PDE, Part II

BY GOVIND MENON

Table of contents

Ta	able of contents]
1	Scalar Conservation Laws	1
	1.1 Shocks and the Rankine-Hugoniot condition	4
	1.2 Hopf's treatment of Burgers equation	
	1.3 Two basic examples of Solutions	12
	1.4 Entropies and Admissibility Criteria	
	1.5 Kružkov's uniqueness theorem	
2	Hamilton-Jacobi Equations	19
	2.1 Other motivation: Classical mechanics/optics	20
	2.1.1 Hamilton's formulation	2
	2.1.2 Motivation for Hamilton-Jacobi from classical mechanics	
	2.2 The Hopf-Lax Formula	
	-	

Send corrections to kloeckner@dam.brown.edu.

1 Scalar Conservation Laws

$$u_t + (f(u))_x = 0$$

 $x \in \mathbb{R}, t > 0$, typically f convex. $u(x, 0) = u_0(x)$ (given). Prototypical example: Inviscid Burgers Equation

$$f(u) = \frac{u^2}{2}.$$

Motivation for Burgers Equation. Fluids in 3 dimensions are described by Navier-Stokes equations.

$$u_t + u \cdot Du = -Dp + \nu \Delta u$$
$$\operatorname{div} u = 0.$$

Unknown: $u: \mathbb{R}^3 \to \mathbb{R}^3$ velocity, $p: \mathbb{R}^3 \to \mathbb{R}$ pressure. ν is a parameter called *viscosity*. Get rid of incompressibility and assume $u: \mathbb{R} \to \mathbb{R}$.

$$u_t + u u_x = \nu u_{xx}$$
.

Burgers equation (1940s): small correction matters only when u_x is large (Prantl). Method of characteristics:

$$u_t + \left(\frac{u^2}{2}\right)_x = 0.$$

Same as $u_t + u u_x = 0$ if u is smooth. We know how to solve $u_t + c u_x = 0$. $(c \in \mathbb{R} \text{ constant})$ (1D transport equation). Assume

$$u = u(x(t), t)$$

By the chain rule

$$\frac{\mathrm{d}u}{\mathrm{d}t} = u_x \frac{\mathrm{d}x}{\mathrm{d}t} + u_t.$$

If dx/dt = u, we have $du/dt = u u_x + u_t = 0$. More precisely,

$$\frac{\mathrm{d}u}{\mathrm{d}t} = 0 \quad \text{along paths}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u(x(t), t) = u_0(x(0)).$$

Suppose $u_0(x)$ is something like this:

Analytically, $u(x,t)=u_0(x_0)$, $\mathrm{d}x/\mathrm{d}t=u_0(x_0)\Rightarrow x(t)=x(0)+t\ u_0(x_0)$. Strictly speaking, (x,t) is fixed, need to determine x_0 . Need to invert $x=x_0+t\ u_0(x_0)$ to find x_0 and thus $u(x,t)=u_0(x_0)$.

SCALAR CONSERVATION LAWS 3

Figure 1.2.

As long as $x_0 + t u_0(x_0)$ is increasing, this method works. Example 2:

Figure 1.3.

This results in a sort-of breaking wave phenomenon. Analytically, the solution method breaks down when

$$0 = \frac{\mathrm{d}x}{\mathrm{d}x_0} = 1 + t \, u_0'(x_0).$$

No classical (smooth) solutions for all t > 0. Let's try weak solutions then. Look for solutions in \mathcal{D}' . Pick any test function $f \in C_c^{\infty}(\mathbb{R} \times [0, \infty))$:

Integrate by parts: $\int_0^\infty \int_{\mathbb{R}} \varphi \left[u_t + \left(\frac{u^2}{2} \right)_x \right] = 0, \quad u(x,0) = u_0(x).$ $\int_0^\infty \int_{\mathbb{R}} \left[\varphi_t u + \varphi_x \frac{u^2}{2} \right] dx dt + \int_{\mathbb{R}} \varphi(x,0) u_0(x) dx = 0.$ (1.1)

Definition 1.1. $u \in L^1_{loc}([0,\infty] \times \mathbb{R})$ is a weak solution if (1.1) holds for all $\varphi \in C^1_c([0,\infty) \times \mathbb{R})$.

1.1 Shocks and the Rankine-Hugoniot condition

Figure 1.4. Solution for a simple discontinuity (ν and τ are unit vectors.)

Let φ have compact support in $\mathbb{R} \times (0, \infty)$ which crosses the the line of discontinuity. Apply (1.1). Ω_{-} is the part of the support of φ to the left of the line of discontinuity, Ω_{+} the one to the right.

$$0 = \int_{\Omega_{-}} \varphi_{t} u_{-} + \varphi_{x} \left(\frac{u_{-}^{2}}{2}\right) dx dt + \int_{\Omega_{+}} \varphi_{t} u_{+} + \varphi_{x} \left(\frac{u_{+}^{2}}{2}\right) dx dt$$

$$= \int_{\Omega_{-}} (\varphi u_{-})_{t} + \left(\varphi \frac{u_{-}^{2}}{2}\right)_{t} dx dt + \cdots$$

$$= -\int_{\Gamma} \varphi \left[u_{-} \nu_{t} + \left(\frac{u_{-}^{2}}{2}\right) \nu_{x}\right] ds + \int_{\Gamma} \varphi \left[u_{+} \nu_{t} + \left(\frac{u_{+}^{2}}{2}\right) \nu_{x}\right] ds$$

Notation $[g] = g_+ - g_-$ for any function that jumps across discontinuity. Thus, we have the integrated jump condition

Since φ is arbitrary,

$$\int_{\Gamma} \varphi \left[\llbracket u \rrbracket \nu_t + \left[\frac{u^2}{2} \right] \nu_x \right] \mathrm{d}s.$$

$$[u]\nu_t + \left[\left[\frac{u^2}{2} \right] \right] \nu_x = 0.$$

For this path,

$$\tau = (\dot{x}, 1) \frac{1}{\sqrt{\dot{x}^2 + 1}}, \quad \nu = (-1, \dot{x}) \frac{1}{\sqrt{\dot{x}^2 + 1}}.$$

 $(\dot{x} \text{ is the speed of the shock.})$

$$\Rightarrow \dot{x} = \frac{\left[\frac{u^2}{2} \right]}{\left[u \right]} = \frac{u_- + u_+}{2}.$$

Rankine-Hugoniot condition:

$$\operatorname{shock} \, \operatorname{speed} = \frac{[\![f(u)]\!]}{[\![u]\!]}$$

for a scalar conservation law $u_t + (f(u))_x = 0$.

Definition 1.2. The Riemann problem for a scalar conservation law is given by

$$u_t + (f(u))_x = 0,$$

$$u_0(x) = \begin{cases} u_- & x < 0, \\ u_+ & x \geqslant 0. \end{cases}$$

Example 1.3. Let's consider the Riemann problem for the Burgers equation: $f(u) = u^2/2$.

$$u_0(x) = \begin{cases} 0 & x < 0, \\ 1 & x \ge 0. \end{cases}$$

By the derivation for "increasing" initial data above, we obtain

$$u(x,t) = \mathbf{1}_{\{x \geqslant y(t)\}}, \quad y(t) = \frac{\|u^2/2\|}{\|u\|} = \frac{t}{2}.$$

The same initial data admits another (weak) solution. Use characteristics:

Figure 1.5.

Rarefaction wave: Assume $u(x,t) = v(x/t) = v(\xi)$. Then

$$u_t = v'\left(-\frac{x}{t^2}\right) = \frac{-\xi v'}{t},$$

$$u_x = v'\left(\frac{1}{t}\right) = \frac{1}{t}v'.$$

So, $u_t + u u_x = 0 \Rightarrow -\xi/t v' + v/t v' = 0 \Rightarrow v'(-\xi + v) = 0$. Choose $v(\xi) - \xi$. Then

$$u(x,t) = \frac{x}{t}.$$

Thus we have a second weak solution

$$u(x,t) = \begin{cases} 0 & x < 0, \\ x/t & 0 \leqslant \frac{x}{t} \leqslant 1, \\ 1 & \frac{x}{t} > 1. \end{cases}$$

So, which if any is the *correct* solution? Resolution:

- $f(u) = u^2/2$: E. Hopf, 1950
- General convex f: Lax, Oleinik, 1955.
- Scalar equation in \mathbb{R}^n : Kružkov.

