
Lectures on Partial Differential Equations

Govind Menon1

Dec. 2005

Abstract

These are my incomplete lecture notes for the graduate introduction
to PDE at Brown University in Fall 2005. The lectures on Laplace’s
equation and the heat equation are included here. Typing took too
much work after that. I hope what is here is still useful. Andreas
Klöckner’s transcript of the remaining lectures is also posted on my
website. Those however have not been proofread. Comments are wel-
come by email.
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1 Laplace’s equation

1.1 Introduction

Geometry and physics are the two main sources for problems in partial
differential equations. Laplace’s equation is fundamental, and arises in both
contexts. The main sources for this chapter are John [7, Ch. 6] and Gilbarg
and Trudinger [5, Ch. 2].

1.1.1 Minimal surfaces and Laplace’s equation

First the geometric context. Take a closed wire frame, dip it in soap solution
and pull it out. What is the shape of the soap film? One mathematical
formulation of this problem is the following. Let us suppose the surface can
be described as a graph over an open subset U of R

2. Any smooth function
u : U → R, yields a surface x3 = u(x1, x2). The area of this surface is

I(u) =

∫

U

√

|Du|2 + 1 dx. (1.1)

Our notation here is Du = (∂x1
u, ∂x2

u) and dx = dx1dx2. If the shape of the
wire frame is known (say given by a function f : ∂U → R

3), we require that
u satisfy the boundary condition u = f for x ∈ ∂U . Thus, the problem is
to find a function u that minimizes I(u) subject to the boundary condition.
In calculus you learn that the gradient of a function must vanish at an
extremum. Our problem is similar: we wish to minimize a functional , thus
we must find the analogue of its gradient. The way to do this is to assume
that one has a solution to the problem, and then say that first order changes
must be zero. Suppose we have found a solution u, then if we consider a
variation ϕ that is smooth and ϕ = 0 on ∂U , we expect that

dI(u+ εϕ)

dε

∣

∣

∣

∣

ε=0

= 0. (1.2)

We substitute in (1.1) and integrate by parts to find

0 =

∫

U

Dϕ ·Du
√

|Du|2 + 1
dx = −

∫

ϕdiv

(

Du
√

|Du|2 + 1

)

dx. (1.3)

There is a wonderful trick at this point. Since ϕ is arbitrary, we can in fact
deduce that u must satisfy the minimal surface equation

div

(

Du
√

|Du|2 + 1

)

= 0, x ∈ U. (1.4)
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Observe that there is no real need to suppose that the surface is two-
dimensional, and the same equation would result for higher-dimensional
minimal ‘surfaces’. The geometric quantity on the left hand side is n times
the mean curvature; thus minimal surfaces must have zero mean curvature.
We proceed from (1.3) to (1.4) as follows. If the mean curvature is suffi-
ciently regular (say, continuous) then the set where it is (strictly) positive
is open. If we choose a bump function ϕ that is positive in any open ball
contained within this set, then we contradict (1.3). Thus, the set where the
mean curvature is strictly positive is empty. Similarly for the set where it is
strictly negative.

The minimal surface equation is nonlinear, and unfortunately rather
hard to analyze. A simpler version of the equation is obtained by lineariza-
tion: we assume that |Du|2 � 1 and neglect it in the denominator. Thus,
we are led to Laplace’s equation

divDu = 0. (1.5)

The combination of derivatives divD =
∑n

i=1 ∂
2
xi

arises so often that it is
denoted 4. The combination of the PDE and boundary condition on u is
called the Dirichlet problem

4u = 0, x ∈ U, u = f, x ∈ ∂U. (1.6)

One may continue in this vein. Another classical geometric problem is
to determine surfaces with prescribed curvature (zero mean curvature being
just one example). To build intuition, consider a two dimensional graph
embedded in R

3 with principal curvatures κ1 and κ2. As stated, κi depend
on the embedding of the surface in R

3. Remarkably, the product K = κ1κ2

does not. This is the intrinsic or Gaussian curvature. The problem of
determining surfaces with prescribed Gaussian curvature K in n-dimensions
leads to the Monge-Ampére equation

det(D2u) = K(x)(1 + |Du|2)(n+2)/2, x ∈ U. (1.7)

As before, this equation is nonlinear, and the Laplacian appears if one were
to cheat and linearize. (This has to be done more carefully than what I said
in class). The convex function |x|2/2 solves (1.7) withK = (1+|x|2)−(n+2)/2.
If we consider a small perturbation of this surface, that is we set u = |x|2/2+
εv, and retain only first order terms in ε we obtain,

4v =
(n+ 2)x ·Dv

(1 + |x|2) , x ∈ U. (1.8)
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where we use the expansion

det
(

I + εD2v
)

= 1 + ε4v +O(ε2).

1.1.2 Fields and Laplace’s equation

Laplace’s equation and Poisson’s equation are also central equations in clas-
sical (ie. 19th century) mathematical physics. For example, distributions
of mass or charge ρ in space induce gravitational or electrostatic potentials
determined by Poisson’s equation

4u = ρ. (1.9)

Of course, if ρ ≡ 0 this reduces to Laplace’s equation. Since these equations
are linear, the solvability of Poisson’s equation is closely tied to solvability
of Laplace’s equation. Laplace’s equation also arises in the description of
the flow of incomressible fluids.

1.1.3 Motivation v. Results

An understanding of the context of the PDE is of great value. Different
viewpoints suggest different lines of attack and Laplace’s equation provides
a perfect example of this. For example, in the physical context it is natural
as a first step to consider special solutions for a point mass or point charge.
This leads to the powerful tool of Green’s function and Poisson’s integral
formula. In the geometric context, it is natural to expect that minimal
surfaces should not have local peaks and should be smooth (for dimples and
crinkles would cause the curvature to increase). This viewpoint leads to
the maximum principle and elliptic regularity theorems. Both viewpoints
also suggest that solutions with rotational symmetry should be important.
Notice however that while this intituition serves as a guide, our task is
to deduce this behavior from the equation. Theorems once proved hold
independent of any particular application.

1.2 Notation

To be more careful let us fix notation. U will denote an open set in R
n. The

set is usually bounded and connected. ∂U denotes the boundary of U . We
work with open sets because they are good for calculus. A point x ∈ R

n

has coordinates (x1, . . . , xn). The derivative of a function f : U → R
m

is written Df and has components (Df)ij = ∂xjfi, i = 1, . . . ,m, j =
1, . . . , n. The convention is that the derivative Dfi of each component fi is
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a row vector. Sometimes for brevity, we will write fi,j to denote ∂xjfi. As a
rule of thumb write out an equation in components to build some intuition
about it. Sometimes it is also more convenient to write ∇· instead of div.

While we will use little functional analysis this semester, it is helpful
to use some of the notation of function spaces for brevity and clarity. If
f : U → R is continuous, we write f ∈ C(U). Moreover, if k ≥ 1 is
an integer, we say that f ∈ Ck(U) if f has k derivatives and these are
continuous.

A delicate point: It is crucial to distinguish between the space C(U)
and C(Ū) – the space of functions continuous on the closure of U . Suppose
U is bounded. An example of a function in C(Ū) is the distance from the
boundary f(x) = dist(x, ∂U) = infy∈∂U |x−y|. Observe that C(U) is strictly
larger than C(Ū) because 1/dist(x, ∂U) is in C(U) but not C(Ū).

1.3 The mean value inequality

The question of what is meant by a solution to a PDE is not as straightfoward
as it may first seem. By a classical solution to Laplace’s equation we mean
a solution in the most direct sense: u is a C2 function such that 4u = 0. It
turns out that it is useful also to have notions of sub and super-solutions to
an equation.

Definition 1.1. A function u ∈ C2(U) is harmonic if 4u = 0, x ∈ U .
u ∈ C2(U) is subharmonic if 4u ≥ 0, and u is superharmonic if −u is
subharmonic.

Later we will weaken this definition of subharmonicity to continuous
functions.

Example 1.2. If A is a positive semi-definite matrix, u = xtAx is subhar-
monic.

A fundamental property of subharmonic functions is the mean value
inequality. In all that follows ωn denotes the n − 1 dimensional measure
of the unit sphere Sn−1 = {x ∈ R

n||x| = 1}. It is an interesting calculus
exercise to show that

ωn =
2πn/2

Γ(n/2)
, (1.10)

where the Gamma function is defined by

Γ(α) =

∫ ∞

0
e−ttα−1dt. (1.11)
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Warning: some authors use the notation ωn to mean the volume (ie. n
dimensional Lebesgue measure) of the unit ball B(0, 1) = {x ∈ R

n||x| ≤ 1}.
Once one has calculated ωn, it is easy to show that the volume of the ball
B(x, r) = {y ∈ R

n||x− y| ≤ r} is

|B(x, r)| = |B(0, r)| = |B(0, 1)|rn =
ωn

n
rn. (1.12)

Theorem 1.3. Let u ∈ C2(U) be subharmonic. Suppose x ∈ U and r <
dist(x, ∂U). Then

u(x) ≤ 1

ωnrn−1

∫

S(x,r)
u(y)dSy := −

∫

S(x,r)
u(y)dSy, (1.13)

and

u(x) ≤ n

ωnrn

∫

B(x,r)
u(y)dy := −

∫

B(x,r)
u(y)dy. (1.14)

Corollary 1.4. If u ∈ C2(U) is harmonic, then it is both subharmonic and
superharmonic, and we have the mean-value property

u(x) = −
∫

S(x,r)
u(y)dSy = −

∫

B(x,r)
u(y)dy. (1.15)

Proof. The proof follows from a simple integration by parts. Observe that

∫

B(x,r)
4u(y)dy =

∫

S(x,r)

∂u

∂n
dSy.

Since the surface is a sphere, the outward normal at y ∈ S(x, r) is ω =
(y − x)/|y − x|. Therefore,

∂u

∂n
(y) =

d

dr
u(x+ ρω),

and we may change variables in the integral from y to ω. The standard (and
inconsistent) notation for the n−1 dimensional volume element on a sphere
|ω| = 1 with respect to the solid angle is dω. Thus, dSy = rn−1dω and we
obtain

∫

S(x,r)

∂u

∂n
(y)dSy = rn−1 d

dr

∫

|ω|=1
u(x+ rω)dω

= rn−1 d

dr

(

r1−n

∫

S(x,r)
u(y)dSy

)

.
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Hence, we have

0 ≤
∫

B(x,r)
4u(y)dy = ωnr

n−1 d

dr
−
∫

S(x,r)
u(y)dSy.

Thus, the mean value −
∫

S(x,r) u(y)dSy is increasing. Since u is continuous

limr→0 −
∫

S(x,r) u(y)dSy = u(x). This proves (1.13). The mean value inequal-
ity for balls is obtained by integrating the mean value inequality on spheres,

∫

B(x,r)
u(y)dy =

∫ r

0

∫

|ω|=1
u(x+ ρω)dωρn−1dρ

=

∫ r

0
ωn −
∫

S(x,ρ)
u(y)dSyρ

n−1dρ ≥ u(x)ωn

∫ r

0
ρn−1dρ = u(x)|B(x, r)|.

1.4 Maximum principles

The mean value inequality has unexpectedly strong consequences. In this
section U is assumed bounded and connected.

Theorem 1.5 (Strong maximum principle). Suppose u ∈ C2(U) is
subharmonic. Suppose there exists a point x ∈ U where u(x) = supU u.
Then u is constant. Consequently, if u is harmonic and attains its minimum
or its maximum in U it is constant.

Proof. Let M = supU u. We may decompose U into the sets U1 = {y|u(y) <
M} and U2 = {y|u(y) = M}. Since u is continuous, U1 is open and U2 is
closed. By assumption, U2 is not empty. Let x be any point in U2. We
apply the mean value ineqality to deduce that

M = u(x) ≤ −
∫

B(x,r)
u(y)dy ≤M.

Therefore, u(y) = M on any ball B(x, r) ⊂ U . In particular, this implies
that U2 is open. Since a connected set cannot be decomposed into two
nonempty, disjoint open sets, it must be that U = U2.

The adjective strong in this maximum principle refers to the conclusion
that u is a constant if it attains its maximum. The following estimate is
also of great value. Its strength is that it usually holds for scalar elliptic
problems where one does not have a mean value inequality.



9

Theorem 1.6 (Weak maximum principle). Suppose u ∈ C2(U)
⋂

C(Ū)
is subharmonic. Then maxx∈U u = maxx∈∂U u. For harmonic u

min
∂U

≤ u(x) ≤ max
∂U

u, x ∈ U.

The weak maximum principle follows immediately from the strong max-
imum principle. Here is an independent proof, that provides additional
intuition.

Proof. First, let us suppose that u is strictly subharmonic, that is 4u > 0.
Since u ∈ C(Ū) it attains its maximum at some point x ∈ Ū . If x ∈ U
we derive a contradiction as follows. At a maximum it is necessary that
Du(x) = 0 and D2u be negative semi-definite. But then 4u = Tr(D2u) ≤ 0
contradicting strict subharmonicity. Thus, maxU u = max∂U u.

If u is not strictly harmonic, let ε > 0 and consider the strictly subhar-
monic function uε = u+ ε|x|2. We then have

max
U

u ≤ max
U

uε = max
∂U

uε ≤ max
∂U

u+ ε max
x∈∂U

|x|2.

The left hand side is independent of ε, thus one may let ε → 0 to deduce
the weak maximum principle.

Taken as a geometric statement, this means that the graph of u is always
saddlelike. A probabilistic proof of the maximum principle will be presented
after we consider the heat equation in a few weeks.

We now obtain our first uniqueness theorem for the Dirichlet problem to
Laplace’s and Poisson’s equation. Notice however that we have not shown
existence.

Theorem 1.7. Suppose u, v ∈ C2(U)
⋂

C(Ū) satisfy 4u = 4v in U , and
u = v on ∂U . Then u = v in U .

Proof. Let w = u − v. Then 4w = 0 in U and w = 0 on ∂U . Therefore,
0 ≤ w ≤ 0 in U by the weak maximum principle.

The following inequality shows that a non-negative harmonic function
cannot oscillate very much.

Theorem 1.8 (Harnack’s inequality). Let u ∈ C2(U) be a non-negative
harmonic function in U . Then for any connected U ′ ⊂⊂ U there exists a
constant C(U,U ′) such that

sup
U ′

u ≤ C inf
U ′
u. (1.16)
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Proof. Let x ∈ U and choose r < 1/4dist(x, ∂U). For any x1, x2 ∈ B(x, r)
we apply the mean value inequality to find

u(x1) =
n

ωnrn

∫

B(x1,r)
u(y)dy ≤ n

ωnrn

∫

B(x,2r)
u(y)dy.

Similarly,

u(x2) =
n

ωn(3r)n

∫

B(x2,3r)
u(y)dy ≥ n

ωn(3r)n

∫

B(x,2r)
u(y)dy.

We combine the inequalities, and take the sup over x1 and inf over x2 to
obtain

sup
B(x,r)

u ≤ 3n inf
B(x,r)

u. (1.17)

Now if U ′ ⊂⊂ U let x1, x2 ∈ Ū ′ be such that u(x1) = supU ′ u and
u(x2) = infU ′ u. We connect x1 and x2 by a closed arc Γ contained in Ū ′.
Let r < 1/4dist(Γ, U ′). Since Ū ′ is compact, it may be covered by a finite
number of balls, say N , of size r. Then combining the inequality (1.17) over
the balls that cover Γ we obtain u(x1) ≤ 3nNu(x2).

Remark 1.9. The mean value inequality, weak maximum principle and
Harnack’s inequality are a priori estimates. The adjective a priori refers
to the fact that they must hold for all harmonic functions in U , even if
we do not know yet that these functions exist. The a priori estimates are
usually used to then prove existence. A general theme, and typically the
hardest step in PDE, is to prove suitable a priori estimates. The best a
priori inequalities usually encode geometric or physical meaning.

1.5 The fundamental solution

Laplace’s equation is invariant under rotations. This is not unexpected,
physically, we expect the field induced by a point charge to be rotationally
symmetric. To this end, let us look for solutions to Laplace’s equation of
the form u(x) = ψ(r) where r denotes the radial coordinate r = |x|. We
subsitute in Laplace’s equation to find

4u = ψ′′ +
(n− 1)

r
ψ′ = 0.

Integrate once to find

ψ′ = C1r
1−n, n ≥ 2, r > 0,
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and integrate again to find

ψ = C1 log r + C2, n = 2, r > 0

ψ =
C1

2 − n
r2−n +C2, n ≥ 3, r > 0.

