PDE, Part II

BY GOVIND MENON
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1 Scalar Conservation Laws

ur+ (f(u))e=0

x€R, t >0, typically f convex. u(z,0)=wuo(z) (given). Prototypical example: Inviscid Burgers Equation

Motivation for Burgers Equation. Fluids in 3 dimensions are described by Navier-Stokes equations.

us+u-Du = —Dp+vAu
divu = 0.

Unknown: u: R? — R? velocity, p: R® — R pressure. v is a parameter called wviscosity. Get rid of incom-

pressibility and assume u: R — RR.

Ut + U Uy = Vg -
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Burgers equation (1940s): small correction matters only when wu,, is large (Prantl). Method of characteris-

tics:
u2
— | =0.
wr (7).

Same as us + u uy, = 0 if u is smooth. We know how to solve us + cu, =0. (¢ € R constant) (1D transport

equation). Assume

u=u(z(t),t)
By the chain rule
du dz
P + Uy

If do/dt = u, we have du/dt =uu, 4+ us=0. More precisely,

du
g_t = 0 along paths
T = wl(®),t) =uo((0)).

Suppose ug(z) is something like this:

Initial Conditions

Characteristic Plane / /

Figure 1.1.

Analytically, u(x, t) = uo(zo), da/dt = ug(zo) = x(t) = z(0) + t ug(xo). Strictly speaking, (x,t) is fixed,
need to determine xg. Need to invert x =xq+ tug(zp) to find z¢ and thus u(x,t) =wug(zo).
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Figure 1.2.

As long as xg+ tug(xp) is increasing, this method works. Example 2:

Figure 1.3.

This results in a sort-of breaking wave phenomenon. Analytically, the solution method breaks down
when
_dz

= 4
0= dxo 1 + t UO(J:O)-
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No classical (smooth) solutions for all ¢ > 0. Let’s try weak solutions then. Look for solutions in D’. Pick
any test function fe C°(R X [0,00)):

/oOo /R SD{UH_ (%Q)J =0, u(z,0)=wuo(z).

Integrate by parts:

Definition 1.1. u € L{,.([0,00] x R) is a weak solution if (1.1) holds for all ¢ € CL([0,00) x R).

1.1 Shocks and the Rankine-Hugoniot condition

Ut

Figure 1.4. Solution for a simple discontinuity (v and 7 are unit vectors.)

Let ¢ have compact support in R x (0, 00) which crosses the the line of discontinuity. Apply (1.1). Q_
is the part of the support of ¢ to the left of the line of discontinuity, {2+ the one to the right.

u? u?
/ <ptu+<pz<_>dxdt—|—/ gatu++<pz<_+)dxdt
Q_ 2 Q, 2
Wl
/ (pu_)i+ (cpT) dedt+--
y u? ' u’
—/ cp[u_ut—i-(—)l/m]ds—i—/ cp[u+ut+<—+>uw}ds
r 2 r 2

Notation [¢g] = g+ — g— for any function that jumps across discontinuity. Thus, we have the integrated

jump condition
2
/ gp[ [u]ve + Hlﬂyz]ds.
I_‘ 2

v [ ],

0

Since ¢ is arbitrary,

For this path,

1 1
T=(2,1) , v=(—-1,0)——.
241 Viz+1

(2 is the speed of the shock.)

u2

=7 = [[7]] :u*+u+'

[u] 2

Rankine-Hugoniot condition:
[f(w)]

shock speed = ~——+

[u]
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for a scalar conservation law u; + (f(u)),=0.

Definition 1.2. The Riemann problem for a scalar conservation law is given by

ur+ (f(u))z=0,

u_ x<0,
uo(w) = uy x2=0.

Example 1.3. Let’s consider the Riemann problem for the Burgers equation: f(u)=u?/2.

0 z<0,
u(@) =11 Lo

By the derivation for “increasing” initial data above, we obtain

u2
w(@, ) =1azye) Y= [[ [[u/f]] =%.

The same initial data admits another (weak) solution. Use characteristics:

Figure 1.5.
Rarefaction wave: Assume u(x,t) =v(z/t)=:v(§). Then

o oz &
e (-2

Ug

Il
G\
7 N\
~|
~_
Il
~|
4

So, g+ uuy;=0= —&/tv'+v/tv'=0=v'(—{+v)=0. Choose v(§) — §. Then

u(z,t) :%
Thus we have a second weak solution
0 x<0,
u(z,t)=4{ o/t 0<F<1,
1 Z>1

So, which if any is the correct solution? Resolution:
e f(u)=wu?/2: E. Hopf, 1950
e General convex f: Lax, Oleinik, 1955.

e Scalar equation in R™: Kruzkov.
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1.2 Hopf’s treatment of Burgers equation

’LL2
e ($)

uf + utul, = eug, .

