7−gons  

Figure 4. Evolution of grain areas. The areas of each grain
may be extracted from the evolution of the network and plotted
as above (not all grain populations are shown). By the Mullins-
Von Neumann rule, these particles move at constant speed to the
left or right depending on n. Each time a left-moving particle hits
zero, there is a mutation, since this causes changes in the number
of edges of neighboring grains as shown in Figure 4. For example,
when a 3-grain vanishes, three neighboring grains lose a side, so the
points associated to these grains jump to the tier corresponding to
n-gons with one fewer side .

nonlinearity and consider the linear equation

(1.28) ∂f − ∂xf = −r(t)f(x, t), 0 ≤ x <∞, t > 0,

with a prescribed rate of decay r(t) ≥ 0. This equation may be solved by the
method of characteristics. Each characteristic x(t;x0) that emerges from x0 at
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time zero, is a straight line x(t;x0) = x0 − t, provided 0 ≤ t < x0. Along this
characteristic

(1.29)
df

dt
= −r(t)f,

which is easily solved. Thus, the solution to (1.28) is

(1.30) f(x, t) = e
R t
0 r(s) dsf0(x+ t),

where f0(x) denotes the initial data f(x, 0). Now let us consider the nonlinear
equation (1.26). Observe that it is invariant under the linear scaling f 7→ cf for
any c ∈ R. By rescaling the initial data, we may assume without any loss of
generality that

(1.31)
∫ ∞

0

f0(x) dx = 1.

We observe that the solution to (1.26) is also a solution to the linear equation (1.28)
if r(t) = f(0, t)/M(t). Thus, it is reasonable to make the ansatz (1.30), and after
some playing around, we find the following solution formula.

Theorem 1.1. Assume f0 ∈ L1
+∩C1 and M(0) = 1. There exists a unique solution

to (1.26) with f(x, 0) = f0(x). The solution is given by the formula

(1.32) f(x, t) = ρ(t)f0(x+ t), ρ(t) =
∫ ∞

t

f0(s) ds.

Proof. The solution formula is easy to check. First, assume that f0 is smooth and
strictly positive and f(x, t) is given by (1.32). Then the total number of particles
is

(1.33) M(t) =
∫ ∞

0

f(x, t) dt = ρ(t)
∫ ∞

0

f0(x+ t) dx = ρ(t)2.

We differentiate the expression for f(x, t) in equation (1.32) to find

(1.34) ∂tf − ∂xf = −f0(t)f0(x+ t)
(1.32)
= −f(0, t)f(x, t)

ρ(t)2
= −f(0, t)

M(t)
f(x, t).

When f0 has compact support, the solution formula (1.32) continues to hold for all
t, and f(x, t) ≡ 0 when t ≥ t∗, where t∗ = inf{x

∣∣∫∞
x
f0(r) dr = 0}. �

Observe that the solution formula continues to hold for any f ∈ L1
+.
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2. Basic properties of the Boltzmann equation

In this chapter we explore the properties of the Boltzmann equation for the hard
sphere gas more carefully. The Boltzmann equation describes the evolution of a
distribution of velocities through collisions. The central question in the theory of
the Boltzmann equation is to understand the decay to equilibrium caused by the
‘mixing properties’ of collisions.

2.1. The geometry of elastic collisions. Let us first explain how conservation of
momentum and energy (equation (1.5)) is sufficient to determine the post-collision
velocities v′ and w′. Given l ∈ Sd−1, let Pl and Pl⊥ denote the orthogonal pro-
jections onto the span of l and its orthogonal complement respectively. That is,
Plu = (u · l)l and Pl⊥u = u − (u · l)l for each u ∈ Rd. The main insight is that in
an elastic collision between two hard spheres, we must have

(2.1) Pl(v′ − w′) = −Pl(v − w), Pl⊥(v′ − w′) = Pl⊥(v − w).

Therefore, we find that the first post-collision velocity is

v′ =
1
2
(v′ + w′) +

1
2
(v′ − w′) =

1
2
(v + w) +

1
2
(Pl + Pl⊥)(v′ − w′)

=
1
2
(Pl + Pl⊥)(v + w) +

1
2
(−Pl + Pl⊥)(v − w) = Pl⊥v + Plw.(2.2)

In a similar manner, we see that

(2.3) w′ = Plv + Pl⊥w.

Equations (2.1) and (2.2) are clearly equivalent to equation (1.5). This transforma-
tion may be represented geometrically by the collision sphere shown in Figure 5(a).
Observe, however, that Al = A−l since Pl = P−l, a fact that is not obvious from
the construction in Figure 5.s

The linear transformation Al : R2d → R2d, (v, w) 7→ (v′, w′) may be represented
by the matrix

(2.4) Al =
(
Pl⊥ Pl
Pl Pl⊥

)
,

where Pl = llT , Pl⊥ = Id − Pl, and Id denotes the d× d identity matrix.

Lemma 2.1. For each l ∈ Sd−1, det(Al) = −1 and A−1
l = Al.

Proof. The projections Pl and Pl⊥ satisfy the relations

(2.5) P 2
l = Pl, P 2

l⊥ = Pl⊥ , and PlPl⊥ = Pl⊥Pl = 0.

It immediately follows that A−1
l = Al. Further,

(2.6) Al = I2d − uuT , u =
(

l
−l

)
,

and by the Sherman-Morrison formula for determinants of rank-one updates

(2.7) det (Al) = 1− uTu = 1− 2lT l = −1.

�
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Figure 5. (a) The collision sphere Cv,w is the sphere in Rd with
center (v + w)/2 and diameter |v − w|. For each l ∈ Sd−1, the
outgoing velocities v′ and w′ are represented by the points shown
on Cv,w. Clearly, Cv,w = Cv′,w′ . (b) Given v and w, the set
of possible v′(l) is parametrized by l ∈ H+. The pushforward of
uniform measure on the hemisphere under the map l 7→ Bv,w(l) is
uniform measure on Cv,w.

Figure 6. The collision spheres Cv,w used in the proof of Theo-
rem 2.4 (a) A normalized C2 collision invariant is radial. (b) A
normalized radial C2 collision invariant vanishes.

In the above calculation, we assumed that l ∈ Sd−1 was fixed in order to obtain a
linear transformation Al. We now fix v and w and consider the effect of varying l. In
order to simplify the calculation, let u ∈ Sd−1 be the unit vector u = (v−w)/|v−w|.
Let H+ denote the hemisphere {l ∈ Sd−1 |l · u ≥ 0} and define the map

(2.8) Bv,w : H+ → Cv,w, l 7→ v′ = v + Pl(w − v).
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Lemma 2.2. If l is distributed uniformly on H+, then Bv,w(l) is uniformly dis-
tributed on Cv,w.

Proof. Let θ and ϕ be the angular coordinates shown in Figure 5(b). We claim
that ϕ = 2θ.

This is seen as follows. We separate l into its components parallel and perpen-
dicular to u, writing l = Pul + Pu⊥ l, where Pul = (u · l)u = cos θ u. It then follows
from the definition of v′ = Bv,w(l) that

(2.9) Bv,w(l)− 1
2
(v + w) = ρ

((
cos2 θ − 1

2

)
u+ cos θPu⊥ l

)
.

Finally, the trigonometric identity 2 cos2 θ − 1 = cos 2θ, and the definition of ϕ,
imply that cosϕ = cos 2θ. Therefore, ϕ = 2θ on the domain θ ∈ [0, π/2].

Equation (2.9) also shows that the map from H+ to Cv,w is symmetric in the
azimuthal direction. More precisely, if l is uniformly distributed onH+, then Pu⊥ l is
uniformly distributed on the d−2 dimensional sphere with radius sin θ, and Bv,w(l)
is uniformly distributed on the d − 2 dimensional sphere with radius (ρ/2) sinϕ.
Thus, we may average over the azimuthal direction.

The volume of an infinitesimal shell in H+ is ωd−2(sin θ)d−2 dθ where ωk denotes
the k-dimensional volume of the unit sphere Sk (thus, ω0 = 2, ω1 = 2π, etc.).
Since ϕ = 2θ and Bv,w(l) lies on a sphere with radius ρ/2, the volume of its image
is ωd−2(ρ/2)d−1(sinϕ)d−2 dϕ/2. Aside from a normalizing factor, this is again the
pushforward of uniform measure on Sd−1. �

2.2. Collision invariants. Let us first state a useful moment identity for the
Boltzmann equation. For suitable test functions ϕ, let

(2.10) 〈f, ϕ〉(t) :=
∫

Rd

f(v, t)ϕ(v) dv.

Lemma 2.3. Assume f(v, t) is a classical solution to the homogeneous solution
Boltzmann equation (1.9). Then

d

dt
〈f, ϕ〉

=
1
8

∫
Rd

∫
Rd

∫
Sd−1

Lϕ(v, w) (f(v′)f(w′)− f(v)f(w)) |(v − w) · l| dv dw,(2.11)

where L denotes the linear operator

(2.12) Lϕ(v, w) = ϕ(v) + ϕ(w)− ϕ(v′)− ϕ(w′).