The constant C2 is of little interest, and is usually taken to be zero. (For ex-
ample, in the physical context all that matters is a potential difference, not
a potential itself, thus the value of u can be taken to be zero at ∞ for conve-
nience). As will become clear, there is a good reason to choose C1 = 1/ωn.
We thus have obtained radially symmetric solutions to Laplace’s equation
on the punctured space R

n\{0}. These are the fundamental solutions,

ψ(r) =
1

2π
log r, n = 2, (1.18)

ψ(r) =
r2−n

(2 − n)ωn
, n ≥ 3. (1.19)

Remark 1.10. The special role of two-dimensions is a recurrent theme in
the study of Laplace’s equation. In two-dimensions, harmonic functions on
a domain U are in one-one correspondence with analytic (or holomorphic)
functions, and to each harmonic function is assigned its harmonic conjugate.

Remark 1.11. At this point, you should note that if n ≥ 3 then ψ(r) < 0
for r < 0, and ψ(r) → −∞ as r → 0. In two-dimensions, ψ is neither
bounded above or below. This has the consequence that in two-dimensions
subharmonic functions also satisfy Liouville’s theorem: a subharmonic func-
tion bounded above is constant. This is false for n ≥ 3.

There is no need to restrict oneself to symmetry about the origin. We use
the translation invariance of Laplace’s equation to define the fundamental
solution with pole at ξ

K(x, ξ) = ψ(|x− ξ|). (1.20)

The singularity at ξ is very interesting. It turns out that K(x, ξ) does not
solve Laplace’s equation (in all of R

n), but instead solves Poisson’s equation
with a Dirac measure δξ on the right hand side.

4xK = δξ. (1.21)

Intuitively, K(x, ξ) measures the influence a point source exerts at a point x.
Notice from the formula that the influence is symmetric, K(x, ξ) = K(ξ, x).
More rigorously, we should use some care to interpret (1.21). One way is
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to simply multiply by a smooth test function ϕ with compact support in
R

n, integrate by parts and replace (1.21) by the apparently more legitimate
statement

ϕ(ξ) =

∫

Rn

K(x, ξ)4xϕ(x) dx. (1.22)

This works because even though the integrand is singular, it is still locally
integrable. However, let us derive a general identity using calculus alone.
To this end, we will use the following identities obtained by integration by
parts (Green’s identities). Suppose U is an open set with a C1 boundary
∂U , and let u, v ∈ C2(U). Then

∫

U
v4u dx = −

∫

U
Dv ·Dudx+

∫

∂U
v
∂u

∂n
dS, (1.23)

∫

U
(v4u− u4v) dx =

∫

∂U

(

v
∂u

∂n
− u

∂v

∂n

)

dS. (1.24)

We will use this identity when U is a domain containing ξ, and v(x) =
K(x, ξ). Consider the domain U\B(ξ, ε), that is U with a small hole punched
out. The boundary of this domain is ∂U ∪ S(ξ, ε). Apply Green’s second
identity (1.24) with v = K(x, ξ). Then,

∫

U
v4u dx =

∫

∂U

(

v
∂u

∂n
− u

∂v

∂n

)

dS +

∫

S(ξ,ε)

(

v
∂u

∂n
− u

∂v

∂n

)

dS.

Of course, we would like to obtain the limit of the second term as ε→ 0. If
x ∈ S(ξ, ε) we have

∂v

∂n
(x) = −ψ′(ε) = − 1

ωnεn−1
,

(the negative sign because the outward normal from U\B(ξ, ε) points to-
wards ξ). Thus,

−
∫

S(ξ,ε)
u
∂v

∂n
dS = −

∫

S(ξ,ε)
udS → u(ξ) as ε→ 0.

If n ≥ 3, v = ε2−n/((2 − n)ωn) on S(ξ, ε) and

∫

S(ξ,ε)
v
∂u

∂n
dS =

ε2−n

(2 − n)ωn

∫

S(ξ,ε)

∂u

∂n
dS

=
ε2−n

(2 − n)ωn

∫

B(ξ,ε)
4u dx =

ε2

n(2 − n)
4u(y(ε)),
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where yε is some point in B(ξ, ε) guaranteed by the mean value theorem.
Since 4u is continuous, this term vanishes as ε → 0. A similar calculation
for n = 2 yields

∫

S(ξ,ε)
v
∂u

∂n
dS =

(

ε2 log ε
)

4u(y(ε)) → 0.

To summarize, only the normal flux of K(x, ξ) contributes and we are left
with the following important identity. For every u ∈ C2(U )

u(ξ) =

∫

U
K(x, ξ)4u(x) dx +

∫

∂U

(

∂K(x, ξ)

∂nx
u−K(x, ξ)

∂u

∂nx

)

dSx. (1.25)

Of particular, importance is the case when u is harmonic. In this case, only
the boundary term remains, and we obtain a representation for u in the
interior in terms of its boundary values

u(ξ) =

∫

∂U

(

∂K(x, ξ)

∂nx
u−K(x, ξ)

∂u

∂nx

)

dSx. (1.26)

This doesn’t yet constitute a solution to the Dirichlet or Neumann problem.
The identity (1.26) allows us to obtain u in U if we know both u and ∂u/∂n
on the boundary. In either the Dirichlet or Neumann problem, only one of
these is prescribed and the other is unknown. However, this identity can be
used as a basis for a solution. For example, in the Neumann problem, one
could take the limit of ξ to the boundary and obtain a system of equations
on the boundary alone. This is the basis for numerical methods known as
boundary integral methods. We will not follow this approach. Instead, we
first establish existence of solutions for simple domains.

1.6 Green’s function and Poisson’s integral formula

An important feature of identities (1.25) and (1.26) is that they remain valid
when K is replaced by K +w for any harmonic w. By a judicious choice of
w one may obtain a solution to the Dirichlet problem. We say that G(x, ξ)
is a Green’s function of the Dirichlet problem if

4xG = δξ, x, ξ ∈ U, G(x, ξ) = 0, x ∈ ∂U. (1.27)

Observe that G yields an integral representation for a solution to the Dirich-
let problem. We replace K by G in (1.26) to obtain

u(ξ) =

∫

∂U

∂G(x, ξ)

∂nx
u(x)dSx. (1.28)
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The catch is to actually find w such that w = −K on the boundary. One
can only do this explicitly for domains with some symmetry. The time-
honoured way of achieving this is through the method of images. As a
heuristic, imagine you had a unit positive charge at the point ξ. We would
like to add charges at different points outside U such that their field cancels
that of ξ on the boundary ∂U .

Example 1.12 (Poisson’s integral formula for the half-space). Let
U be the half-space {x ∈ R

n|xn > 0}. Fix ξ ∈ U . Every point ξ has
an image ξ∗ under reflection in the plane xn = 0. In coordinates, ξ∗ =
(ξ1, . . . , ξn−1,−ξn). Clearly, ξ∗ does not lie in U . Therefore, K(x, ξ∗) is
harmonic in U . Moreover, if xn = 0, then |ξ − x| = |ξ∗ − x|. In order to
construct a Green’s function we choose

G(x, ξ) = K(x, ξ) −K(x, ξ∗).

An explicit computation of ∂G/∂nx on the boundary xn = 0 yields Poisson’s
integral formula for the half-space.

u(ξ) =
2ξn
ωn

∫

Rn−1

|x− ξ|−nu(x) dx. (1.29)

Note that here dx = dx1 . . . dxn−1 denotes n−1 dimensional Lebesgue mea-
sure on R

n−1.

A little bit more work is needed to find the Green’s function for the unit
ball B(0, 1). The natural notion of symmetry in this case, is inversion in the
unit sphere S(0, 1). Given ξ ∈ B(0, 1) we define its image under inversion,

ξ∗ =
ξ

|ξ|2 . (1.30)

As shown in the homework, inversion is a conformal transformation (and a
fundamental one at that). The reason inversion is appropriate to the circle
is the following calculation. If |x| = 1, then

|x− ξ| = |ξ||x− ξ∗|.

Let us verify this.

|x− ξ|2 = |x|2 + |ξ|2 − 2x · ξ = 1 + ξ2 − 2x · ξ,

and we use |x| = 1 and (1.30) to obtain

|x− ξ∗|2 = 1 + |ξ|−2 − 2|ξ|−2x · ξ = |ξ|−2|x− ξ|2.
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Therefore, for n ≥ 3 an appropriate choice for the Green’s function is

G(x, ξ) = K(x, ξ) − |ξ|2−nK(x, ξ∗),

and for n = 2,

G(x, ξ) =
1

2π
log

( |x− ξ|
|ξ||x− ξ∗|

)

.

You should show that in both cases,

G(x, ξ) = G(ξ, x) x, ξ ∈ B(0, 1).

The derivative of the Green’s function in both cases is

DxG =
1

ωn

(

x− ξ

|x− ξ|n − |ξ|n−2 x− ξ∗

|x− ξ∗|n
)

=
(1 − |ξ|2)x
ωn|x− ξ|n .

Finally, we observe that on the unit sphere ∂G/∂nx = DG ·x and substitute
in (1.28) to obtain

u(ξ) =
1

ωn

∫

S(0,1)

1 − |ξ|2
|x− ξ|nu(x)dSx.

For a ball of radius r we may rescale to obtain Poisson’s integral formula
for a ball

u(ξ) =
r2 − |ξ|2
ωnr

∫

S(0,r)
|x− ξ|−nu(x)dSx, ξ ∈ B(x, r). (1.31)

Note that ξ = 0 yields the mean-value property. We call the following
expression the Poisson kernel

H(x, ξ) =
r2 − |ξ|2

ωnr|x− ξ|n . (1.32)

The following properties of the Poisson kernel are fundamental.

Theorem 1.13. (a) H(x, ξ) > 0, ξ ∈ B(0, r).

(b) 4ξH(x, ξ) = 0, ξ ∈ B(0, r), x ∈ S(0, r).

(c)
∫

S(0,r)H(x, ξ)dSx = 1.

(d) Let 0 < δ < 2 and Aδ = {|y| = r, |y − x| ≥ δ}. Then

lim
ξ→y, |ξ|<r

H(x, ξ) = 0

uniformly for y ∈ Aδ.
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Proof. (a) is immediate. (b) is proven by observing that for fixed x, K(x, ξ)
is harmonic in ξ as long as |x − ξ| > 0. Moreover, |ξ|2−nK(x, ξ∗) is also
harmonic as it is obtained by Kelvin’s transformation from K(x, ξ). Thus,
G is harmonic in ξ, and so is its derivative H = ∂G/∂nx. A clever proof of
(c) is to substitute u ≡ 1 in the identity (1.31). (d) is immediate.

We have proved uniqueness for the Dirichlet problem via the maximum
principle. Poisson’s integral formula yields existence for B(0, r) immediately,
and is the basis for Perron’s method for general domains.

Theorem 1.14. Let U = B(0, r) and f : ∂U → R be continuous. Then the
function u defined by

u(ξ) =

{
∫

S(0,r)H(x, ξ)f(x)dSx, ξ ∈ U

f(ξ), ξ ∈ ∂U,
(1.33)

is harmonic in U and continuous on U .

Proof. Since H is harmonic in ξ and f is continuous we may differentiate
under the integral sign to deduce that u is harmonic. (If you have not done
this sort of thing before, you should justify it by taking finite differences and
passing to the limit using dominated convergence).

It only remains to show that u is continuous onto the boundary. To this
end, fix y ∈ ∂U and use Theorem 1.13 (c) to write

u(ξ) − f(y) =

∫

S(x,r)
H(x, ξ) (f(x) − f(y)) dSx.

Fix ε > 0 and choose δ > 0 so that |f(x) − f(y)| < ε for |x − y| < δ.
Separate the integral into two pieces, one where |x − y| < δ and the other
where |x− y| ≥ δ. On the first piece, we have
∣

∣

∣

∣

∣

∫

S(x,r),|x−y|<δ
H(x, ξ)) (f(x) − f(y)) dSx

∣

∣

∣

∣

∣

≤ ε

∫

S(x,r)
H(x, ξ)dSx = ε.

We have used H > 0 here. On the second piece, we use Theorem 1.13 (d)
to interchange limits, and obtain

∣

∣

∣

∣

∣

∫

S(x,r),|x−y|≥δ
H(x, ξ)(f(x) − f(y))dSx

∣

∣

∣

∣

∣

≤ 2max |f |
∫

S(x,r),|x−y|≥δ
H(x, ξ)dSx < ε,

for |ξ − y| sufficiently small.
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Remark 1.15. The method of proof here is as important as the theorem
itself and crops up under the name ‘approximate identities’ in various places
in analysis. One example that you may have seen is the proof of Fejér’s
theorem on the convergence of Fourier series (see for example, [10, Ch.2]).

Remark 1.16. A nice property of the Poisson integral formula is its in-
dependence of dimension. This is not true for the wave equation. A hint
why this is true is provided by the homework problem on the reduced wave
operator 4u+ cu = 0.

1.7 The mean value property revisited

Observe that when ξ = 0 Poisson’s integral formula reduces to the mean
value property. This leads to the following characterization of harmonic
functions.

Theorem 1.17. A function u ∈ C(U) is harmonic if and only if for every
ball B(x, r) ⊂ U it satisfies the mean value property.

Proof. We only need prove that the mean value property implies u is har-
monic. Suppose then that u has the mean value property. Let B(x, r) ⊂ U .
Define a harmonic function v in B(x, r) by v = u on S(x, r), and extend
it to the interior by Poisson’s integral formula (1.31). Then v − u satisfies
the mean value property on any B(y, ρ) ⊂ B(x, r). Thus, it satisfies the
maximum principle, and v ≡ u in B(x, r). Thus, u is harmonic.

1.8 Harmonic functions are analytic

Our goal is to study the regularity of harmonic functions. We will show
that harmonic functions are analytic (denoted Cω). To show that u is C∞

is nice, to show that it is Cω is better. Heuristically, this is like saying its
nice to be rich, but its nicer to be a billionaire. The gap between C∞ and
Cω functions will be of interest for the heat equation too.

We will adopt L. Schwartz’s slick notation for multi-variable calculus. A
multi-index α = (α1, . . . , αn) where αi ∈ Z+. The height of a multi-index is
|α| = |α1| + . . .+ |αn|. Monomials are denoted xα = xα1

1 xα2

2 . . . xαn
n , and we

have the multinomial expansion

(x1 + . . . + xn)k =
∑

|α|=k

k!

α!
xα,
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where α! = α1! . . . αn!. The operator ∂α is defined to be ∂α1
x1
. . . ∂αn

xn
. Taylor’s

expansion about a point y ∈ R
n now takes the simple (and cryptic) form

f(y) ∼
∞
∑

k=0

∑

|α|=k

1

α!
∂αf(x)(x− y)α :=

∑

α

1

α!
∂αf(x)(x− y)α

The expansion above is only formal, and even if it converges, it may not con-
verge to f(x). By convergence of an infinite series

∑

α aα is meant absolute
convergence

∑

α |aα| <∞. Functions that are always locally represented by
convergent power series expansions are analytic.

Definition 1.18. A function f : U → R is real analytic in U if at every x ∈
U , there is B(x, r) ⊂ U, r > 0 such that f is represented by the convergent
power series expansion

f(y) =
∑

α

cα(y − x)α, y ∈ B(x, r). (1.34)

Necessarily, cα = α!−1∂αf(x). More precisely, (see [7, Ch 3.3])

Theorem 1.19. If f ∈ Cω(U) then f ∈ C∞(U) and for any x ∈ U there
exists B(x, r) ⊂ U such that cα = (α!)−1∂αf(x). Moreover there exists
M > 0, such that for every y ∈ B(x, r) and α ∈ Z

n
+ we have

|∂αf(y)| ≤ M |α|!
r|α|

. (1.35)

The growth estimate on the derivatives is necessary and sufficient. If f
is C∞ and satisfies (1.35), it is equal to its Taylor series. Analytic functions
satisfy an identity theorem that general C∞ functions don’t. In words,
analytic functions are determined completely by all their derivatives at a
single point. The proof below should remind you of the proof of the strong
maximum principle.

Theorem 1.20. Let U be an open, connected set in R
n. Suppose f ∈

Cω(U). Let x ∈ U . Then f is determined uniquely by ∂αf(x), α ∈ Z
n
+.

