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Chapter 1

Fundamentals of random
matrix theory and
numerical linear algebra

ch:background

1.1 What is a random matrix?

There are two distinct points of view that one may adopt. On one hand, our
intuitive ideas of randomness are intimately tied to the notion of sampling a
realization of a random variable. Thus, given a random number generator,
one may build a random Hermitian matrix, M € Her(n), by choosing its real
diagonal and complex upper-triangular entries independently at random. It is
conventional to assume further that all the diagonal entries have the same law,
that all the upper-triangular entries have the same law, and that the real and
imaginary parts of each off-diagonal entry are independent. For example, we
may assume that the entries on the diagonal are +1 with probability 1/2, and
that the upper-triangular entries are +1 4 i with probability 1/4. It is also
conventional to have the variance of the diagonal entries to be twice that of the
real part of the off-diagonal entries. Random matrices of this kind, are said to
be drawn from Wigner ensembles.

On the other hand, one may adopt a more analytic view. The Hilbert—Schmidt
inner product of two Hermitian matrices, Tr(M*N) = Z?kzl MjkNjk, defines )
a natural metric Tr(dM?) and volume form DM on Her(n) (see Chapter Ef)llﬂm
In this text, unless otherwise stated, |[M|| = /Tr M*M). Thus, each positive
function p : Her(n) — [0, 00) that decays sufficiently fast as | M| — oo, may be
normalized to define a probability measure. A fundamental example is the law
of the Gaussian Unitary Ensemble (GUE)

1

puE(M)DM = 7e—%Tr<”12>DM. (1.1.1)

n

Here Z,, is a normalization constant that ensures pgug is a probability density
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(we use the same notation for different ensembles; thus the numerical value of Z,,
must bg inferred from the context). The term GUE was introduced by Freeman
Dyson FD%GQ], and refers to an important invariance property of pqug. Each
U € U(n) defines a transformation Her(n) — Her(n), M — UMU*. It is easily
checked that the volume form DM is invariant under the map M — UMU™, as
is the measure pqur(M)DM. More generally, a probability measure on Her(n) is
said to be invariant if p(M) DM remains invariant under the map M — UMU*,
for each U € U(n). Important examples of invariant ensembles are defined by
polynomials in one-variable of the form

g(l’) = G,QNZ‘QN + (12N71£L'2N_1 +...+ap, a;€ R, 7=0,1,...,2N, asny > 0.
(1.1.2)
Then the following probability measure is invariant

1
p(M)DM = ——e” TraMp g, (1.1.3)

n

We have assumed that all matrices are Hermitian for simplicity. The above
notions extend to ensembles of matrices from Symm(n) and Quart(n). The
notion of invariance in each case is distinct: for Symm(n), the natural transfor-

Jmation is M QMQT, Q € O(n); for Quart(n) it is M — SMSP, S € USp(n).

The standard Gaussian ensembles in these cases are termed GOE (the Gaussian
Orthogonal Ensemble) and GSE (the Gaussian Symplectic Ensemble), and they

are normalized as follows:

1 1
peor(M)dM = Z—e*% TN, pasp(M)AM = ol TMIDALL (1.1.4)

n n

The differing normalizations arise from the different voiéim.e ,ﬁorm% on Symm(n),
sintegration

Her(n) and Quart(n) as will be explained in Chapter or now, let us note
that the densities for all the Gaussian ensembles may be written in the unified
form

B2
Zn(B) " tema THMD) (1.1.5)

where 8 = 1,2 and 4 for GOE, GUE and GSE respectively. While it is true
that there are no other ensembles that respect fundamental physical invariance
(in the sense of Dyson), many fundamental results of random matrix theory
can be established for all 5 > 0. These results follow from the existence of
ensembles of tridiagonal matrices, whose eigenvalues have a joint

‘ eq:inv-ensemble ‘

- gntir%;t“)%t—]]?&%lman
that interpolates those of the 5 = 1,2 and 4 ensembles to all 8 > 0 [DEQ2].

1.2 The Ginbre ensemble

The so-called Ginibre Ensemble can be seen as a fundamental building block to
define GOE and GUE. The real Ginbre ensemble, denoted Ging is an n X n ma-
trix of iid standard normal random variables. The Complex Ginibre Ensemble
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is then defined as

X ~ Gll’l(j(’n,) s X~ (Xl + iXQ), X1, X0 ~ GinR(n),

1
V2

where X; and X5 are independent. Then it follows that

GOE(n) ~ %(X +XT), X Ging(n),
GUE(n) ~ —=(X + X*), X Gine(n).

V2

There is a related construction for GSE tpat %voilds direct use of quarternions
K R umitriu-Edelman K
using a 2n X 2n complex matrix. See [DEOZ[ for the details.

1.3 The main limit theorems

The basic question in random matrix theory is the following: what can one
say about the statistics of the eigenvalues of a random matrix? For example,
what is the probability that the largest eigenvalue lies below a threshold? Or,
what is the probability that there are no eigenvalues in a given interval? The
difficulty here is that even if the entries of a random matrix are independent,
the eigenvalues are strongly coupled.

Gaussian ensembles play a very special, and important, role in random ma-
trix theory. These %gsthe only ensembles that are both Wigner and igvarignt
(see Theorem AW, Dioneering, ingenious calculations by Dyson [Dys62],
Gaudin and Mehta [MGG60, Meh04], on the Gaussian ensembles served to eluci-
date the fundamental limit theorems of random matrix theory. In this section
we outline these theorems, assuming always that the ensemble is GUE. Our
purpose is to explain the form of the main questions (and their answers) in
the simplest setting. All the results hold in far greater generality as is briefly
outlined at the end of this section.

By the normalization @j a GUE matrix has independent standard nor-
mal entries on its diagonal (mean zero, variance 1). The complex off-diagonal
entries have independent real and imaginary parts with mean zero and variance
1/2. We denote the ordered eigenvalues of the GUE matrix by Ay < Ay < ...\,
A fundamental heuristic for GUE matrices (that will be proven later, and may
be easily simulated) is that the largest and smallest eigenvalues have size O(y/n).
In fact, A\; & —2y/n and \,, &~ 2y/n as n — oo. Since there are n eigenvalues,
the gap between these eigenvalues is typically O(1/y/n). There are thus two
natural scaling limits to consider as n — oo:

1. Rescale M + n~/2M so that the spectral radius is O(1). In this scaling
limit, n eigenvalues are contained within a bounded interval, and we obtain
a deterministic limit called the semicircle law.
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2. Rescale M — n'/2M so that the gaps between eigenvalues are O(1). In
this scaling limit, we expect a random limiting point process. The limiting
point process is a determinantal point process called the Sines process.

In fact, the situation is more subtle. While the expected value of the gap between
eigenvalues for a GUE matrix is indeed O(n~'/?), the gaps are O(n~%/3) about
the edge of the spectrum. There is an an entirely different scaling limit called
the Airy, process obtained by rescaling the spectrum of M + 24/nl.

In all that follows, we consider a sequence of random matrices of size n
sampled from GUE(n). To make this explicit, the matrix is denoted M,,, and

its ordered eigenvalues are denoted )\gn) < /\én) < <L )\%”).

1.3.1 The semicircle law

Definition 1. The probability density and distribution function

x

1
Psc(T) = 5\/4 — 22 lig<2, Ficlr) = / pse (') da’, (1.3.1)

— 00

are called the semicircle density and the semicircle distribution respectively.

Theorem 2. Let M, be a sequence of GUE matrices of size n. The rescaled
empirical spectral measures

1 n
pin(dar) = — Zl 0,-1/27m () (1.3.2)
iz

converge weakly to the semicircle density almost surely.

:wigner
Theoremﬁ may also be interpreted as the statement that the empirical spec-

tral distribution of the matrices /W\{ﬁnecionverges to the semicircle distribution.
The shortest proof of Theorem P uses the following integral transform.

Definition 3. Assume p is a measure on R that satisfies the finiteness condition

/_Oo ﬁu(dm) < o0. (1.3.3)

The Stieltjes transform of y is the function

,&(z):/oo L (dz), -cC\R (1.3.4)

e T—Z

The Stieltjes transform is of fundamental importance in the theory of or-
thogonal polynomials and spectral theory. This is because there are natural
Stieltjes transforms associated to the resolvent (M — z)~!, such as

Te(M —2)' and v*(M —2)"'v, veC™ |v]=1. (1.3.5)

eq:stieltjesl

eq:stieltjes2
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The general proof of Theorem Ei TS6s A recursive expression for the law of Tr(z —
M,)~t. As n — oo, the fixed point of this recursion, Ry solves the quadratic

equation
R?—:R+1-0. (1.3.6)

It is then easy to verify that

Ree(2) = % (<24 V1), zeq\-2.2] (1.3.7)

We recover the semicircle law from Rs.(z) by evaluating the jump in Im(Rsc(2))
across the branch cut [—2,2].

Remark 4. The heuristic to determine the typical spacings is the following.
Define 7(n> € [—2,2] by the relation

~{

L psc(x)dz, j=1,2,....n
n

— 00

Then the approximation )\;n) ~ \/ﬁfyj(-m should hol We have
(m)

1 Yi+1 N . .
! :/(n) pre(@)dz ~ (17, 1 pec (). L)
75

If j = j(n) is chosen so that ’yj") —r,r € (—2,2) (i.e. in the “bulk”) we have

, 1
D
A / Vpse (1)

At the edge, consider (noting that ,ﬁn) > —2)

1 7 ¥ 2/ (m) 3/2
— = Psc(x)da ~ \/2+xdT——( —|—2) ,
n -2
(n)
+2= 2/3
2v/n + )\gn = O(n_l/ﬁ), )\Sln) —2vn = O(n_l/G), (1.3.9) ’ eq:largestscaling
where the last equation follows from )\ f ny; ) and the natural symmetry

between A" and A",

12a
IThis is made rigorous and quantitative by Erdés, Yau and Yin .
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1.3.2 Fluctuations in the bulk: the sine process

We now rescale so that the gaps between eigenvalues is O(1) and the scaling
limit is a random process. This random process will be denoted Sine; (and Sineg
for the general S-ensembles). Each realization of the Siney process is a countable
set of points {x;}72 _ . One of the fundamental statistics associated to a point
process is the probability of having k points in an interval. In order to state
a typical fluctuation theorem that describes these probabilities, we must define

the sine-kernel and its Fredholm determinants.
Definition 5. The sine-kernel is the integral kernel on R x R given by
sinw(z —y)

Ksine(xa y) = 7T(:,l? — y)

;T FY, (1.3.10)

and Kgne(z, x,) = 1.

In the following theorem we will assume that x and y are restricted to a finite
interval (a,b). The sine-kernel defines an integral operator on L?(a,b) that we
denote by Kiinel(q,5)- The kernel Kgne(z,y) is clearly continuous, thus bounded,
for 2,y € (a,b). Thus, Kinel(4,) defines an integral operator on L?(a,b) that
is trace-class, and it has a well-defined Fredholm determinant

det (1 - Ksine]]-(a,b)) (1311)

o (_1ym
=1+ ZO ( m? /(a - det (Ksine($j7xk)1§j,k§m) dzidzs ... .dz,,.

Though perhaps mysterious at first sight, the origin of this formula is rather
simple. Integral operators with some smoothness and boundedness (in particu-
lar, continuous integral operators K whose trace f: | K (x,x)|dx is finite) may be
approximated on a discrete-grid of size h by a finite-dimensional discretization
K},. The determinant (I — K},) is then the usual determinant of a matrix and
we may use the definition of the determinant to expand det(l — K},) in a finite
series, which is nothing but the infinite series above in the instance when all
terms beyond m = rank(K},) vanish. This approach was pioneered by Fredholm
in 1900 before the development of Eungéggr_l%m%{rlgclgsis and is turned into an effi-
cient numerical method in Section rom a probabilistic point of view, this
formula arises from the Inclusion-Exclusion Principle, taken to the limit. The
operator theory introduced by Fredholm allows for that limit to be understood.

GM
Theorem 6 (Gaudin-Mehta hMGGO}). For each finite interval (a,b) C R, and
re(—2,2),

h_>m P (\/ﬁpsc(r) (A](qn) - T\/ﬁ) ¢ (aa b)7 1<k< n) = det (1 - Ksinejl(a,b)) .
(1.3.12)
The probabilities of the Siney process can be expressed without reference to
the matrices M,,. For each interval (a,b) let Nap) = S L{z).e(ab)}- Then,

k=—o0

P (Nap) = 0) = det (1 = Knela)) - (1.3.13)

‘eq:fred—series

eq:sine
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For comparison, if we had a Poisson process {Z1};2 _ ., with rate A(dz), the
associated count N(a’b) would satisfy

P (N(a’b) = 0) = exp (— /ab A(dx)) )

1.3.3 Fluctuations at the edge: the Airy point process

m:gaps :dyson
Remarkﬁ and Iheoremg reveal that the gaps between consecutive eigenval-

ues )\g-") and )‘;Z—)l is of O(n=1/2). However, the fluctuations at the edge are
much larger, of O(nil/ 6). The point process of shifted and scaled eigenvalues
converges in distribution to a limiting point process, {yx}72, called the Airy,
process. In order to describe the law of this process, we must define the Airy
function and the Airy kernel.

Definition 7. The Airy function is defined by the oscillatory integral

T o

Ai(x) L / ek elk*/3 ;. (1.3.14)

eq:def-airy

S
The Airy function is one of the classical special functions WAS?QJ. It Ed%i?air

several alternative definitions. For instance, the oscillatory integral in

may be deformed into an absolutely convergent integral in the complex plane.
This argument allows us to establish that the Airy function is entire and to
determine its asymptotic expansions as r — +o0.

These properties may also be estabﬂjls})l%d using the theory of ordinarﬁ di%%_—a ir
K

ential equations in the complex plane [Hil97]. It is easy to verify from
after deformation, that Ai(x) satisfies the differential equation

¢"(z) =xp, —00<z<00. (1.3.15)

- —air
Equation @ﬁnits two linearly independent solutions, only one of which
decays as * — oo. Up to a (fixed by convention, but otherwise arbitrary)
normalization constant, the decaying solution is Ai(x).

Definition 8. The Airy kernel is the continous integral kernel on R x R given
by
Ai@) A (y) — AT () Ai(y)

KAiry(xay) = T—y ) x#%

and by continuity at x = y.
Observe that both the sine and Airy kernel have the form

/ gl
K(o,y) = f@)f'(y) = f (I)f(y)7 r oty (1.3.16)

r—y
where f solves a second-order linear differential equation. Similar kernels arise
in various limiting models in random matrix theory. For instance, the Bessel
kernel — corresponding to f(x) = J, (), the Bessel function with parameter o

— describes fluctuations about the singular values of random matrices.

‘ eq:int-structure




16 CHAPTER 1. FUNDAMENTALS

thm:TW | Theorem 9. For each interval (a,b) CR, —oo < a < b < oo,

lim P (n1/6 ()\,(c”) _ 2\/73) ¢ (a,b), 1<k < n) = det (1 = KainyLa)) -

n—o00
(a7
:dyson

As in the remarks following Theorem Et %Ee expression det (1 — KA;,y]l(a’b))
gives the probability that no points of a realization of the Airy, point process
lie in (a,b).

1.3.4 Fredholm determinants, Painlevé equations, and in-

tegrable systems

L. X :dyson <TW X
It is immediate from Theorem [6lan eorem&t!]h_af the Fredholm determinants

det (1 — Ksine]l(a,b)) and det (1 jsé(ﬁ;é%]l(a’b)) are positive for all (a,b). This is
astonishing if one treats as a starting point, since it is by no means clear

that the signed infinite series sums to a positive number! It is in fact rather
challenging to extract meaningful information, such as the asymptotics of tails,
from the expression of probabilities as Fredholm determinants. A crucial piece
of the puzzle lies in the connection between Fredholm determinants and the
theory of integrable systems. More precisely, the Fredholm determinants satisfy

differential equations in a and b (or more generally in eggg%instg‘n of inter 1S"I‘W
when one considers the obvious extensions of Theorem [ an eoremé to
a collection of intervals H;nzl(am, bm)). These ordinary differential equations

have a special, integrable structure, that allows their analysis. The following
theorems illustrate this aspect of random matrix theory.

MMS
Theorem 10 (Jimbo-Miwa-Mori-Sato hIJMMSSO]). For allt >0,

)
det (1 — Ksine]l(_%é)) = exp (/0 — ds) , (1.3.18)

where o(t) is the solution to the Painlevé-5 equation

(ta")? + 4 (to’ — o) (to' — o +0%) =0, (1.3.19)

which satisfies the asymptotic condition

t 2 :
o) =-—-—5-—, tl0 (1.3.20)

W1
Theorem 11 (Tracy—Widom distribution ﬁrl WO4)). For all real t,

oo
Fy(t) = det (1 — KanyL(s.00)) = exp <_ / <s_t)q2<s>ds), (1.3.21)
t

where q is the solution to the Painlevé-2 equation

¢ =tq+2¢>, —00 <t < o0 (1.3.22)

which satisfies the asymptotic condition

q(t) ~ Ai(t), t— oc. (1.3.23)




1.3. THE MAIN LIMIT THEOREMS 17

We will discuss the baslic properties of Painlevé equations and integrable
. 1ec:¥a1n ev o . -
systems in Lecture [777 Here is a brief preview.
The Painlevé differential equations are a special family of nonlinear ordi-
nary differential equations that generalize the classical theory of linear differen-
tial e ions in the complex plane and the associated theor

a W=

2of special func-
tions . For example, the Painlevé-2 equation (L.322) may be viewed
as a nonlinear analogue of the Airy differential equation (T.3.15]]. Broadly, the
Painlevé differential equations represent a complete classification of second-order
differential equations with the Painlevé property — their only movable singular-
ities (movable by changing initial conditions) are poles — that are not solvable
with elementary functions. The theory of Painlevé equations was developed in
the early years 1900’s, by Boutroux and Painlevé, but fell into obscurityﬂ It
was reborn in the 1970s with the discovery of their importance in integrable
systems and ctly solvable models in statistical mechanics, such as the Ising
model in 2D . We illustrate these links with a fundamental integrable
system: the Korteweg-de Vries (KdV) equation

Up + 6UUL + Ugze =0, —00 < x <00, t>0. (1.3.24)

Despite the fact that KdV is nonlinear, it may be solved explicitly through the
inverse scattering transform. We will not discuss this method in detail. But in
order to make the connection with random matrix theory, let us note that if one
seeks self-similar solutions to KdV of the form

1 x
u(x,t) = (3t)2/3q ((3t)2/3> (1.3.25)

:TH=p2
then ¢ = v2 + v’ and v satisfies the Painlevé-2 equation @L It is in this
ontext 2that Hastings and McLeod established the existence _%fc L%osdolution to
hat satisfies the asymptotic condition (I.3.23]) [HMSU[. It is remarkable

that it is exactly this solution that describes the Tracy-Widom distribution
Fs(¢)!

1.3.5 Universality

We have restricted attention to matrices from GUE to present some of the
central theorems in the subject in an efficient manner. One of the main achieve-
ments of the past decade has been the establishment of universality — informally,
this is the notion that the limiting fluctuations in the bulk and edge described
by the Siney and Airy, processes, hold for both Wigner and invariant ensembles
which satisfy natural moment assumptions. The idea of universality is of clear
practical importance (we need understand only a few universal limits). It also
appears to hold the key to some of the connections between random matrix the-
ory and other areas of mathematics. The explanation of these connections may

2Paul Painlevé was rather restless: he began in mathematics, became an early aviation
enthusiast and then turned to politics. He rose to become the Prime Minister of France for
part of World War I and was later the designer of the disastrous Maginot line.
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lie in the fact that determinantal point processes, such as the Siney and Airy,
process, have the simplest structure of strongly interacting point processes. By
contrast, Poisson processes, while universal, describe non-interacting points.

1.4 Connections to other areas of mathematics

Random matrix theory has deep connections with many areas of mathematics,
many of which are still poorly understood. A brief overview of some of these
connections is presented below. While some of these notions, such as the con-
nections with stochastic PDE require more background than we assume, some
other connections (e.g. with quantum gravity) are in fact more elementary (and
fundamental) than one may naively expect. Our purpose here is to present a
small sample of the rich set of ideas that make the subject so attractive.

1.4.1 Number theory

The Riemann zeta function is defined by the infinite sum

o0

1

OEDY — Re(s)>1. (1.4.1)
n=1

The function ((s) is central to number theory, since it provides a generating

function for the distribution of the prime numbers via Euler’s product formula

[e.°]

1 1
— = H gt Re(s) > 1. (1.4.2)

n=1 p prime
For instance, the divergence of the harmonic series at s = 1 provides a proof
that there are infinitely many primes. The study of {(s) by complex analysis is
the cornerstone of analytic number theory. The basic facts are as follows. The
function ((z) extends to a meromorphic function on C by analytic continuation,
which has a simple pole at s = 1 where the residue is 1. A closely related
function is the Riemann &-function

S

£(s) = 27%25(5 ~1r (5) ¢6s). (1.4.3)

Recall that the I' function is a ‘continuous interpolation’ of the factorial, defined
by the integral

I'(s) :/ e " tdx, Re(s)>0. (1.4.4)

0
The I'-function extends to a meromorphic function C, which has simple poles at
..,—2,—1,0 where the residue is 1. These poles cancel the ‘trivial’ zeros of the

¢ function, and the essential difficulties related to the study of the ( function
are more transparent for the £ function. It satisfies the functional equation

(s)=¢(1—-s), seC. (1.4.5)

[exaeiad]
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The celebrated Riemann Hypothesis is the conjecture that all zeros of the £
function lie on the critical line Re(s) = 1/2 (this line is the symmetry axis for
the functional equation above) Jn his fundgmental paper on the distribution of
prime numbers (translated in [Edw74] and [Rieb3]) Riemann presented a series
of asymptotic expansions that would imply rigorous bounds on the distribution
of primes if the Riemann Hypothesis is true.

The connection between random matrix theory and the Riemann Hypoth-
esis is two-fold. First, if one could construct a Hermitian operator with point
spectrum whose eigenvalues coincide with the zeros of £(i(s — 1/2) then the
Riemann Hypothesis would follow immediately (since all eigenvalues of a Her-
mitian operator are real). The catch, of course, is to determine such an operator.
Nevertheless, as we discuss below, random matrix theory has shed new light on
the spectral theory of several operators, deterministic and random. Thus, the
theory provides a catalog of ‘guesses’. Second, if one assumes the Riemann hy-
pothesis, the fluctuations in the zeros of ((s) are described by the sine-kernel!
Under the Riemann hypothesis, the non-trivial zeros of {(s) may be written
Yo = 3 Eity, with 0 <t <t <.... Let

n:% 2

tn tn -
w log () , and N(z)= Z Ly, <z- (1.4.6)
k=1

This rescaling is chosen so that lim, . N(z)/z = 1 in accordance with the
Prime Number Theorem.

Despite the fact that the zeros w,, are deterministic, we may introduce proba-
bilistic notions by counting the (rescaled) zeros upto a level > 0. For example,
we may define the empirical probability measure

N
i (dw; ) = %x) ; S, (). (14.7)

In order to study the gaps between eigenvalues, we must consider instead the
empirical measures

1
pa(dl; ) = — > Sy —wy (dl). (1.4.8)
1<j,k<N(z);j#k
The expectation of a continuous function with respect to ps(di; x) is denoted
o 1
Ra(fio) = [ fOmldio) =1 fw-w).  (149)
e 1<j<k<N(z)

Under the assumption that f is band-limited, i.e. that its Fourier transform has
compact support, Montgomery established the following

Theorem 12 (Montgomery). Assume the Riemann Hypothesis. Assume f is
a Schwartz function whose Fourier transform f is supported in [—1,1]. Then

lim Ro(f;) :/jO FDua(dl),  pa(dl) = (1— (Si”l) ) dl.  (1.4.10)

T—00 ml

eq:zeta7

eq:zeta8

eq:montgomery
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The point here is that the right hand side of @t%cisely the 2-point
function for the sine process. More generally, Montgomery’s theorem is now
known to hold for the distribution of n-consecutive gaps. That is, the rescaled
fluctuations converge to the Siney process in dis gl?r%%i(?n' Bourgade’s thesis
provides an excellent introduction to these topics [[Boul9].

1.4.2 Combinatorics and enumerative geometry

We will present two problems of enumerative combinatorics that connect with
random matrix theory. As a first example, we note that the 2m-th moment of

the semicircle law
2
1 2m
2m
o(z)de = —— =Cyn, 1.4.11

/_2x Pse(w) dz m+1(m) ( )

the m-th Catalan number. An analytic proof of this identity follows from a
comparison between the Stieltjes transform Rg.(z), and the generating function

Clz) = Z Cpa™ = *

m>0

(1.4.12)

The Catalan numbers describe the solution to many combinatorial problems |
For example, (), enumerates the number of Bernoulli excursions or Dyck paths
of length 2m: these are walks Si, 1 < k < 2m such that So = S5, =0, S, > 0,
0 <k <2m,and |Sgyr1 — Sk| = 1.
A deeper set of connections betweefhg%g%grals on Her(n) and geometry was
tH4].

first noticed by the physicist 't Hooft Ignoring for now the physicists’
motivation, let us illustrate a particular computational technique that underlies
their work. Consider a matrix integral of the form

Zn(2) = /H ( )eTr<*ZM4>pGUE(M) DM, Re(z) > 0. (1.4.13)
er(n

The quartic nonlinearity prevents us from expressing this integral in closed form.
Nevertheless, this integral may be expanded in a Taylor series

Zn( ):i(_z)k/(T (M*)* paue(M)DM, Re(z) >0.  (1.4.14)
n(2 Wl r GUE , e(z . A.
k=0

A fundamental lemma on Gaussian integrals (on RY) (Wick’s lemma) allows us
to reduce each integral above to a sum over pairings of indices. It is convenient
to keep track of these pairings with a graphical description, called a Feynman
diagram. 't Hooft observed that when RY = Her(n) the Feynman diagram
associated to each term in % enumerates embedded graphs on a Riemann
surface. This characterization was independently discovered by mathematicians.

iStanle

3Stanley lists 66 examples in h‘SEa ,iExercise 6.19].

eq:catalanl
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Lemma 1 (Harer-Zagier M) Let e4(m) denote the number of ways to pair
the edges of a symmetric 2m-gon to form an orientable surface with genus g.
Then

oo

fmm) = eg(mynm =27 = / Tr(M2™)paun(M)DM.  (1.4.15)

g=0 Her(n)

Note that only finitely many terms in the sum are non-zero. The series above
is an instance of a genus-expansion. It illustrates the beautiful fact that matrix
integrals serve as the generating functions for Riemann surfaces with a given
combinatorial decomposition.

1.4.3 Random permutations

Consider the symmetric group S(n) of permutations of size n. Every element of
S(n) can be represented as a reordering of the integers 1,2,...,n. For example,
three elements of S(5) are

m = 54312, o = 12435, mws = 45123.

We define a function ¢ : S(5) — N by £(7) = length of the longest increasing
subsequence of 7. For example,

Um) =2, l(m) =4, l(m3)=3.

There is a natural probability distribution Uni(n) on S(n), the uniform distri-
bution, or Haar measure. If I, ~ Uni(n) then P(IL, = ) = % for any 7 € S,
since |S(n)| = nl.

The law of I(I1,,) when IT,, ~ Uni(n) was one of the first problems to be inves-
tigated by Monte Carl, simulation on a computer. Ulam performed simulations
in the early 60’s ;Jlglﬁl and conjectured that

1
NG

k1977
It was later !@ ndeggﬁledently established by Vershik and Kerov %ﬁd Logan

E[((IL,)] — c.

and Shepp | fhat ¢ = 2. The detailed numerical computations of Odlyzko
and Rains indicated

E[((11,,)] — 2v/n = O(n~Y/%). (1.4.16)

. -largestsciEki estpermscaling |
The comparison between (I.3.9] an 8 shou e striking. Indeed, the

following is often called the Baik—Deift—Johansson Theorem and it makes this
scaling rigorous.

Theorem 13 (Eﬁ% Let S(n), £ and 11, be as above. Then for all t € R

((11,) — 2
lim P (()1/6\/5 S t) = det(l — KAiryI]-(t,oo))~
n

n—00

That is, the limit is the same as the largest eigenvalue of a random Hermitian
matriz.

’ eq:largestpermscaling
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2ik2017
This theorem is discussed in great detajl in SEI)ZSUUIUFJ. This surprising con-
nection was explored further by Johansson [JohUU[ Teading to many connections

to random growth processes and the KPZ equation.

1.4.4 Spectral and inverse spectral theory of operators

While Theorem %%%m @lgé_ggciate limits to the spectrum of the operators
M, it is natural to ask if there are limiting operator hg&irggy be naturally
associated to the limiting spectra. Thus, for TheoremE we ask for a ‘natural’
operator EFa‘:c dhs%% spectr d:%sity given by the semicircle law, ps., and for
Theorem 6] an eorem [9[ we seek ‘natural’ random operators that have pure
point spectra with the law of the Sines and Airy, point processes. What is a
‘natural’ operator is, of course, a subjective idea, but convincing candidates
operators are suggested by inverse spectral theory.

We say that a matrix 7' € Symm(n) is a Jacobi matrix if all its off-diagonal
entries are strictly positive. The spectral measure of a Jacobi matrix is the mea-
sure whose Stieltjes transform is el (T'—z)~te;. Thereis a 1—1 correspondence
between the space of n x n Jacobi matrices and probability measures on the line
with n atoms. This correspondence extends naturally, but with some caveats,
to semi-infinite Jacobi matrices. The essence of this theory (due to Stieltjes) is

that the entries of 7' may be determined from the continued fraction expansion

of Tq'n d1a> le;. This correspondence will be considered in detail in Chap-
rﬁt but h

te ere is a concrete example. By applying Stieltjes’ procedureﬁ to the
semicircle law, we discover that ps.(x) is the spectral density for the seminfinite
tridiagonal matrix that is 1 on the off-diagonal, and 0 in all other entries. This
follows from the continued fraction expansion

Ry(—2)= ———— (1.4.17)

Ensembles of tridiagonal matrices are of practical important in numerical
linear algebra. For instance, a key pre-processing step while solving symmetric
linear systems is to tranéqggll Hla? matrix to tridiagonal form by Householder’s
procedure (see Chapter BfJ. Dumitriu and Edelman pushed forward the Gaus-
sian measures under this procedure._to. gc)btalgdalfamlly of tridiagonal ensembles,
known as the general-3 ensembleseﬁ3 er, Edelman and Sutton made
a formal expansion of these operators, and observed that as n — oo, t

‘ eq:cont-frac-sc

) i %etind Sutton
agonal operators appeared to converge to the stochastic Airy operator [ESUT[:

d? 2 .

4The Stieltjes’ procedure is the procedure by which an orthonormal basis of polynomials
is constructed by the Gram—Schmidt process, exploiting a three-term recurrence relation. It
is intimately connected with the Lanczos iteration.
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with Dirichlet boundary conditions at = 0. Here b denotes (formally) white
noise (it is not hard to define Hg rigorously).

RV
Theorem 14 (Ramirez-Rider-Virag WRRVMJ). The spectrum o(Hpg) of the op-
erator Hg is almost surely a countably infinite number of eigenvalues p11 < pio <
ps < .... Moreover, c(Hg) has the same law as the Airyz point process.

In particular, for 8 = 2, the spectrum of the stochastic Airy operator de-
scribes the limiting fluctuations at the edge of the spectrum of GUE matrices.
Despite the simplicity of this characterization, it is not completely understood
how to recover the explicit determinantal formulas of Tracy and Widom from
this formulation (see T%Rj?l—mff)] ).

1.4.5 Universality in numerical computation

It is quite natural to ask about other aspects of random matrices beyond prop-
erties of their eigenvalues. For example, what distributions “arise” in the com-
putation of the eigenvalues of a random matrix. And are these distributions
universal?

Before one can truly ask this question (and make it more precise) an algo-
rithm needs to be set. For example, one can use the power method to compute
the top eigenvalue, the QR eigenvalue algorithm to compute the entire spectrum,
or if one is truly trying to be competative with 10 state of the a éttl{}}% implicitly
shifted QR algorithm (i.e. Francis’ algorithm) FﬁGﬁ (see alsoWWEfII should
be used.

And then the question of how a distribution can “arise” in a deterministic
algorithm needs to be addressed. The most natural way is to examine the
runtime distribution also called the halting time. Since eigenvalue computation
amounts to polynomial rootfinding, abstract theory (Galois theory, specifically)
tells us that if the degree is five or larger then any general algorithm to compute
the eigenvalues must be iterative.

It turns out that the so-called Toda algorithm is a natural algorithm to
use on symmetric indefinite matricegﬂ The Toda algorithm to compute the
eigenvalues of a symmetric (or Hermitian) matrix H is derived by discretizing
and numerically solving the matrix flow

X'(t) = X()B(X(t)) — B(X(£)X(t), B(X)=X_—X*, X(0)=H,

where X_ is the strictly lower-triangular part of X. It follows from the fact
that B(X(t)) is skew-symmetric that the eigenvalues of X (¢) do not change in
time — the flow is isospectral.

A measure of the error in computing the top eigenvalue of the matrix is

E(t) = Z | X5 (t)[?

5This is not because of its efficiency but rather because of its mathematical properties.
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because if E(t) = 0 then we are guaranteed that X11(¢) is an eigenvalue of
X (0) = H. The associated halting time is given by

T.(H) =min{t > 0: E(t) < ¢*}.
eift2016
The following is a consenquence of H) %

Theorem 15. Suppose H ~ GOE(n) (8 =1) or H ~ GUE(n) (8 =1) and
e <n%3% for ¢ > 0. Then

T.(n"'/2H)
. - < = gap ’ ’
J\P—Igop <n2/3(10g el —2/3logn) — ! E™ (@), (1.4.19) [eq:toda-thn

where

1
gap — i <
0= i P <n1/6(A£Z” A t) '

The existence of the limit F5*"(t) in the 8 = 2 case is implied em@;
below. An important additional fact that is also established in P?“s that

this theorem also holds, up to the modification of some ensemble-dependent
constants, if H is from a so-called generalized Wigner matrix or invariant en-
semble.
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Exact theory for random
matrices and numerical
linear algebra
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Chapter 2

Integration on spaces of
matrices

ch:integration ‘

In this section, we review the geometry of the classical Lie groups, as well as the
spaces Symm(n), Her(n) and Quart(n) and explain how to integrate over these
groups and spaces. Given an point on a manifold M € M, we use dM to denote
the differential of M, i.e., an infintesimal element on the tangent space T (M)
at M. We reserve DM to refer to a (naturally induced) volume form defined
using an inner product on the tangent space. Note that for x € R, doz = Dux.
Our main goal is the following

thm-weyl-formula| Theorem 16 (Weyl’s formula).

DM |A(A)|B DADU (2.0.1) ‘eq:weyl—formula‘

where A(A) is the Vandermonde determinant

n(n—1)

AAN)=(—1) > H (Aj — ), A =diag(Ai,..., A\n), (2.0.2) ‘eq:va.ndermonde ‘

1<j<k<n

DA is Lebesgue measure on R™, and DU denotes (unnormalized) Haar measurfﬂ

on O(n), and an appropriately defined measure on U(n)/T™ = {U € U(n) : u1; > (Since the set of all diagonal unitary
0, j=1,2,...,n}, and USp(n)/T™ =2 {V € USp(n) : v1; >0, j=1,2,... ,n}“{ B, T ot ey g o
in the cases B = 1,2 and 4 respectively.

we cannot define Haar measure on it.
. -weyl-formula .
The main strategy to prove Theorem is to treat the mapping from ma-
trices with distinct eigenvalues to their eigenvalues and eigenvectors. Then we

identify the tangent spaces, and give a formula that relates the tangent space
for the eigenvalues and the tangent space for the eigenvectors to the tangent
space for the matrix. This formula allows one to change variables in the metric
tensor and therefore in the volume form.

1See Section I%gi gor a discussion of Haar measure.

27
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Remark 17. It is common to normalize the Haar measure such that it is a prob-
ability measure. We have ignored this goni‘c_%‘lgmllll%e, though is is explored in the
exercises. The essential aspect of Ehxi is that the Jacobian for diagonaliza-
tion is given by |A(A)|?. This has far-reaching consequences for random matrix
theory and has the interesting physical interpretation of eigenvalue repulsion.

In what follows, we first present a detailed description of integration on O(n)
and Symm(n). The ideas are then extended to Her(n) and Quart(n).

2.1 Integration on O(n) and Symm(n)

A (linear) isometry of R™ is a linear transformation that leaves the inner-product
invariant The Lie group O(n) is the group, under composition, of linear trans-
formations of R™ that preserve the standard metric g = I. For each O € O(n)
and each z € R" we must have (Ox)T(Oz) = z7z. Thus, O(n) is equivalent
to the group of matrices O such that OTO = I. The group operation is matrix
multiplication. It is easy to check that the group axioms are satisfied, but a
little more work is required to check that O(n) is a differentiable manifold, and
that the group operation is smooth.

We now introduce the natural volume forms on Symm(n) and O(n). We first
note that the space Symm(n) is isomorphic to R?, p = n(n + 1)/2 via the map

M — (M117--~7Mnn;M12a-~-aMn—1,n)- (211)

Thus, all that is needed to define integrals over Symm(n) is a choice of inner-
product. We will always use the Hilbert—Schmidt inner product

Symm(n) x Symm(n) = R, (M,N)+— Tr(MTN) = Tr(MN). (2.1.2)

The associated infinitesimal length element is

ds? = Tr(dMTdM) = > dMZ +2 " dM,. (2.1.3)
Jj=1 J<k
In £ coordinates on RP, the associated metric tensor g is diagonal and takes
the value 1 for the first n coordinates (diagonal terms), and the value 2 for
all the other coordinates (off-diagonal terms). Thus, the netric, tensor g €
iy

Symm_ (p) has determinant 2n(n=1)/2 " We apply formula to find the
following volume form on Symm(n),

DM =2V TTamy; [ dMix. (2.1.4)
j=1

1<j<k<n

Each O € O(n) defines a map Symm(n) — Symm(n), M — OMO?. This ma 3
is an isometry on Symm(n) with the metric above. It is in this sense that @’
is the natural inner-product. Since this map is an isometry, the volume element
DM is also invariant.

eq:hsnorm

eq:int4
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O(n) is a differentiable manifold that is not flat. Thus, in order to define a
volume form on O(n), we must identify its tangent space ToO(n), @ € O(n),
and then introduce an inner-product on ToO(n). Further, the ‘natural’ inner-
product should be invariant under the group operations. The tangent space at
the identity to O(n), TyO(n), is isomorphic to the Lie algebra, o(n), of O(n).
In order to compute o(n) we consider smooth curves (—a,a) — O(n), a > 0,
t — Q(t) with Q(0) = I, differentiate the equation Q(t)TQ(t) = I with respect
to t, and evaluate at t = 0 to find

Q(0)" = —Q(0). (2.1.5)

Thus, each matrix in o(n) is antisymmetric. Conversely, given an antisymmetric
matrix A, the curve t > e* gives a smooth curve in O(n) that is tangent to I
at t = 0. Thus,

T;O(n) =o(n) = {A|A=-A"}. (2.1.6)

. . . . t2 |
The tangent space at arbitrary O € O(n) is obtained by replacing @_ with
the condition that OT O is antisymmetric. Thus,

ToO(n) = {OA|A € o(n) }. (2.1.7)
Finally, given A, A € o(n), we define their inner product (A, A) = Tr(ATA) =
—Tr(AA). This inner-product is natural, because it is invariant under left-
translation. That is, for two vector OA, OA € ToO(n) we find Tr (OA)T(O;Q =

Tr(AT A). The associated volume form on O(n) is called Haar measure. It is
unique, up to a normalizing factor, and we write

DO =2V T dAy. (2.1.8)

1<j<k<n

Now let f: O(n) — R be a bounded, measurable function. Define a neigh-
borhood of O € O(n) by B.(0O) = {O € O(n) : |O — O| < &}. Then for
e > 0, sufficiently small, we can find a diffeomorphism (i.e., a chart) po : Up —
B.(0) Cc O(n), Up open satisfying

0€Uop CToO(n), ¢o(0)=0 (2.1.9)
Then for such € > 0 define
/ fDO = 2n<n*1>/4/ fleo(A) [ d4jx (2.1.10)
B.(0) ©5 ' (B:(0)) 1<j<k<n

It can be verified that this is independent of the choice of . So, now consider
such mapping at the identity, ¢;. And choose

po(A) = Op1(0TA). (2.1.11)
We find
/ fDO = 2"<"—1>/4/ fOer(0"A) [ dAjk (2.1.12)
B:(0) Op; " (B:(1)) 1<j<k<n
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We use the fact that O furnishes an isometry from T70(n) to ToO(n) so that
/ fDO = 2n(n=1)/4 / fOer(A) ] dA
B(0) ¢ (B=(D))

1<j<k<n
In particular, if we choose f = 1, then fBE(O) DO does not depend on O € O(n),

(2.1.13)

showing that this is indeed uniform measure on O(n).

2.2 Weyl’s formula on Symm(n)

Let us now recall some basic facts about Symm(n). Each matrix M € Symm(n)
has n real eigenvalues and an orthonormal basis of real eigenvectors. We write
A for the matrix diag(Aq,...,A,) of eigenvalues, and @ for a matrix whose k-
th column is a normalized eigenvector of M associated to the eigenvalue Ag,
1 < k < n. Since the columns of @) are orthogonal and normalized to length 1,
it is immediate that @ € O(n). Thus,

MQ=QA and M =QAQ".

(2.2.1)

In what follows, we will view the transformation M +— (A,Q) as a change

of variables, from Symm(n) — R™ x Owl) Strictly speaking, this change of
variables is not well-defined since is unaffected if we replace the k-t . coords
column Qg OE Qc’ob . dE—%%éft This issue is considered more carefully in Lemma E

and Lemma elow. In a loose sense, diagonalization is analogous to polar
coordinates in R™,

R™ — [0,00) x S™™ 1,z (r,u),

(2.2.2)

Polar coordinates are natural for rotation invariant probability density on R™.
For example, the standard Gaussian measure on R™ may be written

T
r=lz|,u=—.
r

|

e” 2 Dx= C’ne_%rnfl dr Du, (2.2.3)

where Du denotes the normalized n — 1-dimensional measure on S™ ! and C,,
is a universal constant. The factor r"~! is the aqob,ci.fimn of this transformation.
Weyl’s formula shows that the Jacobian for is |[A(A)|. The proof of
Weyl’s formula relies on an orthogonal decomposition of Th;Symm(n).

Lemma 2. Let M have distinct eigenvalues. Then

In what sense are A and Q orthogo-
nal? I guess Q has zero diagonals, so
this is true in the sense of Hilbert-
Schmidt.

ThSymm(n) 2 R" @ o(n). (2.2.4)

‘ eq:tang-isomorph

with respect to the Hilbert—Schmidt inner product.

I’'m a bit confused by the following:

If A(O) = O, then M = A. But
then my mapping from R™ @ o(n) —
TprSymm(n) is (A, Q) — A which is
not invertible, which tells me they are
not isomorphic. So I added the addi-
tional assumption.

Proof. We first assume that M = A is diagonal. Consider a smooth curve
(—a,a) = Symm(n), a > 0, t — M(t) = Q(t)A(t)Q(t)T such that M(0) =
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A(0) = A, and Q(0) = I. We diﬁerentiateﬂ this expression with respect to ¢
and evaluate it at ¢ = 0 to find the following expression for a tangent vector in

TxASymm(n): o .
M =A+[Q,Al. (2.2.5)

Here A can be an arbitrary diagonal matrix, and Q an arbitrary antisymmetric
matrix. By the assumption of distinct eigenvalues, given M , A= diagonal(M )
and A, Q is uniquely determined. Since the diagonal terms in the commutator
[Q, A] vanish, of Q vanish, Q and A are orthogonal with respect to the Hilbert—
Schmidt inner product. Thus,

TASymm(n) = R™ @ o(n). (2.2.6)

When M = QMQ7 is not diagonal, we consider a curye ]\/If (t) as above, with
M(0) =M, A(0) = A and Q(0) = Q. Now equation 1S replaced by

M=0 (A n [QTQ,A]) Qr. (2.2.7) [eq:tang2

The matrices QTQ are antisymmetric and span o(n). Again, Q is uniquely
determined by M, A and A. Moreover, the matrices [QTQ, A] and A are orthog-
onal as before. For arbitrary A and A we find M(t) := Qe*(A + tA)e AQT is
a smooth curve in Symm(n), satisfying M (0) = M.

Lecture Note 1. In the above calculation we have implicitly assumed that ¢t —
A(t) and t — Q(t) are also smooth. Certainly, such smooth curves exist. If
one only assumes that M(¢) is smooth but ignores the distinct eigenvalue as-
sumption, because M (t) is always symmetric perturbation theory gives that the
eigenvalues (which are order‘ﬁd and associated projections can be chosen to be
differentiable functions of ¢ | Theorem 5.4]. But note that symmetry is
actually unnecessary as we have assumed distinct eigenvalues. The main point
is that one can build a matrix Q(t) by applying the projections to the standard
basis, allowing the computation of A and @, in a well-defined way.

Lecture Note 2. The fact that the commutator [QTQ,A] must be symmetric
implies that (QTQ);; + (QTQ);i = 0 for i # j and more specifically for \; #
Aj. The diagonal entries of this product must vanish. So, for given distinct
eigenvalues we can define the mapping

M — (diagonal(QMQT), QTQ) . (2.2.8)
This maps Th;Symm(n) onto R™ @ o(n). The inverse map is, of course, given by

0 (A + [A,A]) QT, (A, A) e R" @ o(n).

:decom
rem:isospectral | Remark 18. The proof of Lemma ﬁ] reveals that all matrices of the form I changed this statement, it used to

read Q ([QTQ, A]) QT but thisis a
2Differentiability is guaranteed by classical perturbation theory m Theorem 5.4]. traceless matrix.
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v Q1) (16700, A1) Q) Tds (22.9)

lie on an isospectral manifold — i.e. a manifold of matrices in Symm(n) with
the same spectrum as A. And if one makes the ansatz Q(t) = ' for an
antisymmetric matrix A, one has

M = [A, M]. (2.2.10)

Lecture Note 3. Conversely, if M = [A, M] for a skew-symmetric matrix A then
M (t) is symmetric if M (0) is. And the trace of all powers are conserved, using
the cyclic properties of the trace,

k
d . ) , .
— Tr M*(t) =Tey MITY&)ME)M*=I(t) = kTr M(t)M* (¢
T (t) ; (t)M(t) (t) (t) (t) (2.2.11)
=k Tr[A, M(6)]M*1(t) = k [A, M* ()] = 0.
This implies for A\; = A;(¢) we have
1 11 M
202X - 2), Ao
: : , : Jl=o (2.2.12)
nATTL ATt pant A

If the eigenvalues are distinct, this matrix is non-singular (see ﬁ) and spec-
trum of M is constant.

Proof of Weyl’s formula for § =1. We now have two coordinate systems on
Ty Symm(n) provided that the eigenvalues of M are distinct. We will show
that tho set of all symmetric matrices w1t£a(:it1:%t°11%cst_ %ggnv%g%gﬁils% open, ‘donsc
and of full Lebesgue measure (see Lemma p[and Corollary [IJ). The coordinates
Eas 1 < oo < p give the metric (Z-T.3]. A coordinate system, which is always lo-

cally defined, is (A, A ;, where A is a diagonal matrix and A is an antisymmetric

matrix. We use o find the infinitesimal length element in this coordi-
nate system. On the subset of Symm(n) consisting of matrices with distinct
eigenvalues, using that M is symmetric, and Q7dQ = dA, A € o(n),

TrdM? = Tr(dM)TdM = Tr Q(dA + [dA, A])T(dA + [dA, A])QT
= TrdA® 4+ 2TrdA[dA, A] + Tr[dA, A]? (2.2.13)
= TrdA? + Tr[dA, A]?.
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Expanding out this last trace, we find
Tr[dA, A]* = Tr(dAA — AdA)?
= TrdAAdAA + Tr AdAAdA — Tr AdA®A — Tr dAAdA

=23 3 dAjpdAg e — D0 dARdAGA? =D Y T dA A A
j=1 k=1 j=1 k=1 j=1 k=1
=2 (A — Ap)?dA%,.
i<k
(2.2.14)
Therefore
ds? =Tr(dM?) = > dAT+2 Y (N — A)dA%. (22.15) [eq:weyl-metric
j=1 1<j<k<n

Thus, the metric tensor in these coordinates is a diagonal matrix in Symm , (p)
that takes the value 1 on the first n coordinates, and the value 2(\; — A )? for
each term A;;. By , the volume form is

DM = 2n(n=1/4 H d; H [Aj — Ak|dAjr = |A(A)|DADO. (2.2.16) ‘ eq:weyl-volume

j=1 1<j<k<n

O

To interpret Weyl’s formula, in a neighborhood Uy, of a matrix with distinct
eigenvalues, one needs to construct an invertible map ¢(M) = (A, Q) from
symmetric matrices in this neighborhood to these “spectral” variables. Then
for f with compact support in Uy

/f(M)DM/d;(U )f(QAQT)|A(A)\DADO. (2.2.17)

We now work to understand how to define such a map, and why matrices with
repeated eigenvalues do not cause further issues.