Proof. Since ϕ is independent of time,

d

dt
〈f, ϕ〉 =

∫
Rd

ϕ(v)∂tf(v, t) dv =
∫

Rd

ϕ(v)Q(f, f)(v, t) dv.
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In all the calculations that follow, we suppress the dependence on t for brevity. 5

We substitute for the collision Q(f, f) to find that∫
Rd

ϕ(v)Q(f, f)(v) dv

=
1
2

∫
Rd

∫
Rd

∫
Sd−1

ϕ(v) (f(v′)f(w′)− f(v)f(w)) |(v − w) · l| dl dw dv

=
1
4

∫
Rd

∫
Rd

∫
Sd−1

(ϕ(v) + ϕ(w)) (f(v′)f(w′)− f(v)f(w)) |(v − w) · l| dl dw dv

= −1
4

∫
Rd

∫
Rd

∫
Sd−1

(ϕ(v′) + ϕ(w′)) (f(v′)f(w′)− f(v)f(w)) |(v − w) · l| dl dw dv.

The second equality follows from the symmetry of the integrand. The last equality
follows from Lemma 2.1. �

The advantage of this formulation is that it makes the fundamental conservation
laws of the Boltzmann equation apparent. We choose ϕ(v) = 1, vi, 1 ≤ i ≤ d,
and |v|2 to see that the Boltzmann equation conserves the total number, total
momentum and total energy

(2.13)
∫

Rd

f(v, t) dv,
∫

Rd

vf(v, t) dv,
1
2

∫
Rd

|v|2f(v, t) dv.

These collision invariants are to be expected and serve as a useful consistency check
of the model. Indeed, the number, momentum and energy are conserved at every
binary collision between hard spheres. Equation (2.13) reflects this property of the
hard sphere system, much as mass conservation was built into (4.2).

More generally, we say that ϕ defines a collision invariant if it satisfies the
functional equation

(2.14) Lϕ(v, w) = 0, v, w ∈ Rd, l ∈ Sd−1.

A remarkable feature of the Boltzmann equation is that the only collision invariants
are linear combinations of the ones in equation (2.13).

Theorem 2.4. Assume ϕ ∈ L1
loc(Rd) is a collision invariant. Then there exist

constants (a, b, c) ∈ R× Rd × R such that

(2.15) ϕ(v) = a+ b · v + c|v|2, v ∈ Rd.

Proof. 1. We first prove the theorem under the assumption that ϕ is a C2 function.
The general case when ϕ is only L1

loc, may be reduced to the case of C2 collision
invariants by mollification. This step is outlined at the end.
2. Normalization. Assume that ϕ ∈ C2 is a collision invariant. Without loss of
generality, we may assume that

(2.16) ϕ(0) = 0, ∇ϕ(0) = 0, 4ϕ(0) = 0.

Indeed, if ϕ is a collision invariant that does not satisfy (2.16), we replace it by

ϕ− ϕ(0)−∇ϕ(0) · v − 1
2
4ϕ(0)|v|2.

5That is, we have written f(v) for f(v, t). Time only appears as a parameter in the collision
operator, and it is convenient to suppress the t dependence in order to understand the properties
of the collision operator.
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3. A normalized C2 collision invariant is radial. We fix v ∈ Rd and choose l ∈ Sd−1

such that v · l = 0. Let w = sl for s ∈ R. This gives a collision sphere Cv,w as
shown in Figure 6(a) with v′ = v + ls and w′ = 0. Since ϕ is a collision invariant,
we find that

ϕ(v + ls)− ϕ(v) = ϕ(ls)− ϕ(0).
Dividing by s and letting s→ 0, we obtain the identity

∇ϕ(v) · l = ∇ϕ(0) · l = 0.

Since this holds for each l ∈ Sd−1 that is orthogonal to v, it follows that ∇ϕ(v) is
parallel to v for each v ∈ Rd.
4. A radial C2 collision invariant is constant. We now write ϕ(v) = ψ(r) where
r = |v|. We fix 0 < s < r and consider the collision sphere Cv,w with |w| = s as
shown in Figure 6(b). We then find that

(2.17) |v′|2 = |w′|2 =
1
4
(r + s)2 +

1
4
(r − s)2 =

1
2
(s2 + r2) := ρ2(r, s).

Since ψ is a collision invariant

ψ(s) + ψ(r) = 2ψ(ρ(r, s)).

We differentiate this expression with respect to s, and use (2.17) to obtain the
identity

(2.18)
ψ′(s)
s

=
ψ′(ρ)
ρ

.

Letting s→ 0, we find the identity

ψ′(ρ)
ρ

= ψ′′(0) = 0, ρ =
r√
2
.

Thus, ψ(r) = ψ(0) = 0.
5. Mollification for ϕ ∈ L1

loc. We first observe that each translation of a collision
sphere is a collision sphere. Thus, if ϕ is a collision invariant, and

ϕ(v) + ϕ(w) = ϕ(v′) + ϕ(w′), v, w ∈ Rd, l ∈ Sd−1,

then for each u ∈ Rd we also have

(2.19) ϕ(v − u) + ϕ(w − u) = ϕ(v′ − u) + ϕ(w′ − u), v, w ∈ Rd, l ∈ Sd−1.

Let k be a C∞ mollification kernel (that is, k ≥ 0 and
∫

Rd k(v) dv = 1) and for each
ε > 0 set kε(v) = ε−dk(v/ε). Consider the functions ϕε = ϕ ∗ kε. It follows from
(2.19) that ϕε is a C∞ collision invariant for each ε > 0. It follows from steps 2–4
that ϕε = aε + bε · v + cε|v|2 for some constants aε ∈ R, bε ∈ Rd and cε ∈ R.

The span of the functions {1, v, |v|2}, denoted V, is a closed, finite-dimensional
subspace of L1

loc. Since ϕε ∈ V for all ε > 0, and ϕε → ϕ in L1
loc as ε→ 0, it follows

that ϕ ∈ V. �

Remark 2.5. The fact that collision invariants are so ‘rigid’ is closely tied to the
properties of the Cauchy-Hamel functional equation

(2.20) ϕ(x) + ϕ(y) = ϕ(x+ y), x, y ∈ R, ϕ : R → R.

Every linear function ϕ(x) = ax, with a = ϕ(1), is a solution to (2.15). Further,
if ϕ(x) is known to be continuous, then since (2.20) implies ϕ(p/q) = p/qϕ(1)
for every rational number p/q ∈ Q, we may use the continuity of ϕ to see that
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ϕ(x) = ϕ(1)x for every x ∈ R. It is a deeper fact that (2.15) admits only linear
solutions, even if ϕ is assumed only to be measurable. 6

2.3. Maxwellian distributions. Boltzmann and Maxwell made the profound dis-
covery that the only equilibrium solutions to the Boltzmann equation, i.e. solutions
such that ∂tf = Q(f, f) = 0 are constant multiples of the Maxwellian (or Gaussian)
distributions

(2.21) fσ(v) = exp
(
−|v|

2

2σ

)
.

In order to see that Q(fσ, fσ) ≡ 0, we observe that

fσ(v′)fσ(w′) = exp
(
−|v

′|2 + |w′|2

2σ

)
= exp

(
−|v|

2 + |w|2

2σ

)
= fσ(v)fσ(w),

by conservation of energy in each collision. Similarly, the only equilibrium solution
to Kac’s model is of the form (2.21).

How could one possibly guess that these are equilibrium solutions? The answer
is that these distributions are the N →∞ limit of the natural equilibrium measures
for the hard sphere gas and Kac’s model. Both the hard sphere gas and Kac’s model
have no ‘preferred directions’, and it is intuitively reasonable that the uniform
measure on the sphere is invariant. That is, imagine that the initial velocity vector
v0 for Kac’s model is chosen uniformly on

√
NSN−1. Then at time t, the (random)

velocity vector v(t) has the same law as v0. For the hard sphere gas, this is a
consequence of Liouville’s theorem for Hamiltonian systems. A Hamiltonian system
on R2m with Hamiltonian H(x, y) takes the form

ẋ = ∇yH(x, y), ẏ = −∇xH(x, y).

Its flow map Φt has the property that det(DΦt) = 1 for all t. Thus, the flow
preserves Lebesgue measure. Given a compact energy surface, H(x, y) = c, it
follows that the restriction of Lebesgue measure to this energy surface is invariant
under Φt. The hard sphere gas is not described by a smooth Hamiltonian system
like the one above, since the velocity jumps at collisions. Nevertheless, the energy
surface |v|2 = C is invariant under the flow and the restriction of Lebesgue measure
to this sphere is the uniform measure. Further, the fact that the Jacobian of the
transformation (v, w) → A(v, w) is 1 means that this measure is invariant under
collisions too.

Now it is a beautiful fact that the uniform measure on the sphere
√
nSn−1

as n → ∞ converges to the standard Gaussian measure on RN. We formalize
this idea by considering the convergence of marginal distributions. Let normalized
uniform measure on the sphere

√
nSn−1 be denoted by Pn. Then a simple geometric

argument shows that for any a ∈ [
√
n,
√
n],

(2.22) Pn (a ≤ x1) =

∫√n
a

(n− x2)(n−3)/2 dx∫√n
−
√
n
(n− s2)(n−3)/2 ds

=

∫∞
a

(1− x2

n )(n−3)/2
+ dx∫∞

−∞(1− s2

n )(n−3)/2
+ ds

.

The pointwise limit of the integrand is easily computed:

(2.23) lim
n→∞

(
1− x2

n

)(n−3)/2

+

= e−x
2/2, x ∈ (−∞,∞).