Proof. Suppose f, g ∈ Cω(U) such that ∂αf(x) = ∂αg(x), α ∈ Z
n
+. Let

h = f − g. Decompose U into

U1 = {y ∈ U |∂αh(y) = 0, all α ∈ Z
n
+},

U2 = {y ∈ U |∂αh(y) 6= 0, some α ∈ Z
n
+}.

U2 is open by the continuity of f . U1 is also open, since if y ∈ U2, then
h = 0 in a neighborhood of y by the power series representation. Since U is
connected, and U2 is nonempty by assumption, h ≡ 0.
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We often need C∞ functions that are not analytic; for example, to con-
struct C∞ “bump” functions. The identity theorem rules out analytic func-
tions for this purpose. An example that is usually chosen is the following.
Let p > 0 and consider the function

g(x) =

{

e−x−p
, x > 0

0, x ≤ 0.
(1.36)

These functions are C∞ but not analytic, because all derivatives at zero
exist and vanish. You may have seen a brute force proof of this in a class on
advanced calculus. However, the following quantitative estimate [7, p.73] is
more interesting, and highlights the role of (1.35). We will need it to study
Tychonoff’s counterexample for the heat equation.

Example 1.21. (a)Show that we can find θ = θ(p) > 0 with 0 < θ < 1
such that

|g(k)y| ≤ k!

(θy)k
exp

(

− 1

2yp

)

, y > 0. (1.37)

(b) Show that there exist M, r depending only on p such that

|g(k)y| ≤M(k!)1+1/pr−k k ∈ N, y ∈ R. (1.38)

Estimate (1.38) reveals that while we have good control over the deriva-
tives, it isn’t good enough to yield analyticity (as in (1.35)). One way to
“fill the gap” between C∞ and Cω is to grade C∞ functions through esti-
mates such as (1.38). There is a fair bit of classical analysis that revolves
around the question of characterizing functions for which the identity theo-
rem holds [11]. Such C∞ functions are called quasianalytic.

The definition of analyticity stated has the obvious flaw that it would
seem extremely hard to verify if a given function is analytic. One has to show
it is C∞, and then one has to show that the growth estimates (1.35) hold.
The power of the theory of complex analytic functions is that we only need
to check if a function is (complex) differentiable: it is then automatically
analytic. For a precise statement, see [7, p.70]. With all of this background,
here is the result for harmonic functions.

Theorem 1.22. Let u be harmonic in U . Then u ∈ Cω(U).

Proof. Without loss of generality, we may suppose that 0 ∈ U . Let r =
dist(0, ∂U) in (1.31). We show that u is analytic in B(0, r). The trick is to
write the Poisson kernel in the form

H(x, ζ) =
r2 −

∑n
j=1 ζ

2
j

ωnr
(

∑n
j=1 (xj − ζj)

2
)n/2

, ζ = ξ + iσ ∈ C
n, ξ ∈ B(0, r).
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This expression reduces to (1.32) when σ = 0. Let us show that H(x, ζ) is
analytic in ζ. The numerator is a polynomial, thus analytic. The denomi-
nator is differentiable everywhere it is not zero. Since

n
∑

j=1

(xj − ζj)
2 = (|x− ξ|2 − |σ|2) + 2i(x − ξ) · σ,

if |σ| < |x − ξ|/2 we see that the denominator is bounded away from zero.
Since x ∈ S(0, r), this is uniformly true for |σ| < (r − |ξ|)/2. Thus, H(x, ζ)
is complex differentiable in the region {ξ ∈ B(0, r), |σ| < r − |ξ|/2}.

We are now guaranteed estimates on derivatives as in (1.35). However,
it is of interest to obtain such estimates from scratch. These can be derived
either through the mean value theorem or Poisson’s integral formula.

Theorem 1.23. Let u be harmonic in U and let K ⊂ U be compact. Then
for any multi-index α we have

sup
K

|∂αu| ≤
(

n|α|
d

)|α|
sup
U

|u|, d = dist(K,∂U). (1.39)

Proof. Suppose B(x, r) ⊂ U . We first prove estimates on all derivatives of u
depending only on u on S(x, r). These are of independent interest. Since u
is harmonic, so is ∂xju. We apply the mean value theorem to ∂xju to obtain

∂xju(x) =
n

ωnrn

∫

∂yju(y) dy =
n

ωnrn

∫

S(x,r)
u(y)νj(y) dSy,

where ν(y) denotes the outer normal at y. Take absolute values to find

|∂xju(x)| ≤
n

r
max
S(x,r)

|u| ≤ n

r
sup
U

|u|.

We can now iterate this estimate. If α is a multi-index with height 2 (say,
∂2

xjxk
), apply the estimate to concentric balls of radius r/2 and r to obtain,

|∂2
xjxk

u(x)| ≤ n

r/2
max

S(x,r/2)
|∂xk

u| ≤
(

n

r/2

)2

max
S(x,r)

|u|.

(why is the second inequality true?). One may continue this procedure for
any multi-index α. We choose |α| equally spaced concentric balls, and find

|∂αu(x)| ≤
(

n|α|
r

)|α|
max
S(x,r)

|u|. (1.40)

A uniform bound over K is obtained by choosing r as large as possible, and
replacing maxS(x,r) |u| by supU |u|.
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Remark 1.24. The best constant in this estimate and the radius of con-
vergence of the power series about the center of the ball is considered in the
homework.

1.9 Compactness and convergence

The characterization of harmonic functions by their mean value property
leads to simple compactness criterion. In all that follows we will consider a
sequence of harmonic functions uk : U → R, k ∈ Z+.

Theorem 1.25. Suppose uk converges uniformly on compact subsets of U
to a function u : U → R. Then u is harmonic.

Proof. Fix B(x, r) ⊂⊂ U . Since uk → u uniformly on B(x, r), the limit u
is continuous. Moreover, since uk(x) = −

∫

B(x,r) uk(y)dy we may interchange

limits (why?) to find u(x) = −
∫

B(x,r) u(y)dy. This holds for every B(x, r) ⊂⊂
U . Thus, u is harmonic.

As an application of Harnack’s inequality, one obtains the following
strong convergence theorem.

Theorem 1.26 (Harnack’s convergence theorem). Suppose uk is a
monotone increasing sequence, and for some ξ ∈ U the sequence {uk(ξ)}
is bounded. Then uk converges uniformly on compact subsets of U to a
harmonic function.

Proof. limk→∞ uk(ξ) exists. Thus, for any ε > 0 there exists N such that
0 ≤ ul(ξ) − uk(ξ) < ε for l ≥ k ≥ N . Let U ′ ⊂⊂ U with ξ ∈ U ′. By
Harnack’s inequality

sup
U ′

(ul − uk) ≤ C

(

inf
U ′

(ul − uk)

)

≤ Cε.

Thus, ul−uk is a uniformly Cauchy sequence in U ′. Now apply the previous
theorem.

It is quite remarkable that convergence of a sequence of functions at
one point implies convergence everywhere. Finally, we have a simple and
powerful compactness theorem. For analytic functions, this is usually called
Montel’s theorem. Bounded families of harmonic functions are called normal
families.

Theorem 1.27. If uk is a bounded sequence, there is a subsequence con-
verging uniformly on compact subsets to a harmonic function.
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Proof. The fundamental compactness criterion for continuous functions is
the Arzela-Ascoli theorem. Since we have assumed a uniform bound, say
supk supU |uk| ≤ M , we only need check equicontinuity. But Theorem 1.23
yields a uniform (in k) estimate on all derivatives on any U ′ ⊂⊂ U .

1.10 Perron’s method for the Dirichlet problem

We have solved the Dirichlet problem for the ball through the Poisson inte-
gral formula. Heuristically, one may think of solving the Dirichlet problem
on a domain U by piecing together the loacl solution on balls. This is a
vague idea made precise in Perron’s construction.

The setup is as follows. U is open, bounded and connected; f : ∂U → R

is continuous. We wish to solve the problem

4u = 0, x ∈ U, (1.41)

u = f, x ∈ ∂U (1.42)

We know that if a solution exists, it is unique. Thus, we need only come
up with a solution. Many elliptic equations in geometry and physics arise
through problems of determining extrema (eg. minimal surfaces, least en-
ergy, . . . ). Perron’s method is based on characterizing the solution through
a pointwise extremal property suggested by the mean value inequality. We
begin with the weaker notion of subharmonicity considered in the HW.

Definition 1.28. A function u ∈ C(U) is subharmonic if for every x ∈ U
there exists δ(x) > 0 such that B(x, δ) ⊂ U and

u(x) ≤ −
∫

S(x,r)
u(y)dSy , 0 < r ≤ δ.

It is not assumed that v is C2, and it is not assumed that v ∈ C(U).
The boundary condition is included in our class of functions through an
inequality.

Definition 1.29. Let Sf denote the class of subharmonic functions on U
such that v ∈ C(U) and v ≤ f on ∂U .

We use an inequality (instead of equality) to ensure that Sf is non-empty.
Let m = min∂U f and M = max∂U f . Then the constant function v ≡ m is
in Sf . The basic result of Perron’s method is the following.

Theorem 1.30. The function u(x) = supSf
v(x) is harmonic in U .
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The key insight is to separate the existence of a candidate harmonic
function (that is (1.41)) from study of the boundary condition (1.42). It is
remarkable that with essentially no geometric hypothesis on the boundary
∂U we still have a suitable candidate u. To prove the theorem, we begin
with some basic properties of subharmonic functions.
1. Suppose {v1, . . . , vm} ∈ Sf . Then maxj vj := v ∈ Sf . This is immediate
from the mean value inequality. The maximum v(x) = vk(x) for some
k = k(x). Let δ(x) = minj δj(x). Then for any 0 < r < δ(x) we have

v(x) = vk(x) ≤ −
∫

S(x,r)
vk(y) dSy ≤ −

∫

S(x,r)
v(y) dSy.

We piece together harmonic functions on balls through harmonic lifting..

Definition 1.31. Suppose v is subharmonic and B(x, r) ⊂ U . The har-
monic lifting of v on the ball B(ξ, r) is defined by

V (x) =

{

w(x), x ∈ B(ξ, r),
v(x), x ∈ U\B(ξ, r),

where w : B(ξ, r) → R is the harmonic function such that v = w on S(x, r).
The following property of V was problem 1 on HW1.

2. If v ∈ Sf then V ∈ Sf and v ≤ V .

Proof of Theorem 1.30. We first note that u is well-defined since supU v ≤
M by the weak maximum principle. Fix B(ξ, r) ⊂ U . By definition, there
exists a sequence of functions v ∈ Sf such that vk(ξ) → u(ξ). We replace
the sequence {vk} by the increasing sequence

v̄k = max
1≤j≤k

(v1, . . . , vk,m) .

Then v̄k ∈ Sf and vk(ξ) ≤ v̄k(ξ) ≤ u(ξ) with convergence as k → ∞. Now
replace v̄k with its harmonic lifting over B(ξ, r), denoted Vk. Since Vk are
bounded below by m and converge at the point ξ, we may apply Harnack’s
convergence theorem (Theorem 1.26) to deduce that Vk converges uniformly
on compacts subsets B(x, ρ) ⊂ B(ξ, r) to a harmonic function V . It is clear
that V ≤ u. We claim that V = u in B(ξ, r). Suppose not. Then there
exists ζ ∈ B(ξ, r) such that V (ζ) < u(ζ). Thus, there must be w ∈ Sf such
that V (ζ) < w(ζ) ≤ u(ζ). Now consider the sequence wk = max(Vk, w) and
their harmonic liftings Wk. As before we find a harmonic limit W with

V (x) ≤W (x) ≤ u(x), x ∈ B(ξ, r), and V (ξ) = W (ξ) = u(ξ).
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By the strong maximum prinicple, V = W . Thus, V = u and u is harmonic.

The attainment of boundary values is tied to the regularity of the bound-
ary. In the Perron method, the regularity of the boundary is used to con-
struct suitable barrier functions. Since we all have an intuitive notion of the
boundary of a set, let us recall that the precise definition here is ∂U = U\U .
Since our only requirement on U is that it is open, bounded and connected,
you can guess that ∂U may be very rough in general. To check your under-
standing, show that ∂U is compact.

Definition 1.32. A C(U) function w is a barrier at y ∈ ∂U relative to U if
(a) w is subharmonic, and (b) w(y) = 0 and w(x) < 0, x ∈ ∂U, x 6= y.

Here are some examples of barriers. First, suppose that U is smooth and
convex. At every point y ∈ ∂U there is a tangent plane such that U is on one
side of the tangent plane. Without loss of generality, we may suppose after
a translation and rotation that y = 0 and the tangent plane is xn = 0 and U
is contained in the lower-half plane {xn < 0}. The function xn now serves
as a barrier. In the HW you will show that the existence of a barrier is a
local property. Thus, if there is a tangent plane at y such that B(y, r)∩U is
on one side of the tangent plane, we may use the barrier above. This yields
a useful heuristic: the boundary point is bad only when we have ‘inward
corners’.

Another barrier for this problem may be constructed as follows. Fix y
and let z ∈ R

n\U lie on the outward normal through y and let r = |y − z|.
Then B(z, r) ∩ U = {y}, and

w = K(y, z) −K(x, z)

is a barrier at y. As before, we may weaken the conditions on the domain.
We say that U satisfies an exterior sphere condition if at any point y ∈ ∂U
there exists a ball B(z, r) ⊂ R

n\U such that B(z, r) ∩ U = {y}. Then w
may be used as a barrier.

A more careful analysis can be used to weaken this further. We say that
u satisfies an exterior cone condition if at any point y ∈ ∂U there exists a
finite right circular cone C with vertex y such that C ∩ U = {y}. One may
then choose a negative harmonic function w in the exterior of the cone as a
barrier. The existence of such a function is part of the homework.

Definition 1.33. A boundary point y ∈ ∂U is regular if there exists a
barrier at y. Boundary points that are not regular are called exceptional . A
domain U is regular if all its boundary points are regular.
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Theorem 1.34. Let u = supSf
v. Then limx→y, x∈U u(x) = f(y) at every

regular boundary point y.

Proof. Fix ε > 0 and N = max(m,M) = max∂U |f |. Let w be a barrier
function at y. Since f and w are continuous on ∂U , we may choose δ > 0
and A > 0 such that |f(x) − f(y)| < ε if |x − y| < δ and Aw(x) ≤ −2M if
|x − y| ≥ δ. We use the barrier to construct a suitable subfunction v ∈ Sf .
Define v(x) = f(y) + Aw(x) − ε, x ∈ U . Definition 1.32 implies that v is
subharmonic and in C(U). In order to confirm that v ∈ Sf we only need
check the boundary values. If x ∈ ∂U and |x− y| < δ we have

v(x) = f(y) +Aw(x) − ε < f(y) − ε < f(x),

and if |x− y| ≥ δ, we have

v(x) = f(y) +Aw(x) − ε ≤ −N − ε < f(x).

Thus, v ∈ Sf , consequently v(x) ≤ u(x), x ∈ U , and

f(y) − ε = lim
x→y, x∈U

v(x) ≤ lim inf
x→y, x∈U

u(x). (1.43)

In order to prove the opposite inequality, we use a trick. Suppose the bound-
ary data is −f , and consider the Perron function ū = supS−f

v. Observe
that u(x) ≤ f(x) (why?) and −ū(x) ≤ −f(x), x ∈ ∂U . Since u and ū are
harmonic, this implies ū ≤ −u, x ∈ U by the maximum principle. We apply
(1.43) to ū to obtain

−f(y) − ε ≤ lim inf
x→y, x∈U

ū(x) ≤ lim inf
x→y, x∈U

−u(x) = − lim sup
x→y, x∈U

u(x).

Therefore,

f(y) − ε ≤ lim inf
x→y, x∈U

u(x) ≤ lim sup
x→y, x∈U

u(x) ≤ f(y) + ε.

We are now able to characterize domains such that the Dirichlet problem
is solvable.

Theorem 1.35. The Dirichlet problem on a bounded domain U is solvable
for arbitrary continuous boundary values if and only if every boundary point
is regular.
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Proof. We have just demonstrated existence of a solution if every boundary
point is regular. Conversely, if the problem is solvable for every continuous
f : ∂U → R, it is certainly solvable when f(x) = −|x− y|, x, y ∈ ∂U . Such
a solution constitutes a barrier, thus y is regular.

