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Chapter 1

Overview

1.1 What is a random matrix?

There are two distinct points of view that one may adopt. On one hand, our
intuitive ideas of randomness are intimately tied to the notion of sampling a
realization of a random variable. Thus, given a random number generator,
one may build a random Hermitian matrix, M ∈ Her(n), by choosing its real
diagonal and complex upper-triangular entries independently at random. It is
conventional to assume further that all the diagonal entries have the same law,
and that all the upper-triangular entries have the same law. For example, we
may assume that the entries on the diagonal are ±1 with probability 1/2, and
that the upper-triangular entries are ±1 ± i with probability 1/4. It is also
conventional to have the variance of the diagonal entries to be twice that of the
off-diagonal entries. Random matrices of this kind, are said to be drawn from
Wigner ensembles.

On the other hand, one may adopt a more analytic view. The Hilbert-
Schmidt inner product of two Hermitian matrices, Tr(MN) =

∑n
j,k=1MjkN̄jk,

defines a natural metric Tr(dM2) and volume form DM on Her(n) (see Lec-
ture 2). In this text, unless otherwise stated, ‖M‖ =

√
TrM∗M). Thus, each

positive function p : Her(n)→ [0,∞) that decays sufficiently fast as ‖M‖ → ∞,
may be normalized to define a probability measure. A fundamental example is
the law of the Gaussian Unitary Ensemble (GUE)

pGUE(M)DM =
1

Zn
e−

1
2 Tr(M2)DM. (1.1.1)

Here Zn is a normalization constant that ensures pGUE is a probability density
(we use the same notation for different ensembles; thus the numerical value
of Zn must be inferred from the context). The term GUE was introduced by
Freeman Dyson [9], and refers to an important invariance property of pGUE.
Each U ∈ U(n) defines a transformation Her(n) → Her(n), M 7→ UMU∗. It
is easily checked that the volume form DM is invariant under the map M 7→

7



8 CHAPTER 1. OVERVIEW

UMU∗, as is the measure pGUE(M)DM . More generally, a probability measure
on Her(n) is said to be invariant if p(M) DM remains invariant under the map
M 7→ UMU∗, for each U ∈ U(n). Important examples of invariant ensembles
are defined by polynomials in one-variable of the form

g(x) = a2Nx
2N + a2N−1x

2N−1 + . . .+ a0, aj ∈ R, j = 0, 1, . . . , 2N, a2N > 0.
(1.1.2)

Then the following probability measure is invariant

p(M)DM =
1

Zn
e−Tr g(M)DM. (1.1.3)

We have assumed that all matrices are Hermitian simply to be concrete. The
above notions extend to ensembles of matrices from Symm(n) and Quart(n).
The notion of invariance in each case is distinct: for Symm(n), the natural
transformation is M 7→ QMQT , Q ∈ O(n); for Quart(n) it is M 7→ SMSD, S ∈
USp(n). The standard Gaussian ensembles in these cases are termed GOE (the
Gaussian Orthogonal Ensemble) and GSE (the Gaussian Symplectic Ensemble),
and they are normalized as follows:

pGOE(M)dM =
1

Zn
e−

1
4 Tr(M2)dM, pGSE(M)dM =

1

Zn
e−Tr(M2)DM. (1.1.4)

The differing normalizations arise from the different volume forms on Symm(n),
Her(n) and Quart(n) as will be explained in Lecture 2. For now, let us note that
the densities for all the Gaussian ensembles may be written in the unified form

Zn(β)−1e−
β
4 Tr(M2) (1.1.5)

where β = 1,2 and 4 for GOE, GUE and GSE respectively. While it is true
that there are no other ensembles that respect fundamental physical invariance
(in the sense of Dyson), many fundamental results of random matrix theory
can be established for all β > 0. These results follow from the existence of
ensembles of tridiagonal matrices, whose eigenvalues have a joint distribution
that interpolates those of the β = 1,2 and 4 ensembles to all β > 0 [8].

1.2 The main limit theorems

The basic question in random matrix theory is the following: what can one
say about the statistics of the eigenvalues of a random matrix? For example,
what is the probability that the largest eigenvalue lies below a threshold? Or,
what is the probability that there are no eigenvalues in a given interval? The
difficulty here is that even if the entries of a random matrix are independent,
the eigenvalues are strongly coupled.

Gaussian ensembles play a very special, and important, role in random ma-
trix theory. These are the only ensembles that are both Wigner and invari-
ant (see Theorem 18 below). Pioneering, ingenious calculations by Dyson [9],
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Gaudin and Mehta [26, 25], on the Gaussian ensembles served to elucidate the
fundamental limit theorems of random matrix theory. In this section we outline
these theorems, assuming always that the ensemble is GUE. Our purpose is
to explain the form of the main questions (and their answers) in the simplest
setting. All the results hold in far greater generality as is briefly outlined at the
end of this section.

By the normalization (1.1.1), a GUE matrix has independent standard nor-
mal entries on its diagonal (mean zero, variance 1). The off-diagonal entries
have mean zero and variance 1/2. We denote the ordered eigenvalues of the
GUE matrix by λ1 ≤ λ2 ≤ . . . λn. A fundamental heuristic for GUE matrices
(that will be proven later, and may be easily simulated) is that the largest and
smallest eigenvalues have size O(

√
n). In fact, λ1 ≈ −2

√
n and λn ≈ 2

√
n as

n → ∞. Since there are n eigenvalues, the gap between these eigenvalues is
typically O(1/

√
n). There are thus two natural scaling limits to consider as

n→∞:

1. Rescale M 7→ n−1/2M so that the spectral radius is O(1). In this scaling
limit, n eigenvalues are contained within a bounded interval, and we obtain
a deterministic limit called the semicircle law .

2. Rescale M 7→ n1/2M so that the gaps between eigenvalues are O(1). In
this scaling limit, we expect a random limiting point process. The limiting
point process is a determinantal point process called the Sine2 process.

In fact, the situation is more subtle. While the expected value of the gap
between eigenvalues for a GUE matrix is indeed O(1/n), the gaps are O(n−2/3)
about the edge of the spectrum. There is an an entirely different scaling limit
called the Airy2 process obtained by rescaling the spectrum of M ± 2

√
nI.

In all that follows, we consider a sequence of random matrices of size n
sampled from GUE(n). To make this explicit, the matrix is denoted Mn, and

its ordered eigenvalues are denoted λ
(n)
1 ≤ λ(n)

2 ≤ · · · ≤ λ(n)
n .

1.2.1 The semicircle law

Definition 1. The probability density and distribution function

psc(x) =
1

2π

√
4− x2 1|x|≤2, Fsc(x) =

∫ x

−∞
psc(x′) dx′. (1.2.1)

are called the semicircle density and the semicircle distribution respectively.

Theorem 2. Let Mn be a sequence of GUE matrices of size n. The rescaled
empirical spectral measures

µn(dx) =
1

n

n∑
j=1

δ
n−1/2λ

(n)
j

(dx) (1.2.2)

converge weakly to the semicircle density almost surely.
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Theorem 2 may also be interpreted as the statement that the empirical spec-
tral distribution of the matrices Mn/

√
n converges to the semicircle distribution.

The shortest proof of Theorem (2) uses the following integral transform.

Definition 3. Assume µ is a measure on R that satisfies the finiteness condition∫ ∞
−∞

1√
1 + x2

µ(dx) <∞. (1.2.3)

The Stieltjes transform of µ is the function

µ̂(z) =

∫ ∞
−∞

1

x− z
µ(dx), z ∈ C\R. (1.2.4)

The Stieltjes transform is of fundamental importance in the theory of or-
thogonal polynomials and spectral theory. This is because there are natural
Stieltjes transforms associated to the resolvent (M − z)−1, such as

Tr(M − z)−1 and v∗(M − z)−1v, v ∈ Cn, |v| = 1. (1.2.5)

The general proof of Theorem 2 uses a recursive expression for the law of Tr(z−
Mn)−1. As n → ∞, the fixed point of this recursion, Rsc solves the quadratic
equation

R2 − zR+ 1 = 0. (1.2.6)

It is then easy to verify that

Rsc(z) =
1

2

(
−z +

√
z2 − 4

)
, z ∈ C\[−2, 2]. (1.2.7)

We recover the semicircle law from Rsc(z) by evaluating the jump in Im(Rsc(z))
across the branch cut [−2, 2].

Remark 4. The heuristic to determine the typical spacings is the following.

Define γ
(n)
j ∈ [−2, 2] by the relation

j

n
=

∫ γ
(n)
j

−∞
psc(x)dx, j = 1, 2, . . . , n.

Then the approximation λ
(n)
j ≈

√
nγ

(n)
j should hold1. We have

1

n
=

∫ γ
(n)
j+1

γ
(n)
j

psc(x)dx ≈ (γ
(n)
j+1 − γ

(n)
j )psc(γ

(n)
j ). (1.2.8)

If j = j(n) is chosen so that γ
(n)
j → r, r ∈ (−2, 2) (i.e. in the “bulk”) we have

λ
(n)
j+1 − λ

(n)
j ≈ 1√

npsc(r)
.

1This is made rigorous and quantitative by Erdős, Yau and Yin [13].
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At the edge, consider (noting that γ
(n)
1 > −2)

1

n
=

∫ γ
(n)
1

−2

psc(x)dx ≈
∫ γ

(n)
1

−2

1

π

√
2 + xdx =

2

3π

(
γ

(n)
1 + 2

)3/2

,

γ
(n)
1 + 2 ≈ c

n2/3
,

2
√
n+ λ

(n)
1 = O(n−1/6), λ(n)

n − 2
√
n = O(n−1/6). (1.2.9)

1.2.2 Fluctuations in the bulk: the sine process

We now rescale so that the gaps between eigenvalues is O(1), and the scaling
limit is a random process. This random process will always be denoted Sine2

(and Sineβ for the general β-ensembles). Each realization of the Sine2 process is a
countable set of points {xk}∞k=−∞. One of the fundamental statistics associated
to a point process is the probability of having k points in an interval. In order to
state a typical fluctuation theorem that describes these probabilities, we must
define the sine-kernel and its Fredholm determinants.

Definition 5. The sine-kernel is the integral kernel on R× R given by

Ksine(x, y) =
sinπ(x− y)

π(x− y)
, x 6= y, (1.2.10)

and Ksine(x, x, ) = 1.

In the following theorem we will assume that x and y are restricted to a finite
interval (a, b). The sine-kernel defines an integral operator on L2(a, b) that we
denote by Ksine1(a,b). The kernel Ksine(x, y) is clearly continuous, thus bounded,
for x, y ∈ (a, b). Thus, Ksine1(a,b) defines an integral operator on L2(a, b) that
is trace-class, and it has a well-defined Fredholm determinant

det
(
1−Ksine1(a,b)

)
(1.2.11)

= 1 +

∞∑
m=0

(−1)m

m!

∫
(a,b)m

det (Ksine(xj , xk)1≤j,k≤m) dx1dx2 . . . dxm.

Though perhaps mysterious at first sight, the origin of this formula is rather
simple. Integral operators with some smoothness and boundedness (in particu-

lar, continuous integral operators K whose trace
∫ b
a
|K(x, x)|dx is finite) may be

approximated on a discrete-grid of size h by a finite-dimensional discretization
Kh. The determinant (I−Kh) is then the usual determinant of a matrix and we
may use the definition of the determinant to expand det(I −Kh) in a finite se-
ries, which is nothing but the infinite series above in the instance when all terms
beyond m = rank(Kh) vanish. This approach was pioneered by Fredholm in
1900 before the development of functional analysis. From a probabilistic point
of view, this formula arises from the Inclusion-Exclusion Principle, taken to the
limit. But the operator theory pioneered by Fredholm allows for that limit to
be understood.
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Theorem 6 (Gaudin-Mehta [26]). For each finite interval (a, b) ⊂ R, and
r ∈ (−2, 2),

lim
n→∞

P
(√

npsc(r)
(
λ

(n)
k − r

√
n
)
6∈ (a, b), 1 ≤ k ≤ n

)
= det

(
1−Ksine1(a,b)

)
.