2.3 Diagonalization as a change of coordinates

Some care is needed when treating the map M — (A, Q) as a change of vari-
ables. First, the map is not even well-defined in general, since the sign of each
normalized eigenvector is arbitrary. Second, even if we fix the signs, the choice
of eigenvectors is degenerate when M has repeated eigenvalues. Third, A is
not uniquely defined if we do not specify an ordering of the eigenvalues. The
following lemmas address this issue. Define the Weyl chamber

WEH={AeR" |\ <A <...< A\, }. (2.3.1) ’eq:weyl—chamber




le:coords

1:hoffman

le:coords-pert ‘
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Lemma 3. Assume My € Symm(n) has distinct eigenvalues. Then there exists
e > 0 such that for each s € {£1}", there is a C*° map

B B(Mg) = W™ x O(n), M (A, Q)

that is a C* diffeomorphism onto its image.

:coords

Proof of Lemma ﬁjﬁlﬂine of the proof is presented. The remaining details
are left to the exercises. Standard perturbation theory (see , for example)
demonstrates that the map is C'*°. The choice of s corresponds to fixing the
signs of the eigenvectors as follows. Let a basis of normalized eigenvectors
of My be fixed. Call the associated matrix of eigenvectors QQg. For each s, let

(()S) = diag(s1,...,8,)Qo. Each Qés) is also an eigenvector matrix for My. Since
the eigenvalues of M are distinct, we may use the implicit function theorem to
solve the algebraic equations that determine the eigenvalues and eigenvectors,
in a way that is consistent with the choice of s. O

Lemma 4 (Weilandt—Hoffman inequality). Let My, Ms € Symm(n) and use
Aj(M;) to denote the jth eigenvalue (in increasing order) of M;. Then

DN (M) = X (My)* < || My — My|>.
j=1

Tao2011 . X
Proof. See Fﬁ%ﬁsmn 1.3] for a particularly nice proof. O

Lemma 5. Assume that M € Symm(n) has a repeated eigenvalue. Then for
every € > 0 there exists M. € Symm(n), such that |M — M.|| < € and M,
has distinct eigenvalues. Furthermore, the set of all matrices in Symm(n) with
distinct eigenvalues is open.

Proof. Exercise. O

Lemma Ee_'sccgﬁthat the map M — (A, Q) provides local, coordinate
system near each matrix with distinct eigenvalues. Lemma Ei Shiows that set of
such matrices is dense. As has been noted, more is true. The set of all matrices
with both distinct eigenvalues and non-va isllailg 2ﬁrs‘c entries in its. eigenvectors
is of full measure. This follows from %%‘Lemma H;Bjm%has to
note that the procedt eig£are2(]11ucing a full matrix to a tridiagonal matrix that is
used to establish %ﬂﬁ% not affect the first row of the eigenvector matrix.

In fact, Weyl’s formula shows that the set of M € Symm(n) with repeated
eigenvalues and at least one eigenvector with a zero first component has measure
zero with respect to DM. Let O ={0 € O(n) | O1; >0, j=1,...,n} and
Wr={M = OAOT € Symm(n) | —R< A <X <--< X\, < RO €0}
Then define p(M) = (A, Q) uniquely by the convention that the first non-zero
entry in each column of @ is positive. Then we find

/ DM = / |A(A)DA (/ 1)()) : (2.3.2)
Jwg JWr JO-

Wr={AeR"| —R< )\ <)X <- <\, <R} (2.3.3)



2.4. INDEPENDENCE AND INVARIANCE IMPLIES GAUSSIAN 35

But

‘ /V . [A(A)[DA < /O DO> - /W |A(A)|DA < /O D()> : (2.3.4)

This then implies, after changing variables back to M,

/ DM:/ DM. (2.3.5)
JWgr JWr

This then implies that for S = {M € Symm(n)|\; = A; for some i # j} has

measure zero. To see that
/ DO = / DO,
J O~ . 5>

make a local change of variables to the tangent space in the neighborhood of
a matrix O € Os \ Os via po(A) = O(I — A)(A+ I)~L. For O fixed, the
condition eing,:()(A)el = 0 is the zero set of a function that is real-analytic in the
components of A. If it vanished on a set of positive measure (Lebesgue measure
on the entries of A), it would have to vanish identically. This shows the measure
of O~ \ O that lies in this neighborhood is zero. Compactness of O \ O~ can
then be used to prove it is measure zero.

2.4 Independence and Invariance implies Gaus-
sian

Fix M € Symm(n) with spectrum o(M). Fix an interval (a,b) C R and let
Symm(n) ) denote the set of M € Symm(n) with spectrum o(M) C (a,b).
Each function f : (a,b) — R extends naturally to a map Symm(n) —
Symm(n) as follows:

FM)=Qf(M)QT, M=QAQ", f(A)=diag(f(\1),....f(\)). (2.4.1)

Clearly, Tr(f(M)) = Tr(f(A)) = Y27, f(Aj). Each f: R — R that grows
sufficiently fast as & — +o00 defines an invariant distribution on Symm(n)

w(DM) = %exp (= Tr(f(M))) DM. (2.4.2)

This is the most general form of an invariant probability distribution.

By contrast, a Wigner distribution relies on independence of the entries of
M. This means that if a Wigner distribution has a density, then it must be of
the form

poM) = (TT00) TI fwO) | D @243)
j=1 1<j<k<n

‘ eq:class-function

‘ eq:class-function-invariant

‘ eq:wigner-general
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Theorem 19. Assume a probability measure  on Symm(n) is both a Wigner

is a Gaussian ensemble,

1
p(DM) = Ze 33 T DAL (2.4.4)

with variance 0% and mean vI, for some v € R.

Proof. We first illustrate the essential calculation for 2 x 2 matrices. Suppose

1
w(DM) = p(M)DM = Zf(MH)g(Mgg)h(M12)dM11dM12dM22. (2.4.5)

L. . . :isospectral
We compute the variation in g along an isospectral curve (see Remark Iig%
Consider the curve M(t) = Q(t)MQ(t)T with

Q) =¢"', R= ( (1) _01 > (2.4.6)

The matrix R spans s0(2). We differentiate M (t) with respect to ¢ to obtain

(2.4.7)

o = = (2 Mg

My — My 2Mi5

Thus, the infinitesimal change in the density p(M(¢)) is

1dp _ S M) g (Ma2) - h'(Mis) -

pdtly — f(Mu) Mt 9(Maz) M2+ h(Mjs) Mo (2.4.8)
_ f(My1) g’ (Mao) K (M)
= —2M12 (f(Mll) - g(M2222) ) + (M11 —MQQ)le)

On the other hand, since p(DM) is invariant, p(M(t)) = p(M) and

by 249)

dt|,_q
' 3 : 3

We equate EZES‘H) sz:nd E.Zﬁufz;d separate variables to obtain

1 [/ (M) 9’(M22)) 1 h'(Mi2)
— =c= , 2.4.10) |eq:gauss4
My — Mas ( f(My1)  g(Mag) 2Mya h(Mi2) ( )

' 4
for some constant ¢ € R. Equation Wmmedia’cely implies that

h(My3) = h(0)eMiz., (2.4.11)

. s4
Separating variables again in m we find with a second constant b € R,

! /

f g
— =cMyj1+b, = =cMy +0D, 2.4.12) |eq:gauss6
7 p (2412)
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which integrates to

CM121 CMzz
f(Myy) = f(o)eTebM“a g(Maz) = g(0)e

We combine all the terms to obtain

e0Mez, (2.4.13)

‘Tr(Mz)
p(M) = f(0)g(0)h(0)ec 2 "™, (2.4.14)
Since p(M) integrates to 1, we must have ¢ < 0, say ¢ = —1/0%. The scalar b is

arbitrary and contributes a shift in the mean that is a scalar multiple of I. The
combination of constants f(0)g(0)h(0) may be gbsorbed into the normalization
constant Z~1. We have thus p ve:)dauTs}éeorem or n = 2.

In order to prove Theorem %fgmbitrary n we generalize the above argu-
ment as follows. Fix a pair of off-diagonal indices 1 <1 < m < n. We consider
a rotation in R” that rotates the x;x,, plane as above, and leaves the other co-
ordinates invariant. This entails replacing the matrix R in the argument above
with the matrix R'™ € so(n ) with coordinates le = 0j10km — O0jmOr. The
argument above now shows that the density of p in the ]\@l, My, and M.,
coordinates is a Gaussian distribution of the form @

Te((M"™)?) ”
p(MIm) = e 3 T MT), (2.4.15)

where M'™ denotes the 2 x 2 matrix

M M
lm __ 11 Im

At this stage, the constants ¢ and b depend on [ and m. But now note that
since the same argument applies to every pair of indices 1 <1 < m < n, the
constants ¢ and b must be independent of [ and m. O

Lecture Note 4. Then

0 (4,k)#(,m)or (k,j) # (l,m),
(R™),=¢1  j=1,k=m, (2.4.16)
-1 j=m, k=1.

Then for M(t) = Q(t)MQ(t)T, Q(t) = e'f* we have
M(0) = [M, R"™],

n 0 k#1,m,

(MR'"™);1, = ZMje(le)ek =49 Mj k=m,
=1 —M;m k=1, (2.4.17)
" 0 J#1lm,

(R"™ M) = > (R™)jeMy, = { =My, j=m

t=1 Mmk j =1.
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Then we compute

0 j#l,mand k #1l,m,
2M k=m, j=m
—2M k=1, j=1,
Mll_Mmm kZm,j:L

Cir = (M, R"™ )i = { My — My k=1,1=m, (2.4.18)
M, k=m, j#l,m,
—Mm, k=1, j#1,m,
— M, Jj=m, k#l,m,
M, j=1, k#Il,m.

Differentiating the density, using invariance, we find
1dp w(Mji)
0= pat],_, = 1<J§<:k<ncjkf] ) fii =1 (2.4.19)

Separating out terms, using [ < m, we find

fl/(Mll) 7In(MmM) fl,m(Mlm)
Cll fl(Ml) + Cmm fm( mm) +Clm, flm<Mlm) (2 4 20)
flk (Mjm) o
+ C, + Cim =0.
k= l—&-zl:k;ém lkf j ;;ﬂ ! f]m(MJm)
Using the expressions for Cj;, we have
f/ ( mm) _ fl/(Mll)) o flm(Mlm)
2 (fm< M)~ i) ) T M) )
(2.4.21)

T (M) (Mjm)
+ Z Mo flk M, Z f]m(Mm) 0
k=1+1,k%m k) J=1,j#1 gm A\ gm
Then one separates variables. The last line of this equation contains only vari-
ables Mj;, that are not included on the first line of this equation. So, we may
separate variables as in the 2 x 2 case to find

fl(Mll)fm( mm)flm(Mlm)

is given by @I} It is straightforward to argue that if this is true for every
pair (I,m) then ¢ and b cannot depend on [ or m.

2.5 Integration on Her(n) and U(n)

The space of Hermitian matrices Her(n) is a vector-space of real dimension n?,

as may be seen by the isomorphism Her(n) — R”z,

M — (]\4117 . 7Mnn7 ReMlg, ey Re]\4n_17n7 |m]\4127 ey |mMn_17n) . (251)



le:herm-decomp
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The Hilbert-Schmidt inner product on Her(n) is
Her(n) x Her(n) - C, (M,N)+— Tr(M*N). (2.5.2)

The associated infinitesimal length element is

ds® = Tr(dM?) = ZdMJ?jw > (dReMj +dImM7).  (25.3)
1<j<k<n

Thus, in the coordinates &, the metric is an n? x n? dia, 0{11211 matrix whose first
n entries are 1 and all other entries are 2. We apply o obtain the volume

form on Her(n)

n
DM =2 V2 TTdMy; [ dReMjpdimM. (2.5.4)
j=1 1<j<k<n

The unitary group, U(n) is the group of linear isometries of C™ equipped
with the standard inner-product (z,y) = z*y. Thus, U(n) is equivalent, to the
group of matriges U € C™*™ such that U*U = I. The inner-product and
volume form are invariant under the transformaglém M= UMU*.

The Lie algebra u(n) is computed as in Section e find

u(n) =TiU(n {AEC"X”\A —A*}, TyU(n) ={UA|Acu(n)}.
(2.5.5)
The transformation M +— iM is an isomorphism between Hermitian and anti-
Hermitian matrices. In fact, the map Her(n) — U(n), M ~ €™ is onto and
locally one-to-one. The inner-product A, A — Tr(A*A) is invariant under left
application of U(n). Thus, we obtain the volume form for Haar measure on U(n)

DU =2"""V/2 [ dA;; J[  dRedjrdimAgy. (2.5.6)
j=1 1<j<k<n

However, when viewing diagonalization M +— UAU* as a change of variables
on Her(n), it is necessary to quotient out the following degeneracy: For each
0 =(01,...,0,) € T", the diagonal matrix D = diag (e“’l ...,ew") is unitary
and M = UAU* if and only if M = UDAD*U*. Thus, for Her(n), the measure
DU must be replaced by Haar measure a measure on U(n)/T™. The form of
this measure on Haar measure on gi(ﬁ)/'ﬂ‘" follows from the following assertion,
which is proved as in Section

Lemma 6. Each matriz M € TyrHer(n) is of the form
M=U <A+ [U*U,A]) U*, AeT\R", UeTyU(n), diagonal(U*U)=0.

. ) (2.5.7
The matrices A and U*U are orthogonal under the inner-product m_

|
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Thus, the volume form on the quotient U(n)/T™ is locally equivalent to a
volume form on the subspace of anti-Hermitian matrices consisting of matrices
with zero diagonal:

DU =2"""1/2 T  dRed;rdImAjp. (2.5.8)
1<j<k<n

Furthermore B+ ¢(B) = UeV £ provides a locally one-to-one mapping from
PTuU(n) =71 4(m)l 0 U(n)/T".

Lemma E%m‘zthe mapping R" & PT;U(n) — TyHer(n), PTiU(n) =
{A € TyU(n) | diag(A) = 0}, defined by (A, A) — U(A + [A, A])U* maps onto
TyHer(n). Again, the two spaces are isomorphic if M has distinct eigenvalues.

Proof of Weyl’s formula for § = 2. We write, on the subset of Symm(n) con-
sisting of matrices with distinct eigenvalues, using that M is Hermitian, and
U*dU = dA, A€ T/U(n),diag(A) =0,

TrdM? = TrdA? + 2 TrdA[dA, A] + Tr[dA, A]*[dA, A]

2.5.9
= TrdA? + Tr[dA, A]*[dA, A]. (2:5.9)

Expanding out this last trace, using that dA = dReA + idlmA, we need only

((check Jcollect the real part

sec:weyl-quart ‘

Tr[dA, A]*[dA, A] = Tr(d ReA)A(dReA)A + Tr A(dReA)A(d ReA)
— TrA(dReA)?*A — Tr(d ReA)A?(d ReA)
+ Tr(dImA)A(dImA)A + Tr A(dImA)A(dImA)

(2.5.10)
— TrA(dImA)?A — Tr(dImA)A%(dImA)
=2 (A — A)?dRedd, +2) (A — M) dImAZ,
i<k i<k
Then it follows that the associated volume form satisfies
DM = |A(A)]*DADU. (2.5.11)
O
2.6 Integration on Quart(n) and USp(n)
The field of quaternions, H, is the linear space
T =co+cre; +coeg+cge3, ¢ €R 1=0,1,2,3, (2.6.1)
equipped with the non-commutative rules of multiplication
¢] =5 =¢3 = ejeaey = —1. (2.6.2)
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These rules ensure that the product of any two quaternions is again a quaternion.
Each x € H has a complex conjugate T = ¢y —c1¢1 —coes —c3e3, and its absolute
value |z| is determined by

o =30 = + &+ &+ & (2.63) [oqrquart3]

Each non-zero x € H has a multiplicative inverse 1/x = z/|z|?>. Thus, H is
indeed a field.

The normed linear vector space H" consists of vectors z = (x1,...,2,)" with
inner product (z,y) = Z;;l z;y;. The adjoint, MT of a linear transformation
M : H™ — H"™ is defined by the inner-product

(MTz,y) == (x, My). (2.6.4)

It follows that the entries of M are M;), = Mj;. We say that an operator is self-
adjoint if M = MT. It is anti self-adjoint if M = —MT. The space of self-adjoint
operators is denoted Quart(n). We equip this space with the Hilbert-Schmidt
norm as before.

The group USp(n) is the set of linear transformations of H" that preserve
this inner product. We thus require that for each =,y € H"”

(e.4) = Ua.Uy) = (U1Vz.). 265)
Thus, USp(n) is equivalent to U € H™*" such that UTU = I. As for U(n) we find
that its Lie algebra usp(n) is the space of anti self-adjoint matrices. The inner- .o
product on usp(n) and Haay meagure are defined exactly as in Section as 1S
the analogue of Lemma [6] an e Weyl formula. It is also clear from how the

proof of Weyl’s formula extends to § = 2, that becapse the @eld of quarternions
is a four-dimensional space, |/A(A)|* will arise, see @7

Exercises
2.1. Show that
1 1
A W
A(A) = det . . . (2.6.6) eq:vdm
APt At

2.2. The Pauli matrices,

o1 = < (1) (1) ), oy = ( (1) 61 )7 o3 = ( é _01 >, (2.6.7) ‘eq:Pauli-matrix

allow a representation of the quarternions in terms of Hermitian matrices.
(a) Show that the Pauli matrices together with the identity matrix span Her(2).

(b) Show that the matrices {ioy,ios,i05} form a basis of su(2). (This is the
subalgebra of u(2) consisting of trace-free matrices).
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: 2
(c) Verify that if ¢; = io;, the rules @gﬁ_old (replace 1 by Io).

2.3. The canonical symplectic matrix of size 2n x 2n denoted J,,, or simply J,

is the matrix
0o I
J = ( 7 0 ) , (2.6.8)

where 0 and I denote the n xn zero and identity matrices. The symplectic group
Sp(2n,R) (not to be confused with the unitary symplectic group USp(n)!) is

Sp(2n,R) = {S e R"™™|STJS =J}. (2.6.9)

Verify that Sp(2n,R) is a group and compute its Lie algebra sp(2n,R).
2.4. Use the Gaussian integral

||
/ e 2 dxp...dz,.
n

to compute the n — 1-dimensional volume w,_1 of the unit sphere S™~!. Deter-
mine the asymptotic behavior of w,_1 as n — oo.

Hint: Do the integral two ways— once in Cartesian coordinates, and once in
polar coordinates.

2.5. Assume given a C' function f 'ag%,_@nc—gi&{;, and extend it to a function
f: Symm(n) — Symm(n) as in E;‘I ). Compute the Jacobian of this transfor-
mation. Apply this formula to the function f(x) = €'* to compute the analogue

of Weyl’s formula on U(n) (note that each U € U(n) is of the form ™ for some
M € Her(n)).

2.6. Prove Lemma 4.

2.7. Let A € R™*" for m < n. Show that {x | Az = 0} C R™ has zero Lebesgue
measure.

2.8. Assume f: R — (0, 00) satisfies the functional equation

fle+y) =[f)fly), zyekR (2.6.10)
It is easy to check that for each a € R functions of the form f(z) = e
solve . Show that these are the only solutions to @ assuming

only that f is continuous. (Do not assume that f is differentiable).

Remark 20. The use of row operations in Problem (1) underlies the intro-
duction of orthogonal polynomials. Problems (2) and (3) may be combined to
show that Sp(2n,C) N U(n) = USp(n). The approach in Problem (4) yields
the volume of O(n), U(n) and USp(n) when applied to GOE, GUE and GSE.
The assumptions of Problem (7) may be weakened further — measurability is
enough! You could try to develop s:inélliulsasr approach for the functional equation

implicit in t -rgﬁ)sstf Theorem af is, can you establish a stronger form
of Theorem at does not assume differentiability ?
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2.9. Every V € U(n) is of the form V = exp(iM) for M € Her(n) (you can as-
sume this fact, but try and prove it). Thus, show that V = Udiag(el®1, ..., el )U*

)_Lfor real numbers aq, ..., a,. Combine this with problem (4) to derive ...

2.10. Show that the mapping A + (I — A)(A + I)~! from o(n) to O(n) is
bijective in a neighborhood of 0 to a neighborhood of the identity. Construct
an atlas of O(n) using this mapping.

2.11. Using the Submersion Theorem m Proposition 3.42] (also called the
Regular Value theorem) show that O(n) is a smooth manifold.

Hint: Consider ¢ : R"™™ — Symm(n) defined by ¢(X) = X7 X. Then show
that I is a regular value and therefore ¢~1(I) = O(n) is a smooth manifold.
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‘ sec:tridiagonalize ‘

Chapter 3

Jacobil matrices and
tridiagonal ensembles

3.1 Jacobi ensembles

The space of real n x n tridiagonal matrices is denoted Tridiag(n). A typical
matrix in Tridiag(n) is written

al bl 0 ‘e 0
by a2 bo 0
T=| 0 by az - : . (3.1.1)
. . . bnfl
0 0 bn—l Qp

Jacobi matrices, and their closure within the space Tridiag(n) are the manifolds

Jac(n) = {T € Tridiag(n)|b; >0,1<j<n}, (3.1.2)
Jac(n) = {T € Tridiag(n)|b; >0,1<j<n}.

Jacobi matrices, or more generally Jacobi operators, are of fundamental impor-
tance in spectral theory. A self-adjoint operator K on a Hilbert space can be
decomposed using its cyclic subspaces. On each of these cyclic subspaces an or-
thonormal basis for span{K7z | j = 0,1,2,...} can be found and the operator
K become ;ngc(g;lag%tazl in this basis. This is an idea used by conjugate gradient
algorithm [[HS52]. ey also play an important role in approximation theory,
the theory of orthogonal polynomials, and more widely in numerical linear alge-
bra. An essential step in the symmetric eigenvalue problem is the reduction of a
full symmetric matrix to an isospectral tridiagonal matrix (tridiagonalization)
by a sequence of orthogonal reflections. Under this procedure, the Gaussian
ensembles push forward to ensembles of tridiagonal matrices whose laws have
the following simple description.

45

eq:defjac
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umitrju-Edelman

Definition 21 (Dumitriu-Edelman [DE0Z[). For each 8 > 0, the Hermite(5)
ensemble consists of T' € Tridiag(n) such that ag, 1 < k < n, are iid normal
random variables with mean zero and variance 2/, and by, 1 < k < n—1 where

I think I fixed this to say X(, )5 are independent x(,_5(1/8) random variables.
instead of x5

The density for xx(0?) is supported on [0, 00) and is proportional to

Use this notation or just normalize
them appropriately?

k-1 -t
t e 202,

In matrix form, we have

N(OaQ/ﬁ) Xﬂ(n—l)(l/ﬂ)
Xﬁ(n—l)(l/ﬁ) N(0,2/ﬁ) Xﬁ(n—Q)(]-/B)

T~ Xa(n—2)(1/8) ,

xs(1/B8)
xs(1/8)  N(0,2/p),

where all entries are independent.

The point here is that the Hermite(8) ensembles are the push-forwards of
the Gaussian ensembles when 8 = 1, 2 or 4. Then they interpolate Dyson’s
classification of ensembles to every 8 > 0. When combined with classical spec-
tral theory, they provide a distinct, and important, perspective on the limit
theorems of random matrix theory. Our immediate goal in this chapter is the
following

thm:beta-ensembles | Theorem 22. Fiz 3 > 0 and assume T ~ Hermite(3). Then the marginal
distribution of its eigenvalues is

1

PHermite(3) (M) DA = Tﬁe_g Tr(A2)|A(A)|B DA. (3.1.3) ‘ eq:general-beta

. . :beta-ensembles
The chapter concludes with a more refined version of Theorem E% that in-
cludes the distribution of the spectral measure of matrices T' ~ Hermite(5).

3.2 Householder tridiagonalization on Symm(n)

sec:house

Each M € Symm(n) may be diagonalized M = QAQ”. However, the computa-
tion of A depends on the solvability of the characteristic polynomial det(zl —
M) = 0. For n > 5, this equation is not solvable by radicaleﬂ Nevertheless,
every matrix always admits the following reduction that requires only a finite
number of algebraic operations.

thm:tridiagonal ‘ Theorem 23. For every M € Symm(n) there exists a tridiagonal matriz T and

Q € O(n) such that
v —argr 2

IPractical numerical schemes for eigenvalue decomposition are unaffected by this algebraic
obstruction, since they rely on iteration.




‘ eq:householder ‘

‘ le:householder ‘
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ctridi
A decomposition (@%ggiven by a change of variables
Symm(n) — Jac(n) x ($"7? x §"7% x ... S"). (3.2.2)

under which the volume form DM on Symm(n) transforms as follows:

n n—1 n—2
DM = C,, [[ da; [T """ dbi ][] Der (3.2.3)
k=1 =1

j=1

where Dw; denotes uniform measure on the sphere S, and C,, is the normal-
1zation constant.

To interpret this theorem one needs a mapping h
h:S"2x 8" 3 x ... x 8" O(n), (3.2.4)

so that h(w,—2,wp—3,...,w1) = Q. This mapping is given explicitly below
in terms of Householder reflections. As the dimension of the domain for this
mapping is less than $n(n — 1), the dimension of O(n), not all matrices in O(n)
are attainable.

Remark 24. The space Tridiag(n) clearly inherits the inner-product Tr(7?) =
Z;lzl a? +2 Z;;ll b? from Symm(n). However, the vo ume afoirm obtained from

this metric is not the same as the volume form in above.

Remark 25. (For algebraists!) The proof will also show that T" and () may be
computed with a finite number of the following algebraic operations: addition,
multiplication and square-roots.

Definition 26. Suppose v € R" is a unit vector. The Householder reflection

in v is the matrix
P, =1- 2w, (3.2.5)

Lemma 7. The matriz P, has the following properties:
(a) P? =1.
(b) P, € O(n).

Proof. Decompose R™ into the orthogonal subspaces span{v} and v*. Then
P,v = —v and P,|,. = I. Thus, P? = I. This proves (a). By construction
PT = P,. Thus, by (a), we also have PT P, = I. O

:tridiagonal
Proof of Theorem Wof relies on a sequence of Householder reflec-
tions that progressively introduce zeros in a sequence of matrices similar to M.
The first such matrix is the following. Let wy = (May, ..., My1)T € R*! de-
note the last n — 1 entries of the first column of M. If the first coordinate of w;
is non-negative, and all other coordinates vanish there is nothing to do. If not,

eq:tridiagl

eq:tridiag?2

‘ eq:householder
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we may choose a Householder reflection (in R”~!) that maps w; to ||w; ||2€§n71)
(here the superscript n— 1 denotes that we consider the basis vector e; € R"~1).
Geometrically, such a reflection is obtained by choosing v; to be the unit vector

that lies in between wq and ||w1||ge§"_1). Explicitly, we se
U = ||w1||26§"_1) —wy, U= ”:01” , PO =p, . (3.2.6) ‘eq:house—reflect
v1|2
:householde . .
By Lemma € O(n — 1) is a Householder reflection that maps w; to

|w1|61"_1). It may be extended to a Householder reflection in O(n), by defining

1 0
@ =( g pi ) (327)

Then the matrix

T
MO .= W (Qu)) — QW MQW, (3.2.8)

is similar to M. By construction, the first row of M®) is (M, |w],0,...,0),
and the first column is (M1, |w1],0,...,0)T. Thus, we may write

T@) |w |(€(”*1))T
1) = 1 1 .
0= (o 5. (329)

where T(!) is a (trivial) 1 x 1 tridiagonal matrix and N (1) € Symm(n — 1). See

Exercise ﬁ%iz for the appropriate generalization of this step for the complex case
CTLXTL.

2. The proof is completed by induction. Assume that M*) € Symm(n) has

the form
(k) TR ()T
MO e ey ) @20
1

where TF) ¢ Tridiag(k) and N®*) € Symm(n — k), 1 < k < n — 1. We apply
the procedure of step 1 to N*) to obtain a vector vy, a Householder reflection
pk) = P,,, and an orthogonal transformation of M®),

Q9= (T pio ) <Om. MV =QUMMQN. 321

Note that Q*) leaves the first k& rows and columns of M®*) unchanged, thus
it does not destroy the tridiagonal Sfructure of the first & rows and columns.

Thus, M*+1) has the form (3.2.10) with the index k replaced by k + 1.
The procedure terminates when k = n — 2, and yields

M=QTQT, Q=" 2Q"3 . QW. (3.2.12)

21f one is using this method numerically and |71] is small, instabilities can be introduced.
n—1)

In this case one should use —|w1\eg wi.
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stridiag2
3. It is simplest to prove @lﬁgﬁabﬂisﬁcally. Informally, the k-th step
of the procedure above is a change to polar coordinates in R”*, with by > 0

playing the role of the radius, and the factor bz_k_ldkawn_l_k being the
pushforward of Lebesgue measure in R" ¥ to polar coordinates. More precisely,
assume that M ~ GOE(n). We note that the first step of the above procedure
leaves My; alone. Thus, a; = My; ~ N(0,1). Moreover, the term by is the
length of the first column of M, not including the diagonal term Mj;. Since a
X2, random variable has the same law as the length of a vector in R™ whose
entries are iid N(0,1) random variables, we see that b; ~ x,,_1. Further, the
vector wy = w1 /[wi | is uyiformly distributed on S"~2 and is independent of both
ay and by (see Exercise We next observe that by the nde&endence and
invariance of the Gaussian ensembles the matrix N in (3.2.9) ~ GOE(n — 1).
Indeed, M;, the lower-right (n — 1) x (n — 1) block of M, is a GOE(n — 1)
matrix, and the reflection P() is independent of M. Thus, N(l) = pPWOrn PO
has law GOE(n — 1) (note that by, a; and w; are independent; see Exercise
Thus, as ~ N (0,1) and by ~ x,,—2. An obvious induction now shows that if
M ~ GOE then T' ~ Hermite(1), and the vectors wy, = wy,/|wg|, are uniformly
distributed on S" 17k 1 <k <n—2. Comparing the two laws, we find (with
B=1)

o BTr(IvI )DM C o ETr(T )daj H bn k— 1dbk H le (3213)

k=1 =1

-tridiag2
The exponential weights cancel, and yield the Jacobian formula W O

ot-ind

3.3 Tridiagonalization on Her(n) and Quart(n)
:tridiagonal
Theorem Eg admits a natural extension to Her(n) and Quart(n).

thm:tridiag—her‘ Theorem 27. For every M € Her(n) (resp. Quart(n)) there exists a tridiagonal

matriz T € Jac(n) and Q € U(n) (resp. USp(n)) such that

M=QTQ". (3.3.1) ‘ eq:tridiag-her‘
. -tridiag-her .
The transformation (‘F??t %5 15 gwen by a change of variables

Her(n) — Jac(n) x (Sg™2 x Sp™° x ... S), (3.3.2)

where S]fr denotes the unit sphere in F', with F = C (resp. H). The volume form
DM on Her(n) (resp. Quart(n)) transforms as follows: (T added B to the exponents for the ]

Lbk’s. I think this is correct...

n n—1 n—2
DM = C, [ da; JT 07" dbn H Dw, (3.3.3)
Jj=1 k=1

where Dw; denotes uniform measure on the sphere S[lF, and C,, is a normalization
constant.



sec:jacobi—inv‘

thm: Jacobi-spec
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For a vector w € C™ with independent standard normal complex entries,
w; ~ \%(Nl + iNy), where Ny, No ~ N(0,1) are independent, |w
For a quarternion vector w, one finds |w| ~ % Xan- S0, 0 is introduced in this
way.

1
~ ﬁx%r

Remark 28. Note that the matrix T is always real, whereas the entries of M
and @ are in C or H.

:tridiag-her . :tridiagonal
The proof of Theorem 1S in the same vein as that of Theorem 1S

only necessary to replace the Householder projections in O(n) with projections
in U(n) and USp(n). For example, given v € C™ with |v| = 1, the associ-
ated Householder projection in U(n) is P, = I — 2vv*. Step 3 in the proof of
Theorem %ﬁm&ﬂﬁls the role of the parameter [ in the definition of the
Hermite-3 ensembles. The k-th step of the Householder transformation maps a
standard Gaussian vector in C"* to its magnitude and direction. The law of
the magnitude is now xa(n—k) (Or Xg(n—k) With § = 2). Similarly, the direction
of the Gaussian vector is uniformly distributed on the unit sphere in C*~*~1.

3.4 Inverse spectral theory for Jacobi matrices

Bounded Jacobi operators admit a complete and beautiful spectral theory that

is intimately tied to orthogonal polynomials and continued fractions. We b beta—ensemblos
introduce this theory for finite Jacobi matrices, since it underlies Theorem

As usual, write

T =QAQ", Q€ O0(n), (3.4.1)

for the diagonalization of T'. We also recall the
WP={AeR" |\ <A <...< A} (3.4.2)

For each A € W™, its isospectral manifold is the set

My ={T € Jac(n) | T = QAQ", for some Q € O(n) }. (3.4.3)

The following theorem shows that the interior of the isospectral manifold is
diffeomorphic to the positive orthant ST~ ' = {u € R™||ulla = 1, u; > 0, j =
1,2,...,n} of the unit sphere. Given T, we uniquely define @) by forcing the
first non-zero entry in each column to be positive.

Theorem 29. The spectral mapping
S:ldac(n) 5> W' x ST, T (A, QTer), (3.4.4)

s an analytic diffeomorphism.

We prove this in stages below. See Figure Eglilf S

The isospectral manifold admits several distinct parametrizations. First, it is
clear that we could use the simplex 3, instead of the orthant Si_l. Indeed, let

eq:spec-map-1

‘eq:isospectral-mfld
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{a;‘ ¥y {2 {m;}i2

3-term recurrence

T € Jac(n)

Monic OPs

Spectra] P
ap

Spectral measure

(A, QTer) >, UG,

Figure 3.4.1: The construction of the spectral map and its inverse. The trans-

formation to spectral variables is computed by computing eigenvalues and taking

the first comgponent of the (normalized) eigenvectors. Then a spectral measure
ted fr%pmgllllis data and is used to define monic orthogonal polyno-

onorma.

)yl DESE polynomials satisfy a three-term recurrence relation (see
Lemma [TT]j and rf;ﬁfglcients in the relation allow for the (unique) reconstruc-
tion of T, see (B.Z.21). This shows the spectral map from Jac(n) to W™ x S~

is invertible.

u = QT ey denote the first row of the matrix of eigenvectors and define ¢; = u2,
1 <k <n. Since Q € O(n) .ZmyQ =1 Thus, u € S"~! and c € ¥,. But,
we shall use Si_l. Lemma %@mﬁthat uj, can be chosen to be strictly
positive, whi azljg%%iqss to restrict attention to the positive orthant Sifl
Theorem E% may also be viewed as a mapping to the spectral measure

T ) = 3, = D, (349
j=1 j=1

It is often more convenient to work with the Cauchy transform of the spectral
measure, p. Define the T-function,

[eq:spec-nap? |
MHT(Z):/R L u(dx):zxu . ze€C\{A,..., ) (3.4.6)

The inverse 7 — g is obtained by computing the poles and residues of 7.

The 7-function may also be written as a ratio of polynomials of degree n —1
and n respectively. Let Ty € Jac(k) denote the lower-right k£ x k submatrix of
T,1 <k <n. It follows from Cramer’s rule that

n—1/4(n—1)
T, 1—zI (A —z
T(Z) = ef(T — Z)_lel = det( no1l” 2 ) = H]_l( z ), (3.4.7) ‘eq:tau—interlace

det(T — z1) Hglzl(/\;,") —2)

where A®) denotes the diagonal matrix of eigenvalues of T}, and A = A. We
will show that the ordered eigenvalues of T,,_1 and T,, interlace, i.e.

A =D a0 D) ), (3.4.8)



le:jacobi-signs

le:3termd
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Thus, interlacing sequences provide another parametrization of Jac(n). A conve-
nient visal description of Interlacing sequences, called diagrams, was introduced
by Kerov and Vershik fKe_rOi%] The importance of these alternate parametriza-
tions (spectral measures, 7-function, diagrams) is that they provide a transpar-
ent framework for the analysis of the }gml} N3 00

The surprising aspect of Theorem P9[1s that the spectral data (A, u) provides
enough information to reconstruct the matrix 7. There are three reconstruc-
tion procedures. The first involves orthogonal polynomials, the second uses the
theory of continued fractions and a third involves the explicit solution of the
equation T'Q = AQ for T'. We explain the use of orthogonal polynomials below,
and outline the theory of continued fractions in the exercises. In order to de-

velop these procedures, it is first necessary to establish basic properties of the
eigenvalues of Jacobi matrices.

Lemma 8. Assume T € Jac(n). Then

1. The first entry of each non-zero eigenvector is non-zero. In particular, we
may normalize the eigenvectors to ensure ug > 0 for 1 <k <mn.

2. The eigenvalues of T are distinct.
Proof. We write the eigenvalue equation Tv = zv in coordinates.
bi—1vp—1+ (ag — 2) vk + bgvg1 =0, 1<k <n, (3.4.9)

with the convention by = b, = 0. Since the off-diagonal terms by are strictly
positive, we may solve this linear system recursively. Given vy, we find

v1(z — ay) vy

b . v3=— ((az — 2)(a1 — 2) — b]) , etc. (3.4.10)

Vo =
Thus, v = 0 € R" if v; = 0. Further, the solution space to the eigenvalue
equation T'v = Av has dimension at most 1.

The next statement follows from Lemma [§]
the probability that any b; vanishes is zero.

Corollary 1. Suppose M ~ GOE(n), GUE(n) or GSE(n). Then the eigenval-
ues of M are distinct with probability one.

Lemma 9. The characteristic polynomials di(z) = det(zI — Ty) satisfy the
recurrence relations

dry1(2) = (2 — an_p)dp(2) =2 _dp_1(2), 1<k<n-—1, (3.4.11)
with the initial condition do(z) =1 and the convention b,, = 0.

Proof. Expand the determinant det(zI — T}) about the k-th row, and compute
the minors associated to z — a,,—x and b,,_p. O

Lemma 10. The eigenvalues of Ty, and Tyy1 interlace, 1 <k <n —1.

eq:jacobi-eig
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Proof. We consider the 7-functions for the minors T},

det(Ty, — 2I) di(2)
Tk(2) dot(Trsr — 21) e ( ) |eq:rec-tau
: m-det
By the recurrence relation @Whave
Tk(z) Z— Qp_k + 0, _ 1Tk 1(2) ( ) eq:rec-tau

We claim that on the real line, 7 (x) is strictly increasing between the zeros

of di.. Indeed, it is clear that 71 (2) = (a, — x)~! has this property, and upon
differentiating @W find that

1
727—]/6 =1 + b721—k7—]/€—1 > O,
Tk

except at poles. The claim follows by induction.
Since 7y, is strictly increasing between poles, by the iraterme(_i%%:clef value theo-

rem, it has exactly one zero between any two poles. By , the zeros of 7y
are the eigenvalues of T}, and the poles of 7 are the eigenvalues of T;1. Thus,
they interlace. O

A remarkable feature of the spectral theory of Jacobi matrices is that the
orthogonal polynomials associated to the spectral measure p(7) may be used to
reconstruct 7. In order to state this assertion precisely, let us recall some basic
facts about orthogonal polynomials. Assume given a probability measure p on
R that has finite-moments of all orders, i.e.,

[ lal* uldo) <0, a0 (3.4.14)
R

We may apply the Gram-Schmidt procedure to the monomials {xk},;";o to
construct a sequence of polynomials that are orthogonal in L?(R, z1). There are
two standard normalizations that one may adopt.

Orthonormal polynomials, denoted {px}72,, have the property that py, is
of degree k, k =0,1,2,..., with positive leading coefficient, and

/pk(a?)pl (z) p(dz) = 0py. (3.4.15) ‘eq:orthonormal
R

Monic polynomials, denoted {7}72, have the property that 7 (z) is of
degree k and the coefficient of ¥ is 1. Further,

/ e (x)m(z) p(dz) =0, k #£1L (3.4.16) ‘ eq:orthonormal-mon
R
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Lemma 11 (Three-term recurrence for orthogonal polynomials). Given (A, u) €

W x ST et p(A,u) = Yp_, uda,. Then the assocjat monic orthogonal
polynomials {m}}_,, satisfy the three-term recurrence

me(2) = (2 — ap)mp_1(2) — by Te_a(2), 1<k <mn, (3.4.17)
where the coefficients ay and by are given by

_ f]R amy_y p(dx) b2 fR () mRp—1 (z) p(de) . i
Jemi (@) p(dz)” * Tl (@)pld) s,

3.4.18) |eq:three-term2
with m_1 = 0 and hence by = 0. Recall that w1 = 1. The recurrence

defines a Jacobi matriz T (p).

ag

: -map2
rem:three-term \ Remark 30. If y is not a di crete measure of the form e,c ut Tias bounded
support, the recurrence @’ defines a bounded Jacobi operator on [?(C).

. . ' nts-0P . .
Pmof: Given any p as in Wbtam the sequenge {7 l»cl_ln%ng the Gram-
Schmidt procedure. When p is of the form (3.4.5]) w1 .4.5[], the vector space
L?(R, i) has dimension n and the Gram-Schmidt procedure yields an orthogonal
basis {mo, m1,...,mh_1} for L*(R, u).

The three-term recurrence for the orthogonal polynomials is obtained as
follows. Since zmg(x) is a polynomial of degree k + 1 it can be expressed as a
. o k+1 . .
linear combination zmy(x) = 3757, ¢jxm;(2). Since the 7; are monic, we must
have ci41,, = 1. Moreover, for 7 =0,...,k—2

[ emom @) de) = [ ()o@ utda) = o

R

since zm; lies in the span of {mo,...,mx—1}. Thus, ¢; =0 for j =0,...,k—2
and we find

TTL (.T) = 7Tk+1(117) + Cik kK (JC) + Ck—l,kﬂk—l(l')- (3419) ‘ eq:three-term-0P

It remains to show that c,_1 5 > 0. By orthogonality, [ 27 (2)mp11(x) p(dz) =
fR ﬂ,%_H(x) p(dx). Thus, ¢k k-1 > 0 for all k such that m4_1(z) does not vanish in
L?(R, p): Assume 7; does not vanish in L?(R, u) for [ = 0,1,2,...,k—1 <n—1.
Then this recurrence defines m; which is not the zero polynomial since it is
monic. For A € W" it has distinct diagonal entries, so p(z) # 0 jm es
[ p*(z)u(dz) > 0 if p is a polynomial of degree less than n. This is @’
aside from a change in notation. O

:Jacobi-spec
Proof of Theorem i%ﬁ We have defined a forward map T — pu(T) as follows.
The matrix T defines a 7-function 7(2) = X (T — 21 )C_lﬂ which is expressed
. Do . . u-interlace
as a ratio of characteristic polynomials in : e poles of 7(z) are the
eigenvalues of T'. The norming constants are the residues at the poles, and are
given by
dn—l()\k)

ui =——>—", 1<Ek<n. (3.4.20) ‘eq:norming—constant

d,(Ak)
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:3term
The inverse map p — T'(p) is given by Lemma ﬁ_Th_e orthogonal polynomials
defined by u satisfy a three-term recurrence whose coefficients determine T'.
We only need to show that the map pu +— T'(u) — p(T(p)) is the identity.
Let 11 = (A, u) be given and define T'(11) by the recurrence relations. We will
show that

T -1
T— 21 = 3.4.21
20 e = [ ula ZAk_Z (3.421)
We first show that the eigenvalues of T' coincide with {Ax}. Define p;(z) =
m(2) [Tj.=1 b ' mo(x) = po(), then

xpo(x) = arpo(x) + bip1(x),
pr(x) = bppr—1(x) + ap11px(z) + biyoprta(z), k> 0.

Because p,(\;) = 0 for all j, we conclude that

(Po(A7), P2 (A7), - - P (X))

is a non-trivial eigenvector g%rs Pigenvalue A;. This shows that both the left and
right-hand sides of are rational f nctions tosflz with simple poles in the
same locations. We expand both sides of @ﬁb‘rl&wge z, and if we establish
the relation

To establish what we want, don’t we

Tk & mething like k up to 2n — 17 T
e T7er = /Rﬂﬂ p(dz), 0<k<n-—1, (3-4-22)L1 g wefé’ﬁcﬁvfﬁéfe,ﬁﬁ‘éii52?52;’321

then it follows that

ef (T —=0)"" Z = oETT
k=

as z — 0o. And therefore

(fLe) (srr—ene -3 )

is an entire function thg%s(}ecays at. infinity — it must be identically zero.
To see why (ﬁ_ﬁms, consider
Tey = are1 + byesg,
Ter = brp_1ex—1 + arer + brexy1, k> 1.

Define new basis vectors f; = e; Hi;ﬁ b, fi = e1 because b; > 0 for all j =
1,2,...,n— 1. We then have

Tf =aifi+ fo,
Tfro =bp_1foe1+ anfr + fogr, k> 1
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We then diagonalize this, setting T = QAQT, fj = Q" f; to find

Afl = alfl +b%flv
Afr =02 fro1 +apfe + fopr, k> 1

Component-wise, this is the same three-term recurrence as the monic polyno-
mials. So, taking into account f; = ey, we find

fi=ma(M)QTer, fi=mi_1(D)es.

Then because =¥ = Z?:o ¢;rm;(x) we have Tke, = Z?:o cipmi(T)er = Z?:o Cik€jt1
and

elTTkel = Cok-

Similarly,

k

[ @) =3 ey [ my(@hutas) = con

7=0 B
This proves the theorem and this approach extends to the semi-infinite Jacobi
operators O

jacobi-signs

:Jacobi-s
Lecture Note 5. Alternate proof of Theor@m@:1 Lemmaﬁsbabhshes that QTe; €
Si_l and A e W 1 ow. we explicitly construct the inverse map (A, QTer) —
T. We follow . e algorithm to construct 7" uniquely is as follows.

We use conjugates so that it is clear how this generalizes.

1. Compute

Ty = Z)‘j|Q1j|2,

=1

TP, = Z Qu;* 1A — Tua %,
=1

1 .
sz = 7(>\le3' - TllQlj)7 J = 172,' ERK(E
T

2. For k=2,3,...,n— 1, compute

Tew = Y Al Quil

=1

T i1 = Y|\ = To)Quj — Tok-1Qr—1,51°,

j=1

1 .
Qit1,j = m()\ijj — T o-1Qr—1,; — TueQrj), j=1,2,...,n.