This is a cheap result. What is desired is a more meaningful characteri-
zation of regularity of boundary points. The exterior sphere and cone con-
ditions are sufficient conditions, but also rely on exact solutions of positive
harmonic functions – a limited approach. A complete answer to the prob-
lem is provided by Wiener’s beautiful characterization of regular boundary
points. But in order to appreciate it, one must first consider an entirely
different approach to the existence problem and some counterexamples.

1.11 Energy methods and Dirichlet’s principle

The characterization of a harmonic function as a pointwise maximum is an
essentially one-dimensional feature: our unkown u is a scalar. Many (most?)
interesting problems in PDE require the study of systems of equation (the
unkown u : U → R

m,m > 1), and do not have maximum principles. Here is
an analogy that may be useful. Laplace’s equation is a useful approximation
to the physical problem of determining the equilibrium displacement of an
elastic membrane. (A membrane is a surface that resists stretching, but does
not resist bending). Similarly, Poisson’s equation describes the equilibrium
of a membrane subjected to a load. Thus, they are the simplest prototypes
of problems of static equilibrium in the theory of elasticity. On physical
grounds, one expects such equlibria to be characterized by least energy. We
formulate a simple version of this, which represents a powerful general idea.
We shall studiously avoid the maximum principle.

The treatment here is straight from Evans [3, p.42] with some changes
of notation for consistency with these notes. Let U be an open bounded set
with C1 boundary. Consider the boundary value problem

4u = g, x ∈ U (1.44)

u = f, x ∈ ∂U. (1.45)

Theorem 1.36. There is at most one solution u ∈ C2(U ).

Proof. As always, let u and v be two solutions in C2(U ) and consider their
difference w = u − v. Then 4w = 0 in U , and w = 0 on ∂U . Integrate by
parts to find

0 =

∫

U
w4w dx =

∫

U
|Dw|2 dx.



27

Since Dw is continuous, it must vanish identically. Therefore, w is a con-
stant, and must be zero because of the boundary condition.

The method of this uniqueness proof is of great value. Physically, the
integral on the right is the elastic energy of the membrane. The quantity on
the left is the work done by the applied force g in displacing the membrane.
The equality between these two reflects conservation of energy. Dirichlet’s
principle characterizes the solution to (1.44) and (1.45) through least energy.
We introduce the energy functional

I[w] =

∫

U

(

1

2
|Dw|2 + wg

)

dx, (1.46)

for w in the class of admissible functions

A = {w ∈ C2(U) |w = g on ∂U}. (1.47)

Theorem 1.37 (Dirichlet’s principle). Assume u ∈ C2(U) solves (1.44)
and (1.45). Then

I[u] = min
w∈A

I[w]. (1.48)

Conversely, if u ∈ A satisfies (1.48), then u solves (1.44) and (1.45).

Proof. Let u ∈ C2(U) solve (1.44) and (1.45) and w ∈ A. Then (1.44)
implies

0 =

∫

U
(−4u+ g)(u − w) dx =

∫

U
(Du ·D(u− w) + g(u− w)) dx,

Rearrange terms in this identity as follows
∫

U

(

|Du|2 + gu
)

dx =

∫

U
(Du ·Dw + gw) dx.

We almost have I[u] upto a factor of 1/2. The trick is to observe that

∫

U
Du ·Dwdx ≤

∫

U
|Du||Dw|dx ≤

(
∫

U
|Du|2dx

)1/2(∫

U
|Dw|2dx

)1/2

≤ 1

2

(
∫

U
|Du|2 dx+

∫

U
|Dw|2 dx

)

.

Rearrange terms again to find I[u] ≤ I[w].
The converse is more interesting, since we must deduce from the vari-

ational principle that the minimizer solves the PDE (1.44). We have to
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choose a rich enough class of test functions. Let v be any C∞
c function (that

is C∞ and with compact support in U). Let w = u + tv, t ∈ R. Observe
that w ∈ A. Then i(t) := I[u + tv] is a differentiable function of t because
it is simply the quadratic expression

i(t) =

∫

U

(

1

2
|Du+ tDv|2 + g(u + tv)

)

dx

= I[u] + t

(
∫

U
(Du ·Dv + vg) dx

)

+
t2

2

∫

U
|Dv|2 dx.

I[u] cannot be the minimum unless the linear term vanishes, that is

0 = i′(0) =

∫

U
(Du ·Dv + vg) dx =

∫

U
(−4u+ g) v dx.

Since this holds for each v ∈ C∞
c (U), we must have (1.44).

The basic method of this proof is important, and reappears in many
guises throughout the calculus of variations. However, the smoothness as-
sumptions we adopt are far from optimal, as is the choice of function class.
A more sophisticated analysis requires the introduction of Sobolev spaces,
ie. we will do this again. To indicate some of the subtleties, let me point
out a deft dodge of a delicate issue. As we have learnt through Perron’s
theorem, the attainment of boundary values is tricky. Now look again at
the statements of the theorems and observe that there are no assumptions
on f or g. All assumptions have been subsumed into the existence of solu-
tions. In fact, it is not even clear that the class of admissible solutions is
nonempty!

1.12 Potentials of measures

The fundamental solution is physically interpreted as the potential induced
by a point charge. We now consider potentials induced by general charge
distributions. Mathematically, a charge distribution is a signed measure µ.
It gives rise to a potential by superposition. The following normalization
will be convenient: it seems easier (for me) to work with positive measures.

Definition 1.38. The potential of a signed measure µ is defined by

uµ(x) =

∫

Rn

|x− y|n−2µ(dy) =
2 − n

ωn

∫

Rn

K(x, y)µ(dy), (1.49)

for all x such that the integral is well-defined (this is always so, if µ is a
positive measure, though uµ(x) could equal +∞).
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Observe that if µ has support in a compact set F then uµ(x) is harmonic
in R

n\F . Explicit (and surprising) examples of such potentials may be found
in [9]. Here are some classical examples in R

3.

Example 1.39. Consider a sphere S(0, R) with uniform charge density λ.
The potential can be found directly by integration. A highlight of seven-
teenth century mathematics was the surprising result that outside the sphere
this potential is exactly that of a point mass (charge) of magnitude 4πR2λ
at the center of the sphere (this is on HW 3). More generally, in R

n we have

uµ(ξ) = λωnR
n−1|ξ|2−n. (1.50)

Example 1.40. Consider a uniform distribution of charge with (linear)
density λ on the interval (−a, a). That is,

µ(dx1 dx2 dx3) = λ1−a<x1<adx1δ0(dx2)δ0(dx3).

The potential at any ξ ∈ R
3 with b2 = ξ22 + ξ23 > 0 is given by,

uµ(ξ) = λ

∫ a

−a

dx1
√

(x1 − ξ1)2 + b2
,

which may be integrated (use the substitution x1 − ξ1 = b tan θ) to yield

uµ(ξ) = λ log

(

√

(a− ξ1)2 + b2 + a− ξ1
√

(a+ ξ1)2 + b2 − (a+ ξ1)

)

. (1.51)

Geometrically, the surfaces of equal potential are ellipsoids of revolution with
foci at the endpoints of the wire. Observe that the potential is divergent on
the wire itself (its natural to say uµ = +∞).

Example 1.41. If we consider a circular disk in the (x1, x2) plane with
radius a and uniform (area) density λ we may use radial symmetry to reduce
to the case ξ2 = 0 and we find as above

uµ(ξ) = λ

∫ a

0

∫ 2π

0

1
√

r2 − 2rξ1 cos θ + |ξ|2
dθ rdr.

The inner integral cannot be done without elliptic integrals. If we restrict
attention to points along the axis we have ξ1 = ξ2 = 0 and

uµ(ξ) = 2πλ
(

√

a2 + |ξ|2 − |ξ|
)

.

Observe that as ξ → ∞ we have uµ(ξ) = (πa2λ)|ξ|−1 = q|ξ|−1, where
q = πa2λ is the total charge. This simply expresses the fact that from a
distance the disk looks like a point charge. (Work this out for Example 1.58
too).
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It is natural to construct potentials from measures. It is also important
to be able to obtain measures that represent potentials. To this end, we will
need the following important uniqueness theorem.

Theorem 1.42. If uµ = 0 a.e then µ ≡ 0.

Proof. The theorem is far from obvious. Since we allow signed measures
it is not clear that we could not have positive and negative charges whose
influences cancelled out. By the Riesz representation theorem, we must show

∫

Rn

f(x)µ(dx) = 0, (1.52)

for every f ∈ C0(R
n) (continuous functions such that limx→∞ f = 0). It

suffices to show (1.52) for functions dense in C0(R
n). What we know is

∫

Rn

|x− ξ|2−nµ(dx) = 0, or

∫

Rn

K(x, ξ) dx = 0 (1.53)

for almost every ξ ∈ R
n. These functions are not dense in C0(R

n) but the
theorem is still true!

There is a clever calculation that saves the day. It will suffice to show
(1.52) for f ∈ C∞

c (C∞ functions with compact support). If f is any such
function, we consider f̆ = f(−x). We consider the convolution,

f̆ ? µ(y) =

∫

Rn

f̆(y − x)µ(dx),

and notice that (1.53) is identical to f̆ ? µ(0) = 0. Now every f̆ of this form,
admits a representation (see (1.22)) f̆ = 4f̆ ? K. Thus,

µ ? f̆ = µ ? (K ?4f̆) = (µ ? K) ?4f̆ = 0,

by (1.53). The interchange of limits has to be justified, and I am sweeping
some things under the rug, but this sketch is enough at this stage.

1.13 Lebesgue’s thorn

We now return to the question of regularity of boundary points. The two-
dimensional situation is very special. Without loss of generality suppose 0 =
y ∈ ∂U and suppose z = reiθ defines complex numbers in polar coordinates.
Suppose there is a neighborhood B(0, r) such that a single valued branch of
θ is defined in U ∩B(0, r). Then the function

w = Re(
1

log z
) =

log r

log2 r + θ2
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is a barrier at 0. All we require of U in order to obtain a single branch of θ is
a simple (ie. non-self-intersecting curve) with endpoint 0 that lies completely
in R

2\U . For example, if U is the unit ball slit along a simple curve (however
rough), it is a regular domain. Moreover, the Riemann mapping theorem
states that every simply-connected domain can be mapped analytically to
the unit ball. Thus, purely topological, and no geometric, information on U
can determine that a domain is regular.

For n ≥ 3 this is not true. The following example due to Lebesgue
provides some intuition for exceptional points and shows the havoc created
by a little asymmetry in Example 1.40. The exposition here is based on
Courant and Hilbert [1, p.303], except that we construct a family of thorns
indexed by β > 0. For the following calculations we revert to notation
(x, y, z) for points in R

3 (with all the flaws this implies).
Fix β > 0. Let µ be the measure concentrated on the x-axis on (0, 1)

with non-uniform density xβdx, x ∈ (0, 1). The potential of µ is

u(x, y, z) =

∫ 1

0

ξβ

√

(x− ξ)2 + b2
dx, b2 = y2 + z2.

The integral may be computed explicitly when β = 1 (this is Lebesgue’s
counterexample), but it is not any harder to analyze for any β > 0. We
study the asymptotics of u as x, b ↓ 0 with b/x→ 0. To leading order

u(x, y, z) ∼ 1

β
− 2xβ log b, (1.54)

and therefore if we consider the limit as x, b→ 0 along the surface

b = e−c/2xβ
, c > 0, (1.55)

we find limu = β−1 + c. One may now cheat and construct for any c > 0
a solution to Laplace’s equation (not Poisson’s equation) in the domain
exterior to the level set u−1{β−1+c} with constant boundary values β−1+c.
Simply use the function above. The point 0 is an exceptional point for this
exterior problem. To find an exceptional point for an interior problem, we
use inversion in a circle, and convert the domain above, to one with an
exponentially thin spike or thorn.

That is the outline. Let us nail down(1.54). We separate the integral
into two pieces, one on (0, 2x) and the other on [2x, 1).

∫ 1

2x

ξβ

√

(x− ξ)2 + b2
dξ =

∫ 1−x

x

(t+ x)β√
t2 + b2

dt,
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after the translation t = ξ − x. Observe that

|ξ| ≤ |x− ξ| + |ξ| ≤ 2|x− ξ|, ξ ≥ 2x.

Therefore, the integrand above is bounded by 2|t|β−1 which is integrable for
β > 0. One may now use the dominated convergence theorem to deduce

lim
x→0,b→0

∫ 1

2x

ξβ

√

(x− ξ)2 + b2
dξ =

∫ 1

0
tβ−1 dt =

1

β
. (1.56)

On the range ξ ∈ (0, 2x) we translate and rescale setting η = b/x to obtain

∫ 2x

0

ξβ

√

(ξ − x)2 + b2
dt = xβ

∫ 1

−1

(t+ 1)β
√

t2 + η2
dt (1.57)

= xβ

(

∫ 1

−1

(t+ 1)β − 1
√

t2 + η2
dt +

∫ 1

−1

1
√

t2 + η2
dt.

)

The first integral is now regular (check!) and as η → 0 we have (use domi-
nated convergence for example)

∫ 1

−1

(t+ 1)β − 1
√

t2 + η2
dt→

∫ 1

−1

(t+ 1)β − 1

t
dt := Cβ .

The second integral may be computed exactly by the change of variable
t = η tan θ. We then have

∫ 1

−1

1
√

t2 + η2
= log

(

√

1 + η2 + 1
√

1 + η2 − 1

)

.

Finally, observe that

lim
η→0

log

(

√

1 + η2 + 1
√

1 + η2 − 1

)

+ 2 log η = log 4.

To summarize, the integral in equation (1.57) is asymptotic to

xβ(Cβ + log 4 − 2 log η) = −2xβ log b+ xβ(Cβ + log 4 + 2 log x).

As x → 0, the second term converges to 0 independent of b. To be precise,
for any ε > 0 there exists δ > 0 such that for 0 < x < δ, η = b/x < δ we
have

∣

∣

∣
u(x, y, z) − β−1 + 2xβ log b

∣

∣

∣
< ε.
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If we choose b = e−c/2x we find that the limit of u is 1 + c. The surface
u−1{1+ c} is a surface of rotation with an exponentially thin spike near the
origin.

The measure µ was only needed to generate this potential. Let Uc denote
the domain exterior to u−(1+c). If we solve the exterior problem for Laplace’s
equation in U with boundary values u = 1 + c with the decay condition
u → 0 at ∞ we recover our function u. The origin must be an exceptional
point of Uc since we can obtain as limit any value between 1 and 1 + c by
approaching along a suitable curve. To connect this exterior problem to an
interior problem we use Kelvin’s transformation. Inverting in the sphere of
radius 1/2 with center (1/2, 0, 0) we obtain a domain with an internal thorn.
The tip of the thorn is an exceptional point. For detailed calculations of the
inversion, see [1].

1.14 The potential of a compact set

We will formalize a useful physical cartoon. A conductor is a body U with
charges that are free to move without resistance. In electrostatics, the po-
tential in a conductor must be constant; if not, currents would flow to equi-
librate the potential difference. Most materials have some resistance and if
we sit around and wait long enough, the potential would become constant.
Even though the conductor is at constant potential, the charge on it need
not be constant. It turns out, that the charge of a conductor must reside
on its surface, and concentrates at corners. A rather spectacular example of
this principle is lightning: the surface of the earth is at constant potential,
most of the charge accumulates on the extremities of rough surfaces (eg.
trees), and they get hit by lightning first.

In what follows F will denote a compact set in R
n, n ≥ 3. We use

F o to denote its interior (which may be empty), and ∂F to denote the
boundary. For the next few sections, U = R

n\F will be unbounded. Verify
that ∂U = ∂F . Let Uk = U ∩ B(0, k) denote a sequence of increasing,
bounded, open sets. We consider the Perron function with boundary values
uk = 1 on ∂U = ∂F and uk = 0 on |x| = r. uk is well-defined once k is large
enought that F ⊂ B(0, k). It follows from Harnack’s convergence theorem
that the sequence uk has a harmonic limit u : U → R.

Definition 1.43. The electrostatic potential (or simply potential) of F is
the function pF : R

n → R defined by

pF (x) =

{

1, x ∈ F,
u(x), x ∈ U.

(1.58)
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Remark 1.44. It is a homework problem to show that pF depends only on
F and not on the approximating domains Uk.

Example 1.45. The potential of F = B(0, R) is given by

pF (x) =

{

1, |x| ≤ R
Rn−2|x|2−n, |x| > R.