Basic idea: The “correct” solution to
must be determined through a limit as 0.

This is also called to the vanishing viscosity method. Then, apply a clever change of variables. Assume u
has compact support. Let

U(x,t):/_z u(y,t)dy.

(Hold & >0 fixed, drop superscript.)

x x 2 x
Ut:/ Ut(y,t)dy:—/ (%) dy+6/ Uyy(y,t)dy.
— 00 — 00 y — 00

Then
2
Ui=— % + cuy
or
2
Ut+%=gUm. (1.2)

Equations of the form U;+ H(Du) =0 are called Hamilton-Jacobi equations. Let

¢<x,t>:exp< _M>

2e
Yy = ¢<_%Ut>
1

1 2 1

wt = Edjzmu

(Cole-Hopf)

Use (1.2) to see that

which is the heat equation for x € R, and

wo<x>_eXp< - Uulz) >

Since ¥ > 0, uniqueness by Widder.

w(x,t):\/jﬂ_k/Rexp(—%{(x;—ty)z—i-Uo(y)})dy.

2

G(t,ZE, y) :%_FUO(ZJ%

Define

which is called the Cole-Hopf function. Finally, recover u(x,t) vi

@

u(z,t)=—2e, /b = —2¢ = GT
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Heuristics: We want lim._.ou®(z,1).

(z—y)?/2t

Uo(y)

x (fixed) y

Figure 1.6.
Add to get G(x, y,t). We hold z,t fixed and consider £|0. Let a(z,t) be the point where G =0. We’d
expect
lim uf(z, t) = z—a(z,t)
e—0 t
Problems:
e ( may not have a unique minimum.
e G need not be C? near minimum.
Assumptions:
e Uy is continuous (could be weakened)

o Uo(y)=o(lyl) as x| — oo.
Definition 1.4. [The inverse Lagrangian function]

a_(z,t) = inf{z €R:G(z,z,t) =min G} =infargmin G,

Y

ay(x,t) = sup {z €R:G(x, z,t) =min G} =sup argmin G,
y

Lemma 1.5. Use our two basic assumptions from above. Then
e These functions are well-defined.
o ay(xy,t)<a_(xzat) for x1 <x2. In particular, a_, ay are increasing (non-decreasing).
e a_ is left-continuous, a is right-continuous: ai(x,t) =ay(x4,t).
o lim, ,a_(z,t)=400, lim,,_ay(z,t)=—oc0.

In particular, ay =a_ except for a countable set of points x € R (These are called shocks ).
Theorem 1.6. (Hopf) Use our two basic assumptions from above. Then for every x €R, t >0

z=a+(@,t) < limsup u®(z, t) < liminf uf(x, t) < L(w’t).

e—0 e—0 t

In particular, for every t >0 except for x in a countable set, we have

lim ué(z,t) = z —aq(z,t) _ —a,(aj,t).
e—0 t t
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Graphical solution I (Burgers): Treat Up(y) as given.

Uo(y)

T

[\ -y ’

Figure 1.7.

Uo(y) > C — (x — y)?/2t is parabola is below Up(y). Then

Uo(y)+w—0>0,

2t
where C' is chosen so that the two terms “touch”.
Graphical solution II: Let
a? (z—y)? a? Y xy
H t)=G t)——=U =~ 2 T g _ZJ
Observe H, G have minima at same points for fixed z, t.
convex hull
slope: z/t

Figure 1.8.

Definition 1.7. If f:R"— R continuous, then the convex hull of f is

sup{f > g: g convez}.
g

ay, a— defined by Uy(y) + y?/2t same as that obtained from the convex hull of Uy(y) + y?/2t = Irre-
versibility.



SCALAR CONSERVATION LAwS 9

Remark 1.8. Suppose Uy € C2. Observe that at a critical point of G, we have
0,G(z,y,t)=0,
which means
9y| Uo(y) + —(x —) =0,
SO
(y —=)
t

up(y) + =0=z=y+tuo(y).

Every y such that y+tug(y) =z gives a Lagrangian point that arrives at x at the time ¢.

Global Min!

a(x,t) at global min.

Inverse Lagrangian points Characteristic Plane

Figure 1.9.