)
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3. Compute
Tnn = Z )‘j |an |2'
j=1

This procedure will succeed if Ty, 41 7 0 for all k. And if it succeeds it is easy
to check that the tridiagonal matrix 7" will satisfy TQ) = QA and by assumption
no column of () vanishes identically. It remains to prove that T} 41 # 0 and
that @ has no columns that vanish identically. It easily follows that T15 # 0,
since the eigenvalues are distinct. We perform induction on k. Assume 7} ;41 #
forl =1,2,...,k—1. Also assume the vectors {¢;}}_,, ¢ = (Qi1, Qi2, - - -, Qun)T
are orthonormal. If T}, ;1 = 0, we would have

()\j _Tkk)ij _Tk,k—le—l,j ZO7 j = 1,2,...,71. (3423)

This then implies that the k& x k tridiagonal matrix (T};)1<s,j<k, L1; = 0 if
|l — j| > 1, has n distinct eigenvalues, which is impossible. The fact that the
diffeomorphism is analytic followsEl from the fact that these expressions for T
are rational functions of A and Q7e;. O

. : m .
Remark 31. Observe that the recurrence relation @L may be rewritten as
the matrix equation,

a1 — 2 1 0 0
b? as — 2 1 0 7o(2) 0
7T1(Z) 0
0 b% as — z 0 . = .
: : . g 1 Tn_1(2) —1n(2)
0 0 cee B2 ap—

(3.4.24)
Since my(z) = 1, each zero of 7 (z) is an eigenvalue of the matrix above. Thus,
mi(2) = det(zI — T}) where Ty denotes the upper-left k x k submatrix of T
(compare with Ty, and dy(z) = det(z — Ty)).
Thus, given p, the entries of T" are obtained from “top to bottom”. However,
given T, the 7-function is the limit of 7-functions —d(2)/dk+1(z) computed
‘bottom-to-top’.

Remark 32. Consider the sequence of orthogonal polynomials
-1

k
pe() = [ []bx]| m(x), k=1,2...n-1 (3.4.25)
j=1

3The simplest way to do this is to realize this as a mapping from W" x U where U is an
subset of R”~1 found by mapping S_’,i*l — 3, and then mapping 3, to R*~!. Then the
analytic implicit function theorem can be applied.

‘ eq:matrix-recurrence
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This is actually an orthonormal sequence which satisfies the three-term recur-
rence

bepr () = (2 — ag)pr—1(2) — bp—1pr—2(x). (3.4.26)

3.5 Jacobians for tridiagonal ensembles

:Jacobi-spec
We can now combine Theorem Wl%% FEe ?eﬁmt o of Hermite-3 ensembles
. I :beta-ensembles
to state a refined version of Theorem

Theorem 33. For each f > 0, the law of the Hermite(3) ensembles in spectral
variables (A, u) € W™ x S_’ﬁ_l is given by

6 n
PHermite (A, u)DADu = Zl <e_4Tr(A2)|A(A)BDA> [[«)" | Du, (35.1)
n,B .
Jj=1

+dirichlet
where Du refers to uniform measure on S’ L see Example l% T(j In particular,
A and u are independent.

;dumitriu-edelman . .
Theorem ﬁtouows from a computation of the Jacobian of the spectral map
S : Jac(n) = W™ x Si_l.

Theorem 34. The volume forms on Jac(n) and W™ x ST~ are related by

n n—1 n
DT = [[ da; [] b3 " " dbx = C.A(A)DA (H uj> Du. (3.5.2)
k=1

j=1 k=1
where C,, 1s a normalization constant.

Remark 35. We have suppressed the explicit form of the normalization con-
stants in the statement of the lemma to focus on the marginals on W" and
Si_l respectively. The computation of the constants is an interesting exercise
(see [DEOZ).

: jacobian-spectral .

While Theorem [34[is an analytic/geometric assertion, the est Proof pises
E%z ridiagona

probabilistic reasoning, as in step 3 of the proof of Theorem ince we have

‘ eq:jacobian-spectral

computed the Jacobian for the diagonalizing map Symm(n) — R"xO(n) (Weyl's. -
E(g ;, the

formula) and the tridiagonalizing map Symm(n) — Jac(n) (Theorem

ratio of these Jacobians may be used to compute the Jacobian of the spectral
map Jac(n) — W™ x S77'. The main point is that by the O(n) invariance
of GOE, the top row of the eigenvector matrix must be uniformly distributed
on Sl and s iggee(}%ggiient of A. This gives the term [[,_, u; du; in equa-

tion 1@3.2 ). As Dumitriu and Edelman remark ‘rbhis is a ‘trule random matrix
@- ¢obilan-spectra.

theory’ calculation. Another approach to uses symplectic geometry.
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Lemma 12 (Vandermonde determinant in (a,b) coordinates).
n— 1bn k

AN =TTy =) = ﬁ (3.5.3)

i<k Jj=1

Proof. 1. Recall that A® denotes the diagonal matrix of eigenvalues of T and
that d;(z) = Hé’:l( A;l)) Therefore, we have the identity

-1

[Ta (A7)

k=1

-] - Hdz (7)) = (354

Since d;_1 and d; are related through the three-term recurrence
di(z) = (x — ar)di1(x) = b,y dio(),

we have

Hdl— _bn z+1 Hdl 1

- bn l+1

We apply this identity repeatedly, starting with [ = n to obtain

n—1 n—2
k=1 j=1
_ 122 Hd L) 1:[ (n—F)
k=1 k1

2. The coefficients u? are the residue of 7,,(z) at the poles \;, i.e

ug:m 1<k<n. (35.5) [eq:dun-ede13]
Observe also that
(M) = [T = A, and ] dr, (M) = A(A)2. (3.5.6)
j#k k=1
Therefore,
n ) b2(n k‘)
[14= A B H|dn 1)) W' (3.5.7)

j=1

O
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Hermite-1 Jac(n)

Y&()\)SG‘“O\(X@K

GOE Symm(n)

Inv. spectral map

(Aa QTel)

Figure 3.5.1: ~ We have already computed the push-forward of GOE under
Householder reflections (8-2.13] and_the push-forward of GOE onto spectral

variables via Weyl’s formula (2:2.16]) e composition of the map to spectral
variables and the inverse spectral map must give us the reduction to tridiagonal
form via Householder reflections. This allows the computation of the Jacobian
of the inverse spectral map.

jacobian-spectral

Proof of Theorem ﬁ T. Our goal is to compute the Jacobian of the spectral
mapping S,

9(T(a,b))

where Du is uniform measure on {u € R" | |u| = 1,u; > 0 for all j}. Rather
than compute the change of variables directly, we will compute the push-forward
of GOE on J_a%(s%) and W" x Sffl separately, and obtain the Jacobian above,
see Figure E%g “

2. Consider the push-forward of GOE under the map M — (A, u), where
M = QAQT is the diagonalization of M, with the normalization that the first
non-zero entry in each column is positive. Since A and the matrix of eigenvalues
Q are independent, A and v = QTe; are independent. Since @ is distributed
according to Haar measure on O(n), the vector w is uniformly distributed on
Sifl and the push-forward of GOE is the measure

p(A, u)DADu = e i TY(A)ZA(A)DADU. (3.5.9)

3. Next consider the push-forward of GOE under the map M +— T, where
M = QTQT denotes the tridiagonalization of M. As we have seen in the proof
of Theorem 20, T" and U are independent, and the marginal distribution of T is
given by

n n—1
BT)DT = Cre™ 3 T I day [ bp="" db. (3.5.10)
j=1 k=1

4. Since T € Jac(n) and (A,u) € W™ x S~ ! are in bijection, we have

0(T'(a,b))

p(A, ) :ﬁ(T(A,u))m. (3.5.11)
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. . -3.5.9 3 .10 :van-jac
We compare the expressions in and and use Lemma 0 obfain

A(T(a,0) _ Cu Iy be (3.5.12)

O(A,u) Cn H Uy
itriu-Edel
The constants are computed in P[)]%mﬁ()%u S O

dumitriu-edelman
Proof of Theorem% The Taw”of We Ehange variables using the spectral map-
t

blan—s
ping and Theorem 5 obtam the tollowmg identity for the law of the Hermite—
[ ensembles

Cpp pe T T Hb(ﬂ D=k pp (3.5.13)
k=1

= Cpu (PO AP DA) | [T | Du. (35.14)
j=1

Since the istgibution f chors, A and u are independent with the laws stated in
:dumitriu-edelman
Theorem O

Exercises

3.1. Let w € R™ have iid A(0,1) components. Show that |w| and w/|w| are
independent.

3.2. Suppose that z € C". And suppose that x1 ¢ R. Define

e I = (L%?) x,
o w=||Z|]2e} + &, and
o v =uw/||w|s-

Show that P = —Ii—i‘(I — 20v*) satisfies
e P e U(n),
e Pz = ||z|]2e}, and
e P is a function of z/||z||2 alone.

3.3. Let U € O(n) be a random orthogonal matrix. For example U could
be a Householder reflection associated to a random vector w. Then assume
A ~ GOE. %ﬁth&t B :=UAU”T ~ GOE and B is independent of U. Hint:
Use Lemma

3.4. Write a numerical code to sample matrices from both GOE and the Hermite—
1 ensemble. Verify numerically that a suitably normalized density of eigenval-
ues for the GOE matrix approaches the semicircle law as n increases (n = 100
should be ample). Is the same true for the Hermite — 1 ensemble? Why or why
not?

eq:3.5.12
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3.5. Consider the tridiagonal matrix T € Jac(n) that has entries a; = 0, 1 <
j<mby=1,1<k<n-—1.

(a) Compute explicitly the spectral measure using Chebyshev polynomials
(compare T with the recurrence relations for the Chebyshev polynomials).

(b) Plot histograms of two distributions related to T" for n = 100: (i) the em-
pirical distribution of eigenvalues ( = Y"1, 8y, ); (ii) the spectral density
> h_j uzdy,. Can you identify the limit in (i)?

(This exercise will be relevant for an enumeration problem relating Brownian
excursion to the Riemann-¢ function).

. . . :Jacobi-spec
3.6. Establish uniqueness and smoothness in the proof of Theorem E%f
- —taul
3.7. Use equation @_ﬁ recursively expand 7, as a continued fraction.

Combine thiE Wi'tJl% &Igel _%nie%ueness step in Q.2 to deduce an alternative approach

to Theorem at avoids the theory of orthogonal polynomials.

3.8. The following property of the function —z~' is relevant in the contin-

ued fraction scheme. Symmetric matrices have a partial order: Given A, B €
Symm(n) we say that A > B if ul Au > uT Bu for every u € R™. Suppose
A> B >0. Show that —A~' > —B~1.

3.9. This problem is a follow-up to exercise 5 in HW 1. Given a map f as in
that exercise, compute an (explicit) expression for its derivative Df.

3.10. Compute the following normalization constants:

(a) The normalization constants Z, g in the standard definitions of GOE,

. : : _8 Tr(M?)
GUE and GSE with exponential weight e~ 4 .

: .13
(b) The constant C, g in @7

ctridiag?
(¢) The constant C,, in the Jacobian for ensembles @%Jgﬁlpare with your
calculation of the volume of the unit sphere in HW1).

3.11. The proofs of Dumitriu and Edelman finesse the following issue: given
T € Jac(n) it requires some care to find a decomposition for the tangent space
TrJac(n), especially the isospectral manifold, Mt , that is analogous to Lemma
2. As in that lemma, we may split TrJac(n) into orthogonal subspaces that
correspond to diagonal matrices A and QTQ € o(n). However, while each
QT Q € o(n) generates a curve in TpSymm(n) , not all Q7'Q give rise to curves

in TrJac(n). Verify this. Explore this issue further béf Jrying to find a basis for
the isospectral manifold Mt (see equation



ch:nonnormal

Chapter 4

Beyond the symmetric
eigenvalue problem

In this chapter we discuss other random matrix ensembles that differ funda-
mentally from GUE, GOE and GSE. For this discussion we concentrate on real
and complex matrices. The first ensembles we consider are the real and com-
plex Ginibre ensemblesﬂ Ging(m,n) on R™*™ and Ging(m, n) on C™*™. These
are ensembles of real and complex matrices of size m X n. without symmetry
conditions. Their densities are given by

1
Paing(Y)DY = Zie*% TY'YDY, painc(X)DX = ——e "X XDX,
R,m,n

Thus, the entries are distributed as independent (real or complex) normal ran-
dom variables. The definition DY and DX in each case follows directly from the
volume forms associated to the length elements Tr(dY7dY) and Tr(dX*dX).
When m = n we use the notation Ging(n) and Ging(n) and Zg ,, and Zg .

Our first task is to generalize Weyl’s formula to the Ginibre ensembles
Ging(n) and Ging(n). To compute this, we use the Schur decomposition. The
Schur decomposition is often seen as a numerical tool to perform a spectral de-
composition of non-normal matrices. The eigenvalue decomposition is unstable
to compute: matrices with distinct eigenvalues are dense and so, computing a
Jordan block of a non-normal matrix is a precarious task when round-off errors
are present. An arbitrarily small perturbation will lead to an O(1) change in
the eigenvalue matrix.

Theorem 36. All matrices Y € R"*" and X € C"*" have decompositions

Y =080T, X =UTU*,

LOften, the term Ginibre ensemble is reserved for square matrices, but we find it convenient
to keep it for all rectangular matrices.

63
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where O € O(n), U € U(n). Here T € C™*" is upper-triangular and S € R"*"
18 block-upper triangular with blocks of size 1 or 2. These 2 x 2 blocks have the
form

(5 ) acr a0 (10)

Furthermore, if the eigenvalues are distinct with a given ordering, and the eigen-
vectors are normalized (say, first non-zero component is positive), the decompo-
sition is unique.

(Unify the following notation

This can be proved by first performing an eigenvalue decomposition and
second, performing a QR factorization of the eigenvector matrix. We now
describe the QR decomposition algorithm, using Householder reflections, for
real matrices. Another numerically viable, but less stable, algorithm is the

modified Gram—Schmidt procedure. Both algorithn}s gxtend to complex ma-
-comp.lexhouse

trices in a straightforward way (see Exercise . Given a matrix Y € R™*",
Y = (y1 Yo o yn)7 define v(y) by
v(y) =0/[0ll2, ¥ =[lyl2el" —y
if y # 0 and v(0) = 0. Then,
Pyyn)Y = (llyall2et Poyvz -+ Pug)¥n) - (4.0.2)

Let I; be the j x j identity matrix, then given y € R?, define Q, € O(m) by

L 0
Qy:( o PM)), (4.0.3)

The QR factorization of a matrix Y is then given via

v© .=y,

)

Y(l) = QU]Y(O)7 U1 = Yl(:gr)v,,h

Y® = Q, Y™, v =Y, (4.0.4)

. o -
vy .— Qqu(] O} v = yj(zn])
It follows that R = Y (min{m:n}) js upper-triangular and Y = QR where Q =
(Quaingmomy " Qua Qu,)T. We arrive at the following.

t:QRfac | Theorem 37. Every matriz Y € R™*" X € C™*" has a factorization Y =
QR, X =UT such that Q € O(m), U € U(m) where R,T are upper-triangular
with non-negative diagonal entries. The factorization is unique if X (resp. Y ) is
invertible. This is called the QR factorization, or decomposition, of the matriz.
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Figure 4.0.1: The full QR decomposition in the case m > n. The shaded area
columns and rows are removed to create the reduced QR decomposition.

This theorem gives the full QR decomposition. If m > n, then a m —
n columns, of Q,U are redundant, and m — n rows of R,T are as well, see
Figure%Af‘cer dropping these columns and rows, one obtains the reduced
QR decomposition.

If m > n, one can count the number of degrees of freedom to see that neither
@ nor U could ever be distributed according to Haar measure on U(m) or O(n)
for X ~ Ging(m,n) or Y ~ Ging(m,n), respectively. So, we instead consider
the QR factorization of the augmented matrices

(X X')and (Y Y'), X'~ Ging(m,m—n), Y'~ Ging(m,m—n),
(4.0.5)

for X’ and Y’ independent of X and Y, respectively. This can be performed
even if X and Y are deterministic matrices. So, in the real case, and similarly
in the complex case,

Yo (YY) = QR v QR = QR (10) v,
Since it is a non-classical theorem for the Schur decomposition, we state the
following which establishes the same claim for the eigendecomposition along the
way.

Theorem 38. Let X(t), X : (—a,a) — F"*" a > 0, be a C* matriz func-
tion. Assume X (0) has distinct eigenvalues. Then the induced factors X (t) —
(T'(),U(t)) or X(t) — (S(t),0(t)) obtained by the Schur decomposition for
F = C orR can be chosen so that they are C* in a neighborhood of t = 0.

Furthermore, if the first row of U(0) or O(0) has all its entries being positive,
then by enforcing the same of U(t) or O(t), for t sufficiently small, one obtains
the C* decomposition.

Proof. Because these eigenvalues are distinct, we can suppose ¢ is taken suf-
ficiently small so that the sets Q; = {z : |\; — z| < J§} are disjoint. Then
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consider

Pj(t) = % m(z] — X (t))"tdz.

Since || X (t) — X(0)]]2 = 0 as t — 0 and max.caq, ||(2] — X(0)) 7|2 < oo, it
follows that zI — X (t) is invertible for sufficiently small ¢. This then implies
that P;(t) is as smooth as X (¢) is.
Next, form a matrix V() = [v1(t), v2(t), ..., v, (t)] where
v;(t) = P;(t)v;(0), span{v;(0)} = ran P;(0).

Provided none of these vectors vanish, we are guaranteed linear independence.
Continuity of P;(t) guarantees that none of these vectors vanish. Then let
V(t) = Q(t)R(t) be the (unique) QR decomposition of V' (t). It follows that, by
the Gram—Schmidt process, the entries of Q(t) and R(t) are smooth functions
of the entries of V(¢), for ¢ sufficiently small. Then it follows that

Q)" X(H)Q(1),

is upper-triangular and is as smooth as X (t) is.

For the last claim, we note that the condition that the first row of U(t) or
O(t) being positive is sufficient for uniqueness. This construction produces the
correct O(t). And this construction can be modified slightly for U(t). This
establishes the theorem. O

Finally, before we proceed to pushing forward measure via these decom-
positions, we prove an elementary result for Ginibre ensembles using the QR
factorization.

Theorem 39. If X ~ Ginc(m,n), Y ~ Ging(m,n), m > n then
P(rank X <n) =0 and P(rankY <n)=0.

Proof. We use induction on n for the real case. The complex case is similar. If
n = 1, then a Gaussian vector in R"™ is non-zero with probability one. If n > 1,
n < m — 1, assume

P(rankY <n) =0, Y ~ Ging(m,n).
Let b € R™ be an independent Gaussian vector (b ~ Ging(m,1)). Then
P (rank (Y b) <n+1) =E[P (rank (Y b) <n+1][Y)].
On a set of full probability rank Y = n. For such a matrix consider
P (rank (Y b) <n+1|Y).
Solve

Yz=b=QRz=b Rz=Q"b=:b,
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and therefore b ~ Ging(m, 1). For this equation to have a solution z, Rz = l~),
since R € R™*"  triangular, and n < m, the last entry of b must vanish. Thus

P(rank (Y b) <m+1]Y)=0

L :phi
almost surely. To truly make this rigorous, one should use Lemma @;Thls
proves the claim. O

Finally, we want to know that the probability of finding a Ginibre matrix
with an eigenvector that has a zero first component is zero.

Theorem 40. Assume X ~ Ging(n), Y ~ Ging(n). Then

PEXNeCveCv#0,Xv=A and vy =0) =0,
P(ExeC,veR" v #£0,Yv = Av and vy =0) = 0.

Proof. We prove this for Y. The proof for X is similar. First, we write
T
Y = yo yl/ ’
y2 Y
yo ~ Ging(1), y1,y2 ~ Ging(n — 1,1), Y’ ~ Ging(n — 1,n — 1),

mutually independent. Let

E= {HAEC,UER"_l,Y'U:)\U andY(S) =)\(2>}

It then follows that
PEXNeC,v e R",Yv = Xvand v; =0) =P(E) =E[P(E|Y)].
Then
P(E|Y') =P (v eR", y{v =0, v is an eigenvector of Y'|Y”).
For the eigenvalue A; of Y, let V; = (v(l), e ,v(z)), ¢ < n—1 be a basis of
eigenvectors for this eigenvalue. Then

¢
P | 3{c;} so that yi chv(j) =0/X"| =0, a.s.
j=1

Because, given X', perform a QR factorization of V; = QR, and consider
yIQRc =0, ¢ = (c1,...,¢;)T. But as R has rank ¢, this amounts to the con-
dition that (at least) one component of the Gaussian vector 27 = yT'Q has to
vanish, a probability zero event. A union bound over all the distinct eigenvalues
proves the result. O
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This theorem has an interesting implication. If a matrix Y has a repeated
eigenvalue and two linearly independent eigenvectors, then an eigenvector can
be constructed that has a zero first component. By the theorem, this event
occurs with probability zero for Ging(n), Ging(n). And so, if one shows that
Y is diagonalizable with probability one, then Y has distinct eigenvalues with
probability one. Nevertheless, it is actually easier to directly show this.

Theorem 41. Assume X ~ Ging(n), Y ~ Ging(n). Then

P (X has distinct eigenvalues ) =

)

P (Y has distinct eigenvalues ) =

Proof. We show that the Vandermonde squared A(A)? is a polynomial in the
entries of the matrix. Let A1,..., A, be the eigenvalues of Y and consider

V=) V=Xl

Then

AM)? = det(V)? = det(VTV),  (VIV)j = N2 = Tryd+h=2,
=1

Now consider a rectangle R = [a,0]"" € R", and assume that

/ ]l{YG]R”X" | \A(A)\:O}DY > 0.
R

Since the set of matrices with distinct eigenvalues is dense, A(A) # 0 for some Y.
But the only way for the zero locus of a polynomial in n variables to have positive
n-dimensional Lebesgue measure is for the polynomial to vanish identically. The
theorem follows. O

4.1 Schur decomposition of Ging(n)

:schur ft:schur-diff L. . .
Theorems @a_ndtgg allow us to compute the distribution induced on U and T
in the Schur decomposition. We first identify the tangent space.

Theorem 42. Assume X € C™"*™ has distinct eigenvalues. Then
Tx (C™™) = R™"=D @ PTyU(n).

Proof. A straightforward computation, using the differentiability of the Schur
decomposition gives

X =U(T +[U*U,T))U", (4.1.1)

after using X (), t € (—a,a), a > 0, differentiating and evaluating at ¢ = 0. It
follows that S := U*U is skew-Hermitian. We then decompose T'= A+ T, and
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S = So+S_+54, where the & refers to strict upper- and lower- triangular parts.
We can first solve for S_ of S in the following way. Define S_ — ¢ € C*(n—1)/2
by ordering the entries of using the following relations:

(i,§) < (i",4') if i—j=i—j andi<i. .

The first inequality orders entries by which diagonal they lie on. The second
orders within the diagonal. Then
X_ =[S, Al +[S_,T,]
With the chosen ordering
(=[S, Ty = M_¢ (4.1.3)

is strictly lower triangular. Thus provided \; # A; for ¢ # j, we can solve this
for S_. If we then make the choice that Sy = 0, we can clearly solve for 7" once
S is known. Finally, by adjusting 7" accordingly, it is clear that any X can be
achieved with Sy = 0. O

Now, we give the analogue of Weyl’s formula for C™*™.
Theorem 43. For X € C"*",
DX = |A(A)|*DT DU, (4.1.4)

where DT = [[}_, dReA;dIm); [, dReTjxdImT}y, and DU refers to the same
distribution as that of the eigenvectors of GUE(n).

‘ eq:lower-order

eq:Weyl-Ginc

-lqower-order
Proof. We first map X to C" in a consistent way. We order X_ using (ggﬁj

giving (*~. We then order diagonal(X) in the usual way. Then, finally we order
X using

(i,5) < (', 4") if and only if (j,4) < (5',4),

giving ¢+, and X + [(X-,n,¢*+]T. We use ¢°- and ¢™+ in same way for S_
and T, respectively. It then follows that, after ordering U*d XU,

A+M_ 0 0\ [/d¢S-
U*dXU = D I 0 dA
My 0 I) \d¢™+

where A% is defined through ¢5- — [S_, A], which is diagonal, Sik —= (Ak —
Aj)Sjik. My and D are matrices whose exact form is irrelevant. Decomposing
all differentials into real and imaginary parts and computing the metric tensor

TrdX*dX,
Ueyl-Gi -
we find Wing det(A + M_) = J[;.x(Ax — Aj) and computing the

associate volume form. Here one has to use that if A : C* — C" induces B :
R?" — R2" (by separating real and imaginary parts), then det B = |det A|2. O
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Theorem 44. The Schur decomposition of Ging(n) is given by

1

= _—— "TTIA(A)? DT DU. (4.1.5)
Z(C,n

Pain,c(X)DX
Note that this implies that the strict upper-triangular entries of T" are all iid
complex normal random variables.

4.2 Eigenvalues and eigenvectors of Ging(n)

Computing the analogue of Weyl’s formula for Ging(n) is much more compli-
cated. This comes from the fact that complex eigenvalues must arise as complex
conjugate pairs. Furthermore, for finite n there is a non-zero probability that
the matrix with have k real eigenvalues. Thus the distribution on the eigenval-
ues is not absolutely continuous with respect to Lebesgue measure on C. We
first compute the tangent space, under the assumption of &k real eigenvalues.

Theorem 45. Assume that Y has exactly k real eigenvalues. Assume further
that the real part of all the eigenvalues of Y (0) =Y in the closed upper-half plane
are distinct. Finall _fissume that each 2 x 2 block in the real Schur factorization
has v # 9§ in ﬁil‘l Then

TYRan o~ Rn(n—l)/Z @ U(Tl)

Proof. Assume Y (1) is a smooth curve in R"*™ such that Y (¢) has k real eigen-
values for all t. As before, we have the relation

Y =0(S +[0T0, S)OT.

We need to show that the entries of § and O are uniquely determined by this
relation. We assume

Rl X X
0 R> X X

S R N IR N (]
0 0 )\1 X J J
0o .- 0 M

where £ = (n — k)/2 and n — k is assumed to be even. The ordering is fixed by
aj < a1 and Aj < Ajp1. We also refer to the location of all the imposed zeros
in S as the generalized lower-triangular part of S, denoted Lg(.S). Similarly,
Ug(S) = (La(ST)T and Dg(S) = S — Ug(S) — La(S). So, we have

La(0TYO0) = Lg ([A,8]), AT =—A.
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After careful consideration, we find
Le ([A,S]) = Le ([La(A), Ua(S)] + [La(A), Da(5)])
by noting that

[4, 5] = [La(A), La(S)] + [Da(A), La(5)] + [Ua(A), La(S)]
+ [La(4), Da(S)] + [Da(A), Da(8)] + [Ua(A), Da(S)]
+ [La(A), Ua(9)] + [Da(A), Ug(9)] + [Ua(A), Ua(S)];
Lg(S) =0, and any term involving only Dg and Ug or only Ug does not con-
tribute to Lg([A,S]). Then, it is a non-trivial but straightforward calculation
to find that Lg([Dg(A), D (S)]) = 0. This gives a linear system of equations
for Lg(A). Since it will be of use in computing the metric tensor below, we
compute the determinant of this matrix in the following lemma.

Lemma 13. There exists a trivial mapping Lg(A) — & € R~ D/2=¢ defined
by ordering the elements of La(A) so that when M is the matriz representation
for & = Lg ([4, S]) we have

det M = Ap(A) := H (Aj—N) H Az('jl') H AE?)
1<i<j<k 1<j<k<t 1<i<k,1<j<t
where A1, ..., A\, are the real eigenvalues, j1; = o; +iB;, B > 0 are the complex

eigenvalues (in the upper half plane) and

1 _ _

Az('j) = |y — pal?lig — mal® = |y — il 1y — pal?,
2

Agj) = |p; — \i|?

'LG . . . .
Proof of Lemma ﬁ._The important aspect of this is to choose the ordering.
First split

AGD 0
LG(A) = ( A2 | 422 >

-lower—-order
We order the 2 x 2 blocks of A1) according to @_Wh‘m each block.we .
use this same ordering. We then order the entries of A% accor ing to @L
Finally, we order the 1 x 2 blocks of A according to (%%r—wmhin

each block we use this same ordering. This defines Lg(A) — € € R™(n—1/2-¢,

Define L = Lg(Lg(A),Uqg(S)) and decompose L into L) i = 1,2 j = 1,2
in the same was as for Lg(A). From the reasoningﬂ that went into @, we
have that the (i,4) block of LY depends only on blocks (i’,5’) of A1) for
(i',5') > (4,7) and entries in A>Y). Similarly, the (i,5) entry of L(*>?) depends

2The commutator of lower-triangular and upper triangular matrices at entry (i,7) only
depends on entries (¢/,j’) of the lower-triangular matrix for 3/ < j with ¢ = ¢’ and ¢’ > ¢ with
j = j’. With strict triangularity, fewer dependencies occur.
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only on entries (i',5") of A2 for (i’,5') > (i,j) and entries in A1), Lastly,
one checks that block (i, 5) of L(>1) depends only on blocks (', j') of A1) for
(¢',4") > (¢,7). This gives a strong form of strict lower-triangularity for & — L.
We now show that £ — K := Lg(Lg(A), Dg(S)) is block-diagonal in a way
that does not overlap with this strict lower-triangularity. First, decompose K
into K(49) | = 1,2, j = 1,2 in the same was as for Lg(A) and L. We obtain
the following relations for blocks of size 2 x 2, 1 x 1 and 1 x 2, respectively:

1,1 1,1 1,1
EGY = AGYR; - RADY,
2,2 2,2

KED = 4890, - 1),

KED — ABDR 5\ 4G,
The determinants of each of these linear transformations are

(o — i) + (6575 — 0%:)* + 2(ey — i) (8575 + i),
()‘j - /\l)a
(@ = Ai)* + 057,

respectively. For the non-real eigenvalues in the upper-half plane, we have

t; = & +iy/7v;6;. This proves the lemma. O

From this lemma, with our assumptions, we can uniquely find Lg(A). But
as A is skew-symmetric, we have £ entries left undetermined. So, we consider

(OTY)gj5 = (S + [A, 8))2j,25 = (& + (75 — 6;)82j41,2) + fo;(La(A)),
(OTY)aj41,2j41 = (S + [A, SD)2jr1,2j41 = (& + (8 — 75)82j41,27) + foj (La(A)).

(121

for some functions f;. As Lg(A) is known, this gives a solvable system for ¢;
¢

and $2;41,2;, with determinant 2 Hj:1('Yj —0;). The remaining entries of S are

given through the relation

$=0TY0 - [A,S)].

O
We now can compute the volume form.
Theorem 46. ForY € R™*™ with k real eigenvalues,
‘
DY = 2|Ax(A)| | [] 1 — 651 | DSDO, (4.2.2)
j=1
where
¢ k
DS = [[ dajdy;ds; [Tdn ] ds, (4.2.3)

j=1 j=1 SGUG-(S)
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and DO refers to the same distribution as that of the eigenvectors of GOE(n),
i.e., Haar measure on O(n).

When we restrict to k real eigenvalues we use the notation
1 _iy7y
pGin,R,k(Y)DY =—mye 2 ]]-{Y has k real eigenvalues}DY' (424)

Theorem 47. The real Schur decomposition of Ging(n) given k real eigenvalues
18

L

2t 1 T
Painri(Y)DY = ——e 2 TS A (W) | [] 1y — 651 | DSDO.  (4.2.5)
z*) L
,1 1=

Note that this implies that the generalized upper-triangular entries of S are

all iid normal random variables. _[COmpute probability of k real eigen- ]
values?

Exercises

: fullrank :phi
4.1. Complete the proof of Theorem Eg 1Lllsl;ﬂlagnljemma @i

4.2. Show that any given eigenvector of X Ging(n) can be taken to be uniformly
distributed on S™~!
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ch:fact

Chapter 5

Additional matrix
factorizations

,—(Expand on this.

The Ginibre ensembles allow us to define the Laguerre ensembles as trans-
formations of Ging(m,n) and Ging(m,n).

Definition 48. The ensembles of positive (semi-) definite matrices defined by
X*X/m where X ~ Ging(m,n), Ging(m,n) are called the Laguerre Unitary
Ensemble (LUE(m,n)) and the Laguerre Orthogonal Ensemble (LOE(m,n)),
respectively.

The Laguerre ensembles, LOE and LUE are r%ften referred to as Wishart
and complex Wishart matrices, respectively [7]. They get their name from the

close connection to Laguerre polynomials. —(sample covariance interpretation

Next, we turn to understanding the singular value decomposition of Ging(m, n)
and Ging(m, n) which will give the eigenvalue distribution of the Laguerre en-
sembles. The following is the famous singular value decomposition.

Theorem 49. Every matriz Y € R™*" and X € C™*" has a decomposition
Y =Qx0T, X =UxV*,

where Q@ € O(m), O € O(n), U € U(m), V € U(m) and ¥ € R™*" is a diagonal
matrixz with non-negative diagonal entries.

The non-zero entries of 3 are called the singular values of the matrix in
question. The singular values of matrix X are precisely the square roots of the
non-zero eigenvalues of X*X.

A main task of this chapter is to establish the following fact.

Theorem 50. Let x1,...,x, be the unordered eigenvalues of LUE(m,n) (8 =
2) or LOE(m,n) (8 = 1). The following gives the joint marginal distribution

(0]
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on the eigenvalues

n

[

B2 m ’I’L+1 ﬂ _Bm T

2 I | |:Cj - xk| 2 J]]‘{ZEJ'ZO, for allj}dzl < dxy,.
j:1 i<k

(5.0.1)

5.1 QR decomposition of Ging(m,n)

We now consider tEe'discterI}?ution induced on U and T by Ging(m, n). Following

the discussion in , wWe assume n, > ;aYVe follow the push forward of the
distributions under the algorithm in ﬁ_ﬁ X ~ Ginc(m, n) then it follows

that if we replace QQ; with U; and Y; with X in en X; and U; are
independent for every j using the fact that the length of a Gaussian vector is
independent of its angle and U X is independent of U € U(m) if U is independent
of X. And therefore, for X = UT, U i:shiollllggpendent of T

From the discussion in Section 1t follows that the induced volume form

on T is

xe s BT T *7'DT, =2,

where DT refers to standard Lebesgue measure on R’ x Cmm=1)/2+m(m=n)
Note that all the strictly upper-triangular entries are standard complex normal
random variables and the entries on the diagonal are all chi-distributed. To
understand the distribution on U all we need to do use to use that for O € U(m),
OX ~ Ging(m,n) if X ~ Ging(m,n). Then factorize

X=UT OX=UT.

From the uniqueness of the QR factorization (on set of full probability where X
is invertible), = T’ and U = OTU’. But U and U’ have the same distribution
and this distribution must therefore be invariant under left multiplication by
any elem q)f U . We conclude U is distributed according to Haar measure
on U(m m and to proportionality constants:

n

B * R _8 * —2j 7 5 i

e 5 Tr X XDX Q S e 7 T I I szjm 23+1DTDU, n:mln{m,n},
j=1

where DU is defined in @r.le"f he normalization constant is easily computed
in terms of I'-functions. This can be seen as an equality when m < n. For
m > n, we add additional degrees of freedom to find DU, and so this is the
push-forward under a random transformation.

eq:scm
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5.2 QR decomposition of Ging(m,n)

:QRGinc
It follows from the discussion in Section ﬁ"ﬁ%_at_up to proportionality constants

e 2 ™Y Ypy W s mRIRTT RIMIDTIDRDQ, =1, @ =min{m,n},

j=1

where DR refers to standard Lebesgue measure on R x Rm(m—1)/2+m(m=n)
and D@ is Haar measure on O(n).

5.3 Bidiagonalization of Ginibre

We first consider the reduction of Ging(m,n) and Ging(m, n) to bidiagonal ma-
trices and, in the process, find a generalization of to general 8. This
is sometimes called Golub—Kahan bidiagonalization. The aim here is not to
preserve eigenvalues, but to preserve singular values as transformations are per-
formed. So, we can perform independent Householder reflections from the left
and the right. Recall the definition of @, from . Let Y ~ Ging(m,n) for
m > n. Consider the transformations

v .=y,
Yy .= Qle(O), v = vy

1:m,1>
(YO)T = Qs (YT, &y = (V5,7
Y@= Qu,vW, w=vi),,

- - 3.1
YO = Qs (VO)T, 5, = (VD)7 (5:3.1)

Y0 = Q, YD, 4 —yU-D
J )

Jim,g o
(YO = Qo (YN, 3 = (V70"
Each step in this process eliminates all entries below the diagonal entry in the
jth column and all entries to the right of the superdiagonal entry in the jth row.
The algorithm terminates when j = n—1, returning Y (=) which is a bidiagonal
matrix with non-negative entries. Let (Y("~1);; = ¢; and (Y("™Y); ;11 = d;
for j =1,2,.... Wefind that (Q;, Qj, ¢;,d;j)j>1 is an independent set of random
variables, with @); being defined by v; € S]g_j and Qj being defined by v; €
Sﬁ{j*l (Qn—1 gives a sign lai%ofigglae éalptry). Under this change of variables,

following the arguments for , we have

n n—1 n—2 n—1
DY o [[ e de; [[ dp " 'ddi [] Dasw [ Dy,
j=1 k=1 =1 p=1

eq:bidiag
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where D&, and Dw, denote uniform measure on Sk and Sk, respectively. Simi-
larly, by applying this algorithm to X ~ Ging(m,n) we find

n n—1 n—2 n—1
DX o [T " dey T di™ ™~ ddy, [ Dan [] Dwys
j=1 k=1 =1 p=1

where D&; and Dw,, denote uniform measure on Sfc and SZ, respectively.

5.4 The Cholesky decomposition

To compute the singular value decomposition of Ging(m,n) and Ging(m,n)
(the square roots of tfgeﬁge Jgdues of the Laguerre ensembles) we follow the
an

approach of Edelman Fdes0r and first compute the Cholesky decomposition.

Theorem 51. Ewvery strictly positive definite matriz A € R"*™ (or C"*") has
a unique decomposition

A=LLY (A=LL"),

where L € R™*™ (or C"*") is a lower-triangular matriz with positive diagonal
entries.

Proof. We concentrate on the real case and we first show uniqueness. Assume
A= LLT = L1 LT for two different factorizations. Then

Li'L=L{L™", where LT =(L"Y".

Since the non-singular upper- and lower-triangular matrices for groups, the left-
hand (right-hand) side is lower-triangular (upper-triangular). Therefore LIIL
is a diagonal matrix that is equal to its own transpose-inverse: ele_lLej = +1.
Positivity of the diagonal entries gives L1 = L. Now, by Gaussian elimina-
tion, without pivotin A = LU where L is lower-triangular and U is upper-
triangular. Here L has ones on the diagonal. We know that eJTAej > 0
and therefore eij/Uej = U;; > 0. Then Let U; = diagonal(U)¥/? and A =
iUdUglU. It follows from the symmetry of A that L = LUy gives the Cholesky
factorization. Similar considerations follow for A € C™*". O

5.5 Change of variables for Ging(m,n)

We now consider the change of variables that closely resembles the singular
value decomposition, but differs in a fundamental way. For X € C™*"  full
rank, define

x =T & U,1) ™ B (U, A = T = (U, VAVF) T P (AL V).

(551)

IPivoting is not required for strictly positive definite matrices because the upper left £ x £
blocks are non-singular for every £.
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This is a well-defined, invertible mapping, provided tha

tains non-vanishing entries. It will follow from Section
of this is one. But we emphasize that for this decomposition X # UAV™*, gen-
erally. We now show that if X ~ Ging(m,n) then U, A,V are independent and
we then characterize the distribution of A and V.

79

the first row of V' con-
ttridiag-w L
Eg that fﬁe probability

Lemma 14 (Spectral variables for Hery (n)). If A € Hery(n) is non-singular
with distinct eigenvalues then

TaHer, (n) = R" @ PT;U(n).

. . :herm-decom
Proof. The proof is essentially the same as Lemma %f just using *hat the set of
strictly positive definite matrices is open.

We define DA in the natural way as the volume form induced
tensor TrdA?. We then have the analogous formula to Theorem

DA = |A(A)]* DADU.

O

Ahe metric,

Next, we compute the volume form associated with the change Cholesky change

of variables.

Lemma 15. Let A = LL* be the Cholesky decomposition for a non-singular
A € Hery(n). Let DL be the natural volume form induced by Tr(dL*dL). Then

DA =2" [ L3 *'DL.

Jj=1

Proof. We prove this by identifying that the Jacobian of the transformation is
triangular, and computing the diagonal entries. We first compute for 7 > k

0A

5‘Reij

= €je

TL* + Lege?

0A

T —e.
70 8|ijk J

el — Lekef.

Examine the structure of these matrices. Since ejefL* is the matrix that con-
tains the kth row of L* in its jth row, with all other row being zero we find the

following picture

0
0
Lk
OA L1k
6Reij_
Lj—1k
0 0 Zk:k Zk+1’k} ijl,k QRGij
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Here only the jth row and jth column have non—zero entries. Here 2RelL;j, is
in the (j,4) entry. A similar picture holds for W with 2lmLj;, in the (3, j)

entry. We define a mapping ReL — ¢ € R™"~1/2 and ImL — n € R*"=3)/2 by
the ordering of the non-zero elements of L:

(G, k) < (§/,K) if j <3,
(j, k) < (5,K) if k<k.

This orders first by row, and then by columns within each row. Assume (i,¢) <
(4, k), >k, 3> Then

0Ajp 0Air

8Reij - 8Iijk N

because either i < j or £ < k' if i = j. And, it is clear that

04 ‘ 04, .
3Reij kky, J > K, 6ReL]k kk, J 9
9A; ,
DImLy, Lk, j>k.

Then, if we define L + ¢ where ¢ = (£1,71,&2,72,...)T we find that the Jacobian
is triangular and

aA_n 2(”]1
9= 2HL

O

This theorem allows one to understand transformations of Ging(m,n). Fol-
lowing the transformation , with X € C™*" with m > n using T' = L*

noting that
T
T ( 0) |

- where T is a upper-triangular matrix with positive diagonal entries. Then

H (=t =IpP DY = 27" HT m=DADU (5.5.3)
= ] 1
=27"[[ ;" ™|A(2?)*D(£2) DU DV. (5.5.4)
j=1

Here DU is Haar measure on U(n) and DV represents the same distribution as
the eigenvectors of GUE(n). Also, DX is Lebesgue measure on R’}. As noted

(5.5.2) ‘eq:lower-order
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below @D}E this is not the singular value decomposition for X, but we claim,
it is in a distributional sense. For X ~ Ging(m,n), m > n and consider

X =U,2V, X:=UXV

:mapp-com2
where (U, V, X)) are independent with joint distribution @%EUC% the matrix
of left singular vectors for X, and U is independent of U;. Then X = UU{ X,
but then by the invariance of U, for measureable sets S; C U(m), Sy C C™*™,

P(UU{ € Sl) = ]P)(U S SlUl) = P(U S Sl),
]P(UUl* €5,X € 52) = P(U e SU,X € 52)

_ /S 2 ( /S B DU) pamc(X)DX = P(U € $)P(X € S).

So, UU7 is independent of X and therefore X must have the same distribution
ZS X. T_kélosm 2;mplies the singular value decomposition of Ging(m,n) is given by

Remark 52. If one wants to match of dimensions, then DU should be replaced
by the push-forward of uniform measure on Sp'™* x S =2 x -+ x S~ onto

U(m) via Householder reflections. B i i meeity @ommae? Dimemstens ]
( mateh, but....

5.6 Change of variables for Ging(m,n)

Similar considerations show for Y = QX0 ~ Ging(m,n) the singular value
distributions are given by

Dy & o= [T £~} A(£?)|DE2 DQ DO
j=1

where DO is Haar measure on U(n), DQ is Haar measure on O(m) and DX is
as before.

In both cases, Ging(m,n) or Ging(m,n), if m < n, then same distribu-
tional description holds with the addition of n — m point masses at zero for
Y1,...,Xn—m (depending one’s ordering convention) to indicate the deficiency
of the matrix.

Exercises

5.1. Write a numerical code to compute the Cholesky decomposition of a sym-
metric positive-definite tridiagonal matrix.
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Chapter 6

Determinantal formulas:

From Vandermonde to
Fredholm

Our purpose in this section is to present the elegant determinantal formulas of
Dyson, Gaudin and Mehta for invariant matrix ensembles on Her(n). These
formulas combine three distinct elements: (i) the Weyl formula on Her(n); (ii)
the theory of orthogonal polynomials; (iii) Fredholm determinants. We first
introduce these formulas for GUE. We then use the asymptotic rg)é)i%%teilgs
Hermite poly mlﬁ}s to establish their scaling limits (Theorem Theorem
and Theoremr@“%Whﬂe the eigenvalues of GOE and GSE do not have a deter-
minantal structure, they have a related Pfaffian structure, which is described in
a later chapter.

:dyson

6.1 Probabilities as determinants

In what follows we will adopt the following notation. In order to avoid confusion,
we let © = (21 (M),...,z,(M)) € R™ denote the unordered eigenvaluesﬂ of M,
and A = (A (M),..., \,(M)) € W™ denote the ordered eigenvalues of M. We
use x; = x;(M) and \; = A\;(M) when M is clear from context. The probability
density of x, denoted P("™) (z1,...,2n), is obtained from the Weyl’s formula

1 1<
P(")(xl,...,a:n) = Z—A(x)26722k:11i. (6.1.1)

Observe that P("™) is invariant under permutations (21, ..., ) = (T, ..., s, ),
o € S(n). In practice, our interest lies not in the joint density of all n eigen-
values, but statistics such as the law of the largest eigenvalue. Thus, what is

IThese is is clearly not well-defined. If M is random one can compute the eigenvalues and
then randomly permute them.

83
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-det-forml
required is an analytical technique to extract such information from @_by_
integrating out degrees of freedom to obtain information on the joint distribu-
tion of m-eigenvalues, 1 < m < n. More precisely, given m and a Borel function

Tldon it think we need thislcandition, : R™ — R that is symmetric under permutations,
the sum symmeterizes f, right?
flzr,....zm) = f(zoy, ..., T, ), o €S(m), (6.1.2) |eq:det-form2

we consider random variables of the type

Ny = > fl@j, . m). (6.1.3)

(J1s---2dm)E[L,n]™, jrdistinct

-det-form3
Expectations of random variables of the form 1@ I ‘LZ;) are given by

E(Nf) = [ f(z1,...,zm) RS (21, ..., zp) dey ... Az, (6.1.4)

R™

where R, is the m-point correlation function

R (21, am) (6.1.5)

n!
= m/ ) P(")(xl, e Ty Tt 1y e o s Tp) ATppg -« day.
. . . +det-form3 n
The combinatorial factor in arises as follows. There are (m) ways of

picking subsets of m distinct indices from [1,n]. On the other hand,

RMW(zy, ... 2m) = R (26, %0y, ..., Ts, ), o€ S(m). (6.1.6)
-det-form5
and the integral on the right hand side of 1EI‘L§E af)lft)néars m! times when in-
tegrating over the complementary n — m variables for each choice of indices

{j1,---,Jm} € [1,n]™. We state the following theorem which is proved in the
following sections.

thm:det-formula\ Theorem 53. The joint density and m-point functions for GUE(n) are

1
P(n)(l‘l,...,dfn) = mdet (Kn(lij,ﬁckhgj,kgn), (6.1.7)
R (z1,...,2m) = det (Knu(zj, 21)1<)jk<m) , (6.1.8)

where the integral kernel K,, is defined by the Hermite wave functions

n—1
Kn(w,y) = > ti(@)dx(y). (6.1.9)
k=0

Remark 54. The kernel K,, may be simplified ysi ideegitities for the Hermite
polynomials. The Christoffel-Darboux formula %ﬁllows us to write

‘ 4
Further, eliminating 1,,_1; with the identity @e_yields

K, (z,y) = Yn (@) (y) = ¥ (@)iow () — %wn(x)wn(y) (6.1.11) ‘eq:christoffel—darbot

r—y

(6.1.10) ‘ eq:christoffel-darbou
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:det-formula
A particular consequence of Theorem ﬁ?ﬂ?ﬁﬂﬁving fundamental for-
mula. Assume S is a bounded Borel set, let 1 denote its indicator function, and
let A,,(S) denote the probability that the set S contains precisely m eigenvalues
for M € GUE(n).

thm:fred—det—prob‘ Theorem 55. The generating function of { A (S)}20_, is given by the formula

det (I — zK,1s) = ¥ An(S)(1-2)", z€C, (6.1.12) [eq:det—form-10b

m=0

where det (I — 2K, 1g) denotes the Fredholm determinant of the kernel

K,1g(z,y) = z_: Ts(x)r () (y)1s(y). (6.1.13) ‘eq:det-form—lOa
k=0

:det-formula :fred-det-prob L. .
Theorem and Theorem illustrate the general spirit of determinantal

formulas in random matrix theory. The density of a joint distribution is ex-
pressed as a determinant of an integral operator with finite rank. One may then
use the theory of orthogonal polynomials, in particular, results on the asymp-

jcotics of or O_%ggl?l bolynomj ls:,dtgoggtablish e:p‘?;ic limit theorems outlined
in Chapter [I[(sge Theorems B an eorem elow).
IE! ana! E de b

Appendices provide brief introductions to Hermite polynomials and
Fredholm determinants respectively.