6There are pathological non-measurable solutions to this equation.
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Further, we may write

(2.24)
(

1− x2

n

)n/2
+

= exp
(
n

2
log
(

1− x2

n

))
1|x|≤√n,

and use the expansion log(1−z) = −(z+z2/2+. . .) to see that (1− x2

n )n/2+ ≤ e−x
2/2

for x ∈ R. Therefore, by the dominated convergence theorem,

(2.25) lim
n→∞

Pn (a ≤ x1) =
1√
2π

∫ ∞

a

e−x
2/2 dx, a ∈ (−∞,∞).

Similarly, for each integer k, if we consider the first k-components (x1, . . . , xk) of
(x1, . . . , xn), we find that
(2.26)

lim
n→∞

Pn (a1 ≤ x1, a2 ≤ x2, . . . , ak ≤ xk) =
1

(2π)k/2

k∏
j=1

∫ ∞

aj

e−x
2
j/2 dxj aj ∈ (−∞,∞).

2.4. The H-theorem. Boltzmann observed the following astonishing property of
his equation. Given a density f : R3 → R+, let us define the Boltzmann entropy

(2.27) H[f ] =
∫

Rd

f(v) log f(v) dv.

Theorem 2.6 (The H-theorem). Assume f(v, t) is a classical solution to the ho-
mogeneous Boltzmann equation (1.9). Then for all t in the interval of existence

(2.28)
dH[f(·, t)]

dt
≤ 0,

with equality only if f is a Maxwellian.

Proof. We find that

dH[f ]
dt

=
∫

Rd

(1 + log f(v))Q(f, f)(v) dv =
∫

Rd

log f(v)Q(f, f)(v) dv,

=
1
8

∫
Rd

∫
Rd

∫
Sd−1

L(log f) (f(v′)f(w′)− f(v)f(w)) |(w − v) · l| dl dv dw

=
1
8

∫
Rd

∫
Rd

∫
Sd−1

log
f(v)f(w)
f(v′)f(w′)

(f(v′)f(w′)− f(v)f(w)) |(w − v) · l| dl dv dw ≤ 0,

by the elementary inequality

(2.29) (a− b) log
b

a
≤ 0, a, b > 0.

Equality holds only if a = b in (2.29). But this means that log f(v, t) is a collision
invariant. Since all collision invariants are of the form (2.15), equality holds in (2.28)
if and only if

(2.30) f(v, t) = f(v) = C exp
(
a+ b · v + c|v|2

)
, a ∈ R, b ∈ R3, c < 0, C > 0.

�

Here is why this theorem is astonishing. For any finite N , the dynamics of the
hard-sphere gas is reversible in time. However, in the limit N → ∞, the effective
dynamics modeled by the Boltzmann equation is irreversible. Clearly, there is
something subtle going on. In order to understand this question better, we now
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turn to the derivation of the Boltzmann equation from the hard-sphere gas via the
BBGKY hierarchy.
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3. The BBGKY hierarchy for the hard sphere gas

3.1. The Liouville equation. The first step in the derivation of the Boltzmann
equation is to introduce the Liouville equation. While the ordinary differential
equations (1.4) with the jump condition (1.7) describes the evolution of one initial
configuration, the Liouville equation describes the evolution of a probability density
fN (x,v, t) on the phase space MN

δ × RdN . Collisions correspond to boundary
conditions for fN on the boundary ∂MN

δ ×RdN . In order to state these boundary
conditions, we must first examine the boundary ∂MN

δ more carefully.
Let ∂∗MN

δ denote the set of points x ∈ TdN such that |xj − xk| = δ for exactly
one pair of indices 1 ≤ j < k ≤ N , and |xm − xn| > δ for all other indices
1 ≤ m < n ≤ N . The set ∂∗MN

δ consists of the boundary points that correspond
to binary collisions between one pair of spheres. The set ∂MN

δ \∂∗MN
δ has zero

dN − 1 dimensional measure. We do not prove this fact, but it should be intuitive.
The boundary ∂MN

δ is an algebraic variety described by equalities of the form
|xj − xk| = δ for pairs of indices j and k. Each equality |xj − xk| = δ describes
a variety of codimension 1, or dimension dN − 1. Points in the set ∂MN

δ \∂∗MN
δ ,

are degenerate in the sense that for such point p equalities hold, with p > 1. Thus,
∂MN

δ \∂∗MN
δ is a finite union of varieties of codimension p, with p > 1, and thus

has dN − 1 dimensional measure zero.
We will assume that fN has a density so that the boundary condition needs to

be stated only on ∂∗MN
δ . Then the Liouville equation for the hard sphere gas is

the partial differential equation

(3.1) ∂tfN +
N∑
i=1

vi · ∇xi
fN = 0, x ∈MN

δ ,v ∈ RdN , t > 0.

At each boundary point x ∈ ∂∗MN
δ where (j, k) is the unique pair of indices with

j < k such that |xj − xk| = δ, we augment (3.1) with the boundary condition

(3.2) fN (x,v′, t) = fN (x,v, t), x ∈ ∂∗MN
δ ,

where the velocity vector v′ is defined by

(3.3) v′ = (v1, . . . , v′j , . . . , v
′
k, . . . , vN ), (v′j , v

′
k) = Aljk

(vj , vk), ljk =
xk − xj
|xk − xj |

.

3.2. Marginal densities. The probability density fN (x,v, t) provides a far more
detailed description than we need. We’re typically interested only in observables
that depend only on low-dimensional marginal densities of fN . In order to define
the marginals, we first introduce a fundamental symmetry assumption.

Let Sk denote the permutation group of order k. Given π ∈ SN , we set

(3.4) π(x) = (xπ1 , . . . , xπN
) , π(v) = (vπ1 , . . . , vπN

) .

We say that fN is exchangeable if

(3.5) fN (π(x), π(v)) = fN (x,v), π ∈ SN , (x,v) ∈MN
δ × RdN .

In all that follows, we assume that (3.5) holds.
For each integer k ≤ N let us denote

(3.6) xk = (x1, . . . , xk), vk = (v1, . . . , vk).
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We then define the k-point marginal density of fN by

(3.7) fk,N (xk,vk, t) =
∫

Td(N−k)

∫
Rd(N−k)

1MN
δ

(x)fN (x,v, t)
N∏

j=k+1

dxj dvj .

For k ≥ 2, the domain of fk,N is the set of (x1, . . . , xk) such that |xl−xm| > δ, 1 ≤
l < m ≤ k. The symmetry of fN under SN extends to fk,N : for each permutation
π ∈ Sk, we have

fk,N (πk(xk), πk(vk)) = fk,N (xk,vk), πk(xk) = (xπ1 , . . . , xπk
).

The BBGKY hierarchy is a linear system of evolution equations for {fk,N}Nk=1

listed in equations (3.25) and (3.26) below. In order to explain the derivation of
these equations from the Liouville equation, we first begin with a special case that
contains some of the key steps of the general calculation.

3.3. The evolution equation when N = 2 and k = 1. In this case, the set
MN

δ = {(x1, x2) ∈ T2d||x1 − x2| > δ}, so that

(3.8) f1,N (x1, v1, t) =
∫
|x2−x1|>δ

∫
Rd

f2,N (x1, x2, v1, v2, t) dv2 dx2.

(In fact, here f1,N = f1,2 and f2,N = f2, since N = 2 but we keep the notation
above for comparison with the case when N is large). Therefore, using the Liouville
equation (3.1) we have

∂tf1,N (x1, v1, t) =
∫
|x2−x1|>δ

∫
Rd

∂tf2,N (x1, x2, v1, v2, t) dv2 dx2

= −
∫
|x2−x1|>δ

∫
Rd

(v1 · ∇x1f2,N + v2 · ∇x2f2,N ) dv2 dx2

= −v1 ·
∫
|x2−x1|>δ

∫
Rd

∇x1f2,Ndx2dv2 −
∫
|x2−x1|>δ

∫
Rd

∇x2 · (f2,Nv2)dv2 dx2

:= (a) + (b).

Let’s first consider the term (b). Since the boundary of the domain {x2 ∈ Rd :
|x1−x2| > δ} is the sphere of diameter δ centered at x1, we apply the Gauss-Green
theorem to obtain

(3.9) (b) = δd−1

∫
Rd

∫
Sd−1

(v2 · l) f2,N (x1, x1 + δl, v1, v2) dldv2,

where l is the outward unit normal to the sphere Sd−1. The sign change above is
due to the fact that −l is the outward normal to the domain {|x2 − x1| > δ}. In
a similar manner, we may pull the derivative ∇x1 out of the integral in (a) at the
price of introducing a boundary integral. That is,

(a) = −v1 · ∇x1

∫
|x1−x2|>δ

∫
Rd

f2,N (x1, x2, v1, v2) dx2 dv2(3.10)

−δd−1

∫
Rd

∫
Sd−1

(v1 · l) f2,N (x1, x1 + δl, v1, v2) dldv2.
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By the definition (3.8), the first term on the right hand side is simply −v1 ·∇x1f1,N .
Thus, combining (3.9) and (3.10) we see that f1,N satisfies the equation

∂tf1,N + v1 · ∇x1f1,N(3.11)

= δd−1

∫
Rd

∫
Sd−1

((v2 − v1) · l) f2,N (x1, x1 + δl, v1, v2) dldv2.