Remark 1.9. Main point of Cole-Hopf method is that we have a solution formula independent of e, and
thus provides a uniqueness criteria for suitable solutions. (Kruzkov)

e Eberhard Hopf, CPAM 1950 “The PDE u; + v uy = ptgs”

e S.N. Kruzkov, Math USSR Sbornik, Vol. 10, 1970 #2.

Y

St = {ZE]R: G(z,z,t) =min G}

Proof. [Lemma 1.5] Observe that G(x, y,t) is continuous in y, and

Gy t) L (x—y)? Uo(y) 1
lim ——2 7 = lim =—>0.
lyl—oo  |y[? ly|—oo 2t|yl|? lyl> 2t

Therefore, minima of G exist and S(, ;) is a bounded set for ¢ > 0.

=a_(z,t)=inf S,y > —oo,
ay(xz,t)=sup S,y < o0.
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Proof of monotinicity: Fix xo > x1. For brevity, let z = ay(x1, t). We'll show G(zo, y, t) > G(z2, 2, t) for
any y < z. This shows that min, G(zs, y, t) can only be achieved in [z, c0), which implies a_(z2,t) > z =
a4(x1,t). Use definition of G:

G(:E% Y, t) - G(‘T27 Z, t) - (x —
— )2 _ )2 1

0 G| = | 525 )|+ 2= 07 = (o = 07+ (o -
2)? = (22— 2)?]
Gla,y ) = Glo,2, 1)+ 7

a)

a) > 0 because G(z, z, t) = min G(z, - , t), b) > 0 because xz > 1, by assumption z > y. By definition,
a—_(xae,t) <ay(xe,t). So in particular,

(22— 21)(2 — y>1

b)

at(z1,t) Say(22,t),
so a4 is increasing. Proof of other properties is similar. g
Corollary 1.10. a_(x,t) =ay(z,t) at all but a countable set of points.
Proof. We know a_, a4 are increasing functions and bounded on finite sets. Therefore,

lim ai(y,t), lUm ay(y,t)
y—ay

Yy—x -

exist at all z € R. Let F'={z:ay(x_,t) <a_(z4+,t)}. Then F is countable.
Claim: a_(x,t)=ay(z,t) for x ¢ F.
ay(y1,t) <a—(y2,t) <aq(ys ).
Therefore,

lim a_(y,t) =ay(z,t).

Yy—x

Remark 1.11. Hopf proves a stronger version of Theorem 1.6:

z=a4(@,t) < liminf  wf(¢, 7)< limsup  wf(E, 7)< zoa(@,t)
t e—0,—x,7—t e—0,6—x,T—t t
Proof. (of Theorem 1.6) Use the explicit solution to write
T — - P
S S exp( 5 )dy
us(z,t) = ;
—-pP
Ix exp(T)dy
where P(z,y,t)=G(z,y,t) —m(x,t) with m(z,t) =min, G.
G(z,y,1)
P> 0 Dere P >0 here
m(z,t)

Figure 1.10.
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Fix z,t. Fix >0, let a; and a_ denote a4(z,t) and a_(x,t). Let

[ oo Toa+—m
n t
T—a_ —
< ——7——ﬂ::L
Lower estimate
liminf u®(x,t) > i 7.

e—0 t
Consider

ot f]R (:c;y_l).exp(ip)dy:fIR (w—l)'exp(%)dy'

Ix exp( )dy I exp( )dy

Estimate the numerator as follows:

*art+n-y —r _
[t = [+ ]
at+n—y < P>
———~exp dy
/ A#m t 2¢e

On the interval y € [a4 + 1, 00|, we have the uniform lower bound

P(z,y,t) _ A
#>_>0
(y—ay)? ™ 2

for some constant A depending only on 1. Here we use

_ 2
P@%ﬂ:%@ (z @_m@?qi>0
ly| ly| 2t |y ly 2t

as |y| — co. We estimate

< lar+n—yl — < ag+1n— A
/ lat t77 y|e P/2€dy < / lat tﬁ y|exp _4_(y_a+)2 dy
at+n at++n €

N

AN
:,\
3
S
g
e} ~
7N
|
o~
o |
(V]
~__

For the denominator,

- P
/IR exp<2—5>dy.