6.2 The m-point correlation function

:det-formula . .
Proof of Theorem 53, We Torm linear combinations of the rows of the Vander-

monde matrix to obtain —Check £1 on Vandermonde throughout )

A(z) = det bl(: 2 1: : . (6.2.1)
bn—l(xl) hn—1($2) hn—l(xn)

The calculations above would apply to any set of monic polynomials of degree
0,1,2,...,n — 1. The Hermite polynomials and wave functions are relevant
because they satisfy the orthogonality relations

29

[ @) e = i, (622)

and allow the inclusion of an exponential weight. Precisely, the Hermite wave
functions

—x%/4

1 e
SN pa 623

Yi(x) =
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satisfy the orthogonality relation

/ Yi(x)Yr(z) de = i, (6.2.4)
R
and form a basis for L*(R).  TLet H denote the matrix with entries Hj), =
Yj_1(xg). It follows from (6.2.1)) and (6.2.3) that
22
e T A(x)? oc det H? = det HT H = det [Kn (@), 20)] 1 < j o » (6.2.5)

using the identity
HTH ZHUHM = Zwl zj) () = Kn (25, 28). (6.2.6)

Therefore, the joint density P (zx) is proportional to det K,. To determine
the constant of proportionality we recall that the determinant of a matrix A =
[ajk]i<j k<n satisfies

det A = Z sgn(o Ha(w (6.2.7)
o€S(n)

where sgn(o) denotes the sign of the permutation o. We then evaluate the
integral

2
/ det(H)*dx; ...dx, = / (det [wjfl(xkﬂgj,kgn) dzy...dz,

Z sgn(o)sgn(7) /Rn H VYo, —1(2j)r, —1(xj) day ... dzp

o,7€S(n)

(6.2.8)

n

Z Sgn Sg]fl H 05, — Z ]-{0':7-} =n!.

o,7eS(n) = o,7€S(n)

eq:det-formi4

‘eq:det-form14b‘

eq:det-forml7

. -det-forml t-forml7 . A . :det-formula
‘We combine and to obtain the first assertion in Theorem

" 1
PO (xy, ... ) = ﬁdet [Kn (%5, 1)) < j o -

The formulas for the correlation functions may be obtained by induction,
beginning with

R™(zy,...,2,) = det [K,(z;, k) 1< pn - (6.2.9)
. . . -det-formi4
First, the orthonormality relations @Tply_

/K 2,2)d /K 2, 2) Ko (2,y) 2 = K (2, y). (6.2.10)

eq:det-formi19

eq:det-form20
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-det-form8 .
Assume @_h_om for an index m + 1 < n. We then have

sz)($1,...,xm)

— /Rm+1 X1y ey Tony Tona1) A1

— / det [Kn (2, )] 1<y pemr d¥me1 (6.2.11)

1
-— Z sgn(o) / Ky (r1,26,) . Kn(Tmi1, %o, ) AT
oceS(m+1) R
. . . . d —form20
If 0,,+1 = m + 1 in this sum, then the first equality in @Wpﬁes

/ Ky(21,26,)  Kp(Tmi1, Topy oy ) dpgr (6.2.12)
R

= nKn(zla‘rtTl) T K"(xm’xom)'

If o,r1 # m + 1, there exists j < m and k < m i%;g?o;mhﬁ)t o; =m+1 and

Om+1 = k. We then use the second equality in o fin

[ Enorn) o Kolomin, 20, dom (6.2.13)

/K xhxal "'Kn(xjymerl)'"Kn(xm+17$k)dxm+1
(xhxdl)" K (xmaxa'/)

where o’ is a permutation of {1,...,m} such that 0% =k and 0] = 0y if | # j.
Each permutation ¢’ € S,;, may come from m permutations o € S,,+1. Further,

sgn(c’) = —sgn(q) si e these permufatigns differ by a single swap. Therefore,
using equations ([6.2- an 2. we have

/det w (5, k)| < p<myr @mr1 = (n—m) det [Kn (), 1)l < parm -

Lecture Note 6. Let ¢’ € S(m) and for 1 < j < m, define o € S(m + 1) by
op=o) for1 <1 <mandl7éj Then oy = m+ 1 and 0,41 —a . Then this
procedure maps 0 — o’ and j is is arbitrary. And, if we swap o; Wlth Om+1 We
then see that sgn(o) = —sgn(o”).

O

6.3 Determinants as generating functions

Proof of Theorem [53 Tholn Qeter%lbnant det (I — zK,1g) is an entire
function of z. Thus, equation (6.I.12]] 1s equivalent to the statement

An(S) = — (—) det (I — zK,1g)|,_; - (6.3.1) ‘eq:det—form-lo
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det-form-10
We first prove formula in the case m = 0. Let 1 denote the charac-

teristic function of the set S. The probability that all eigenvalues lie outside S
is given by

/ H 1—1g(zy)) P(")(xl,...,xn)dxl...dxn (6.3.2)

3 ,_.

— (_1)J'/ Pt (Ls(@1),..., Ls(zn) P™ (21, ..., 2) day ... day,
]Rn

j=0
where p}/ (71, ..., 2y) is the j-th symmetric function in n variables. For example,
n
po(x) =1, pi(z Z% Py (x Zw]xk, o (@ H

i<k
Then, we can express
1
n — .
Pj (z) = ﬁ E H"Tjk'
" (G1yeerdm)E[L,n]Y, jrdistinct k

Since each term in p} consists of j products of the form 1g(z,,) for some
permutation o € S,,, we integrate over the remaining n — j \(umbl(s and use

the permutation 111}:(1%1(111(,(, of H,(/ Using the m-point correlation function, we
= —Iorm -

obtain using With f(x1,...,2m) = H;n:1 15(%‘)7

E(N;) = / Pt (Ls(@1),..., Ls(zn)) P™ (21, ..., 2p) doy ... d2,,  (6.3.3)

1
=3 det [K, ls(xk7$l)]1<kl<] dz; ...dz;.
J: Jri

t—f
In the last equality, we have used @%Ultlphed the kernel on the left
and right by the diagonal matrix dg = diag(1s(z1),..., Ls(z;)), so that

Ls(z1)... Ls(z) R (21, .., 2y) = 13(2) .. 13 (a) RS (1, .., 2)
— det (ds Ko (2 2] < ds) = det [Ky Ls(r, 20)] 1 e

. . jegrdes—form-10a . edi eg+fxedla
where K(™1g is defined in (6.1.13). We now combine and (6.3.3]) to

obtain

Z /pj ls(z1), ..., Ls(zn)P™ (21,. .., 20) day ... dxy,

Jj=
=det(I — K,1g), (6.3.4)
-fredl

using the infinite series @‘i‘_ﬁhe Fredholm etegm Inant (only n terms are
non-zero, since K™ has rank n, see Exercise

eq:fredla
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-fredl

We now turn to the case m > 1. Equation @e_must now be modified to

allow exactly m eigenvalues within S and n — m eigenvalues outside S. Define

m n

flar,. . zn) = [ 1s(z;) J[ Q- 1s(z))).

j=1 j=m+1

-det-formé
Then from @,—W@l we take into account the m! permutations of the first
m elements, and the (n —m)! permutations of the last n — m elements

1

Am SY= ——FE(N
(5)= i = B
1
= m - f(xla-..7xn)R£Ln)($17...,xn)dxl-..dxn'
We then write
f(wly...71'n):H]]_ k n m ]lS(xm+1),...7]lS(xm+k))
Jj=1 k:O

")

We use the fact that pf ™™ (Ls(Tm+1),-- -, Ls(x,)) is given by a sum of (",
terms, each of which is product of k terms, and all terms integrate to the same
value. So,

/ H]ls ()pr " (Lg(@me1), - ]ls(:vm+k))R£L”)(x1,...7:cn)d:v1--~dxn

- (n— )/ H Ts(zj) (/ R(")(xlv~-~,$m+k)d$m+k+1~-~dmn)
e S

X d!El s dmerk

(n . m+k
:7/ H Ig(z;)R (ml,...,mm+k)d:v1~-~dmm+k
Rtk S
(n —m)!
= T . det (Knls(xjazl)lgj,lgm—i-k) dxy ~'~dl‘m+k.
. ]RW‘L

Then, it follows that

n—m

—

/ det (K 1s(zj, 21)1<ji<mtr) A1 - - - dTppp
o Rm+k

( ;) det(I — zK,1g)|,_; -

3\)- 3
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n
m

Am(5) (6.3.5)

n—m

( )/ HILS (z;) [T (1 = Ls(@man)) P (1, 20) day .. dayy
" k

1

Since there are ( ) ways of selecting m distinct eigenvalues, we find

n—m

(B) S0t [ ™™ st Lstan)

k=0
m
X H Lg(z;) P(”)(xl, cooyp)day L. day,.
j=1
We then expr S8 41a cdia
As in (533 and (6. e use the fact that p; ™ is given by a sum of

(” Am) terms, each of wh1ch is product of k terms, and all terms integrate to the

same value. Thus, the sum above is

n—m L om4k
n Lfm—m
<m> Z( 1) ( ) /n H ]15 xl"""r'”)dxl"'dxn
k=0 j=1
n—m m-k
— R'E::ik( i $77L+]») dxl dmerk
Rm+k J=1
B ’I7L' - k;l /]RerA det (KﬂlS(-Tpa xq)lﬁp,q§m,+k;) dzy ... dzg sk
1 a\™
- % <dZ) d()t([ o ZK’H,HS)‘zzl . (636)

In the second equality, we have simplified the combinatorial factors as follows:

1 [(n\[(n—-—m\(n—-m-—Ek)
m!  \m k n! '
. 2 jvative-Fred .
In the last line, we have used formula or the derivative of a Fredholm

determinant. O

Exercises

6.1. Plot the density %Kn(:r, x) for various choices of n. Compare the extrema
of the density with the roots of the appropriately scaled Hermite wave functions.
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Chapter 7

Scaling limits

7.1 Scaling limits of independent points

Recall the semicircle density pg. from @9 We show in the next section that
the global eigenvalue density, or density of states, for GUE(n) is given by ps. as
n — oo. Before we describe this more precisely, we consider a situation of iid
points to contrast with the distributions that arise in GUE(n).

Consider an iid vector A = /n(A1, Aa,..., A\,)T € R™ where P()\; € S) =
J5 Psc(z’)da’. We form the empirical measure

Ly, (dz) Z da, (dz), (7.1.1)
and consider the deterministic measure EL,, defined by
1 n
/f(x)IELn(dx) =E(Ly, f) = ]Eﬁ Zf f € Ch(R). (7.1.2)
k=1

But, it is clear, and effectively by definition, that EL,(dz’) = p(2')da’ =
ﬁpse (\%) dz’ and hence /np(y/nz’)dz’ = pg.(z')dz’.

Next, we consider a gap probability in the “bulk”. Let s € (—2,2), I C R
be an interval and consider the rescaled interval I,, = \/n (s T G )) Then
by independence

P(no\ €l,)= (1 - % /I Dee (%) da:> (7.1.3)

We directly find that

\f/ Dsc ( ) da’ = |i| (14 0(1)) as n — oo. (7.1.4)

93
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From this it follows that

lim P(no\j €l,)=exp <—/da:’) : (7.1.5)
n—oo I

This is, of course, the gap probability for a Poisson process.

~ We now consider the distribution of the maximum, i.e. at the “edge”. Let
A =max; A;. Then, by independence,

2 n
P(n'/%(2y/n — X) > t) = <1 - / Pse (2') dm’) :
2—n—2/3¢

By direct calculation, replacing t with 72/3t2/3(3/2)2/3 we find, for t > 0,

lim P(n/5(2y/n — ) > t) = e aet"", (7.1.6)
n—oo
From this we see a (trivial) scaling limit of the density of states after rescaling
by 1/4/n, gaps on the order of 1/n after this rescaling and a largest “eigenvalue”
that satisfies \ ~ 2\/ﬁ+£n1/6 for an appropriate random variable £. All of these
statements carry over to the random matrix setting, but the actual limits are
very different for local statistics.

7.2 GUE scaling limits I: the semicircle law

The empirical measure of the eigenvalues of GUE(n) is

1 n
==Y b (dx) (7.2.1)
"=
has the expected density
1
EL, (dx) = ﬁKn(w,x) dz. (7.2.2)

This density is also referred to as the global eigenvalue density or the density of
states. The above expression is somewhat more transparent in its weak form,
using unordered x1,...,z,. For every f € Co(R), we have

E(L,, f) = /f )R (2) da = — /f z, (7.2.3)

:det-formula t-form
by Theorem Egi and equation @_Tlﬁ value of the kernel Ig% fgnltgl glol]{im 0-
El}i(iﬁ and L'H tal’

nal is determined by the Christoffel-Darboux relation ospital’s
lemma:

Ko (2, 2) = Vit ($p(@)tbns (&) — (@) (2)) (7.2.4)
" C
The scaling limit of EL,, is the semicircle law defined in @‘
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le:scaling-semicircle| Lemma 16.

nlgrrgo TK (zv/n,zv/n) = psc(z), z€R. (7.2.5)

Further, for any € > 0, the convergence is uniform on the set {x ||z — 2| > ¢}.

Proof. The lemma follows from the Plancherel-Rotach asymptotics u': the Hetr2
mite wave functions (see Cases 1 and 2 and equations lmp 9)
pendix [E]). Define the rescaled wave functions

Upip(2) = N3y p(ay/n), p=—2,—1,0. (7.2.6)

. . : ed . . , , :sclimit3
We use the identity @_ﬁo eliminate ), and v;,_; from @m find

after a few computations that

1

-1
T K (Vi) = W (@) =\ o) (), (7.27)

. . - pr=proof8b leq:pr-proof20
We now use the asymptotic relations (@W (I7 }i depending on whether
|x| < 2 or |z| > 2. Since the region |z| > 2 corresponds to exponential decay
with a rate proportional to n, we focus on the region |z| < 2. In order to simplify

notation, let
1 . 1 s
0=n gp—istap —59 T (7.2.8)
spr= £8 :sclimith
(This is the grgument of the cosine in @%@n p=—1.) Then @%ﬁd’
[T et

%Kn (x n,x\/ﬁ)
(cos® 0 — cos(6 + @) cos( — ) = i\/ 4 — 22,

msin g 27

using = 2cosp and the trigonometric formulae cos2a = 2 cos? v —l; agé(éimo
2 cos(f + ) cos(0 — ) = cos2¢ + cos 20. A similar calculation with (7 P Shows
that the limit vanishes outside the set |z| > 2. The assertion of uniformity

in the convergence follows from the assertion of uniform convergence in the
Plancherel-Rotach asymptotics. O

~

. . zau :scaling-semicircle .
Using Exercise @a_Lemma implies tha n(dx), after rescaling, con-

verges weakly _(nclude the variance estimate to state ]

Lthis almost surely?

1 n
E (n Z 5$k/\/ﬁ(dx)> — psc(z)dz, weakly. (7.2.9)

k=1

This is called the averaged semicircle law. It is also worth noting that if f(z) =
1g then

E ( fraction of eigenvalues that lie in S) / f(z)EL,(dz) / Ky (z,z)d
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7.3 GUE scaling limits II: the sine kernel

. f:sine-kernel . .
Recall from Definition El that Ksine 1S the integral kernel on R x R given by

sinm(z —y)

ECEDE Ty, (7.3.1)

and Kgne(z,7,) = 1. It defines an integral operator on L?(S) for every ounded,
measurable set S. We can now prove a stronger version of Theorem

Theorem 56. For each integer m = 0,1,2,... and bounded, Borel set S and

re(—2,2)

Ksine(xa y) =

S
lim P (]W ~ GUE(n) has m eigenvalues in v/n (T + )>

n—00 NPsc (7)

1 d m
- <> det (I — 2Kgnels)_y . (7.3.2)

m! dz

:dyson2
The proof of Theorem E%‘ s a clz)nsequence of the following

1e:hermite—sine\ Lemma 17. Let S be a bounded measurable set. Then for r € (—2,2)

1
PO

T

(ﬁr RGN

Y
e+ p(r)\/ﬁ> — Ksine(x,y)‘ =0.
w5

lim sup
n— o0 a:,yGS

Proof. For r € (—2,2) define ¢(s) by v = r + e o) — 2¢0S ©(s). We then

note that sin p(0)/m = ps.(r). We expand, for sufficiently large n,
1 . 1 . TS o .
p(s) — 5 sin 20(s) = p(0) — 5 sin 20(0) — o +0(n™%). (7.3.4)

Define the new functions

U, 0(8) = 0y, (2v/n), (7.3.5)

From (ETa0) "
Faple) ~ s co (100 = sin2e(0)) ms + (p4 3 ) w0 - ]
(7.3.6)

.o . . ' istoffel-darbouxi
For fixed r, this is uniform for s in a compact set. We then use an
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y:r—itoﬁnd for s # t,

n sin (0

WKn(I\/ﬁ,y\/ﬁ) (7.3.7)

01V Ty
n.0(8)Wn,1(t) = Wno(t)¥n,—1(s)

s—t
N 1 cos(0, + s) cos(0, +t — p(0)) — cos(by, + t) cos(0,, + s — ©(0))
7 sin (0) t—s
_ sin7m(s —1)
-y (7.3.8)

Here we set 0,, = n (¢(0) — 3 sin2¢(0)) + 2¢(0) — T and used the identity
cosacos(ff + ) — cos(a + ) cos f = sinysin(a — ). (7.3.9)

This is uniform for |t — s| > §. For |t — s| < J, it is convenient to write

Un(@)n-1(y) = Pn(y)n-a(z) _ (vl (1= 0y)
p— = (¥n(2) ¥na(@)) /O < Ll (1 — z)y)> de,

and establish uniform convergence of this, after rescaling as above, to

w = (sinmws cosms ' sin(mls + (1 = 0)t)
D ) /O (Cos(ﬂﬂs—l—ﬂ'(l—ﬁ)t)) de.  (7.3.10)

O

any need for the small z Hermite
asymptotics section in the appendix.

With this proof, I don’t think we have
But is is nice and clean...

Proof. Define the new rescaled wave function

U, (x) = ni Ui (

: e4
The identity @_now takes the form

v, 1() \I//()

). (7.3.11)

Si=

%xp(r) (7.3.12)
and the rescaled kernel takes the form
oy Vu(@)V(y) -V (2)Valy) 1 .
K, ( = f> = W@V (7313)

-asympt3 . - -asympt3 . .
We. now 1ise when n is even) and when n is odd) to obtain

O
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:d 2
Proof of Theorem %i_f%t@}? (z,y) denote the rescaled kernel n(Tv/1,y/n),
fLe;hert i‘t@-)é/i +SOV

— S — et
T =T e U =T ey It follows from Lemmam using Sections [D.2.T

and hat

Tim det (I - zf(n]ls> = det (I — 2Kgnels), z€C, (7.3.14)

and that the convergence is uniform in z for z in a bounded set. In particular,
the derivatives at z = 1 converge for all m, that is
I d mdt(I f{]l) d mdt([ Knels)|
im | —— e —zK, =(-—= et (I — 2Kine .-
n—00 dz )= dz §)1z=1

:fred-det-prob :rscd (7'3'15)
By Theorem Egt this is equivalent to @D’ O

7.4 GUE scaling limits III: the Airy kernel
f:airy-kernel
Recall from Deﬁnitiong that % Airy 15 the continuous integral kernel on R x R

given by
Ai(@)AT () ~ AT (2)Ai(y) .
Kasy(2,1) = - Cady (14D
The fluctuations at the edge of the spectrum are described as follows. Let
(z1,...,2y) denote the unordered eigenvalues of a matrix M € GUE(n) and let
us consider the shifted and rescaled points

sk:né(aﬁ—%/ﬁ), k=1,...,n. (7.4.2)

For each nonnegative integer m and bounded, measurable set S, let B(n)(S)

denote the probability that exactly m of the points si,...,s, lie in ES; when .
M € GUE(n). The following theorem is a consequence of Lemmai § and the
discussion in Section

thm:TWw2 | Theorem 57.
1 d m
; (n) T _ . B
nh_r)rgo BV (S) = - ( dz) det (I — zKaiyls)|,_; - (7.4.3) |eq:rsc8

Remark 58. The assumption that S is bounded is necessary for Kgne. The
sine-kernel has a (weak) rate of decay |z|~! as || — oo and the Fredholm
determinant det(] — zKgnels) is not finite unless S is bounded. However, the
Airy function, and the thus the Airy kernel, has strong decay as x and y — co.
The Fredholm determinant det(] — zKajyls) is well-defined in L?(S) for sets
S that are bounded below, but not above, such as S = (a,00) for any a € R.
Such sets will be considered when we compute the Tracy-Widom distribution.
See Exercise 5.

W2
The proof of Theorem ﬁtﬁﬂ_ows from the Plancherel-Rotach asymptotics for

the Hermite polynoml,, n a1 , ular th&élry asy t?g}%?, iori the tra?sition
EE; The T mnm

[.1.44) ppendix ). The Tollowi
plays a role analogous to that of Lemma [I7]in the proof of Theorem
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Lemma 18. Let S be a bounded measurable set. Then

lim sup
n—00 4 yes

71 <2ﬁ+ 2/ + ) —KAiry(an,y)' =0. (744)

ne n o
Lemma 19. For x # y, uniformly on bounded sets,

lim
n—oo

Lk (s Zoavie B) Kt =0 @9

ne
and there exists a function G(z,y) € L*([C,00)?) for all C € R such that

1

nﬁ

<2\F+ 1,2f+)‘<G(x,y). (7.4.6)

pr=proof22

Proof. Convergﬁnce fﬁlgows rom. l . e fun%cion G(z,y) can be con-

structed using | see Exercise O

Proof. Let us define the rescaled wave-functions
U, () = ni=ey, <2\m + “> . (7.4.7)
ne
- 4
We then use identity ﬁfo find

ns K, (2\/5—5— % 2v/n + yl)

no ne
U, ()W) (y) — U ()W, (1 1
_ ﬂ( ) IL(J) n( ) 7l(y) o - \I’,L(ZL')\I/,L(y). (748)
rT—y 2ns
. . :orthpol
As noted in Appendix i%’t as n — 00, W, (z) converges to Ai(z) and the conver-
gence is uniform for z in compact sub sets of C. Thus, in addition, v (z) —
Ai’(x) uniformly in compact sets, and 1’ ol ows. O

7.5 The eigenvalues and condition number of

GUE

Let M ~ GUE(n). Let M = A2 < .-+ < A, be the eigenvalues of M. A
consequence of Theorem e following, for all £ € R

n—oo

A
lim P(—n?3 (24 22 ) <t] = ().
fim (o (24 ) <t) = R0

An
lim P <n2/3 (\/ﬁ - 2) < t) = det(1 — KairyLit,00)) =: Fa(t),

eq:rsc9



100 CHAPTER 7. SCALING LIMITS

2
Then, Theorem E%i glvzgnfor t >0,
i P (8> or il ) = et - Kool ) = 80, (7.0

The singular values o1 < 09 < ... < 0, of a matrix M. aréalfelllset square roots
of the non-zero eigenvalues of M*M. One can rewrite 1'?5 ) as

lim P (‘f‘” ) = S(t). (7.5.2)

n—oo

The condition number is defined as k(M) := 0,,/071.

Lemma 20. If M ~ GUE(n), then for allt >0

lim P (%H(M) < t) =S, (7.5.3)

n—r00

Proof. We first show that \,,/\/n — 2, \;/y/n — —2 in probability. Fix e > 0,

and let L > 0. Then
A A
Zn_9l<n2Be) >P (02322 _9l< L
NG ’—” 6)- (” N A

1<P(‘—2‘ ):P<n2/3

provided n?/3¢ > L. So we, find

n—oo

1 < liminfP (‘\)}% - 2‘ < e> > Fy(L) — Fa(—L).

Letting L — oo gives convergence in probability for A, /4/n. Similar arguments
follow for A\;/y/n. Next, define
A
Ly 2‘ < e} .
n

o= {[ =

We know that P(E. ) — 1 as n — co. Then

P (%H(M) < t) =P (%H(M) <t, En) +P (%H(M) <t En) .

Because the second term must vanish as n — 0o, we focus on the first term. On
E., it follows that (2 — €)y/n < o, < (2+ €)y/n and

2 2=
P w<t,Een S]}D(lff(M)<t7Ee">§P u<taEsn .
2no 7 2n 7 2noy ,

We find that for ¢ > 0

92—
limsup P (%H(M) < t) = limsupP (%K](M) < t,EQn) <S ( €t1> ,

. 7r . ™ 24¢€,_ 4
liminf P (—H(M) < t) = limsup P (—K(M) <t,FE. n) >S5 ——t :
n—00 2n n—s00 2n ’ 2

If S is continuous at ¢, send € | 0 to obtain convergence in distribution. Since
S(t) is continuous, the result follows. O

Discuss Folkmar’s work on the singu-
lar values of GUE.
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7.6 Tightness and joint distributions

In this section, we discuss some deeper topics concerning the convergence in
distribution of the eigenvalues near the upper edge of the spectrum.

7.6.1 The joint distribution of the top two eigenvalues

We first discuss the joint distribution of the top two (ordered) eigenvalues of
GUE noting that

Frop 2(t,s) :=P(An_1 < t, A < 5) = P(Qy6),
Qs := { no eigenvalues in (s, 00), no more than 1 eigenvalue in (¢,00))}.
For s > t we have the disjoint union
Qs = {no eigenvalues in (s, 00), no eigenvalues in (¢, 00}

U {no eigenvalues in (s, 00), exactly one in (¢,00)}

= {no eigenvalues in (¢, 00)}

U {no eigenvalues in (s, 00), exactly one in (¢, s]}.
For s <t

Qs = {no eigenvalues in (s, 0)}.

The probability of the event {no eigenvalues in (s, 00), exactly one in (¢, s]} needs
to be computed for s > t. To this end, consider

n n

e = ([ T10 =15t | [ IO - 1r6) | 1o,

j=1 j=2
S =(s,00), T=(t,s]
Careful consideration reveals
E(Ny) = (n — 1)!P(no eigenvalues in (s, 00), exactly one in (¢, s]).

One does this by simply computing Ny on Qg ; (Ny = (n — 1)!)) and on Qf,
(Ny =0). The function f must then be expanded using symmetric functions:

Forsesa) (6

= —lp(21) > > (D) pp(Is(@r), ..., Ls(xn))pp ) (Ir(z2), . ., Ir(2n)).
e (7.6.2)

In order to further _Lyl}g‘frstand this expression, we consider matrix kernels as
described in @._Consider the determinant

dys(2) = det (1 - {iﬁn féﬂ

L2(T)@L2(S)>
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By definition, we have

fe%e] (_1)k 2
dst(2) = Z I Z . det[Ky, i, (2, z0)]1<je<pdzy - - - day,
k=0 T g, eig=1

where we extend K;, = 0 on the complement of I; x I;. Define

s

Q(’il, N ,’ik) = /;. det[KijM (.’Ej, xg)}lgj’ggkdxl e d.’bk.
Rk

Then the set {(i1,...,ix) : i; € 1,2} can be expressed as the disjoint union of
sets

I, ={(i1,...,ix) :4; € 1,2 and #{j : i; = 1} = p}.

Let o € S(k) and (41, ...,i,) € I, and consider

Qo) Tor) = /Rk det[ K, ) i) (To()s To()1<je<hdar - - - day

= . det P[Kij7i2 (a:j, xz)]lgj,gSkPTdel - dayg
R

for a permutation matrix P. Thus Q(iy(1),-- -, %ek)) = Q(i1,...,ix) and

()

Thus set 2”Q(p, k) = Q(i1,...,4x) where (i1,...,i) € I, and i; < i), for j < k.
We then have

oo _1\k k
d) =3 S5 (D,

k=0 T op=0

- -expand
Now, upon examining (';El Wo write, using k + ¢ — k and ¢ — p
flze,... z)

2n min{n,k}

:*lT(xl)Z Z (=D)Fpr_y (L (x2), ..., Lr(zn))pp_, (Ls(21), .. ., Ls(wn)).
k=1 p=1

So, specifically, we must consider the integral

I(p, k) = /n ]lT($1)p$_1(]1T(I2), Y IT(IH)) (7 6 3) ‘ eq:sym-fun-int

X pp_p(Ls(@1), ..., Ls(a)R{ (21, . .., 2n))day - - A2y
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Each of these symmetric functions can be expanded and we must consider inte-
grals of the form

P k—p
/ H]lT(:vj) (H ]lg(aci[)> R™ (xy,... 2p)dzy - - - day,.
" =1

Jj=1

Because T and S are disjoint, the only integrals do not vanish occur when iy > p
for all £. It will suffice to compute

14 k
/ HHT(xj) H Is(we) R%n)(.%‘l,...,a;‘n)dxl o dz,
" \y=1 l=p+1
14 k
= (n—k:)!/ HHT(aCj) H Ts(xp) ngn)(xl,...,xm)dxl--~dxk
R~ j=1 l=p+1

. . L. . 2 -fun-int
Counting the number of times this integral occurs in @!)BWW

1) =P (D (L2 ek = () e

and therefore

2n min{n,k} (_1)k k
P(no eigenvalues in (s, 00), exactly one in (¢, s]) = — Z Z P (
: p
k=1 p=0

)Q(p, k)

Noting that the integral operator with kernel matrix

2K, K,
2K, K,

has maximal rank 2n we find that Q(p, k) = 0 if either k¥ > 2n or p > k. So, we
write

P(no eigenvalues in (s, 00), exactly one in (¢, s])

o k —1)* /k d o k e
22 k!) <p>Q(p’k):_dz (ZZZP( k!)

k=0 p=0

z=1

(0)ew, k))

. . . . :AiryScale .
From this and the calculations in Section i?ﬁ we arrive at the following
theorem.
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Theorem 59. For s,t € R

lim PO\, < 2vn 4 sn /% \,_1 < 2v/n +tn~1/)

n—oo
det(l — KAiry|L2((s,00))) =
det(1 — Kairy| £2((t,00))
== K ir K ir
— et [1— [T A DA t<s
2Kniry  Kairy

L2((sD®L2((s,20)) /) | ;=1

Remark 60. It should be clear from this discussion that one can consider the
joint distribution of the top k eigenvalues with k fixed as n — oo. This has a
(complicated) Fredholm determinant representation but it can be shown that if

Ak = My A1,y da_ka1]T is the vector of the top k largest eigenvalues of
GUE(n) then

Fa, v +n"Y0, 2y 4+ 07 00) 25 By oty .. 1)

for every t1,...,t; € R. Here Fy, is expressible in terms of Fredholm determi-
(hould we be more explicit? nants that only involve the Airy kernel.

If I,...,Iy are disjoint intervals and m; € N for j € [1, N] then

P(exactly my eigenvalues in I, ..., exactly my eigenvalues in Iy)

(_1)2?:1 m; N gm;
= N | P) m; dIh---,IN(Zla-"aZN)a
[T=imyt 555 9%

If we want to include this, it needs to Where
be confirmed

d s =det(1-— K, i ‘ ’
hedn (21500 2) = de ( erKonlispsn eB;LlLQ(Ij))

7.6.2 Tightness

We have shown that the rescaled distribution function for A,, and the rescaled
joint distribution function for [A,, \,_1]7 converge pointwise. For this to imply
convergence in distribution we need to establish that the function it converges
to is itself a distribution function.

[Unify Fredholm determinant notation. }_‘ ‘We concentrate on

Need to make it work with the matrix
case.

Fg(t) = det(l - KAiryILQ(t,oo))

We use two estimates to show, using elementary means, that this is a distri-
bution function. Since we have shown that there exists a sequence of random
variables X, such that that Fx, (t) — F»(t) pointwise, it suffices to show that
the sequence {X,,} is tight. The full estimates are based on two fundamental
estimates
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%ﬁ f the cigenvalues (A;);>1 of a trace-class operator A satisfy A; < 1 then

det(1 — A) <e”Tr4,
e For a trace-class operator A
11— det(1 — A)| < [|Afmet Al

We first verify the hypotheses of the first statement for K,,. Using the notation
=11 22 tt.00))

1Koz oepl = sup. / ( / Ko(o.9)f )dy) Ny
sl 1/ (; (@) /toowk@)f(y)dy)de
< [ (Zwk ) [ty dy>2dw
= S (] wk@)f(y)dy)

n 1 2
( [ ontw w(y)dy) <1
IIfH 1k ‘

Therefore, all the eigenvalues are contained in [—1,1]. Define

Koy = LK (2f+ 1,2\F+>

Tl

and we can then estimate
P(\, < t) = det(1 — f(nﬂ[t,oo)) < e S Bnwa)de,

Then fix € > 0, set t < 0 so that

0 0
/ Kairy(z, z)dz = / [[AY'(2)]* — zAi(z)?] dz > log4e™!

. 1 8

for all s <¢. Such a t exists because (see @ﬁ_

‘x|1/2

\/’E_ i

Thus for sufficiently large n, n > N, det( _'h[gfh]]i@e‘z%)i)r< €/2 because Kn(-, )=
Kpiry(+, ) uniformly on [¢,0] by Lemma en set 1. > 0, so that —T, < t

and det(I — IA(n]l[Tmoo)) <e/2forn=1,2,...,N —1.

T — —OQ.

[Ai'(2)]? — zAi(z)? ~
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By the second estimate, and the fact that | K, |1 = [ K, (z,z)dz, using a
similar argument, after possibly increasing 7., we find that

P(|\, — 2vn|n/8 > T,) < e.

and therefore the sequence of random variables ((A, — 2v/n)n'/%),>; is tight.
Therefore F»(t) is indeed a distribution function.

Remark 61. We do not take up this issue for the limiting joint distribution
functions G (t1,...,tx) but it does indeed follow that these are bonafide distri-

) bution functions .

7.7 Circular law for complex Ginbre matrices
We now describe the global eigenvalue distribution for Ging(n) as n — co. We

have tEe %%lquyé{l&distribution on the (unordered) eigenvalues Z = (21, 22,. .., 2p)

from

~n 1 B n . n
P™(z,...,2,)Dz = Z—n|A(Z)|2e =1 2] jl:[ldRezjdlmzj.

. . . :det-formula
Owing to the calculations that result in Theorem E% we have

~ 1 ~
P(n) (21, ey Zn) = ﬁ det(Kn(zj, Zk)lgj,kgn)7

]%g?)(zh cee 7Zm) = det(Kn(zjv Zk)lgj,kgm)a 1 <m< n,

n—1
IA(n(Z,w) = ZC]'(I)]'(Z)W’ @J(z) — cjzje—%\z .
7=0

where R%L) is the m-point correlation function defined by Wi
instead of P(™) and dRe z;dIm z; instead of dz;. To show that this is the correct

choice for K,, and to determine ¢; we need to show that {®; };Z& are orthogonal
and choose ¢; > 0 to normalize the functions. Consider for j < k

/ ®;(2)®r(2) dRezdlmz = cjék/ Ek_j|z|2je_|2|2dRez dimz
C c
00 2
= cj(_:k/ (/ (cos @ +isin G)kjd9> rFtitle=Ir qRez dImz = 0.
0 0
If j = k we find

/|‘I)j(z)\2dRezdlmz: |cj|2/ |z|2je_|z|2dRezdlmz,
c C
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and using r = /s
. 2 0 . 1.2 S
/ |z|%e71*" dRez dImz = 27‘(‘/ r2itle=2" dr = 7r/ se”%ds
C 0 0

=7l'(j+1) =nj!

S0
1 1
= =, Cj—= = Cjt1-
vyl Vi+1

So, we find a simple two-term recurrence formula

Cj

z
Vil

The corresponding Christoffel-Darboux-type formula is

(bj+1(2:) = @j(z), (Do(z) =

1
=

Rzw) = o D020 o,

7w (n—1

where T'(n, z) = [°¢""le~'dt is the incomplete Gamma function. To see this
let f,(z) = e*T'(n, z), and we find

so that

Define the rescaled empirical spectral measure

1 n
L,(Dz) = - Z Ox,/ym(Dz), Dz =dRezdlmz.
k=1

It then follows that for f € Cy(C) by @’M

We then perform the asymptotic analysis of this density. Consider

(oo}

I'(n,2Z) gy / t"letdt.

2|2

o0 oo oo
/ t"lemtdt = n”/ t"lem Mt = n"/ t~te (M) gy,
n)z[2 |22 |22

Then
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where g(t) = ¢t — logt. The stationary phase point here is t = 1, ¢’(1) = 0 and
¢”(1) = 1. So, if |2| < 1 — ¢, the stationary phase point is in the interval of
integration and

n”/ t7le WAL = e V227 (1 4+ O(n7Y)) = e V2 (1 4+ O(n™ 1))
|

z|?

=(n-1I(1+0m™Y)

uniformly as n — oo by Stirling’s approximation. Then for |z| > 1+ €, by
integrating by parts

I,(z2) = / t"lemtdt = f|,z|2"_2e_”|’z|2 + 2 / t"2eT M dt
\ |

z|2 n n z|?
1 -1
< Z|Z|2n_2e_”|z|2 TP ).

Therefore
In(z) < ‘Z|2n7267n‘2|2.
From these estimates, the following lemma follows.

Lemma 21. Fiz 0 <e<1. Asn — oo, for |z| <1 —¢
N 1
Kn(z n,z\/ﬁ) =—+ O(nil)v
™
uniformly. Asn — oo, for |z| > 1+e€
Ra(av/, 2v/) = O(n™Y),

uniformly.

This shows that (see Exercise @_u

1
IELn(Dz) — 7]1{‘Z‘<1}DZ
- <

weakly. This is the averaged circular law.

7.8 LUE Scaling limits I: Marchenko—Pastur law

Again, consider X ~ Ging(m,n) or Y ~ Ging(m,n), m > n, and consider the
sample covariance matrices X*X/m and YTY/m, and let z1,...,z, be their
unordered eigenvalues. Define the empirical spectral measure

Li9(dz) = 1 Z(Szj (dz), a=m-—n.
n
j=1

Assume further that 0 := n/m — d € (0,1]. The Marchenko—Pastur law states
that
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Theorem 62.

z)(x — A_
)(2 ) Iia_ gy (z)de,

EL,(dz) — pump(z;d)dx := 271rd\/|()\+ _
Ar(d) = (1 £ Va)?,

X

weakly as n — oo. If d = 0, then the limiting law is 61(dx).

The case of d = 0 follows by the Law of Large Numbers.

In most of the calculations that follow it is convenient to use A+ = AL ().
We now establish the theorem for Y ~ Ging(m,n), ie., 8 = 2. Define the
Christoffel-Darboux kernel (& = m —n)

K (z,y) ) (my) LY (ma) (max)*/? (my)®/? e~ @+v)

__ nm Lfih(mx)L%“)(my) — Ly (my) L (ma) o )
= ira) p— (m*zy)™ e .

. :det-formul ~scm . .
Then using Theorem E% applied to igi)i ], we have the following expression for

the joint marginal density for the eigenvalues of X*X/m

1 y
— det (K,(L“) (xj, a?k)1§j,k§n) .

n!

formé
It follows (see @E)_t’%ﬁ the density of EL is given by

1.
— K .
K (2, 2)

:orthpol
To now perform the asymptotics for this density, we refer to AppendixIEi sf)lém%—o
E;% In th

ically Section at notation, we have

(a) T (o) (a) a) (x —a/2
KO () = (n+a)! G2y (§5) o (45) — bt (35) Go (T)e_%(my) n’ay\ "
no (n—1)! r—vy 02 ’
giving
K(a)( )

S [ (£ () () s () ()

We then compute using Stirling’s approximation

(nta)l 2 /ny B2V (Vo) len T L oy o
. 3(5)0 [<x_x,><£-x>ﬁx2 <5 (3)

z+1—2
B

n! ™

2 (VD) (W) ]
T [(z— M)Ay — x)]L/2 (1 +0(n 1))
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We then consider the following combination

2sin 01 sin(01 + 292 — 93) -2 sin(91 + 02 — 93) sin(91 + 02)
= cos(20 — 03) — cos(201 + 205 — 03) — cos O3 + cos(201 + 202 — 03)
= cos(203 — 03) — cos O3 = 2sin Oy sin(f3 — 65).

If one chooses

1-— 1—x— k
61 = k/0 arccos % + (k + 1) arccos % + %\/(A+ —z)(x— )

(1(3@—}—1—0)(1—0)—237)
Vo 2x ’
rz+1-0

2yx
1—-2-2

20/or

A -trig-increase
and uses the expansion E:lggi, we have for 0 < d <1

Lo o) = S VRO 5 o)),

1 .
+ 5 arcsin

0, = arccos

03 = arccos

uniformly on compact subsets of ((1 — v/d)?, (1 + v/d)?). Note that the same
statement holds with 0 replaced with d.

7.9 The estimates of Silverstein

There is an important shortcoming of what the Marchenko—Pastur law demon-
strates. It states that the vast majority of the eigenvalues of LOE(m, n), LUE(m, n)
lie near the interval

[(1=v0)%, (1 +V0)%], 2=n/m.

But it does not preclude the appearance of eigenvalues at a significant distance
from this interval. The limit laws for the smallest and largest eigenvalues that
will follow do 1{?99%9&%}3{'38&3“‘5 in an asymptotic sense. -WishartTri

Silverstein [[S1I85] applied the Gershgorin circle theorem to @mmate
the smallest eigenvalue of W ~ LOE(m,n), LUE(m,n), m > n. We repeat
this analysis to obtain a non-asymptotic bound on the spectrum of W. More
explicitly, one find that there exists a unitary matrix U such that

X%m XB(n—1)XBm
2 2
1 [XBe-DXBm Xgm-1) T XBm—1)  XB(n—2)XB(m-1)
UWU ~ — 2 2
pm XB(n-2)XB(m=1)  XB(m—2) T XB(n—2)
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Since the matrix is symmetric, of course, all Gershgorin disks can be reduced
to intervals. The first Gershgorin disk is given by z € R such that

fﬁmz - X%m| < XBmXB(n—1)-
And the (j — 1)th disk is given by z € R such that
‘ﬂmz - [Xg(m,j) + xg(n,j)} ‘ S XB(m—)XB(n—j-1) T XB(m—j+1)XB(n—j)
(7.9.1)

The heuristics of the estimates is that because the y-distributions concentrate so
heavily, we can replace them with their asymptotic means x5 ~ vk. And even
in the case where j =~ n and xg(,—j;) would not concentrate heavily, we expect
its contribution to be negligible anyhow and the replacement is still valid. For

the first disk,
PRSI Ak Yy
\/ﬁ m

Imz—(m—j+n—35)|<vVm—jyn—7j—1+m—j+1yn—j.

And for the others

To analyze this inequality, set a = m — j and b = n — j and we see that

mz € [a—&—b—\/&\/b—1—\/a+1\/5,a+b+\/5\/b—1+\/a+1\/5].
(7.9.2)

Then write

aerf\/a\/bf*\/(m\/g
— (Va— VB + vavh - vavh =1+ vavh— va T Ivh.

By the mean-value theorem

1
Vhb—Vb—1> —,
~2vb

1
— < .
Vva+ \/6_2\/a

This gives

atb—vavh—T—Vat Vb= (va- VoY + (\ﬁ_f>
> (Va - Vb)*.
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A similar calculation holds for the upper bound. And we find that for j =
0,1,2,...,n — 1, the bounds on the Gershgorin intervals are summarized by

(Vm—j—/n—j)2<mz<(Vm—j++n—j)>

It is clear that this upper bound is a monotonically decreasing function of j.
What is less clear is that the lower bound is a non-decreasing function of j.
Indeed, the claim is clear if n = m. If m > n then

1 1

Vim—j = V=i (Vm =i 1= V=i -1 < g — g <0,

and, the claim follows. We then figure that the interval
[(1 - ﬁ)Qa (1 + \/6)2}7

should indeed be a good estimate for an interval that contains the entire spec-
trum of W.

To make this precise, we of course, need to add allow for some small devi-
ations and incorporate estimates on x random variables. We do this using the
moment-generating function for x-squared random variables:

E [etxi] = (120" t<1)2.

This can be directly checked using the density
1
—=
2k/21(k/2)

Then we obtain, for 0 < ¢ < 1/2

k/2—1e—r/2]1(0’00) (.Z‘)

P(x2 > k + €) = P(eXk > ethtie),

-markov

We then apply Markov’s inequality (Theorem o find

P(y2>k+e)< inf [1—215—’“/2—““—“}.
O >k+eo =< inf | )" e

Elementary calculus allows one to then minimize this expression, obtaining that
the minimum is attained at
€

with minimum value

k/2 k
iz ke e (1) e (5 e (1)

It will be convenient to replace € with em in this bound to find

2k k
}P’(Xk>+e> §exp<[alog(l+0)]), o=
m . m 2
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A reasonable upper bound can then be obtained via

U—lo(l—i—a)—/a I da'—/a o do’ > o
& A 140 — ), Uro 2120

And since o > e,
2 2
Xie k m €
Pl=>— < —— .
(m m—|—e>_exp< 41+6>

:mark
We will need a matching lower bound. For ¢ < 0, again using Theorem Eﬁu =

P(x? < k —¢) = P(tx; > th — te)
_ P(etxﬁ > etkfte)

< inf [(1 - 2t)—’“/2e—““+t€}
t<0

e k k
—eXp<2—2lOg<k_e)>, e<k.

Similarly, replacing € by em we obtain

em

P X—%<£7 <e é[ +log(1l — o)] < k/m = —
< —e)sexp|glotlog o), e , 0=

Here we note that if € > k/m the same bound holds trivially. And then one can
bound

o2

o+log(l—o0) < o)

And again because o > € we obtain

2 k 2
P Xie < ——€] <exp _me .
m m 41—¢
. -Gersh-int .
We are now ready to analyze, rigorously, what @Tpﬁes about z. Fix

€ > 0. With exponengially large probability (with respect to m), we find a
perturbed version of ]@._Set a=a—me b=>b—meand a = a+ me,

b=>b+me:

me € [a+z;_m\/ﬁ_mﬁ,maw&\/uwmﬂ].

Then write
i+b—vVab—1-varivh=a+b—vayb—1-vat+1Vh— 4me
Z(\F—\/E)Q—élme.

Repeating for the upper bound, and using a union bound over all the (indepen-
dent) entries of the matrix, we find the non-asymptotic bound.
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Theorem 63. Suppose W ~ LOE(m,n), LUE(m,n) (8 =1,2), then
P (eigenvalues of % Cl(WVi+e—Vo+e?—4e,(Vite+Vo+ 6)2]>

>1—-(2n-1) [exp (_5;7116_26) + exp <_B;nle—ie>} .

Corollary 2. Suppose X ~ Ging(m,n), Ging(m,n), m > n. For e > 0, with
overwhelming probability

1— ﬁ—e< min m< max w<1+ E—&-e
m ~ zeRn, o0 \/m||zlla T zeR, w0 \/m||zlls T m

7.9.1 An application to sketched least-squares problems

As a small aside, we now include a small discussion of the application of these es-
timates to the solution of large, over-determinded least-squares problems. Con-
sider minimizing

min ||[Az —blla, A€R™"™ m>n.
z€R™

Suppose rank A = n.

The idea of sketching is to replace this least-squares problem with a repre-
sentative one of smaller dimension. So, let X ~ Ging(k,m),k > m and consider
minimizing

min || X Az — Xbl|s.
zER"

One then wishes to first verify that rank XA =n. Let A = UXV™ be a singular
value decomposition of A. Then

XA = (XU)SV.