The potential of the sphere S(0, R) is the same. In both cases, the potential
is generated by a uniform measure of density λR := (ωnR)−1 on S(0, R) (see
Example 1.39 and equation (1.50)). Observe that the total charge on the
ball or sphere is Rn−2. This example reflects the principle that the charge
of a conductor is concentrated on its surface.

Theorem 1.46. Suppose ∂F is C2. Then pF is the potential of a positive
measure concentrated on ∂F . This measure is unique, and we call it the
charge on F .

Proof. Since ∂F is smooth, pF solves the Dirichlet problem with boundary
value 1 on ∂F . We use Poisson’s representation formula (1.26) to obtain for
every ξ ∈ U

u(ξ) =

∫

∂U

(

∂K(x, ξ)

∂nx
−K(x, ξ)

∂u

∂nx

)

dSx

= −
∫

F o

4xK(x, ξ) dx+

∫

∂F
K(x, ξ)

∂u

∂nx
dSx

=
(2 − n)

ωn

∫

∂F
|x− ξ|2−n ∂u

∂nx
dSx.

We switched signs when we switched from integration over ∂U to ∂F because
the outward normal switches sign. The first term has vanished because
K(x, ξ) is harmonic in F o. Finally, ∂u/∂n ≤ 0 by the maximum principle.
This gives the desired non-negative surface measure (see (1.49)). Uniqueness
follows from Theorem 1.42.

We would like to extend this principle to arbitrary compact sets. This
requires an approximation argument.

Theorem 1.47. Let F ⊂ R
n be compact. Then there is a sequence of

approximating compact sets Fk such that

1. F = ∩∞
k=0Fk.

2. F ⊂ F o
k .
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3. dist(F,Fk) ≤ k−1.

4. ∂Fk is C∞.

Proof. It is easy to construct compact sets with nonempty interior that
approximate F . For any ε > 0 the ε-thickening of F is the set

F ε = {x ∈ R
n |dist(x, F ) ≤ ε.}

This set is compact, and F is contained within the interior of F ε. How-
ever, the boundary of F ε need not be smooth, and this is fixed through the
important technique of mollification.

Let ϕ be a smooth function with support in B(0, 1) such that ϕ ≥ 0 and
∫

ϕdx = 1. Observe that for any β > 0, the scaled copy ϕβ := β−nϕ(yβ−1)
has support in the ball B(0, β) and

∫

Rn ϕβ(x) dx = 1. Let 1A denote the
indicator function for a set A. For every k we consider the 1/k-thickening
F 1/k, and construct the smooth function

ψ(x) =

∫

Rn

ϕ1/k2(y)1F 1/k(x− y) dx.

Heuristically, we are smoothing the boundary of F 1/k over a scale 1/k2.
More precisely, observe that ψ(x) = 1 for all x ∈ F 1/(2k), and 0 < ψ(x) < 1
for x ∈ ∂F 1/k, therefore

F 1/2k ⊂ ψ−1{1} ⊂ F 1/k.

It would seem that ψ−1{1} is the desired compact set with smooth boundary,
but the smoothness of ψ isn’t enough to deduce this. There is a fix for this
problem too, and again the method is very important.

First, we refine the inclusion above. We use compactness to say that
there is a δ > 0 with ψ(x) ≥ 1− δ for x ∈ ∂F 1/k. Thus, for any c ∈ [1− δ, 1]
we have

F 1/2k ⊂ ψ−1[c, 1] ⊂ F 1/k.

The factor of δ is needed for the following reason. Ideally, one would like
to say that since ψ is C∞, its inverse image ψ−1{c} is a C∞ surface (n− 1
dimensional manifold to be precise). But this need not be true for any fixed
value c (its certainly not true for c = 1). However, a powerful result called
Sard’s theorem (see [12, Ch. 3] for a proof), allows us to say that this is true
for almost every value c ∈ R! Thus, there is a c such that Fk = ψ−1[c, 1]
and ψ−1{c} is C∞.
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Observe that pFk
→ pF and the convergence is uniform on compact

subsets of U (use Harnack’s convergence theorem). We can now strengthen
Theorem 1.46.

Theorem 1.48. Consider a compact set F ⊂ R
n, n ≥ 3. There is a unique

positive measure µF supported on ∂F such that pF is the potential of µF .

Proof. Consider a sequence of approximations as in (1.47). Let µk denote
the charge (measure) associated to Fk. We may choose R > 0 so that all
the µk are supported within a fixed ball B(0, R). These measures satisfy a
uniform bound. To see this, we follow Gauss. Consider the potential pR of
the ball B(0, R). Recall from Example 1.45 that this potential is generated
by the measure λRdS on S(0, R). Since pR = 1 in B(0, R) we have

µk(R
n) :=

∫

Rn

µk(dx) =

∫

B(0,R)
µk(dx)

=

∫

B(0,R)
pR(x)µk(dx) =

∫

B(0,R)

∫

S(0,R)

λR

|x− y|n−2
dSyµk(dx)

=

∫

S(0,R)

∫

B(0,R)

µk(dx)

|x− y|n−2
λRdSy =

∫

S(0,R)
pFk

(y)λRdSy ≤ Rn−2.

Here we have used Definitions 1.38 and 1.43 and Fubini’s theorem.
Therefore, the measures µk are precompact in the weak-* topology and

we may extract a subseqence (also denoted µk) that converges to a weak-*
limit µ. That is,

∫

Rn f(x)µk(dx) →
∫

Rn f(x)µ(dx) for every continuous f
that vanishes at infinity. We need to show that µ is suported on ∂F . Choose
a continuous function f with compact support that does not intersect ∂F .
Then dist(supp(f), ∂F ) > 0 and for large enough k,

∫

Rn f(x)µk(dx) = 0.
Thus, we find that

∫

Rn

fµ(dx) = lim
l→∞

∫

Rn

fµkl
(dx) = 0.

This is equivalent to supp(µ) ⊂ ∂F .
Since the support of µ ⊂ ∂F , for every ξ that is not in ∂F we find that

∫

Rn

|x− ξ|n−2µkl
(dx) →

∫

Rn

|x− ξ|n−2µ(dx).

( The function |x−ξ|2−n is not continuous in R
n, but we only need continuity

in the vicinity of ∂F ). The term on the left is simply pFkl
(ξ) and that on

the right is pF (ξ). Thus, pF is the potential of µ, hence µ is unique by
Theorem 1.42.
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Remark 1.49. The uniform bound on the measures obtained above is of
independent interest.

1.15 Capacity of compact sets

The capacity of a compact set is the total charge µF (Rn) of the potential pF .
It is called the capacity, because this turns out to be the maximal charge
that can be placed on F when it is held at constant potential. Observe from
Theorem 1.46 that if ∂F is smooth, the charge µF has density ∂pF /∂nxdSx

and in this case we find,

cap(F ) = µF (Rn) =
2 − n

ωn

∫

∂F

∂pF

∂nx
dSx.

An observation at this point is that pF is harmonic in R
n\F , therefore if we

take any smooth surface Σ enclosing F we have

cap(F ) =
2 − n

ωn

∫

Σ

∂pF

∂nx
dSx. (1.59)

Observe also that if ∂F is C2, then pF = 1 on ∂F and we have

cap(F ) =
2 − n

ωn

∫

∂F
pF
∂pF

∂nx
dSx =

2 − n

ωn

∫

U
|DpF |2 dx.

There is another physical interpretation of capacity that avoids electro-
statics, due to Polya [13]. Think of a body held at constant temperature in
a uniform medium with zero temperature at infinity. For example, if you
are standing outside on a cold day, to a good approximation your surface is
at constant temperature and the temperature at infinity is constant (which
may as well be zero). The capacity is the heat lost by your body in unit
time in steady state. This heat simply propagates through space, and we
could evaluate it on any surface Σ.

We are now ready to state Wiener’s criterion for the regularity of a
boundary point. Let U be an open, connected subset of R

n.

Theorem 1.50. Suppose y ∈ ∂U and λ ∈ (0, 1). Define the compact sets

Fk = {x ∈ R
n\U

∣

∣

∣
λk+1 ≤ |x− y| ≤ λk }.

Then y ∈ ∂U is regular if and only if

∞
∑

k=0

λk(2−n)cap(Fk) = ∞. (1.60)
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Of course, (1.60) is equivalent to the statement that a boundary point
is exceptional if and only if the series converges. If (1.60) holds for one
λ ∈ (0, 1) then it holds for every λ ∈ (0, 1). Heuristically, this criterion
says that the complement of U must occupy enough space near y, ruling out
Lebesgue’s thorns.

Let us prove some basic properties of capacity.

1. If F1 ⊂ F2 then cap(F1) ≤ cap(F2).

2. If Fk is a nested sequence of approximating compact sets with ∩∞
k=Fk =

F then cap(F ) = limk→∞ cap(Fk).

3. cap(F1 ∪ F2) ≤ cap(F1) + cap(F2).

The proofs make liberal use of Gauss’ trick. First (1). For brevity, let pi, µi

denote the potentials and charges of Fi, i = 1, 2. Since p2(x) = 1 for all
x ∈ F2 we have

cap(F1) =

∫

Rn

p2(x)µ1(dx) =

∫

Rn

∫

Rn

|x− y|2−nµ2(dy)µ1(dx)

=

∫

Rn

p1(y)µ2(dy) ≤
∫

Rn

µ2(dy) = cap(F2).

As for (2), we know that µFk
converge weakly to µF . The issue here is

that weak-* convergence of measures only allows us to deduce cap(F ) ≤
lim infk→∞ cap(Fk) in general. However, we may use the positivity of the
measures and our knowledge of the support of Fk. Pick a smooth function ϕ
with compact support that is equal to 1 in a neighborhood of F1 ⊃ Fk ⊃ F .
Then by the definition of weak convergence

cap(F ) =

∫

Rn

ϕ(x)µF (dx) = lim
k→∞

∫

Rn

ϕ(x)µFk
(dx) = lim

k→∞
cap(Fk).

Finally, (3). Observe that pF1∪F2
≤ pF1

+ pF2
by the maximum principle.

Therefore, applying Gauss’ trick again

cap(F1 ∪ F2) =

∫

Rn

pF1∪F2
µF1∪F2

(dx) ≤
∫

Rn

(pF1
+ pF2

)µF1∪F2
(dx)

=

∫

Rn

pF1∪F2
(µF1

(dy) + µF2
(dy)) = cap(F1) + cap(F2).

It turns out that a stronger inequality is true:

cap(F1 ∪ F2) + cap(F1 ∪ F2)

As you can see, the analysis of capacity has the flavour of measure theory.
Here are some examples to get a better feel for capacity.
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Example 1.51. The capacity of a ball, is the same as the capacity of a
sphere, and we have

cap(B(0, R)) = cap(S(0, R)) =

∫

S(0,R)
λRdS = Rn−2.

Example 1.52. Note that the inequality in (3) can be strict. Suppose
F1 ⊂ F2 are nested spheres. Then the potential pF1∪F2

= pF2
, and cap(F1 ∪

F2) = cap(F2). This is called the screening effect.

Example 1.53. The capacity of a line segment in R
3 is zero. Suppose the

line segment is held at unit potential. Consider example 1.40. We showed
that uµ = ∞ on the segment for any λ > 0. Thus, each of these potentials
dominates the potential of the line segment. Hence, the capacity of the line
segment cannot exceed λ for any λ > 0.

1.16 Variational principles for capacity

The study of capacity allows us to encounter several variational principles.
The following principle explains the choice of the term ‘capacity’: the charge
is maximal over all measures that keep F at constant potential.

Theorem 1.54. Let F ⊂ R
n be compact. Then

cap(F ) = sup{µ(F )| supp(µ) ⊂ F, uµ(x) ≤ 1 for x ∈ F}. (1.61)

Proof. The proof is a direct consequence of Gauss’ trick. Let µ be a measure
with support in F , and Fk a smooth approximation to F . We have

µ(F ) =

∫

Rn

pFk
µ(dx) =

∫

Fk

uµ(y)µFk
dy ≤

∫

Fk

µFk
(dy) = cap(Fk).

Therefore, supµ µ(F ) ≤ cap(Fk). Let k → ∞ to find supµ(F ) ≤ cap(F ).

Capacity may also be characterized through minimum energy. The ap-
propriate notion of energy here is the Coulomb energy. In the sequel, a
signed measure µ has positive and negative parts µ± with µ = µ+−µ−. The
positive measure |µ| = µ+ + µ−. The total variation of µ is ‖µ‖ = |µ|(Rn).
We will only consider finite measures, that is ‖µ‖ <∞.

Definition 1.55. The Coulomb energy of a finite measure µ is

E[µ] =
1

2

∫

Rn

∫

Rn

|x− y|2−n µ(dx)µ(dy). (1.62)
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The mutual energy of two finite measures µ1, µ2 is

E[µ1, µ2] =
1

2

∫

Rn

∫

Rn

|x− y|2−n µ1(dx)µ2(dy). (1.63)

The most important property of the Coulomb energy is that it is positive
definite.

Theorem 1.56. The Coulomb energy has the following properties:

1. If E(|µ|) <∞, then E[µ] ≥ 0 with equality only if µ ≡ 0.

2. If ν is a finite measure with E[|ν|] <∞ then

|E[µ, ν]|2 ≤ E[µ]E[ν], (1.64)

with equality for nonzero µ, ν if and only if ν = cµ for some c ∈ R.

3. The map µ 7→ E[µ] is strictly convex: if 0 < t < 1, and µ 6= ν then

E[tµ+ (1 − t)ν] < tE[µ] + (1 − t)E[ν]. (1.65)

We will assume this theorem for now. Its proof is best understood after
we study the heat equation. The hard part is (1); (2) and (3) are direct
consequences. An important variational principle is the following.

Theorem 1.57 (Gauss’ principle). Let µ be a non-negative, finite mea-
sure supported on F . The quadratic form

G[µ] = E[µ] − µ(F ) ≥ −1

2
cap(F ), (1.66)

with equality if and only if µ = µF , the charge associated to F .

Proof. The proof is a classic demonstration of what is called the direct
method in the calculus of variations. It consists of the following steps.

1. G[µ] is bounded below: Let β = infx,y∈F |x − y|2−n. Observe that
β > 0 since F is compact. We use the definition of the Coulomb energy (1.62)
and µ ≥ 0 to obtain

E[µ] =
1

2

∫

F

∫

F
|x− y|2−nµ(dx)µ(dy) ≥ β

2
(µ(F ))2. (1.67)

This is called a coercivity bound. Now use this estimate in (1.66)

G[µ] ≥ β

2
(µ(F ))2 − µ(F ) ≥ − 1

2β
. (1.68)
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2. Infimizing sequences are precompact: Let µk be a sequence such that
limk→∞G[µk] = inf G. We use (1.68) again to find for large enough k

1 + inf G ≥ β

2
(µk(F ))2 − µk(F )

Therefore, the sequence µk(F ) is bounded. Thus, the sequence µk is precom-
pact in the weak-* topology, and we may extract a convergent subsequence
(also denoted µk) with limit µ.

3. G is weakly lower semicontinuous: that is

G[µ] ≤ lim inf
k→∞

G[µk] = inf
µ
G[µ]. (1.69)

Therefore, µ is a minimizer. It is only necessary to study the Coulomb
energy, for by choosing ϕ ∈ C∞

c with ϕ = 1 on a neighborhood of F we have

µ(F ) =

∫

Rn

ϕ(x)µ(dx) = lim
k→∞

∫

Rn

ϕ(x)µk(dx) = µk(F ).

The proof uses the quadratic nature of E. For any M , observe that

uM (x) =

∫

Rn

min(M, |x − y|2−n)µ(dy)

is a continuous functions. Therefore,

lim
k→∞

∫

Rn

uM (x)µk(dx) =

∫

Rn

uM (x)µ(dx).

Let M → ∞ and use the monotone convergence theorem to obtain

E[µ] = lim
k→∞

E[µ, µk].

We now pass to the limit in the inequality

0 ≤ E[µ− µk] = E[µk] + E[µ] − 2E[µ, µk]

to deduce that E[µ] ≤ lim infk→∞E[µk].
4. The minimizer is unique: Suppose we had two minimizers, µ and ν.