In order to organize the boundary integrals that arise when we extend this cal-
culation to N hard spheres, it is helpful to observe that for sufficiently smooth fN
equation (3.11) may also be obtained in the following way. Let χδ : [0,∞) → {0, 1}
denote the step function χδ(s) = 1s>δ. Then

(3.12) ∂tf1,N = −
∫

Td

∫
Rd

χδ(|x1 − x2|) (v1 · ∇x1f2,N + v2 · ∇x2f2,N ) dv2 dx2,

and we may rewrite the integrand as

χδ(|x1 − x2|) (v1 · ∇x1f2,N + v2 · ∇x2f2,N ) = v1 · ∇x1 (χδ(|x1 − x2|)f2,N )(3.13)
+∇x2 · (v2χδ(|x1 − x2|)f2,N ) + f2,N (v1 − v2) · ∇x2χδ(|x1 − x2|),

where ∇x1χδ(|x1 − x2|) = −∇x2χδ(|x1 − x2|) is interpreted as a vector valued
measure concentrated on the sphere |x1 − x2| = δ. When integrated over Td × Rd,
the first term on the right hand side yields the transport term −v1 · ∇x1f1,N , the
second term vanishes, and the third yields the boundary integral on the right hand
side of (3.11).

3.4. The evolution equation for f1,N . Let us now proceed to the calculation
with N hard spheres. We use the Liouville equation to obtain

∂tf1,N (x1, v1, t) =
∫

Td(N−1)

∫
Rd(N−1)

1MN
δ

(x)∂tfN
N∏
k=2

dvk dxk(3.14)

= −
∫

Td(N−1)

∫
Rd(N−1)

1MN
δ

(x)
N∑
j=1

vj · ∇xjfN

N∏
k=2

dvk dxk.

As in equation (3.13), we rewrite each term in the integrand in (3.14) as the differ-
ence

(3.15) 1MN
δ

(x)vj · ∇xj
fN = ∇xj

·
(
vj1MN

δ
(x)fN

)
− fNvj · ∇xj1MN

δ
(x).

When (3.15) is substituted in (3.14) the first term on the right hand side gives the
transport term −v1 · ∇x1f1,N when j = 1 and vanishes when j 6= 1. Thus,

∂tf1,N + v1 · ∇x1f1,N(3.16)

=
N∑
j=1

∫
Td(N−1)

∫
Rd(N−1)

fN

(
vj · ∇xj

1MN
δ

(x)
) N∏
k=2

dvk dxk.

Each term on the right hand side gives a boundary integral that we compute as
follows. The characteristic function 1MN

δ
(x) may be expressed as the product

(3.17) 1MN
δ

(x) =
∏

1≤l<m≤N

χδ(|xl − xm|).
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Thus, for each index j, the gradient ∇xj1MN
δ

(x) is a sum

(3.18) ∇xj1MN
δ

(x) =

∑
l 6=j

∇xjχδ(|xl − xj |)
χδ(|xl − xj |)

1MN
δ

(x).

When substituted in equation (3.14), each term above gives an integral

(3.19)
∫

Td(N−1)

∫
Rd(N−1)

fN1MN
δ

(x)
vj · ∇xjχδ(|xl − xj |)

χδ(|xl − xj |)

N∏
k=2

dvk dxk.

There are three cases to consider: (i) j = 1, l 6= 1 (ii) l = 1, j 6= 1 and (iii) j 6= 1,
l 6= 1. In case (i), we may integrate over all N − 2 indices k that are not equal to l
to obtain that the integral in (3.19) is

(3.20)
∫

Td

∫
Rd

v1 · ∇x1χδ(|x1 − xl|)f2,N (x1, xl, v1, vl) dvldxl.

Similarly, in case (ii) we integrate over all N − 2 indices not equal to j to obtain
the integral

(3.21)
∫

Td

∫
Rd

vj · ∇xjχδ(|x1 − xj |)f2,N (x1, xj , v1, vj) dvjdxj .

In case (iii), we integrate over N − 3 indices k not equal to j or l to obtain

(3.22)
∫

T2d

∫
R2d

vj · ∇xjχδ(|x1 − xj |)f3,N (x1, xj , xl, v1, vj , vl) dvjdvl dxjdxl.

Finally, we sum over j and l and substitute in (3.16). Each integral of the form
(3.22) has an equal and opposite term that it cancels with, and it is only the terms
of the type (3.20) and (3.21) that contribute. For each index j 6= 1, the integral
(3.21) is identical to (3.9). Similarly, the integrand (3.20) is identical to the second
integral in (3.10). Since there are N − 1 such terms, we obtain

∂tf1,N + v1 · ∇x1f1,N(3.23)

= (N − 1)δd−1

∫
Rd

∫
Sd−1

((w − v) · l) f2,N (x1, x1 + δl, v1, w) dldw.

This is the first equation in the BBGKY hierarchy for a system ofN hard spheres.
The main point is that we do not have a closed equation for f1,N , since the right
hand side depends on f2,N . Thus, in order to solve for f1,N , we need an equation
for f2,N . The reader is invited to check that the equation for f2,N is of a similar
form: a linear transport term on the left hand side, with a source term that depends
linearly on f3,N :

∂tf2,N + v1 · ∇x1f2,N + v1 · ∇x2f2,N(3.24)

= (N − 2)δd−1

∫
Rd

∫
Sd−1

((w − v1) · l) f3,N (x1, x2, x1 + δl, v1, v2, w) dldw

+(N − 2)δd−1

∫
Rd

∫
Sd−1

((w − v2) · l) f3,N (x1, x2, x2 + δl, v1, v2, w) dldw.
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Proceeding in this manner, we obtain a hierarchy of linear equations for fk,N ,
1 ≤ k < N ,

∂tfk,N +
k∑
j=1

vj · ∇xjfk,N

= (N − k)δd−1
k∑
j=1

∫
Rd

∫
Sd−1

((w − vj) · l) fk+1,N (x1, . . . , xk, xj + δl, v1, . . . , vk, w) dldw.

(3.25)

For k ≥ 2, fk,N also satisfies a boundary condition that is analogous to (3.2). At
each boundary point where |xm − xn| = δ for exactly one pair of indices 1 ≤ m <
n ≤ k, we have (ignoring the x and t dependence)

fk,N (v1, . . . , vm, . . . , vn, . . . , vk) = fk,N (v1, . . . , v′m, . . . , v
′
n, . . . , vk),(3.26)

(v′m, v
′
n) = Almn(vm, vn)), lmn =

xn − xm
|xn − xm|

.

This is the BBGKY hierarchy for the hard sphere system. 7

This hierarchy simplifies in the Boltzmann-Grad scaling limit N →∞ and δ → 0
with Nδd−1 → 1. Writing fk for the N →∞ limit of fk,N , we see that the limit of
the BBGKY hierarchy (3.25)–(3.26) is the hierarchy

∂tfk +
k∑
j=1

vj · ∇xjfk

=
k∑
j=1

∫
Rd

∫
Sd−1

((w − vj) · l) fk+1(x1, . . . , xk, xj , v1, . . . , vk, w) dldw,

(3.27)

along with the boundary condition

fk(v1, . . . , vm, . . . , vn, . . . , vk) = fk(v1, . . . , v′m, . . . , v
′
n, . . . , vk),(3.28)

(v′m, v
′
n) = Al(vm, vn)), l ∈ Sd−1,

for each pair m < n where xm = xn. (In order to see that (3.28) is the limit of
(3.26), hold l = lmn fixed in (3.25) and take δ → 0.) Equations (3.27)–(3.28) are
called the Boltzmann hierarchy.

For future reference, let us also record separately the first equation in the hier-
archy, which is the limit of (3.23):

(3.29) ∂tf1 + v1 · ∇x1f1 =
∫

Rd

∫
Sd−1

((w − v) · l) f2(x1, x1, v1, w) dldw,

with the boundary condition

(3.30) f2(x1, x1, v, w) = f2(x1, x1, v
′, w′), (v′, w′) = Al(v, w), l ∈ Sd−1.

7For Bogoliubov, Born, Green, Kirkwoon and Yvon.
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3.5. Propagation of chaos. The Boltzmann equation is a single nonlinear equa-
tion for the density f(x, v, t). The Boltzmann hierarchy, however, is an infinite
system of linear equations for the k-point densities fk(xk,vk, t). The two models
are related by a factorization property we saw in Section 2.3: As n → ∞, uni-
form measure on

√
nSn−1 converges to Gaussian measure on the product space RN.

This is an example of an asymptotic factorization of an exchangeable density. It is
somewhat simpler to convey the essence of this situation in probabilistic language.

A finite sequence of random variables X1, . . . , Xk is exchangeable if the joint law
of (X1, . . . , Xk) is the same as that of (Xπ1 , . . . , Xπk

) for each π ∈ Sk. An infinite
sequence X1, X2, . . ., is exchangeable if for each k and each π ∈ Sk the joint law of
(X1, . . . , Xk) is the same as that of (Xπ1 , . . . , Xπk

). Clearly, if the sequence is iid, it
is exchangeable. A fundamental theorem of De Finetti provides a converse – the law
of an infinite sequence of exchangeable random variables is a convex combination of
iid laws. De Finetti’s theorem is an example of a Choquet theorem expressing each
point in a convex set as a linear combination of extreme points in the set. In our
context, laws of exchangeable infinite sequences form a convex set, and the laws of
iid sequences form the extreme points in this set.