1.2 Hopf's treatment of Burgers equation

Basic idea: The "correct" solution to

$$u_t + \left(\frac{u^2}{2}\right)_x = 0$$

must be determined through a limit as $\varepsilon \downarrow 0$.

$$u_t^{\varepsilon} + u^{\varepsilon} u_x^{\varepsilon} = \varepsilon u_{xx}^{\varepsilon}.$$

This is also called to the $vanishing\ viscosity\ method$. Then, apply a clever change of variables. Assume u has compact support. Let

$$U(x,t) = \int_{-\infty}^{x} u(y,t) dy.$$

(Hold $\varepsilon > 0$ fixed, drop superscript.)

$$U_t = \int_{-\infty}^x u_t(y, t) dy = -\int_{-\infty}^x \left(\frac{u^2}{2}\right)_y dy + \varepsilon \int_{-\infty}^x u_{yy}(y, t) dy.$$

Then

$$U_t = -\frac{u^2}{2} + \varepsilon u_x$$

or

$$U_t + \frac{U_x^2}{2} = \varepsilon U_{xx}. (1.2)$$

Equations of the form $U_t + H(Du) = 0$ are called Hamilton-Jacobi equations. Let

 $\psi(x,t) = \exp\left(-\frac{U(x,t)}{2\varepsilon}\right)$

(Cole-Hopf)

$$\psi_t = \psi \left(-\frac{1}{2\varepsilon} U_t \right)$$

$$\psi_x = \psi \left(-\frac{1}{2\varepsilon} U_x \right)$$

$$\psi_{xx} = \psi \left(-\frac{1}{2\varepsilon} U_x \right)^2 + \psi \left(-\frac{1}{2\varepsilon} U_{xx} \right).$$

Use (1.2) to see that

$$\psi_t = \varepsilon \psi_{xx}$$

which is the heat equation for $x \in \mathbb{R}$, and

$$\psi_0(x) = \exp\left(-\frac{U_0(x)}{2\varepsilon}\right).$$

Since $\psi > 0$, uniqueness by Widder.

$$\psi(x,t) = \frac{1}{\sqrt{4\pi t\varepsilon}} \int_{\mathbb{R}} \exp\left(-\frac{1}{2\varepsilon} \left[\frac{(x-y)^2}{2t} + U_0(y)\right]\right) dy.$$

Define

$$G(t, x, y) = \frac{(x - y)^2}{2t} + U_0(y),$$

which is called the Cole-Hopf function. Finally, recover u(x,t) via

$$\begin{split} u(x,t) &= -2\varepsilon \psi_x/\psi &= -2\varepsilon \frac{\int_{\mathbb{R}} \frac{-2(x-y)}{2\varepsilon \, 2t} \mathrm{exp}\Big(-\frac{G}{2\varepsilon}\Big) \mathrm{d}y}{\int_{\mathbb{R}} \mathrm{exp}\Big(-\frac{G}{2\varepsilon}\Big) \mathrm{d}y} = \frac{\int_{\mathbb{R}} \frac{x-y}{t} \mathrm{exp}\Big(-\frac{G}{2\varepsilon}\Big) \mathrm{d}y}{\int_{\mathbb{R}} \mathrm{exp}\Big(-\frac{G}{2\varepsilon}\Big) \mathrm{d}y} \\ &= \frac{x}{t} - \frac{1}{t} \cdot \frac{\int_{\mathbb{R}} y \, \mathrm{exp}\Big(-\frac{G}{2\varepsilon}\Big) \mathrm{d}y}{\int_{\mathbb{R}} \mathrm{exp}\Big(-\frac{G}{2\varepsilon}\Big) \mathrm{d}y}. \end{split}$$

Heuristics: We want $\lim_{\varepsilon \to 0} u^{\varepsilon}(x, t)$.

Figure 1.6.

Add to get G(x, y, t). We hold x, t fixed and consider $\varepsilon \downarrow 0$. Let a(x, t) be the point where G = 0. We'd expect

$$\lim_{\varepsilon \to 0} u^{\varepsilon}(x,t) = \frac{x - a(x,t)}{t}.$$

Problems:

- \bullet G may not have a unique minimum.
- G need not be C^2 near minimum.

Assumptions:

- U_0 is continuous (could be weakened)
- $U_0(y) = o(|y|^2)$ as $|x| \to \infty$.

Definition 1.4. [The inverse Lagrangian function]

$$\begin{split} a_-(x,t) &= &\inf\left\{z\in\mathbb{R} \colon G(x,z,t) = \min_y G\right\} = \inf \operatorname{argmin} G, \\ a_+(x,t) &= &\sup\left\{z\in\mathbb{R} \colon G(x,z,t) = \min_y G\right\} = \sup \operatorname{argmin} G, \end{split}$$

Lemma 1.5. Use our two basic assumptions from above. Then

- These functions are well-defined.
- $a_{+}(x_1,t) \leq a_{-}(x_2,t)$ for $x_1 < x_2$. In particular, a_{-} , a_{+} are increasing (non-decreasing).
- a_- is left-continuous, a_+ is right-continuous: $a_+(x,t) = a_+(x,t)$.
- $\lim_{x\to\infty} a_-(x,t) = +\infty$, $\lim_{x\to-\infty} a_+(x,t) = -\infty$.

In particular, $a_+ = a_-$ except for a countable set of points $x \in \mathbb{R}$ (These are called shocks).

Theorem 1.6. (Hopf) Use our two basic assumptions from above. Then for every $x \in \mathbb{R}$, t > 0

$$\frac{x - a_{+}(x, t)}{t} \leqslant \limsup_{\varepsilon \to 0} u^{\varepsilon}(x, t) \leqslant \liminf_{\varepsilon \to 0} u^{\varepsilon}(x, t) \leqslant \frac{x - a_{-}(x, t)}{t}.$$

In particular, for every t > 0 except for x in a countable set, we have

$$\lim_{\varepsilon \to 0} u^{\varepsilon}(x,t) = \frac{x - a_{+}(x,t)}{t} = \frac{x - a_{-}(x,t)}{t}.$$

Graphical solution I (Burgers): Treat $U_0(y)$ as given.

Figure 1.7.

 $U_0(y) > C - (x - y)^2/2t$ is parabola is below $U_0(y)$. Then

$$U_0(y) + \frac{(x-y)^2}{2t} - C > 0,$$

where C is chosen so that the two terms "touch".

Graphical solution II: Let

$$H(x,y,t) = G(x,y,t) - \frac{x^2}{2t} = U_0(y) + \frac{(x-y)^2}{2t} - \frac{x^2}{2t} = U_0(y) + \frac{y^2}{2t} - \frac{x\,y}{t}.$$

Observe H, G have minima at same points for fixed x, t.

Figure 1.8.

Definition 1.7. If $f: \mathbb{R}^n \to \mathbb{R}$ continuous, then the convex hull of f is

$$\sup_g \big\{ f \geqslant g \colon g \ convex \big\}.$$

 a_+ , a_- defined by $U_0(y) + y^2/2t$ same as that obtained from the convex hull of $U_0(y) + y^2/2t \Rightarrow$ Irreversibility.

Remark 1.8. Suppose $U_0 \in \mathbb{C}^2$. Observe that at a critical point of G, we have

$$\partial_y G(x,y,t) = 0,$$

which means

$$\partial_y \left[U_0(y) + \frac{(x-y)^2}{2t} \right] = 0,$$

SO

$$u_0(y) + \frac{(y-x)}{t} = 0 \Rightarrow x = y + t u_0(y).$$

Every y such that $y + t u_0(y) = x$ gives a Lagrangian point that arrives at x at the time t.

Figure 1.9.