(1.2.12)

The probabilities of the Sine2 process can be expressed without reference to
the matrices Mn. For each interval (a, b) let N(a,b) =

∑∞
k=−∞ 1xk∈(a,b). Then,

P
(
N(a,b) = 0

)
= det

(
1−Ksine1(a,b)

)
. (1.2.13)

For comparison, if we had a Poisson process {x̃k}∞k=−∞ with rate λ(dx), the

associated count Ñ(a,b) would satisfy

P
(
Ñ(a,b) = 0

)
= exp

(
−
∫ b

a

λ(dx)

)
.

1.2.3 Fluctuations at the edge: the Airy point process

Remark 4 and Theorem 6 reveal that the gaps between consecutive eigenvalues

λ
(n)
j and λ

(n)
j+1 is of O(n−1/2). However, the fluctuations at the edge are much

larger O(n−1/6). The point process of shifted and scaled eigenvalues converges
in distribution to a limiting point process, {yk}∞k=1 called the Airy2 process. In
order to describe the law of this process, we must define the Airy function and
the Airy kernel.

Definition 7. The Airy function is defined by the oscillatory integral

Ai(x) =
1

2π

∫ ∞
−∞

eikxeik3/3 dk. (1.2.14)

The Airy function is one of the classical special functions [1]. It admits
several alternative definitions. For instance, the oscillatory integral in (1.2.14)
may be deformed into an absolutely convergent integral in the complex plane.
This argument allows us to establish that the Airy function is entire and to
determine its asymptotic expansions as x→ ±∞.

These properties may also be established using the theory of ordinary dif-
ferential equations in the complex plane [17]. It is easy to verify from (1.2.14),
after deformation, that Ai(x) satisfies the differential equation

ϕ′′(x) = xϕ, −∞ < x <∞. (1.2.15)

Equation (1.2.15) admits two linearly independent solutions, only one of which
decays as x → ∞. Up to a (fixed by convention, but otherwise arbitrary)
normalization constant, the decaying solution is Ai(x).
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Definition 8. The Airy kernel is the continous integral kernel on R× R given
by

KAiry(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
, x 6= y,

and by continuity at x = y.

Observe that both the sine and Airy kernel have the form

K(x, y) =
f(x)f ′(y)− f ′(x)f(y)

x− y
, x 6= y (1.2.16)

where f solves a second-order linear differential equation. Similar kernels arise
in various limiting models in random matrix theory. For instance, the Bessel
kernel – corresponding to f(x) = Jα(x), the Bessel function with parameter α
– describes fluctuations about the singular values of random positive definite
Hermitian matrices.

Theorem 9. For each interval (a, b) ⊂ R, −∞ < a < b ≤ ∞,

lim
n→∞

P
(
n1/6

(
λ

(n)
k − 2

√
n
)
6∈ (a, b), 1 ≤ k ≤ n

)
= det

(
1−KAiry1(a,b)

)
.

(1.2.17)

As in the remarks following Theorem 6, the expression det
(
1−KAiry1(a,b)

)
gives the probability that no points of a realization of the Airy2 point process
lie in (a, b).

1.2.4 Fredholm determinants, Painlevé equations, and in-
tegrable systems

It is immediate from Theorem 6 and Theorem 9 that the Fredholm determinants
det
(
1−Ksine1(a,b)

)
and det

(
1−KAiry1(a,b)

)
are positive for all (a, b). This is

astonishing, if one treats (1.2.11) as a starting point, since it is by no means clear
that the signed infinite series sums to a positive number! It is in fact, rather
challenging to extract meaningful information, such as the asymptotics of tails,
from the expression of probabilities as Fredholm determinants. A crucial piece
of the puzzle lies in the connection between Fredholm determinants and the
theory of integrable systems. More precisely, the Fredholm determinants satisfy
differential equations in a and b (or more generally in endpoints of intervals,
when one considers the obvious extensions of Theorem 6 and Theorem 9 to
a collection of intervals

∏m
j=1(am, bm)). These ordinary differential equations

have a special, integrable structure, that allows their analysis. The following
theorems illustrate this aspect of random matrix theory.

Theorem 10 (Jimbo-Miwa-Mori-Sato [18]). For all t > 0,

det
(

1−Ksine1(− t2 ,
t
2 )

)
= exp

(∫ t

0

σ(s)

s
ds

)
, (1.2.18)
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where σ(t) is the solution to the Painlevé-5 equation

(tσ′′)
2

+ 4 (tσ′ − σ)
(
tσ′ − σ + σ2

)
= 0, (1.2.19)

which satisfies the asymptotic condition

σ(t) = − t
π
− t2

π2
− t3

π3
, t ↓ 0. (1.2.20)

Theorem 11 (Tracy-Widom distribution [36]). For all real t,

F2(t) := det
(
1−KAiry1(t,∞)

)
= exp

(
−
∫ ∞
t

(s− t)q2(s) ds

)
, (1.2.21)

where q is the solution to the Painlevé-2 equation

q′′ = tq + 2q3,−∞ < t <∞ (1.2.22)

which satisfies the asymptotic condition

q(t) ∼ Ai(t), t→∞. (1.2.23)

The Painlevé differential equations are a special family of nonlinear ordi-
nary differential equations that generalize the classical theory of linear dif-
ferential equations in the complex plane and the associated theory of special
functions [17]. For example, the Painlevé-2 equation (1.2.22) may be viewed
as a nonlinear analogue of the Airy differential equation (1.2.15). Broadly, the
Painlevé differential equations represent a complete classification of second-order
differential equations with the Painlevé property — their only movable singular-
ities (movable by changing initial conditions) are poles — that are not solvable
with elementary functions. The theory of Painlevé equations was developed in
the early years 1900’s, by Boutroux and Painlevé, but fell into obscurity2. It was
reborn in the 1970s with the discovery of their importance in integrable systems
and exactly solvable models in statistical mechanics, such as the Ising model in
2D [24]. We illustrate these links with a fundamental integrable system: the
Korteweg-de Vries (KdV) equation

ut + 6uux + uxxx = 0, −∞ < x <∞, t ≥ 0. (1.2.24)

Despite the fact that KdV is nonlinear, it may be solved explicitly through the
inverse scattering transform. We will not discuss this method in detail. But in
order to make the connection with random matrix theory, let us note that if one
seeks self-similar solutions to KdV of the form

u(x, t) =
1

(3t)2/3
q

(
x

(3t)2/3

)
(1.2.25)

2Paul Painlevé was rather restless: he began in mathematics, became an early aviation
enthusiast, and then turned to politics. He rose to become the Prime Minister of France for
part of World War I, and was later the designer of the disastrous Maginot line.
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then q = v2 + v′ and v satisfies the Painlevé-2 equation (1.2.22). In fact, it is in
this context that Hastings and McLeod established the existence of a solution
to (1.2.22) that satisfies the asymptotic condition (1.2.23) [15]. It is remarkable
that it is exactly this solution that describes the Tracy-Widom distribution
F2(t)!

1.2.5 Universality

We have restricted attention to matrices from GUE to present some of the
central theorems in the subject in an efficient manner. One of the main achieve-
ments of the past decade has been the establishment of universality – informally,
this is the notion that the limiting fluctuations in the bulk and edge described
by the Sine2 and Airy2 processes, hold for both Wigner and invariant ensembles
which satisfy natural moment assumptions. The idea of universality is of clear
practical importance (we need understand only a few universal limits). It also
appears to hold the key to some of the connections between random matrix the-
ory and other areas of mathematics. The explanation of these connections may
lie in the fact that determinantal point processes, such as the Sine2 and Airy2

process, have the simplest structure of strongly interacting point processes. By
contrast, Poisson processes, while universal, describe non-interacting points.

1.3 Connections to other areas of mathematics

Random matrix theory has deep connections with many areas of mathematics,
many of which are still poorly understood. A brief overview of some of these
connections is presented below. While some of these notions, such as the con-
nections with stochastic PDE require more background than we assume, some
other connections (e.g. with quantum gravity) are in fact more elementary (and
fundamental) than one may naively expect. Our purpose here is to present a
small sample of the rich set of ideas that make the subject so attractive.

1.3.1 Number theory

The Riemann zeta function is defined by the infinite sum

ζ(s) =

∞∑
n=1

1

ns
, Re(s) > 1. (1.3.1)

The function ζ(s) is central to number theory, since it provides a generating
function for the distribution of the prime numbers via Euler’s product formula

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
, Re(s) > 1. (1.3.2)

For instance, the divergence of the harmonic series at s = 1 provides a proof
that there are infinitely many primes. The study of ζ(s) by complex analysis is
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the cornerstone of analytic number theory. The basic facts are as follows. The
function ζ(z) extends to a meromorphic function on C by analytic continuation,
which has a simple pole at s = 1 where the residue is 1. A closely related
function is the Riemann ξ-function

ξ(s) =
1

2πs/2
s(s− 1)Γ

(s
2

)
ζ(s). (1.3.3)

Recall that the Γ function is a ‘continuous interpolation’ of the factorial, defined
by the integral

Γ(s) =

∫ ∞
0

e−xxs−1 dx, Re(s) > 0. (1.3.4)

The Γ-function extends to a meromorphic function C, which has simple poles at
. . . ,−2,−1, 0 where the residue is 1. These poles cancel the ‘trivial’ zeros of the
ζ function, and the essential difficulties related to the study of the ζ function
are more transparent for the ξ function. It satisfies the functional equation

ξ(s) = ξ(1− s), s ∈ C. (1.3.5)

The celebrated Riemann Hypothesis is the conjecture that all zeros of the ξ
function lie on the critical line Re(s) = 1/2 (this line is the symmetry axis for
the functional equation above). In his fundamental paper on the distribution
of prime numbers (translated in [12] and [30]) Riemann presented a series of
asymptotic expansions that would imply rigorous bounds on the distribution of
primes if the Riemann Hypothesis is true.

The connection between random matrix theory and the Riemann Hypoth-
esis is two-fold. First, if one could construct a Hermitian operator with point
spectrum whose eigenvalues coincide with the zeros of ξ(i(s − 1/2) then the
Riemann Hypothesis would follow immediately (since all eigenvalues of a Her-
mitian operator are real). The catch, of course, is to determine such an operator.
Nevertheless, as we discuss below, random matrix theory has shed new lie on
the spectral theory of several operators, deterministic and random. Thus, the
theory provides a catalog of ‘guesses’. Second, if one assumes the Riemann hy-
pothesis, the fluctuations in the zeros of ζ(s) are described by the sine-kernel!
Under the Riemann hypothesis, the non-trivial zeros of ζ(s) may be written
γn = 1

2 ± itn with 0 < t1 < t2 < . . .. Let

wn =
tn
2π

log

(
tn
2π

)
, and N(x) =

∞∑
k=1

1wn≤x. (1.3.6)

This rescaling is chosen so that limx→∞N(x)/x = 1 in accordance with the
Prime Number Theorem.

Despite the fact that the zeros wn are deterministic, we may introduce proba-
bilistic notions by counting the (rescaled) zeros upto a level x > 0. For example,
we may define the empirical probability measure

µ1(dw;x) =
1

N(x)

N(x)∑
k=1

δwk(dw). (1.3.7)
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In order to study the gaps between eigenvalues, we must consider instead the
empirical measures

µ2(dl;x) =
1

x

∑
1≤j,k≤N(x);j 6=k

δwj−wk(dl). (1.3.8)

The expectation of a continuous function with respect to µ2(dl;x) is denoted

R2(f ;x) =

∫ ∞
−∞

f(l)µ2(dl;x) =
1

x

∑
1≤j<k≤N(x)

f (wj − wk) . (1.3.9)

Under the assumption that f is band-limited, i.e. that its Fourier transform has
compact support, Montgomery established the following

Theorem 12 (Montgomery). Assume the Riemann Hypothesis. Assume f is

a Schwartz function whose Fourier transform f̂ is supported in [−1, 1]. Then

lim
x→∞

R2(f ;x) =

∫ ∞
−∞

f(l)µ2(dl), µ2(dl) =

(
1−

(
sinπl

πl

)2
)

dl. (1.3.10)

The point here is that the right hand side of (1.3.10) is precisely the 2-point
function for the sine process. More generally, Montgomery’s theorem is now
known to hold for the distribution of n-consecutive gaps. That is, the rescaled
fluctuations converge to the Sine2 process in distribution. Bourgade’s thesis is
an excellent review of the state of the art [4].