Since P is continuous, and P(z,a4,t) =0, there exists § depending only on 7 such that

P@dhﬂ<§n

for y € [ay, at+ + 6]. Thus,
a++5 a++5 5 5
/ efP/Qsdy>/ 67P/25dy>/ ef(A/Zs)n dy:(sef(A/Qs)n .
R ay ay

Combine our two estimates to obtain

c > — e~ (A/2)7° 1
we ) -2 e = T A

11
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Since A, ¢ depend only on 7,

liminf u®(x,t) > 1= W.
e—0
Since 1 > 0 arbitrary,
liminf u®(x,t) = S
e—0 t

O

Corollary 1.12. lim._,q u®(x, t) exists at all but a countable set of points and defines u € BV, with left
and right limits at oll x € R™.
Proof. We know
aJr(Ia t) = CL,(I, t)
at all but a countable set of shocks. So,

lim u(z, ) == —ay(z,t) _r—a_(z,t)
e—0 t n

at these points. BV}, because we have the difference of increasing functions. O

Corollary 1.13. Suppose ug€ BC(R) (bounded, continuous). Then
u(+,t)=limu(-,t) € BC(R).

e—0

2

Proof. Suppose p € C°(R x (0,00)). Then we have

g
oo(5) )
> € (u8)2 — > €
u + pp~——|dxdt=¢ prgutde dt.
0 R 2 0 R

[e’e) u2
—/ {(ptu—l— <pm—}dxdt—0.
0 2

and u is a weak solution to

We want

Suppose
uf +ufuy =euy,, u(x,0)€BC(R).
Maximum principle yields
[[u=(+, )l oo < Nluol] -

Use DCT+lim,,gu®(z,t) =u a.e. to pass to limit. O

1.3 Two basic examples of Solutions

u2

u(z,0) =ug(z), Up(z) = fow uo(y)dy. Always consider the Cole-Hopf solution.

u(zx,t) =r-a%.b at(a:,t),

)2
a(xz,t)= argmin% + Uo(y).

G(z,y,t)
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Example 1.14. ug(z)=1(,>0}. Here,

Yy
Uo(y) = / 1>00dy =yliysoy
Then 0

2
r—
G(z,y,t) :%4' Yliyso1 20,
and

G(z,y,t)=0=211,50;=0
if £ <0. So, a=z for z <0. Differentiate G and set =0

_y-—=
O_t

So, y=x —t. Consistency: need y > 0=z >t. Gives u(z,t)=1 for z >t.

+1 (assuming y > 0)

£C2 2

X
G(xuyvt) = §+%_Ty+yl{y>0}

22 g2 T
= gty tu(tosn 7).

Consider 0 <2/t <1, t>0. Claim: G(x,y,t) >2?/2t and a=0.
e Case l: y<O0, then G(x,y,t) —2?/2t=y?/2t —zy/t > 0.
e CaseIl: y>0, then G(z,y,t) —2%/2t=y?/2t + (1 —z/t)y > 0.

x <0,
a(z,t)=< 0 0<z<t,
r—t x>t
Then
0 z <0,
u(x,t):%(x’t)z z/t 0<z<t,
1 t<x.

Example 1.15. ug(z)=—1{;>0}. Then
u(z,t)=— Lios 12y
Shock path: z=—1t/2.
Here are some properties of the Cole-Hopf solution:
o u(-,t)€BVi(R) — difference of two increasing functions
o u(x_,t) and u(zry,t) exist at all x € R. And u(zx_,t) > u(x,t). In particular,
u(z_,t) >u(zrs,t)

at jumps. This is the Laz-Oleinik entropy condition. It says that chracteristics always enter a
shock, but never leave it.

e Suppose u(x_,t) >u(x,t). We have the Rankine-Hugoniot condidtion:

i

Velocity of shock = T E(u(;m_, t) +u(z_,1)).
Claim: If x is a shock location
Lo t) +ules 1) = ! " uo(y)dy.
2 ’ ’ a(zy,t) —a(z_,t) Jo_

at
(a4 —a_)(velocity of shock) = / uo(y)dy

final momentum

——— —
initial momentum
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a(a®, 1) a(zh 1)

Figure 1.11. The “clustering picture”.

1.4 Entropies and Admissibility Criteria
ur+D-(f(u) = 0
u(z,0) = wuo(z)
for x € R™, t > 0. Many space dimensions, but u is a scalar u: R™ x (0, o) — R, f: R — R"™ (which we

assume to be C!, but which usually is C°°). Basic calculation: Suppose u € C2°(R™ x [0, 00)), and also
suppose we have a convex function 7: R — R (example: n(u) =u?/2)

% . W(u)dJC:/n n'(u) utdx:—/n n'(w) Dy ( f (u))d.

Suppose we have a function ¢: IR — R" such that
DmQ(U) = W’(U)Dz(f(u))a
ie.

RHS
= 0'(u) flue, +1'(u) fottay + - + 0’ () frtia,.