We consider a linear combination tµ+ (1 − t)ν and find

G(tµ+ (1 − t)ν) < tG(µ) + (1 − t)G(ν) = minG.
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5. The minimizer is µF . Let uµ denote the potential of the measure µ
and let ν ≥ 0 be a finite measure. Since G(µ + εν) ≥ G(µ) we take a limit
to find

0 ≤ lim inf
ε↓0

G(µ+ εν) −G(µ)

ε
=

∫

Rn

∫

Rn

|x− y|2−nµ(dy)ν(dx) − ν(F )

=

∫

Rn

(uµ(x) − 1)ν(dx). (1.70)

In particular, we have the equality

0 =

∫

Rn

(uµ(x) − 1)µ(dx). (1.71)

This is because µ−εµ is also non-negative for small ε and we may set ν = −µ
in (1.70). Now consider the difference E[µ−µF ]. A direct computation yields

0 ≤ E[µ− µF ] =

∫

F
(uµ − pF )(µ− µF )(dx)

=

∫

F
(uµ − 1)µ(dx) −

∫

F
(uµ − 1)µF (dx) ≤ 0,

since pF = 1 on F and equality (1.71) holds. Therefore, µ = µF .
6. We may now evaluate the minimum by setting µ = µF . We use (1.71)

to find 2E[µ] = −µF (F ) = −cap(F ).

Remark 1.58. Steps (1),(2) and (4) are very general. There is another
proof of (3) which uses only convexity, not the quadratic nature of E. The
equation in step (5) is called the Euler-Lagrange equation.

Theorem 1.59 (Kelvin’s principle).

1

2cap(F )
= inf{E[µ] |µ ≥ 0, supp(µ) ⊂ F, µ(F ) = 1} , (1.72)

with the understanding that the left hand side is +∞ when cap(F ) = 0.

Proof. It is instructive to repeat the direct method, noting that E ≥ 0 gives
the lower bound, and µ(F ) = 1 gives pre-compactness. However, we may
also use Gauss’ principle. Given any µ ≥ 0 with µ(F ) = 1 and any t > 0 we
use (1.66) with tµ to obatin the estimate

t2E[µ] − tµ(F ) ≥ −cap(F )

2
,

with equality if and only if µ = tµF . We set t = cap(F ) when this is positive.
If cap(F ) = 0, then we have E[µ] ≥ t−1 for every t > 0.
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2 The heat equation

2.1 Motivation

Let us begin with some motivation. The heat equation is the simplest phys-
ical model for the spread of mass or temperature by diffusion. Think for
example of the transport of smoke in still air. We think of smoke particles
as being much larger than the air molecules, yet sufficiently small that they
feel the random kicks of collisions with many atoms. The average displace-
ment of any particle is zero, yet there are fluctuations about this mean that
increase with time. The macroscopic manifestation of these fluctuations is
diffusion. This physical picture was proposed in 1905 by Einstein [2] at a
time when the existence of atoms was in doubt, and his theoretical predic-
tions were confirmed by Perrin.

This microscopic picture of diffusion underlies a classical theory of diffu-
sion derived by Euler (though the name usually attach to the heat equation
is that of Fourier). There are two steps in the modeling process. Let u(x, t)
denote the density of smoke at a position in space. If the smoke only gets
transported (and not created or destroyed) then we may use conservation of
mass to write

∂tu+ div(J) = 0,

where J denotes the flux of particles at any point in space. Since there
are two unknowns, we need another equation. This is a constitutive relation
usually called Fick’s law . The flux is related to the density (or temperature)
u through J = −α2Du. The experimental basis for Fick’s law is that heat
flows in the direction of steepest descent. Here α2 is a material constant
that we may choose to be 1 (or 1/2 for probabilists). We are thus led to the
heat (or diffusion) equation

∂tu = 4u, x ∈ U, t > 0. (2.1)

We shall almost always be concerned with the Cauchy problem: here we are
given an initial field

u(x, 0) = f(x), x ∈ U, (2.2)

and the task is to propagate it in space. Let us note that Laplace’s equation
corresponds to the special case when the field u(x, t) is independent of t.

2.2 The fundamental solution

John derives the fundamental solution using Fourier analysis. Here is a dif-
ferent derivation based on scaling. We have already noted that the Laplacian
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is invariant under rotations. Now observe that the heat equation is invari-
ant under the parabolic scaling x→ λx, t → λ2t. More precisely, if u solves
(2.1) on the domain x ∈ R

n, t ∈ (0,∞), then so does the rescaled func-
tion uλ(x, t) = u(λx, λ2t). Moreover, the physical context above suggests
that the heat equation conserves mass: explicitly, if U = Rn then upon
integration (and assuming sufficiently rapid decay at infinity) we have

∂t

(
∫

Rn

u dx

)

= 0.

These observations suggest we seek a fundamental solution of the form

u(x, t) = t−n/2g(|x|t−1/2) := t−n/2g(ξ), (2.3)

where ξ = |x|t−1/2 is called the similarity variable. Substitute this ansatz
in (2.1) to obtain

∂tu = − 1

2t1+n/2

(

ξg′ + ng
)

= − ξ1−n

2t1+n/2
(ξng)′ ,

and

4u =
1

t1+n/2

(

g′′ +
n− 1

ξ
g′
)

=
ξ1−n

t1+n/2

(

ξn−1g′
)′
.

We equate these terms to obtain the differential equation

(

ξn−1g′
)′

+
1

2
(ξng)′ = 0.

In order that g is smooth, we require g′(0) = 0 (g is symmetric under
rotations in x) . Therefore, integrating in ξ we have

g′ +
ξ

2
g = 0,

with solution g = Ce−ξ2/4. The constant is determined by the normalization
∫

Rn u(x, t) dx =
∫

Rn g(|x|) dx = 1 (this is similar to the normalization for the
fundamental solution to Laplace’s equation). This yields the fundamental
solution or heat kernel

k(x, t) =
1

(4πt)n/2
e−|x|2/4t, x ∈ R

n, t > 0. (2.4)

We must justify the term fundamental solution. This is based on the fol-
lowing properties of k which should remind you of the Poisson kernel.
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1. k(x, t) solves ∂tk = 4xk, x ∈ R
n, t > 0.

2. k(x, t) > 0, x ∈ R
n, t > 0.

3.
∫

Rn k(x, t)dx = 1 for every t > 0.

4. For any δ > 0, limt↓0 k(x, t) = 0 uniformly in |x| ≥ δ.

5. For any δ > 0,

lim
t↓0

∫

|x|≥δ
k(x, t) dx = 0.

6. k(x, t) is C∞ in (x, t) ∈ R
n × (0,∞).

Properties (1), (2) and (3) follow immediately from our construction of k.
Let us check (4). For any |x| ≥ δ, t > 0 we have e−|x|2/4t ≤ e−δ2/4t and
t−n/2e−δ2/4t → 0 as t → 0. Here is a quantitative version of (5) which will
give you some practice with Gaussian integrals. Observe that for y ∈ R and
any a > 0

∫

|y|>a
e−y2

dy = 2

∫

y>a
e−y2

dy < 2

∫

y>a

y

a
e−y2

dy =
e−a2

a
.

The second inequality is called Chebyshev’s inequality. In R
n, the following

crude bound will suffice. Since the set |y| ≥ a is contained within {|yi| ≥
a/

√
n, 1 ≤ i ≤ n}, we have

∫

|y|>a
e−y2

dy ≤
(

∫

|y1|≤a/
√

n
e−y2

1dy1

)n

≤ nn/2e−a2

an
.

Now let us apply this to the heat kernel. Let y = x/2
√
t so that

∫

|x|>δ
k(x, t)dx =

1

πn/2

∫

|y|>2δ/
√

t
e−|y|2dy ≤

(

tn

4δ2π

)n/2

e−4δ2/t.

Finally, it is clear that the kernel is C∞ as long as t > 0.
To summarize, the heat kernel is an approximate identity that solves

∂tk = 4xk. This allows us to construct solutions to the Cauchy problem.

Theorem 2.1. Let f be a bounded continuous function on R
n. Then

u(x, t) =

∫

Rn

k(x− y, t)f(y) dy =

∫

Rn

k(y, t)f(x− y) dy, t > 0, (2.5)
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defines a C∞ solution to the heat equation ∂tu = 4u on the domain R
n ×

(0,∞). u attains the initial values f in the following sense

lim
t↓0

u(x, t) = f(x)

for every x ∈ R
n. Thus, defining u(x, 0) = f(x) we obtain a continuous

function u(x, t) on R
n × [0,∞).

Proof. The proof is similar to the proof of Theorem 1.14. In order to show
that u solves the heat equation, we differentiate under the integral sign, and
use 4xk(x− y, t) = 4x−yk(x− y, t) = ∂tk(x− y, t) to deduce that u solves
the heat equation.

In order to give a careful justification for differentiation under the in-
tegral sign you may use finite differences. For example, to show that ∂tu
exists, proceed as follows. Fix x ∈ R

n, t > 0 and let h 6= 0. Let M denote
sup |f |. By definition

u(x, t+ h) − u(x, t)

h
=

∫

Rn

k(y, t+ h) − k(y, t)

h
f(x− y)dy

=

∫

Rn

∂tk(y, t+ θh)f(x− y)dy,

for some 0 < θ < 1 by the mean value theorem. Therefore,

∣

∣

∣

∣

u(x, t+ h) − u(x, t)

h
−
∫

Rn

∂tk(y, t)f(x− y)dy

∣

∣

∣

∣

≤M

∫

Rn

|∂tk(y, t+ θh) − ∂tk(y, t)| dy ≤Mh

∫

Rn

|∂2
t k(y, t+ θ′h)|dy,

for some 0 < θ′ < 1. Here we used the mean value theorem again, and the
assumption that f is bounded. Observe that ∂2

t k(y, t) has Gaussian decay
as y → ∞. In particular, it is integrable. Now take the limit h → 0 to
conclude that u is differentiable in t.

In order to show that the initial values are attained, we must use the
properties of an appromixate identity. By property (3), for any t > 0 we
have

u(x, t) − f(x) =

∫

Rn

k(y, t) (f(x− y) − f(x)) dy.

Since f is continuous, we may choose δ > 0 such that |f(x) − f(x− y)| < ε
for |y| < δ. Estimate the integral separately on |y| < δ and |y| ≥ δ. We use
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properties (2) and (3) to obtain

∣

∣

∣

∣

∣

∫

|y|<δ
k(y, t) (f(x− y) − f(x)) dy

∣

∣

∣

∣

∣

≤
∫

|y|<δ
k(y, t) |f(x− y) − f(x)| dx ≤ ε

∫

Rn

k(y, t) dy = ε.

On the other hand, when |y| > δ we use property (5) and the uniform bound
sup |f | = M <∞ to obtain

∫

|y|>δ
k(y, t)|f(x− y) − f(x)| dy

≤ 2M

∫

|y|>δ
k(y, t) dy ≤ 2M

(

tn

4δ2π

)n/2

e−4δ2/t.

Remark 2.2. Observe that there is no need to assume that f is bounded.
To justify differentiation under the integral sign we only need a growth
assumption on f that is beaten by the decay of e−|y|2/4t. For example, the
proof would work even if |f(x)| ≤Me|y|

α
, α < 2.

2.3 Uniqueness of solutions

Theorem 2.1 makes no mention of uniqueness: with good reason, as the
following counterexample of Tychonoff shows. We construct a series solution

u(x, t) =
∞
∑

k=0

gk(t)x
2k. (2.6)

If we formally differentiate, we have

∞
∑

k=0

ġk(t)x2k = ut = uxx =

∞
∑

k=0

(2k + 2)(2k + 1)gk+1x
2k.

Equate coefficients to obtain the necessary conditions

ġk = (2k + 2)(2k + 1)gk+1, with solution gk(t) =
g
(k)
0 (t)

(2k)!
. (2.7)
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We choose g0(t) to ensure convergence of (2.6). For any p > 1, let g0(t) =
e−t−p

, t > 0. As shown in the HW, there exists θ = θ(p) > 0 such that

|g(k)
0 (t)| ≤ k!

(θt)k
e−1/2tp , t > 0. (2.8)

Therefore, we may susbtitute (2.8) in (2.7) to obtain for any t > 0

∞
∑

k=0

|gk(t)||x|2k ≤ e−1/2tp
∞
∑

k=0

k!

2k!

( |x|2
θt

)k

≤ exp

(

− 1

2tp
+

|x|2
θt

)

.

Thus, u(x, t) is well defined for every t > 0. Moreover, the assumption p > 1
ensures limt→0 u(x, t) = 0 uniformly on compact sets. A similar bound shows
that the series for ut and uxx converge. We now have infinitely many (for
every p > 1) solutions to the heat equation with initial data u(x, 0) = 0.

This places us in an interesting quandary. The heat equation is based on
simple modeling assumptions (see § 2.1) and should not be so complicated.
The essential flaw here is that k(x, t) > 0 for every x ∈ R

n, t > 0. In short,
heat propagates infinitely fast from any one point to another, and there
is nothing to protect against a great blast of heat from infinity. To quote
verbatim, from [10, Ch. 67]:

To the applied mathematician [the counterexample] is simply an
embarrassment reminding her of the defects of a model which
allows an unbounded speed of propagation. To the numerical
analyst it is just a mild warning that the heat equation may
present problems which the wave equation does not. But the
pure mathematician looks at it with the same simple pleasure
with which a child looks at a rose which has just been produced
from the mouth of a respectable uncle by a passing magician.

One requires other considerations to obtain uniqueness. The optimal
result in this direction is Widder’s theorem, which asserts that solutions to
the heat equation that are bounded on one sided (say u ≥ 0) are unique.
Indirectly, we can conclude that all of Tychonoff’s solutions change sign.

2.4 The weak maximum principle

The lectures follow John with no change. You should also look at the dis-
cussion of analyticity of solutions.
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2.5 The mean value property

Harmonic functions are characterized by the mean value property. A similar,
but more subtle characterization holds for the heat equation. Spheres are
level sets of the fundamental solution for Laplace’s equation. This motivates
the appropriate geometric notion for the heat equation.

Definition 2.3. For x ∈ R
n, t ∈ R we define the heat ball

E(x, t; r) = {(y, s) ∈ R
n+1

∣

∣

∣

∣

s ≤ t, k(x− y, t− s) ≥ 1

rn
} (2.9)

The following geometric properties of the heat ball are basic.
1. Translation: E(x, t; r) is the ball E(0, 0, ; r) translated to (x, t).
2. Scaling: E(0, 0; r) is obtained from E(0, 0; 1) by the parabolic scaling
y → ry, s→ r2s.
3. E(0, 0; r) is a closed, convex set with boundary given by

|y| = Rr(s) :=

(

−2ns log

(

r2

−4πs

))1/2

, − r2

4π
≤ s ≤ 0. (2.10)

(It is natural to include the limit y(0) = 0.)
The following theorem is surprisingly recent [14]. It works for more

general domains in R
n+1. To be concrete, we will work with strips VT =

U × (0, T ) for fixed T > 0. Let C2
1 (VT ) denote functions on VT such that

∂tu and D2u exist and are continuous.

Theorem 2.4. Let u ∈ C2
1 (VT ) be a subtemperature (a subsolution of the

heat equation). Then for every E(x, t; r) ⊂ VT

u(x, t) ≤ 1

4rn

∫ ∫

E(x,t;r)
u(y, s)

|x− y|2
(t− s)2

dy ds. (2.11)

In particular, temperatures (solutions to the heat equation) satisfy

u(x, t) =
1

4rn

∫ ∫

E(x,t;r)
u(y, s)

|x− y|2
(t− s)2

dy ds. (2.12)

Conversely, if u ∈ C2
1(VT ) and (2.12) holds for every E(x, t; r) ⊂ VT then

∂tu = 4u in VT .

Remark 2.5. Of course, one would like a stronger converse; namely, if u
is continuous and (2.12) holds for every E(x, t; r) then u solves the heat
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equation. This is true but we will need a strong maximum principle first.
Once one has characterized temperatures through a mean value property,
Harnack’s inequality, Harnack’s convergence theorem and compactness the-
orems follow as for harmonic functions

Remark 2.6. Set u = 1 and use the scaling property of E(x, t; r) to find

4 =

∫

E(0,0,1)

|y|2
s2

dy ds.

This is the volume of the heat ball with the weighted measure |y|2s−2dyds.
What is surprising is that this volume is independent of n (compare with
the behavior of ωn). It is interesting to compute this volume directly (see
Remark 2.8).

Proof. 1. We may suppose x = 0 and t = 0 after translating the heat ball.
For brevity, we denote E(0, 0; r) by E(r) and define

ψ(y, s, r) = log

(

rne|y|
2/4s

(−4πs)n/2

)

, ϕ(r) =
1

4rn

∫ ∫

E(r)
u(y, s)

|y|2
s2

dy ds.