Remark 1.9. Main point of Cole-Hopf method is that we have a solution formula independent of ε , and thus provides a uniqueness criteria for suitable solutions. (Kružkov)

- Eberhard Hopf, CPAM 1950 "The PDE $u_t + u u_x = \mu u_{xx}$ "
- S.N. Kružkov, Math USSR Sbornik, Vol. 10, 1970 #2.

$$S_{(x,t)} = \left\{ z \in \mathbb{R} : G(x,z,t) = \min_{y} G \right\}$$

Proof. [Lemma 1.5] Observe that G(x, y, t) is continuous in y, and

$$\lim_{|y| \to \infty} \frac{G(x, y, t)}{|y|^2} = \lim_{|y| \to \infty} \frac{(x - y)^2}{2t|y|^2} + \frac{U_0(y)}{|y|^2} = \frac{1}{2t} > 0.$$

Therefore, minima of G exist and $S_{(x,t)}$ is a bounded set for t > 0.

$$\Rightarrow a_{-}(x,t) = \inf S_{(x,t)} > -\infty,$$

$$a_{+}(x,t) = \sup S_{(x,t)} < \infty.$$

Proof of monotinicity: Fix $x_2 > x_1$. For brevity, let $z = a_+(x_1, t)$. We'll show $G(x_2, y, t) > G(x_2, z, t)$ for any y < z. This shows that $\min_y G(x_2, y, t)$ can only be achieved in $[z, \infty)$, which implies $a_-(x_2, t) \ge z = a_+(x_1, t)$. Use definition of G:

$$G(x_{2}, y, t) - G(x_{2}, z, t) = \frac{(x - y)^{2}}{2t} + U_{0}(y) - \frac{(x_{2} - z)^{2}}{2t} - U_{0}(z)$$

$$= \left[\frac{(x_{1} - y)^{2}}{2t} + U_{0}(y) \right] - \left[\frac{(x_{1} - z)^{2}}{2t} + U_{0}(z) \right] + \frac{1}{2t} \left[(x_{2} - y)^{2} - (x_{1} - y)^{2} + (x_{1} - z)^{2} - (x_{2} - z)^{2} \right]$$

$$= \underbrace{G(x, y, t) - G(x, z, t)}_{a} + \frac{1}{t} \left[\underbrace{(x_{2} - x_{1})(z - y)}_{b} \right]$$

 $a) \geqslant 0$ because $G(x, z, t) = \min G(x, \cdot, t)$, b) > 0 because $x_2 > x_1$, by assumption z > y. By definition, $a_-(x_2, t) \leqslant a_+(x_2, t)$. So in particular,

$$a_{+}(x_{1},t) \leqslant a_{+}(x_{2},t),$$

so a_{+} is increasing. Proof of other properties is similar.

Corollary 1.10. $a_{-}(x,t) = a_{+}(x,t)$ at all but a countable set of points.

Proof. We know a_{-} , a_{+} are increasing functions and bounded on finite sets. Therefore,

$$\lim_{y \to x_{-}} a_{\pm}(y,t), \quad \lim_{y \to x_{+}} a_{\pm}(y,t)$$

exist at all $x \in \mathbb{R}$. Let $F = \{x: a_+(x_-, t) < a_-(x_+, t)\}$. Then F is countable. Claim: $a_-(x, t) = a_+(x, t)$ for $x \notin F$.

$$a_{+}(y_1, t) \leq a_{-}(y_2, t) \leq a_{+}(y_3, t).$$

Therefore,

$$\lim_{y \to x} a_{-}(y, t) = a_{+}(x, t).$$

Remark 1.11. Hopf proves a stronger version of Theorem 1.6:

$$\frac{x-a_+(x,t)}{t}\leqslant \liminf_{\varepsilon\to 0, \xi\to x, \tau\to t} u^\varepsilon(\xi,\tau)\leqslant \limsup_{\varepsilon\to 0, \xi\to x, \tau\to t} u^\varepsilon(\xi,\tau)\leqslant \frac{x-a_-(x,t)}{t}.$$

Proof. (of Theorem 1.6) Use the explicit solution to write

$$u^{\varepsilon}(x,t) = \frac{\int_{\mathbb{R}} \frac{x-y}{t} \cdot \exp\left(\frac{-P}{2t}\right) dy}{\int_{\mathbb{R}} \exp\left(\frac{-P}{2t}\right) dy},$$

where P(x, y, t) = G(x, y, t) - m(x, t) with $m(x, t) = \min_{y} G$.

Figure 1.10.

Fix x, t. Fix $\eta > 0$, let a_+ and a_- denote $a_+(x, t)$ and $a_-(x, t)$. Let

$$l := \frac{x - a_{+} - \eta}{t}$$

$$\leqslant \frac{x - a_{-} - \eta}{t} = : L.$$

Lower estimate

$$\liminf_{e \to 0} u^{\varepsilon}(x, t) \geqslant \frac{x - a_{+}}{t} - \eta.$$

Consider

$$u^{\varepsilon}(x,t) - l = \frac{\int_{\mathbb{R}} \left(\frac{x-y}{t} - l\right) \cdot \exp\left(\frac{-P}{2\varepsilon}\right) dy}{\int_{\mathbb{R}} \exp\left(\frac{-P}{2\varepsilon}\right) dy} = \frac{\int_{\mathbb{R}} \left(\frac{a_{+} + \eta - y}{t} - l\right) \cdot \exp\left(\frac{-P}{2\varepsilon}\right) dy}{\int_{\mathbb{R}} \exp\left(\frac{-P}{2\varepsilon}\right) dy}.$$

Estimate the numerator as follows:

$$\int_{-\infty}^{\infty} \frac{a_{+} + \eta - y}{t} \cdot \exp\left(\frac{-P}{2\varepsilon}\right) dy = \underbrace{\int_{-\infty}^{a_{+}}}_{0} + \int_{a_{+}}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{a_{+} + \eta - y}{t} \exp\left(\frac{-P}{2\varepsilon}\right) dy$$

On the interval $y \in [a_+ + \eta, \infty]$, we have the uniform lower bound

$$\frac{P(x,y,t)}{(y-a_+)^2} \geqslant \frac{A}{2} > 0$$

for some constant A depending only on η . Here we use

$$\frac{P(x,y,t)}{|y|^2} = \frac{U_0(y)}{|y|^2} + \frac{(x-y)^2}{2t|y|^2} - \frac{m(x,t)}{|y|^2} \to \frac{1}{2t} > 0$$

as $|y| \to \infty$. We estimate

$$\begin{split} \int_{a_{+}+\eta}^{\infty} \frac{|a_{+}+\eta-y|}{t} e^{-P/2\varepsilon} \mathrm{d}y &\leqslant \int_{a_{+}+\eta}^{\infty} \frac{|a_{+}+\eta-y|}{t} \mathrm{exp} \bigg(-\frac{A}{4\varepsilon} (y-a_{+})^{2} \bigg) \mathrm{d}y \\ &= \int_{\eta}^{\infty} \frac{(y-\eta)}{t} \mathrm{exp} \bigg(-\frac{A\,y^{2}}{4\varepsilon} \bigg) \mathrm{d}y \\ &< \int_{\eta}^{\infty} \frac{y}{t} \mathrm{exp} \bigg(-\frac{A\,y^{2}}{4\varepsilon} \bigg) \mathrm{d}y \\ &= \frac{1}{t} \frac{\varepsilon}{A} \int_{\sqrt{\frac{A}{\varepsilon}\eta}}^{\infty} y \, e^{-y^{2}/2} \mathrm{d}y = \frac{1}{t} \cdot \frac{\varepsilon}{A} e^{-\frac{A\eta^{2}}{2\varepsilon}}. \end{split}$$

For the denominator,

$$\int_{\mathbb{R}} \exp\left(\frac{-P}{2\varepsilon}\right) dy:$$

Since P is continuous, and $P(x, a_+, t) = 0$, there exists δ depending only on η such that

$$P(x, y, t) \leqslant \frac{A}{2}\eta$$

for $y \in [a_+, a_+ + \delta]$. Thus,

$$\int_{\mathbb{R}} e^{-P/2\varepsilon} \mathrm{d}y \geqslant \int_{a_+}^{a_+ + \delta} e^{-P/2\varepsilon} \mathrm{d}y \geqslant \int_{a_+}^{a_+ + \delta} e^{-(A/2\varepsilon)\eta^2} \mathrm{d}y = \delta e^{-(A/2\varepsilon)\eta^2}.$$

Combine our two estimates to obtain

$$u^{\varepsilon}(x,t) - l \geqslant \frac{-\varepsilon e^{-(A/2\varepsilon)\eta^2}}{A t \delta e^{-(A/2\varepsilon)\eta^2}} = -\varepsilon \cdot \frac{1}{A t \delta}.$$

Since A, δ depend only on η ,

$$\liminf_{\varepsilon \to 0} u^{\varepsilon}(x,t) \geqslant l = \frac{x - a_{+} - \eta}{t}.$$

Since $\eta > 0$ arbitrary,

$$\liminf_{\varepsilon \to 0} u^{\varepsilon}(x,t) = \frac{x - a_{+}}{t}.$$

Corollary 1.12. $\lim_{\varepsilon \to 0} u^{\varepsilon}(x, t)$ exists at all but a countable set of points and defines $u \in BV_{loc}$ with left and right limits at all $x \in \mathbb{R}^n$.