Always holds: Simply define g; = 7'(u) f{. Then we have

am1q1(u) + aﬂcgq2(u) + -t aﬂchn(u) q{uml + Qéuzg + -+ qgumn

d
prs n(u)de =— D, (q(u))dz=0
provided ¢(u)=0. " "

Example 1.16. Suppose u; + uu, =0. Here f'(u) =wu. If n(u) =u?/2, ¢'(u) =n'(u) f'(u) =u? So, q(u) =
u3/3. Smooth solution to Burgers Equation:

u2 ’U,3
()02

(called the companion balance law) And
d u?

E 7d$ == O7

which is conservation of energy.

Consider what happens if we add viscosity

ui+ Dy- (f(uf)) = eAus,

(
u®(z,0) = ug(x).
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In this case, we have

%/R" n(uf)dzr = /n n' (uf)ujdr = — N Dm-(q(ua))dx—i—a/ 7' (uf)da

n

=0

= —6/ n'(uf)|Duf|?dz <0
T — o’
>0
because n is convex. If a solution to our original system is lim._.¢ u® of solutions of the viscosity system,

we must have
d

— <0.
T /}Rn n(u)dx <0

Fundamental convex functions (Kruzkov entropies): (u— k)4, (k—u)4, [u—Ek|.

Definition 1.17. (Kruzkov) A function u € L®(R™ x (0, 00)) is an entropy (or admissible) solution to
the original system, provided

1. For every ¢ € C°(R™ x (0,00)) with ¢ >0 and every k € R we have
| llu= Kl sgatu = R)(£(w) - 78 Dz de >0, (13)
0
2. There exists a set of measure zero such that for t ¢ F, u(-,t) € L°(R™) and for any ball B(x,r)

I t) - dy =0.
N L u(y, ) —uo(y)|dy

An alternative way to state Condition 1 above is as follows: For every (entropy, entropy-fluz) pair (1, q),
we have

Om(u) + 02(q(u)) <0 (1.4)

in D’. Recover (1.3) by choosing n(u) =|u—k|. (1.3)= (1.4) because all convex 1 can be generated from
the fundamental entropies.

(1.3) means that if we multiply by ¢ >0 and integrate by parts we have

~ [ [ lomt) + Dug - atuldzde <o

Positive distributions are measures, so
Im(u) +0x(q(u)) = —my,

where m,, is some measure that depends on 7. To be concrete, consider Burgers equation and n(u) =u?/2
(energy). Dissipation in Burgers equation:

d (us)Q _ €\2,,& €,,E
= —5/ (us)?dz.
R

But what is the limit of the integral term as ¢ — 0?7 Suppose we have a situation like in the following
figure:

- e—0

Suppose Ut

Figure 1.12.
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Traveling wave solution is of the form

us(x,t)—v<x_€Ct>,

where ¢=[f(w)]/[u] = (u— +u4+)/2. And

Integrate and obtain

For a traveling wave

independent of ¢! In fact,

—
=
S~—

DN
o,
&
|
—
e\
35
o,
&

I
:\:
! +
| — |

|

80

4

|

<

\l_/
+
7N
w|§w
|
l\>|;§0
~_
—_—

o

<

1
= (u_—u+)3/0 S(l—s)ds:(u;uﬂL)g'

Always have u_ > uy. Heuristic picture:

t
J =shock set
U_
Ut
T

Figure 1.13.

The dissipation measure is concentrated on J and has density

(uy —u)?
6

1.5 Kruzkov’s uniqueness theorem
In what follows, Q@ =IR™ x (0,00). Consider entropy solutions to
U+ Dy (f(u)) = 0 (2,1)€Q
u(z,0) = wug(x)

Here, u: Q— R, ffR—R, M: ) Characteristics:

= ||u||Loo(Q

dz;
_—= / _Z: . ) —
dt f (u’) or dt fl(u); 2 1, .y N

SECTION 1
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Let c. =supye[—ar,m | f/'(u)| be the maximum speed of characteristics. Consider the area given by

KR_{(x,t):|x|§R—c*t70§t<£}

Define r:= R/cs.

Kpg

Si=slice at fixed t

T

R

Figure 1.14.
Theorem 1.18. (Kruzkov, 1970) Suppose u, v are entropy solutions to the system such that

||v M.

letll e o 10l e () <

Then for almost every t1 <ta, t; €[0,T], we have

/St2 |u(x,t2)—v(x,t2)|d$§/ |u(z,t1) —v(x, t1)|dz.

Stl

In particular, for a.e. t€[0,T]

/St |u(z,t) —v(x,t)] </ |uo(z) — vo(x)|d.