This abstract structure underlies the reduction of the hard sphere gas to the
Boltzmann equation. In the Boltzmann-Grad limit, the Boltzmann hierarchy de-
scribes the marginals of an exchangeable distribution on TdN×RdN. By De Finetti’s
theorem, the extreme points of this set of distributions are given by iid laws. The
Boltzmann equation describes the evolution of iid laws under the assumption that
the initial data is a law of this type. That is, if we assume that at time t = 0,
fk(·, ·, 0) is an iid product measure for each k, then for all t in the interval of ex-
istence, fk(·, ·, t) remains an iid product measure, and the evolution of the 1-point
marginal is described by the Boltzmann equation.

In order to see this connection between the Boltzmann hierarchy and the Boltz-
mann equation, let us denote the first marginal by f(x, v, t) and make the ansatz

(3.31) fk(xk,vk, t) =
k∏
j=1

f(xj , vj , t), k ∈ N.

Let us write x and v instead of x1 and v1 in (3.29), and substitute f2(x, x, v, w, t) =
f(x, v, t)f(x,w, t) into the right hand side. Further, we split the integral according
to whether (w − v) · l > 0 or (w − v) · l < 0. On the set where (w − v) · l > 0, we
use the boundary condition (3.30), to write

(3.32) f2(x, x, v, w, t) = f2(x, x, v′, w′, t) = f(x, v′, t)f(x,w′, t).

On the set where (w − v) · l < 0, we set (w − v) · l = − ((w − v) · (−l))+, and use

(3.33) f2(x, x, v, w, t) = f(x, v, t)f(x,w, t),

instead of (3.32). Finally, we use the symmetry of Sd−1 under the map l → −l to
write the right hand side of (3.29) as∫

Rd

∫
Sd−1

((w − v) · l) f2(x, x, v, w) dldw

=
∫

Rd

∫
Sd−1

((w − v) · l)+ f(x, v′, t)f(x,w′, t) dl dw

−
∫

Rd

∫
Sd−1

((w − v) · l) +−f(x, v, t)f(x,w, t) dl dw.
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Thus, (3.29) has reduced to the Boltzmann equation (1.8). Observe that the ‘arrow
of time’ has been introduced by our decision to introduce the boundary conditions
as above, thus distinguishing between pre- and post-collision states.

Finaly, we also have to check that substituting the ansatz (3.31) into the k-the
equation in the Boltzmann hierarchy does not cause any inconsistency. That is,
for each k, not just k = 1, we must obtain the Boltzmann equation. This is an
interesting calculation that is left to the reader.

A rigorous proof of the persistence of the factorization property (termed propaga-
tion of chaos by Kac) goes as follows. First, one establishes local well-posedness for
the Boltzmann hierarchy for a class of initial data including factorized initial data.
Second, one establishes local well-posedness for the Boltzmann equation. Since
product laws of the form (3.31) solve the Boltzmann hierarchy (3.27)–(3.28) when
f solves the Boltzmann equation (1.8), and the solution to the hierarchy is unique,
it follows that the factorization property persists in time. A complete account of
this approach may be found in [5, Ch.5].
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4. An introduction to coagulation

4.1. Moment identity for the coagulation equations and gelation. We now
turn to Smoluchowski’s coagulation equations. In the scientific literature on coag-
ulation, it is traditional to treat separately the cases when the mass distribution
is continuous and discrete. While we have presented equations (1.18)–(1.20) under
the assumption that f(x, t) is a density, it is just as natural to assume that the
mass distribution is discrete. Indeed, if we begin with all particles of size 1, then
the solution must always consists of particles of integer size. From the mathemati-
cal standpoint, it is efficient to treat both cases together using some simple measure
theory.

Let µt denote the measure with density f(x, t) (if it has a density) and for a
suitable test function ϕ, let

(4.1) 〈µt, ϕ〉 =
∫ ∞

0

ϕ(x)µt(dx).

We may integrate by parts to obtain the identity

(4.2)
d

dt
〈µt, ϕ〉 =

1
2

∫ ∞

0

∫ ∞

0

(ϕ(x+ y)− ϕ(x)− ϕ(y))K(x, y)µt(dx)µt(dy).

Equation (4.2) allows us to treat discrete and continuous coagulation in a unified
way and is the basis for a rigorous well-posedness theorem.

But before stating a rigorous result, let us first get a feel for the coagulation
equations. Intuitively, coagulation is a process that transfers mass from small scales
to large scales. In order to see the mass transport, it is helpful to consider the
evolution of moments of µt. For each p ≥ 0, let

(4.3) mp(t) = 〈µt, xp〉.

We call m0(t) the total number and m1(t) the total mass. Plugging ϕ(x) = xp with
p = 0 and 1 into (4.2) we find immediately that

(4.4) ṁ0 < 0, ṁ1 = 0.

Thus, the total number decreases in time, while the mass stays constant. Of course,
both of these must be true, since they are ‘built into’ the model. More generally,
we see that

(4.5) ṁp < 0, p < 1, ṁp > 0, p > 1.

Most kernels in applications are homogeneous with degree γ. That is,

(4.6) K(αx, αy) = αγK(x, y), α, x, y > 0.

For example, Smoluchowski’s kernel (1.21) is homogeneous with degree 0. The
solvable kernels K(x, y) = 2, x+ y, and xy have degree γ = 0,1 and 2 respectively.
When a kernel has γ > 0, (4.6) says that the clustering of large particles happens
at a faster rate than smaller particles. This has an unexpected consequence: if γ
is too large, we may have runaway growth and (1.18)–(1.20) may not be globally
well-posed. Let us illustrate this point with an example.

Let δ1(dx) denote the Dirac mass with a unit atom at x = 1. Consider the
solution µt to (1.18)–(1.20) whenK = xy and µ0(dx) = δ1(dx). When we substitute
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ϕ(x) = 1 and x2 in (4.2) we find that the integral factors into two parts, and we
obtain the identities

(4.7) ṁ0 = −1
2
m2

1, ṁ2 = m2
2.

Since m2(0) = 1 we find that

(4.8) m2(t) =
1

1− t
.

Thus, if there is a solution to Smoluchowski’s equation with K = xy on the interval
[0, 1] then its second moment blows-up at time 1. At first sight, this seems like
a problem that one may fix, since the mass m1(t) may remain finite, even when
m2(t) diverges. But if the mass is conserved (as it should be, according to (4.4))
we would find that

(4.9) m0(t) = 1− t

2
, so that m0(2) = 0.

But then µ2 = 0 contradicting m1 = 1. In summary, there is no global mass-
conserving solution to Smoluchowski’s coagulation equations when K(x, y) = xy.
The reader is invited to check what goes wrong with (4.4) when m2 = ∞.

This phenomenon – blow-up of higher moments and absence of global solutions
– is known as gelation. This term originates in polymer chemistry, where gela-
tion corresponds to the growth of a giant chain molecule from individual units
(monomers). There are general results in the literature regarding well-posedness of
(1.18)–(1.20). Roughly, gelation occurs for a large class of homogeneous kernels if
and only if γ > 1.

4.2. Bernstein transforms and solution formulas. Despite the fact that Smolu-
chowski’s equation is nonlinear, when K = 2, x + y or xy, it may be solved using
the Laplace transform. In fact, we will use a modified Laplace transform, that we
term the Bernstein transform, defined by

(4.10) ϕ(q, t) =
∫ ∞

0

(
1− e−qx

)
µt(dx), q ∈ C+.

The reason for this choice is explained below.
Assume K = 2. We substitute ϕ(x) = 1−e−qx in (4.2), and use the factorization

(4.11) (1− e−q(x+y))− (1− e−qx)− (1− e−qy) = −
(
1− e−qx

) (
1− e−qy

)
,

to obtain the simple ordinary differential equation

(4.12) ∂tϕ(q, t) = −ϕ2(q, t), q ∈ C+,

with solution

(4.13) ϕ(q, t) =
ϕ0(q)

1 + tϕ0(q)
, q ∈ C+, t > 0.

Here ϕ0 denotes the Bernstein transform of the initial data µ0.
What has happened, of course, is that the factorization (4.11) and the fact that

K = 2 allows us to separate the double integral in (4.2) into two independent
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factors. A similar calculation applies to the kernels K = x+ y and K = xy. When
K = x+ y we find that the integrals factor again, and we have

∂tϕ(q, t) = −
(∫ ∞

0

(1− e−qx)xµt(dx)
)(∫ ∞

0

(1− e−qy)µt(dy)
)

(4.14)

= −ϕ(q, t)
(∫ ∞

0

(1− e−qx)xµt(dx)
)
.

Since xe−qx = ∂q(1− e−qx), the integral on the right hand side may be written as
a q-derivative. Let us also assume that the initial data has been normalized so that

(4.15)
∫ ∞

0

xµ0(dx) = 1.

Then by conservation of mass (strictly speaking, this must be established, but let’s
assume it first and derive the equation for ϕ(q, t)), we find that

(4.16) ∂qϕ(0, t) =
∫ ∞

0

xµt(dx) = 1.

We then find that the Bernstein transform satisfies

(4.17) ∂tϕ− ϕ∂qϕ = −ϕ, q ∈ C+, t > 0.

Aside from the decay term on the right hand side, we see that this is the inviscid
Burgers equation in the right-half plane. It may be (formally) solved by the method
of characteristics. Let q(t; q0) denote the characteristic that starts at q0 at time 0.
Along characteristics we find the ordinary differential equations

(4.18)
dϕ

dt
= −ϕ, dq

dt
= −ϕ.

Thus, the forward map q 7→ q(t; q0) is given by

(4.19) q(t; q0) = q0 − (1− e−t)ϕ0(q0).