1.3.2 Combinatorics and enumerative geometry

We will present two problems of enumerative combinatorics that connect with
random matrix theory. As a first example, we note that the 2m-th moment of
the semicircle law ∫ 2

−2

x2mpsc(x) dx =
1

m+ 1

(
2m

m

)
= Cm, (1.3.11)

the m-the Catalan number. An analytic proof of this identity follows from a
comparison between the Stieltjes transform Rsc(z), and the generating function

Ĉ(x) =
∑
m≥0

Cmx
m =

1−
√

1− 4x

x
. (1.3.12)

The Catalan numbers describe the solution to many combinatorial problems 3.
For example, Cm enumerates the number of Bernoulli excursions or Dyck paths
of length 2m: these are walks Sk, 1 ≤ k ≤ 2m such that S0 = S2m = 0, Sk ≥ 0,
0 ≤ k ≤ 2m, and |Sk+1 − Sk| = 1.

3Stanley lists 66 examples in [32, Exercise 6.19].
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A deeper set of connections between integrals on Her(n) and geometry was
first noticed by the physicist ’t Hooft [34]. Ignoring (for now), physicists’ mo-
tivation, let us illustrate a particular computational technique that underlies
their work. Consider a matrix integral of the form

Zn(z) =

∫
Her(n)

eTr(−zM4)pGUE(M) DM, Re(z) > 0. (1.3.13)

The quartic nonlinearity prevents us from expressing this integral in closed form.
Nevertheless, this integral may be expanded in a Taylor series

Zn(z) =

∞∑
k=0

(−z)k

k!

∫ (
Tr(M4)

)k
pGUE(M) DM, Re(z) > 0. (1.3.14)

A fundamental lemma on Gaussian integrals (on RN ) (Wick’s lemma) allows us
to reduce each integral above to a sum over pairings of indices. It is convenient
to keep track of these pairings with a graphical description, called a Feynman
diagram. ’t Hooft observed that when RN ≡ Her(n) the Feynman diagram
associated to each term in (1.3.14) enumerates embedded graphs on a Riemann
surface. This characterization was independently discovered by mathematicians.

Lemma 1 (Harer-Zagier [14]). Let εg(m) denote the number of ways to pair
the edges of a symmetric 2m-gon to form an orientable surface with genus g.
Then

f(m,n) =

∞∑
g=0

εg(m)nm+1−2g =

∫
Her(n)

Tr(M2m)pGUE(M) DM. (1.3.15)

Note that only finitely many terms in the sum are non-zero. The series above
is an instance of a genus-expansion. It illustrates the beautiful fact that matrix
integrals serve as the generating functions for Riemann surfaces with a given
combinatorial decomposition!

1.3.3 Random permutations

Consider the symmetric group S(n) of permutations of size n. We have that
|S(n)| = n! and any element of S(n) can be represented as a ordering of the
integers 1, 2, . . . , n. For example, three elements of S(5) are

π1 = 54312, π2 = 12435, π3 = 45123.

We define a function ` : S(5) → N by `(π) = length of the longest increasing
subsequence of π. For example,

`(π1) = 2, `(π2) = 3, `(π3) = 4.

There is a natural probability distribution Uni(n) on S(n), the uniform distri-
bution, or Haar measure. If Πn ∼ Uni(n) then P(Πn = π) = 1

n! for any π ∈ Sn.
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This problem was one of the first, if not the first, problem to be investigated by
Monte Carlo simulation on a computer — Ulam performed simulations in the
early 60’s [37] and conjectured that

1√
n
E [`(Πn)]→ c.

It was later established by Vershik and Kerov that c = 2 [38]. The detailed
numerical computations of Odlyzko and Rains [28] indicated

E [`(Πn)]− 2
√
n = O(n−1/6). (1.3.16)

The comparison between (1.2.9) and (1.3.16) should be striking. Indeed, the
following is often called the Baik–Deift–Johansson Theorem and it makes this
scaling rigorous.

Theorem 13 ([2]). Let S(n), ` and Πn be as above. Then for all t ∈ R

lim
n→∞

P
(
`(Πn)− 2

√
n

n1/6
≤ t
)

= det(1−KAiry1(t,∞)).

That is, the limit is the same as the largest eigenvalue of a random Hermitian
matrix.

This theorem is discussed in great detail in [3]. This surprising connection
was explored further by Johansson [19] leading to many connections to random
growth processes and the KPZ equation.

1.3.4 Spectral and inverse spectral theory of operators

While Theorem 2–Theorem 9 associate limits to the spectrum of the operators
Mn, it is natural to ask if there are limiting operators that may be naturally
associated to the limiting spectra. Thus, for Theorem 2 we ask for a ‘natural’
operator that has spectral density given by the semicircle law, psc, and for
Theorem 6 and Theorem 9 we seek ‘natural’ random operators that have pure
point spectra with the law of the Sine2 and Airy2 point processes. What is a
‘natural’ operator is, of course, a subjective idea, but convincing candidates
operators are suggested by inverse spectral theory.

We say that a matrix T ∈ Symm(n) is a Jacobi matrix if all its off-diagonal
entries are strictly positive. The spectral measure of a Jacobi matrix is the mea-
sure whose Stieltjes transform is eT1 (T −z)−1e1. There is a 1−1 correspondence
between the space of n×n Jacobi matrices and probability measures on the line
with n atoms. This correspondence extends naturally to semi-infinite Jacobi
matrices. The essence of this theory (due to Stieltjes) is that the entries of T
may be determined from the continued fraction expansion of eT1 (T − z)−1e1.
This correspondence will be considered in detail in Lecture 3, but here is a
concrete example. By applying Stieltjes’ procedure to the semicircle law, we
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discover that psc(x) is the spectral density for the seminfinite tridiagonal ma-
trix that is 1 on the off-diagonal, and 0 in all other entries. This follows from
the continued fraction expansion

Rsc(−z) =
1

z −
1

z −
1

z − . . .

(1.3.17)

Ensembles of tridiagonal matrices are of practical important in numerical
linear algebra. For instance, a key pre-processing step while solving symmet-
ric linear systems is to transform the matrix to tridiagonal form by House-
holder’s procedure (Lecture 3). Dumitriu and Edelman pushed forward the
Gaussian measures under this procedure to obtain a family of tridiagonal en-
sembles, known as the general-β ensembles [8]. Further, Edelman and Sutton
made a formal expansion of these operators, and observed that as n→∞, the
tridiagonal operators appeared to converge to the stochastic Airy operator [11]:

Hβ = − d2

dx2
+ x+

2√
β
ḃ, 0 < x <∞ (1.3.18)

with Dirichlet boundary conditions at x = 0. Here ḃ denotes (formally) white
noise (it is not hard to define Hβ rigorously).

Theorem 14 (Ramirez-Rider-Virag [29]). The spectrum σ(Hβ) of the operator
Hβ is almost surely a countably infinite number of eigenvalues µ1 < µ2 < µ3 <
. . .. Moreover, σ(Hβ) has the same law as the Airyβ point process.

In particular, for β = 2, the spectrum of the stochastic Airy operator de-
scribes the limiting fluctuations at the edge of the spectrum of GUE matrices.
Despite the simplicity of this characterization, it is not know how to recover the
explicit determinantal formulas of Tracy and Widom from this formulation.



Chapter 2

Integration on spaces of
matrices

In this section, we review the geometry of the classical Lie groups, as well as the
spaces Symm(n), Her(n) and Quart(n) and explain how to integrate over these
groups and spaces. Given an point on a manifold M ∈ M, we use dM to
denote the differential of M , i.e., an infintesimal element on the tangent space
TMM at M . We reserve DM to refer to a (naturally induced) volume form
defined using an inner-product on the tangent space. Note that for x ∈ R,
dx = Dx. Our main goal is the following

Theorem 15 (Weyl’s formula).

DM = |4(Λ)|β DΛ DU (2.0.1)

where 4(Λ) is the Vandermonde determinant

4(Λ) = (−1)
n(n−1)

2

∏
1≤j<k≤n

(λj − λk), Λ = diag(λ1, . . . , λn), (2.0.2)

DΛ is Lebesgue measure on Rn, and DU denotes (unnormalized) Haar measure
on O(n), and an appropriately defined measure on U(n)/Tn, and USp(n)/Tn
in the cases β = 1, 2 and 4 respectively.

The main strategy to prove Theorem 15 is to treat the mapping from ma-
trices with distinct eigenvalues to their eigenvalues and eigenvectors. Then we
identify the tangent spaces, and give a formula that relates the tangent space
for the the eigenvalues and the tangent space for the eigenvectors to the tangent
space for the matrix. This formula allows one to change variables in the metric
tensor and therefore in the volume form.

Remark 16. It is common to normalize the Haar measure such that it is a
probability measure. We have ignored this constant here, though is is explored

21
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in the exercises. The essential aspect of (2.0.1) is that the Jacobian for diago-
nalization is given by |4(Λ)|β . This has far-reaching consequences for random
matrix theory and has the interesting physical interpretation of eigenvalue re-
pulsion.

In what follows, we first present a detailed description of integration on O(n)
and Symm(n). The ideas are then extended to Her(n) and Quart(n).

2.1 Integration on O(n) and Symm(n)

All matrices in this section lie in Rn×n .

There is a natural volume form on each finite-dimensional inner-product
space of dimension p. For example, on Rp, the standard inner product defines
the metric with infinitesimal length element ds2 =

∑p
j=1 dx2

j and the volume
form Dx = dx1dx2 . . . dxp (we follow the notation of [39] for volume forms).
More generally, each g ∈ Symm+(p) defines an inner-product and metric on Rp.

〈x, y〉g =

p∑
j,k=1

gjkxjyk, ds2 =

p∑
j,k=1

gjkdxjdxk. (2.1.1)

The associated p-dimensional volume form is

Dx =
√

det(g) dx1 . . . dxp. (2.1.2)

The following calculation demonstrates why the choice for the volume form,
stemming from an inner-product, is important. Let X and Y be two finite-
dimensional inner-product spaces (over R) with inner-products 〈·, ·〉X , 〈·, ·〉Y
and let F be a (linear)1 isometry F : X → Y , i.e. 〈Fx, Fy〉Y = 〈x, y〉X for
all x, y ∈ X. Assume the dimension of these spaces is p. Then select bases
(ui)1≤i≤p of X and (vi)1≤i≤p of Y . We then get the isomorphism

TX : X → Rp, TXx = [〈x, u1〉X , 〈x, u2〉X , . . . , 〈x, up〉X ]T , (2.1.3)

and a similar isomorphism for Y . TX becomes an isometry if we equip Rp with
the inner-product

〈a, b〉TX =

p∑
j,k=1

gXij ajbk, gXjk = 〈uj , uk〉X . (2.1.4)

Following the previous discussion, we arrive at two naturally induced volume
forms on Rp

Dx =
√

det(gX) dx1 . . . dxp, (2.1.5)

Dy =
√

det(gY ) dy1 . . . dyp. (2.1.6)

1It is not necessary to assume that the transformation is linear, but it takes more work to
prove that an isometry must be affine.
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Now, let f : X → R. We define (f is measurable if f ◦ T−1
X is Lebesgue

measurable) ∫
X

fDX =

∫
Rp
f(T−1

X x)
√

det(gX) dx1 . . . dxp, (2.1.7)

with a similar expression for g : Y → R. One should check that this definition
is independent of the choice of basis. Now choose f(x) = g(Fx). We find∫

X

fDX =

∫
Rp
g(FT−1

X x)
√

det(gX) dx1 . . . dxp. (2.1.8)

If (ui)1≤i≤p is a basis for X then (Fui)1≤i≤p is a basis for Y and we perform
all these calculations for this basis. Consider the transformation

S : Rp → Rp, Sx = TY FT
−1
X . (2.1.9)

But, after careful consideration, we see that S = I and det(gY ) = det(gX).
Then, using this change of variables y = Sx we find∫

Rp
g(FT−1

X x)
√

det(gX) dx1 . . . dxp =

∫
Rp
g(T−1

Y y)
√

det(gY ) dy1 . . . dyp.