Proof. We know

$$a_{+}(x,t) = a_{-}(x,t)$$

at all but a countable set of shocks. So,

$$\lim_{\varepsilon \to 0} u^{\varepsilon}(x,t) = \frac{x - a_{+}(x,t)}{t} = \frac{x - a_{-}(x,t)}{t}$$

at these points. BV_{loc} because we have the difference of increasing functions.

Corollary 1.13. Suppose $u_0 \in BC(\mathbb{R})$ (bounded, continuous). Then

$$u(\cdot,t) = \lim_{\varepsilon \to 0} u^{\varepsilon}(\cdot,t) \in BC(\mathbb{R}).$$

and u is a weak solution to

$$u_t + \left(\frac{u^2}{2}\right)_x = 0.$$

Proof. Suppose $\varphi \in C_c^{\infty}(\mathbb{R} \times (0, \infty))$. Then we have

$$\varphi\left(u_t^{\varepsilon} + \left(\frac{u^{\varepsilon}}{2}\right)_x\right) = (e \, u_{x\,x}^{\varepsilon}) \varphi$$

$$\int_0^{\infty} \int_{\mathbb{R}} \left[\varphi_t u^{\varepsilon} + \varphi_x \frac{(u^{\varepsilon})^2}{2}\right] \mathrm{d}x \, \mathrm{d}t = \varepsilon \int_0^{\infty} \int_{\mathbb{R}} \varphi_{x\,x} u^{\varepsilon} \mathrm{d}x \, \mathrm{d}t.$$

We want

$$-\int_0^\infty \left[\varphi_t u + \varphi_x \frac{u^2}{2} \right] dx dt = 0.$$

Suppose

$$u_t^\varepsilon + u^\varepsilon u_x^\varepsilon = \varepsilon u_{x\,x}^\varepsilon, \quad u^\varepsilon(x,0) \in \mathrm{BC}(\mathbb{R}).$$

Maximum principle yields

$$||u^{\varepsilon}(\cdot,t)||_{L^{\infty}} \leqslant ||u_0||_{L^{\infty}}.$$

Use DCT+ $\lim_{\varepsilon\to 0} u^{\varepsilon}(x,t) = u$ a.e. to pass to limit.

1.3 Two basic examples of Solutions

$$u_t + \left(\frac{u^2}{2}\right)_x = 0$$

 $u(x,0) = u_0(x), U_0(x) = \int_0^x u_0(y) dy$. Always consider the Cole-Hopf solution.

$$u(x,t) = \frac{x - a(x,t)}{t},$$

$$a(x,t) = \operatorname{argmin}\underbrace{\frac{(x-y)^2}{2t} + U_0(y)}_{G(x,y,t)}.$$

Example 1.14. $u_0(x) = \mathbf{1}_{\{x>0\}}$. Here,

$$U_0(y) = \int_0^y \mathbf{1}_{\{y'>0\}} dy' = y \mathbf{1}_{\{y>0\}}$$

Then

$$G(x,y,t) = \frac{(x-y)^2}{2t} + y \mathbf{1}_{\{y>0\}} \geqslant 0,$$

and

$$G(x, y, t) = 0 = x \mathbf{1}_{\{x>0\}} = 0$$

if $x \leq 0$. So, a = x for $x \leq 0$. Differentiate G and set = 0

$$0 = \frac{y - x}{t} + 1 \quad \text{(assuming } y > 0\text{)}$$

So, y = x - t. Consistency: need $y > 0 \Rightarrow x > t$. Gives u(x, t) = 1 for x > t.

$$G(x, y, t) = \frac{x^2}{2t} + \frac{y^2}{2t} - \frac{xy}{t} + y\mathbf{1}_{\{y>0\}}$$
$$= \frac{x^2}{2t} + \frac{y^2}{2t} + y\left(\mathbf{1}_{\{y>0\}} - \frac{x}{t}\right).$$

Consider 0 < x/t < 1, t > 0. Claim: $G(x, y, t) \ge x^2/2t$ and a = 0.

- Case I: y < 0, then $G(x, y, t) x^2/2t = y^2/2t xy/t > 0$.
- Case II: y > 0, then $G(x, y, t) x^2/2t = y^2/2t + (1 x/t)y > 0$.

$$a(x,t) = \begin{cases} x & x \leq 0, \\ 0 & 0 < x \leq t, \\ x - t & x \geqslant t. \end{cases}$$

Then

$$u(x,t) = \frac{x - a(x,t)}{t} = \begin{cases} 0 & x \leqslant 0, \\ x/t & 0 < x \leqslant t, \\ 1 & t \leqslant x. \end{cases}$$

Example 1.15. $u_0(x) = -\mathbf{1}_{\{x>0\}}$. Then

$$u(x,t) = -\mathbf{1}_{\{x>-t/2\}}.$$

Shock path: x = -t/2.

Here are some properties of the Cole-Hopf solution:

- $u(\cdot,t) \in BV_{loc}(\mathbb{R}) \to \text{ difference of two increasing functions}$
- $u(x_-,t)$ and $u(x_+,t)$ exist at all $x \in \mathbb{R}$. And $u(x_-,t) \ge u(x_+,t)$. In particular,

$$u(x_{-},t) > u(x_{+},t)$$

at jumps. This is the *Lax-Oleinik entropy condition*. It says that chracteristics always enter a shock, but never leave it.

• Suppose $u(x_-,t) > u(x_+,t)$. We have the Rankine-Hugoniot conditation:

$$\text{Velocity of shock} = \frac{\left[\!\!\left[\frac{u^2}{2}\right]\!\!\right]}{\left[\!\!\left[u\right]\!\!\right]} = \frac{1}{2}(u(x_+,t) + u(x_-,t)).$$

Claim: If x is a shock location

$$\frac{1}{2}(u(x_{-},t)+u(x_{+},t)) = \frac{1}{a(x_{+},t)-a(x_{-},t)} \int_{a_{-}}^{a_{+}} u_{0}(y) dy.$$

$$\underbrace{(a_{+} - a_{-})(\text{velocity of shock})}_{\text{final momentum}} = \underbrace{\int_{a_{-}}^{a_{+}} u_{0}(y) dy}_{\text{initial momentum}}$$

Figure 1.11. The "clustering picture".