Assume for a moment that this map has a unique inverse (i.e. characteristics do
not intersect), denoted by q0(q, t). We then find the implicit solution formula

(4.20) ϕ(q, t) = e−tϕ0(q0(q, t)), q ∈ C+.

We invite the reader to compute a similar solution formula for the case K = xy
(the answer may be found in [12]).

These solution formulas are appealing, but there is still work to be done. In
order that the Bernstein functions define a solution to Smoluchowski’s equation,
we must show that the Bernstein transforms given by (4.13) and (4.20) have a
unique inverse that is a positive measure µt with m1(t) = m1(0). This involves an
interesting detour into classical analysis.

4.3. Completely monotone functions and Bernstein functions. Let us now
approach the problem with greater rigor. Assume µ is a finite measure on [0,∞),
and observe that its Laplace transform

(4.21) η(q) =
∫ ∞

0

e−qxµ(dx), q ∈ C+,

satisfies the following inequalities:

(4.22) (−1)k∂kq η(q) ≥ 0, q ∈ (0,∞), k ∈ N.
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These inequalities are strict unless µ has an atom at zero. We will show that the
class of positive functions that satifies these inequalities is very rigid. In fact, we
won’t even assume that η is C∞, by working instead with finite-differences from
the right. For any measurable function g : (0,∞) → R we define the difference
operators

(4.23) Dhg(q) =
1
h

(g(q + h)− g(q)) .

Definition 4.1. A measurable function η : (0,∞) → (0,∞) is completely monotone
if the following inequalities hold:

(4.24) (−1)kDk
h(q) ≥ 0, q, h ∈ (0,∞), k ∈ N.

Here is one version of a celebrated theorem of Bernstein.

Theorem 4.2 (Bernstein). A completely monotone function η with η(0) = 1 is
the Laplace transform of a probability measure on (0,∞). In particular, it has an
analytic extension to the right half plane C+.

We will not prove this theorem (for proofs, see [2]). It may be seen as an instance
of Choquet’s theorem in functional analysis [9]. Choquet’s theorem allows us to
express each point in the interior of a compact convex set as a linear combination
of its extreme points. In this case, the set of completely monotone functions with
η(0) = 1 is a compact, convex set, whose extreme points are the exponentials e−ax,
a ∈ [0,∞). The main difficulty in the proof is to characterize the extreme points.
Bernstein’s theorem then follows from Choquet’s theorem. Observe the surprising
fact that a measurable that satisfies infinitely many inequalities is smooth, in fact
analytic!

This theorem reveals that the use of the solution formulas (4.13) and (4.20) to
solve Smoluchowski’s equation could be delicate, since we have to establish the
validity of infinitely many inequalities. Fortunately, there are simpler criterion that
may be used to establish complete monotonicity, or the following closely related
notion.

Definition 4.3. A function ϕ : C+ → C is a Bernstein function of the first kind if
it is of the form

(4.25) ϕ(q) = aq +
∫ ∞

0

(
1− e−qx

)
µ(dx)

where a ≥ 0 is a real number and µ is a positive measure on [0,∞) that satisfies
the integrability condition

(4.26)
∫ ∞

0

min (1, x)µ(dx) <∞.

Definition 4.4. A function Ψ : C+ → C is a Bernstein function of the second kind
if it is of the form

(4.27) Ψ(q) = σ2q2 + cq +
∫ ∞

0

(
e−qx − 1 + qx

)
Λ(dx),

where σ and c are real numbers and Λ is a positive measure that satisfies the
integrability condition

(4.28)
∫ ∞

0

min
(
x, x2

)
Λ(dx) <∞.
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Clearly, the derivative of a Bernstein function of the first kind is completely
monotone, and the derivative of a Bernstein function of the second kind is a Bern-
stein function of the first kind. However, note that condition (4.26) is weaker than
that required to define the Laplace transform of µ, since we allow measures such
that

∫ x
0
µ(ds) is divergent for every x > 0. Such generality is necessary, since it

turns out that the self-similar solutions for the kernel K = x+ y and K = xy have
such a divergence. The linear term aq may be viewed as the limit of the right hand
side when we consider a sequence of measures µ(n) such that the measures x−1µ(n)

converge weakly to the Dirac mass aδ0 as n→∞. In what follows, we will mainly
work with Bernstein functions of the first kind.

Theorem 4.5 (Subordination). Assume ϕ and ψ are Bernstein functions of the
first kind. Then the composition ϕ◦ψ is also a Bernstein function of the first kind.

A variant of this theorem was first established by Bochner in the 1950s. However,
the probabilistic import of the theorem was not clear at the time, and the initial
analyses were quite cumbersome. The key to the theorem lies in the probabilistic
interpretation of formula (4.25). For simplicity, assume first that µ is a finite
measure. Let λ =

∫∞
0
µ(dx) and let N be a Poisson-λ random variable. That is,

P(N = n) = e−λλn/n! for each integer n ≥ 0. Let {Xj}∞j=0 be iid random variables
with distribution λ−1µ and consider the random sum Y =

∑N
j=1Xj where N is

independent of {Xj}∞j=0. Then we claim that

(4.29) e−ϕ(q) = E
(
e−qY

)
.

Indeed, conditioning on N we find
(4.30)

E
(
e−qY

)
=

∞∑
n=0

E
(
e−q

Pn
j=0Xj |N = n

)
P (N = n) = e−λ

∞∑
n=0

(
E(e−qX1

)n λn
n!
.

Now since X1 has law λ−1µ, we find that

(4.31)
(
E(e−qX1

)
=

1
λ

∫ ∞

0

e−qxµ(dx).

Therefore,

(4.32) E
(
e−qY

)
= e−λe

R∞
0 e−qxµ(dx) = e

R∞
0 (1−e−qx)µ(dx) = e−ϕ(q).

This establishes (4.29) when µ is a finite measure. The general case is obtained by
approximation.

In fact, formula (4.29) underlies an important discovery in probability theory.
Rather than work with a Poisson random variable, it is more natural to work with a
compound Poisson process, defined as follows. Let the increasing sequence {Tj}∞j=1

define a Poisson process with rate λ in (0,∞) and let Nt =
∑∞
j=1 1Tj≤t denote the

counting function. 8 Now define the compound Poisson process Yt =
∑Nt

j=0Xj . It
consists of two parts: (i) a clock defined by Nt; (ii) independent jumps of size Xj at
each jump time. A minor variation on the argument above yields the fundamental
formula

(4.33) E
(
e−qYt

)
= e−tϕ(q), q ∈ C+, t ≥ 0.

8If you’ve never seen a Poisson process before, its a random ‘clock’ whose increments Tj+1−Tj

are independent exponential random variables with rate λ.
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Continuous time processes with independent increments constitute an important
example of stochastic processes called Lévy processes. An increasing Lévy process
is called a subordinator. Given ϕ, the process Yt defined as above is a subordinator
by construction. In fact, a central result in the theory of Lévy processes is that all
subordinators are of this form. To summarize, a function ϕ is a Bernstein function
of the first kind if and only if it is associated to a subordinator as above. The
probabilistic import of Theorem 4.5 is that subordinators allow us to ‘time-change’
a Lévy process while staying within the class of Lévy processes. In the particular
case, when both processes are subordinators, we obtain Theorem 4.5.

Proof of Theorem 4.5. Let Yt and Zt denote independent subordinators defined by
the Bernstein function ϕ and ψ respectively, and consider the time-changed process
Rt = ZYt

. We claim that

(4.34) E
(
e−qRt

)
= e−tϕ(ψ(q)), q ∈ C+, t ≥ 0.

In order to see why this formula is true, let’s first rewrite equation(4.33) in the
following manner

(4.35) e−tϕ(q) = E
(
e−qZt

)
=
∫ ∞

0

e−qsP (Zt ∈ (s, s+ ds)) .

Therefore, conditioning on the value of Zt we find

E
(
e−qRt

)
= E

(
e−qZYt

)
=
∫ ∞

0

E
(
e−qZs |Yt = s

)
P (Yt ∈ (s, s+ ds))(4.36)

=
∫ ∞

0

e−sψ(q)P (Yt ∈ (s, s+ ds)) = e−tϕ(ψ(q)).

�

4.4. Well-posedness of Smoluchowski’s equation. We now have the tools nec-
essary to show that the solution formulas define solutions to Smoluchowski’s equa-
tion. We first define the appropriate notion of measure-valued solution, and then
use the solution formulas (4.13) and (4.20) in combination with the results of the
previous section.

We index the three solvable kernels K = 2, x + y and xy by their degree of
homogeneity γ = 0, 1 and 2 respectively. Let Mγ denote the space of measures on
(0,∞) such that for each µ ∈Mγ

(4.37) mγ =
∫ ∞

0

xγµ(dx) <∞.

Without loss of generality, we may rescale the initial data so that

(4.38) mγ(0) =
∫ ∞

0

xγµ0(dx) = 1.