(2.1.10)

This establishes the change of variables formula∫
X

(g ◦ F )DX =

∫
Y

gDY, (2.1.11)

whenever F is an isometry from X to Y . In particular, this shows how inner-
product structure on X and Y is converted to properties of volume.

The Lie group O(n) is the group, under composition, of linear transforma-
tions of Rn that preserve the standard metric g = I. For each O ∈ O(n) and
each x ∈ Rn we must have (Ox)T (Ox) = xTx. Thus, O(n) is equivalent to
the group of matrices O such that OTO = I. The group operation is matrix
multiplication. It is easy to check that the group axioms are satisfied, but a
little more work is required to check that O(n) is a differentiable manifold, and
that the group operation is smooth.

We now introduce the natural volume forms on Symm(n) and O(n). We first
note that the space Symm(n) is isomorphic to Rp, p = n(n+ 1)/2 via the map

M 7→ ξ = (M11, . . . ,Mnn,M12, . . . ,Mn−1,n). (2.1.12)

Thus, all that is needed to define integrals over Symm(n) is a choice of inner-
product. We will always use the Hilbert–Schmidt inner product

Symm(n)× Symm(n)→ R, (M,N) 7→ Tr(MTN) = Tr(MN). (2.1.13)

The associated infinitesimal length element is

ds2 = Tr(dMTdM) =

n∑
j=1

dM2
jj + 2

∑
j<k

dM2
jk. (2.1.14)
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In ξ coordinates on Rp, the associated metric tensor g is diagonal and takes
the value 1 for the first n coordinates (diagonal terms), and the value 2 for
all the other coordinates (off-diagonal terms). Thus, the metric tensor g ∈
Symm+(p) has determinant 2n(n−1)/2. We apply formula (2.1.2) to find the
following volume form on Symm(n),

DM = 2n(n−1)/4
n∏
j=1

dMjj

∏
1≤j<k≤n

dMjk. (2.1.15)

Each O ∈ O(n) defines a map Symm(n)→ Symm(n), M 7→ OMOT . This map
is an isometry of Symm(n) with the metric above. It is in this sense that (2.1.17)
is the natural inner-product. Since this map is an isometry, the volume element
DM is also invariant.

O(n) is a differentiable manifold. Thus, in order to define a volume form
on O(n), we must identify its tangent space TO(n), and then introduce an
inner-product on TO(n). Further, the ‘natural’ inner-product must be invariant
under the group operations. The tangent space at the identity to O(n), TIO(n),
is isomorphic to the Lie algebra, o(n), of O(n). In order to compute o(n) we
consider smooth curves (−a, a) → O(n), a > 0, t 7→ Q(t) with Q(0) = I,
differentiate the equation Q(t)TQ(t) = I with respect to t, and evaluate at
t = 0 to find

Q̇(0)T = −Q̇(0). (2.1.16)

Thus, each matrix in o(n) is antisymmetric. Conversely, given an antisymmetric
matrix A, the curve t 7→ etA gives a smooth curve in O(n) that is tangent to I
at t = 0. Thus,

TIO(n) = o(n) = {A
∣∣A = −AT }. (2.1.17)

The tangent space at arbitrary O ∈ O(n) is obtained by replacing (2.2.2) with
the condition that OT Ȯ is antisymmetric. Thus,

TOO(n) = {OA |A ∈ o(n)}. (2.1.18)

Finally, given A, Ã ∈ o(n), we define their inner product 〈A, Ã〉 = Tr(AT Ã) =
−Tr(AÃ). This inner-product is natural, because it is invariant under left-

translation. That is, for two vectorOA,OÃ ∈ TOO(n) we find Tr
(
OA)T (OÃ

)
=

Tr(AT Ã). The associated volume form on O(n) is called Haar measure. It is
unique, up to a normalizing factor, and we write

DO = 2n(n−1)/4
∏

1≤j<k≤n

dAjk. (2.1.19)

Now let f : O(n) → R be a bounded, measurable function. Define a neigh-
borhood of O ∈ O(n) by Bε(O) = {Õ ∈ O(n) : ‖O − Õ‖ < ε}. Then for
ε > 0, sufficiently small, we can find a diffeomorphism (i.e., a chart) ϕO : UO →
Bε(O) ⊂ O(n), UO open satisfying

0 ∈ UO ⊂ TOO(n), ϕO(0) = O (2.1.20)
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Then for such ε > 0 define∫
Bε(O)

fDO = 2n(n−1)/4

∫
ϕ−1
O (Bε(O))

f(ϕO(A))
∏

1≤j<k≤n

dAjk. (2.1.21)

It can be verified that this is independent of the choice of ϕO. So, now consider
such mapping at the identity, ϕI . And choose

ϕO(A) = OϕI(O
TA). (2.1.22)

We find∫
Bε(O)

fDO = 2n(n−1)/4

∫
Oϕ−1

I (Bε(I))

f(OϕI(O
TA))

∏
1≤j<k≤n

dAjk. (2.1.23)

In comparing with, (2.1.11), we use the fact that O furnishes an isometry from
TIO(n) to TOO(n) so that∫

Bε(O)

fDO = 2n(n−1)/4

∫
ϕ−1
I (Bε(I))

f(OϕI(A))
∏

1≤j<k≤n

dAjk. (2.1.24)

In particular, if we choose f ≡ 1, then
∫
Bε(O)

DO does not depend on O ∈ O(n),

showing that this is indeed uniform measure on O(n).

2.2 Weyl’s formula on Symm(n)

Let us now recall some basic facts about Symm(n). Each matrix M ∈ Symm(n)
has n real eigenvalues and an orthonormal basis of real eigenvectors. We write
Λ for the matrix diag(λ1, . . . , λn) of eigenvalues, and Q for a matrix whose k-
th column is a normalized eigenvector of M associated to the eigenvalue λk,
1 ≤ k ≤ n. Since the columns of Q are orthogonal and normalized to length 1,
it is immediate that Q ∈ O(n). Thus,

MQ = QΛ and M = QΛQT . (2.2.1)

In what follows, we will view the transformation M 7→ (Λ, Q) as a change
of variables, from Symm(n) → Rn × O(n). Strictly speaking, this change of
variables is not well-defined since (2.2.1) is unaffected if we replace the k-th
column Qk of Q by −Qk. This issue is considered more carefully in Lemma 3
and Lemma 5 below. In a loose sense, diagonalization is analogous to polar
coordinates in Rn,

Rn → [0,∞)× Sn−1, x 7→ (r, u) , r = |x|, u =
x

r
. (2.2.2)

Polar coordinates are natural for rotation invariant probability density on Rn.
For example, the standard Gaussian measure on Rn may be written

e−
|x|2

2 Dx = Cne
− r

2

2 rn−1 drDu, (2.2.3)
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where Du denotes the normalized n − 1-dimensional measure on Sn−1 and Cn
is a universal constant. The factor rn−1 is the Jacobian of this transformation.
Weyl’s formula shows that the Jacobian for (2.2.1) is |4(Λ)|. The proof of
Weyl’s formula relies on an orthogonal decomposition of TMSymm(n).

Lemma 2. Let M have distinct eigenvalues. Then

TMSymm(n) ∼= Rn ⊕ o(n), (2.2.4)

and these subspaces are orthogonal.

Proof. We first assume that M = Λ is diagonal. Consider a smooth curve
(−a, a) → Symm(n), a > 0, t 7→ M(t) = Q(t)Λ(t)Q(t)T such that M(0) =
Λ(0) = Λ, and Q(0) = I. We differentiate2 this expression with respect to t
and evaluate it at t = 0 to find the following expression for a tangent vector in
TΛSymm(n):

Ṁ = Λ̇ + [Q̇,Λ]. (2.2.5)

Here Λ̇ can be an arbitrary diagonal matrix, and Q̇ an arbitrary antisymmetric
matrix. By the assumption of distinct eigenvalues, given Ṁ , Λ̇ = diagonal(Ṁ)
and Λ, Q̇ is uniquely determined. Since the diagonal terms of Q̇ vanish these
two matrices are orthogonal . Thus,

TΛSymm(n) ∼= Rn ⊕ o(n). (2.2.6)

When M = QMQT is not diagonal, we consider a curve M(t) as above, with
M(0) = M , Λ(0) = Λ and Q(0) = Q. Now equation (2.2.5) is replaced by

Ṁ = Q
(

Λ̇ + [QT Q̇,Λ]
)
QT . (2.2.7)

The matrices QT Q̇ are antisymmetric and span o(n). Again, Q̇ is uniquely
determined by Ṁ, Λ̇ and Λ. For arbitrary Λ̇ and A we find M(t) := QetA(Λ +
tΛ̇)e−tAQT is a smooth curve in Symm(n), satisfying M(0) = M .

Remark 17. The proof of Lemma 2 reveals that all matrices of the form

M +

∫ t

0

Q(s)
(

[Q(s)T Q̇(s),Λ]
)
Q(s)Tds (2.2.8)

lie on an isospectral manifold – i.e. a manifold of matrices in Symm(n) with
the same spectrum as Λ. And if one makes the ansatz Q(t) = etA for an
antisymmetric matrix A, one has

Ṁ = [A,M ]. (2.2.9)

2Differentiability is guaranteed by classical perturbation theory [21, Theorem 5.4].
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Proof of Weyl’s formula for β = 1. We now have two coordinate systems on
TMSymm(n) provided that the eigenvalues of M are distinct. We take up this
issue below and show that the set of all symmetric matrices with distinct eigen-
values is open. The coordinates ξα, 1 ≤ α ≤ p give the metric (2.1.14). The

second coordinate system, which is always locally defined, is
(

Λ̇, Ȧ
)

, where

Λ̇ is a diagonal matrix and Ȧ is an antisymmetric matrix. We use (2.2.7) to
find the infinitesimal length element in this coordinate system. On the subset
of Symm(n) consisting of matrices with distinct eigenvalues, using that M is
symmetric, and QTdQ = dA, A ∈ o(n),

Tr dM2 = Tr(dM)TdM = TrQ(dΛ + [dA,Λ])T (dΛ + [dA,Λ])QT

= Tr dΛ2 + 2 Tr dΛ[dA,Λ] + Tr[dA,Λ]2

= Tr dΛ2 + Tr[dA,Λ]2.

(2.2.10)

Expanding out this last trace, we find

Tr[dA,Λ]2 = Tr(dAΛ− ΛdA)2

= Tr dAΛdAΛ + Tr ΛdAΛdA− Tr ΛdA2Λ− Tr dAΛ2dA

= 2

n∑
j=1

n∑
k=1

dAjkdAkjλkλj −
n∑
j=1

n∑
k=1

dAjkdAkjλ
2
j −

n∑
j=1

n∑
k=1

dAjkdAkjλ
2
k

= 2
∑
j<k

(λj − λk)2dA2
jk.