0
Corollary 1.19. If up=vq, then u=wv. (Le. entropy solutions are unique, if they exist.)

Proof. Two main ideas:
e doubling trick,
e clever choice of test functions.

Recall that if u is an entropy solution for every ¢ >0 in C§°(Q) and every k € R, we have
| 1o 8) = Kl s —R)( ) = F0) - Dt >0
Fix y, 7 such that v(y, 7) is defined, let k =v(y, 7).
/Q (lu(z,t) = v(y, 7)|@:+sgn(u —v)(f(u) = f(v)) - Depldz dt > 0.
This holds for (y,7) a.e., so we have
/ / [as above]dz dtdydT > 0.
QJQ

Moreover, this holds for every ¢ € C°(Q x @), with ¢ > 0. We also have a symmetric inequality with ¢,
Dy instead of ¢y, Dyp. Add these to obtain

/ / [u(e,£) — v(y, )01+ 0r) +sgn(u —v)(F(u) = £(0)) - (Daip+ Dyp))da dt dy dr > 0.
QJQ
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This is what is called the doubling trick. Fix ¢ C C¢°(Q) and a “bump” function 7: R — R with > 0,
J i ndr=1. For h >0, let ny(r):=1/hn(r/h). Let

. r+y t+7 r—y t—7
w(zvtava)_w< 2 ' 9 )Ah< 2 ' 9 )

where
An(z, 5) = mn(s) [T mn(z0)-
Approximate 1dentity in R”™ i
1 1
Yt = §¢t')\h+§¢()\h)t
1 1
Pr = 51/)t/\h—§1/)(/\h)t

Adding the two cancels out the last term:
0t + ©r = Ay
Similarly,
Do+ Dyp = An D).
We then have

(5 ) ) =t T ) st )00 = (00 D[ ey ar >0

A concentrates at x =y, t=71 as h— 0.
Technical step 1. Let h— 0. (partly outlined in homework, Problems 6 & 7)

/Q [luz,t) —v(z,t)[¢+sgn(u —v)(f(u) = f(v) - Daypldz dt >0 (1.5)

[To prove this step, use Lebesgue’s Differentiation Theorem.]
Claim: (1.5) = L' stability estimate. Pick two test functions:

t t

Test function a
Test function x

to

[51

Figure 1.15.
Let
t
ap(t) :/ Ny (r)dr.
Choose o
1#(907 t) = (ah(t - tl) - O‘h(t - tQ))XE(‘T7 t)'
where

Xe=1—ae(|z]| +cit — R+¢).
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Observe that
(xe)i=—al(c.) <0, Dyxe=—al-
Therefore
(Xe)t + | Daxe| = — alew + ace. = 0.
Drop e:
[u—v]xe+sgn(u—v)(f(u) = f(v) - Dax
= vl L ] <ol D=0 (#)

— v

Substitute for 1 and use (#%#) to find

/ (ap(t —t1) —ap(t —t2))|lu —v|xdzdt =0
Q

= L! contraction. O

2 Hamilton-Jacobi Equations

us+ H(z, Du)=0

for x € R™ and t >0, with u(z,0) =ug(z). Typical application: Curve/surface evolution. (Think fire front.)

\T//f\\T/ Nj

Figure 2.1.

Example 2.1. (A curve that evolves with unit normal velocity) If C; is given as a graph u(z,t). If 7is a
tangential vector, then

(1, uz)
V14u2 '
Let y =us(x,t). So the normal velocity is
Un = (07 y) v,
where v is the normal.
V= (ulﬂa — 1)

Vit
Then vn:1:>y/mz—1$ut:—\/m.
u+vV1+u2=0
H is the Hamiltonian, which in this case is \/rui In R™

ur+/1+|Dyul?=0,

a graph in R™.

Other rules for normal velocity can lead to equations with very different character.
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Example 2.2. (Motion by mean curvature) Here v, = — k (mean curvature).

= —tar

(1+uf)*?
vy, =— k. Then
— Ut _ — Uzz
Vitu2  (1+u)*?
So the equation is
(1+uz)’

which is parabolic. Heuristics:

smoothed corner

arc of a circle

preserved corner

Figure 2.2.
If (x,y) € Cy, then dist((x, y), Co) =t. Also
2 integre 2
8tu+8z(u7) —o meEm UH—%:O.

2.1 Other motivation: Classical mechanics/optics
cf. Evans, chapter 3.3
e Newton’s second law — FF=ma
e Lagrange’s equations
e Hamilton’s equations
Lagrange’s equations: State of the system z € R™ or M™ (which is the configuration space). Then
L(z,4,t) 1}}:'{16 U(z) .