The heat ball is the set {ψ ≥ 0}. The proof relies on the following identity
(called a monotonicity formula) which holds for every u ∈ C3(VT ):

ϕ′(r) =
−n
rn+1

∫ ∫

E(r)
ψ (∂su−4u) dy ds. (2.13)

The theorem follows immediately from this identity. If u is a subsolution,
then ϕ′(r) ≥ 0 which is stronger than (2.12). For solutions we have equality.
Conversely, if we have equality for every heat ball and ut−4u is continuous,
it must vanish in VT since ψ is positive in E(r).

2. The proof of (2.13) is a clever calculation. We rescale variables
y = ry′, s = r2s′ to obtain

ϕ(r) =
1

4

∫ ∫

E(1)
u(ry′, r2s′)

|y′|2
s′2

dy′ ds′.

Now differentiate to obtain

ϕ′(r) =
1

4

∫ ∫

E(1)

(

y′ ·Dyu+ 2rs′∂su
) |y′|2
s′2

dy′ds′

=
1

4rn+1

∫ ∫

E(r)
(y ·Dyu+ 2s∂su)

|y|2
s2

dyds := A+B. (2.14)
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To simplify B we have to play with the derivatives of ψ. We have

y ·Dyψ =
|y|2
2s

, and s∂sψ = −n
2
− |y|2

4s
. (2.15)

Substitute the first of these relations in B to obtain

B =
1

rn+1

∫ ∫

E(r)
∂su y ·Dyψ dy ds.

The integrand can be rewritten as

∂su y ·Dyψ = Dy · (yψ∂su) − nψ∂su− ψy · ∂sDyu.

The last term can be further expanded as

ψy · ∂sDyu = ∂s(ψy ·Dyu) − (y ·Dyu)∂sψ.

Since ψ = 0 on the boundary of E(r) we integrate by parts to obtain

B =
1

rn+1

∫ ∫

E(r)
(−nψ∂su+ y ·Dyu∂sψ) dy ds

= − 1

rn+1

∫ ∫

E(r)
(nψ∂su+ y ·Dyu

[

n

2s
+

|y|2
4s2

]

= − n

rn+1

∫ ∫

E(r)
(ψ∂su+Dyψ ·Dyu) −A. (2.16)

We combine (2.14) and (2.16) and integrate by parts to obtain the mono-
tonicity formula (2.13).

It is also of interest to get a mean value theorem on heat spheres (that
is, on the surface ∂E(x, t; r). For completeness, this is stated below as a
consequence of Theorem 2.4.

Theorem 2.7. Suppose u ∈ C2
1 (VT ) solves the heat equation. Then for any

E(x, t; r) ⊂ VT we have the mean value property on heat spheres

u(x, t) =
1

2rn

∫ 0

−r2/4π

(

∫

|ω|=1
u(x+Rω, t+ s)dω

)

Rr(s)
n

−s ds. (2.17)

Conversely, if u ∈ C2
1(VT ), and (2.17) holds for every E(x, t; r) ⊂ VT , then

ut = 4u.



52

Proof. Suppose x = 0 and t = 0. We rewrite ϕ(r) using polar coordinates

ϕ(r) =
1

4rn

∫ ∫

E(r)
u(y, s)

|y|2
s2

dyds

=
1

4rn

∫ 0

−r2/4π

∫ R

0

∫

|ω|=1
u(ρω, s) dω

ρn+1

s2
dρ ds.

Here R denotes Rr(s) for brevity. We differentiate with respect to r to
obtain

ϕ′(r) =
−nϕ(r)

r
+

1

4rn

∫ 0

−r2/4π

∫

|ω|=1
u(ρω, s) dω

ρn+1

s2

∣

∣

∣

∣

∣

ρ=R

dR

dr
ds. (2.18)

If u solves the heat equation, ϕ′(r) = 0 and ϕ(r) = u(x, t). From the
definition of Rr(s) (see (2.10)) we have

R
dR

dr
= −2ns

r
.

We substitute in (2.18) and rearrange terms to obtain (2.17). To prove the
converse, we simply observe that (2.17) is equivalent to ϕ′(r) = 0.

Remark 2.8. If u ≡ 1, Theorem 2.7 implies

1 =
ωn

2rn

∫ 0

−r2/4π

Rr(s)
n

−s ds.

Let us check this directly. Let I denote the integral. First rescale s = −r2t,
and use (2.10) to find

I =
ωn

2

∫ 1/4π

0
(−2nt log(4πt))n/2 dt

t
.

Set p = −n−1 log(4πt) in I and cancel many factors of 2 and n to find

I =
ωn

nπn/2

∫ ∞

0
e−n/2pn/2dp

=
ωn

nπn/2
Γ
(n

2
+ 1
)

=
ωn

2πn/2
Γ
(n

2

)

= 1.

More generally, if we consider weights |y|αsβ and consider
∫

E(r)
|y|α|s|β dy ds = Cα,βr

n+2+α+2β,
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a similar calculation yields

Cα,β =
ωn

(n+ α)θ(4π)θ

(

(2n)

θ

)n+α

Γ(
n+ α

2
+ 1),

where θ = β + 1 + (n + α)/2. Everything cancels and this reduces to 1/4
when θ = n/2. Strangely, the combination α = 2, β = −2 is the only one
that leads to Cα,β independent of n.

2.6 The strong maximum principle

We split the boundary of VT into two pieces: ∂iVT , i = 1, 2. The parabolic
boundary ∂1VT consists of U × {0} and ∂U × [0, T ].

Theorem 2.9. Suppose U is open, bounded and connected. Suppose u ∈
C(V̄T ) satisfies the mean value inequality (2.11). Then

max
V̄T

u ≤ max
∂1VT

u. (2.19)

If the maximum is attained at (x, t) ∈ VT then u is constant in V̄t.

Remark 2.10. The strong maximum principle applies to subtemperatures
by the mean value property. Here we isolate the property of subtemperatures
(the inequality (2.11) that is needed for a strong maximum principle.

Remark 2.11. The theorem is more delicate than the strong maximum
principle for subharmonic functions. We cannot deduce that u is constant
on all of VT , only that it was constant in the past 0 ≤ s ≤ t. This comes
down to the geometry of heat balls, especially that (x, t) sits at the top of
E(x, t, r), not in its interior.

Proof. 1. Let M = maxV̄T
u. Suppose u(x, t) = M . For some r > 0 , we

have E(x, t) ⊂ V̄t. Apply the mean value property (2.11) to obtain

0 ≤ 1

4rn

∫ ∫

E(x0,t0;r)
(u(x0, t0) −M)

|y|2
s2

dy ds ≤ 0.

Thus, u ≡M in E(x, t). At this point, the simple topological argument that
we used for Laplace’s equation does not work. We can no longer say that
u−1{M} is open.

2. Let us consider the set of all (y, s), s < t that can be linked to (x, t) by
a line segment γ(τ) = (1− τ)(x, t)+ τ(y, s), τ ∈ [0, 1]. On any such segment
we have u ≡ M . Indeed, if f : [0, 1] → R is defined by f(τ) = u(γ(τ)) we
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see that f−1{M} is nomempty (f(0) = M), closed (by continuity) and open
(by step 1). It is important here that s < t.

3. Finally, since Vt is connected to any point (y, s) ∈ Vt can be con-
nected to (x, t) by a polygonal path (the set of points that can be so con-
nected to (x, t) is nonempty, open and relatively closed in Vt). Thus, u ≡M
in Vt and by continuity, in V̄t.

4. If v ≡ M , (2.19) is trivial. If v is not identically constant, since
maxV̄T

u is attained, it can be attained only on ∂1V̄T .

Theorem 2.12. If u ∈ C(VT ) satisfies the mean value property (2.12) for
every E(x, t; r) ⊂ VT , then u solves the heat equation in VT .

Proof. Fix (x, t) ∈ VT and consider a parabolic cylinder C = {(y, s)||y−x| ≤
δ, t − δ2 ≤ s ≤ t} contained within VT . We may solve the heat equation on
such a cylinder with boundary values prescribed on the parabolic boundary
∂1C by the method of Green’s function (see [7]). Then the difference u−v =
0 on the parabolic boundary of C, and satisfies the mean value property in
C. By the strong maximum principle, u ≡ v.

2.7 Difference schemes

Discretizations of PDEs are used to prove existence theorems and for the
practical matter of computing solutions by numerical methods. They are
also of intrinsic interest. We only consider Laplace’s equation on a uniform
grid, but you will see that there is a natural notion of harmonic functions
on graphs, with many familiar properties. This is of interest in combina-
torics and in engineering (for example, electrical circuits are discretizations
of Maxwell’s equation).

Let Z
n denote the integer lattice. We will work with subsets of the

spatial grid hZ
n. To make the analogy with Laplace’s equation transparent,

similar notation will be adopted. For example, {|ω| = 1} will denote the
‘unit sphere’ in Z

n, that is the set of 2n-points ±ei where ei are the unit
vectors in R

n. Points in a domain Uh ⊂ hZ
n will be denoted by x. The

boundary of Uh, denoted ∂Uh, is the set of points y ∈ Z
n\Uh such that

y = x + hω for some x ∈ Uh, |ω| = 1. A set Uh is connected (!) if for
every x, y ∈ Uh there is a finite ‘walk’ xi, i = 0, . . . , N such that x0 = x,
xN = y and xi+1 = xi + hωi for some |ωi| = 1. The discrete Laplacian is
the difference operator

4hu(x) =
1

2nh2

∑

|ω|=1

(u(x+ hω) − u(x)) .
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A function u : Uh ∪ ∂Uh → R is harmonic if 4hu = 0 in Uh. Similarly, u is
subharmonic if 4hu ≥ 0. Subharmonic functions satisfy a strong maximum
principle.

Theorem 2.13. If Uh is finite and connected, and u : Uh ∪ ∂Uh → R is
subharmonic. Then

max
Uh∪∂Uh

u = max
∂Uh

u.

The maximum is attained in Uh if and only if u is constant.

Proof. 1. Since Uh∪∂Uh is finite the maximum is attained. If the maximum
is attained on ∂Uh there is nothing to prove. So let us suppose u attains its
maximum M at x ∈ Uh. As in the continuous setting we have

M = u(x) ≤ 1

2n

∑

|ω|=1

u(x+ hω) ≤M.

Thus, u(y) = M for every neighbor y of x.
2. Since Uh is connected, every point z ∈ Uh is connected to x by a walk

in Uh. By step (1), the value at every point on this walk is M . Thus, u is a
constant.

The discrete Dirichlet problem is to solve

4hu = 0, x ∈ Uh, (2.20)

u = f, x ∈ ∂Uh. (2.21)

The use of the maximum principle as an existence tool is transparent in the
discrete setting.

Theorem 2.14. Suppose Uh is bounded and connected. The Dirichlet prob-
lem has a unique solution.

Proof. 1. Let N denote the number of points in Uh. Equations (2.20)
and (2.21) form a linear system of N equations (one for each x ∈ Uh).
Schematically, we may write this as Au = B.

2. If f ≡ 0, then B = 0 ∈ R
N and we have u ≡ 0 by the maximum

principle. Therefore, the nullspace of A consists of only {0} ⊂ R
N . Thus, A

is of full rank, and there is a unique solution for every f .

The discrete analog of Poisson’s integral formula is instructive. We con-
struct a basis for the solution space as follows. Fix y ∈ ∂Uh, and solve the
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Dirichlet problem with boundary data f(z) = 0, z 6= y, f(y) = 1. Call this
solution H(x, y). Then the solution to (2.20) and (2.20) for arbitrary f is

u(x) =
∑

y∈∂Uh

H(x, y)f(y). (2.22)

2.8 Random walks

The probabilistic interpretation of the discrete equations adds depth to our
understanding of harmonic functions. What follows is a heuristic description
to give you a flavour of the subject. We imagine a drunken walker on the
grid taking steps with equal probability in each coordinate direction. More
precisely, consider a sequence of independent random variables ωi uniformly
distributed on the sphere |ω| = 1. The walk starting at 0 is denoted

Wm = h

m
∑

k=1

ωk.

The walk starting at x is x+Wm. These walks have the Markov property

P (Wm+1 ∈ A |W1, . . . ,Wm ) = P (Wm+1 ∈ A |Wm) , A ⊂ Z
n.

That is knowledge of the entire trajectory W1, . . . ,Wm tells us no more
about about Wm+1 than knowledge of only Wm. A deeper strong Markov
property is also true: we may replace m by certain admissible random times,
M , called stopping times. Loosely speaking, a stopping time is a random
time that does not look into the future. Here is a useful example: Fix a set
G ⊂ Z

n and let us define the first hitting time M = inf{k |Wk ∈ G} and
the last hitting time N = sup{k |Wk ∈ G and Wl is not in G for l > k}.
Observe that M relies only on W1, . . . ,WM , but N requires knowledge of
WN ,WN+1, . . .. M is a stopping time, N is not. In fact, M is the most
important example of a stopping time, termed the first passage time to G.

The (super)martingale property of (sub)harmonic functions is funda-
mental.

Theorem 2.15. Suppose u : Uh ∪ ∂Uh → R is subharmonic. Let Xm =
x+Wm be a random walk started at x ∈ Uh. If Xm ∈ Uh

E(u(Xm+1 |Xm) ≥ u(Xm). (2.23)

Proof.

E(u(Xm+1 |Xm) =
1

2n

∑

|ω|=1

u(Xm + hω) ≥ u(Xm),

since u is subharmonic.
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Supermartingales are the probabilistic analog of increasing functions. If
we have an upper bound, we can conclude that a limit exists. The deeper
property, discovered by Doob and Hunt, is that Theorem 2.15 holds when
m is replaced by a stopping time M . Let us call this the strong martingale
property. The probabilistic solution to the Dirichlet problem is immediate:
Fix x ∈ Uh, and consider a random walk x+Wk. Let M be the first passage
time to ∂Uh. Suppose u is harmonic in Uh∪∂Uh. By the martingale property,
E(u(XM )) = u(x). Since XM ∈ ∂Uh, this implies

u(x) = E(f(x+WM)). (2.24)

The weak and strong maximum principles are easy consequences of this
formula. The weak maximum principle is clear from the inequality min f ≤
E(f(x+WM )) ≤ max f . This ensures uniqueness of solutions. We compare
(2.22) and (2.24) to obtain

E(f(x+Wm)) =
∑

y∈∂Uh

H(x, y)f(y).

Therefore, H(x, y) is the probability that a walk begun at x exits the domain
at y ∈ ∂Uh. If Uh is connected, H(x, y) > 0 for every x ∈ Uh, y ∈ ∂Uh (since
there is a path connecting x and y) and the strong maximum principle
follows. Yet another way of thinking about (2.24) is to treat the solution
formula as a map x 7→ νx where

νx =
∑

y∈∂Uh

H(x, y)δy,

is a probability measure concentrated on ∂Uh with νx({y}) = H(x, y). This
is called the exit measure for x, and the solution of the Dirichlet problem is
u(x) =< f, νx >.

Let me conclude this discussion of discrete equations, with some com-
ments on numerical solutions. One may use any numerical method (for ex-
ample, Gaussian elimination) to solve the linear equations (2.20) and (2.21).
To make contact with the theory for Laplace’s equation here are two other

methods. The first is to run N � 1 random walks, W
(l)
· and average

u(x) = E(f(x+WM )) ≈ 1

N

N
∑

l=1

f(x+W
(l)
Mx

).

The following algorithm is called the method of relaxation. It is Perron’s
method in disguise. For any initial guess u(0) we constructs a sequences of
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iterates u(l) : Uh ∩ ∂Uh → R defined by

u(l+1)(x) =
1

2n

∑

|ω|=1

u(l)(x+ hω).

It is a good exercise to check that u(l) converges to u.

2.9 Brownian motion

The passage from random walks on discrete grids hZ
n to the Brownian

motion Wt on R
n involves measure theoretic subtleties, which are ignored

here. What follows is a brief description of what is involved, and a sample
of interesting results such as the following celebrated theorem of Kakutani:
The solution to the Dirichlet problem on bounded regular domains is

u(x) = E(f(x+WTx)), (2.25)

where Tx = inf{t|x + Wt ∈ ∂U}. This is the simplest version of what is
known as the Feynman-Kac formula. It allows us to view the solution to a
PDE as an average over a sum of paths. Feynman’s formula holds for the
Schrödinger equation iut = 4u and is more subtle than Kac’s version for
the heat equation.