(2.2.11)

Therefore

ds2 = Tr(dM2) =

n∑
j=1

dλ2
j + 2

∑
1≤j<k≤n

(λj − λk)2dA2
jk. (2.2.12)

Thus, the metric tensor in these coordinates is a diagonal matrix in Symm+(p)
that takes the value 1 on the first n coordinates, and the value 2(λj − λk)2 for
each term Ajk. By (2.1.2), the volume form is

DM = 2n(n−1)/4
n∏
j=1

dλj
∏

1≤j<k≤n

|λj − λk|dAjk = |4(Λ)|DΛ DO. (2.2.13)

To interpret Weyl’s formula, in a neighborhood UM of a matrix with distinct
eigenvalues, one needs to construct a well-defined map φ(M) = (Λ, Q) from
symmetric matrices in this neighborhood to these “spectral” variables. Then
for f with compact support in UM∫

f(M)DM =

∫
φ(UM )

f(QΛQT )|4(Λ)|DΛDO. (2.2.14)

We now work to understand how to define such a map, and why matrices with
repeated eigenvalues do not cause further issues.
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2.3 Diagonalization as a change of coordinates

Some care is needed when treating the map M → (Λ, Q) as a change of vari-
ables. First, the map is not even well-defined in general, since the sign of each
normalized eigenvector is arbitrary. Second, even if we fix the signs, the choice
of eigenvectors is degenerate when M has repeated eigenvalues. Third, Λ is
not uniquely defined if we do not specify an ordering of the eigenvalues. The
following lemmas address this issue. Define the Weyl chamber

Wn = {Λ ∈ Rn |λ1 < λ2 < . . . < λn }. (2.3.1)

Lemma 3. Assume M0 ∈ Symm(n) has distinct eigenvalues. Then there exists
ε > 0 such that for each s ∈ {±1}n, there is a C∞ map

h(s) : Bε(M0)→Wn × O(n), M 7→
(

Λ, Q(s)
)

that is a C∞ diffeomorphism onto its image.

Proof of Lemma 3. An outline of the proof is presented. The remaining details
are left to the exercises.

Standard perturbation theory (see [21], for example) demonstrates that the
map is C∞. The choice of s corresponds to fixing the signs of the eigenvectors
as follows. Let a basis of normalized eigenvectors of M0 be fixed. Call the

associated matrix of eigenvectors Q0. For each s, let Q
(s)
0 = diag(s1, . . . , sn)Q0.

Each Q
(s)
0 is also an eigenvector matrix for M0. Since the eigenvalues of M

are distinct, we may use the implicit function theorem to solve the algebraic
equations that determine the eigenvalues and eigenvectors, in a way that is
consistent with the choice of s.

Lemma 4 (Weilandt–Hoffman inequality). Let M1,M2 ∈ Symm(n) and use
λj(Mi) to denote the jth eigenvalue (in increasing order) of Mi. Then

n∑
j=1

|λj(M1)− λj(M2)|2 ≤ ‖M1 −M2‖2.

Proof. See [35, Section 1.3] for a particularly nice proof.

Lemma 5. Assume that M ∈ Symm(n) has a repeated eigenvalue. Then for
every ε > 0 there exists Mε ∈ Symm(n), such that ‖M − Mε‖ < ε and Mε

has distinct eigenvalues. Furthermore, the set of all matrices in Symm(n) with
distinct eigenvalues is open.

Proof. Exercise.

Lemma 3 shows that the map M 7→ (Λ, Q) provides a local coordinate
system near each matrix with distinct eigenvalues. Lemma 5 shows that set of
such matrices is dense. More is true. The set of all matrices with both distinct
eigenvalues and non-vanishing first entries in its eigenvectors is of full measure.
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This follows from (3.3.3) and Lemma 8 below. Truly, one has to note that
the procedure of reducing a full matrix to a tridiagonal matrix that is used to
establish (3.3.3) does not affect the first row of the eigenvector matrix.

2.4 Independence and Invariance implies Gaus-
sian

Fix M ∈ Symm(n) with spectrum σ(M). Fix an interval (a, b) ⊂ R and let
Symm(n)(a,b) denote the set of M ∈ Symm(n) with spectrum σ(M) ⊂ (a, b).
Each function f : (a, b) → R extends naturally to a map Symm(n)(a,b) →
Symm(n) as follows:

f(M) = Qf(Λ)QT , M = QΛQT , f(Λ) = diag(f(λ1), . . . , f(λn)). (2.4.1)

Clearly, Tr(f(M)) = Tr(f(Λ)) =
∑n
j=1 f(λj). Each f : R → R that grows

sufficiently fast as x→ ±∞ defines an invariant distribution on Symm(n)

µ(DM) =
1

Z
exp (−Tr(f(M))) DM. (2.4.2)

This is the most general form of an invariant probability distribution.
By contrast, a Wigner distribution relies on independence of the entries of

M . This means that if a Wigner distribution has a density, then it must be of
the form

µ(DM) =
1

Z

 n∏
j=1

fj (Mjj)
∏

1≤j<k≤n

fjk (Mjk)

DM. (2.4.3)

Theorem 18. Assume a probability measure µ on Symm(n) is both a Wigner
distribution and an invariant distribution. Assume further that µ(DM) has a
strictly positive, smooth density of the form (2.4.2) and (2.4.3). Then µ(DM)
is a Gaussian ensemble,

µ(DM) =
1

Z
e−

1
2σ2

Tr(M−γI)2DM, (2.4.4)

with variance σ2 and mean γ I, for some γ ∈ R.

Proof. We first illustrate the essential calculation for 2× 2 matrices. Suppose

µ(DM) = p(M) DM =
1

Z
f(M11)g(M22)h(M12)dM11dM12dM22. (2.4.5)

We compute the variation in µ along an isospectral curve (see Remark 17).
Consider the curve M(t) = Q(t)MQ(t)T with

Q(t) = etR, R =

(
0 −1
1 0

)
. (2.4.6)
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The matrix R spans so(2). We differentiate M(t) with respect to t to obtain

Ṁ(0) = [R,M ] =

(
−2M12 M11 −M22

M11 −M22 2M12

)
(2.4.7)

Thus, the infinitesimal change in the density p(M(t)) is

1

p

dp

dt

∣∣∣∣
t=0

=
f ′(M11)

f(M11)
Ṁ11 +

g′(M22)

g(M22)
Ṁ22 +

h′(M12)

h(M12)
Ṁ12 (2.4.8)

= −2M12

(
f ′(M11)

f(M11)
− g′(M22)

g(M22)

)
+ (M11 −M22)

h′(M12)

h(M12)
.

On the other hand, since µ(DM) is invariant, p(M(t)) = p(M) and

dp

dt

∣∣∣∣
t=0

= 0. (2.4.9)

We equate (2.4.8) and (2.4.9), and separate variables to obtain

1

M11 −M22

(
f ′(M11)

f(M11)
− g′(M22)

g(M22)

)
= c =

1

2M12

h′(M12)

h(M12)
, (2.4.10)

for some constant c ∈ R. Equation (2.4.10) immediately implies that

h(M12) = h(0)ecM
2
12 . (2.4.11)

Separating variables again in (2.4.10), we find with a second constant b ∈ R,

f ′

f
= cM11 + b,

g′

g
= cM22 + b, (2.4.12)

which integrates to

f(M11) = f(0)e
cM2

11

2 ebM11 , g(M22) = g(0)e
cM2

22

2 ebM22 . (2.4.13)

We combine all the terms to obtain

p(M) = f(0)g(0)h(0)ec
Tr(M2)

2 ebTr(M). (2.4.14)

Since p(M) integrates to 1, we must have c < 0, say c = −1/σ2. The scalar b is
arbitrary and contributes a shift in the mean that is a scalar multiple of I. The
combination of constants f(0)g(0)h(0) may be absorbed into the normalization
constant Z−1. We have thus proved Theorem 18 for n = 2.

In order to prove Theorem 18 for arbitrary n we generalize the above argu-
ment as follows. Fix a pair of off-diagonal indices 1 ≤ l < m ≤ n. We consider
a rotation in Rn that rotates the xlxm plane as above, and leaves the other co-
ordinates invariant. This entails replacing the matrix R in the argument above
with the matrix Rlm ∈ so(n) with coordinates Rlmjk = δjlδkm − δjmδkl. The
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argument above now shows that the density of p in the Mll, Mlm and Mmm

coordinates is a Gaussian distribution of the form (2.4.14):

p(M lm) = ec
Tr((M lm)2)

2 ebTr(M lm), (2.4.15)

where M lm denotes the 2× 2 matrix

M lm =

(
Mll Mlm

Mlm Mmm

)
.

At this stage, the constants c and b depend on l and m. But now note that
since the same argument applies to every pair of indices 1 ≤ l < m ≤ n, the
constants c and b must be independent of l and m.

2.5 Integration on Her(n) and U(n)

The space of Hermitian matrices Her(n) is a vector-space of real dimension n2,

as may be seen by the isomorphism Her(n)→ Rn2

,

M 7→ ξ = (M11, . . . ,Mnn,ReM12, . . . ,ReMn−1,n, ImM12, . . . , ImMn−1,n) .
(2.5.1)

The Hilbert-Schmidt inner product on Her(n) is

Her(n)× Her(n)→ C, (M,N) 7→ Tr(M∗N). (2.5.2)

The associated infinitesimal length element is

ds2 = Tr(dM2) =

n∑
j=1

dM2
jj + 2

∑
1≤j<k≤n

(
dReM2

jk + d ImM2
jk

)
. (2.5.3)

Thus, in the coordinates ξ, the metric is an n2×n2 diagonal matrix whose first
n entries are 1 and all other entries are 2. We apply (2.2.1) to obtain the volume
form on Her(n)

DM = 2n(n−1)/2
n∏
j=1

dMjj

∏
1≤j<k≤n

dReMjk d ImMjk. (2.5.4)

The unitary group, U(n) is the group of linear isometries of Cn equipped
with the standard inner-product 〈x, y〉 = x∗y. Thus, U(n) is equivalent to the
group of matrices U ∈ Cn×n such that U∗U = I. The inner-product (2.5.3) and
volume form (2.5.4) are invariant under the transformation M 7→ UMU∗.

The Lie algebra u(n) is computed as in Section 2.1. We find

u(n) = TIU(n) =
{
A ∈ Cn×n |A = −A∗

}
, TUU(n) = {UA |A ∈ u(n)} .

(2.5.5)
The transformation M 7→ iM is an isomorphism between Hermitian and anti-
Hermitian matrices. In fact, the map Her(n) → U(n), M 7→ eiM is onto and
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locally one-to-one. The inner-product A, Ã 7→ Tr(A∗Ã) is invariant under left
application of U(n). Thus, we obtain the volume form for Haar measure on U(n)

DŨ = 2n(n−1)/2
n∏
j=1

dAjj
∏

1≤j<k≤n

dReAjk d ImAjk. (2.5.6)

However, when viewing diagonalization M 7→ UΛU∗ as a change of variables
on Her(n), it is necessary to quotient out the following degeneracy: For each
θ = (θ1, . . . , θn) ∈ Tn, the diagonal matrix D = diag

(
eiθ1 , . . . , eiθn

)
is unitary

and M = UΛU∗ if and only if M = UDΛD∗U∗. Thus, for Her(n), the measure
DŨ must be replaced a measure on U(n)/Tn. The form of this measure on
U(n)/Tn follows from the following assertion, which is proved as in Section 2.1.

Lemma 6. Each matrix Ṁ ∈ TMHer(n) is of the form

Ṁ = U
(

Λ̇ + [U∗U̇ ,Λ]
)
U∗, Λ̇ ∈ TΛRn, U̇ ∈ TUU(n), diagonal(U∗U̇) = 0.

(2.5.7)
The matrices Λ̇ and U∗U̇ are orthogonal under the inner-product (2.5.2).

Thus, the volume form on the quotient U(n)/Tn is locally equivalent to a
volume form on the subspace of Her(n) consisting of matrices with zero diagonal:

DU = 2n(n−1)/2
∏

1≤j<k≤n

dReAjk d ImAjk. (2.5.8)

Furthermore, B 7→ ϕ(B) = UeU
∗B provides a locally one-to-one mapping from

PTUU(n) = UTIU(n) to U(n)/Tn.
Lemma 6 shows that the mapping Rn ⊕ PTIU(n)→ TMHer(n), PTIU(n) =

{A ∈ TIU(n) | diag(A) = 0}, defined by (Λ̇, Ȧ) 7→ U(Λ̇ + [Ȧ,Λ])U∗ maps onto
TMHer(n). Again, the two spaces are isomorphic if M has distinct eigenvalues.