By invariance of X, XU has the same distribution as X. So, we see that X AV*
is a column-scaled version of XU/ and fherefore has the same rank as A. This
also follows from Corollary Ef B

So, set 2* = argmingcgy | X Az - XD||2, m* = arg mingegn [[Az — b|l2. We
apply Corollary Ef With overwhelming probability, we have

X Az* — Xbl2 < | X Az™ — Xblls < Vi (1 + \/f+ e) min || Az - bl
TER™

*

Similarly,

| X Az* — Xblly > VEk <1 —~ \/Z - 6) | Az* — b||.

Therefore, for € > 0 such that 1 — /% — € >0,

1+ /% t+e
[|Az* — b2 < HVite min ||Az — b2,
1-— V/Zk[—»e zER™

with overwhelming probability.
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7.10 LUE scaling limits II: the sine kernel

Now, let © = r + 22, ¢ = 7 4 2% where r € (A_(d), A4 (d)). We consider this
scaling limit of

14 F((a)
- .
non (J?, y)

. -trig-increase
Using

2(n + a)! <a 03/2(\)2n—1en 5t
m™ml(s —t) \n

n) (= A)Ap —2)]Y4(y — A) (A — y)]1/4Rn(xay)

P 2 (a) _
K =
i (z,y)

where

Ry (z,y) = sin (né1(x) + ¢2(x) + ¢3(2)) sin (ng1(y) + ¢2(y))
—sin (n¢1(y) + d2(y) + ¢3(y)) sin (ng1(y) + 2(y))

and
1 +1-2 1—2-2 1
- _- —/( Ay — — A
¢1(x) arccos NG + arccos o + 5 VO —2)(z )
—x—0 1 1 1-9)(1—-92)—2
¢o2(1) = arccos ji + 3 arcsin <\/5 (v + )2(96 ) x)
1—z-0
¢3(x) = arccos ———° _ arccos ——— .
f 2¢/0x

We then write

n1(x) + d2(x) = ndy(r) +ne (r)ps + ¢2(r) + O(n™),
¢3(x) = ¢3(r) +O(n™")

to find

Ry (2,y) = sin (¢1(r)sp + né1(r) + ¢2(r) + ¢3(r)) sin (g1 (r) + ¢'(r)tp + da(r))
—sin (¢ (r)tp +ne1 (r) + da(r) + ¢3(r)) sin (nga (r) + ¢ (r)sp + ¢a(r)) + O(n™").

Then

2sin (¢1(r)sp + g1 (r) + ¢2(r) + ¢3(r)) sin (ngs (r) + ¢'(r)tp + da(r))
= cos(¢'(r)p(s = t) + ¢3(r)) — cos(¢'(r)p(s + 1) + 2n¢1(r) + 2¢2(r) + ¢3(r))

so that the expression for R, (x,y) simplifies to

Rae,) = 5 (cos(@h(r)pls — 1) + 5(r)) = cos(6,(1)p(t — ) + (1)) + O ™)

= —sin(¢3(r)) sin (¢ (r)p(s — 1)) + O(n™").
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We make the choice p = w/¢) (r). It remains to simplify

_ 2singy(r)(n + o)! <D>a 03/2(Y0)2n-len 50
mnl(s — 1) n) (@ =2 ) — )Yy — A ) (A —y)]/4
iy (7)) (e ouh)
1
w(s—1)

where we used Stirling’s approximation and that

(1+0(n™),

sin ¢3(z) = VO —a)(z =)

1
2V

And then compute

V@20 —a)

() = VT2 7]

so that p = 1/pyp(r;0). We have established the followingﬂ

lezlaguerre—sine‘ Lemma 22. Let S be a bounded measurable set and 0 < d < 1. Suppose

d=n/m —dasn — oo. Then forr € [A_(d), \+(d)]

1 - s t
lim sup 71(7(’"7") (r—|— T+ > — Kgine(, ’ =0.
w8 5 [ () w0 (i) )~ oe29)
(7.10.1) ‘eq:sine—convl—mp
- fd
- From ghis lemma and the results of Section Ilf-g- wo have (recall the proof of
eorem E% :

Theorem 64. Suppose n/m — d € (0,1] as n — oco. For each integer k =

0,1,2,..., bounded, Borel set S and r € (A_(d), A+ (d))

lim P (W ~ LUE(m,n) has k eigenvalues in (r + S))
n—o00 npmvp (’/‘; d)

1/ a\*
=4 <dz) det (I — 2Kginels)|,_, . (7.10.2)

7.11 LUE scaling limits ITI(a): the Bessel kernel
at the hard edge

Consider the case m = n + « for @ € N. Then the smallest eigenvalues of a
matrix distributed according to LUE(m,n) tends to zero as n — co. But the

L ITo ly &shigblishibhis theorem, one needs to deal with the case s ~ t, see the proof of
emmai E
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matrix is positive (semi-)definite. Therefore the eigenvalues tend to “build up”
at this “hard edge”. Consider the kernel Ky(f‘) (z,y). Rescale it according to

Ve =+/s/n, \Jy= Vit/n, ie.,

s t
nr=—, ny=—.
- sel " "
Then use @_ﬁr s bounded away from ¢
_ s+t 1\—o/2

1 . (n+a) 1 _1,1€ =™ (7)
— (o) — _ _ 1 n
K@) = Ly e (V9 IaVD) = Jant(VDa(VE) + 07| =25

_ Va1 (V8) Ja (V) = VEJar1 (V) Ja(V/5)

2(s —1) +0(n™)

This is convergence is unifornﬂ for s,t in compact subsets of [0,00). We have
mostly established the following.

l:bessel-limit \ Lemma 23. Let S be a bounded measurable set and o € N is fixed. Then

I ry
m  sup n2’ n2 Bessel

1 @
72[{7(1“) (7 7> K@ (x,y)‘ =0, (7.11.1) ‘eq:sine—convl-mp

n—oo w,yeS’

where

Jo(V2) V5 Ia(VY) — Ja(VY)VEIL(VT)

() —
Hoea(:0) = 2a )

Bessel

Proof. We only have to establish that

Jo(V2)VITo(VY) = Ja(VY)VaTo (V1)
= VaJar1(VE) Ja(VY) = Vidat1(VY) Ja (V).
This follows from the identity H%]%B(HOJ [Section 10.2.(ii)]

I (2) = =Jag1(z) + %Ja(z).
]

Theorem 65. Fiz o € N and let S be a bounded measureable subset of [0,00).
Then

S
lim P (W ~ LUE(n + a,n) has k eigenvalues in )

n—00 n2
1/ d\" (@)
“u(q) ()|
Corollary 3. Let x1 be the smallest eigenvalue of an LUE(n + «, n) matriz for

a €N fized. Then

lim P(ay > t/n?) = det (T — Kl ) -
n—oo

In other words, n?z, converges in distribution to 1 — det (I — Kéis)sel]l[o’t)lzl.
:hermite-sine
2 Again, the case s & t needs to be treated using the methodology in Lemmai ﬂ
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7.12 LUE scaling limits III(b): the Airy kernel
at the softened hard edge

Now, if n/m — d for d € (0,1) the smallest eigenvalues of an LUE(m,n)
matrix tend to lie away from zero. The “hard edge” effect is diminished and
the Tracy—Widom distribution reappears. From a special function perspective,
this can be understood using the fact that, in an appropriate scaling region,
Bessel functions J, are well-approximated by Airy functions as @ — co. This
scalizﬁ,%ﬁg%qgi}hgg&%_@@l}ggte& can be exploited to treat the & — oo but a/n — 0
case , IMTTI6[. Here, we do not take this approach but rather use direct
asymptotics because a/n — 1 —d > 0.

. .. -rescale
The scaling here is informed by [Ef‘? % :

_ s 2/3 _ t 2/3
a:—/\_,_—mxsz\_, y—/\+—m\6A_

. ' erre-left . .
Then, we find, using (E-215) TODO: Modify this

1e:1aguerre-right-airy‘ Lemma 24. Suppose 0 — d € (0,1]. For s # t, uniformly on bounded sets,

lim
n— oo

D)\2/3 5 t
Ve K (An = VoA - VA ) — K (a,y)| = 0
n /3 n /3

ns3

(7.12.1) ‘ eq:airy-conv-lag

[Unify g T R R — ]_ and there exists a _function G(x,y) € L*([C,00)?) for all C € R such that

limits lemmas

N3
Vo — K ()\_ BN S \ZA D tfaﬁ_“) <G(s,t). (7.12.2)

n2/3 n2/3

t:laguerre—left‘ Theorem 66. Suppose @ — d € (0,1] and let S be a measureable subset of R
that is bounded from below. Then

lim P (W ~ LUE(n + a,n) has k eigenvalues in A_ — S\fb)\Q_/?’)

n—00 n2/3

1/ a\*
= <_dz> det (I — zKainyls)|,_, . (7.12.3)

7.13 LUE scaling limits ITI(c): the Airy kernel
at the soft edge

. . L. -right-rescale
The requisite rescaling is informed by . 50, se

s t

. 4 erre-right
Then, we find, using :
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a:laguerre-right—airy‘ Lemma 25. Suppose 8 — d € (0,1]. For s #t, uniformly on bounded sets,

lim
n—oo

f)\i/g (@) 2/3 2/3
K )\++T/3\[)\ )\++T/3\f)\ —KAiry(a:,y) =0

(7.13.1) ‘eq:airy-conv-lag
and there ezists a function G(z,y) € L*([C,00)?) for all C € R such that

n2/3 273 < G(s,t).  (7.13.2)

3223
|f + K () (/\+ + 7IA2/3 Ar + \/>)\2/3)

t:laguerre—right‘ Theorem 67. Suppose @ — d € (0,1] and let S be a measureable subset of R
that is bounded from below. Then

n— oo n2/3

1/ d\"
5 (-) @t man1o . 133

lim P (W ~ LUE(n + a,n) has k eigenvalues in Ay + \f/\g/?’)

7.14 Notes on universality and generalizations

In this section we discuss two generalizations:
e Scaling limits for 8 = 1,4.
e The case of non-Gaussian entries.

Thﬁ cz%]tculatlons %huf,gir‘g%lgsieao%lﬂts are the topic of a more advanced text such
as [DGOY; [Taoll

7.14.1 Limit theorems for g =1,4

When f # 2, the determinantal structure is lost. For § =1 the correct technal- . . .
ogy to use is Pffafians. For § = 4, one uses . In either case, Lemma S, radd his )
But the the other two scaling limits have different limits. Deﬁne (see [TWI5,

A = e (—3 [ atonas) (B0
Fie/VD) = cosh (5 [ ato)as) (7o)

and ,—(How much detail to provide here? j

Hy(t) = ..

Then l—(Confirm ihe Eealng e 6 j
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lim P (M ~ GOE(n), An < 2v/n + n*l/%) — (1),

n— oo

lim P (M ~ GSE(n), A < 2V + n—1/6t) = Fy(t),

n—oo

and

n— 00 npsc(r

_t 1
lim P (M ~ GOE(n) has no eigenvalues in /n (7“ + (=3, 2))> = Hy(t),

)
_t
lim P <M ~ GSE(n) has no eigenvalues in y/n <r + (=3 2))> Hy(t).
n— oo npSC(r)

7.14.2 Universality theorems

The most basic universality theorem is the central limit theorem, Theorem @E
It states that the sample average of n iid random variables, with finite variance,
after rescaling, converges in distribution to a normal random variable. It is also
important to note that in the central limit theorem, the identically distributed
gg}}é}gption can be relaxed if one includes the so-called Lindeberg condition
eed page]. So, beyond the first two moments which are used to define
the rescaling, the fluctuations are asymptotically universal — independent of
the finer details of the distribution. Similar phenomena is pervasive throughout
random matrix theory. To state these results, whose proofs are beyond the scope
this the current text, we have to be more precise in our definition of a Wigner
ensemble and describe the so-called invariant ensembles. The reader should
note that GOE and GUE are the only ensembles that lie in the intersection of
both invariant and Wigner ensembles. We only make universality precise in the
B =1,2 cases.

Generalized Wigner ensembles

rdos2012a
Definition 68 (H;EYYTZ . Consider a semi-infinite matrix M = (M;); r>1 of

real (8 = 1) or complex (8 = 2) random variables such that M;, = My, for all
J. k (Mji) <k are independent random variables with

E[Mj] =0, Var(Mjx) = 05,/N
such that
1. For any k fixed

2. There is a constant C' > 1 such that for all j, k

1
agaf.kgc.
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3. In the complex case

Then we say that M € C"*™ (or R"*™) is from a real or complex generalized
Wigner ensemble if M is the upper-left n x n subblock of M.

The following theorem gives universality for the largest k eigenvalues.

[Exrdos2012a
Theorem 69. bmeuppose A(B) = Ap = My Aoty ooy An_ria) T s the

vector of the top k largest eigenvalues a GOE(n) (8 =1) or a GUE(n) (8 =2)
distributed matriz. Suppose A (B) is the same random vector a real or complex
generalized Wigner ensemble with oj, = 1. Define the rescaled vectors

T(8) = (Ak(8) —2vm)n'/®, Tw(8) = (Ar(8) —2vn)n'/".
Then there is an € > 0 and 6 > 0 such that for fired k and N sufficiently large

Frypy(ti— N~ ...ty =N = N7°
< FAk(ﬁ)(th s atk) <
FAk(B)(tl +N76,. L te +N7€) +N76.

If the eigenvalues Ay < Ay < .-+ < )\, are almost deterministic and are
distributed according to ps.(z)dx then, one would expect

3 I~

i
Aj R, / Dsc(x)de ==, ~; < 2.

— 0o

Furthermore, the error in this approximation should be on the same order as
the distance between successive v;’s. This heuristic gives

Aj—7i =0 i — il |-
1A =l (I]ggl [k 7])
Then, one can estimate, for j < n, by the mean-value theorem

1 Yi+1
- = / psc(x)dx = psc(f)(’}/jJrl - 7])7
n v

11
npsc(§> - npsc(’}/j)

g;gm—m =

where ¢ some point between v; and its nearest neighbor. This is, in turn, only
useful if we can find a decent way to estimate ps.(7;). For —2 < z < 0 we
estimate

1 1
7\/x+2§psc($)§*\/$+2~
V2r m
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Then we define 4; and 4;, for j/n < %r

ioq ; Y1 i
—\/x—l—Qdarzi, / f\/m+2dx=l.
o V27 n o T n

The condition j/n < % guarantees that v;,%;,9; < 0 on which we have the
estimate. We then know

Or more specifically,

Thus for such a ~;

1(3@)”2 (< L
\/ETF \/En = PsclYj =7

Then, for v; where -~ < % < 1/2, we know that ps(;) is bounded away from
zero. Thus, by symmetry for 1 > j/n > 1/2, we have a uniform estimate: For

some C' > 1
1 (da(i)\"° dn(5)\""°
c ( ) <pse(y) <C p ;

n
d(j) = min{|j], |n — j +1[}.

A key ingredient in the proof of this result is the following rigidity estimate
and the heursitcs

F‘.rdos2012a . .
Theorem 70. [[EYYIZ] Suppose Ay < --- A, are the eigenvalues of a generalized

Wigner matriz. Then for every e > 0 and L > 0 there exists N = N(e,L) > 0
such that forn > N

P (\)\j — ;| <0723, (5) 7 3nC for all j) >1-n"L

This theorem says that on a set of nearly full probability, the eigenvalues
stick to their typical locations 7;. One can also read this as a statement that
the probability that any eigenvalue, say A;, deviates from +; so much so that

A. .
! J
‘/oopsc(x)dx -

is effectively exponentially small.
Something that, for good reason, we have left undiscussed is the question of
what the eigenvectors look like. This is because we know that in the cases of

> Cn L
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GUE, GOE and GSE, they can effectively be taken to be uniformly distributed
on the associated group under whose action the distribution is invariant. But
for generalized Wigner ensembles there is, in principle, no invariance. If the
entries in M are iid, we know that the marginal distribution on each eigen-
vector, modulo normalizations, is the same. This is because the distribution is
invariant under conjugations by permutation matrices. But generalized Wigner
ensembles do not need to have iid entries. Nonetheless, universality tells us that
for large enough n the eigenvectors should behave similarly. But what “behave
similarly” actual means is more ambiguous for the eigenvectors than it is for the
eigenvalues. We collect two properties of matrices in O(n) as n becomes large.

Theorem 71. Suppose Q is distributed uniformly on O(n) according to Haar

measure.
1. Let S ={j1,...,je} C [1,n] with #S =¥ and ¢ fized. Then for k fized as
n — 0o
Qi k 4
2| | 8 A0, 1y).
Qjok

2. Complete delocalization holds: If a, — 0o as n — oo then

1
P ( sup |Qjk| > n~%a, logn> =0 () .
1<5,k<n an

Proof. 1. Because the distribution @ is right invariant (under the action of
a permutation matrix), it suffices to set k& = 1. Then because of left
invariance, again, under the action of permutation matrices, it suffices to
take (j1,...,7¢) = (1,2,...,¢). Then, using left invariance again it follows
that the distribution of the first column is uniform on S™~!. This implies

Qu] |

~

X'n
Qn1 x|

2

where (X);>1 is a collection of ijd N (0. 1) random variables. The claim
then follows om from Lemma P’ig and the weak law of large numbers
(Theorem applied to the sum ), X7.

2. This claim concerns the maximum of n? correlated, but compactly sup-
ported, random variables. Furthermore, because of the invariance of Haar
measure they are all identically distributed. Our main tool is the expo-
nential moment generating function: For s > 0

E | sup [Qjgl

1<j,k<n

= sk [s‘l sup ijﬂ = slogexpE [s‘l sup ijﬂ ,

1<jk<n 1<jk<n
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- jensen
which, by Jensen’s inequality (Theorem , implies

exp (s_1 sup |ij>].
1<j,k<n

E l <sukp< ijﬂ < slogE E exp(sil\ijD = slogn’E [exp(s*1|Q11|)] .
1<j,k<n -
J.k

E

sup |Qjk|| < slogE
1<j,k<n

Then we estimate

So, we set s =n~'/? and we need to estimate

E [exp(n1/2|Q11D} , (7.14.1)

and it is reasonable, in light of the previous result, to expect this to con-
verge to E [exp(|X|)] where X ~ AN(0,1). Indeed this is true because
|Q11/? is distributed as the first component of a 1-Dirichlet random vector
— it is beta distributed. Therefore, for n > 2,

1
E [exp(n1/2|Q11|)] = B(1/2 (Tll —/2) /0 enl/zﬁx71/2(1 _ )22y

2 oo y yg n/2—3/2
~ VaB(1/2,(n - 1)/2) /0 ¢ (1 - n) Lio,y/m) (¥)dy-

Stirling’s formula gives that v/nB(1/2, (n —1)/2) — /7 and the limit can
be passed inside the integral because

2 n/2—3/2 .
(1_n> Lpo,ym(y) eV /2,

and the dominated convergence theorem applies. Here | uses the in-
equality log(1 —x) < —z for < 1. The point is that % is bounded,
independent of n by a constant C. And this gives the inequality

E| sup |Qji]| < n~?1logn*C
1<j,k<n
Then Markov’s inequality produces
—1/2 logn?C
P sup |Qjx| >n zlogn | < .
1<j4,k<n X IOg n

So, provided that x — oo with n, this probability decays.
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-On-est
Theorem 1S now compared with a theorem about the eigenvectors for

generalized Wigner matrices. Define T,, s = [1,n'/4] oﬂﬁg;i@&ﬁs__ﬁff)iﬂo%[LN -
N4, NJ. This result is summarized from results in F JIEY Y12

Theorem 72. Suppose Ay < --- < A\, are the eigenvalues of a generalized
Wigner matriz. Suppose further that qi,...,q, are the associated orthonormal
eigenvectors and set Q = [q1,...,qn]. For fized ¢, there exists 6 > 0 such that
for any k € Ty 5 and S = (j1,...,j5¢) C [L,n], #J = ¢, asn — o

[1Qiuel]  [IXa]
Vil | =),
[1Qjk ] [ Xe]
1Qsel]  [1X1Y +1X77]
Von || ; (8=2)
[ 1Qjx ] x Y+ ix?)

where Xj,X](l),XJ(Q) for j =1,2,...,£ are id N(0,1) random variables. Fur-
thermore, delocalization holds: For some C > 0

P max (Q' < n1/2 logn Cloglogn —0
<1<j,k<n| Jk| — ( 3 ) ’
as n — Q.

The reader should take note of the additional technicalities required to make
these statements as a harbinger of difficulties that arise in the proofs.

Invariant ensembles

The invariant ensembles are distributions on self-adjoint real, complex or quar-
terion matrices that are described by a potential function V : R — R such that
lim, 4o % = 4o00. The density is then given by

1
Znv (B)
Using Weyl’s formula we obtain a marginal joint density for the eigenvalues

b
Zn,V(ﬁ)

For 8 = 2, in a natural way, one is led to analyze orthogonal polynomials with
respect to the varying weight

e—n% Tr V(M)aM

IA(A)[Pe ™5 TTV(WDA,

wn(z)de = e 2V @) g,

When V(z) is not a quadratic polynomial, correlations between the entries on
and above the diagonal are introduced. This destroys ps.(z)dz as the global
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:egbm
limit of the spectrum. The discussion in Chapter @hg_lgﬁ the methodology to
determine the new limit.

So, one might think that because the global picture is different, universality
fails. But, remarkably, the local picture is still the same. The orthogonal
polynomials with respect to w,(x)dz can be analyz d.asymptotically with fhe
help of steepest descent Riemann—Hilbert analysisﬂ De100] an e sine kernel
is found as a scaling limit of gap probabilities in the bulk and the Airy kernel is
found (generically) as the scaling limit at the edges. This is true, at least when
V' is convex. If V is not convex more exotic behavior can occur.

Exercises

' ite6
7.1. Prove the Christoffel-Darboux identity @% Hermite polynomials.
(This is a standard relation and it is easy to find a proof in many texts, but try
to do it on your own.)

7.2. Show that
/ det[K (zp, 2q)|1<p,q<i dz1 - - - dzg = 0, (7.14.2)
Rk

for k > n, if K is of the form
n—1
K(xy) =Y g fi(@), fi.g € L*R), j=01,....n-1 (7.143)
§=0

o ;hermite-airy | .
7.3. Finish the proof of Lemmai § by constructing a function G(z,y).

: 11
7.4. Establish (F50f "

7.5. Use} the method of steepest descent to establish the asymptotic formula
@Lfor the Airy function. This is an easy application of the method of
steepest descent.

7.6. In order to appreciate the power of the Plancherel-Rotach asymptotics,
some numerical calculations will help.

(a) Develop a numerical scheme to compute all the roots of the n-th Hermite
polynomial b,,. Plot the empirical distribution of roots for n = 100. Can
you determine the limiting density of suitably rescaled roots?

(b) Numerically compute the Hermite wave functions for large n, say n =
100, and compare the rescaled wave function with the Plancherel-Rotach
asymptotic formulas in all three regions (oscillatory, decaying and transi-
tion).

7.7. Use the method of steepest descent to establish the P.lanchergébRotach
e Tr=Pproo

asymptotics in the region of exponential decay (equation (7 .5 S ). This requires
more care than Q.2.

3In general, there will be no contour integral representation of the polynomials to exploit.



7.14. NOTES ON UNIVERSALITY AND GENERALIZATIONS 127

7.8. Establish the following a priori bound on the Airy kernel. For any a € R,

sup 6x+y|KAiry(1},y)| < 00. (7.14.4) ‘eq:airy—apriori

T,y
Let S be the semi-infinite interval (a,c0). Use the above estimate to establish
that the Fredholm determinant det(I — zKaiylg) is an entire function.

7.9. Let p,(x), n =1,2,... be probability densities on R that converge almost
uniformly to p(x) with respect to Lebesgue measure on R. Assume p has com-
pact support. Show that

n—oo

tim_ [ f@on(wite = [ fapta)da

for every continuous function f with compact support.
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Chapter 8

The equilibrium measure

In this section we establish properties of the equilibrium measure for general
invariant ensembles. We also relate the equilibrium measure to the classical
theory of orthogonal polynomials and Fekete points.

8.1 The log-gas

Let V : R — R denote a potential such that V(z) — oo sufficiently rapidly as
|| — oo. The log-gas with size n and potential nV is a system of n identi-
cal charged particles constrained to the line interacting via pairwise Coulomb
repulsion and the potential nV (we have scaled the potential V' by n in order
to ensure a scaling limit). The total energy of the system in any configuration
x € R™ is given by

E(x) :nZV(xj)—&—%Zlog'x;. (8.1.1)

j — Tk

A fundamental postulate of equilibrium statistical mechanics is that the
probability density of finding the system in a state x at inverse temperature
8 >0is

1
__ T ,—BE(x)
e ) 8.1.2
Zn,V(ﬂ) ( )

where Z,, v is the partition function

Znv(B) = / e PE®) D, (8.1.3)

The log-gas provides us with a physical caricature of eigenvalue repulsion. On
one hand, we see that the energy F(z) has two complementary terms: the
logarithmic potential drives charges apart, but the potential V' confines them

in space. On ,tlr‘lre_ze(r)lglelmeglleland, let V' define an invariant probability measure of
the form on Symm(n), Her(n) or Quart(n). As a consequence of Weyl’s

129

eq:eqml

eq:eqm2

eq:eqm3
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-weyl-formula . : 2 . L.
formula (Theoremi g ) tho equilibrium density @5]‘15 precisely the joint law

of the eigenvalues for these ensembles at 5 = 1, 2 and 4 respectively. It is in
this sense that the ‘eigenvalues repel’.
. . -eqnl . .

We have scaled the energy V with n in ﬁn order to obtain a simple
description of the scaling limit when n — oco. In order to study this limit, we
view the energy function as a functional of the empirical measure, L,,, rather
than a configuration # € R™. For (r,s) € R? let

e(r,s) = %V(r) + %V(s) + log i, (8.1.4)

|r — s

and given a probability measure y on the line, define the functional

Iu] = /R/Re(r,s),u(dr) w(ds). (8.1.5)

Observe that if L,, is the empirical measure associated to x € R™, then

1 1 -
E(z) =n? - Z Vi) +— > log ———— | =n?I[Ly], (8.1.6)
and we may rewrite the partition function in the form
Znv(B) = / e BTl Dy, (8.1.7)

Here I[L,] denotes the renormalized functional

T = [ [ Lrpaelrs) utar) i) (.1.8)

that takes into account all interaction terms in I[u], except the singular self-
interaction term from I[u]. The logarithmic singularity in e(r, s) is integrable if
u(ds) has an absolutely continuous density. Thus, if the particles in the log-gas
spread out sufficiently as n — oo, we expect that u has a smooth density, and

lim % log Z,, v(8) = min I[u)]. (8.1.9)

n—oo N "

In order to establish this relation, it is first necessary to obtain a precise ana-
lytical understanding of this minimization problem. We first prove such results
under the formal assumption that there exists an R > 0 such that V(z) = 400
for |z| > R. This simply means that we first restrict attention to measures with
support within the interval [—R, R]. Once the ideas are clear in this setting, we
turn to measures with support on the line.

eq:eqm4

eq:eqmb

eq:eqm6

eq:eqm7

eq:fekete2

eq:eqm8
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8.2 Energy minimization for the log-gas

8.2.1 Case 1: bounded support

Let Pr denote the set of probability measures on the interval [— R, R]. Recall
that the natural topology on Pg is the weak topology (we adopt the probabilists
convention for what is conventionally termed the weak-* topology). A sequence
of measures {u;}52, € Pr converges weakly to pu € Pp if

lim (g, f) = (u, f), (8.2.1)
n—oo
for every function f € C(R). This topology is natural, because it yields com-
pactness by Helly’s theorem: Each sequence {yu;}7°, € Pr has a subsequence
that converges weakly to a measure in Pg.

Theorem 73. Assume V is a continuous function on [—R, R]. There ezists a
untque probability measure p, € Pr such that

Ilps] = Jnin Ip]. (8:2.2)
:egbm-measure
The proof of Theorem ﬁﬁﬁm&ation of the classical method of the
calculus of variations. There are two distinct ideas at work: existence follows
from the fact that the functional I[u] is weakly lower semicontinuous; uniqueness
follows from the fact that I[u] is a strictly convex function on Pg.

Lemma 26. Suppose the sequence {u, 2, € Pr converges weakly to u € Pg.
Then
I[p) < liminf Ip,]. (8.2.3)
n—oo
Lemma 27. Let ug # p1 be two measures in Pr and let pg = (1 — 0)po + Oy
denote their convex combination for each 6 € (0,1). Then

Ilpg] < (1 = 0)I[uo] + 01y (8.2.4)

:egbm-measure
Proof of Theoremﬁﬂm Since V is bounded, the function e(z,y) is
bounded below on [—R, R]. Therefore, inf,cp, I[p] > —oo. Further, since the
logarithmic singularity is integrable, I[u] < oo for any measure that is absolutely
continuous. Thus, we may assume that there is a sequence of measures {1},
such that

lim I[pg] = inf I[p] <infty. (8.2.5)
k—oo HEPR

Since Pr is compact in the weak topology, we may extract a convergent
subsequence, also labeled {p}72; for simplicity. Let p. denote the weak limit

of this subsequence. We then use Lemma 0 obtain the chain of inequalities
inf Ifp] < Ifp,] <liminf I = inf I[u]. 8.2.6
dnf Tlu) < I < liminf Ipg] = inf T{p] (8.2.6)

Thus, p, is a minimizer.
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Uniqueness. Assume p, and v, are two distinct minimizers. We apply

Lemma 0 their convex combination with § = 1/2 to obtain the contradiction
inf 1[]<1[ +1y} 1(1[ |4 1)) = inf 1], (8.2.7)

HEPR o * o T uePr o
O

8.2.2 Weak lower semicontinuity

;wlsc .
We now turn to the proof of Lemmaﬁ_Wé first observe that for each monomial
r7s* in the variables r and s, the quadratic functional

pes [ z / Z ldr) p(ds) = ( / err)) ( / z swds))

is weakly continuous since it is the product of two bounded linear functionals
on Pr. Since each polynomial p(r,s) in the variables (r,s) is a finite sum of
monomials, the functional

s [ z / zpm 5)uldr) u(ds)

is also weakly continuous. Finally, since each continuous function f € C([-R, R]?)
may be uniformly approximated by polynomials, the quadratic functional

R (R
pes [ fsiutan) uds)
~-RJ-R
is weakly continuous.

The function e(s, t) defined in @I%s not continuous on [— R, R]? since the
logarithmic term is unbounded on the diagonal s = t. However, for any M > 0,
the truncated function eps(r, s) = min(e(r, s), M) is continuous. Thus, given a
weakly convergent sequence of measures {yu}7° ; with limit u € Pr we find

/ / (r, s)p(dr) p(ds) hm / / (r, s)pk (dr) pg(ds)

< liminf/ / e(r, 8)pr(ds)ux(ds) = hmlnf[[,uk]

k—o0

We let M — o0 8{10the left hand side and use the monotone convergence theorem
to obtain

8.2.3 Strict convexity

; conv . . .
Lemma%? 1S a particular consequence of a general fact in potential theory. The
essential idea is to recognize that the function z — —log |z| is the fundamental
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solution to Laplace’s equation in C =2 R2. More precisely, given a signed measure
p with a smooth density p(z), supported in the ball Bg C C the unique solution
to Poisson’s equation with Dirichlet boundary condition

is given by the integral formula
v2)= [ Glawlptw) Do, =€ B (5.29)
Br

where Dw denotes the two-dimensional area element in C and G(z,w) is the
Green’s function for Poisson’s equation in the ball B with Dirichlet boundary
conditions,

1 _ R R2
G(z,w) = by log ('Z'ZU)'> R__Y z,w € Bpg. (8.2.10)

w|*’
The function G(z,w) is obtained by the method of images: the image point
R is the reflection of the point w € Bg in the circle 9Br ?[7_591 §4.1]. What
matters here is that the dominant term in the green s function is the logarithmic
term — log |z — w|, just as in equation @Land the positivity of

/ Gz w) pu(dz) pldw) = — [ b(w)Aap(w) ds = / V(w) > Dw > 0.
Br JBr Br Br
(8.2.11)

-eqmb
However, in contrast with @%ﬁere we have assuged that u(dw) has a smooth

density p(w), whereas the measures of interest in are concentrated on an
interval, and may have no regularity. Thus, some care is.nsecg&ed in formulating
and proving a theorem on positivity analogous to @F

Recall that a signed Borel measure p on the line may be uniquely decomposed
into two positive measures p4 respectively such that u = py — pu—. The Fourier
transform of a measure is defined by

() = /R —ius y(ds), u€ R, (8.2.12)

The Fourier transform is a well-defined distribution. If 4 are finite measures
n [—R, R], the Fourier transform is a continuous function of u that decays to
zero as |u| — oo by the Riemann-Lebesgue lemma.

|2 = wl

Lemma 28. Assume = py — pi— is a signed measure on [—R, R] such that

R R
/ p(dr) = / pu—(dr) < oc. (8.2.13)
-R

—R

Then we have the identity

/ / s G () + - () (d) (8:2.14)
/ / e G () (e ) + [P E g,

u

eq:poissonl

eq:poisson2

eq:poisson3
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. 1 5
In particular, I[u] > 0 if p is non-zero and satisfies (@ﬂ
<poi 6
Remark 74. Equation (%ply says that

R R oo
/ / log%,u(dr),u(ds) :/ i) du. (8.2.15)
—rJ-r lr—sl 0 u

for a signed measure, /. with ffR u(ds) = 0. This ident%ty has been written in
the form @T order to ensure that tgere e 1no éll—deﬁned terms of the
form co — co. It is now clear from (B8.1.4]) and (Elgi that I[p] > 0 for such
measures.

cift-notes

Proof. This proof is from T , p.142]. We first regularize the logarithm at
0 and use the following integral representation. For any real s and € > 0

elsu _q

log(s* +£2) = loge® + 21Im / e du. (8.2.16)
0

1

We apply this integral representation to the following regularization of I[u], and
use the fact that ff’R u(dr) =0, to obtain

R R
[ [ tog(r =5+ &) wtaryutas)
—-RJ-R

:2Im/ / / TN L) i ds) du

2

2 ~
ot [T O gy / i
0 U 0 u

We may rewrite this identity in terms of pu4 as follows:

(ds) + p_(dr)u_(ds))

R R 1

./—R /_Rlog W (/L+(d7“)#+
R R 1

= [ o) ylor s - @)+ (i + |

(8.2.17)

oo o 2
i@

u

:poisson6
We now let € | 0 and use the monotone convergence theorem to obtain (@_

O

: conv
Fh!all%i 1&3& us prove Lemma E/f Suppose pg and g be two measures in Pg

as in he difference

(1=6) I[uo] 461 y11])—I[pi0] = O(16) / / log ﬁ (o — 1) (dz) (o — ur) (d)

in the s%s.eo({fs ssggned measures. Thus, it is strictly positive when ug # 1 by

Lemma
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8.2.4 Case 2: Measures on the line

;egbm-measure

Having explained the main ideas behind Theorem ﬁfm:isures, let us
turn to the measures on the line. The r.ogg S%fo uniqueness requires no change,
since it is easily verified that Lemma %’%_oﬁs_for measures in Pr. However,
it is necessary to modify the proof of existence to account for a possible loss
of compactness: a sequence of measures in Pg may drift off to infinity (e.g.
wr = Ok, k € Z). The appropriate condition required for compactness here is
the following.

Definition 75. A sequence of measures {u}72, € Pr is tight if for every ¢ > 0
there exists M. > 0 such that

sup py (R\[-M., M.]) < e. (8.2.18)

k>1

Compactness of measures in Pg is provided by the Prokhorov-Varadarajan
criterion: the sequence {yuj}2; € Pr has a subsequence that cquverges to
a measure u € Pg if and only if the sequence {ux}g2, is tight [StrI0. In
practice, application of this criterion requires a uniform estimate on the tails
of the measures {ux}2,. Such a bound is possible only if the growth of the
confining potential V' (z) as |x| — oo is faster than the divergence of log|z| as
|x| = oo. We formalize this requirement as follows. For any & > 0, observe that

Ir—sl=r—1—(s=1)| <Vr2+1ys2 +1. (8.2.19)

Therefore, we have the lower bound

11 1 1 :
IOgr—sZ2(10g7”2+1+10g82+1>' (8.2.20)

Let us define the function

1 1

1
Us) = 5 log 55— + 5V(5): (8.2.21)

If I(s) is bounded below, then by adding a constant to V' if necessary, we can
ensure that [(s) > 0 for all s. Clearly, this does not change the nature of the
minimization problem.

Theorem 76. Assume V (s) is a continuous function such that l(s) is bounded

below and l(s) = oo as |s| = 0.

(a) There exists a unique probability measure p, € Pr such that
Ip. < 1?61}/% I[y). (8.2.22)

(b) The support of the measure i, is contained within a finite interval.
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Proof. (a) Since V' is bounded below and the addition of a constant to V' does
not change the minimization problem, we may assume that [(s) > 0. Then

e(r,s) = log + %V(r) + %V(s) > U(r) +1(s) > 0, (8.2.23)

r— s
and ¢ := inf,ep, I[] > 0. Suppose pip2, is an infimizing sequence: i.e.
limg o0 I[ux] = ¢. Without loss of generality, we may assume that I[ug] < c+1
for all k. Tightness of the sequence {y}72 , follows from the following (Cheby-
shev) inequality. For any M > 0,

c+1>1I[u] = /R/Re(ns)yk(dr)uk(ds) (8.2.24)

Z Z/RZ(S)Nk(dS) Z QZ]V[ /S|>M uk(ds) = ZZMLLk(R\[—M, MD,

where ly; = inf|> a7 [(s). Since limg_o0 [(5) = 00, Iny — 00 as .
for any € > 0, we may choose M = M, large enough
rest of the proof of part (a) follows that of Theorem

(b) For any M > 0, let Sps denote the set (—oo, M) U (M, 00). We will show
that w.(Sy) = 0if M is large enough. The proof relies on varying the measure
1x by adding more mass proportional to u, in the set Sy;. More precisely, let
v denote the restriction of p,. to the set Sy, and for any t € (—1,1), define the
measures

s + tv
= 8.2.25
He 1+ tV(S]\/[> ( )
We then find that I[u,] is a differentiable function of ¢, with
dl
o= Ul _ 2/ v(ds) / f(dr)e(r, s) — 20(Sa)I[ne).  (8.2.26)
dt t=0 Sm R
. 1 5
The estimate @%ﬂd positivity of [ yields the lower bound

2/ v(ds) / s (dr)e(r, s) (8.2.27)

S R

Z/SMZ(S)V(ds)+/Rl(T)u*(dr) z/SMz(s)u(ds) > L(Sar).

As in part (a), lpy — 00 as M — oo. Thus, for M sufficiently large, we have
Ing — Ifps]) > 0 and since v is a positive measure, we have the (trivial) estimate

2(Ipr — Ips])v(Sar) > 0. (8.2.28)
“tight9 “tight10Q
On the other hand, the inequalities @ﬁ_and %eld the opposite
inequality

2y — Ips])v(Sar) < 0. (8.2.29)
Thus, v(Syr) = 0 for all M such that Ipr > I[p.]. O

eq:tightb

eq:tight7

eq:tight9

eq:tight12

eq:tightil



8.3. FEKETE POINTS 137

8.3 Fekete points

A second approach to the energy minimization rg?lem relies on a study of the
minimizers of the function E(z) defined in Jor 7.€ R", and a potential
V' that satisfies the assumptions of Theorem or any such potential, 0 <

E(z) < oo for any x € R™ such that z; # xx, j # k. Thus, for each n, there
exists a set of points F;, C R™, such that

E(z,) = min E(z), . € F,. (8.3.1)

The set F,, is called the set of n-Fekete points. The Fekete points are natu-
rally connected to the minimization problem for the functional I[u] through the
modified functional H[L,], where L,(z) is the empirical measure associated to
a point z € R™. Let J,, denote the rescaled energy of Fekete points

1

R — (n) -
RIS (832)

The main result is then the following
bm-1in
}n 1

s e
Theorem 77. AssumeV satisfies the assumptions of Theoreml?a Lel { 7t

be a sequence of points (") € F,, and Then

(a) The rescaled energy of Fekete points increases monotonically to I[u.].

0< 80 < brr < 1] 839

(b) The empirical measures L(x™) converge weakly to pi..

:fekete2
Proof of (a). We first prove the estimates @.ﬁf’ﬁe uniform upper bound on
E(x(")) is obtained as follows. Fix a positive integer n and a point (™ € F,.
By definition, for any s = (s1,...,8,) € R™,

B < B =5 Y (V) V)t 3 st (534)

J,k=1 J#k=1

DN =

-fekete3d
Let u(ds) be any probability measure on the line. We integrate @%ﬁh
respect to the n-fold tensorized probability measure p ® p--- ® p on R™ to

obtain
E(z™) (8.3.5)
1 n
< /n 5 Z (V(s;) + V(sk)) Z 10% ol p(ds1)p(dsz) - - - p(dsn)
Gk=1 J#k=1

— n(n—1) / /R e(r, s)u(ds)u(dr) = T[],

since for each value of the indices j and k only the integrals over p(ds;) and
p(dsg) give contributions that are not unity and there are n(n — 1) possible
unordered pairings of j and k. In particular, E(x(™) < n(n — 1)I[u.].
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The monotonicity of 8, follows from the following argument. Suppose z("t1) =
(21,...,@py1) is point in the Felée‘pe set £ 1. We fix an indexm, 1 <m < n+1

and use the definition of F in 0 obtain
_ 1
(n+1)
R BRSPS Vi) Vi) "
o D EETTY) H 2 —aple 2 e 2 (8.3.6)
1<j#k<n+1
2 1
Vi) View | " V) Vi | Y
= H|xj—xm|e_ 2 T 2 H lz; —aple” 2 e 2
Jj#Fm J:k#m
_2
V) Ve \ " na
< H|xj—xm|67 2 e 2 e "ntl
JjFm
since the second term is the energy E(Z) of the point & € R™ obtained from
z(™) by projecting out the coordinate x,,.
Since m is arbitrary, we take the product over 1 < m < n 4+ 1 to obtain
2
(n+1)
1 n V(z;) V(em) "
e nBE"TY) < o=(n-1)s, I1 I1 |2, —aple” "2 2
1<m<n+11<j<n+1,5%m
2 (n+1)
— ¢~ (n=1Ddn " n(nr) P ), (8.3.7)

This inequality simplifies to &, < d,41. O

Pro lg)e]i Q ). While the self-energy of all the Fekete points is infinite, inequality
shows that a suitably renormalized energy is finite, and bounded above
by I[p.]. This inequality,.in combination with an easy modification of the
Chebyshev inequality %ho shows that the empirical measures L(z(™)
are tight. Thus, there exists a convergent subsequence and a limiting probability
measure v € Pg such that the empirical measures L™ defined by the Fekete
points z(™ converge weakly to v as n — oo.
For any M > 0, we introduce the cut-off energy e (r,s) = min(M,e(r, s))
and observe that
1

E— ] 0 - L e(r- )L™ (dr L™ (ds
= n(n — 1)E( ) n(n —1) /R/R]l”és (r, ) L™ (dr) L™ (ds)
M

n—1

TL2
= /R /R enr(r,s) L™ (dr) L™ (ds) —

Since the function ey (r, s) is continuous and 0 < ey (r, s) < M, we may inter-
i;?ia) to

change limits as n — oo, and use Theorem obtain

I Zliminfdnz//e r,s)v(dr)v(ds). 8.3.8) |eq:fekete?
bl s, [ [ entov@nv. 02 [sfom



8.4. EXERCISES 139

We now let M — oo and use the monotone convergence theorem and the fact
that p, is a minimizer to obtain

Ips] = Ip] = I{pa]- (8.3.9)

Since p, is unique, it follows that p. = v.
This argument proves that every subsequential limit of L™ is p,. Thus, the
entire sequence converges to fi.. O

8.4 Exercises

The first three questions are related. The goal is to formulate and analyze the
equation for the equilibrium measure u, associated to the potential V(x). In
order to simplify your calculations, assume that p, has a continuous density ),
in all the problems below. The last two questions discuss enumeration problems
related to the Catalan numbers.

1. Basics of the Hilbert transform. Let G(z) denote the Stieltjes transform

G(z):/oo L ,u*(ds):/oo L Y(s)(ds), =z € C\supp(us). (8.4.1)

o0 82 oo S — 2

The Hilbert transform of ¢ is the limit of the Stieltjes transform as z — x € R.
The Hilbert transform also differs from the Stieltjes transform by the inclusion
of a factor of 7 (since this makes the Fourier transform of the operator H
particularly simple). That is, given u, as above, we set

e T— 8

Hip(x) = %p.v. /:’0 % ds := lim ————— P(s) ds. (8.4.2)

e=0 ) o (x— )2+ &2
(a) Show that H1) is a bounded function when v (z) is continuous.

(b) Show that u, may be recovered from G by evaluating the jump in the
imaginary part of G across the support of p,:

lim —— (G(z + i) — G(x — ie)) = (). (8.4.3)

e—0 271

(¢) Compute the Hilbert transform of the following functions to obtain a feel
for it (answers are on wikipedia):

ei:r’ 60(33)3 ]]-[a,b] (‘r)

2. Integral equatiop for ._]/f;l%séume V is differentiable and satisfies the assump-
tgg S %% i

tions of Theorem o that g, has compact support. Show that if u, has a
density 1 as above, then it satisfies the integral equation

1
Hip(x) = %V'(z) on  supp(p). (8.4.4)
. . . . -hilbert2
3. Fixed point equation for the resolvent. Omne solution to uses the

Stieltjes transform G(z). Assume that V(z) is a polynomial of degree d > 2.

‘eq:stieltes—eqml

eq:hilbertil

‘eq:stieltes—eme

eq:hilbert2
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(a) Show that G satisfies the quadratic equation
G%(2) +V'(2)G(2) + P(z) = 0, (8.4.5)

where P(z) is a polynomial of degree d — 2 whose coefficients are deter-
mined by the moments of p, of degree lower than d. The solution branch

%s dete1-rmined by the requirement that G(z) ~ —1/z as z — oo which is
immediate from .
:hilbert3
(b) Equation @ﬁl—ray be solved by making further assumptions on the

form of p,. In particular, assume that V(z) is eve ltb}é%%sthe support of
s« 1s a single interval [—2a, 2a], and show that %&‘mpliﬁes to

Gl2) = Q)Y —da? — %V’(z) (8.4.6)

where Q(z) is a polynomial of degree d — 2 whose coefficients are deter-
mined by the condition that G(z) ~ —1/z as z — .

(c) Apply these ideas to compute the equilibrium measure for the quartic

potential
1
V(z) = 5332 + %afl. (8.4.7)
Show that
1 1
G(z) = (2 + ng + ga2> Vet —da? = 2 (o + g2®) (8.4.8)

where a? solves the quadratic equation

3ga* +a* —1=0. (8.4.9)

(d) Compute the associated density ¥ (x) and plot it as g varies.

- lani
4. Establish the identity @&

5. Show that the Catalan nu blealils2 enumerate the number of Dyck paths as
discussed below equation %ﬁ

eq:hilbert3

eq:hilbert4

eq:hilbertb

eq:hilbert6

eq:hilbert7



Chapter 9

Iterative methods and flows

9.1 Lanczos iteration

In this section, we will consider applying the Lanczos iteration to a random
matrix M. In the end, we will consider M ~ GOE(n), GUE(n), LOE(m,n), or
LOE(m,n). The Lanczos iteration is the following:

’Algorithm 1: Lanczos IterationL@:lanczos

1. g1 is the initial vector. Suppose ||1]|3 = ¢jq1 = 1
2. Set bp = —-1,g9=0
3. Fork=1,2,...,n

(a) Compute ap = (Mg — br—1qx—1)"qr-

(b) Set vy = Mg — arqr — bp—1qK—1-

(¢) Compute by = |lvg]l2 and if by—1 # 0, set gr+1 = vg/bx. Otherwise
terminate.

Before considering random matrices, we establish properties of this iteration.

Define
o by _
bl as b2
by
Qv=1[an @ - @, Tr=
br—1
br—1  ax

141
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It follows directly from step 3(b) that
MQk = QTy + brgriey, - (9.1.1)

We ak.e.g& important distinction between these calculations and that in Sec-
tion Ei[ Here T}, will end up denotinE the upper-left & x k submatrix of a

larger Jacobi matrix whereas in Section Tt represented the lower-right k x k
submatrix.