1.4 Entropies and Admissibility Criteria

$$u_t + D \cdot (f(u)) = 0$$

$$u(x,0) = u_0(x)$$

for $x \in \mathbb{R}^n$, t > 0. Many space dimensions, but u is a scalar $u: \mathbb{R}^n \times (0, \infty) \to \mathbb{R}$, $f: \mathbb{R} \to \mathbb{R}^n$ (which we assume to be C^1 , but which usually is C^{∞}). Basic calculation: Suppose $u \in C_c^{\infty}(\mathbb{R}^n \times [0, \infty))$, and also suppose we have a convex function $\eta: \mathbb{R} \to \mathbb{R}$ (example: $\eta(u) = u^2/2$)

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^n} \eta(u) \mathrm{d}x = \int_{\mathbb{R}^n} \eta'(u) u_t \mathrm{d}x = -\int_{\mathbb{R}^n} \eta'(u) D_x(f(u)) \mathrm{d}x.$$

Suppose we have a function $q: \mathbb{R} \to \mathbb{R}^n$ such that

$$D_x q(u) = \eta'(u) D_x(f(u)),$$

i.e.

$$\partial_{x_1} q_1(u) + \partial_{x_2} q_2(u) + \dots + \partial_{x_n} q_n(u) = q'_1 u_{x_1} + q'_2 u_{x_2} + \dots + q'_n u_{x_n}$$

$$= \eta'(u) f'_1 u_{x_1} + \eta'(u) f'_2 u_{x_2} + \dots + \eta'(u) f'_n u_{x_n}.$$

Always holds: Simply define $q'_i = \eta'(u) f'_i$. Then we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^n} \eta(u) \mathrm{d}x = -\int_{\mathbb{R}^n} D_x \cdot (q(u)) \mathrm{d}x = 0$$

provided q(u) = 0.

Example 1.16. Suppose $u_t + u u_x = 0$. Here f'(u) = u. If $\eta(u) = u^2/2$, $q'(u) = \eta'(u)f'(u) = u^2$. So, $q(u) = u^3/3$. Smooth solution to Burgers Equation:

$$\partial_t \left(\frac{u^2}{2} \right) + \partial_x \left(\frac{u^3}{3} \right) = 0.$$

(called the companion balance law) And

$$\frac{\mathrm{d}}{\mathrm{d}t} \int \frac{u^2}{2} \mathrm{d}x = 0,$$

which is conservation of energy.

Consider what happens if we add viscosity

$$u_t^{\varepsilon} + D_x \cdot (f(u^{\varepsilon})) = \varepsilon \Delta u^{\varepsilon},$$

$$u^{\varepsilon}(x, 0) = u_0(x).$$

In this case, we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^n} \eta(u^{\varepsilon}) \mathrm{d}x = \int_{\mathbb{R}^n} \eta'(u^{\varepsilon}) u_t^{\varepsilon} \mathrm{d}x = \underbrace{-\int_{\mathbb{R}^n} D_x \cdot (q(u^{\varepsilon})) \mathrm{d}x}_{=0} + \varepsilon \int_{\mathbb{R}^n} \eta'(u^{\varepsilon}) \mathrm{d}x$$

$$= -\varepsilon \int_{\mathbb{R}^n} \underbrace{\eta'(u^{\varepsilon})}_{\geqslant 0} |Du^{\varepsilon}|^2 \mathrm{d}x < 0$$

because η is *convex*. If a solution to our original system is $\lim_{\varepsilon \to 0} u^{\varepsilon}$ of solutions of the viscosity system, we must have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^n} \eta(u) \mathrm{d}x \leq 0.$$

Fundamental convex functions ($Kružkov\ entropies$): $(u-k)_+$, $(k-u)_+$, |u-k|.

Definition 1.17. (Kružkov) A function $u \in L^{\infty}(\mathbb{R}^n \times (0, \infty))$ is an entropy (or admissible) solution to the original system, provided

1. For every $\varphi \in C_c^{\infty}(\mathbb{R}^n \times (0,\infty))$ with $\varphi \geqslant 0$ and every $k \in \mathbb{R}$ we have

$$\int_0^\infty \left[|u - k| \varphi_t + \operatorname{sgn}(u - k)(f(u) - f(k)) \cdot D_x \varphi \right] dx dt \ge 0.$$
(1.3)

2. There exists a set of measure zero such that for $t \notin F$, $u(\cdot,t) \in L^{\infty}(\mathbb{R}^n)$ and for any ball B(x,r)

$$\lim_{t \to 0, t \in F} \int_{B(x,r)} |u(y,t) - u_0(y)| dy = 0.$$

An alternative way to state Condition 1 above is as follows: For every (entropy, entropy-flux) pair (η, q) , we have

$$\partial_t \eta(u) + \partial_x(q(u)) \leqslant 0 \tag{1.4}$$

in \mathcal{D}' . Recover (1.3) by choosing $\eta(u) = |u - k|$. (1.3) \Rightarrow (1.4) because all convex η can be generated from the fundamental entropies.

(1.3) means that if we multiply by $\varphi \geqslant 0$ and integrate by parts we have

$$-\int_0^\infty \int_{\mathbb{R}^n} \left[\varphi_t \eta(u) + D_x \varphi \cdot q(u) \right] dx dt \leq 0.$$

Positive distributions are measures, so

$$\partial_t \eta(u) + \partial_x (q(u)) = -m_n$$

where m_{η} is some measure that depends on η . To be concrete, consider Burgers equation and $\eta(u) = u^2/2$ (energy). Dissipation in Burgers equation:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}} \frac{(u^{\varepsilon})^{2}}{2} \mathrm{d}x = -\int_{\mathbb{R}} (u^{\varepsilon})^{2} u_{x}^{\varepsilon} + \varepsilon \int_{\mathbb{R}} u^{\varepsilon} u_{xx}^{\varepsilon} \mathrm{d}x$$
$$= -\varepsilon \int_{\mathbb{R}} (u_{x}^{\varepsilon})^{2} \mathrm{d}x.$$

But what is the limit of the integral term as $\varepsilon \to 0$? Suppose we have a situation like in the following figure:

Figure 1.12.

Traveling wave solution is of the form

$$u^{\varepsilon}(x,t) = v\left(\frac{x-ct}{\varepsilon}\right),$$

where $c = [\![f(u)]\!]/[\![u]\!] = (u_- + u_+)/2$. And

$$-cv' + \left(\frac{v^2}{2}\right)' = v''.$$

Integrate and obtain

$$-c(v-u_{-})+\frac{v^{2}}{2}-\frac{u_{-}^{2}}{2}=v'.$$

For a traveling wave

$$\varepsilon \int_{\mathbb{R}} (u_x^{\varepsilon})^2 dx = \frac{\varepsilon}{\varepsilon} \int_{\mathbb{R}} \left(v' \left(\frac{x - ct}{\varepsilon} \right) \right)^2 \frac{dx}{\varepsilon}$$
$$= \int_{\mathbb{R}} (v')^2 dx$$

independent of ε ! In fact,

$$\int_{\mathbb{R}} (v')^2 dx = \int_{\mathbb{R}} v' \cdot \frac{dv}{dx} dx$$

$$= \int_{u_-}^{u_+} \left[-c(v - u_-) + \left(\frac{v^2}{2} - \frac{u_-^2}{2} \right) \right] dv$$

$$= (u_- - u_+)^3 \int_0^1 s(1 - s) ds = \frac{(u_- - u_+)^3}{6}.$$

Always have $u_- > u_+$. Heuristic picture:

Figure 1.13.

The dissipation measure is concentrated on J and has density

$$\frac{(u_+ - u_-)^2}{6}$$
.

1.5 Kružkov's uniqueness theorem

In what follows, $Q = \mathbb{R}^n \times (0, \infty)$. Consider entropy solutions to

$$u_t + D_x \cdot (f(u)) = 0 \quad (x,t) \in Q$$
$$u(x,0) = u_0(x)$$

Here, $u:Q \to \mathbb{R}, \ f:\mathbb{R} \to \mathbb{R}, \ M:=\|u\|_{L^{\infty}(Q)}$. Characteristics:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f'(u) \quad \text{or} \quad \frac{\mathrm{d}x_i}{\mathrm{d}t} = f_i(u), \quad i = 1, \dots, n.$$

Let $c_* = \sup_{u \in [-M,M]} |f'(u)|$ be the maximum speed of characteristics. Consider the area given by

$$K_R = \left\{ (x, t) : |x| \leqslant R - c_* t, 0 \leqslant t \leqslant \frac{R}{c_*} \right\}$$

Define $r := R/c_*$.

Figure 1.14.