We equip Mγ with the weak topology. 9 For each kernel, given initial data µ0 ∈
Mγ , we will say that a continuous function µ : [0, T ] → Mγ , t 7→ µt solves

9Recall that a sequence of finite measures µ(n) ∈M0 converges weakly to µ if

(4.39) lim
n→∞

〈µ(n), ϕ〉 = 〈µ, ϕ〉,

for every h ∈ C0((0,∞)). This is really weak-∗ convergence. However, it appears so often in
probability, that it is called the weak topology by probabilists, and we use their terminology.
When we consider Mγ , the space of test functions is modified by multiplying it by x−γ .
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Smoluchowski’s equation with initial data µ0 if the moment identity obtained after
integrating (4.2) in time,

〈µt, ϕ〉 − 〈µ0, ϕ〉(4.40)

=
1
2

∫ t

0

∫ ∞

0

∫ ∞

0

(ϕ(x+ y)− ϕ(x)− ϕ(y))K(x, y)µt(dx)µt(dy), t ∈ [0, T ],

holds for a sufficiently rich class of test functions, denoted Sγ . The precise class
required must satisfy certain smoothness assumptions, and the interested reader is
referred to [12]. In the theorem below, we use the terminology Tγ = +∞, γ = 0,1
and Tγ = 1, γ = 2.

Theorem 4.6. Assume µ0 satisfies (4.38). There exists a unique function µ ∈
C ([0, Tγ),Mγ) such that (4.40) holds for all ϕ ∈ Sγ .

Proof. While we haven’t precisely defined Sγ , the main point is that the functions
1 − e−qx, q > 0 are dense in Sγ . Thus, if the solution formulas (4.13) and (4.20)
hold for q > 0 and t > 0 and these solution formulas define positive measures,
we will have well-posedness. That is, the essential difficulty is to show positivity,
and we will focus on it. The reader interested in the other details (showing that
µ ∈ C([0, Tγ),Mγ), uniqueness, etc.) is referred to [12].

Positivity is easiest to see for the constant kernel. Observe that

(4.41)
q

1 + q
=
∫ ∞

0

(
1− e−qx

)
e−x dx

is a Bernstein function. We apply Theorem 4.5 to see that ϕ(q, t) is a Bernstein
function.

Next consider the additive kernel. Recall that we have assumed that
∫∞
0
sµ0(ds) =

1. Thus, for q0 > 0 we have the uniform estimate

(4.42)
ϕ0(q0)
q0

=
∫ ∞

0

1− e−q0x

q0x
xµ0(dx) < 1.

Hence, for 0 < t <∞, the forward map defined by (4.19) is strictly increasing and
maps [0,∞) in a one-to-one manner onto itself. Therefore, the inverse mapping
q0(q, t) is well-defined. If we can show that q0(q, t) is a Bernstein function of q, we
are done, since (4.20) and Theorem 4.5 combine to show that ϕ(q, t) is a Bernstein
function of q.

In order to show that q0 is a Bernstein function of the first kind, we write it as
the fixed point of a sequence of iterates

(4.43) q
(n)
0 (q, t) = q + (1− e−t)ϕ0

(
q
(n−1)
0 (q, t)

)
, n ≥ 0, q(0)0 (q, t) = q.

The zeroth iterate, q(0)0 (q, t), is trivially Bernstein. By Theorem 4.5, the first iter-
ate, q(1)0 is then the sum of two Bernstein functions, so it is a Bernstein function.
Proceeding inductively, each iterate q(n)

0 (q, t) is a Bernstein function. The limit of
a sequence of Bernstein function is a Bernstein function (this may be seen by using
(4.1) and (4.2), for example). Thus q0(q, t) is a Bernstein function. �

A second (slick) proof of the fact that q0 is a Bernstein function function goes
as follows. While we have only used Bernstein functions of the first kind so far,
there is a striking relation between Bernstein functions of the first and second kind
that plays a crucial role here: Assume Ψ is a Bernstein function of the second kind
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such that Ψ(0) = 0 and Ψ(∞) = ∞. Then the inverse function Ψ−1 is a Bernstein
function of the first kind!

This result applies here as follows. Integrating along characteristics we see that

(4.44) q − ϕ(q, t) = q0 − ϕ0(q) =
∫ ∞

0

(
e−q0x − 1 + q0x

)
:= Ψ0(q).

Thus, we may rewrite (4.19) in the form

(4.45) q = (1− e−t)Ψ0(q0) + e−tq0.

This shows that q0 7→ q(t; q0) is a Bernstein function of the second kind of q0. Thus,
the inverse function q 7→ q0 is a Bernstein function of the first kind.

Why would somebody think up this proof? The answer lies in a suprising connec-
tion between Smoluchowski’s equation and the study of shock clustering in Burgers
equation with random initial data [13].

4.5. Self-similar solutions for the constant kernel. Unlike the Boltzmann
equation, Smoluchowski’s coagulation equations (1.18)–(1.20) have no non-singular
equilibrium solutions. 10 For both the constant and additive kernels there is a global
solution in time, and the natural question to ask is the following: what are the long-
time asymptotics? There can be no non-trivial asymptotics unless we rescale the
mass distribution. Indeed, as time increases the mass is transported to larger and
larger scales, and without rescaling all we get is a giant cluster.

The total number m0(t) = ϕ(∞, t) and the solution formula (4.13) shows that

(4.46) m0(t) =
m0(0)

1 + tm0(0)
∼ 1
t
, t→∞.

For this reason, we make the scaling ansatz

(4.47) ϕ(q, t) =
1
t
ψ(ξ), ξ = qλ(t),

where the scaling function ψ and the time scale λ(t) are to be determined. We
substitute (4.47) in (4.12) and find after a simple calculation that

(4.48)
λ̇

λ
ξψ′ = ψ (1− ψ) .

We now separate variables to find

(4.49) ξψ′ = ρψ (1− ψ) ,
λ̇

ρλ
= 1,

where ρ ∈ R is a constant. Since ψ′ > 0 we must have ρ > 0. We integrate (4.49),
and obtain the ρ-dependent solution

(4.50) ψρ =
ξρ

1 + ξρ
, λ(t) = t1/ρ.

The function qρ−1 cannot be completely monotone if ρ >, since its first derivative
would be increasing if ρ > 1. Thus, qρ could possibly be a Bernstein function only

10Formally, they do admit equilibria that are pure power laws, however the interpretation of
these solutions requires care.
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in the range 0 < ρ ≤ 1. In fact, in this range, it is a Bernstein function as follows
from the elementary observation that for 0 < ρ < 1

(4.51)
∫ ∞

0

1− e−qx

x1+ρ
dx = Cρq

ρ,

where Cρ is a ρ-dependent constant. Thus, combining (4.41) and Theorem 4.5, we
see that there is a one-parameter family of self-similar solutions to (1.18)–(1.20) of
the form

(4.52) ϕ(q, t) =
qρ

1 + tqρ
, 0 < ρ ≤ 1.

At the end-point ρ = 1, we may invert the Bernstein transform explicitly to find
that

(4.53) µt(dx) =
1
t2
e−x/t, x, t > 0.

The density f1(x) = e−x has a finite limit as x → 0 and (obviously) exponential
decay as x→∞. For 0 < ρ < 1, the Bernstein transform ψρ cannot be inverted in
closed form. However, the density fρ(x) can be expressed as an infinite series and
we find that it has the following asymptotic properties

(4.54) fρ(x) ∼
1

Γ(ρ)x1−ρ , x→ 0, fρ(x) ∼
1

|Γ(−ρ)|x1+ρ
, x→∞.

In particular, all self-similar solutions for ρ 6= 1 have fat tails, in the sense that their
mass is infinite. This is the first sign of rather delicate long-time asymptotics. The
tails of the initial data that determine the domains of attraction of these self-similar
solutions. Roughly, the solution µt with an initial data µ0 can be rescaled so that
the rescaled number distribution function approaches the profile fρ if and only if

(4.55)
∫ x

0

xµ0(dx) ∼ Cx1−ρ, x→∞.

For precise statements, see [12].
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5. Foundations

We now return to the hard sphere gas. The Boltzmann equation describes the
evolution of a distribution of velocities through collisions. The central question in
the theory of the Boltzmann equation is to understand the decay to equilibrium
caused by the ‘mixing properties’ of collisions.

5.1. Kac’s example. Boltzmann’s approach to kinetic theory caused a crisis in
physics. While Boltzmann’s goal was to derive the laws of thermodynamics from
Newtonian mechanics, the N →∞ limit had properties that violated fundamental
properties of Newton’s laws. For instance, the H-theorem shows that the behavior
of the Boltzmann equation is irreversible, whereas Newton’s laws are reversible in
time (Loschmidt’s paradox). From Boltzmann’s standpoint, this was a desirable
feature of the theory – he wanted all initial velocity distributions to approach
the Maxwellians. The underlying idea is that collisions between spheres serve to
rapidly mix the velocity statistics, so that the Maxwellian distribution is inevitable.
Zermelo was sharply critical of this hypothesis for the following reason. An essential
consequence of Liouville’s theorem for Hamiltonian systems is Poincaré’s recurrence
theorem: every initial condition on a compact energy surface returns infinitely
often to an arbitrarily small neighborhood of itself. Thus, microscopic mixing – the
essential hypothesis of Boltzmann’s theory – cannot be true!11

The resolution of Zermelo’s paradox lies in a careful analysis of the timescale of
recurrence. We will illustrate these ideas in a simple model introduced by Kac. We
consider a set B of n equally spaced points on S1. Let a subset A consisting of m of
these points be chosen uniformly. We assume that 0 < m/n < 1/2. Each site of B
is occupied by a single ball that may be either white or black. The system evolves
in discrete time steps as follows. At each time step, all the balls are moved one site
counterclockwise. Further, all the balls that originate in A switch color under this
move, while the other balls do not change color. How do we describe the number
of black and white balls at time t as n→∞, m→∞, m/n→ µ ∈ (0, 1/2)?