N~~~
potential

Typically, T = %:v - Mx, where M is the (pos.def.) mass matrix.
Hamilton’s principle: A path in configuration space between fixed states x(to) and x(¢1) minimizes the
action

t1
S(T) :/ Liz, &, t)dt
over all paths z(t)=T. o

Theorem 2.3. Assume L is C?. Fix x(to), z(t1). If T is an extremum of S then

d (0oL oL
(%) E-o



HAMILTON-JACOBI EQUATIONS

21

Proof. (“Proof’) Assume that there is an optimal path z(¢). Then consider a perturbed path that

respects the endpoints:
e(t) = z(t) +ep(t)
with ¢(tg) = ¢(t1) =0. Sicne z(¢) is an extremem of action,

5 (@(t) + (1)) lemo =0,

So
d M

= . L(z4ep, @ +ep,t)dt,

which results in

“ror, . oL, . .. B

0

h oL d (0L oL 4
“ 90(”[%‘5(%)}1”%@ =0
——
=0
Since ¢ was arbitrary,

d /oL oL
- %)+ 5o

‘r:(ylu-'-uyN)a yiERS'

Typical example: N-body problem

Then

1 N
_ a2
T—§ E_l mz|yz|
and U (x) = given potential, L=T —U. So -

AU
miyi,j—_ay_ij

2.1.1 Hamilton’s formulation

H(x,p,t)= sup (py— L(z,y,t))
yeR™

~~
Legendre transform

Then
OH
ap b)
. OH
p = = %a
called Hamilton’s equations. They end up being 2N first-order equations.

Definition 2.4. Suppose f:R™— R is convex. Then the Legendre transform is

f*(p) == sup (p-z— f(2))

zeR™
= max (...) if M—>oo as |z|— oo.
zeR™ |fE|

Example 2.5. f(x)= %m 2%, m>0 and x € R.

And
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Example 2.6. f(x) :%x - Mz, where M is pos.def. Then
. 1 -
f(p)=5p-M~'p.
Example 2.7. Suppose f(z)=12%/a with 1 <a <oo.

B 1 1
p
*() = £ here — + = =1.
f (p) where ﬁ

Young’s inequality and

f*p)+ f(@)zpx
imply
o
7
Example 2.8.

duality: edges <« corners

Pit+1 Dit2
® ®
Figure 2.3.

Theorem 2.9. Assume L is convexr. Then L**=L.

Proof. see Evans. Sketch:

e If Ly is piecewise affine, then L}* = L) can be verified explicitly.

e Approximation: If Ly — L locally uniformly, then L} — L* locally uniformly.

Back to Hamilton-Jacobi equations:
ug+ H(x, Dyu,t)=0.
H is always assumed to be
o C?*R"xR"x[0,00)),

e uniformly convex in p= D,u,

SECTION 2
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e uniformly superlinear in p.

2.1.2 Motivation for Hamilton-Jacobi from classical mechanics

Principle of least action: For every path connecting (z,to) — (21, 1) associate the ‘action’

S(T) = /F L(z, &, t)dt.

L Lagrangian, convex, superlinear in 2. Least action = Lagrange’s equations:

d

— GDsL(@,a,t)]+ DL =0 (2.1)

r €R"=n 2nd order ODE.
Theorem 2.10. (“Theorem”) (2.1) is equivalent to

t=Dy,H, p=-D,H. (2.2)
Note that those are 2n first order ODEs.

Proof. (“Proof”)
H(z,p,t) :Hgl%{}g (vp— L(z,v,t)).
Maximum is attained when
p=D,L(z,v,t), (2.3)
and the solution is unique because of convexity.

H(I,p,t):’U(I,p,t)—L(I,’U({E,p,t),t),
where v solves (2.3).
D,H = v+pDyw—D,L-Dyv
= v+ (p—D,L) Dpv

———
=0because of (2.3)

= .
Thus @ = DpH. Similarly, we use (2.1)
d
Note that
D.H = pDyv—D,L—D,LD,v
= —DIL—i— [p_D»UL] Dw’U.
N——
=0 because of (2.3)
Thus, p=—D.H. O

Connections to Hamilton-Jacobi:
e (2.2) are characteristics of Hamilton-Jacobi equations.

o If u=S(T), then du = pdz — H dt. (cf. Arnold, “Mathematical Methods in Classical Mechanics”,
Chapter 46)

{%——H(I,p,t); Dw—p} = w+H(z,Du,t)=0.