Theorem 1.18. (Kružkov, 1970) Suppose u, v are entropy solutions to the system such that

$$||u||_{L^{\infty}(Q)}, ||v||_{L^{\infty}(Q)} \leq M.$$

Then for almost every $t_1 < t_2$, $t_i \in [0, T]$, we have

$$\int_{S_{t_2}} |u(x, t_2) - v(x, t_2)| \mathrm{d}x \leqslant \int_{S_{t_1}} |u(x, t_1) - v(x, t_1)| \mathrm{d}x.$$

In particular, for a.e. $t \in [0, T]$

$$\int_{S_{t}} |u(x,t) - v(x,t)| \le \int_{S_{0}} |u_{0}(x) - v_{0}(x)| dx.$$

Corollary 1.19. If $u_0 = v_0$, then u = v. (I.e. entropy solutions are unique, if they exist.)

Proof. Two main ideas:

- doubling trick,
- clever choice of test functions.

Recall that if u is an entropy solution for every $\varphi \geqslant 0$ in $C_0^{\infty}(Q)$ and every $k \in \mathbb{R}$, we have

$$\int_{Q} \left[|u(x,t) - k| \varphi_t + \operatorname{sgn}(u-k)(f(u) - f(k)) \cdot D_x \varphi \right] dx dt \ge 0$$

Fix y, τ such that $v(y, \tau)$ is defined, let $k = v(y, \tau)$.

$$\int_{Q} [|u(x,t) - v(y,\tau)|\varphi_t + \operatorname{sgn}(u-v)(f(u) - f(v)) \cdot D_x \varphi] dx dt \ge 0.$$

This holds for (y, τ) a.e., so we have

$$\int_{\Omega} \int_{\Omega} [as above] dx dt dy d\tau \ge 0.$$

Moreover, this holds for every $\varphi \in C_c^{\infty}(Q \times Q)$, with $\varphi \geqslant 0$. We also have a symmetric inequality with φ_{τ} , $D_y \varphi$ instead of φ_t , $D_x \varphi$. Add these to obtain

$$\int_Q \int_Q \left[|u(x,t) - v(y,\tau)| (\varphi_t + \varphi_\tau) + \operatorname{sgn}(u-v) (f(u) - f(v)) \cdot (D_x \varphi + D_y \varphi) \right] dx \, dt \, dy \, d\tau \geqslant 0.$$

This is what is called the doubling trick. Fix $\psi \subset C_c^{\infty}(Q)$ and a "bump" function $\eta \colon \mathbb{R} \to \mathbb{R}$ with $\eta \geqslant 0$, $\int_{\mathbb{R}} \eta dr = 1$. For h > 0, let $\eta_h(r) := 1/h \, \eta(r/h)$. Let

$$\psi(x,t,y,\tau) = \psi\left(\frac{x+y}{2}, \frac{t+\tau}{2}\right) \lambda_h\left(\frac{x-y}{2}, \frac{t-\tau}{2}\right)$$

where

$$\underbrace{\lambda_h(z,s)}_{\text{Approximate identity in }\mathbb{R}^n} = \eta_h(s) \prod_{i=1}^n \, \eta_h(z_i).$$

$$\varphi_t = \frac{1}{2} \psi_t \cdot \lambda_h + \frac{1}{2} \psi(\lambda_h)_t$$

$$\varphi_\tau = \frac{1}{2} \psi_t \lambda_h - \frac{1}{2} \psi(\lambda_h)_t$$

Adding the two cancels out the last term:

$$\varphi_t + \varphi_\tau = \lambda_h \psi_t$$
.

Similarly,

$$D_x \varphi + D_y \varphi = \lambda_h D_x \psi.$$

We then have

$$\int_Q \int_Q \lambda_h\!\!\left(\frac{x-y}{2},\frac{t-\tau}{2}\right)\!\!\left[|u(x,t)-v(y,\tau)|\psi_t\!\!\left(\frac{x+y}{2},\frac{t+\tau}{2}\right) + \mathrm{sgn}(u-v)(f(u)-f(v))D_x\psi\right]\!\mathrm{d}x\,\mathrm{d}t\,\mathrm{d}y\,\mathrm{d}\tau \geqslant 0$$

 λ_h concentrates at x = y, $t = \tau$ as $h \to 0$.

Technical step 1. Let $h \to 0$. (partly outlined in homework, Problems 6 & 7)

$$\int_{Q} \left[|u(x,t) - v(x,t)| \psi_t + \operatorname{sgn}(u-v)(f(u) - f(v)) \cdot D_x \psi \right] dx dt \geqslant 0$$
(1.5)

[To prove this step, use Lebesgue's Differentiation Theorem.]

Claim: $(1.5) \Rightarrow L^1$ stability estimate. Pick two test functions:

Figure 1.15.

Let

$$\alpha_h(t) = \int_{-\infty}^t \eta_h(r) dr.$$

Choose

$$\psi(x,t) = (\alpha_h(t-t_1) - \alpha_h(t-t_2))\chi_{\varepsilon}(x,t).$$

where

$$\chi_{\varepsilon} = 1 - \alpha_{\varepsilon}(|x| + c_*t - R + \varepsilon).$$

Observe that

$$(\chi_{\varepsilon})_t = -\alpha_{\varepsilon}'(c_*) \leqslant 0, \quad D_x \chi_{\varepsilon} = -\alpha_{\varepsilon}' \cdot \frac{x}{|x|}.$$

Therefore

$$(\chi_{\varepsilon})_t + c_* |D_x \chi_{\varepsilon}| = -\alpha_{\varepsilon}' c_* + \alpha_{\varepsilon}' c_* = 0.$$

Drop ε :

$$|u - v| \chi_t + \operatorname{sgn}(u - v)(f(u) - f(v)) \cdot D_x \chi$$

$$= |u - v| \left[\chi_t + \frac{f(u) - f(v)}{u - v} \cdot D_x \chi \right] \leqslant |u - v| [\chi_t + c_* |D_x \chi|] = 0 \quad (\#\#)$$

Substitute for ψ and use (##) to find

$$\int_{Q} \left(\alpha_h'(t-t_1) - \alpha_h'(t-t_2) \right) |u-v| \chi \, \mathrm{d}x \, \mathrm{d}t \geqslant 0$$

 $\Rightarrow L^1$ contraction.

2 Hamilton-Jacobi Equations

$$u_t + H(x, Du) = 0$$

for $x \in \mathbb{R}^n$ and t > 0, with $u(x, 0) = u_0(x)$. Typical application: Curve/surface evolution. (Think fire front.)

Figure 2.1.

Example 2.1. (A curve that evolves with unit normal velocity) If C_t is given as a graph u(x, t). If τ is a tangential vector, then

$$\tau = \frac{(1, u_x)}{\sqrt{1 + u_x^2}}.$$

Let $\dot{y} = u_t(x, t)$. So the normal velocity is

$$v_n = (0, \dot{y}) \cdot \nu,$$

where ν is the normal.

$$\nu = \frac{(u_x, -1)}{\sqrt{1 + u_x^2}}.$$

Then $v_n = 1 \Rightarrow \dot{y} / \sqrt{1 + u_x^2} = -1 \Rightarrow u_t = -\sqrt{1 + u_x^2}$.

$$u_t + \sqrt{1 + u_x^2} = 0$$

H is the Hamiltonian, which in this case is $\sqrt{1+u_x^2}$. In \mathbb{R}^n

$$u_t + \sqrt{1 + |D_x u|^2} = 0,$$

a graph in \mathbb{R}^n .

Other rules for normal velocity can lead to equations with very different character.

Example 2.2. (Motion by mean curvature) Here $v_n = -\kappa$ (mean curvature).

$$\kappa=\frac{u_{xx}}{(1+u_x^2)^{3/2}}$$

$$v_n=-\kappa. \text{ Then}$$

$$\frac{-u_t}{\sqrt{1+u_x^2}}=\frac{-u_{xx}}{(1+u_x)^{3/2}}.$$
 So the equation is
$$u_t=\frac{u_{xx}}{(1+u_x^2)},$$

which is parabolic. Heuristics:

Figure 2.2.