Lemma 29. Suppose M is a symmetric matriz. And suppose that the Lanczos
iteration does not terminate before k =n. For k=2,3,...,n,

q1,- -+, 9k

is an orthonormal basis for the Krylov subspace Ky, = span{qi, Mq, ..., M* 1q;}.

Proof. Tt is clear that step 3(c) enforces that qi,...,q; are all unit vectors.
Suppose that qi,...,qr_1 satisfy

(Sij:q?Qj, 1§’L,]§k71

Then consider

1
G qr = er (Mqr—1 — ag—1qk—1 — br—2qK—2) .

For 1 < k — 2 we have

Gae=7—¢GMqg_1= 7 (Maq;)* qr—1-
k—1 k—1

From ﬁ Mg; is a linear combination of {¢;—1,¢i,gi+1}. And therefore
qfqr = 0. Next, for i = k — 2

Gk = 7o (Mar—1 — bp—2qr—2) = 5 (Mgr—2)"qr—1 — brp—2) .

br—1 k-1
Again, from @
Maqy—2 = ax—2qx—2 + bk—2qk—1 + br—3qK—3-
This shows that
(Mgr—2)"qr—1 = br—2
and ¢;gr = 0. Lastly, fort =k — 1

Gar=—a_ 1 (Mar—1 — ap—1qr—1) = — (G 1 Maqre—1 — ar—1) .
bk—l bk—l

We then need to use that
ap—1 = (Mqr—1 — bp—2qr—2)"qk—1 = G Mqr—1,

to determine that ¢;gr = 0. This concludes the proof. O
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The following gives the distribution of T} throughout the Lanczos iteration.

Theorem 78. Suppose M ~ GOE(n), GUE(n), LOE(m,n), LUE(m,n). For
any given ¢ € R™ (or C" for GUE,LUE) with probability one, the Lanczos
iteration does not terminate before k = n. And the distribution on ay, by,
k=1,2,....,n does not depend on q1. In a distributional sense it suffices to
take qu = e1 and therefore the distribution is determined by the Householder
tridigaonalization of M.

Proof. To establish the first claim it suffices to establish the linear independence
of

th(]l,...,Mn_lql.

Then, diagonalize M = UAU*:

@@ Mg - M"'q|—»U[Uq AU*q---A""'U*q]
1z 22 - a:’f_l
= Udiag(U"q1)
1z, 22 - a0t
Here x4, ..., z, are the eigenvalues of M. Therefore the determinant of this ma-

trix is non-zero provid (.5 Tn) are distinet and no component of U*b
vanishes. By Lemma p.3.1)) (tor LOE,LUE) and %_(}E)%OE, GUE)
it follows that the eigenvalues are distinct with probability one. Then because
the eigenvectors of M can be take to be Haar distributed on U(n) or O(n), U*b
is uniformly distributed on the sphere in R™ (or C"). So, then then |U*b|?,
taken componentwise, is S-Dirichlet distributed. And therefore, no component
vanishes, with probability one. To establish the second claim consider the QR
factorization

(1 Mg -+ M"'q]l=|nn @ - @R
Let Qo be an orthogonal (or unitary) matrix so that g1 = Qpe;. Then

Q5 [Qoer MQoer -+ M™'Quei] =
[61 QSMQOel s QSM”_lQoel] = QS [ql g - qn] R.

The invariance of M implies that M ~ QiMQo. So, the Lanczos iteration
applied to the matrix M with starting vector q; gives

T=Q'MQ, Q=[a ¢ - -

And then the Lanczos iteration applied to the matrix Q§M Qo with starting
vector e; gives

T=Q"QMQQ, Q=Qi[m @ - a.
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We see that T = T. And then T is equal in distribution to that which is found
apply the Lanczos iteration %ZM gggl staring vector ¢ = e;. From the scheme
that igcgggeﬁzted in Figure [3.4. e spectral measure of a Jacobi matrix T,
(Eggi, encodes T itself. That is, T is determined by its eigenvalues and the
absolute values of the first components of its normalized eigenvectors. Because
the first column of @, is ey, it is clear that the first components of the eigen-
vectors of T' coincide with those of M. The same is true of tridiagonalization

by Householder reflections. Thus Lanczos with ¢, run to completion, coincides
with Householder tridiagonalization. O

The behavior of this algorithm in floating-point/finite-precision arithmetic
is an extremely important topic. In this text, however, we ignore this, and
suppose exact arithmetic.

9.2 An alternate proof of the semicircle law

To give an alternate proof the the semicircle law, we use the method of moments.
The following two theorems give the foundations for the method.

Theorem 79 (Hamburger moment problem). Let (my)r>0 be a sequence of real
numbers such that the upper-left £ x £ subblocks of the Hankel matriz

mog Mmi1 M2
mp m2 M3
mo M3 My

are positive definite for every £ > 1. Then there exists a (positive) Borel measure
© on R such that

my = /xk,u(dx).
Furthermore, if there exists constants C, D > 0 such that
|my| < CD*E!
then p is unique.

The most important portion of the previous theorem for the following de-
velopments is the uniqueness. The existence, in our case, will be evident.

Theorem 80 (Weak convergence via moments). Let (X,,)n>1 be a sequence of
random variables. Suppose further that that there is a random variable X with
E[|X|*] < oo for all k >0 and

lim E[X}] = E[X*] =: my.

n—roo
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Lastly, suppose that there is only one Borel measure p on R with moment se-
quence (my)k>o0. Then

dist.
X, =5 X,

as n — oQ.

Proof. First, it follows immediately from the & = 2 moment condition that
(Xn)n>1 is tight. So, every subsequence contains a further subsequence that
converges in distribution to a probability measure p. To avoid a flood of sub-
scripts, just suppose (X, )n>1 is the first subsequence. Then let ¢ be a point of
continuity for p((0o,t]). Then for the further subsequence

lim FXn(e) (t) = p((oo, t]).

{— 00

We can assume, without loss of generality, that X,y — Y a.s. where Fy (¢) :_[Referenf;e Theorem 3.2.2 in Durrett, ]
p((00,t]) Then for k fixed, consider =

lim sup E[X ) )] < limsup E[fr(X(e))] + limsup E[X}; ) — fr(Xn0))]
£— 00 l— 00

£— 00

where fr(z) = 2% if || < R and is equal to zero otherwise. The dominated
convergence theorem implies limy_, oo E[fr(Xy(¢))] = E[fr(Y)]. Then for R > 1

limsup E[X} )] < E[fr(Y)] + R *moy.

{— 00

Sending R — oo gives limsup,_,, E[X} )] < E[Y"]. The same approach with
a liminf gives the reverse inequality. This shows that the measure p is the
same for every subsequence (and the further subsequence). This then implies,

ubse dist.
by Lemma at X, — X as n — oo. ]

The last fact we use concerns numerical integration.

Theorem 81 (Gaussian quadrature). Let T be a nxn Jacobi matriz for n < oo

with spectral measurtEI pr. For k <n, let Ty, be the upper-left k x k subblock of
T. Then

/xjuTk (dz) = eI Tle, = I TIe; = /xjpT(dx), 0<j<2k-1,

where pr, is the spectral measure for Tj,.

Proof. The first equality follows from the definition of p7, . The second equality
is seen by noting that for any Jacobi matrix T (with diagonal entries ay, ag, . . .,
and off diagonal entries by, b, .. .)

T
e1T7e;

: Spec-map2
IThe spectral measure of a finite Jacobi matrix is defined @ . For a semi-infinite Jacobi
matrix 7' the spectral measure is the measure with respect to which the polynomials defined
by the three-term recurrence given by 1" are orthogonal.
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depends only on al,bl,ag,bg,...,a% if j is odd and al,bl,ag,bg,...,a%,b% if
jiseven. So,if (j+1)/2 <k (jisodd) and j/2 <k —1 (j is even)

e{TIzel =el'Te.
The conditions on j are equivalent to 7 < 2k — 1 inntc)g%h cases.
The last equality follows from applying o 1y for j <2k —1. O

Let (z1,%2,...,2y) be the eigenvalues of M ~ GOE(n) (8 = 1) or M ~
GUE(n) (8 = 2). Define the scaled empirical spectral measure

1
Sn(dr) = — > 6., ym(da).
k=1

A fmemEsicney RN i 6o e }_‘Recall that the averaged semicircle law states that

with weak vs. distributional conver-
ES,(dz) &5 peo(z)dz, (9.2.1)

gence notation, etc.
as n — 0o. By the method of moments, it suffices to show that

/ TFES, (dz) = Eié (\”;%)k o / Fpee (2)dz.,

Note that because ps.(z)dx has compact support it is clear that it is uniquely
determined by its moments. The classical method of moments for GOE or GUE
works by noting that

=5 (5) = ()

and using combinatorial methods to enumerate the contributions to this trace,
to leading order. This is where our approach deviates. Let e; be the first
standard basis vector and consider the modified moments

k
M
Ee? <\/ﬁ> €er.

. . . . :lanczos
To connect this to a measure, we employ the Lanczos iteration, Algorlthmﬁ with

q1 = e1. Then we have, from , with the convention that b,,q,+1 =0,
aq b1
b1 as b2
M
(\/ﬁ> Qr = Qi Ty + brgryrer, T = ba
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. . . . . 2l aNCZO0S
And we are led to consider the distribution of the entries. By Theorem [Eg
T = T,, coincides with the tridiagonalization found by Householder reflections.
So,

VpBna; ~N(0,2),
(9.2.2) -eq:ajbjs
VBnbj ~ Xp(n—j)-

for j =1,2,...,n, where these variables are jointly independent.
With the additional convention that by = 0, p_1 = 0, pg = 1, we define a
sequence of polynomials via

(aj —x)pj—1(z) + bjp;(x) + by—opj(x) =0, j=1,2,...,k—1 (9.2.3)

:Jacobi-spec . . . . .
By he.orgg'lla Or INOT¢ NBremsely the constructive proof described in Fig-
ure and Remark (@_fhese polynomials p;, j = 0,1,2,...,k — 1 are or-
thonormal with respect to the spectral measure for T}, and also with respect to

the spectral measure for Ty, £ > k.
Next, we consider

' /Y(O, 1/n) \/IBTXﬁ(nfl) 1
ﬁXﬁ(n—l) N(Oa 1/”) ﬁXﬁ(n—m
T ~ ﬁXﬂ(n—z) '

ﬁXﬁ(n—jH)
i T Xsm-i+n  N(0,1/n)

(9:24) [eaTiet]

clt
Then the central limit theorem (Theorem @'implies

VR (g - 1) S5 0.2),

as k — oo, and therefore
xr — Vi 25 N(0,1/2), (9.2.5)
as k — oc.

This implies that for any fixed j

Beyond that, suppose F' is a continuous function of a m x m Jacobi matrix in

a neighborhood of T; and that FI(T') < C(1+ ||T||)9 for some C,q > 0 then __ {rove enis?
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lim EF (T;) = F(T;).

n—oo

aussquad
Then we choose F(T};) = ej T] e1. And, then using Theorem EI we have shown

Jm B (1)) e = Jim B (7)) e

= nhﬁnéo 2By (dz) = elTTzel.

We now must identify the sequence ej T9 se1, J = 1,2,... with the moment
sequence of the semicircle distribution. The second kind Chebyshev polynomials

(Un)n>0 are orthonormal polynomials on [—1,1] with respect to the measure

2v1-z? 1 22 4z satisfying

Uo(.%') = 1,

Ul(x) = 2303
1 1
§Uk+1($)—l‘Uk($)+§Uk_1( )=0, k>1

Define Uy, () = Ug(z/2) and then the sequence (U, ), >0 are orthogonal polyno-
mials on [—2, 2] with respect to the semicircle law pg., satisfying the recurrence

Uo(x) = 1,
Uy (z) =z,
Upsr(z) — 2Up(2) + Up_1(z) =0, k> 1.
We then conclude from Theorem ﬁ;’%uh_séstg&i

2
e{Tj-el :/ 29 pee () d.

-2

This shows that

Epr(dz) disty Psc(x)dz.

Our 12%' task is to compare Epr(dz) and ESy(dz). We recall from Weyl’s

formula at one can take the eigenvectors to be distributed according
to Haar measure an O(n) or U(n) depending on 8 = 1,2. And then we know
from Theorem at the first column of such a random matrix is distributed
uniformly on the sphere in R”™ or C™ (again, depenﬁdlﬁgao B =1,2). As O(n)
and U(n) are compact groups they are unimodular [Fol99] and therefore if @ is
Haar distributed on O(n) then so is Q=1 = QT (similarly if U is Haar distributed
on U(n) for U=! = U*). So, we find that the first components of the eigenvectors
have the g-Dirichlet distribution and it is elementary that each component has
mean 1/n.

The following lemma completes the proof of

law
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Lemma 30. Suppose M ~ GOE(n) (8=1) or M ~ GUE(n) (8 =2). Then

Proof. We check the action on polynomials. By the independence of eigenvalues
and eigenvectors

n

/ijuT(dm):E ;ug (\?ﬁ%)j :iE[uf]E K%)jl :/ijESn(dx).

The method employed above to determine the limit is to (1) establish that
the matrix moments

Tk
elTjel,

converge to that of a deterministic, semi-infinite tridiagonal matrix T. Then
(2) the orthogonal polynomials that satisfy that the associated three-term re-
currence are constructed and their orthogonality measure is deduced. Then the
matrix moments must converge to the moments of this measure, and the limit
is identified. There is an alternate way to complete (2): The orthogonality
measure u for the orthogonal polynomials satisfies

/Oo )

o S— 2

-stieltes-eqm2 . . . .
And then 1@?? J, can be used to compute p provided it has a continuous density.
Residue calculations can also be employed to find point masses. It can be shown

directly that

Gy = [ I Lo vemavET),

e S—Z
where there square root is the principle branch. One can show directly that

G(2)
G(2)?
(T —=2I) G(2)3| = €1

9.3 The conjugate gradient algorithm

The conjugate gradient algorithm (CGA) for the solution of Mx = b is given
by the following:

%

Discuss upgrading this to a weak, al-
most sure convergence and discuss lim-
itations?
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Algorithm 2: Conjugate Gradient Algorithmﬂg:cga

1. z( is the initial guess.
2. Set rg = b — Mzg, pg = ro.
3. Fork=1,2,...,n

.
"e—1"k—1

(a) Compute ap = —

Tk_lMpk—l .

(b) Set xp = rp_1 + appr_1-

(c) Set r, = rg—1 — apxMpg—1. If rp, = 0, terminate.
riT

(d) Compute by, = ——*=F*
T 1Tk—1

(e) Set pr =i — brpr—1.

It is important to note that the ax’s and by’s that are generated here are
not the same as those generated in the Lanczos iteration, although there is a
bijection.

All properties of the CGA are now developed directly from this iteration. It
is important to note that the historical development is not as we present itﬂ
We also use zg = 0 in all our calculations. Throughout what follows we set
¢ =max{k:r, #0} <n.

Lemma 31. Fork=0,1,2,...,0+1

r, =b— Muxy.
Proof. The proof is by induction. Suppose that ry,_1 = b — Mzp_1. We first
compute
agMpyp—1 = M(xp — x_1).
Then

T = b*Mﬁbk_l 7akMpk_1 = beack.

We then examine additional properties of the vectors r; and py.

Lemma 32. For k < {, ay, is well-defined and the vectors rq,...,r, form an
orthogonal basis of i1 = span{b, Mb, ..., M*b} with respect to the inner prod-
uct (x,y)s = x*y. The vectors po, ..., px form an orthogonal basis of Kyy1 with
respect to the inner product (x,y)y = x*My.

2To derive AlgorithmE %rom first principles, one uses the Lanczos iteration to find a square,

tridiagonal approximation of the linear system and then solves that by Gaussian elimination.
This can be one iteratively, reusing the previously derived LU factorization at each step.
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Proof. This is also established by induction. Since the claim is clearly true for
k = 0, suppose the claim is true for k + 1 replaced with k£ > 0 and we show it
holds for k + 1. To see that the algorithm is well-defined one notes that, based
on the induction hypothesis,

Tho1Mpr—1 = (Pr—1 + br—2pr—2)"Mpr_1 = pj_ 1 Mpr_1 # 0. (9.3.1)
From the relation,
pj =15 —bjpj-1,
it follows that pi € span{rg,r1,...,7} and

T € span{pr_1,pr} C span{po,p1,. .-, Pk}

It also follows that the spans of these two collections of vectors are both sub-
spaces of K. Since orthogonal vectors can only fail to be linearly independent
if they vanish, we show none vanish: Since k£ </, it follows by assumption that
ri # 0 and that span{rg,ri,...,7x} = Kg+1. From step 3(e), if pr = 0, then
rr € span{po,p1,...,Pk—1} C Kr = span{rg,r1,...,rx_1}, contradicting the
linear independence of {rg,r1,...,rg}. Thus span{pg,p1,...,pr}t = Kk.

Then, using the definition of ay,

* * *
Tho1Th = Th_1Tk—1 — @71 Mpr_1 = 0.
For j <k—-2
* *
TiTE = —QkT; Mpp_1.

Then the fact that r; € span{p;_1,p;} and the orthogonality of the p;’s implies
that 777, = 0. Now, for j < k, we consider

(Mpr)*p; = reMpj — bipi_1p;-
For j < k — 2 we have
(Mpr)*p; = Mpj.

Then Mp; € Ko =span{rg,r1,...,7rj+1} implying that r;Mp; = 0. Then for
j=k—1

(Mpy)*pj = reMpr—1 — bepj_1 Mpr_1,

1, TETR
= —rp(tk—1 — 1) + ———pr_1Mpr_1
ap Te_1Tk—1
1 pi_1Mpr—
=rirg ( +— =0,
ag T 1Tk—1

-rk_pk
by @ET his completes the proof. O
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Remark 82. Replacing b with b — Mx( in the previous statement gives its
extension to the case of non-zero initial guess .

. +rk_pk .
Remark 83. In the notation of Lemma git it is clear that M ~1b € Keq1 since
Te+1 = 0.

Theorem 84. Fork </+1
oy = argming e o —ylw, |-y = ¢ )w,

Kj = span{b, Mb, ..., M*~1b}.

Proof. The vectors pq,...,pp—1 are the correct orthogonal basis of K to con-
sider. Since ryy1 = 0 implying that 41 =z = M~1b we know

£+1 k

T = Zajpj—h Y= Zajpj—l-
j=1 j=1

Then by orthogonality

k £+1
Iz =yl = _loy —a;PPlpi—aliy + Y laiPllpi-1 iy,
j=1 j=k+1

This expression is minimized choosing a; = a; for j < £, i.e., choosing y =
Tl O

Working directly with this optimization problem we see that

k k—1
y=2 a1 =2 W,
j=1 §=0

for some choice of coefficients c¢;. Then using that b = Wx we find that
k
rT—y= ZéjWJx, co=1.
j=0

Theorem 85. For k </+1

& = 2kllw = minyep, [[pWV)zllw, |- 1% = ¢ )w,
Pr. = {p: p is a polynomial of degree < k, p(0) =1}.

This theorem allows one to then characterize the minimizing polynomial. For
an arbitrary polynomial, after diagonalizing M = UAU* and using x = M~ !b
we find

oWl =50 P g = [ o5
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where
n
w= Z |uj|25,\j, u = U*b.
j=1

Let py € Py, be the polynomial that minimizes ||p(W)z|w. Let dp be a poly-
nomial of degree at most k that preserves the normalization, i.e., dp(0) = 0.
Then

v gelie = [P 4 are [+ [ oyt

For pi to indeed be the minimizers, all “directional derivatives” need to vanish,

and so
[ oemm Y <o

for all such dp. This implies that p; must be proportional to the k£ orthogonal
polynomial with respect to .

To make the most important connection of the CGA to the Lanczos iteration,
we compute the first com ponents of the eigenvectors of the matrix 1" obtained
by applying Algorithm [78[to M with starting vector b:

T=QMQ, Q= ¢ - ).

Here we suppose that ||b]]2 = 1. Then

T=VAV*, V=QU.

The (complex conjugates of the) first components of the eigenvectors of T' are
given by

(Q*U)*El = U*Q61 = U"D.

The spectral measure pur for T' coincides with p. So,

where 7, (resp., pg) is the kth monic (resp., normalized) orthogonal polynomial
with respect to g = pr. One can then verify that

Wk()\) = det()\I — Tk)
and this gives the well-known expression

det(A — T

ﬁk ()\) - det Tk-
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reenbaum1989
that appears in ﬁ:(}reSQ or example.

It will turn out that this polynomial is best analyzed after we have preformed
a Cholesky decomposition of T}, i.e., write

aq
B1 a2

Ty = HkaT, H; = fa s , (9.3.2) ‘eq:tri_cholesky

Br—1 o

This is correct. But do we want to | where all entries are non-negative, because the same is true of T,. Then we note
add Cholesky to the text? J that

ay = a3, ajza?—i—ﬂf,l, j>1,
bj:ajﬂj, ]Zl

We immediately see that m(0) = H§:1 . But more is true, because of Re-
mark we see that

k
[ mzuan =[] gat.

This gives the rather remarkable relation

k 32
b= Ml = [ 5@ :H% (9.3.3)
j=1 ]

To obtain an analogous expression for ||z — z||3, one has to work a bit harder.
Define the Stieltjes transforms of the monic polynomials

o) = [ T uan)

It is straightforward to show that these ¢ (z) satisfy the same three-term recur-
rence as 7 (z) with initial conditions c¢_;(z) = —1 and

co(z) :/%

:lanczos
Recall in Algorithm Emhe convention that by = —1. This is necessary here.
One more definition is needed. Define 74 (z) to be a sequence of polynomials
defined by the same three-term recurrence as i (z) but with initial conditions
7_1(x) =1, mo(x) = 0. This implies that

ck(2) = co(2)mr(z) — Tr(2).
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Compute

because fi, is ,at most, a degree k — 1 polynomial and it is therefore orthogonal
to 7. The final expression becomes

71(0)
1(0)

lz = k|5 = co(0) -

3

9.4 Asymptotic analysis of the CGA applied to
LOE, LUE

We now consider the solution of
Mz =0b, M ~ LOE(m,n),LUE(m,n),

asn — oo and b = b, is any sequence of unit vectors. We also assume that
m=[%] for 0 <d<1 ehik

The key asymptotic fact in doing the following analysis is @_ This is be-
cause if we take a matrix M distributed according tp LOE(m,n) or LUE(m, n),
m > n, apply the Lanczos iteration (Algorithm%ﬁﬂﬁtarting vector b, ob-
tain a tridiagonal matrix T = T, ,mgcgglsthen compute its Cholesky decomposi-
tion T = H,HY by Theorem %Tek’now that H, has the same distribution

as that of the first n columns of the bidiagonalization of Ging(n,m)/v/m or
:tridiag-w
Ging(n,m)/y/m. See SectionEﬁr So, for 1 <k <n

T, = H.H},

XBm
XB(n—1) XB(m—1)

1
ka\/ﬁ XB(n—2) XB(.m—Q) . . (9.4.1)

XB(n—k+1) XB(m—k+1)

%heﬁei%{l Gitzles are jointly independent. We then obtain, in the notation of

V/28m <(;J - \/E> Gist A7
J
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as n — oo where Zy, Zs ~ N(0,1) are independent. Let (Z;);>1 be a process of
iid A(0,1) random variables. We then see that in a distributional sense

k k

%Y Zaj—1 54252
15 NE(\/&WW ﬁm)
st E
Vaim =

Jj=

=d"? +

(Zgj_l — \/EZQJ'_Q) + O(mfl).
This calculation implies
; k—1 k
V2Bm (Hb ~ May|ls — dk/Q) W TN Loy — VdAZayoa).
j=1

From this characterization the asymptotic covariance of ||[b— Mxz||s, ||[b— Mxz||2
can easily be obtained. And, in particular,

V2Bm <||b ~ Mag|s — dk/Q) B (0, kd (1 + d))

as 1. — 00.
Exact, non-asymptotic expressions such as

k .
_ 2 _ BN —J)

can also be obtained from this formulation. Here one just has to use indepen-
dence and that

1 1
Elxil=Fk k>0, E|l5|=-—", k>2
[Xk] ’ 70, |:Xi:| k_23 >

%e can connect these to the Marchenko—Pastur distribution directly. From
-WishartTri

, we see that

1 Vd
Vd 14+d Vd
Tk—>Tk, T:T(d): \/& 1—|—d o

where T}, is the upper-left principle subblock of T. We compute e? (T(d) — z1)e;
by first computing

0
1

=
—

s 1 -1
el (T(d) 4 deTey — 2zI)"tey = VdeT (']T - Z\/Zidl> e, T =
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It follows that for G(z) = —3 (2 — vz — 2v/z + 2), we have

el(T(d) 4 derel — 2I)te; = 1a <21d>

Vd Vd

14+d—=z 1 R R
:T_Fﬁ Z—(l—\/&) \/Z—(I—F\/&)
= 5(z).

Then to compute e (T(d) — 2I)~te; we use the Woodbury matrix identity
(A+Ucv)t=A"t— A ly(Cc 4+ VvAIU) 'vA~L
Then set A = T(d) +defe; — 21, C = —d, U = e;, and V = e to find
M (2) = e{ (T(d) — 2I)'e1 = S(2) — S(2)(S(2) —d™)'5(2)
Then, we compute

1. : .
%lelirg(M(x—He)—M(x—le)) =

9.5 Gradient descent

Let X € C™*™ and consider the iterative solution of the least-squares problem

1
min —|| Xy — bl|».
min =Xy bl

That is, the minimization of the functional

1
)

In linearizing the functional, one finds the gradient

F(yo+ey) — F(yo) = eVF(yo) -y + 0(62),
— % (X Xyo + ys X* Xy — y* X*b — b* Xy) + O(c?),

* 1 * * * * * *
F(y) = 5(Xy = 0)"(Xy = b) = 5 (y" X" Xy —y" X"b — b" Xy +b"D)..

Then the gradient descent iteration is given by
Ynt1 = Yn — WL (yn),

for a sequence of step-sizes {7, }. Then for ¢ = X*b, M = X*X, we compute
Yo = given,

y1 = yo — 71 (Myo — ¢),
Y2 =111 —71(My2 - C),
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This iteration can be simplified by defining e; = y; — 2, z = (X*X) "1 X*b =
M~'c to find

€0 =Y — T,

€1 =€y — "}/160 = (I — ")/1M)60,

ez = (I —v2M)er = (I — 1 M)(I —v2M)e,

Clearly, one obtains

We then consider
T = Xek = XPk(M)eo = XPk(X*X)e() = Pk(XX*)’I‘O

Then, decompose X = UXV™ in a singular-value decomposition. Suppose
m>nand X € R™*": For M = XX*

7ell3 = 1 Pu(M)rg = eV P (2*%)*V e

To simplify the analysis, take yo = 0 so that
Vieg = —V*(X*X)1X*b = —(Z*%) 712 U*b.
So, write
Y =diag(Ai, ..., An), w; = (U"b);, j=1,...,m,

to find

Irell3 = b*UPL(SE*)2U*b = Y w?Pi();).

j=1

To analyze the distribution of this quantity, we consider the Lanczos itera-

tion applied to the pair (X X* b). By invariance, it suffices to suppose b is the

There is always an issue using e, for | 1irst standard basis vector f; and therefore we can use Golub-Kahan bidiagonal-

[32232::“0“ and the standard basis ]_‘ization to obtain for the tridiagonalization T}, for k& < n. There exists unitary
matrices Uy, Us such that

XBn
XB(m—1) XB(n—1)
XB(m—2) XB(n—2)

U XUy ~ XB(m—n+1) XpB
XB(m—n)
0
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Therefore

XpBn
XB(m—1) XB(n—1)
Ty ~ H HE,  Hy ~ XB(m—2) XB(n—2)
XB(m—k+1)  XB(n—k)
Then, for j <2k —1
VUES YU ~ fT] fr.

This immediately implies the concentration of ||r¢||3 as m,n — co. But we can
do more to clarify the limit.
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ch:numerics

sec:det—numerics‘

Chapter 10

Numerical methods for
random matrix theory

In this text, we have seen how random matrices have applications to numerical
analysis by giving a class of distribution on which to test algorithms and deter-
mine an average-case behavior. In this chapter we explore the use of tools from
numerical analysis to gain insignt into random matrix theory. The distributions
that arise in random matrix theory are transcendental functions and computing
them is a non-trivial matter. Furthermore, there are many distributions from
random matrix theory that one wants to be able to draw samples from.

10.1 Computing Fredholm determinants

:def-fredl
The expression for D(z) = det (1 — zK) as given in I not a useful ex-

pression from a numerical analysis perspective — we begin with the problem
computing the determinant of an integral operator acting in one spatial dimen-
sion and we have to then compute integrals over increasingly higher-dimensional
spaces. What is more fruitful is going back tg - he ori ig@% Inofivation of Fred-
holm and considering the discretization ([D.T.4]) of }iiilu and modifying it to
use a more effective quadrature routine.

The underpinnings of develgg}g&n}}aﬁhly—a cyrate %@drature rules was al-
ready introduced in Section see eoremEiE and it can be summarized as
follows: Given a sequence of orthgonal polynomials with respect to a probability
measure p, take the upper-left £ x k subblock of the associated Jacobi matrix

and use the eigenvalues as quadrature nodes &1 = @1(k),...,Tx = (k) and
use the squared modulus of the first componen alg)sfst}&g dnormalized eigenvectors
as weights wy; = wq(k), ..., wk(k). Theorem en 1mplies that
k
> plas)u; = [ plopulda).
j=1

161
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for all polynomials Pai_1 of degree < 2k — 1. For general functions f, the error
estimate takes the form

k

k
S Fyw; — / ()| < |3 E) - pE;)w; +‘ / (f(x) - p(a))u(de)

J= Jj=1

where p € Pyj—1. Then in the case that the support of u is an interval, it follows
that the eigenvalues of T} all must lie in this interval and therefore

k
> @ - [ f@nn) <2 min s p(o) - fa)]

= PEP2k—1 zE€suppu
If f is continuous on suppp it can be approximated uniformly with polynomials.
This tells us that

k
> Gy - / f(@)u(da),

for all continuous functions f on suppp. Of course, the convergence can be
much better and we will establish just how much better it can be in a bit. We
will conjecture the existence of a second measure o that is absolutely continuous
with respect to Lebesgue measure with a bounded density so that

1, .
F ) > [ t@otan)

for all continuous functions f on suppu.

To then get a handle on how small sup,cq,ppu [P(7) — f(7)] can be, we
discuss interpolation. And while this expression is independent of the choice
of interpolation nodes, one can get an upper bound on the minimum of Poy_1
using (any) prescribed interpolation nodes. For the sake of simplicity, we will
assume that f is analytic interior to a simple smooth curve I" that encircles the
interval [a,b]. Let a < &1 < &3 < -+ < & < b be a interpolation nodes, we
wish to construct a polynomial p of degree at most k such that p(z;) = f(x;).
One such way to do this is by using a formula due to Hermite:

k

dz, we=[J@-a), =z€ab]

j=1

@) = plo) = 5 [ 29810

T omi Jrur(z) z—x

To verify this formula it is easy to first check that the right-hand side vanishes
at &; for each j. And then a residue calculation confirms that the right-hand
side is indeed equal to f(x) plus a polynomial. One then finds that

Ilfllr(ry maxg,epa,p V()]
|f($) p($)| = or minLer |1/k(z)| ( ) eq:interp-est
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To begin to estmate the remaining terms here, we note that

k
1 1
it = exp (k[ 1o L pn(a@n ) = Tt

If z ¢ [a, b] then log ﬁ is a smooth function of ¢ we see that as k — oo

v(2)] = exp (k (/log ﬁa(dt) +0(1))>. (10.1.2)

Furthermore,
1
(/ IOg :uk(dt)> )
|z — 1| k21

is an equicontinuous family for z € T', implying that it converges uniformly, and
therefore the error term in @ can be taken to be uniform in z € I'.

Then for = ¢ [a,b], the function ¢ — logm—l_t| is lower semicontinuous.
This implies that there exists a sequence of increasing continuous functions
(¢(z,t))j>1 with this function as its pointwise limit. Indeed, these functions
are easily constructed by “cutting off” the singularity of the logarithm. We
compute

oula) = [ og ) = [ 1o ()
:/Ej(x,t) (cr(dt)—uk(dt))—i-/(log |:C1—t| — 0 (a, t)) o(dt)

+/ (Ej(l“’t) —log x1—t> o(dt).

The last term here is non-positive. The second term is k-independent and tends
to zero as j — co. We arrive at the upper bound

(@) < / 02, 1) (o(dt) — pa(dt)) + o(1),

where this error term is uniform in x owing to the fact that o has a bounded den-

sity. From here, one can send k — oo, then j — 00, to see that lim sup,,_, . gx(x) <

0. But next, we see that for fixed j the family of functions

(/ﬁj(xat) (o(dt) _Mk(dt))> k>1

is equicontinuous and this imples that pointwise convergence is upgraded to
uniform, in z, convergence. For fixed j, this implies

limsup max gix(x) <o(l), j— oc.
k—oo z€[a,b]
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And sending j — oo, we find

lim sup max gx(x) < 0.
k—oo x€[ab]

What we have shown is that for every ¢ > 0 there exists K = K(¢) so that
for k > K(e)

1 1
— - <
/log P tla(dt) /log P t|uk(dt) <e, forall z€[a,b],

1 1
- — [ > )
/log P t|o(dt) /log P t|uk(dt) >e¢ forall zeTl

This, in turn, implies

1
< —k i log ——o(dt) —
g )] < xp (& | min [10g Lotan — ] ).
1
rznellg |vi(2)] > exp (—k {I?glgc/log T t|a(dt) + 6:|) ,
giving the important estimate
maXgela,b) vk (2)] E(2e+A(T;0))
- <e N 10.1.3) |eqg:Delta
min,er |vg(2)] ( )

1
Al 0) := I — mi 1 .
(T;) mé%/ o8 o —77(4) rg}i?b]/og (@)
(10.1.4)

And we conclude that the interpolant converges at a geometric rate if A(T'; o) <
0.

10.1.1 Gauss-Legendre quadrature

Arguably, the most important case is where p is uniform on [—1,1] and the
associated polynomials (pg)r>o are the normalized Legendre polynomials. The
three-term recurrence f(%r these polynomials is encapsulated in the Jacobi matrix
JLeg f : ac
o ° of the form with
J
2 - D2 +1)

aj:(), ij j:1,2,....

The quadrature rule that results is called the Gauss-Legendre rule. To establish
the asymptotic distribution of the associated nodes we consider the Chebyshev
polynomials of the first kind, associated with the Jacobi matrix J,Sheb with

1/v2 j=1
aj=0, b_{/\[ J ’

;= , =1,2
12 j>1

5 = 1l,4,....
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It is straighforward to see that there exists an absolute constant C' > 0 such
that [|J, ¢ — JEPP|| < C where || - || is the Hilbert-Schmidt norm. Define

1 < @9 < -+ < I}, to be the eigenvalues of J,?Cg and define §; < g2 < -+ < Yx
to be the eigenvalues of J,ghEb. We leave it as an exercise to first show that

. <2(k—j+1)—1>
gj=cos| ——————7),

and then to show that for any function f, continuous on [—1,1]

1
li —
Jim 2 I /f .

ie., %23 6y, (dt) — L \/1‘1'571[_171] (t) weakly.
Now, suppose that f is uniformly Lipschitz continuous on [—1,1] so that
there exists L > 0 such that |f(x) — f(y)| < L|z — y|. And consider

k
Zf(g

:hoffman
where we used the Cauchy-Schwarz inequality and Lemma @_Thfvanishes
as k — oo. Then using the fact that general continuous functions can be
approximated by polynomials (which are, of course, uniformly Lipschitz) we
conclude that ¢ 37 0z, (dt) — %\/%1[_171] (t) weakly.
In the notation of the previous section we have identified

??'M—‘

b L
L e
370 < EVRIET - I

| =
<

o) = -1

wvime

We then claim that

/log| L p o(dt) = —Relog (10.1.5)

z+ V22 -1

— |
Here v/22 — 1 has its branch cut on [—1,1] and it tends to z as |z| — co. If
—1<z<1then|z++vV22—12=224+22—-1= —1 and Relog (”7 VZZLl) is
constant in z and equal to log 2.

An easy way to understand what the function 7(z) = z + v/22 — 1 looks like
off [-1,1] is to understand it as an inverse of

z:zm>:;(n+;).

This map is called the Joukowsky map and it maps the unit circle in the n-
plane to the interval [—1,1] in the z-plane. Our previous calculation confirmed

eq:log-form
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this. One inverse of the Joukowsky map will map C\ [—1,1] in the z-plane

to the interior of the unit circle in the n plane and the other inverse will map

C\ [-1,1] to the exterior of the unit circle in the n plane. So, it remains to

determine which inverse we are dealing with. Indeed, as |z| — oo we can see

that z + v/22 — 1 blows up indicating that |z + V22 — 1| > 1 for z & [1,1]. All
A(T,0) = max (— log

of this implies
—log 2
zel > 08 %

= —miglog‘z—i— V22— 1‘ <0,
ze

z4+Vz22 -1
2

provided that T' N [—1,1] = 0. The following theorem gives a general geometric
rate of convergence for analytic functions.

Theorem 86. Suppose f is analytic in an open set ) that contains the unit
interval [—1,1]. Let pr(x) be the polynomial interpolant of f at —1 < &1 < &g <
o < & <1 where (25)f_ = (&;(k))5_, are the eigenvalues of a sequence of
Jacobi matrices Jy, satisfying

sup ||Jp — JEPP|| < o0
k

Then

1
limsup —log max |f(z) — px(x)] <O.
k—o0 IE[_LI]

Furthermore, if Q) contains the Bernstein ellipse

1

1 .
87={2<77+n>’7]=r619, 1<r <y, O§9<27T}, v>1,

then

1
lim sup z log maxl] |f(z) — p(x)] < —log .

k— o0 z€[—1,

Corollary 4. Suppose Ji is as in the previous theorem with (&;)5_, = (&;(k))%_,
being the eigenvalues of Ji and wy, . .., wg being the squared modulus of the first
components of the normalized eigenvectors of Jy. Suppose further f is analytic
in By that Jy is the upper-left k x k subblock of a semi-infinite Jacobi matriz
whose entries for the three-term recurrence for a sequence of polynomials or-

thogonal with respect to p which is supported on [—1,1]. Then

k
limsupllog Zf(fvj)wj —/f(x),u(dx) < —2log~.
k— oo k j=1
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Consider a self-adoint operator K with kernel K : [-1,1]?> — R, K(z,y) =
K(y,z). Since pg(x)pm(y) for £,m = 0,1,2,... forms an orthonormal basis for
L?([-1,1]?). We first suppose that K(z,y) can be expressed as a finite linear
combination of this basis:

k—1 k-1

K(@y) =Y armpe(@)pm(y). (10.1.6)

£=0 m=0

And, for simplicity, we write this as

k—1
K(z,y) =Y q@)pey), € Pe
=0

:def-fredl
We then consider the series - oince this kernel induces a finite-rank

operator the series truncates at kK — 1 terms. The first term is given by

1 1 k-1 kE k-1
/ K (21, 21)da = / S welapela)dan = 33 qe(is el wy,
-1 —1y—0 j1=1¢=0
k
= Z K(jjlajj1>wj1
J1=1

where the z;,’s and the w;,’s are nodes and weights associated to the Gauss-
Legendre quadrature rule. Note that because | 711 dz = 2 the weights shonld, be
normalized to Zj w; = 2. And so, on hopes that all integrals in ﬁmbe
turned into sums using the quadrature rule. To see this is true in general, use
a cofactor expansion down the last column

n+1

det(K (zp, 2q))1<p,g<nt1 = (_1)n_1 Z(_l)iK(fﬂiv Tny1) det(K (2p, q))1<p<n+1,p2i,
i=1

1<q<n

For the determinants in the first n terms, perform a cofactor expansion across
the nth row. This gives

det(K(xp, mq))lﬁp,qﬁn-i-l = K(Tnt1,Tnt1) det(K(xp, xq))lﬁp,qﬁn

n

+ Z K (i, Tny1) Z(_1>j+i_lK(xn+lv ;) det(K (2p, ©q))1<p<n,pi,-

i=1 j=1 1<q<n,q#j

From this it is apparent that this determinant is a polynomial of degree at most
2k — 2 in zp41. The same holds for any other x;. Therefore

/ det(K (zp, zq))1<p.g<ndry ... dzy,
[_

1,17

)

k
= Y det(K(#,,%,))1<pq<nWy, - Wj,-

Jrendn=1



168 CHAPTER 10. NUMERICAL METHODS

Furthermore, it follows that
det (1 — ZK) = det((qu — ZK(i’p, iq)wq)1§p7qgk.

In t}%gxgeneral case, let Ki(z,y) be a polynomial interpolant of the form

ol a general continuous kernel K (z,y) such that Ky (&,, %,) = K(&p, Z4)

for all choices of (p,q), 1 < p,q < k and denote the associated operator by K.
Then

| det(pg — 2K (Zp, Tq)wq)1<p,g<k — det (1 — 2K) |

,1’1116

k ¢
z
<0 [ N G 2 — Qe (R, 3o zposildn - d
=1

+ > % /[MVdet(K(xp,wq))1<p,q<e|d$1"'dwtz-
l=k+1 -5

Now, suppose that
K (z,y)| < M(2), |K(z,y) — Ki(z,y)| < N(z, k).
Then the basic estimates are:
| det(K (2p, ) 1<pqzel < LM (1) - M (o).
and

| det(K (2p, 24))1<p,g<e — det(Kk (T, 74))1<p,q<e]

¢ j—1 ‘
<Y Nl k)2 (H M(%)) [T [(M(zg) + N(zg, k)]
j=1

q=1 q=j+1

To see how to establish the latter, let Ay = (K(zp,2q))1<pg<e and Ay =
(Kk(2p, xq))1<p,g<e and for j =1,2,...,¢ — 1 define A; to be the matrix that
has its first j columns coincide with Ay and its last £ — j columns coincide with
Ay. Then

{—1

Ag—Ac=7 (45— Ajn).
j=0

Then the difference A; — A1 is estimated by
|Aj = Aja| < Naj, k)2 (M(21) - M(z5-1))
X (M(zj41) + N(@jza; k) - - (M(zg) + Nz k))) -

This is found by performing a cofactor expansion down the jth column and
accounting for the first j — 1 columns and then for the last £ — j — 1 columns.
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From these basic estimates, one obtains
/[1,1]/z | det(K (25, 2g) 1 <pa<e — det(Ky(@p, 7)) 1<pgzeldar - dug < L2 ey (O + ),
/[ | UK G sl e < €12,

where C = [ M(z)dz, ¢, = [ N(z,k)dz. It is then important to use Stirling’s
formula to estimate

54/2 Ve et
7 Tﬂ-gm, ’Yg:l+0(1), K%OO

This, of course, decays to zero super-exponentially. It can also be established
that vy < 1. To find a final estimate for the error, define the, in particular
continuous, function

G(@:i(\cij, ¢>0.

j=1
This then gives the estimate
| det(0pg — 2K (Zp, Zq)wg)1<p,q<k — det (1 — 2K) |

o0

Kl ¢ |[° ¢
<c ————(e(C +cp))" + ————(eC)",
- k;::l o ) Z:ijﬂ NG

k
< ck\/ZG (|z]e(C + c)) + \/2171_7 <|z|\/eEC’> G(|z]eC).

Since the second term tends to zero so quickly, one can often infer that det(d,q —
2Kk (Ep, Tq)Wq)1<p,g<k tends to det (1 — zK) at a rate determined by, up to a
factor of vk, c.

Theorem 87. Suppose K : [—1,1]> — R is analytic in the sense that it can be
represented as

S S B N S )
Ko == [ [ e

where T is a simple smooth curve that encircles [—1,1]. Then the unique bi-
variate polynomial interpolant Ky, at the eigenvalues %1, . ..,Zy of J,I;eg satisfies

|K;€(Z‘,y) - K(l’,y)| < Ce_k5

max
(zy)€[-1,1]2

for some § > 0.
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Proof. We first construct the interpolant after fixing x:

K(z,y) = pr(y;z) + ex(y; ).

leq-inte Jeq-Delta K(z,-
From (TU.T.1)) it follows that |eg (y; z)| < %e_k‘s for some

6 > 0 that is independent of both x and y. We then write the interpolant in the
Lagrange form

pryie) = Y K(x,5)65(y),

where ¢;(Z;) = 0;;. We then apply the same procedure to K(z,Z;) arriving at

K, )l
K(l’,fj) = qk(:c;j) +ék(x;j), |ék(1'§j)| < %e ké'

The interpolation formula takes the form
k
K(x,y) =Y lar(@;5) + én(@; )] £ (y) + ex(y; o),

Jj=1

where
k
S qu(:5)6(y)
j=1

interpolates K (z,y). There exists a constant C' > 0 such that ey, &, < Ce™*.
It then remains to estimate

k
A ma i(y)|.
e max 310
Jj=1
This is the so-called Lebesgue constant. Estimating this is not simple. The clas-
sic book by Szegd demonstrates that A = O(n'/?) for Legendre polynomials.
The theorem then holds by replacing  any smaller value.

O

We conclude that

det(6pq — 2K (&p, Tq)Wq)1<p,g<k — det (1 — 2K) (10.1.7)

at a geometric rate.
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10.1.2 An implementation in Julia

Here we use the Julia programming language to compute Fredholm determi-
nant and thus compute the limiting distributions that have appear previously.

The following code constructs the nodes xj and weights wj for Gauss-Legendre
quadrature on an interval [a, b].

using LinearAlgebra

function Jacobi(a,b,k) # creates k x k Jacobi matrix
SymTridiagonal ([a(i) for i in 1:k],[b(i) for i in 1:k-1]

end
aj = j -> 0.0; bj = j -> j/sqrt((2j+1)*x(2j-1))
L = Jacobi(aj,bj,10) [|> eigen

Xj (a+b)/2 .+ (b-a)/2xL.values
wj abs2.(L.vectors[1,:]1)*(b-a)

In some situations it maybe be advisable to use orthogonal polynomials on a
semi-infinite interval [a, 00), such as Laguerre polynomials, to compute Fredholm
determinants. We leave this as an exercise. For our examples, the only time we
will compute the Fredholm determinant for an operator posed on an unbounded
domain will be for the Airy kernel. In this case we have clear decay estimates
for the kernel and the truncation of the “infinite” Fredholm determinant to one
on a finite interval will be straightforward, with accuracy guarantees.

The sine kernel determinant

The following simple code now evaluates the sine kernel determinant to within
nearly 16 digits.

function Ksine(x,y)
return sinc(x-y)

end

function SineDet ()
# k is the number of quadrature nodes
k = 30; L = Jacobi(aj,bj,k) [|> eigen
function freddet(a,b) # a < b
Xj (a+b)/2 .+ (b-a)/2xL.values
wj abs2.(L.vectors[1,:])*(b-a)
X = repeat(xj,1,k)

Kmat = map(Ksine,X,X |> transpose)x*diagm(sqrt.(wj))

return I - diagm(sqrt.(wj))*Kmat |> det
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end

SD = SineDet(); SD(-0.1,0.1)

Also of note is the fact that we actually evaluate

det(dpq — 2/ w, K (%), jjq)\/@)lﬁmqék

- im
which, of course, is the same as the desired determinant dﬁ—ﬁut it involves
the determinant of a symmetric matrix when K (x,y) = K(y,z). The execution
of F2(2.0) takes on the order of 10~2 seconds on a laptop.

The Airy kernel determinant

The following simple code evaluates Fy with nearly 16 digits of accuracy. If
the density is desired, one can differentiate the distribution function using the

w) for h small. Note that the code below is written

expression Fj(t) ~ Im (
to avoid any complex conjugation X |> transpose instead of X’ to allow for
the code to produce an analytic function of . With h = 107% the density can
be approximated to around 12 digits of accuracy using this method.

The only additional complications one encounters in this code is the truca-
tion of the domain (the 1 parameter takes care of this) and the definition of the
kernel itself.