Proof of Weyl’s formula for β = 2. We write, on the subset of Symm(n) con-
sisting of matrices with distinct eigenvalues, using that M is Hermitian, and
U∗dU = dA, A ∈ TIU(n),diag(A) = 0,

Tr dM2 = Tr dΛ2 + 2 Tr dΛ[dA,Λ] + Tr[dA,Λ]∗[dA,Λ]

= Tr dΛ2 + Tr[dA,Λ]∗[dA,Λ].
(2.5.9)

Expanding out this last trace, using that dA = dReA + i dImA, we need only
collect the real part

Tr[dA,Λ]∗[dA,Λ] = Tr(dReA)Λ(dReA)Λ + Tr Λ(dReA)Λ(dReA)

− Tr Λ(dReA)2Λ− Tr(dReA)Λ2(dReA)

+ Tr(d ImA)Λ(d ImA)Λ + Tr Λ(d ImA)Λ(d ImA)

− Tr Λ(d ImA)2Λ− Tr(d ImA)Λ2(d ImA)

= 2
∑
j<k

(λj − λk)2dReA2
jk + 2

∑
j<k

(λj − λk)2dImA2
jk.

(2.5.10)
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Then it follows that the associated volume form satisfies

DM = |4(Λ)|2DΛDU. (2.5.11)

2.6 Integration on Quart(n) and USp(n)

The field of quaternions, H, is the linear space

x = c0 + c1e1 + c2e2 + c3e3, ci ∈ R, i = 0, 1, 2, 3, (2.6.1)

equipped with the non-commutative rules of multiplication

e21 = e22 = e23 = e1e2e3 = −1. (2.6.2)

These rules ensure that the product of any two quaternions is again a quaternion.
Each x ∈ H has a complex conjugate x̄ = c0−c1e1−c2e2−c3e3, and its absolute
value |x| is determined by

|x|2 = x̄x = c20 + c21 + c22 + c23. (2.6.3)

Each non-zero x ∈ H has a multiplicative inverse 1/x = x̄/|x|2. Thus, H is
indeed a field.

The normed linear vector space Hn consists of vectors x = (x1, . . . , xn)T with
inner product 〈x, y〉 =

∑n
j=1 x̄jyj . The adjoint, M† of a linear transformation

M : Hn → Hn is defined by the inner-product

〈M†x, y〉 := 〈x,My〉. (2.6.4)

It follows that the entries of M† are Mjk = M̄kj . We say that an operator is self-
adjoint if M = M†. It is anti self-adjoint if M = −M†. The space of self-adjoint
operators is denoted Quart(n). We equip this space with the Hilbert-Schmidt
norm as before.

The group USp(n) is the set of linear transformations of Hn that preserve
this inner product. We thus require that for each x, y ∈ Hn

〈x, y〉 = 〈Ux,Uy〉 = 〈U†Ux, y〉. (2.6.5)

Thus, USp(n) is equivalent to U ∈ Hn×n such that U†U = I. As for U(n) we find
that its Lie algebra usp(n) is the space of anti self-adjoint matrices. The inner-
product on usp(n) and Haar measure are defined exactly as in Section 2.5, as is
the analogue of Lemma 6 and the Weyl formula. It is also clear from how the
proof of Weyl’s formula extends to β = 2, that because the field of quarternions
is a four-dimensional space, |4(Λ)|4 will arise, see (2.5.10).



34 CHAPTER 2. INTEGRATION ON SPACES OF MATRICES

Exercises

2.1. Show that

4(Λ) = det


1 . . . 1
λ1 . . . λn
...

...
λn−1

1 . . . λn−1
n .

 . (2.6.6)

2.2. The Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.6.7)

allow a representation of the quarternions in terms of Hermitian matrices.

(a) Show that the Pauli matrices together with the identity matrix span Her(2).

(b) Show that the matrices {iσ1, iσ2, iσ3} form a basis of su(2). (This is the
subalgebra of u(2) consisting of trace-free matrices).

(c) Verify that if ej = iσj , the rules (2.6.2) hold (replace 1 by I2).

2.3. The canonical symplectic matrix of size 2n × 2n denoted Jn, or simply J ,
is the matrix

J =

(
0 I
−I 0

)
, (2.6.8)

where 0 and I denote the n×n zero and identity matrices. The symplectic group
Sp(2n,R) (not to be confused with the unitary symplectic group USp(n)!) is

Sp(2n,R) =
{
S ∈ Rn×n

∣∣STJS = J
}
. (2.6.9)

Verify that Sp(2n,R) is a group and compute its Lie algebra sp(2n,R).

2.4. Use the Gaussian integral∫
Rn

e−
|x|2

2 dx1 . . . dxn.

to compute the n− 1-dimensional volume ωn−1 of the unit sphere Sn−1. Deter-
mine the asymptotic behavior of ωn−1 as n→∞.
Hint : Do the integral two ways– once in Cartesian coordinates, and once in
polar coordinates.

2.5. Assume given a C1 function f : (a, b) → R, and extend it to a function
f : Symm(n)→ Symm(n) as in (2.4.1). Compute the Jacobian of this transfor-
mation. Apply this formula to the function f(x) = eix to compute the analogue
of Weyl’s formula on U(n) (note that each U ∈ U(n) is of the form eiM for some
M ∈ Her(n)).

2.6. Prove Lemma 4.
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2.7. Let A ∈ Rm×n for m < n. Show that {x | Ax = 0} ⊂ Rn has zero Lebesgue
measure.

2.8. Assume f : R→ (0,∞) satisfies the functional equation

f(x+ y) = f(x)f(y), x, y ∈ R. (2.6.10)

It is easy to check that for each a ∈ R functions of the form f(x) = eax

solve (2.6.10). Show that these are the only solutions to (2.6.10) assuming
only that f is continuous. (Do not assume that f is differentiable).

Remark 19. The use of row operations in Problem (1) underlies the intro-
duction of orthogonal polynomials. Problems (2) and (3) may be combined to
show that Sp(2n,C) ∩ U(n) ∼= USp(n). The approach in Problem (4) yields
the volume of O(n), U(n) and USp(n) when applied to GOE, GUE and GSE.
The assumptions of Problem (7) may be weakened further – measurability is
enough! You could try to develop a similar approach for the functional equation
implicit in the proof of Theorem 18. That is, can you establish a stronger form
of Theorem 18 that does not assume differentiability ?

2.9. Show that the mapping A 7→ (I−A)(A+I)−1 from o(n) to O(n) is bijective
in a neighborhood of 0 to a neighborhood of the identity. Construct an atlas of
O(n) using this mapping.

2.10. Using the Submersion Theorem [5, Proposition 3.42] (also called the Reg-
ular Value theorem) show that O(n) is a smooth manifold.
Hint : Consider φ : Rn×n → Symm(n) defined by φ(X) = XTX. Then show
that I is a regular value and therefore φ−1(I) = O(n) is a smooth manifold.
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Chapter 3

Jacobi matrices and
tridiagonal ensembles

3.1 Jacobi ensembles

The space of real n × n tridiagonal matrices is denoted Tridiag(n). A typical
matrix in Tridiag(n) is written

T =



a1 b1 0 . . . 0
b1 a2 b2 0

0 b2 a3
. . .

...
...

. . .
. . . bn−1

0 0 . . . bn−1 an

 . (3.1.1)

Jacobi matrices, and their closure within the space Tridiag(n) are the manifolds

Jac(n) = {T ∈ Tridiag(n) | bj > 0, 1 ≤ j ≤ n}, (3.1.2)

Jac(n) = {T ∈ Tridiag(n) | bj ≥ 0, 1 ≤ j ≤ n}.

Jacobi matrices, or more generally Jacobi operators, are of fundamental impor-
tance in spectral theory. A self-adjoint operator K on a Hilbert space can be
decomposed using its cyclic subspaces. On each of these cyclic subspaces an or-
thonormal basis for span{Kjx | j = 0, 1, 2, . . . } can be found and the operator
K becomes tridiagonal in this basis. This is an idea used by conjugate gradient
algorithm [16]. They also play an important role in approximation theory, the
theory of orthogonal polynomials, and more widely in numerical linear algebra.
An essential step in the symmetric eigenvalue problem is the reduction of a full
symmetric matrix to an isospectral tridiagonal matrix (tridiagonalization) by
a sequence of orthogonal reflections. Under this procedure, the Gaussian en-
sembles push forward to ensembles of tridiagonal matrices whose laws have the
following simple description.

37
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Definition 20 (Dumitriu–Edelman [8]). For each β > 0, the Hermite(β) en-
semble consists of T ∈ Tridiag(n) such that ak, 1 ≤ k ≤ n, are iid normal
random variables with mean zero and variance 2/β, and bk, 1 ≤ k ≤ n − 1
where are independent χ(n−k)β(1/β) random variables.

Then density for χk(σ2) is supported on [0,∞) and is proportional to

tk−1e−
t2

2σ2 .

The point here is that the Hermite(β) ensembles are the push-forwards of
the Gaussian ensembles when β = 1, 2 or 4. Then they interpolate Dyson’s
classification of ensembles to every β > 0. When combined with classical spec-
tral theory, they provide a distinct, and important, perspective on the limit
theorems of random matrix theory. Our immediate goal in this chapter is the
following

Theorem 21. Fix β > 0 and assume T ∼ Hermite(β). Then the marginal
distribution of its eigenvalues is

pHermite(β)(Λ)DΛ =
1

Zn,β
e−

β
4 Tr(Λ)2 |4(Λ)|β DΛ. (3.1.3)

The chapter concludes with a more refined version of Theorem 21 that in-
cludes the distribution of the spectral measure of matrices T ∼ Hermite(β).

3.2 Householder tridiagonalization on Symm(n)

Each M ∈ Symm(n) may be diagonalized M = QΛQT . However, the computa-
tion of Λ depends on the solvability of the characteristic polynomial det(zI −
M) = 0. For n ≥ 5, there is no general closed form solution for the characteristic
polynomial1. Nevertheless, every matrix always admits the following reduction.

Theorem 22. For every M ∈ Symm(n) there exists a tridiagonal matrix T and
Q ∈ O(n) such that

M = QTQT . (3.2.1)

The transformation (3.2.1) is given by a change of variables

Symm(n)→ Jac(n)×
(
Sn−2 × Sn−3 × . . . S1

)
. (3.2.2)

under which the volume form DM on Symm(n) transforms as follows:

DM = Cn

n∏
j=1

daj

n−1∏
k=1

b
(n−k)−1
k dbk

n−2∏
l=1

Dωl (3.2.3)

where Dωl denotes uniform measure on the sphere Sl, and Cn is a universal
constant.

1 Practical numerical schemes for eigenvalue decomposition are unaffected by this algebraic
obstruction, since they rely on iteration.
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The set of attainable matrices Q are given by a mapping

h : Sn−2 × Sn−3 × · · · × S1 7→ O(n). (3.2.4)

This mapping is given below, explicitly in terms of Householder reflections.
As the dimension of the domain for this mapping is less than 1

2n(n − 1), the
dimension of O(n), not all matrices in O(n) are attainable.

Remark 23. The space Tridiag(n) clearly inherits the inner-product Tr(T 2) =∑n
j=1 a

2
j + 2

∑n−1
j=1 b

2
j from Symm(n). However, the volume form obtained from

this metric is not the same as the volume form in (3.2.3) above.

Remark 24. (For algebraists!) The proof will also show that T and Q may be
computed with a finite number of the following algebraic operations: addition,
multiplication and square-roots.

Definition 25. Suppose v ∈ Rn is a unit vector. The Householder reflection
in v is the matrix

Pv = I − 2vvT . (3.2.5)

Lemma 7. The matrix Pv has the following properties:

(a) P 2
v = I.

(b) Pv ∈ O(n).

Proof. Decompose Rn into the orthogonal subspaces span{v} and v⊥. Then
Pvv = −v and Pv|v⊥ = I. Thus, P 2

v = I. This proves (a). By construction
PTv = Pv. Thus, by (a), we also have PTv Pv = I.