If $(x, y) \in C_t$, then $dist((x, y), C_0) = t$. Also

$$\partial_t u + \partial_x \left(\frac{u^2}{2} \right) = 0 \quad \stackrel{\text{integrate}}{\longrightarrow} \quad U_t + \frac{U_x^2}{2} = 0.$$

2.1 Other motivation: Classical mechanics/optics

cf. Evans, chapter 3.3

- Newton's second law F = m a
- Lagrange's equations
- Hamilton's equations

Lagrange's equations: State of the system $x \in \mathbb{R}^n$ or \mathcal{M}^n (which is the configuration space). Then

$$L(x, \dot{x}, t) = \underbrace{T}_{\text{kinetic}} - \underbrace{U(x)}_{\text{potential}}.$$

Typically, $T = \frac{1}{2}x \cdot Mx$, where M is the (pos.def.) mass matrix.

Hamilton's principle: A path in configuration space between fixed states $x(t_0)$ and $x(t_1)$ minimizes the action

$$S(\Gamma) = \int_{t_0}^{t_1} L(x, \dot{x}, t) dt$$

over all paths $x(t) = \Gamma$.

Theorem 2.3. Assume L is C^2 . Fix $x(t_0)$, $x(t_1)$. If Γ is an extremum of S then

$$-\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{x}}\right) + \frac{\partial L}{\partial x} = 0.$$

Proof. ("Proof") Assume that there is an optimal path x(t). Then consider a perturbed path that respects the endpoints:

$$x_{\varepsilon}(t) = x(t) + \varepsilon \varphi(t)$$

with $\varphi(t_0) = \varphi(t_1) = 0$. Sicne x(t) is an extremem of action,

$$\frac{\mathrm{d}S}{\mathrm{d}\varepsilon}(x(t) + \varepsilon\varphi(t))|_{\varepsilon=0} = 0.$$

So

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \int_{t_0}^{t_1} L(x + \varepsilon\varphi, \dot{x} + \varepsilon\dot{\varphi}, t) \mathrm{d}t,$$

which results in

$$\begin{split} &\int_{t_0}^{t_1} \left[\frac{\partial L}{\partial x}(x,\dot{x},t)\varphi + \frac{\partial L}{\partial \dot{x}}(x,\dot{x},t)\dot{\varphi} \right] \mathrm{d}t &= 0 \\ \Rightarrow &\int_{t_0}^{t_1} \varphi(t) \left[\frac{\partial L}{\partial x} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{x}} \right) \right] \mathrm{d}t + \underbrace{\frac{\partial L}{\partial \dot{x}}\varphi|_{t_0}^{t_1}}_{=0} &= 0 \end{split}$$

Since φ was arbitrary,

$$-\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{x}}\right) + \frac{\partial L}{\partial x} = 0.$$

Typical example: N-body problem

$$x = (y_1, \dots, y_N), \quad y_i \in \mathbb{R}^3.$$

Then

$$T = \frac{1}{2} \sum_{i=1}^{N} m_i |y_i|^2$$

and U(x) = given potential, L = T - U. So

$$m_i\ddot{y}_{i,\,j} = -\,\frac{\partial U}{\partial y_{i,\,j}} \quad i=1,...,N\,, \quad j=1,...,3. \label{eq:mixing}$$

2.1.1 Hamilton's formulation

$$H(x, p, t) = \underbrace{\sup_{y \in \mathbb{R}^n} (p \, y - L(x, y, t))}_{\text{Legendre transform}}$$

Then

$$\dot{x} = \frac{\partial H}{\partial p},$$

$$\dot{p} = -\frac{\partial H}{\partial x},$$

called Hamilton's equations. They end up being 2N first-order equations.

Definition 2.4. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is convex. Then the Legendre transform is

$$\begin{split} f^*(p) &:= \sup_{x \in \mathbb{R}^n} \left(p \cdot x - f(x) \right) \\ &= \max_{x \in \mathbb{R}^n} \left(\dots \right) \quad \text{if} \quad \frac{f(x)}{|x|} \to \infty \quad \text{as} \quad |x| \to \infty. \end{split}$$

Example 2.5. $f(x) = \frac{1}{2}m x^2$, m > 0 and $x \in \mathbb{R}$.

$$(px - f(x))' = 0 \Rightarrow (p - mx) = 0 \Rightarrow x = \frac{p}{m}$$
.

And

$$f^*(p) = p \cdot \frac{p}{m} - \frac{1}{2}m\left(\frac{p}{m}\right)^2 = \frac{1}{2}\frac{p^2}{m}.$$

Example 2.6. $f(x) = \frac{1}{2}x \cdot Mx$, where M is pos.def. Then

$$f^*(p) = \frac{1}{2} p \cdot M^{-1} p.$$

Example 2.7. Suppose $f(x) = x^{\alpha}/\alpha$ with $1 < \alpha < \infty$.

$$f^*(p) = \frac{p^{\beta}}{\beta}$$
, where $\frac{1}{\alpha} + \frac{1}{\beta} = 1$.

Young's inequality and

$$f^*(p) + f(x) \geqslant p x$$

imply

$$\frac{x^{\alpha}}{\alpha} + \frac{p^{\beta}}{\beta} \geqslant p \, x.$$

Example 2.8.

Figure 2.3.

Theorem 2.9. Assume L is convex. Then $L^{**} = L$.

Proof. see Evans. Sketch:

- If L_k is piecewise affine, then $L_k^{**} = L_k$ can be verified explicitly.
- Approximation: If $L_k \to L$ locally uniformly, then $L_k^* \to L^*$ locally uniformly.

Back to Hamilton-Jacobi equations:

$$u_t + H(x, D_x u, t) = 0.$$

H is always assumed to be

- $C^2(\mathbb{R}^n \times \mathbb{R}^n \times [0, \infty)),$
- uniformly convex in $p = D_x u$,

• uniformly superlinear in p.

2.1.2 Motivation for Hamilton-Jacobi from classical mechanics

Principle of least action: For every path connecting $(x_0, t_0) \rightarrow (x_1, t_1)$ associate the 'action'

$$S(\Gamma) = \int_{\Gamma} L(x, \dot{x}, t) dt.$$

L Lagrangian, convex, superlinear in \dot{x} . Least action \Rightarrow Lagrange's equations:

$$-\frac{d}{dt}[D_{\dot{x}}L(x,\dot{x},t)] + D_x L = 0$$
 (2.1)

 $x \in \mathbb{R}^n \Rightarrow n$ 2nd order ODE.

Theorem 2.10. ("Theorem") (2.1) is equivalent to

$$\dot{x} = D_p H, \quad \dot{p} = -D_x H. \tag{2.2}$$

Note that those are 2n first order ODEs.

Proof. ("Proof")

$$H(x,p,t) = \max_{v \in \mathbb{R}^n} (vp - L(x,v,t)).$$

Maximum is attained when

$$p = D_v L(x, v, t), \tag{2.3}$$

and the solution is unique because of convexity.

$$H(x, p, t) = v(x, p, t) - L(x, v(x, p, t), t),$$

where v solves (2.3).

$$\begin{array}{rcl} D_p H &=& v + p \, D_p v - D_v L \cdot D_p v \\ &=& v + \underbrace{\left(p - D_v L\right)}_{=0 \; \text{because of (2.3)}} D_p v \\ &=& v. \end{array}$$

Thus $\dot{x} = D_p H$. Similarly, we use (2.1)

$$\frac{\mathrm{d}}{\mathrm{d}t}(p) = D_x L$$

Note that

$$\begin{array}{rcl} D_x H & = & p \, D_x v - D_x L - D_v L \, D_x v \\ & = & - D_x L + \underbrace{\left[p - D_v L \right]}_{=0 \text{ because of (2.3)}} D_x v. \end{array}$$

Thus,
$$\dot{p} = -D_x H$$
.

Connections to Hamilton-Jacobi:

- (2.2) are characteristics of Hamilton-Jacobi equations.
- If $u = S(\Gamma)$, then du = p dx H dt. (cf. Arnold, "Mathematical Methods in Classical Mechanics", Chapter 46)

$$\left\{ \frac{\partial u}{\partial t} = -H(x, p, t); \quad D_x u = p \right\} \quad \Rightarrow \quad u_t + H(x, Du, t) = 0.$$

Important special case: H(x, p, t) = H(p).

Example 2.11.
$$u_t + \sqrt{1 + |D_x u|^2} = 0$$
. $H(p) = \sqrt{1 + |p|^2}$.