Ai = x -> airyai(x); DAi = x -> airyaiprime(x)

function Kairy(x,y)
if x ==
return DAi(x)"2 - x*Ai(x)"2
else
return (Ai(x)#*DAi(y)-Ai(y)*DAi(x))/(x-y)
end

end

function TracyWidom ()
# k is the number of quadrature nodes
# 1 is the trucation paramater,
# the upper bound on the interval length
k = 30; 1 = 8; L = Jacobi(aj,bj,k) |> eigen
function freddet (t)
if real(t) > real(l)
return 1

else
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xj = (t+1)/2 .+ (1-t)/2*xL.values
wj = abs2.(L.vectors[1,:])*(1-t)
X = repeat(xj,1,k)
Kmat = map(Kairy,X,X |> transpose)
Kmat = Kmat*diagm(sqrt.(wj))
return I - diagm(sqrt.(wj))=*Kmat [|> det
end
end

end

F2 = TracyWidom(); F2(-2.0)

The Bessel kernel determinant

The Bessel kernel K, ézgsel(x, y) introduces some additional complications. First,

it is not clear if and when the kernel is smooth when z,y ~ 0. And Eﬁgondly,
it is rather involved to compute Kézgsel(m,x). We use the relations {)CTEBCIO,
10.6.2]

Jo(2) = =Jar1(2) + S Ja(2),

= %Ja(ﬁ) - =

TaZ) = Jami() = Sa(2),

d 1

= a\/zj(x-‘rl(\/%) = ﬁ (\/EJ@(\/E) - aJa-‘rl(\/E)) )
:bessel-limit

and from the proof of Lemma ﬁz we write

K(Oé) ( 7y) _ ﬁJa+l(ﬁ)Ja(\/g) - \/?jJale(\/ﬂ)Ja(\/«%)'

Bessel 2(93 _ y)

Keha(e,2) = | <Ja+l<\/5>2 (VD) - jogicJMl(ﬁ)Ja(ﬁ))

10.2 Sampling determinantal point processes

Three approaches: DBM, Poulson, sampling marginals

10.3 Brownian bridges and non-intersecting Brow-
nian paths

Include this?
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10.4 Implications for randomized numerical lin-
ear algebra

Probably not...

10.5 Exercises

1. Chebyshev nodes 2. Distribution of Chebyshev nodes 3. Logarithmic po-
tential of arcsine law with hint: Write it as as the real part of log transform,
differentiate, solve with Cauchy transform. Reference hilbert transform from
previous chapter. 4. Fredhold det with Laguerre polynomials



Part 111

Appendices and background
material

175






Appendix A

Elementary probability
theory

-app:prob
A.1 Axioms of probability

Let (Q, B,P) be a probability space. Here B is a o-algebra of subsets of {2 and

P is a measure on B with total mass one, P(2) = 1. Thus we have the axioms
of the measure

e P(@) =0, and

o if F, Fs, ... is a sequence of disjoint sets from B
P E; | =D P(E).
J J

These axioms give the following properties.
Theorem 88. 1. If Fy,Fs € B, By C Es then P(E;) < P(F2).

2. For sets E1, Es, ... from B that are not disjoint, we have the union bound

PlUE | <D P(E)).
J J
3. For sets Ev, Es, ... from B with E; C Ej1 for all j
P UEj = lim P(E)).
j

177
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4. For sets By, Es, ... from B with E; D Ej4q for all j

j—o0

P (B | = lim P(E)).
J

A random variable X is a measurable function, defined on 2, taking values
in a measurable space (3,8), X : @ — X. The only properties of X we are
allowed to take into account is its distribution. That is, we can observe

P(X € R) =P(X Y(R)) € [0,1],

for each R € S. We do not characterize the exact value of X (w) for w € Q.
To emphasize this fact we will often introduce X using the notation X € ¥ to
indicate the codomain of X, ignoring its domain. In every case we consider, X
can be identified with a subset of R¥ for some k, and S = S, will be the Borel
o-algebra generated by open sets, in the relative topology.

Now consider f : ¥ — ¥/, measureable, where (X', S’) is another measurable
space. Define Y = f(X). The distribution of Y, given by,

P(Y e R)=P(f(X) e R)=P(X € f~Y(R))

is called the pushforward of X under f. In the case where ¥ = R, define the
(cumulative) distribution function for X by

Fx(t) =P(X < t).

From Theorem [E8] wé have that Fy (t) < Fx(s) if t < 5. But more is true. Let
t; >t with t; — ¢t monotonically. Then

P(X <t)=P m{X <t;} :jlggOP(X < t).
J

Now, assume t; > ¢, t; — t, without any monotonicity assumption. Recall the
following fact.

Lemma 33. Let (sp)n>1 be a sequence in a metric space S, and let s € S. If

every subsequence of (sn)n>1 has a further subsequence that converges to s, then
lim,, o0 S5, = S.

Now, every subsequence of (¢;);>0 has a monotonically converging, further
subsequence. Then P(X < t¢;), along this further subsequence, has a limit of
P(X <t). Therefore lim;_, P(X < t;) = P(X <t). This shows that Fx(t) is
right-continuous. Any function F' that satisfies these properties

e I is right-continuous, and
o F(t) — 1j9,00)(t) decays for large [t]

is called a distribution function.
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A.2 Multivariate distributions and independence

Now, consider the case where ¥ = R* for some k, i.e, X is vector valued. Let
X, 1 < j <k, be the components of X. Then the (cumulative) distribution
function for X is given by

Fx(ti,...,tp) =P(X;y <t1,..., X < tg).
The distribution function has three main properties:
1. 0< F(th...,tk) < 1 for all ti,ta, ...,k € R,

2. For fixed t¢, £ # j, F(t1,...,tj-1,,tj+1,---,tx) is a distribution function,
and

3. F(ty,...,t5) — 14+ (1 — H?:1 1j0,00)(t;) decays to zero as max; |t;| — oc.

A point (t1,...,tx) is a continuity point of F' if F' is continuous at (t1,...,tx).
The components of X are said to be independent if for every choice of sets
B; €S, 1<i<k,

k
P(X) € By,... Xy € By) = [[ P(X; € B)).

Jj=1

An important tool in establishing that two random variables are independent
is the conditional expectation. First, for a random variable Y define

o(Y):={Y YB)|B € S}.

Definition 89 (Conditional expectation). The conditional expectation of X
given Y, denoted E [X|Y] is any random variable Z such that

1. Z is o(Y)-measurable, and
2. forall Seo(Y), E[X1g] = E[Z1g].

Importantly, it turns out that the conditional expextation exists and is
unique. The main way in which we use the conditional expectation is in the
context of the following lemma.

Lemma 34. Suppose X and Y are independent random variables wit}ﬂ Y=
R™. Let ¢ : ¥ x X — C be so that E[|o(X,Y)|] < co. Then

Elp(X,Y)[Y]=G(Y), Gly) =E[p(X,y)].

Here it is not required that n is the same for X and Y. Furthermore, X and Y could be
matrix valued.
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Proof. Tt suffices to show that for any S € o(Y) we have
E[G(Y)1s] = E[p(X,Y)1s].

The important observation is that S = Y ~!(B) for some B € S implying that
]15' = ]lB(Y) and then

BIG(Y)1s) = [ g(u)La(y)v(dy
where v is the distribution of Y. Then

o(y) = / (@, y)u(dz)

where p is the distribution of X. By independence joint distribution of (X,Y)
is the product measure p(dz)v(dy) so that

/ ()1 () (dy) = / 15(y) (., y)v(dy)u(dz) = Elp(X, V) Lg].

A.2.1 Integration and L” spaces

The expectation of a complex-valued random variable X is defined by
E[X] = / XdP,
Q

provided that this integral exists. When Q C R* for some k we often use the
notation

E [X] :/QX(w)IP)(dw).

We say that X € LP(Q,B,P) = LP(Q) for 0 < p < oo if

E[|X[?] < oo.

A.2.2 Modes of convergence

We first discuss the convergence of scalar-valued random variables. Let (X,,)n>1,
X be a sequence of random variables defined on a common probability space
(Q, B, IP’)EI We have four types of convergence:

1. Almost sure convergence: X,, — X almost surely (X,, =% X) if

P (limsuan = liminf X,, = X) =1.

2Kolmogorov extension theorem....
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2. LP convergence: Suppose X, € LP(Q) for every n and X € LP(Q). Then

Xo = X in IP(Q) (X 2% x) if

n—oo

E[X, - X|"] = 0.

3. Convergence in probability: X, — X in probability (X, ok x ) if for

every € > 0

n—oo

P(|X, — X| > e) "=50.

4. Convergence in distribution: X,, — X in distribution (X, dist x ) if for

every t at which Fx(t) is continuous

Fx, (t) =5 Fx(t).

To check convergence in distribution one needs to see that Fx, (t) — F(t) for
some function F (at all its points of continuity) and that F is itself a distribution

function. ,—(Include proofs and/or references.

Definition 90. A sequence of random variables (X,,),>1 is tight if for every
€ > 0 there exists R such that

limsupP(|X,| > R) <e.

n— oo

Definition 91. Suppose for some Borel measure p, a sequence of random vari-
ables (X, )n>1 satisfies

Fx, (t) =% F(t) == p((~o0,1])

at all the continuity points of F'. Then Fl, is said to converge to I’ vaguely.
Alternatively, we say that X,, — p as n — oo.

It is important to note that u is not necessarily a probability measure. If it
is then we have convergence in distribution. Tightness guarantees this.

Theorem 92. A sequence random variables (X,,)n>1 is tight if and only if every
vaguely convergent subsequence converges to a probability measure.

Theorem 93 (Helly’s selection theorem). Let (X,,)n>1 be a sequence of real-
valued random variables. Then there exists a subsequence (X, ))r>1 and a

measure i such that X, ) 5 uoas k — oo.

An important consequence is that if (X,,),>1 is a tight sequence of random
variables then there exists a subsequence that converges in distribution to a
probability measure p (i.e., a random variable X with distribution ).

All of these notion extend to the multi-variate case by replacing the absolute
value with a norm || - || and replacing (¢) with (¢1,...,%;) in the definition of
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convergence in distribution. The following theorem is not needed often in the
text, but it is necessary to understand the statement of many results in the
literature. Another consequence, is that if, for example Fx, (t) — F(¢t) for
every t € R, F is continous, and (X,),>1 is tight, then F' is a distribution
function.

Theorem 94. Let (X,,)n,>1 be a sequence of vector-valued random variables
taking values in C™ (or R™). Then as n — o0

dist.

X, — X

for a random variable X if and only if
E[F(Xy] — E[F(X)]

for all bounded, infinitely differentiable functions functions F : C* — R (or
F:R" > R)

Another convenient characterization of convergence in distribution is the
following.

Theorem 95 (Levy continuity theorem). Let (X,,)n>1 be a sequence of vector-
valued random variables taking values in R™. Then as n — oo

dist.

X, — X

for a random variable X if and only if
E[etXn)] — E[e“X)]  for all t € R™
This theorem provides a convenient way to prove the following result.

Lemma 35. Suppose (Y;,)n>1 15 a sequence of real-valued random variables and

suppose (Xp)n>1 15 a sequence of vector-valued random variables taking values in

R"™. Suppose that as n — oo, Y, }ﬂ)’ ceR and X, st ¥ then Y, X, diste x

Proof. Fix e > 0. Because the sequence (X,,)n>1 converges in distribution, it is
tight. This means that there exits R > 0 such that P(]| X, |l2 > R) < € for all n.
Then for n sufficiently large, we know that

P(|Y, —c| > €¢/R) <e.
With this in hand we estimate
Efoi(t:YnXn)] _ E[ei(t,an)]’ _ ’]E {ei@,an)(ei(t,Yan)fi(t,an) -~ 1)} ’

<IE{

i (B(Yn—e)Xn) _ 1H
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Then write

ot (Yn—=0)Xn) _ 1’ — | it (V=) X0

' 1‘ L{1 X 2 <RIN{| Yo —cl<e/ R}

i(t,(Y,—c) X,

+ |e

'- 1’ Ly Xl > RYU{| Y —c|>e/ R} -
We use the elementary inequality for z € R
|eiz - 1‘ § |l“,

to bound, on the set {||X,|l2 < R} N{|Y, — | < ¢/R},

Q= Xn) 1‘ <[t (Yo = &) Xn)| < ([t Yn — el | Xnll < €lltl2-

Then by the union bound, for n sufficiently large

|

< 2P ({||Xull2 > RY N {[Y — | > ¢/R}) < 4e.

(Va0 X

Y- 1‘ ]1{uxnnzzR}u{lchlx/R}}

As € is arbitrary we conclude that
‘E[ei(uYan)] _ ]E[ei(mcxn)]‘ 0,

and the proof is finished by simply observing that E[el(t:¢Xn) — E[ei(tcX)] O

A.3 Classical distributions

We now describe some classical distributions that will play a significant role
in what follows. First the abbreviation iid is short for independent and iden-
tically distribution. So, a collection of random variables (X,,),>1 is iid if it is
independent and

FXj = FX1 for all ]

1. Normal (Gaussian) random variable: X € R is normally distributed with
mean g and standard deviation o > 0 (X ~ N(u,0?)) if

1 t
Fx(t) = o / o= (=m0 gy
—o0

o

2. Multi-variate normal random variable: X € R™ is normally distributed
with mean p € R™ and covariance ¥ € R**"™ 3 > 0 (X ~ N (u, X)) if

1 t tn 1 Ts—1
Fx(ty,. . ot :—/ / o= @S @)y
x (b ) 2 S o s
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Standard complex normal random variable: X € C has a standard com-

plex normal distribution if
|1 /2 0
)

Exponential distribution: X € R is exponentially distributed with rate

A >0 (mean 1/X) if

Fx(t)=1—e,

Chi-squared distribution: X € R has a chi-squared distribution with m

degrees of freedom (X ~ x2)) if

X~ E:Xiv (Xj)jzy did, X1~ N(0,1).
=1
In other words,
1 ! /2—1_—x/2
F t e — m — —T d
x(2) 2m/zr(m/g)/o 22165 2y,

where T'(+) is the Gamma function. Note that this second expression can
be use to extend the definition to non-integer m.

Chi distribution: X € R} has a chi distribution with m degrees (X ~ xp)

of freedom if
X ~VY, Yol
It follows that

1 b
_ m—1_—z°/2
Fx(t) = —2m/2—1r(m/2) /O ™ e dx.

B-Dirichlet distribution: X € R™ has the -Dirichlet distributiorﬂ if

T n ..
X~Y/|Y], Y=Y - Y], (V)i id, Yi~x3

Beta distribution: X € [0,1] is beta distributed with parameters (a, ) if

1

—_ tzo‘fl — ) ldx « =
g L = e Bla)

[(a)T(5)
P(a+p8)
It should be noted that the marginal distribution of each component of a

B-Dirichlet distribution is the beta distribution with parameters (3/2, (n—
1)5/2).

Fx(t) =

3This is note the classical definition of the Dirichlet distribution but it is convenient for
our purposes.
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A.4 Other measure-theoretic facts

Lemma 36. Suppose P(x1,...,x) is a polynomial,
n
P(xl,...,xk)zz Z C(il,m’id)xh”'xid.
d=0(i1,...,4q) € [1,k]*

i1 <idg < --- <ig
If P vanishes on set of positive k-dimensional Lebesque measure, then P = 0.

Proof. We prove this by induction on k. For k = 1 the claim follows because
an analytic function that vanishes on a set with a limit point must vanish
identically. Assume the lemma for k¥ — 1. Suppose R is chosen such that {z €
R* : P(x) = 0} N B(0, R) has positive Lebesgue measure. Under the hypotheses
of the lemma, there exists an infinite number of distinct values a;, j > 0, so
that the polynomial in k — 1 variables

P(xi,...,25-1,a5) = Zpd(xl, e ,xk,l)a? (A4.1)
d=0

vanishes on set of positive (k — 1)-dimesional Lebesgue measure. To see this, let
F(r) = ]I{P:()}QB(O’R)(QT) and consider

0< /IR F(z)Dz = /z (/R F(x,:ck)Dx> dzg.

Therefore there must exists an infinite number of poin‘Eg Zy where ka,l F(x,z;)Dx
does not vanish. By the induction hypothesis vanishes on R¥~! for each
j. We obtain a system of d + 1 linear equations

n
Zpd(xh...,xk,l)a? =0, j=0,1,....d, (x1,...,2-1) € R,
d=0

This is a Vandermonde system (see ﬁ and it implies that pg = 0 for each
d. O

Theorem 96. Let (Q,B,1) be a measure space. Let fi be a sequence of in-

tegrable functions such that fr — f almost everywhere. Further, suppose that
|fk| < g for allk and [ gdp < co. Then

dim [ = [

Theorem 97 (Borel-Cantelli, if needed?).

Theorem 98 (Jensen’s inequality).
Theorem 99 (Markov’s inequality). Suppose X is a non-negative random vari-
able and t > 0. Then
E[X]
e

P(X >t) <
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A.5 Classical limit theorems

In order to put limit theorems from random matrix theory in their correct
context, we briefly review the two main limit theorems from classical probability.
The strong law of large numbers states the following.

Theorem 100 (Strong law of large numbers). let (X,,)n>1 be a sequence of iid
real random variables with p = E[X;] < co. Consider the sample average

Then

that is, Sy =55 p.
The strong law of large numbers implies the weak law of large numbers.

Theorem 101 (Weak law of large numbers). let (X,,)n>1 be a sequence of iid
real random variables with p = E[X;] < co. Consider the sample average

1 n
S, = E;Xj.

Then S, prog I

The central limit theorem concerns the correction term &, in the expansion
Sn=p+&,.

Theorem 102 (Central limit theorem). In the setting of the previous theorem,
suppose, in addition, that o = Var(X;) < oo. Then for all t € R

S — 1% 1 t 2
1 n < = — -z /2 .
inP(ZAst) =g [ e
In other words, if Y ~ N(0,1) then

Sn — M dist.
Y,
ain

as n — O0.

In a distributional sense, the central limit theorem states

Y
Sy &+ 2 o S, ~ N (u,0?/n).
n

NG
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A.6 Point processes on R

The simplest point processes on R comes from a finite-dimensional distribution.
For example, if X ~ N (u,X) is a n-dimensional normal random variable we can
consider the point process {X7, Xs,..., X, } C R or represent the process as a
random measure

n
Ux = Z(SXj.
j=1

It turns out that this representation of the point process is often convenient. In
this notation, the distribution of the largest component of X would be given by

Plmax X; < 1) = P(ux((t.00) = 0).

Furthermore, the random measure interpretation makes it clearer why this is
indeed a stochastic process: Define a stochastic process (Z;):er by

Zy = NX((_Oovt])'

A.6.1 Homogeneous Poisson point process

The most famous instance of a point process is the Poisson point process. Here
we only discuss its homogeneous incarnation on R. Let A > 0 be the rate for
the process. The the Poisson point process is given by a Borel random measure
wy that satisfies

1. pux(B) € N for any Borel set B,
2. px({a}) = 0 almost surely, for some a € R,
3. for any tg < t; < --- < t;, the increment random variables
I = px((ty, tja]), 0<j<m—1,
are independent, and

4. fora<b

(A(b - a))ke—/\(b—a)
k! '

P(ux((a,b]) = k) =
The last property implies exponentially-distributed gap probabilities
P(px((a,b]) = 0) = e A7),
Then compute, for eX <1,

> k
Bluafe.c+) 21) =) (/\/:I) e < ede 250,

k=1




188 APPENDIX A. ELEMENTARY PROBABILITY THEORY

giving that P(ux({c}) > 1) = 0.
Next, consider the spacing statistics in an interval (a, b]. Since N := px((a, b])
is almost surely finite, define X1,..., Xy, to be all the points in (a, b] such that

mn({X;}) #0,
ordered in weakly increasing order, counted according to multiplicity. For ex-
ample, if P(ux({X1}) = j then X; = Xy = .-+ = X,. For t1,t5 > 0, by

independence

P(X1 <t1,Xo — X1 <t2)

P (ux((a,t1]) > 1, px([te, ta + ta])
P (ux((a,t1]) > 1, px((t1, 11 + t2])
(1 o e—/\(tl—a))(l _ e—>\t2)'

)
1)

(\VARA%

So, we conclude that X; and the increment X5 — X are independent. Further-
more, P(X; = X3) = 0. Thus the Poisson point process is simple: ux({c}) €
{0,1} almost surely.

A.6.2 Characterization of a point process

A set A C R is said to be a locally finite point configuration if |[A N B| < oo
whenever B is bounded. Here | - | denotes the cardinality of the set. Define
P to set of all locally finite point configurations. Then let P be the smallest
o-algebra generated by the sets

{AeP:|ANB|=m}, BeB, meN.

Definition 103. A point process X is a measurable mapping from a probability
space to P. The distribution of X is the function Fy,, x(Z) = P(X € Z) defined
on P. The induced random measure is given by ux(B) = |X N B| for B € B.

Two point processes X7 and X; are equal in distribution if Fy, x,(Z) =
Fop x,(2) for all Z € P. It is an important fact that the distribution of a
simple point process is completely determined by its gap probabilities.

Theorem 104 (ref here, supposedly Renyi 1967 but that doesn’t completely
narrow it down). The distribution of a simple point procesﬁ X on R is uniquely
determined by its gap probabilities

P(ux(B)=0), BeB, B bounded.

4This holds more generally on metric spaces.



Appendix B

Elementary differential
geometry

Differential geometry, and more specifically, integration on manifolds, plays a
fairly significant role in this text. We only treat manifolds that are subsets of
real or complex vector spaces.

Definition 105. Suppose S is a normed vector space over R (or C). A smooth

manifold in S is a subset Ml C S equipped with a countable collection of contin-

uous, injective mappings ¢; : Q; — RP, j =1,2,... such that
e (e ©j (Qj),
e (), is relatively open for each j,
° UQj = M, and
J

o Tyj:=go ¢;1|%(Qjmm) is a C* transformation whenever ¢;(€2; N )
is non-empty.

The collection ((£2;,¢;));>1 is called an atlas for M and p is the dimension of
M.

The main tool to allow us to integrate on manifolds is the idea of a partition
of unity.

Definition 106. Let (U, )qcr be an open cover of a metric space Q2. A partition
of unity subordinate to this open cover is a collection of continuous functions
(fa)aer such that suppfo C Ua, fo(x) € [0,1] and for each & € Q there exists
a neighborhood V' of  such that [{a: fo (V) # {0}}| < 00 and

Z falz) =1

acl

189



190 APPENDIX B. ELEMENTARY DIFFERENTIAL GEOMETRY

A general fact (reference?) is that a smooth manifold M with atlas ((©2;, ¢;))>1
possesses partition of unity (f;);>1 subordinate to (U;);>1 such that f; o ¢}
is a C'*° function on ¢, ().

B.1 The tangent space

Let M be a smooth manifold of dimension p. Fix a point M € M, where M € ;.
Let v : (—€,e) — M be a curve that passes through M, v(0) = M. The curve is
said to be differentiable if ¢; o «y is differentiable in the classical sense. Because
S is a normed vector space we can just impose thatﬂ there exists 7/(t) € S such
that

v(s) =v(t) + ' ()(s = t) + ol]s — t]).

Recall
oy 190l
= f lim—~————=0
g(s) =o(|sl) if  lim ] ,
where || - || is the norm on S. Two such curves 71,72 are equivalent if v;(0) =

~5(0). The tangent space Thr(M) at M is the set of all equivalence classes of
differentiable curves passing through M.

Lemma 37.
Ty (M) 2 {z € R?: v/(0) =, 7 is a differentiable curve passing through M },
and the latter is a subspace of RP.
Proof. The congruence is clear. Now, suppose z,y € Ty (M) and let ¢1,c2 € R.
Then we have v, and 7, such that v, (0) = z and 7, (0) = y. Consider

F(t) = vz (e1t) + yy(eat),

so that 4/(0) = c1x + cay € T (M). O

B.2 Metric tensors, Jacobians and integration

There is a natural volume form on each finite-dimensional inner-product space
of dimension p. For example, on RP, the standard inner product defines the
metric with infinitesimal length element ds® = %', dz? and the volume form
Dz = dz1dzs . .. dz, (we follow the notation of [Zubl12] for volume forms). More
generally, each g € Symm , (p) defines an inner-product and metric on R?:

P P
(x,y)g = Z GikTiyp, ds®= Z gjrda;day. (B.2.1)

J,k=1 j,k=1

LIf S was not a normed vector space we would need to consider the derivative of @jon.
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The associated p-dimensional volume form is

Dz = y/det(g) dz; ... dx,. (B.2.2)

A smooth manifold M inherits the topology of the ambient metric space S.
Therefore we have a natural Borel o-algebra By generated by the (relatively)
open sets of M. Suppose we have a measure space (M, By, i), then for example,
continuous functions F': M — R are measurable and we can define

/ Fdu
M

in the standard measure-theoretic manner. But we wish to do two additional
operations:

e Show the existence of such a measure p using integrals on RP.
e Express this integral in terms of integrals on RP.

For a general manifold M a metric tensor ds? is a non-negative bilinear form
gu on Tar(M) x Thy(M). Fix a basis X1,..., X, for Tps(M), and define, with
some abuse of notation, the matrix g(M) = (gjx(M)); x> 9jx(M) = g (X;, Xk)-
This parameterization gives a natural invertible mapping ¢ from R? onto T, (M)
given by

T1
zp J
The metric tensor is then written in this basis

ds? = Zgjk(M)dxjda:k = (dz,dz) 4(ar)-
3.k

Now, let U be a (relatively) open subset of M. Let ¢ : V' — U be a bijective
diffeomorphism on an open set V- C RP. Then if M = 1(y), the Jacobian D(y)
is an invertible linear transformation from R? onto T, (M) and we write

ds® = (Dt (y)dy, Dt (y)dy) gy (y))- (B.2.3)

where we use Dy (y) to denote the matrix for the linear transformation ¢~! o
Dy(y) : R?. — RP in the standard basis.
Then induces the volume form
det(g(¢(y)))] det Dyip(y)|dys - - - dyp.

As a consistency check, suppose a different basis (Z;);>1 is chosen, X; =
Zk fijk. Then

X = Z{Eij = Zl‘k Zﬁijj = Z <Z£Jkl‘k> Zj = szzj'
J k J k j

J
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And then it follows that z = Lax where L = ({;1); 5. And then
ds® = (L7 'dz, L™ dz) g(ary = (d2,dz) -1 (aryr-1-

We need to change basis for the Jacobian D(y) and consider the matrix for
Lo~! o D¥(y) and we find

d32 = <D¢OL*1w(y)dya D(z)oL*l ¢(y)dy>L7T‘q(w(y))Lil
= (LD (y)dy, LDyt (y)dy) -7 gy (y)) L

This produces the same volume form as @B
Let f: M — R be supported in U, we then define

/ fdpy = /V £ o () Vaet(g(6(@)| det Dy(y)ldys -~ dyp.  (B.2.4)

This is well-defined (i.e., independent of the choice of parameterization 1) be-
cause of the standard change-of-variables formula on RP. By the Riesz Repre-
sentation Theorem p, extends to a measure on the measureable space (M, By).

For the second task we use a partition of unity (f;);>1 subordinate to an
atlas (€;,¢;);>1 and, just for a matter of simplicity, we assume the atlas is
ﬁmteﬂ j €[1,q]. For a measurable function F : M — R,

F= Z Efj,
=1
so that

q
Fdy = / Ff;du.

Then, define the pushforward of u|q, under ¢;: v;(B) := ,u(goj_l(B)) for a Borel
measurable B € ¢;(€2;) C RP. Then

[ Frn=[ P (e @)

Q2 21 )]

B.3 Implicit function theorem

(add this, analytic version too )—L

s:Haar

B.4 Lie groups and Haar measure

A Lie group G is a group that is also a smooth manifold. Furthermore, the
group operations must be smooth. That is:

gxh g 'h

2In what follows we will be largely concerned with compact manifolds and this restriction
will suffice.
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must depend smoothly on (g,h) € G x G. In general, definition of smoothness
needs to be understood via the manifold’s differential structure. Because the
Lie groups we consider can be identified with subsets RP this extra step is
unnecessary.

The associated lie algebra g is the tangent space at the identity g := Tiq(G).
Additional topics related to Lie groups and Lie algebras are not needed for the
developments in this text. But, due to the importance of Lie groups in the wider
mathematical literature we use this notation.

Given a topological group, such as a Lie group, Haar measure is a natural
measure determined by the group structure itself. The simplest example is
viewing R as the additive group and then Haar measure coincides with Lebesgue
measure. The existence and properties are descgibed. i 91'7}8e following theorem
originally due to Weil [WelbI] but translated in [Nac76[.

211195
Theorem 107 (W’VVIelSlf). Let G be a locally compact Hausdorff topological
group. Then, up to a unique multiplicative constant, there exists a unique non-
trivial Borel measure p such that

e 1(gS) = p(S) for allg € G and S a Borel set,
e 1 is countably additive,
o ((K) < oo for K compact,

e 1 is inner reqular on open sets and outer reqular on Borel setﬁ.

B.5 Examples

Example 108. The canonical example of a manifold is the sphere in n di-
mensions, denoted S"~! C R" consisting of all unit vectors. And, generalized
spherical coordinates give R” = R, x S"~!. Natural parameterizations are given
in standard multivariable calculus courses for S' and S?. We demonstrate the
use of metric tensors to compute the change of variables formula for spherical
coordinates. The first calculation we perform holds for all n while the actual
parametrization we use clearly holds only for n = 3. Set

r=rw, r>0 wes" L
Then
dz = drw + rdw.

Using the standard metric on R™ we have

ds® = Zdz? = dr? wa + 2rdr2wjdwj +r? Zdw]z.
J J J J

3Inner regularity states that any set can be approximated, in measure, by compact subsets.
Outer regularity states the same approximation by open supersets.
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This is then simplified noting that >, w? = 1 and therefore > jwidw; =0,
giving

ds? = dr? 4+ r2 Z dwf.
J

So, we find
T(r,w) =R x {y eR": <w7y> = O}
Now for n = 3 we parameterize for 0 < 0 < 27, 0 < p < 7

w1 = cos Bsin p,
wy = sin fsin @,

w3 = COS .

This provides the linear transformation J(f, ) onto the tangent space

a0 —sinfsinp cosfcosp a0
dw = J(8, p) [dcp] = | cosfsiny sinfcosep { }
0 —sing

The metric tensor becomes

ds? = dr? + 12 <J(9,¢) {gﬂ L J(8,9) {iﬂ > .

Then using
det J(8,0)TJ(8, ) = sin? ¢,
we find the volume form
2 sin ¢ drdfde,
as is expected.

Example 109. The orthogonal group, denoted O(n) C R™*" = R”Z, is the
subset of real n x n matrices O that satisfy OTO = I. This is clearly a closed,
compact subgroup of all invertible matrices and it is also a Lie group. So, there
is exists a unique measure left-invariant Haar measure p normalized such that
f"(lngjp = 1. Compactness guarantees that this measure is also right-invariant
[Eol99)

The E'&lg%g‘g sfg%ggno(n) at the identity, i.e., the Lie algebra, is computed in

Chapter 1S given by the subspace of all n x n skew-symmetric matrices
o(n) = {AeR™" | AT = —A}.
Furthermore, for O € O(n)

ToO(n) = Oo(n).
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One can compute the associated metric tensor by restricting the standard
metric on R™’: For X = (xjx) € R™™™ we map it to O(n) by performing Gram-
Schmidt on the columns, i.e. the QR factorization of X. The standard metric
can be written as

ds? = daf, = Tr(dX"dX).
3k
Then we write X = OR which implies dX = dOR + OdR = OdAR + OdR =
O(dAR + dR). We then artificially set R = I and dR = 0 in the same way
one sets 7 = 1 and dr = 0 to find the measure induced on S™! in the previous
example, up to a possible normalization constant. So,

ds® o« TrdATdA = — Tr dA2.

This gives the metric tensor on O(n) in induced from Lebesgue measure on R"’.
It turns out that this gives the correct volume form for Haar measure on O(n)
using

Example 110. Consider the problem of determining the density of Z = v X

where X € R” has the [-Dirichlet distribution. We consider the entrywise
square oot of X so that Z € S"~!. We use the Gaussian. distribution on R"
as a proxy to compute this density. We say in Example @Th_at the standard
metric tensor on R” induces a volume form on S™~! with associated probability

measure o,_1. lransforming the n-dimensional standard normal density [15 T e R ————— ]
to use here?
1 1 2 1

[ *Ezj“"jD - -
(271-)71/26 z on/2—-17 (%)

2
r"le= T drDoy, 1 (w).

Often, in this text, we write Dw in place of Do,,_1(w) when its meaning is clear
from context. Next, we consider what the transformation w — |w| := 7(w),
where the absolute value is applied elementwise, does to the measure o,,_1. The
induced measure o;/_; is just the pushforward of o, ; under 7: o/ ,(S) =
on_1(771(S)) = 2"0,_1(S) for S C S"~!, contained in the positive orthant
5771 of S"~1. We refer to o;}_; as uniform measure on S}"'. As with 0,4
sometimes we will write Dw in place of Do, _;(w). Then a vector ¥ € R™ of
independent xg random variables has joint density

1
9(nB)/2—nT (g)

n
B—1 —15 42
n HyJ e 2 25 i ]l{y_7‘>0 for all j}-
Jj=1

Define a new vector X by X; = 6;Y; where the iid random variables J;, in-
dependent of Y, satisfy 6; = £1 each with probability 1/2. Then X has joint
density

1 - — —15 g2
e [ TT el o250



196 APPENDIX B. ELEMENTARY DIFFERENTIAL GEOMETRY

giving the relation (z; = rw;)

W H |x7|B—1 e_%zj IEDJ}
2 j=1

2 n/2 n
_ (2m) P e | ] eyl ) drDa o ().

n
2(nf)/2T (g) 2n/2-17 (1) e

And then the distribution of Z ~ |Y|/||Y||2 is given by the joint density (with
respect to o,-1) of |w|. The following gives the joint density of |Y| in polar
coordinates

7.rn/2 .

2(nf)/2—n—17 (g) r (%)

Integrating out the r variable we obtain the joint density for Z

o ()
F(i) r'(3)

7§r HW -t d""DO'n—l(w)]]-{wj>0 for all j}-

Hwﬂ ' | Do 1(W)L{w;>0 for all j}-



Appendix C

The Airy function

C.1 Integral representation

There are several different conventions for the definition of the Airy function.
The standardization adopted here follows [[AST2]. The Airy function, Ai(z) is
defined as the oscillatory integral

1 [ 3 1 b 3
Ai(z) = f/ cos (3 + xt) dt = — lim cos (3 + a:t) dt.  (C.1.1)
0 0

™ T b—oo

This is an improper integral, that is, the integral converges conditionally, not
absolutely. In order to obtain an absolutely convergent integral, it is necessary
to work in the complex plane. Let C denote a contour in the complex plane
that starts and ends at the point at infinity, and is asymptotically tangent to
the rays e /3 and et/ respectively. Then first setting ¢ = —iz and then
deforming the contour, we have

Ai(z) = ! /OO ei(é_u) dz = i ei(é_u) dz. (C.1.2)

T 27 27 Jo

— 00

The integral is absolutely convergent for every « € C on the contour C. Indeed,

with z = re®?,

ei<z33_12)‘ < e|x|7'e—r3 cos(360)/3 e—7'3/3er\x| (013>

as z — oo along the rays § = +7/3. Thus, Ai(x) is an entire function.

197
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C.2 Differential equation

. 1 3
We differentiate under the integral sign (justified by @JS_ and integrate by
parts to obtain

3
1 Z 2
A" (z) = 5 2:2€< 3 > dz (C.2.1)
T Jco
1 d 2 1 2 d
=5 dieg, e T dy = 5= €3 d—e*“dz:xAi(x).
i Jo dz ™ Jc z

Thus, Ai(x) satisfies the Airy differential equation

y' =xy, x¢€C. (C.2.2)

This differential equation has a scaling invariance: if y(z) is a solution, so
are y(wz) and y(w?z) where o = e?™/3 is a cube root of unity. Thus, both
Ai(wz) and Ai(w?x) solve (.22, Each of these solutions is linearly independent
of Ai(z). A solution to (C.2.2) that is real when x is real, and is linearly
independent from Ai(x), is obtained from the linear combination

Bi(z) = e™/CAi(wz) + e V/OAi(w3x). (C.2.3)

C.3 Asymptotics
The functions Ai(z) and Bi(x) have the following asymptotic properties.

Asymptotics as x — oo.

2 3 —< 1
¢=3a2, Ail@) ~ ——. Bi(@) ~ ¢,
2u0d\/m T4/
- \C VT (C.3.1)
4e 4
Af(z) ~ — 2 Bi(z) ~ TS

NG

Asymptotics as z — —oo.

3 1 T
C = 7(_‘%)27 Al(.’E) ~ 718in ( o) BI(CE) ~
3 Cotve (¢+3)
1 1
Ai'(z) ~ “= cos (C + %) , Bi'(z) ~ f% sin (g‘ + E) .
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Appendix D

Fredholm determinants

D.1 Definitions

Our purpose in this section is to explain the notion of a Fredholm determi-
nant and resolvent in a simple and concrete setting. The ideas presented here
originated in Fredholm’s attempt to find a solution formula akin to Cramer’s
rule for linear integral equations. The notion of a determinant for an infinite-
dimensional linear operator is, of course, of independent interest and has at-
tracted the interest of many mathematicians. Simon’s book provides an excel-
lent overview of current knowledge [[Sim05].

Assume a given continuous kernel K : [0,1] x [0,1] — R and a continuous
function h : [0,1] — R. Fix a spectral parameter z € C and consider the linear
integral equation

—z/ K(z,y)p(y)dy = h(z), =€]0,1]. (D.1.1)

—f
The integral equation m%ay be written in the more compact form
(1-2K)p = h, (D.1.2)
where I — zK denotes the bounded linear operator on L?([a, b]) defined by

o= (1-2K)p, (1-zK)p(zx) —Z/ny y)dy z € [a,b].

(D.1.3)
-ie-fredil

Integral equations such as @T&y naturally be viewed as continuum
limits of linear equations. More precisely, we fix a positive integer n, consider
a uniform grid z; = j/n, with uniform weights w; = 1/n, define the vector

hg") = h(xz;), matrix K;k) = w;K(zj,z1), 1 < j,k < n and discretize
by the linear equation

Pl =23 KoM =hlM 1< <n. (D.1.4)
k=1

199

eq:ie-fredl

eq:ie-fred2

eq:ie-fred3

fredl

eq:ie-fred4
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ierfredd
Equation mﬁi_sa unique solution if and only if det(I,, — zK(™) # 0. By
linearity, the solution for arbitrary k(") is determined by the resolvent R(™ =
(1, — 2K(™)~1 which is given by Cramer’s rule.

Remark 111. If one wants to compute a Fredholm determinant numerically
and K is a smooth function, quadrature rules (such as Gaussian quadrature

or Clenshaw Curtis e%ggl(llnrature) can be used to choose x; and w;. See, for
example, .

det(Mjk)

R — (_q1)itk
s = (1) det(1,, — zK(m)’

(D.1.5)
where Mj;, denotes the matrix obtained from I,, — 2K by removing the j-
th row and k-th column. Further, if z;, 7 = 1,...n, denote the zeros of the
polynomial det(I,, — 2K ™), the ei enyalyes of K™ are given by 1/zj. Both
these notions may be extended to (@W the Fredholm determinant. The
basic observation that allows passage to the limit is the identity

det(1, — zK™) = (D.1.6)

K('le ; le) K(le ) l’j2)
K(xj,,25,) K(xj,,2),)

2 n

n
z z 1
== ZK(le’le)+aﬁ Z

ji=1 Ji,g2=1

R

The coefficient of z* in the expansion above may be computed by differentiating
the left hand side k times with respect to z, and setting z = 0. Since K is
continuous, as n — oo, the k-th term in the sum above converges to the integral

Y
( ]:') /[ ]kdet(K(xp,xq)lg,,,qgk) day ... dzy. (D.1.7)
0,1

Definition-Theorem 112. The Fredholm determinant of the operator 1 —z K
is the entire function of z defined by the convergent series

(=2)*
!

D(z) =det (1 —zK) := 1+§: o

k=1

(D.1.8)

-ie-fred6
Proof. 1t is only necessary to show that the series@ﬁ)nvergen‘c forall z €
C. The determinant of a k x k& matrix A with columns ay, ..., a is the (signed)
volume of the parallelopiped spanned by the vectors aq,...,ax. Therefore,

k
< < i . 1.
()] < farlaa] <[] < (o o] D.19)

We have assumed that K is bounded on [0,1] x [0, 1], say max |K| < M < oco.
By the inequality above,

|(det (X (2, 2q)1pqzn))| < K*2ME. (D.1.10)

/[0 1]k (det(K(xp, xQ)lSP,‘ZSk)) dz; - - - dzy.

eq:ie-fred7

eq:ie-fred6

eq:def-fredl

eq:ie-fred8

eq:ie-fred9
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. . - -fredl
Thus, the k-term in the series @ﬂﬁmma‘ced by

(=2)F
B o det [K(2p, 2)], <) g<p d21 -+ dap

Kkk/2 1 1
2| MYFE— ~ ——(|z|Me k77
(|2[1) i m(l |Me) k,%1

where we have used Stirling’s approximation in the last step. O

Remark 113. If [0, 1] is replaced by a general Borel set S, we assume
K (2, y)| < M(x),
where M € L'(S). The same statements about the determinant follow.

Since D(z) is entire, we may differentiate term-by-term to obtain

<_)m det(1 — zK) (D.1.11)

o~ (—2)"
) Z kY o apmes det [K(2p, 2]y <pp g<min 41~ AT
k=0 1]tk

for m > 1. Recall that the zeros of a non-zero entire function form a discrete,
countable set. The entire function det(1—A"1K) is an infinite-dimensional gen-
eralization of the characteristic polynomial of the matrix K™ in the following
sense:

Theorem 114 (Eigenvalues of K). Assume that K is a continuous kernel. The
complex number X is an eigenvalue of K if and only if D(A™1) = 0.

In certain situations it is convenient to use the equivalent notation
det (1 — 2K]2(g)) :=det (1 — 2K1g) = det (1 — 2K).

Here the last determinant is only unambiguous if K : S xS — R and S
is clear from context. This presents a dichotomy in the theory of Fredholm
determinants — a kernel-focused theory and an operator focused theory. The
kernel-focused theory, defines the determinant using the kernel function as in
Definition-Theorem %_Tmperator—focused approach defines the determi-
nant in terms of the operator K = K|2(g) defined by Kf(z) = [ K(-,y)f(y)dy
posed on L?(S). By maﬁjlnm%nappropriate definitions one can avoid referring to
the kernel function, see [Sim05]. The theories are equivalent when they both
apply.

We will need to extend the notion of a determinant to systems of integral
equations and we do this with the operator-focused notation. Consider the
integral operator on @, L>(I;) for intervals I, C R

fi Sy Kuefe

K

I S Knefe
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where
Kia9= [ Krsle.now)y
Iy

for a continuous kernel K, : I; x Iy = R, g € L?(I;). It is then clear that K is
completely determined by its kernel matrix

K1 -+ Kin
K& K= : :
Kyi1 -+ KnnN

ornemann
Then define [7] (or another reference?)

oo 1 k N
det(l — IC) = Z ( k') Z L , det [Kij,ig (xj,Iﬁ)} 1<j,0<k dwy - dIk.
i XX Ty

k=0 T dgenie=1
112
We remark that this description can be captured in the following notation

det(l — K|@é\1:1 Lz(lz)) = det(I — IC)
ax imon
For more on Fredholm determinants, see H_IEXOZ Ch.24] and fSlmUE)J.

D.2 Convergence

sec:fdconv

Suppose a kernel K, (z,y) = K (x,y), (x,y) € S?, pointwise. One needs the
additional convergence criteria to conclude

det(1 — K,,) — det(1 — K). (D.2.1)

The following are from ESI?I%H()SJ using the operator-focused approach. Let /C,
and K., be the operators on L?(S) with kernels K,, and K., respectively. Then
the trace norm of an operator K is given by

1K1 = Tr VKK, (D.2.2)

where C* is the adjoint of K. The general definition of VX*K for general
operators is unimportant for us and an operator with finite trace norm is said
to be trace class. But, for example, if K is a non-negative self-adjoint operator
with continuous kernel K then

||IC||Tr:/SK(x,a?)dsc. (D.2.3)

Alternatively, one can use the definition that for a self-adoint operator I on
L*(S),

T K = Z(IC@,C7 k), (D.2.4) ‘ eq:trace-basis
k

for any orthonormal basis (ex)g>1 of L%(S).
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Theorem 115. The map K — det(1+K) is a continuous function on the space
of trace-class operators (i.e. operators with ||K| < o) and

|det(1+ K) — det(1 + £)| < |K — L]l exp(IK]lxx + || L]l + 1). (D.2.5)

Theorem 116. Suppose K., K are trace class. If IKC,, — K, |K,| — |K| and
|| — |K*| all weakly, then ||KC,, — K1y — 0.

In our cases, |K,| = K, = |K}], so to show that det(I — K,,) — det(I — K)
it suffices to show for each f, g € L?(S) that

/ / Kn(2,y) f(x)g(y)dedy — / / K (z,y) f(z)g(y)dady. (D.2.6)
SJS SJS

Two such conditions for this to occur are

1. If S is bounded then

sup_[Kn(,) = K(,9)] = 0. (D.2.7)
x,ye<

2. If S is unbounded then we require
Kn(z,y) = K(z,y), (D.2.8)

for each z,y € S and there exists G(z,y) € L?(S5?) such that |K,(z,y)| <
G(z,y). This allows one to use the dominated convergence theorem.

D.2.1 Change of variables and kernel extension

Let K : S? — R be a kernel. Let x = r(¢) and y = r(s) for s,t € T where 7’
exists, is continuous and does not vanish. Define

K(s,t) = K (r(s),r(t)), s,teT? (D.2.9)

Then

det(1 — K) = det(1 — K). (D.2.10)

D.3 Separable kernels
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Appendix E

Classical orthogonal
polynomials

app:orthpoly . . . . . .
In this appendix we consider detailed properties of Hermite and Laguerre poly-
app:orthpoly | nomials.

E.1 Hermite polynomials

In this section, u denotes the measure

22

1
dr) = ——e™ 2 dx. E.1.1) |eq:hermite0
() = —— (E1.1) [eqhorni
The (probablilists’) Hermite polynomials {h;}?2 , are the monic family of poly-
nomials of degree k orthogonal with respect to the weight u.

E.1.1 Basic formulas

(E.1.2) |eq:hermitel

=
ol
S
S~—
Il
o
l\)‘hm
/I\
(o}
&le
N~~~
x>~
|
ME}
N

= L _ieYke— 3 (E—in)? eq:hermite-in
br(z) \/ﬁ/n@( i&)"e d¢. (E.1.3) |eq:hermite-int |
1 22
= /R bi(2)hu()e=F dx = VIrklow. (E.1.4)
mf)k(x) = f)k+1($) + khkfl(l‘), k>1. (E.1.5>
by (x) = kbg_1(2). (E.1.6)
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i (x) — xbj, () + Kby (z) = 0. (E.1.7)
11 (@) () — b (0)be())
;th(m)b](y) = -1z —y) , x#vy. (E1.8)

Relation @% be treated as an alternate definition of the Hermite poly-
nomials. On the other hand, since we have defined the Hermite polynomials
as the monic orthogonal polynomi.als obtained by applyi .the“1 igerfmm—Schr.nidt
procedure to the set {1,z,2%, ...} in L2 I%i/tlgi equation (@ may be verified
as follows. First, it is clear from at hi(z) is a monic polynomial of
degree k and taat'i:}%E'@te:l 1, b1(z) = z. By induction, if it has been established
that property efines the Hermite polynomials for j < k — 1, then it is
only necessary to show that the monic polynomial

20 A\ _»
Pk(x):e2 <_d$> € )

is the same as by. The polynomial Py, is orthogonal to h;, 0 < j < k—1 because,
using integration by parts,

[ Pty teutan) = [ (f)k b (@)u(da) =0,

since H; has degree less than £, Since [ is monic, it must be hy. The same
calculation serves to establish (E.T.4]

The two-term recirrence relation follows from d _' Jpee also
Remark Em The coefficient a vanishes because equation (E.T.2)) shows that
b2 is an even polynomial for all k. The coefficient b7 may be rewritten
Jwbe-1(2)be(x)u(dr) [ wbe_1(x)bi(z)p(dz) [ bi(2)p(de)

2 _
=TT ) J0aldn) b2 u(dn)

:1~k27

) ite2 (E.1.10)
@' : ited : itel
The differential equation Wﬁ)‘cained by rewriting @%e form

e T hy() = (—1)F ( d )k

by

dz
o2 . eq:hermited
differentiati'ng bOt}'l S.ides, an tl}nlie,g}a lplulltipl ing b S5 Equation —
tained by differentiating and using . The proof of the Christoffel-

Darboux identity is left as an exercise to the reader.

eq:hermite6

‘ eq:hermite-int2
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E.1.2 Hermite wave functions

The Hermite wave functions {1}72, are defined by

2
1 e ®/4
The following properties of the Hermite wave-functions follow immediately from
the corresponding properties of the Hermite polynomials.