Important special case: H(z,p,t)=H(p).

Example 2.11. w;++/1+|D,ul?=0. H(p)=+/1+|p|?.
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Example 2.12. ut+%|Dmu|2:0. H(p)= ;|p|2.

—  straight line characteristics!

{ fE::(l))pH(p) N { p(t) =p(0)
p=

2.2 The Hopf-Lax Formula
ur+ H(Dyu) =0, u(z,0)=uo(z) (2.4)

for z € R", t > 0. Always, H is considered convex and superlinear, L = H*. Action on a path connecting
x(to) =y and z(t1) =a:

1: L(:c,:c',t)dt:/tl L(z(t)dt> (1 —tO)L(tgj:tyO)

to

Using Jensen’s inequality:

121 t1 _
1 / L(j)dt}[,( 1 / jdt)_L<M)_
t—to Jy, ti—to Jy, t —to

w(z,t) = min [tL(x;y>+uo(y)] (2.5)

yeR"

Hopf-Lax formula:

Theorem 2.13. Assume ug: R™ — R is Lipschitz with Lip(u(-,t)) < M Then u defined by (2.5) is Lips-
chitz in R™ x [0,00) and solves (2.4) a.e.. In particular, u solves (2.4) in D'.

(Proof exacty follows Evans.)

Lemma 2.14. (Semigroup Property)

w(z,t) = min {(t—s)L(%) —l—u(y,s)]

yeR™
where 0 < s <t.

Proof.
(z,t)
Figure 2.4.
T—2 T—Y Y—=2
t  t—s s
So

() ()
(55l n(=2) (o)

Since L is convex,
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Choose z such that

) =5 L L5 ) + uolo)
The minimum is achieved because L is superlinear. Also,

[uo(y) — uo(0)]

<M
because ug is Lipschitz. v
tL<x;z)+u0(z)<(t_s)L<f:§/>+u(y,s).
But
u(:b,t)zrr?/n[tL(x_tzl) —l—uo(z')}
Thus

for all y € R™. So,

u(a, ) < min {(t— S)L< :

8
|
<
~_
+
=
<
|
»
S~—
| I

To obtain the opposite inequality, choose z such that

u(x,t)_tL<$;Z) +ug(z).

Let y=(1—s/t)z+ (s/t)x. Then
u(y,s)+(t—s)L<3;:§> = u(y,s)+(t—s)L<I;Z)
o) =5 (152 ) ulo )~ (o)

z

= u(y,s)— <u0(z) +5L<y%)) +u(z,t)

N
£
8

=

That means

min [(t—s)L<%>+u(y—s)]gu(:zz,t). O

yeR"

Lemma 2.15. u:R" X [0,00) — R is uniformly Lipschitz. On any slice t = const we have

Lip(u(-,£)) < M.
Proof. (1) Fix z,Z € R". Choose y € R™ such that
u(w,t) = tL(I;y)—I—uo(y),
(@ f) = tL(f;y>+uo(y).

Then

w(t,t) —u(z,t)= inf {tL(f t_2>+u0(z)] - {tL<$;y>+uo(y)].

zeR™
Choose z such that
T—z = -y
Sz =2—-z+y.
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Then

where M = Lip(up). Similarly,
u(z,t) —u(z,t) < M|z —zZ|.
This yields the Lipschitz claim. In fact, using Lemma 2.14 we have

Lip(u(-,t)) <Lip(u(-,s))

for every 0 < s <t, which can be seen as “the solution is getting smoother”.
(2) Smoothness in t:

- u(x,t) Zmyin [t L<%> —l—uo(y)] <t L(0) +up(x) (choose y=r).
wz,t) — uo(x)

- < L(0).

luo(y) —uo(z)| S Mz —y| = wuo(y)=uo(z) — M|z —yl.
Thus

tL(‘T—y)—I—uo(y)?tL(x;y)+u0(:1c)—M|x—y|.

t
min{tL<u> —M|x—y|}
y t

—t max [M|z]| — L(z)]
z€R™

By (2.6),

u(x,t) —up(x)

WV

= —tmax[ max w-z—L(z)}
zeR" | weB(0,M)
= —t max max [w-z—L(z)]
w€eB(0,M) zER™
= —t max H(w).
weB(0,M)
Now

—  max H(w)<—u(x’t)_u0($)

< < L(0),
weB(0,M) t (0)

SECTION 2

where both the left and right term only depend on the equation. = Lipschitz const in time < max (L(0),

max, e g(o,m) H(w)).

O