Example 2.12. $u_t + \frac{1}{2}|D_x u|^2 = 0$. $H(p) = \frac{1}{2}|p|^2$.

$$\left\{ \begin{array}{l} \dot{x} = D_p H(p) \\ \dot{p} = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} p(t) = p(0) \\ x(t) = x(0) + D_p H(p(0)) \end{array} \right. \rightarrow \quad \text{straight line characteristics!}$$

2.2 The Hopf-Lax Formula

$$u_t + H(D_x u) = 0, \quad u(x,0) = u_0(x)$$
 (2.4)

for $x \in \mathbb{R}^n$, t > 0. Always, H is considered convex and superlinear, $L = H^*$. Action on a path connecting $x(t_0) = y$ and $x(t_1) = x$:

$$\int_{t_0}^{t_1} L(x, \dot{x}, t) dt = \int_{t_0}^{t_1} L(\dot{x}(t)) dt \geqslant (t_1 - t_0) L\left(\frac{x - y}{t_1 - t_0}\right).$$

Using Jensen's inequality:

Hopf-Lax formula:

$$\frac{1}{t_1 - t_0} \int_{t_0}^{t_1} L(\dot{x}) dt \geqslant L\left(\frac{1}{t_1 - t_0} \int_{t_0}^{t_1} \dot{x} dt\right) = L\left(\frac{x(t_1) - x(t_0)}{t_1 - t_0}\right).$$

$$u(x, t) = \min_{y \in \mathbb{R}^n} \left[t L\left(\frac{x - y}{t}\right) + u_0(y) \right] \tag{2.5}$$

Theorem 2.13. Assume $u_0: \mathbb{R}^n \to \mathbb{R}$ is Lipschitz with $\text{Lip}(u(\cdot, t)) \leq M$ Then u defined by (2.5) is Lipschitz in $\mathbb{R}^n \times [0, \infty)$ and solves (2.4) a.e.. In particular, u solves (2.4) in \mathcal{D}' .

(Proof exacty follows Evans.)

Lemma 2.14. (Semigroup Property)

$$u(x,t) = \min_{y \in \mathbb{R}^n} \left[(t-s)L\left(\frac{x-y}{t-s}\right) + u(y,s) \right]$$

where $0 \leq s < t$.

Proof.

Figure 2.4.

$$\frac{x-z}{t} = \frac{x-y}{t-s} = \frac{y-z}{s}$$

So

$$\frac{x-z}{t} = \left(1 - \frac{s}{t}\right) \left(\frac{x-y}{t-s}\right) + \frac{s}{t} \left(\frac{y-z}{s}\right).$$

Since L is convex,

$$L\!\left(\frac{x-z}{t}\right)\!\leqslant\!\left(1-\frac{s}{t}\right)\!L\!\left(\frac{x-y}{t-s}\right)\!+\!\frac{s}{t}L\!\left(\frac{y-z}{t}\right)\!.$$

Choose z such that

$$u(y,s) = s L\left(\frac{y-z}{t}\right) + u_0(z).$$

The minimum is achieved because L is superlinear. Also,

$$\frac{|u_0(y) - u_0(0)|}{|y|} \leqslant M$$

because u_0 is Lipschitz.

$$tL\left(\frac{x-z}{t}\right) + u_0(z) \leqslant (t-s)L\left(\frac{x-y}{t-s}\right) + u(y,s).$$

But

$$u(x,t) = \min_{z'} \bigg\lceil t \, L\bigg(\frac{x-z'}{t}\bigg) + u_0(z') \, \bigg\rceil.$$

Thus

$$u(x,t) \leq (t-s)L\left(\frac{x-y}{t-s}\right) + u(y-s)$$

for all $y \in \mathbb{R}^n$. So,

$$u(x,t) \leqslant \min_{y \in \mathbbm{R}^n} \bigg[(t-s) L \bigg(\frac{x-y}{t-s} \bigg) + u(y-s) \bigg].$$

To obtain the opposite inequality, choose z such that

$$u(x,t) = t L\left(\frac{x-z}{t}\right) + u_0(z).$$

Let y = (1 - s/t)z + (s/t)x. Then

$$u(y,s) + (t-s)L\left(\frac{x-y}{t-s}\right) = u(y,s) + (t-s)L\left(\frac{x-z}{t}\right)$$

$$= u(y,s) - sL\left(\frac{y-z}{s}\right) + [u(x,t) - u_0(z)]$$

$$= u(y,s) - \left(u_0(z) + sL\left(\frac{y-z}{s}\right)\right) + u(x,t)$$

$$\leqslant u(x,t).$$

That means

$$\min_{y \in \mathbb{R}^n} \left[(t-s) L \left(\frac{x-y}{t-s} \right) + u(y-s) \right] \leqslant u(x,t).$$

Lemma 2.15. $u: \mathbb{R}^n \times [0, \infty) \to \mathbb{R}$ is uniformly Lipschitz. On any slice t = const we have

$$\operatorname{Lip}(u(\cdot,t)) \leqslant M.$$

Proof. (1) Fix $x, \hat{x} \in \mathbb{R}^n$. Choose $y \in \mathbb{R}^n$ such that

$$u(x,t) = t L\left(\frac{x-y}{t}\right) + u_0(y),$$

$$u(\hat{x},t) = t L\left(\frac{\hat{x}-y}{t}\right) + u_0(y).$$

Then

$$u(\hat{x},t) - u(x,t) = \inf_{z \in \mathbb{R}^n} \left[t L\left(\frac{\hat{x} - z}{t}\right) + u_0(z) \right] - \left[t L\left(\frac{x - y}{t}\right) + u_0(y) \right].$$

Choose z such that

$$\begin{array}{rcl} \hat{x}-z &=& x-y \\ \Leftrightarrow z &=& \hat{x}-x+y. \end{array}$$

Then

$$u(\hat{x}, t) - u(x, t) \leq u_0(\hat{x} - x + y) - u_0(y)$$

 $\leq M|\hat{x} - x|,$

where $M = \text{Lip}(u_0)$. Similarly,

$$u(x,t) - u(\hat{x},t) \leqslant M|x - \hat{x}|.$$

This yields the Lipschitz claim. In fact, using Lemma 2.14 we have

$$\operatorname{Lip}(u(\cdot,t)) \leqslant \operatorname{Lip}(u(\cdot,s))$$

for every $0 \le s < t$, which can be seen as "the solution is getting smoother".

(2) Smoothness in t:

$$u(x,t) = \min_{y} \left[t L\left(\frac{x-y}{t}\right) + u_0(y) \right] \leqslant t L(0) + u_0(x) \quad \text{(choose } y = x\text{)}.$$
 (2.6)

Then

$$\frac{u(x,t) - u_0(x)}{t} \leqslant L(0).$$

$$|u_0(y) - u_0(x)| \le M|x - y| \implies u_0(y) \ge u_0(x) - M|x - y|.$$

Thus

$$t L\left(\frac{x-y}{t}\right) + u_0(y) \geqslant t L\left(\frac{x-y}{t}\right) + u_0(x) - M|x-y|.$$

By (2.6),

$$\begin{split} u(x,t) - u_0(x) &\geqslant & \min_y \left[t \, L\!\left(\frac{x-y}{t}\right) - M |x-y| \right] \\ &= & -t \max_{z \in \mathbb{R}^n} \left[M |z| - L(z) \right] \\ &= & -t \max_{z \in \mathbb{R}^n} \left[\max_{\omega \in B(0,M)} \omega \cdot z - L(z) \right] \\ &= & -t \max_{\omega \in B(0,M)} \max_{z \in \mathbb{R}^n} \left[\omega \cdot z - L(z) \right] \\ &= & -t \max_{\omega \in B(0,M)} H(\omega). \end{split}$$

Now

$$-\max_{\omega \in B(0,M)} H(\omega) \leqslant \frac{u(x,t) - u_0(x)}{t} \leqslant L(0),$$

where both the left and right term only depend on the equation. \Rightarrow Lipschitz const in time $\leq \max(L(0), \max_{\omega \in B(0,M)} H(\omega))$.