/ka(x)wz(m) dz = 6. (E.1.12)

2p(z) = VE+ Wi (z) + VEp_1 (z). (E.1.13)
V(@) = =S (@) + Ve (@), (E.1.14)

g () + <k + % - f) Yr(x) = 0. (E.1.15)

\/ﬁ(wn(m)¢n—l(yi : 1571—1(x)¢n(m)) )

n—1

S dnla)nly) = (E.1.16)
k=0

E.1.3 Small x asymptotics

The following classical formulas capture the asymptotics of the Hermite poly-
nomials near the origin [AS72], §22.15].

S N I
lim o Dan (\/%> = ﬁc Sx. (E.1.17)

. T 2 .
'r}ggo Sl Bant1 (\/ﬁ> = \/; sin z. (E.1.18)

Further, the convergence to the limit is uniform over  in a bounded interval.
In comparing equations 1'@ l N ( ) an% il% T %i w1f% a standard reference such
as [[AST2], the reader should note that there are two conventions in the definition
of Hermite polynomials. The exponential weight in, eaorlier sources was chosen
2 . K . e reymite .
to be e, which differs from our, choice (E.T.IJ). e relation between the

Hermite polynomials, {H,,(z)} in [AS72], and those used here are:

H,(z) = 2% b, (xv2), bu(z)=2"%H, (\%) : (E.1.19)

eq:hwavel

eq:hwave?2

eq:hwave3

eq:hwaved

eq:hwavedb

eq:hwaveb

eq:her—asymptl‘

eq:her-asympt2‘

eq:hermite-convention
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These formulas may be immediately translated into asymptotic formulas for
the Hermite wave functions, using Stirling’s approximation for the factorial:

nl=vamn (2)" (14 0(n™") as n = oc. (E.1.20)
€

lim (271)1/4(—1)" Yo (x) = € COS T. (E.1.21) ‘ eq:her-asympt3 ‘

lim (2n)1/4(—1)nw2n+1 <x> = — sinz. (E.1.22) ‘eq:her—asymptél‘

The asymptotic formulas 1 nd IF, 1,18 are p.roved by applying Lz la_caes’sm 1
afgrmy%a (IE.T-3)). We only explain how to prove

method to the integral |
since e uatjton.‘@_lémﬁﬂar. Since (i)?" = (—1)", we take the real part
mite—1
of ELY T
T 2 w2 [0, e x€
—1)*"hon | —= | = \/>e4n/ e cos () d
( )hz(TTL) - 05 oT £

2n+1nn+% oo
- Vr 0
by rescaling £ = /nt. We now apply Laplace’s method to the integral above.

The function g(t) = t2 — 2logt has a single minimum on the interval (0, co) at
t = 1. At this point

e (=208 1) coq g dt, (E.1.23)

g(l) =1, g/(l) =0, g”(l) = 4. (E.1.24) ‘eq:her—asymptG‘

Laplace’s approximation now yields

oo
/ e "9 cos wt da ~ Y QE cos x, (E.1.25) ‘ eq:her-asympt?7 ‘
0 n
- —asympt5
which when combined with @_gﬁ&ﬁs
_1\2n € ~ n+d n_ —n . _
(=1)*"bay, <m> 2" 2ne " cos . (E.1.26) ‘eq.her asymptS‘

: -as t8 - —asymptil cstirlin
Equation @ﬂ%ﬁﬁvalem to @—ﬁﬁrhng’s approximation @_g

Further, it is easy to check that the error is uniformly small for = in a bounded
set.

E.1.4 Steepest descent for integrals

Consider the integral

/ ft)e "Mt (E.1.27)
r
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where f and ® are entire functions. Assume ®(¢*) = 0, ®'(t*) = 0, D" (¢*) # 0,
Im®(t) = 0 for ¢t € I'. Further assume I' is the path of steepest ascent for ®,
i.e. the path of steepest descent for —®(¢). Having Im®(¢) = 0 is enough to
ensure that T is either the path of steepest ascent (locally) or steepest descent:
Let t = x(s) + iy(s) be a smooth local parameterization of I, then by the
Cauchy—Riemann equations
d dx d dx d

0= Im®(t) = Im®, (1) + |m¢>y(t)di: = —Re®,(t )d— + Re ®,(t )di/
This shows that VRe @ is orthogonal to the tangent vector (—y'(s), ( )), im-
plying that I is in the direction of greatest increase/decrease for Re @

Performing a Taylor expansion, we have

(b/l (t*)

o) = —

(t —t*)?(1+ O(|t — t*). (E.1.28)

The point is that ® is locally quadratic at t* and we use this to inform the
change of variables. But if we naively looked to solve

O(t* +v) = 5%,

for v as a function of s, v(0) = 0, we would fail. The implicit function theorem
fails because we have two solution branches! Instead we consider
* " *
W—l =0= %&—Hoqsqﬁn. (E.1.2)
We can choose v = +R~1/2e71¢/2 where % = Re'?. For either choice, we can
apply the implicit function theorem (the derivative with respect to v, evaluated
at (s,v) = (0,2£R~'/2e71%/2) does not vanish). We use v = +R~1/2e71¢/2 to
obtain v(s), and our local parameterization of I': #(s) = t* + sv(s). We use
this a change of variables, within a neighborhood B(t*, €) on which the implicit
function theorem applies (here we assume the orientation of I' is the same as
the induced orientation on ¢((—d1,d2)))

(52 5
/ ft)e W dt = F(t* + sv(s))e™™ (v(s) + sv'(s))ds, d1,02 > 0.
T\B(t*,¢) -5
(E.1.30)

Now let § = min{dy,d2}. It follows that on I's = I'\ t(—4,d), ®(t) > §2. Then

f(t)e_”q’(t)dt‘ <e | F(t)le @O q¢. (E.1.31)
For n > 1, we have

£ (£)]e M=%t < \f()|e (®(1)=6%) ¢ .= M. (E.1.32)

eq:blowup
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We have a theorem that is a more de-
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3 from
And therefore @T exponentially small in n, less than M o9’ Now,
consider

5
/ f+ sv(s))e*"52 (v(s) + sv'(s)) ds (E.1.33)
-5
and we can directly apply Laplace’s method. Taylor expand the function

Ft* + sv(s))(v(s) + sv'(s))

at s = 0, and term by term integration gives an expansion in powers of n~1/2
with the leading order term being

/ F()e ™D dt
I
5
_ [ S su(s))e™ (u(s) + 50/ (s))ds + O(n )
= /(S FE)v(0)(1 + O(s))efnszds +0(n™ %), foralla>0. (E.1.34)
-5

Performing a change of variables s = y/+v/2n we have

J 2 1 Vans 2 ™
/ e " ds = —/ eV 2y = \/>—|— O(n~%), forall >0,
-5 V2n J—/2ns n

3 2 1 V2ns 2 C
/ [sle™™* ds = —/ lyle™¥ 2dy = = + O(n™%), for all a > 0.
-4 V@ﬁi —/2ns n
(E.1.35)

So, we have

/ ft)e "*Mdt = 2—7Tf(t*)|<I>”(t*)|’1/2e’i¢/2 +0(n™') as n — .
T n
(E.1.36)

In our setting, we will want ® to depend on an additional parameter. So, we
need a couple results to allow for uniformity in estimates with respect to this

parameter. First, we need to understand the domain on which v(s) is defined
FKI@_’E and derive an upper bound on v(s) over this domain. We follow

Theorem 117 (Quantitative implicit function theorem). For Ry, Ro,e > 0,
suppose F(s,v) is an analytic function for (s,v) € Br,+¢(0) X Bry+¢(0). Sup-
pose further that F(0,0) = 0 and 0,F(0,0) = a # 0 and |F(s,v)] < M on
Bp,+c(0) X Br,+c(0). Then there exists an analytic function z(s) such that
F(s,z(s)) =0 for

fﬁjah _ T2R1 "< [ﬁ
M RQ(RQ——T)’ 1%—F£%;

s € Ba(0), R=

)

one has z(s) € B,(0).

‘eq:leading—order

‘eq:gaussian_int
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Proof. As a first estimate, we have

o0 ] Zj
F(0,v) = az+»_ F9(0, O)ﬁ‘
j=2

By the boundedness |F(0,v)| < M, |v| < Ry and Cauchy’s integral formula, we
have

FU(0,0) _L/ F(o,z)d

j' _27T’L 3332(0) Zj+1 ’
F) .
4!

This gives

= |Z|>j Els
F(0,v Zaz—Mg — | =laz| - M ——-——.
|£(0,v)[ = Jaz| = (R2 o] R% — |2z|Ra

This lower bound is positive provided

Ry

ol <r<—2 .
1+ ik

Next, we recall Rouché’s theorem which states that if f, g are analytic in a
neighborhood of a simple closed contour C' and that |g(v)| > |f(v)| on C, then
f(v) and f(v)+ g(v) have the same number of zeros inside C. So, for each fixed
s, we consider

g(v):F(Ovv)v f(’U)IF(O,’U)—F(S,’U),

and choose C' = 0B,(0).
We can also bound |05 F(0,v)| using Cauchy’s integral formula by

M
F(0,0)] < =
2P (0.0)| < &

This implies that
M
[f(v)] < EISI-

Therefore, we can apply Rouché’s theorem if

_ Ria|r r? Ry
M RQ(RQ — 7‘) '

So, for each s there exists only one (simple) zero z(s) € B,(0) satisfying
F(s,2z(s)) = 0 as s varies in B(0). The analytic implicit function theorem
can be applied in a neighborhood of any of these these points (s, z(s)) to verify
the analyticity of z(s). O



t:uniform_expansion ‘

212 APPENDIX E. CLASSICAL ORTHOGONAL POLYNOMIALS

To make this theorem a bit more convenient to use, we note that if we choose
the parameter p = M/(]a|Rz) and set

R
r=aq 2, 0<1l<a,
1+p
and we conclude that
- R 11—
R -
p 1l—a+p

Then we note that because z(s) is analytic in an open neighborhood of B3(0),
we can estimate derivatives

4 20y
@< S € Bay(0)
In particular, this gives

p
’ 1+p Ry 2p ~

The following theorem gives sufficient conditions for the error term derived in
the method of steepest descent for integrals to be uniformly valid with respect
to non-asymptotic parameters.

Theorem 118. Consider the integral
Lin= [ f)e"®E0dt neNy, zclX, (E.1.38)
FI

where [ and ® are analytic functions of t in a neighborhood U, of T'*. Assume
O(t*;x) =0, '(t*;2) = 0, D" (t*;2) # 0, ImP(t;x) = 0 for t € T*. Further
assume I'" is a subset of of a path of steepest ascent for ® passing through t* and
t* is not an endpoint of I'*. If there exists C, D,d,e > 0, N > 0, independent of
x, and functions h(z), g(x) > 0 such that

B(t") C Uy, [®"(t")] >4,  sup
teEB(t*)

/r [F(BleNEEDN < g(a), sup |f/()] < ),

Ie\Iz

2
for all0 <~ < D, where I'S =T* N {t: &(t;x) > v2}. Then
o—i®/2
Ix,n - 7]('(15*) + Ez,nv

\/2mn| @ (t+)|

V2ns’
’ 1 8 8M
|Erl < e g(a) + = |/ Sh(@) + = lyle~v*/2dy,
’ n 0 Oe
—V2nd

M=3+ 4g6 and 0’ is any number satisfying 0 < §' < min{4f/‘ggM ﬁ, D}.

where
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Before we prove this theorem, there are some important points to highlight.
First, there is no reason that ¢ cannot be large, or even increasing. Also, if X is
just a singleton set then these estimates are trivial and this gives the standard
leading-order behavior by the method of steepest descent.

In the cases we need to analyze, ®” will not depend on the non-asymptotic
parameter x, but the point t* will. So, if t*, as x varies, is bounded away from
singularities of ®” and f, only finding g is necessary.

The actual size of the error term in the above approximation is O(n_%)

because ff;/ yeyzdy = 0. One has to perform a Taylor expansion to one more
order than is used in the proof of the theorem. This results in more complicated
expressions. We leave this extension as an exercise for the reader as this fact is
not needed in the analysis of random matrices.

Remark 119. Suppose C' < enl/3 and § > en~Y3. Then M < conl/?’ and

8" < ¢;n~1/3 and while it is not lower-order than the “leading” term, one derives
estimates of the form:

-1
[Lan] < O3 () 4+ =4 g() + 2 (\/fn_gh(a:) - )

€c

:uniform_expansion
Proof of Theoremﬁ?g. To Tmd the (local) change of variables we apply the

quantitative implicit function theorem to

O(t* + s(v* +v))

-1
52

)

F(s,v) =

in a neighborhood of (s,v) = (0,0), where v* := R™1/2¢71¢/2 and ®"(t*)/2 =
Re'®. The implicit function theorem gives v = v(s). We write

© $U) (1) |
F(s,v) = Z ##72(1}* +v)) — 1.

j!
This power series is guaranteed to converge provided that |s(v* + v)| < d, so

we consider (s,v) € Be/2ju+|)(0) X Bjy+|(0), and we then need to compute an
upper-bound on F. We write

" (t*) t et pt”
B(t) = D(t") + O (¢) (¢ — ") + —— (¢ —1")* + / / / " (¢")de" dt" dt’
tx Jtx Jtx

were we integrate along the line connecting ¢ to t*. We find

(I)H<t*) t*+s(v*tov) pt’ pt”
F(s,v) = -1+ (v* +v)* + 8_2/ / / (") dt" At dt’
t e Jx

2

*
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Then we bound |®"'(¢")] < C|®"(t*)| to find

[@7(t")] |@7(t")]

|F(s,v)| < (2v*v +v?) + C |s(v* +v)?
<3+ C&((SHNS\SHU*F’
<3e AN
s3+%06 = M = M(C,e)
((double check these bounds By Wany choice of 0 < a < 1
4M ael®”’(t9)V? 11—«

[V'(s)| < ———, for |s|<

(1~ @ ()] NI =y

These inequalities are then simplified using the lower bound on |®”(¢*)| and
setting o = 1/2, for example:

, 8M Vo 1
<—) f < —
[W'(s)l < =, for |s| WM 1+ M

Most importantly, this gives us a uniform lower bound on the size the inter-
val over which v is defined. So, we choose 4’ to be some number less than

; Ve o1
min{ YNOITi e P
The integral I, can be truncated to ['§, at a cost of an error bounded by
—_7n : from . - ng-order
g(x)e , see . Following we I

’

AI\Fw f(t)e_"(b(t)dt = » f(t* + sV(s))e_”SZ (V(S) + SVI(S))d&
V(s) =v"+uv(s),

Expanding all but the exponential:

t*+sV(s)
F(t + sV(s) = F(1°) + / £()ds',

*

V(s)+sV'(s) =V (0) +sV'(s) + /05 V'(s")ds'.

We know that for |s| < ¢, |sV(s)] < e and |V (s)| < 2|v*| so that
t*+sV(s)
[ reus
o

sV'(s) + /OS V'(s")ds'

. . sian_int
Then, using the estimates from m_mh_eorem follows.

< 2ls[v*|h(z) < \/?ISIh(wL

SM
S
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E.1.5 Plancherel-Rotach asymptotics

Another asymptotic regime is obtained when we consider z = O(y/n) and let
n — oco. Plancharel-Rotach asymptotics refer to the asymptotics of polynomials
scaled by their largest zero. The limit is oscillatory or exponential depending
on the range of . This is to be expected: for each n, the polynomial b, (z),
and thus the wave function v, (x), has n zeros. The largest and smallest of the
zeros are approximately 4/ (n + 1/2). The oscillatory regime is obtained when
x(n + 1/2)~/2 lies well within the interval (—1,1). Outside this interval, the
Hermite wave function decays exponentially fast. A more delicate calculation,
using the Airy function, is required to understand the transition from oscillatory
to exponential behavior.

We will prove a weaker version of the Plancherel-Rotach formulas, that suf-
fices for our needs. These formula are as follows.

Case 1. Oscillatory behavior.

r=2cosp, O0<@<m. (E.1.39)

N,y (23/n) = ﬁ (Cos [n (cp - ;Sin2§0> + (p + ;) ¢ — W} +0(n™")

The convergence is uniform for ¢ in a compact closed subset of (0, 7). —{Don't we need this kind of uniformity? )

Case 2. Exponential decay.
|z] = 2 cosh o, 0 < ¢. (E.1.41)

(sgn(x))n+p e(p"‘l/?)tpe*% (%*176’2‘/’72%)

1
a n = 1 O —1 ,
A ip (x‘\/ﬁ) ot Jrsmh o ( +O0(n ))
n+p o(p+1/2)¢p,— 2 (sinh(2¢)—2¢)
_ (sgn(z))"*P e e~ 2 (1+0(m ).

i

v/ sinh

The convergence is uniform for ¢ in a closed subset of (0,00). Observe
that sinh(2¢) — 2¢ > 0 when ¢ > 0, ensuring exponential decay.

2n

Case 3. The transition region.
r=2/n+-y seC (E.1.42)
ne

niz Un(z) ~ Ai(s) + O <n*i

) . (E.1.43)

0P s (27 = Ai(s) + 01/ (; _ p) AV (s) + O(n2/%).  (E.1.44)

The convergence is uniform for s in a compact subset of C.
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All three asymptotic relations are obtained by the method of steepest descent

fi r"nt%g%'setlsl.ntAssume x € R. We fix an integer p, use the integral identity
(I%fllni with &

= n + p, and rescale £ = nt to obtain

by () = (V)" [ [ ey (©1.49
— 00

= (V)" 5 (/ T e B i) gy 4 (_pymhe / S Lh dt)
™ \Jo 0

= (VA () + (1P (). (E1.4)

The integral I,, ,(z) may be rewritten in the form
o 1
Inp(z) = / e I At g(t) = (= ir)? — logt. (E.1.47)
0

As is usual, the first step is to determine the critical points where ¢'(t) = 0.
This reduces to the quadratic equation t?> — izt — 1 = 0. The three distinct
asymptotic limits arise from the three distinct possibilities for the roots.

(a) |z| < 2. The function g has two critical points on the unit circle, given by

irEv4—a* .
T2 T

:pr=proof9
where x and ¢ are related through m—

(b) |z| > 2. The two critical points lie on the imaginary axis, and may be
written in the form

,(mi\/a:Q—zl
=il —

+= (E.1.48)

> = isgn(z)et?, (E.1.49)

~pr=proofi0
where each branch of ¢ is defined through the relation @—

(c) |z| = 2. The two critical points coalesce into a single vaJue t = i. A further

blow-up is necessary to obtain the Airy asymptotics

Let us first consider the integral I, ,(x) in case (a), and let us assume that
x > 0 to be concrete. We deform the integral over (0, 00) a contour I' which is
the path of st cpest descent that passes through the critical point ¢4 as shown
in Figure%ﬁhe existence of such a contour may be deduced by continuity,
beginning with the observation that when x = 0, T" is simply the segment (0, co)
along the real line. While in general, I' is given by the equation Im(g(¢t)) =
Im(g(t+)). It is not important for us to solve for the contour explicitly: all
that is required is to understand the phase of ¢’/ (¢4 ), check that 0 € I and the
integral over (0,00) can be deformed to an integral over T.

eq:pr-proof2

eq:pr-proof3

eq:pr-proof3
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Figure E.1.2:

Lecture Note 7. As I is traversed the imaginary part of g(¢) is constant and,
leaving ¢, the real part of g(t) will only increase from its value of % — %2. Also,
I" can only fail to be defined at either a singularity, co or another critical point.
By checking the imaginary part of g on the positive imaginary axis, and then
the negative real axis (noting that it then must approach from below) we can
rule out I' crossing these axes. By checking the real part of g on the unit circle
and determining that % — % is its maximum, we see that I' can only intersect
the unit circle at ;. As Img(¢) is harmonic in {|t| < 1 | Ret > 0 or Im¢ < 0}
it cannot have any closed level curves. Therefore 0 € I'. For ¢t = a4+ i and «
fixed, Im (g(t) —g(t+)) = 0 gives an implicit function for 5 = §(x), and B(x) has
a bounded derivative, uniform in a. Thus I' must remain in a strip containing
the real axis. So, we can deform (0,00) to T
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It is easy to check that when |z| < 2

1 : :
g'(ty) =1+ z=1- e’ = (—ie'?) (2sin¢p). (E.1.50)

+

Thus, we have

In,p(w) _ /O tPe=n9(®) gt = o~ n9(t+) /r‘tpe—"(g(t)—g(t+)) dt

dt
— e~ n9(t4)p 2
¢ * ds

/ e 319"t 45 + O(n~Y).  (E.1.51)
t —00

In the second line, we have used the fact that Im(g(¢t) —g(t4+)) =0onI', and we
have further approximated the integral over I' by an integral over the tangent
to I' at t,. More precisely, the approximation here is

g ()t —t4)* =g (t4)]5%,

which implies

& =90 (B152)
ds ty
‘We now combine the values
2ip
. e . T
t+:16 1(‘0’ g(t-i-):* 9 +1(907§)7

~pr= £5 ~pr= 6
with EEEERRE GRS, i
Iy p(z) = e% COS2p L <ei(%sm2@+("+p+%)(%ﬂa» + O(n7%)> . (E.1.53) |eq:pr-proof7
\/ nsing

pr—proofl

Finally, since = is real, we have I, ,() = I p(—2). We combine (E.T.46) wi

o
EE5H Shtain
nip 2 2 cos2¢p
Bntp(zv/n) =n"2 Singer (E.1.54) |eq:pr-proofs

1 1
X (cos|n|le—=sin2p |+ (p+= cpfz +O(n*%) ,
2 2 4
: 1
where x and ¢ are el%gd via (| o e HOW Use (ﬁi&nd Stirling’s
approximation @_H)g obtain (E.T.40].

¢ error. term is uniform for z in
expansion

The asymptotics in case (b) are obtained as follows. Since the stationar
phase points are on the imaginary axis, it pays to work directly with (E.T.45].
The path of steepest descent from ¢_ extends vertically. The path of steepest
descent through ¢, is locally horizontal. And, so we just move the integral
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ure [E.1.2] Using || = 2sinh ¢ this gives

(n+p)p ot (e —z)°

e (£ = (V)" sg))" 7 e

:stirlin -pr-proof10
Using @ﬁge obtains @._Th_ose calculations are left to the reader.

The remaining calculations are left to the reader. The final asymptotic
relation is

(1+0(nY)).

nTp e +1)o— 2 (sinh(s —2p) (-
bntp(zv/n) =n">2 moﬁm)v 3 (inh(29)=20) (1 4 (1)), (E.1.55)

2 el ~stirlin
\(\éhi:(’l%_c%g}%ms with ﬁmd Stirling’s approximation @_ﬁ)g yield
We now turn to case (¢). We only present the main change of ‘Var'ablgs
that underly the result. We begin with the integral representation@. and
substitute

r S
ns ne
moving the integral over R to an integral over the line i + R, to obtain

1
ne

=)

h(r) = log <i+ 7%) —%((H nL) _i<2+n%>>2

1 1 i 2
= 5 +logi+ 5 + = (isr + ir3> 23 _ £ O(n %Y, (E.1.58)
7+ 7

bn(zv/n) = (—ivn)" e () dr, (B.1.57)

where

ns 3 ns

using the Taylor expansion of the logarithm. The terms that depend on s may
be pulled out of the integral and we are left with

1 Sl i
ezen? / elsr+§rsd7‘ (E.1.59)

b(2/n) = Varn i el e (Ai(s) + O(n~1/%))

. el ) ) ) sstirlin
We now_use the (ilgjz-lmtlon %nd Stirling’s approximation @i}_ﬂ)g

obtain 1m’ o make this rigorous, and to obtain the next term in the
expansion, We take the integral

() = | = (i) [ e toegy (E.1.60)
™ R

eq:pr-proofl3

eq:pr-proofl4

eq:pr-prooflb
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and deform to i+ R. Then, let t =i+ r and we arrive at

bo(a) = 1/23(4\/5)"*1’/(i+r)ff’e*"%<’“+i<1*””>>2*10%““))(17: (E.1.61)
™

R

Then this can be deformed to a contour T' = e~ "/6(—o0, 0] U e'™/9]0, 00).
Then, we perform a Taylor expansion of the logarithm to find, for H(r) =
1(r+i(1—=))? —log(i+r) and = > 1,

e7%(171)2 /(l T T)pean(r)dr (E162)
r
+ O(e—n(x—l)5> (E163)

o . i3 : 5
— oind / em,(a:72)r+1n7 (ip + 7npipfl + O(TQ) _ nipL + nO(T")) dr
I'NB(0,5) 4

(E.1.64)
We compute
5 I
| ey = o),
0
so that
n - 4N . .3
e B (1-2)° /(1 + T)pe_"H(T)dr =e'"2 / (ip + piP 7 — nipr) eln(@=2)rtinig g,
r I'NB(0,0) 4

+0(n™1).

Finally, it follows that if = 2 + sn~2/% and setting r = k/n~/3

/ =D g 27n~ OFD/3 (i)Y A (5) + O(n™) for all o > 0.
I'nB(0,6)

(E.1.65)
This gives
e—n%e%(l—m)z i
wn-&-p(m\/ﬁ) = (27T)1/4\/5Wn2+2n 1/3 (E166)
X (Ai(s) +n7 Y3 <—pAi’(s) - iAi<4>(s)) 4 o(nm)) _
(E.1.67)

We compute

22 n 2 _n s s2 n s 482 n s2n—1/3
e T et — TR ) B (P2 T — o8 o™ (E.1.68)

n
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and use Stirling’s approximation to write

1/4 1/4
et = BT o (.1.69)
n: n:
=n~ 41+ 0(nY)). (E.1.70)
Continuing, we obtain
52 1/3
Gnyp(ay/n) = n= /12402 (E.1.71)

n+p

(Al( ) +n1/3 <pA1’ s) — ZAI( >(s)) +O(n2/3)> (E.1.72)

not/12te/2 n+p (E.1.73)
(Al( )+n1/3< —pAi'(s) + 4( s*Ai(s) — Ai<4>(s))> +0(n2/3))
(E.1.74)
— p-1/124p/2 . (E.1.75)
(Ao % > )+ 0(9)). (E.1.76)

where we used Ai®(s) = s2Ai(s) + 2Ai'(s) in the last line.

Uniform bounds

We need uniform estimates whca T =2 —|—f§n’ 3and 0 < s < n?/? to allow

us to transition into case (b), e _could use asymptotics of Airy
fo

functions and Airy-like integrals to extend @ to s = = O(n?/?) with a

uniform error term. We take a different approach and work from first principles.

Let ' = e ™/6(—00, 0] U e™/[0, c0).

e—%(l—w)z/e—nH(r)dr:ein%/ e H( gy 4 O(e—nE-10).
r NB(0,5)

Then, we deform

e’%(lfmy/ e*"H(T)dr:e*%(lfm)Z/ e "H( gy (E.1.77)
NB(0,5) c

to a horizontal contour connecting its endpoints. Then on this contour,

e‘%(l_w)z/(e‘"’“"') — =0 qp (E.1.78)
C

3

:/ eim"(:c—Z) [e—né-i-inr—&-nlog(i—&-r) _ ein%} dr. (E179>
C
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For r € C, |e"(#=2)] < ed/V2(2=2) "and we find

< Mn~2/3eM/V2E=2)  (E.1.80)

07%(1*1)2/((}77LH(7*) _C%(lim)Q)dr
C

/8 o oo i S
Z / ein(@=2)r+in'y 4 and we have
2 JC

) [l a-us
nt12P 2y, (/) — CESOIN T fa(s)

$2p1/3

Choosing § = /2, we find e~ —"0/V2(r=2) < ¢=sin"° A gimilar estimate
follows for v, , and we obtain that there exist a constant /M > 0 such that for

Then, define f,(s) =

< ]Wn72/3(\# —né/V2(z—2)

(E.1.81)

0<s<n?3
$2n—1/3 3. 1)0
nl/mwn(ﬂf\/ﬁ) . fn(S) < ]\/17L—2/3e—s£n1/37
- (B15)
"]/121/%71(1'\/5) - es T fn(s) < ]\/[”72/3878%711/3.

F S 2/3 eq:pr-proof20
or s~-n ,WGC&HHSQ(.. O IIn

D[ (@v/0)] + a1 (2v/n)]) < Meim"°, (E.1.83)

E.2 Laguerre polynomials

Include this logical derivation? Or
just list the properties like Hermite?

]_ Consider polynomial solutions to the differential equation

vy’ +(a+1—2)y +hy=0. (B:2.1)

Such functions are called generalized Laguerre polynomials. For each choice of
a > —1 and n € N there exists one and only one such solution. This follows
from the following fact:

:lagl
Lemma 38. Any polynomial solution of @_must be of degree k.

Proof. Suppose y i glynomial of degree m, with non-zero leading coefficient.
As |z| = o0 in we have

—ay'(z) + ky(z) = O(|z™ 7).

Then zy'(x) = my(x) + O(|z|™ 1) and the condition k& = m must be satisfied.
O
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So, if there existed two linearly independent polynomial solutions of @l
a linear combination would also be a solution and the combination could be
taken so that it is a degree < k polynomial, contradicting the lemma.
One can then check directly that
r= %" dF

L) = g (7t ) (£22)

lag]
is the polynomial solution of @_ And from this it follows that

T L@ () L@ () g Tk+a+1)
Ly (z)L; " (z)z%e "de = [ (E.2.3)

0

An explicit formula also follows

k
L (x) = (~1) (’fjj) 2 (E.2.4)

j=0
and then the Laplace transform can be computed explicitly

% (@) —sa k+a)! NN 1
/ acL,(c)(x)e dxzi( i ) <1—> presg

0 S

Inverting this transform gives the integral representation,

1 (k+ o)

ico+e k Ts
ay(a) - _1 € % .
erfo) = B [T (1) 8 0 2y

—ico—+e

As a precursor to asymptotic analysis we compute

k
1 e . 1
(1 — s) — = P59 p(s;0) = log (1 - s) — %logs + %s

Then, looking for stationary points, set

¢}

1 al =«
gl . - - = 7:0
(s3) s(s—1) ks R

and the two roots are

2 EEV ) 4 g
«) = 9z .

k

S+

The asymptotics will change for values of x where the two roots coincide. So,
examine

2 2 2
a+x T « a” + ¢ — 2ax — 4xk
_4,(1 ,): =0.
< k ) k +k k2 0

This gives

ri() =2k +a+/(2k+a)? —a? = (VE+a£VE)>

We highlight the a-dependence of x4 an suppress the k-dependence for future
convenience. Additionally, because is straightforward to differentiate
with respect to z, we will include asymptotics for derivatives.



224 APPENDIX E. CLASSICAL ORTHOGONAL POLYNOMIALS

E.2.1 Fixed a > —1
:1agh
Here we suppose « is fixed and we write @ as

o (a L (k+a) [ o 1
x ng )(x) = %%/ FHs:0) ) ds, for any € > 0.

—ioco+e€

Note that we could absorb the s~ factor in the exponent but this formulation
is more convenient. Additionally, for o small this integral is just conditionally
convergent and it can assist in the analysis to deform it to a contour

I, =e?[0,00) Ue™9[0,00) 46, —m<6<—7/2

oriented with increasing increasing imaginary part. But more can be done. For
x > 0 the contour of integration can be truncated at the cost of an exponentially
small error.

Consider the function

R0 s e €10, 00) + €.

For |s| > R and s = ¢ + re*t?

1
|€M(S;O)| < exp (k: log (1 + R> +x(e — 1 COSQD)

< exp (k + x(e — 7| cos 9|)>
R
Define
T.r=¢?0,R)Uc’0,R) +e.

Estimate, for R > ¢,

e 0. d e k
/ |ekeletre®o) T o / exp <r + x(e — 7| cos 9|)) (r—e)~ dr
— €

R e+ rel?[ott = Jg

exp (% + $€) efRZ'COSGl
- (R—eatl  z|cosf| °

To summarize, let R > € let g(s) be analytic in the region
A={seC|s=c+ret® rec(0,00), ¢ec(-7/2,0)},

and bounded on the closure. Then

(E.2.6) ‘ eq:largex-trunc

oote s 1 so) 1
/ et(s:0) sag19(s)ds — /r ) eht(s:0) Sar19(s)ds

—ioco+e

exp (% + IE) efRz\cosﬁ\

<
< sup lg(s)] (R— ot

2z|cosf|
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We will mainly consider this estimate when > §k, in which case exponential
decay is realized for R|cosf| > €+ ﬁ.
Next, the stationary phase points are

1+,/1-4%

s+(0) = 5
with
2+(0) = (Vk £ VE)? = 4k, 0.

Define

@, (k+p)! a (@)

[k,p(x) = m (4k$) Lk+p(4kx)
so that we consider modifications of x4 and s4

1+,/1-12
54(0) = 5 , Z4(0)=1,0

Bulk asymptotics

Fix 0 < § < 1. We consider the asymptotics of (@) x)ffor d<x<1-4. The. .
. X . . : orm_e sion suniform_expansion
following expansions will be uniform by Theorem ndeed, by Theorem [IT5]
[(a)( ) m"‘Tﬂ2a(_1)ke2km
xT) =
k0 V2rkz3/A(1 — x)l/4

~ <Re |:ief2ikarccos \/562116 x(lfx)efi(aJrl) arccos \/563177/4:| +0 <1>)
vk

and therefore
- x”‘T'H2a(_1)ke2kz
V2rkx3/4(1 — x)1/4
1
X (sin [(2/{ + a+ 1) arccos Vo — 2kv/z(1l — x) + %} +0 (k)) .

In this calculation we used that

1 iv1— 1 .. ]
251(0) =1+ 1_7:M:761ar0c05\/§.
More generally, by the method of steepest descent

j atl . 2
i[(a)(x) _ (4 L 20 (—1)ke2k
dxi kp \/ﬂx:s/zx(l — g)l/4

p
« (Re |:(1 — ]k )) §+(0)jief2ikarccos ﬁEQik\/w(lfa:)efi(aJrl) arccos \/563i7r/4:| +0 <Ii>>
S+ 0
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and therefore

o—

dj ) Jt1 20 (_1q k+p . 2kx
@)y = gy BT
dai F Varkad (1 — )/t

X <sin [(Zk —j+a+2p+1)arccos Vo — 2k/z(1 — z)

LT
4

]+0<

The quantity that arises in the global eigenvalue distribution is proportional to

Then set

—a —4kx «@ d a o d o
st ) 2, (o)~ 0 0 0 )
—ag—tke(@) () 4 @) 20 (1) 1921
e () () (@) (2) ~ 4k
roe Ago(T)dx kfl(f) T\/ﬂ\/ﬁ

X sin {(2/{ + a + 1) arccos /& — 2ky/x(1 — z) + g}

X sin {(2]6 + a — 2)arccos Vx — 2k/x(1 — x) + g}

o —apz d 20(—1)2k—1920-1
o, —4kx () (@)
z~ “%e —L ()l x) ~ 4k

dz * k,—1
X sin {(2k + a — 1) arccos v — 2k\/z(1 — x) + g}

X sin {(2%‘ + a) arccos vV — 2k+/x(1 — x) + g}

O = (2k + o + 1) arccos Vo — 2k a;(l—a:)—&—g.,

© = — arccos /.

We need to examine the quantity

f(O,¢) =sin(O 4 3¢) sin © — sin(O + 2¢) sin(O + ¢)

and we claim that

F(0,9) = —2cos(—p) sin® ().

This follows using

2sinysin z = cos(x + y) — cos(z — y).

1
k

)
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Airy asymptotics
Define

g(s;a) = log <1 — 1> — %logs + 4xs
s

As x — 1, the stationary phase points, the zeros of 7', collapse at s = 1 /2. To
capture the behavior there we expand £(s;0) about s = 1/2

7(s;0) = im + 2 + 4(x — 1) (s—;) —136(8—;>3+O(s—;>5.

Then we choose

Y L .
r=14 55—, s=—-+i—F—.
23 k3 2 25 k3

The exponents of 2/3 and 1/3 are chosen so that kf(s;0), when expanded in
powers of r, will have no k-dependence at order 1,2 or 3. Indeed,

1 RN T iy 13 5,-5/3
£<2+12§k§’0)_m+2x+k;r+3kr +O(rk )

. ex-trunc
Using Efl?g; with € = 1/2, § = —27/3 and « replaced with 4kz it follows that
for R=3
1 ; 1\? ds
[« - ke(s;0) 1— = e
=g e ;)
2—dka
es
ol——.

Then we expand

(1 - i)p = (Sla;i)f — (<1t [1 o2 tat ) (s - ;)] 1o <s - ;)

Therefore

1 3o 1\"
ks okl(s:0) (1 _ ) ds

2mi s ) sotl

Ti/2.3
-1 k+p 2kx2a+1 . L
_ ()T / s (1 —22ptatl) s +O((F + r5)k_2/3)) dar
235k327m i 23k3
(—1)FtpePhrgatl [ Ai'(y) | Gr(y)
= A — (2 1 d
Q%k% l(y) (pJFO‘JF )Q%k‘ =+ k‘% r,

Wl

where
I = e7/6[0,3 - 25 k5] U e™/9[0,3 - 25 k5],

and Gj(y) is such that G(y) := sup,, |Gk (y)| decays exponentially as y — +o0.
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Bessel asymptotics

Next, we consider the case where x ~ 0. Note that the stationary phase points
head off to infinity as x — 0. So, we need to rescale the integral to pull
the stationary phase points back to zero. We first send s — s/y/x so that
ds — ds/+/x and deform back to the contour:

ico+e k o ico+e k+
[(Oz) (x) — i * 1— 1 e4kms ds — (x) 2 * 1— @ ? e4k,\/§s ds
k.p 2mi s sotl 2mi s sotl

—ioco+e€ —ioco+e€

Then set \/z = c1/yk” and s = catkd. We choose c1, co, 8,7 so that 4k/zs =
@ and g =YY We find that v=-1,0=0,ce =1/2 and ¢; = 1/4. Then,

2kt "
4x)s  [ioote o dt
[;a)(x) = 7( x)_z 1-— @ e@ .
P 21 ) soe 2kt tatl

Now, this integral must be deformed to reveal its true asymptotic form. Cauchy’s
Theorem allows us to deform this to a circle Cy, of any radius, with counter-
clockwise orientation, that is centered at the origin for integer a. Then, compute

log ( - ;ﬁ) = _T\g - % (gg)? +O(k™?).

dad kP 27 Atk 2 to—j+1

— (4k) (42) "7 [Jajwm O g V)~ s + ouﬂ)] .

27

D = U [ D (123 (54 ) 0h))

Here J,(y) is the Bessel function of order «

1 v 1y dt
e L[ eemn
(y) 21 Co e toz+1

E.2.2 Increasing «

Now, we consider the case where

1
o= <d—1>k+ck, 0<d<1, suple|< oo
k

For simplicity, we impose that c; must be chosen so that o is an integer. We

write
o (i) _ L foote eki(s;b) 1— 1 b E
k. \ 49 2mi s s

—ioco+e
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where 9 is defined by 07! — 1 =

a
Lo

A 1 1 s
Us;0)=log(1—=)—(=—1]1 =
(5;9) Og< S) (a > 0gs+ =,

and we see that 0 — d as k — oo and therefore 0 < 0 < 1 for sufficiently large
k. The stationary points are then given by

54(0) = x+1—0i\/(2xx—)\+)(x—/\_)’

A =2:00)=(1= \6)2

Trigonometric asymptotics

Fix § > 0, sufficiently small, and consider (1 —vd)? + 6 < z < (1 ++V/d)? — 4.
This ensures that for sufficiently large k, the two stationary points are both
bounded and bounded away from each other. We then find

(1-0)s?—2s+1
052(s — 1)2

"(s:0) =

To simplify this expression, when s = §1(9) we note that

1 Vo
5+(0)] = — 1—-54(0)| = —.
0=z s =2

Then
V5 (0) z+1-0+/(z—Ap)(z— )
T8 =
+ 2\/5 )
so that
~ 1 +iarccos £Ei=2
54(0) = —=e 2/
N
Similarly,
+iarccos 1;%a .

§i(0) —1= :/[;e

We also compute

(1 —0)5:(0)? = 252(0) + 1| = ?m 30 —a).
and

(1-0)5+(0)? —25:(0) +1

_ ?\/(x—)\f)()ur — 1) exp <i7r—iarcsin <\16(3H_1 —0)2(; -) —2x>>
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Then, by the method of steepest descent

=10 (5)

- %Re [(’;) (52 Q)P40 3, (0) — 1

VP Q”@))]'

i(%7%)+kz§j(b)

where
. 1 (z+1-29)(1—-9)—2z l—z-2 r+1-0
0 = m — arcsin — 2arccos ———— — 2arccos ————.
Vo 2z 2/ 0z 2z
This, more explicitly, is
d s
Ep] 7(6,13 (%) (E.2.8) ‘eq:trig—increase
2 (k) 0¥ () I (Vo ther T 41-0
= —_ 1 ] — — k
o (6) T g ([ ke T
(E.2.9)
l—2—2 k& 0 1
+(p+k+1) arccosW + %\/()\4_ —z)(x—A_)+ 5|t 0 <k>>
(E.2.10)

where

é:msm(;ﬁ(xﬂ—o);;—a)—2x>.

Airy asymptotics: Right edge

For  ~ A} the stationary phase points are close to s* := 1/4/Ay. The Taylor
expansion of ¢ near s* gives

- (1 —-2)log Ay x

U(s;0) =im + % D\/I—Hog (ﬁ—l)
+<D Jrg \/)\7:_1>(ss)
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Using that /Ay — 1 = /0 this expression is simplified to

ooy o, (1—0)log Ay
0(s;0) =im + % +D\/7+log(\/>\+—1)

- A
+($ aJr)(s—s*)

sz (L LN o s
+3)\ ( 5 a3/2>(5 s%)

1 2 1 1 *\4
+4/\+ (D_D2) (s —s")
+O(s — s%)°.

The strategy is to shift and scale x and s so that the first and third order

terms are on the same order and have simple coefficients. Perform a change of
variables

t Vo

T =g + Yy \f/\2/3 s=s"+ IHW (E.2.11) ‘eq:right—rescale
+

with the constraint that § + v = 3. And since one must consider e A(S'D) take
~v = 1/3 implying 6 = 2/3. The truncation of the integral formula for [} ex—trunc
to a small finite contour F1/\/Te of integration can be justified using

at the cost of exponentially small errors. Then using

<1iy¥j1(U%W%i7<1v5:{¢ulﬁ4 Mm}gsﬂ>+0@sﬂ2

A AN . (I1-2)log At x
@[k,p <5) = exp (k <I7T + 20 + o\/ﬁ + log (\/ )\+ — 1)

(E.2.12)

pt1 . 1=d_ 2
0T TN 8 i3 /)\
_1)? + iyt+3y _ _ /\
X ( ].) 27rk1/3 ‘/618 3 (1 i |: ]- ,7 + p:| k1/3)\2/3

1
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. ) 2/3
where C' = (e7'?(—00,0] U€'?[0, 00)) %kWB and |G(y;0,k,p))| < Go(y) de-
cays exponentially as ¢ — co.
Airy asymptotics: Left edge

Following similar arguments as in the previous section, for z ~ A_ the stationary

phase points are close to s* :=1/4/A_. The Taylor expansion of ¢ near s* now
gives

5 1—-20)log A
(1-o)logh

U(s;0) = % e

+ log (1 - \/I>

In this case, we set

2 t
xT=A_+ %\6)\5, s=s"+ 1—1@. (E.2.14) ‘ eq:left-rescale
k3 k3 A

to find
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1 ) . -1 . R(y;0,k,p)
— (1 — \_pl AP (— = AW e CARARALE 24

Yy VO =)+ VAP AT () 4+ A ) +

(E.2.15) ‘ eq:laguerre-left

where |R(y;0,k,p))| < Ro(y) decays exponentially as y — oo.

Decay estimates: Right edge

We now look at the behavior of Laguerre polynomials off the interval [A_(d), A1 (d)]
for d € (0,1]. Suppose > Ay (d) + ¢ for some ¢ > 0. The method of steepest
descent using only §_ () gives

ooy . ) k+p
) o (-7w)

kxs_ (o)

x - (o)1 Ikl (1 + o(k—1/2>) :
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where the error term is uniform on closed subsets of (A (Id}hog) sug)%)osmg that
0 — d € (0,1] as n — oo. Here one uses Theorem ne has to be careful
though because the stationary phase point §_(d) approaches the origin where

feeuniform_expansion

the phase function s singular. In the language of Theorem [IT8] for some ¢ > 0

C~x d~az? e~1/a
Then
M~1, §~1, de~ux,

and therefore the expansion is valid for all z > Ay (d).
Then, to utilize this expression, consider the combination, using Stirling’s
approximation

(k Z'a)!ekf(s,(a);n) (’?) R

R -3
— okl(s—(2)) (I?) e 5503 <I;> -3 (1+O(k™ ))

- (k [bg (1= 1)t - o [s-va] - =2 “D ,
- (71)]66’“(%0). (E.2.16) __eq:lag_decay

It is easy to check that when z = A4 this expression is equal to unity, i.e.,
v(A4;0) = 0. Furthermore, one can readily check that for fixed 9, v is a strictly
decreasing function of z and lim,_,« 7/ (2;0) = —%. This implies that the
leading-order behavior of

N3}

a

E+a+p)! dd o)/ kx\ 2 _ ke
77[( )(7) - e 20
(k+p)!  dad *P \40 [y

is that of exponential decay for x > A, + 4, as k — oco. The rate of decay
increases as T increases.

The previous estimate can be used, to some effect, down to z = A Lowu
O(n=2/3). Because then ¢"(s_(2),9) = O(n~/3). We can then use RernarkJ@;‘2
to state that for A\ +Cn=2/3 <x < \; +46

(k+a+p)d kx\ % ke
(k+p)! dai ’”’ B ¢

p
< Ck’” ky(e:0) (1— - ) 8- (o)
3

(E.2.17) ‘ eq:decay_right

Decay estimates: Left edge

In the case d € (0,1) we perform an analysis for z € (0, A\_ — 4] for ¢ small.
Then we extend the calculation, as in the previous section to allow § to decrease
obtaining only bounds.
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The method of steepest descent using only §;(9) gives

() (X 1 1 kt+p
i (55) = - NG
Vel N
_ . kzsy(0)
X 54 ()12 k—i—le = (1 n O(k‘1/2)> .
To establish that the error term is uniform all the way down to = = 0, we nqte )
2 liorm_expansion
that s4(9) — +o00 as z — 0. Then, again, in the language of Theoremi gt for
some ¢ > 0
C~x, §~az? e~1/m
Then, as before,

M~1, §~1, de~uw.

So, de has the same order as v/6 and 1/]#”(3,(0);0)| and this implies that the

error term is uniform on (0,A- — é]. We leave it as an exercise to follow. the,
prescription in the reviroiuitsection and derive the analogs of expression

lutely critical for condition number
tail bounds, should we do it?

Doing this more carefully is abso- }_‘and eStimate ('i 5.5 % i .
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