Proof of Theorem 22. 1. The proof relies on a sequence of Householder reflec-
tions that progressively introduce zeros in a sequence of matrices similar to M .
The first such matrix is the following. Let w1 = (M21, . . . ,Mn1)T ∈ Rn−1 de-
note the last n− 1 entries of the first column of M . If the first coordinate of w1

is non-negative, and all other coordinates vanish there is nothing to do. If not,

we may choose a Householder reflection (in Rn−1) that maps w1 to |w1|e(n−1)
1

(here the superscript n−1 denotes that we consider the basis vector e1 ∈ Rn−1).
Geometrically, such a reflection is obtained by choosing v1 to be the unit vector

that lies in between w1 and |w1|e(n−1)
1 . Explicitly, we set2

ṽ1 = |w1|e(n−1)
1 − w1, v1 =

ṽ1

|ṽ1|
, P (1) = Pv1 . (3.2.6)

By Lemma 7, P (1) ∈ O(n − 1) is a Householder reflection that maps w1 to

|w1|e(n−1)
1 . It may be extended to a Householder reflection in O(n), by defining

Q(1) =

(
1 0
0 P (1)

)
. (3.2.7)

2If one is using this method numerically and |ṽ1| is small, instabilities can be introduced.

In this case one should use −|w1|e(n−1)
1 − w1.
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Then the matrix

M (1) := Q(1)M
(
Q(1)

)T
= Q(1)MQ(1), (3.2.8)

is similar to M . By construction, the first row of M (1) is (M11, |w1|, 0, . . . , 0),
and the first column is (M11, |w1|, 0, . . . , 0)T . Thus, we may write

M (1) =

(
T (1) |w1|(e(n−1)

1 )T

|w1|e(n−1)
1 N (1)

)
, (3.2.9)

where T (1) is a (trivial) 1× 1 tridiagonal matrix and N (1) ∈ Symm(n− 1).
2. The proof is completed by induction. Assume that M (k) ∈ Symm(n)

has the form

M (k) =

(
T (k) |wk|(e(n−k)

1 )T

|wk|e(n−k)
1 N (k))

)
, (3.2.10)

where T (k) ∈ Tridiag(k) and N (k) ∈ Symm(n − k), 1 ≤ k ≤ n − 1. We apply
the procedure of step 1 to N (k) to obtain a vector vk, a Householder reflection
P (k) = Pvk , and an orthogonal transformation of M (k),

Q(k) =

(
Ik 0
0 P (k)

)
∈ O(n), M (k+1) = Q(k)M (k)Q(k). (3.2.11)

Note that Q(k) leaves the first k rows and columns of M (k) unchanged, thus
it does not destroy the tridiagonal structure of the first k rows and columns.
Thus, M (k+1) has the form (3.2.10) with the index k replaced by k + 1.

The procedure terminates when k = n− 2, and yields

M = QTQT , Q = Q(n−2)Q(n−3) . . . Q(1). (3.2.12)

3. It is simplest to prove (3.2.3) probabilistically. Informally, the k-th step
of the procedure above is a change to polar coordinates in Rn−k, with bk ≥ 0
playing the role of the radius, and the factor bn−k−1

k dbkDωn−1−k being the
pushforward of Lebesgue measure in Rn−k to polar coordinates. More precisely,
assume that M ∼ GOE(n). We note that the first step of the above procedure
leaves M11 alone. Thus, a1 = M11 ∼ N (0, 1). Moreover, the term b1 is the
length of the first column of M , not including the diagonal term M11. Since a
χ2
m random variable has the same law as the length of a vector in Rm whose

entries are iid N (0, 1) random variables, we see that b1 ∼ χn−1. Further, the
vector ω1 = w1/|w1| is uniformly distributed on Sn−2 and independent of both
a1 and b1 (see Exercise 3.1). We next observe that by the independence and
invariance of the Gaussian ensembles, the matrix N (1) in (3.2.9) ∼ GOE(n−1).
Indeed, M̃1, the lower-right (n − 1) × (n − 1) block of M , is a GOE(n − 1)
matrix, and the reflection P (1) is independent of M̃1. Thus, N (1) = P (1)M̃1P

(1)

has law GOE(n − 1) and is independent of b1, a1 and ω1 (see Exercise 3.2).
Thus, a2 ∼ N (0, 1) and b2 ∼ χn−2. An obvious induction now shows that if
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M ∼ GOE then T ∼ Hermite(1), and the vectors ωk = wk/|wk|, are uniformly
distributed on Sn−1−k, 1 ≤ k ≤ n− 2. Comparing the two laws, we find (with
β = 1)

e−
β Tr(M2)

2 DM = Cne−
β Tr(T2)

2 daj

n−1∏
k=1

bn−k−1
k dbk

n−2∏
l=1

Dωl (3.2.13)

The exponential weights cancel, and yield the Jacobian formula (3.2.3).

3.3 Tridiagonalization on Her(n) and Quart(n)

Theorem 22 admits a natural extension to Her(n) and Quart(n).

Theorem 26. For every M ∈ Her(n) (resp. Quart(n)) there exists a tridiagonal
matrix T ∈ Jac(n) and Q ∈ U(n) (resp. USp(n)) such that

M = QTQ∗. (3.3.1)

The transformation (3.3.1) is given by a change of variables

Her(n)→ Jac(n)×
(
Sn−2
F × Sn−3

F × . . . S1
F
)
, (3.3.2)

where SlF denotes the unit sphere in Fl, with F = C (resp. H). The volume form
DM on Her(n) (resp. Quart(n)) transforms as follows:

DM = Cn

n∏
j=1

daj

n−1∏
k=1

b
β(n−k)−1
k dbk

n−2∏
l=1

Dωl (3.3.3)

where Dωl denotes uniform measure on the sphere SlF, and Cn is a universal
constant.

For a vector w ∈ Cn with independent standard normal complex entries,
wj ∼ 1√

2
(N1 + iN2), where N1, N2 ∼ N (0, 1) are independent, |w| ∼ 1√

2
χ2n.

For a quarternion vector w, one finds |w| ∼ 1
2χ4n. So, β is introduced in this

way.

Remark 27. Note that the matrix T is always real, whereas the entries of M
and Q are in C or H.

The proof of Theorem 26 is in the same vein as that of Theorem 22. It is
only necessary to replace the Householder projections in O(n) with projections
in U(n) and USp(n). For example, given v ∈ Cn with |v| = 1, the associ-
ated Householder projection in U(n) is Pv = I − 2vv∗. Step 3 in the proof of
Theorem 26 also explains the role of the parameter β in the definition of the
Hermite-β ensembles. The k-th step of the Householder transformation maps a
standard Gaussian vector in Cn−k to its magnitude and direction. The law of
the magnitude is now χ2(n−k) (or χβ(n−k) with β = 2). Similarly, the direction

of the Gaussian vector is uniformly distributed on the unit sphere in Cn−k−1.
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3.4 Inverse spectral theory for Jacobi matrices

Bounded Jacobi operators admit a complete and beautiful spectral theory that
is intimately tied to orthogonal polynomials and continued fractions. We first
introduce this theory for finite Jacobi matrices, since it underlies Theorem 21.
As usual, write

T = QΛQT , Q ∈ O(n), (3.4.1)

for the diagonalization of T . We also recall the Weyl chamber

Wn = {Λ ∈ Rn |λ1 < λ2 < . . . < λn }. (3.4.2)

For each Λ ∈ Wn, its isospectral manifold is the set

MΛ = {T ∈ Jac(n)
∣∣ T = QΛQT , for some Q ∈ O(n)}. (3.4.3)

The following theorem shows that the interior of the isospectral manifold is
diffeomorphic to the positive orthant Sn−1

+ = {u ∈ Rn | |u| = 1, uj > 0, j =
1, 2, . . . , n} of the unit sphere. Given T , we uniquely define Q by forcing the
first non-zero entry in each column to be positive.

Theorem 28. The spectral mapping

S : Jac(n)→Wn × Sn−1
+ , T 7→ (Λ, QT e1), (3.4.4)

is an analytic diffeomorphism.

We prove this in stages below. See Figure 3.4.1.

The isospectral manifold admits several distinct parametrizations. First, it is
clear that we could use the simplex Σn instead of the orthant Sn−1

+ . Indeed, let
u = QT e1 denote the first row of the matrix of eigenvectors and define cj = u2

k,
1 ≤ k ≤ n. Since Q ∈ O(n),

∑n
k=1 u

2
k = 1. Thus, u ∈ Sn−1 and c ∈ Σn. But,

we shall use Sn−1
+ . Lemma 8 below shows that uk can be chosen to be strictly

positive, which allows us to restrict attention to the positive orthant Sn−1
+

Theorem 28 may also be viewed as a mapping to the spectral measure

T 7→ µ =

n∑
j=1

u2
jδλj =

n∑
j=1

cjδλj . (3.4.5)

It is often more convenient to work with the Cauchy transform of the spectral
measure, µ. Define the τ -function,

µ 7→ τ(z) =

∫
R

1

x− z
µ(dx) =

n∑
j=1

u2
j

λj − z
, z ∈ C\{λ1, . . . , λn}. (3.4.6)

The inverse τ 7→ µ is obtained by computing the poles and residues of τ .
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T ∈ Jac(n)

{aj}nj=1 {bj}
n−1
j=1

(Λ, QT e1)

Tjj = aj, T
j,j+

1 = bj

Spectral map

M
on

ic
O

P
s

∑
j u

2
jδλj

Spectral measure

3-term recurrence

{πj}n−1
j=0

Figure 3.4.1: The construction of the spectral map and its inverse. The trans-
formation to spectral variables is computed by computing eigenvalues and taking
the first component of the (normalized) eigenvectors. Then a spectral measure
(3.4.5) is created from this data and is used to define monic orthogonal polyno-
mials (3.4.16). These polynomials satisfy a three-term recurrence relation (see
Lemma 11) and the coefficients in the relation allow for the (unique) reconstruc-
tion of T , see (3.4.21). This shows the spectral map from Jac(n) to Wn×Sn−1

+

is invertible.

The τ -function may also be written as a ratio of polynomials of degree n−1
and n respectively. Let Tk ∈ Jac(k) denote the lower-right k × k submatrix of
T , 1 ≤ k ≤ n. It follows from Cramer’s rule that

τ(z) = eT1 (T − z)−1e1 =
det(Tn−1 − zI)

det(T − zI)
=

∏n−1
j=1 (λ

(n−1)
j − z)∏n

j=1(λ
(n)
j − z)

, (3.4.7)

where Λ(k) denotes the diagonal matrix of eigenvalues of Tk and Λ(n) = Λ. We
will show that the ordered eigenvalues of Tn−1 and Tn interlace, i.e.

λ
(n)
1 < λ

(n−1)
1 < λ

(n)
2 < . . . < λ

(n−1)
n−1 < λ(n)

n . (3.4.8)

Thus, interlacing sequences provide another parametrization of Jac(n). A conve-
nient visal description of interlacing sequences, called diagrams, was introduced
by Kerov and Vershik [22]. The importance of these alternate parametrizations
(spectral measures, τ -function, diagrams) is that they provide a transparent
framework for the analysis of the limit n→∞.

The surprising aspect of Theorem 28 is that the spectral data (Λ, u) provides
enough information to reconstruct the matrix T . There are three reconstruc-
tion procedures. The first involves orthogonal polynomials, the second uses the
theory of continued fractions and a third involves the explicit solution of the
equation TQ = ΛQ for T . We explain the use of orthogonal polynomials below,
and outline the theory of continued fractions in the exercises. In order to de-
velop these procedures, it is first necessary to establish basic properties of the
eigenvalues of Jacobi matrices.
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Lemma 8. Assume T ∈ Jac(n). Then

1. The first entry of each non-zero eigenvector is non-zero. In particular, we
may normalize the eigenvectors to ensure uk > 0 for 1 ≤ k ≤ n.