The passage to the limit h → 0 relies on two fundamental results in
probability theory for random walks. It will suffice to consider n = 1, so
that ωk is a sequence of coin tosses {−1,+1} (this assumption aids intuition,
but is not necessary).

Theorem 2.16 (Central limit theorem).

lim
N→∞

P

(

a ≤ 1√
N

N
∑

k=1

ωk ≤ b

)

=
1√
2π

∫ b

a
e−x2/2 dx, a ≤ b ∈ R. (2.26)

There is a deeper ‘path space’ version of the same theorem. To a random
walk on the grid hZ we associate a function W (h) : [0, 1] → R defined by
interpolating in the natural way. Let h = N−1/2 for m ∈ Z+, and set

W (h)(t) = h

[Nt]
∑

k=1

ωk, [Nt] = sup{l ∈ Z |l ≤ Nt}.

The central limit theorem quantifies limh→0 P (a ≤ W (h)(1) ≤ b). This is
the probability that W (h)(1) passes through the ‘gate’ [a, b] as h → 0. A
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finer version of this is not hard to obtain. Think of a walker passing through
a finite number of slalom gates [aj , bj ], 1 ≤ j ≤ M at times 0 = t0 < t1 <
t2 < . . . < tM ≤ 1. The central limit theorem also implies

lim
h→0

P (aj ≤W (h)(tj) ≤ bj, 1 ≤ j ≤M)

=

∫ bN

aN

. . .

∫ b0

a0

M
∏

j=1

g(xj − xj−1, tj − tj−1)dxi, (2.27)

where g(t, x) is related to the kernel k(x, t) of the heat equation by a nuisance
factor of 2

g(x, t) =
1√
2πt

e−x2/2t = k(x, t/2).

The limit (2.27) is called convergence of finite-dimensional distributions, but
it is not enough. What we would really like is (i) a limiting path Wt with
the slalom-gate property

P (ai ≤W (ti) ≤ bi, i = 1, . . . , N) =

∫ bN

aN

. . .

∫ b0

a0

N
∏

i=1

g(ti − ti−1, xi−xi−1)dxi.

(2.28)
and (ii) convergence of the pathsW (h) →W in a sufficiently strong topology.

For example, (ii) is needed in the Dirichlet problem for the following
reason. If we consider functionals of the path such as the first-passage time

to a level c ∈ R (that is T
(h)
c = inf{t

∣

∣W (h)(t) ≥ a}), we would like P (T
(h)
c ∈

[α, β]) → P (Tc ∈ [α, β]).
Both (i) and (ii) are true. A limiting path, the Brownian motion W (t)

(usually written Wt and called a ‘process’ by probabilists) was constructed
by Norbert Wiener in 1923. More precisely, equation (2.28) is a prescription
of a measure on a ‘cylinder set’ in the space C([0, 1]). One uses these sets to
obtain a Borel σ-algebra, B, on C([0, 1]). Wiener constructed a probability
measure on the measure space (C([0, 1]),B) such that (2.28) holds. This
measure has the amazing property that it is concentrated on continuous
functions which are (a) nowhere differentiable, (b) Hölder continuous for
any exponent α < 1/2, and (c) oscillate wildly in the sense that

−1 = lim inf
t→0

W (t)√
2t log log t

≤ lim sup
t→0

W (t)√
2t log log t

= 1.

Property (ii) was obtained by Donsker in 1951.
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Theorem 2.17 (Donsker’s invariance principle). The measures P (h)

on (C([0, 1]),B) induced by the paths W (h) converge in the weak-* topology
to the Wiener measure.

Wiener’s construction of Brownian motion is a watershed in probability
theory. It gives firm meaning to our physical understanding that the random
motion of particles gives rise to diffusion. The combination of a limiting
measure (Wiener) and a convergence theorem (Donsker) is a central theme
in modern probability theory.

With all this propaganda out of the way, I have to confess that it would
takes use too far afield to prove Theorem 2.17. A good, even if occasionally
pedantic, source for this material is [8]. However, here is a short proof of
Theorem 2.16 which may explain why Donsker’s theorem involves the weak-*
topology (Note: probabilists use weak to mean weak-*).

Proof of Theorem 2.16. 1. Let F (dx) be the measure that has a jump of
size 1/2 at ±1. The assumption that ωk are identically distributed coin-
tosses is the assumption, that for all k, P (a ≤ ωk ≤ b) =

∫

[a,b] F (dx). The

assumption that ωk are independent is the statement P (a ≤∑N
k=1 ωk ≤ b) =

∫

[a,b](F ?. . .?F )(dx) (N -fold convolution). Therefore, (2.26) is the statement

that suitably rescaled measures FN (dx) converge weakly to g(1, x)dx.
2. A sequence of probability measures FN (dx) on R converges weak-*

to a measure F∗(dx) if and only if
∫

R
e−iξxFN (dx) →

∫

R
e−iξxF∗(dx). (A

proof is outlined in the HW). The Fourier transform of g(1, x)dx is e−ξ2/2.
3. The convergence of Fourier transforms is more transparent (to me)

in the following notation

E

(

exp

(

−iξ 1√
N

N
∑

k=1

ωk

))

= E

(

N
∏

k=1

exp

(

−i ξ√
N
ωk

)

)

=
N
∏

k=1

E

(

exp

(

−i ξ√
N
ωk

))

=

(

cos
ξ√
N

)N

→ e−ξ2/2,

as N → ∞. The second equality may be taken as a definition of inde-
pendence. The third equality is the assumption that all ωk are identically
distributed.

2.10 The Feynman-Kac formula

Once one has a measure on C([0, 1]) it can be extended to a measure on
C([0,∞)) by σ-additivity. Brownian motion in R

n is obtained by taking n
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independent Brownian motions in R. The cylinder sets are generated by
cubes [aj , bj]

n and (2.28) has the obvious extension to R
n. Henceforth, we

write Wt : [0,∞) → R
n to denote a Brownian motion with independent

components Wt = (W
(1)
t , . . . ,W

(n)
t ).

We first use Brownian motion to interpret solutions to the Cauchy prob-
lem for the heat equation

ut =
1

2
4u, x ∈ R

n, t > 0; u(x, 0) = f(x), x ∈ R
n,

for bounded, continuous initial data f . We then have u(x, t) =
∫

Rn f(x −
y)g(y, t) dy. But (2.28) implies g(y, t) dx = P (Wt ∈ [y, y + dy]). Therefore,

E(f(x+Wt)) =

∫

Rn

f(x+ y)P (Wt ∈ [y, y + dy])

=

∫

Rn

f(x+ y)g(y, t) dy =

∫

Rn

f(x− y)g(y, t) dy.

Thus, we obtain
u(x, t) = E (f(x+Wt)) . (2.29)

In short, we sum over all Brownian paths starting at x and running back-
wards in time till they hit the boundary t = 0.

Example 2.18. This formulation makes some problems very simple. For
example [7][p.213], if u1, . . . , un are solutions to vt = vss/2, s ∈ R, then the
product u(x, t) =

∏n
k=1 uk(xk, t) solves ut = 4u/2, x ∈ R. Let fk denote

uk(s, 0), and f(x) =
∏n

k=1 fk(xk). Since Wt = (W
(1)
t , . . . ,W

(n)
t ) we have

n
∏

k=1

uk(xk, t) =

n
∏

k=1

E

(

fk(xk +W
(k)
t )

)

= E

(

n
∏

k=1

fk(xk +W
(k)
t )

)

= u(x, t).

The similarity between (2.25) and (2.29) is striking. As far as Brownian
paths go, there is little difference between the heat equation and Laplace’s
equation. What is essential is only the right notion of a stopping time. To
unify the two problems, let us suppose we are solving the initial boundary
value problem for the heat equation on a cylinder Va = U × (0, a) for fixed
a > 0 and bounded, connected U ⊂ R

n. Suppose continuous boundary data
f is prescribed on ∂1V . Let Tx = inf{t > 0|x+Wt ∈ ∂1V }. Then

u(x, t) = E (f(x+WTx)) .
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The strong maximum principle is now obvious. However, this approach
trades one difficulty for another. While we have a unified solution formula,
explicit computation are the same as before. Moreover, it takes a lot of
measure theory to nail down the notion of a stopping time (for example,
the fact that Tx is well-defined under the minimal hypothesis that U is open
and bounded).

But we gain a lot. For example, the following intuitive picture of bound-
ary regularity emerges. To be concrete let us consider the Dirichlet prob-
lem for Laplace’s equation and Kakutani’s formula (2.25). Thus, for every
continuous f : ∂U → R we obtain a harmonic function given by (2.25).
However, we know that the Dirichlet problem is not solvable unless every
boundary point is regular. How should we understand regularity of bound-
ary points? For example, an intuitive picture of Lebesgue’s thorn emerges.
Let U be a domain with a thorn at the origin (see Figure 2.1). Brownian
paths that start within U cannot squeeze through the thorn and always exit
before hitting 0. Therefore, if we prescribe boundary values f , the value f(0)
is never felt. Another such example is Littlewood’s crocodile in Figure 2.2.
Here the values of f on the left boundary cannot be felt by the Brownian
motion. In complete generality, one has the following identifications [6]:

1. u defined by (2.25) is the Perron function.

2. A point y ∈ ∂U is regular if and only if P (Ty = 0) = 1 (Brownian
motion immediately exits U). This is not true for a point at a tip of
a thorn.

3. For y ∈ ∂U , P (Ty = 0) = 1 if and only if Wiener’s criterion (Theo-
rem 1.50) holds.

(3) is an example of a 0− 1 law for a tail event. Such results typically arise
in the following context. If {ak}∞k=1 is a sequence of independent random
numbers, consider the sum

∑∞
k=1 ak. Convergence of this sum does not

depend on any finite number of terms:
∑∞

k=1 ak converges if and only if
∑∞

k=N ak converges for every N ∈ Z+. If A is the event that this series
converges then A is a ‘tail-event’. A very clever trick of Kolmogorov shows
that every tail event A is independent of itself(!) so that P (A)2 = P (A),
thus P (A) = 0 or 1. This may suggest some vague explanation for Wiener’s
criterion, (amazingly, Wiener’s original proof is purely analytic, and simpler
probabilistic proofs appeared much later).
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Figure 2.1: Lebesgue’s thorn: Brownian motion started at the interior can
never exit at the tip of the thorn..

1/6 1/2

1/3

1/4

1/5

Figure 2.2: Littlewood’s crocodile: a barrier of lenth 1 − 1/n is placed at
x = 1/n. Brownian motion started in the interior can never reach the
boundary {x = 0}.
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2.11 Can one hear the shape of a drum?

The initial boundary value problem for the heat equation on a bounded
domain can be solved by the method of separation of variables. A nonzero
function u : U → R is an eigenfunction for the Dirichlet problem with
eigenvalues λ ∈ R if −4u = λu in U and u = 0 on ∂U . The following
theorem on eigenvalues of the Laplacian will be assumed here.

Theorem 2.19. Suppose U ⊂ R
n is open, bounded and connected, and has

C1 boundary ∂U . There is a sequence of increasing eigenvalues

0 < λ1 < λ2 ≤ λ3 . . . (2.30)

with λk → ∞, and associated eigenfunctions uk such that

4uk + λkuk = 0, x ∈ U, uk(x) = 0, x ∈ ∂U.

Moreover, (a) 0 < u1(x), x ∈ U , (b) {uk}∞k=1 form a complete orthonormal
basis for L2(U).

The uniqueness of λ1 and positivity of λ1 and u1 is known as the Perron-
Frobenius theorem. Clearly the eigenvalues depend on the domain. An
interesting converse theorem, is the extent to which the domain depends
on the eigenvalues. Physically, in R

2, the eigenvalues are the frequencies of
the modes of vibration of a membrane with boundary ∂U . Therefore, the
question may be stated as follows: can one hear the shape of a drum? More
precisely, does knowledge of the sequence {λk}∞k=1 determine U?

I will outline Kac’s elegant proof of a beautiful result of Weyl. To state
Weyl’s theorem, we need the spectral measure A(dλ) defined by the increas-
ing function

A(λ) =

∞
∑

k=1

1λk≤λ. (2.31)

This is the measure obtained by placing a unit mass at every λk.

Theorem 2.20 (Weyl).

lim
λ→∞

A(λ)

λn/2
=

|U |
(2π)n/2Γ(n/2)

. (2.32)

Here |U | is the n-dimensional volume of U . Thus, one can hear the
volume of U ! What we will actually prove is the equivalent assertion
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Theorem 2.21 (Kac).

lim
t→0+

(2πt)n/2
∞
∑

k=1

e−λkt = |U |. (2.33)

The sum h(t) =
∑∞

k=1 e
−λkt =

∫∞
0 e−tλA(dλ), t > 0 is known as the

Dirichlet series or Laplace transform of the spectral measure. The Dirichlet
series is useful because it is tractable, invertible (ie. knowledge of h(t) for
t ∈ (0,∞) determines A), and the asymptotics of h(t) as t → 0 and ∞
determine the asymptotics of A as λ→ ∞ and 0 respectively.

It is easy to show that (2.20) implies (2.21). This is sometimes called an
Abelian theorem. Assume (2.32). We integrate by parts to obtain

∫ ∞

0
e−λtA(dλ) = t

∫ ∞

0
e−λtA(λ)dλ.

Rescale by p = tλ to obtain

(2πt)n/2
n
∑

k=1

e−λkt = (2π)n/2

∫ ∞

0
e−ptn/2A(

p

t
) dp.

The integrand converges poinwtise to a multiple of pn/2 by (2.32), and the
interchange of limits may be justified by the dominated convergence the-
orem ((2.32) also implies A(λ) ≤ Cελ

n/2+ε for any ε > 0). The proof of
Weyl’s theorem from (2.33) is more interesting. This is called a Tauberian
theorem (more precisely, the Hardy-Littlewood-Karamata Tauberian theo-
rem or Karamata’s theorem) . A half page proof can be found in [4, XIII.5],
but this is by no means a trivial result.

Proof of Kac’s theorem. 1. Let gU denote the fundamental solution for the
heat equation on U with Dirichlet boundary conditions.

∂tgU = 4gu, gU (x, y; 0) = δy(x), gU (x, y, t) = 0, x ∈ ∂U.

This is also called the absorbing boundary condition: think of particles
diffusing in U that are eaten at the boundary. Observe that we always have
the monotonicity formula:

U ⊂ V ⇒ gU (x, t) ≤ gV (x, y, t), x, y ∈ U, t > 0

with strict inequality if U 6= V .
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2. Kac’s proof relies on a representation for the Green’s function gU in
terms of the eigenfunctions uk. For every t > 0, gU ∈ L2(U) and admits the
representation

gU (x, y, t) =

∞
∑

k=1

cke
−λktuk(x).

The coefficients are found by orthonormality. For every t > 0
∫

U
gU (x, y, t)ul(x) dx = e−λktcl.

and we may let t → 0 to find that ul(y) = ck. To rigorously justify this we
need to show that ul is continuous in the interior of U . This is believable,
and will be proved in Sem 2. Thus, we obtain the symmetric formula

gU (x, y, t) =
∞
∑

k=1

e−λktuk(x)uk(y).

3. We now choose x = y, integrate both sides over U , and use
∫

U u
2
k(x) dx =

1 to obtain
∫

U
gU (x, x, t) dx =

∞
∑

k=1

e−λkt = h(t).

Finally, Kac’s insight is that for short time the particle cannot ‘feel the
boundary’ and there should be little difference between gU (x, x, t) and gRn(x, x, t).
We certainly have the upper bound

gU (x, x, t) ≤ gRn(x, x, t) =
1

(2πt)n/2
.

Therefore,

lim sup
t→0

(2πt)n/2h(t) ≤
∫

U
1 dx = |U |.

To obtain the lower bound, we fix ε > 0, and consider all points x ∈ U such
that dist(x, ∂U) > ε. Call this set U−ε. We then have the uniform estimate

gU (x, x, t) ≥ gB(x,ε)(x, x, t) = gB(0,ε)(0, 0, t), x ∈ U−ε.

We then have

lim inf
t→0

(2πt)n/2h(t) ≥ |U−ε|
(

lim
t→0

(2πt)n/2gB(0,0,ε)

)

= |U−ε|.

I leave the last step as an exercise (you do not need to solve explicitly, a
scaling argument will do the trick).
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