To simplify matters further, let us assume that all the balls are initially white.
Let Nw(t) and Nb(t) denote the number of white and black balls respectively at
time t ∈ N. Let Nw(A, t) and Nb(A, t) denote the number of white and black balls
in A. Since each white ball in A at time t becomes a black ball at time t+ 1, and
each black ball becomes a white ball, we have the conservation laws

Nw(t+ 1) = Nw(t) +Nb(A, t)−Nw(A, t),(5.1)

Nb(t+ 1) = Nb(t) +Nw(A, t)−Nb(A, t).

Clearly, the total number of balls is conserved

(5.2) Nw(t+ 1) +Nb(t+ 1) = Nw(t) +Nb(t) = n,

while the rescaled excess mass,

(5.3) ρn(t) :=
1
n

(Nw(t)−Nb(t)) ,

fluctuates according to

(5.4) ρ(t+ 1) = ρ(t) + 2
1
n

(Nb(A, t)−Nw(A, t)) .

11Boltzmann called this hypothesis the ‘Stosszahlansatz’ – the assumption of ‘molecular chaos’.
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The reader is encouraged to play around with this simple system by hand or
on a computer. The randomness in this problem is an example of ‘frozen disorder’
– that is, the set A is chosen initially at random and the dynamics of the system
is deterministic once A has been chosen. Nevertheless, one sees that for a typical
choice of A, the configuration of white and black balls soon gets rather mixed
up. The analog of Boltzmann’s molecular chaos assumption in this problem is the
following simple ‘closure’ assumption:

(5.5) Nb(A, t)
?= µNb(t), Nw(A, t) ?= µNw(t).

We call this a closure assumption because we it allows us to obtain a closed kinetic
equation for ρ(t) from the exact n-particle description (5.4). As in all of kinetic
theory, we have collapsed a detailed description of the state of the system (here the
entire configuration) to the description of a population (here the excess mass).

With assumption (5.5) we find that

(5.6) ρ(t+ 1) = (1− 2µ)ρ(t), ρ(t) = (1− 2µ)t, t ∈ N,

which is easily solved along with the initial condition ρ(0) = 1 to yield

(5.7) ρ(t+ 1) = (1− 2µ)t, t ∈ N.

Since we have assumed that 0 < µ < 1/2, we see that the excess mass decays
exponentially fast. But as we explain below, the dynamics of the system is periodic
with periodic 2n, so such irreversibility is impossible! This is the analog of Zermelo’s
paradox in this model.

5.2. Reversibility and irreversibility. Here is a more precise description of the
configurations and evolution. Let us index the sites by p ∈ {1, . . . , n}. Let η ∈
{−1, 1}n denote each configuration, with ηp = 1 if there is a white ball at site p
and ηp = −1 if the ball at site p is black. We describe the frozen disorder by the
fixed vector a ∈ {−1, 1}n with

(5.8) ap = −1, p ∈ A, ap = 1, p ∈ Ac.

Both a and η are cyclic vectors: that is ak := ap when k ≡ p( mod n) and
1 ≤ p ≤ n. The evolution of the system is given by

(5.9) ηp+1(t+ 1) = apηp(t), 1 ≤ p ≤ n.

Equation (5.9) may be solved exactly to yield

(5.10) ηp(t) = ap−1ap−2 . . . ap−tηp−t(0)

This system is clearly periodic: since
∏n
j=1 ap−j = (−1)m for every p, when t = 2n

(5.11) ηp(t) =

 2n∏
j=1

ap−j

 ηp(0) = (−1)2ηp(0) = ηp(0).

When the initial condition ηp(0) = 1, 1 ≤ p ≤ n, the state at time t is

(5.12) ηp(t) = ap−1ap−2 . . . ap−t,

and the excess mass is given by

(5.13) ρn(t) =
1
n

n∑
p=1

ηp(t) =
1
n

n∑
p=1

t∏
j=1

ap−j .



38 GOVIND MENON

We thus see that the state of the system is a function of the disorder alone. The
kinetic description and the closure approximation apply in the limit when n→∞.
In this limit, we expect ρn(t) to be close to its average,

(5.14) E (ρn(t)) =
1
n

E

 n∑
p=1

t∏
j=1

ap−j

 = E

 t∏
j=1

aj

 .

Here the expectation is over the initial disorder, that is, the choice of a subset of
size m from a set of n sites. The symmetry of this law allows us to obtain the
second equality above.

The closure assumption (5.5) is motivated by the following naive calculation: if
the ai had been iid random variables with expected value µ(−1)+(1−µ)(1) = 1−2µ,
then by independence

E

 t∏
j=1

aj

 = (1− 2µ)t,

establishing (5.6). This calculation is suggestive, but not quite right. The expecta-
tion actually takes the form

(5.15) E

 t∏
j=1

aj

 =
1(
n
m

) ∑
A

t∏
j=1

aj

where
∑
A denotes the fact that we sum over all subsets A of size m. In particular,

the aj are related by the constraint

(5.16)
n∑
p=1

ap = n− 2m.

Kac uses the following elegant contour integral representation to deal with this
constraint. Let Γ denote the unit circle {|z| = 1} ⊂ C. Since

(5.17)
1

2πi

∮
Γ

1
zs
dz = δs,−1, s ∈ Z,

we may set s = 2m− n+ 1−
∑n
p=1 ap to obtain the identity

∑
A

t∏
j=1

a1−j =
∑

a∈{−1,1}n

1
2πi

∮
Γ

a1a2 . . . am
zs

dz(5.18)

=
1

2πi

∮
Γ

dz

z2m−n+1

∑
a∈{−1,1}n

a1a2 . . . at
za1+a2+...+an

,

=
1

2πi

∮
Γ

dz

z2m−n+1

(
z +

1
z

)n−t(1
z
− z

)t
.(5.19)

One may now use the method of steepest descent to analyze E(ρn(t)) in the limit
n→∞ for fixed t. A similar calculation applies to the variance of ρn(t).

A more modern approach to this problem is based on the idea of concentration
inequalities 12 . Let Sn denote the symmetric group. The symmetric group is a

12I don’t expect beginning graduate students to know these inequalities. However, since the
idea of concentration of measure and the geometry of Banach spaces was extensively developed in
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metric space when it is equipped with the normalized Hamming distance

(5.20) dH(π, τ) =
1
n

n∑
i=1

1{πi 6=τi}, π, τ ∈ Sn.

Finally, Sn carries a natural probability measure: the uniform measure assigns each
permutation π ∈ Sn the weight 1/n!. We say that a function f : (Sn, dH) → R
is M -Lipschitz if |f(π) − f(τ)| ≤ MdH(π, τ) for π, τ ∈ Sn. Lipschitz functions on
(Sn, dH) are ‘almost constant’ in the following sense.

Theorem 5.1. Maurey’s inequality [14, §6.5] Let f be an M -Lipschitz function
on (Sn, dH), and Qn be the uniform measure on Sn. Then for any ε ≥ 0

(5.21) Qn(π : |f(π)− EQn
(f) | > ε) ≤ 2 exp

(
−nε2

16M2

)
.

Kac’s estimates on the mean and variance of ρn(t) require some careful asymp-
totics. In contrast, the following theorem – which is stronger than Kac’s – is an
almost trivial consequence of Maurey’s inequality.

Let P denote the law of the uniformly chosen subset A of size m.

Theorem 5.2. Assume t ∈ N and fix ε > 0. Then

(5.22) P (|ρn(t)− E (ρn(t))| > ε) ≤ 2 exp
(
−nε2

64t2

)
.

In order to establish this theorem, we first observe that the set of possible subsets
A of size m may be identified with Sn/(Sm × Sn−m). More precisely, we associate
to each subset A the equivalence class [π] ∈ Sn/(Sm × Sn−m), and the assignment
a([π]) as in (5.8). We lift a into Sn by defining the function ã : Sn → {−1, 1}n by
setting ã(τ) = a([π]) for each τ ∈ [π]. Finally, consider the function

(5.23) f(τ) =
1
n

m∑
p=1

t∏
j=1

ãp−j(τ) =
1
n

m∑
p=1

t∏
j=1

ap−j([π]), τ ∈ [π].

By construction, this function is constant on each equivalence class. It is also
a Lipschitz function with Lipschitz constant 2t. This is easiest to check for two
permutations τ and τ̃ that differ by a swap. In this case, dH(π, τ) = 2/n, and

|f(τ)− f(τ̃)| ≤ 4t
n
,

since the products
∏t
j=1 ãp−j(τ) and

∏t
j=1 ãp−j(τ̃) differ by 2 in at most two in-

tervals of p each of length t. Iterating this argument, we see that f is a Lipschitz
function with Lipschitz constant 2t. Theorem 5.1 then follows by an application of
Maurey’s inequality.

In conclusion, the resolution of Zermelo’s paradox in this simplified problem is
as follows. For each choice of disorder, A, the solution η(t) is periodic, however the
length of the period is O(n). There are

(
n
m

)
solution curves ρn(t) corresponding to

the possible choices of disorder A. When t is held fixed, these solution curves con-
centrate around the deterministic decay (1− 2µ)t as n→∞ with high probability.

Israel, I found it attractive to present this application of Maurey’s inequality in these lectures. I
wish I understood the mysterious section 3 1

2
of Gromov’s green book [6] better.
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