2. The eigenvalues of T are distinct.

Proof. We write the eigenvalue equation Tv = zv in coordinates.

bk−1vk−1 + (ak − z) vk + bkvk+1 = 0, 1 ≤ k ≤ n, (3.4.9)

with the convention b0 = bn = 0. Since the off-diagonal terms bk are strictly
positive, we may solve this linear system recursively. Given v1, we find

v2 =
v1(z − a1)

b1
, v3 =

v1

b1b2

(
(a2 − z)(a1 − z)− b21

)
, etc. (3.4.10)

Thus, v ≡ 0 ∈ Rn if v1 = 0. Further, the solution space to the eigenvalue
equation Tv = λv has dimension at most 1.

Lemma 9. The characteristic polynomials dk(z) = det(zI − Tk) satisfy the
recurrence relations

dk+1(z) = (z − an−k)dk(z)− b2n−k dk−1(z), 1 ≤ k ≤ n− 1, (3.4.11)

with the initial condition d0(z) ≡ 1 and the convention bn = 0.

Proof. Expand the determinant det(zI − Tk) about the k-th row, and compute
the minors associated to z − an−k and bn−k.

Lemma 10. The eigenvalues of Tk and Tk+1 interlace, 1 ≤ k ≤ n− 1.

Proof. We consider the τ -functions for the minors Tk,

τk(z) =
det(Tk − zI)

det(Tk+1 − zI)
= − dk(z)

dk+1(z)
. (3.4.12)

By the recurrence relation (3.4.11), we have

− 1

τk(z)
= z − an−k + b2n−kτk−1(z). (3.4.13)

We claim that on the real line, τk(x) is strictly increasing between the zeros
of dk. Indeed, it is clear that τ1(x) = (an − x)−1 has this property, and upon
differentiating (3.4.13) we find that

1

τ2
k

τ ′k = 1 + b2n−kτ
′
k−1 > 0,

except at poles. The claim follows by induction.
Since τk is strictly increasing between poles, by the intermediate value theo-

rem, it has exactly one zero between any two poles. By (3.4.12), the zeros of τk
are the eigenvalues of Tk, and the poles of τk are the eigenvalues of Tk+1. Thus,
they interlace.
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A remarkable feature of the spectral theory of Jacobi matrices is that the
orthogonal polynomials associated to the spectral measure µ(T ) may be used to
reconstruct T . In order to state this assertion precisely, let us recall some basic
facts about orthogonal polynomials. Assume given a probability measure µ on
R that has finite-moments of all orders, i.e.,∫

R
|x|α µ(dx) <∞, α > 0. (3.4.14)

We may apply the Gram-Schmidt procedure to the monomials {xk}∞k=0 to con-
struct a sequence of polynomials that are orthogonal in L2(R, µ). There are two
standard normalizations that one may adopt.

Orthonormal polynomials, denoted {pk}∞k=0, have the property that pk is
of degree k, k = 0, 1, 2, . . ., and∫

R
pk(x)pl(x)µ(dx) = δkl. (3.4.15)

Monic polynomials, denoted {πk}∞k=0 have the property that πk(x) is of
degree k and the coefficient of xk is 1. Further,∫

R
πk(x)πl(x)µ(dx) = 0, k 6= l. (3.4.16)

Lemma 11 (Three-term recurrence for orthogonal polynomials). Given (Λ, u) ∈
Wn × Sn−1

+ , let µ(Λ, u) =
∑n
k=1 u

2
kδΛk . Then the associated monic orthogonal

polynomials {πk}nk=0, satisfy the three-term recurrence (3.4.17)

πk(z) = (z − ak)πk−1(z)− b2k−1 πk−2(z), 1 ≤ k ≤ n, (3.4.17)

where the coefficients ak and bk are given by

ak =

∫
R xπ

2
k−1 µ(dx)∫

R π
2
k−1(x)µ(dx)

, b2k =

∫
R xπk(x)πk−1(x)µ(dx)∫

R π
2
k−1(x)µ(dx)

, k = 1, . . . , n,

(3.4.18)
with π−1 = 0 and hence b0 = 0. Recall that π1 = 1. The recurrence (3.4.18)
defines a Jacobi matrix T (µ).

Remark 29. If µ is not a discrete measure of the form (3.4.5), but has bounded
support, the recurrence (3.4.17) defines a bounded Jacobi operator on l2(C).

Proof. Given any µ as in (3.4.14), we obtain the sequence {πk} using the Gram-
Schmidt procedure. When µ is of the form (3.4.5) with (3.4.5), the vector space
L2(R, µ) has dimension n and the Gram-Schmidt procedure yields an orthogonal
basis {π0, π1, . . . , πn−1} for L2(R, µ).

The three-term recurrence for the orthogonal polynomials is obtained as
follows. Since xπk(x) is a polynomial of degree k + 1 it can be expressed as a
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linear combination xπk(x) =
∑k+1
j=0 cj,kπj(x). Since the πj are monic, we must

have ck+1,k = 1. Moreover, for j = 0, . . . , k − 2∫
R
xπk(x)πj(x)µ(dx) =

∫
R
πk(x)xπj(x)µ(dx) = 0,

since xπj lies in the span of {π0, . . . , πk−1}. Thus, cj,k = 0 for j = 0, . . . , k − 2
and we find

xπk(x) = πk+1(x) + ck,kπk(x) + ck−1,kπk−1(x). (3.4.19)

It remains to show that ck−1,k > 0. By orthogonality,
∫
R xπk(x)πk+1(x)µ(dx) =∫

R π
2
k+1(x)µ(dx). Thus, ck,k−1 > 0 for all k such that πk−1(x) does not vanish in

L2(R, µ): Assume πl does not vanish in L2(R, µ) for l = 0, 1, 2, . . . , k−1 < n−1.
Then this recurrence defines πk which is not the zero polynomial since it is
monic. For Λ ∈ Wn, it has distinct diagonal entries, so p(x) 6= 0 implies∫
p2(x)µ(dx) > 0 if p is a polynomial of degree less than n. This is (3.4.17)

aside from a change in notation.

Proof of Theorem 28. We have defined a forward map T 7→ µ(T ) as follows.
The matrix T defines a τ -function τ(z) = eT1 (T − zI)−1e1, which is expressed
as a ratio of characteristic polynomials in (3.4.7). The poles of τ(z) are the
eigenvalues of T . The norming constrants are the residues at the poles, and are
given by

u2
k = −dn−1(λk)

d′n(λk)
, 1 ≤ k ≤ n. (3.4.20)

The inverse map µ→ T (µ) is given by Lemma 11. The orthogonal polynomials
defined by µ satisfy a three-term recurrence whose coefficients determine T .

We only need to show that the map µ 7→ T (µ) 7→ µ (T (µ)) is the identity.
Let µ ∼= (Λ, u) be given and define T (µ) by the recurrence relations. We will
show that

eT1 (T − zI)−1e1 =

∫
R

1

x− z
µ(dx) =

n∑
k=1

u2
k

λk − z
. (3.4.21)

We first show that the eigenvalues of T coincide with {λk}. Define pj(x) =

πj(x)
∏j
k=1 b

−1
k , π0(x) = p0(x), then

xp0(x) = a1p0(x) + b1p1(x),

xpk(x) = bkpk−1(x) + ak+1pk(x) + bk+2pk+1(x), k > 0.

Because pn(λj) = 0 for all j, we conclude that

(p0(λj), p2(λj), . . . , pn−1(λj))
T

is a non-trivial eigenvector for eigenvalue λj . We expand both sides of (3.4.21)
for large z, to see that all we have to establish is the relation

eT1 T
ke1 =

∫
R
xkµ(dx), 0 ≤ k ≤ n− 1. (3.4.22)
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To see this, consider

Te1 = a1e1 + b1e2,

T ek = bk−1ek−1 + akek + bkek+1, k > 1.

Define new basis vectors fj = ej
∏j−1
k=1 bk, f1 = e1 because bj > 0 for all j =

1, 2, . . . , n− 1. We then have

Tf1 = a1f1 + f2,

T fk = b2k−1fk−1 + akfk + fk+1, k > 1.

We then diagonalize this, setting T = QΛQT , f̂j = QT fj to find

Λf̂1 = a1f̂1 + b21f̂1,

Λf̂k = b2k−1f̂k−1 + akf̂k + f̂k+1, k > 1.

Component-wise, this is the same three-term recurrence as the monic polyno-
mials. So, taking into account f1 = e1, we find

f̂j = πj−1(Λ)QT e1, fj = πj−1(T )e1.

Then because xk =
∑k
j=0 cjkπj(x) we have T ke1 =

∑k
j=0 cjkπj(T )e1 =

∑k
j=0 cjkej+1

and

eT1 T
ke1 = c0k.

Similarly, ∫
R
xkµ(dx) =

k∑
j=0

cjk

∫
R
πj(x)µ(dx) = c0k.

This proves the theorem and this approach extends to the bi-infinite Jacobi
operators [6].

Remark 30. Observe that the recurrence relation (3.4.17) may be rewritten as
the matrix equation,

a1 − z 1 0 . . . 0
b21 a2 − z 1 . . . 0

0 b22 a3 − z
. . . 0

...
...

. . .
. . . 1

0 0 . . . b2n−1 an − z




π0(z)
π1(z)

...
πn−1(z)

 =


0
0
...

−πn(z)

 .

(3.4.23)
Since π0(z) = 1, each zero of πk(z) is an eigenvalue of the matrix above. Thus,
πk(z) = det(zI − T̃k) where T̃k denotes the upper-left k × k submatrix of T
(compare with Tk and dk(z) = det(zI − Tk)).

Thus, given µ, the entries of T are obtained from “top to bottom”. However,
given T , the τ -function is the limit of τ -functions −dk(z)/dk+1(z) computed
‘bottom-to-top’.
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Remark 31. Consider the sequence of orthogonal polynomials

pk(x) =

 k∏
j=1

bk

−1

πk(x), k = 1, 2, . . . , n− 1. (3.4.24)

This is actually an orthonormal sequence which satisfies the three-term recur-
rence

bkpk(x) = (z − ak)pk−1(z)− bk−1pk−2(x). (3.4.25)

3.5 Jacobians for tridiagonal ensembles

We can now combine Theorem 28 with the definition of Hermite-β ensembles
to state a refined version of Theorem 21.

Theorem 32. For each β > 0, the law of the Hermite(β) ensembles in spectral
variables (Λ, u) ∈ Wn × Sn−1

+ is given by

pHermite(Λ, u)DΛDu =
1

Zn,β

(
e−

β
4 Tr(Λ2)|4(Λ)|βDΛ

)  n∏
j=1

uβ−1
j

Du, (3.5.1)

where
(∏n

j=1 u
β−1
j

)
Du refers to the joint density for n independent χβ random

variables, normalized so that the sum of their squares is one. In particular, Λ
and u are independent.

Theorem 32 follows from a computation of the Jacobian of the spectral map
S : Jac(n)→Wn × Sn−1

+ .

Theorem 33. The volume forms on Jac(n) and Wn × Sn−1
+ are related by

DT =

n∏
j=1

daj

n−1∏
k=1

bn−k−1
k dbk = Cn4(Λ)DΛ

(
n∏
k=1

uj

)
Du. (3.5.2)

where Cn is a universal constant.

Remark 34. We have suppressed the explicit form of the universal constants
in the statement of the lemma to focus on the marginals on Wn and Sn−1

+ re-
spectively. The computation of the constants is an interesting exercise (see [8]).

While Theorem 33 is an analytic/geometric assertion, the simplest proof uses
probabilistic reasoning, as in step 3 of the proof of Theorem 22. Since we have
computed the Jacobian for the diagonalizing map Symm(n)→ Rn×O(n) (Weyl’s
formula) and the tridiagonalizing map Symm(n) → Jac(n) (Theorem 22), the
ratio of these Jacobians may be used to compute the Jacobian of the spectral
map Jac(n) → Wn × Sn−1

+ . The main point is that by the O(n) invariance
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of GOE, the top row of the eigenvector matrix must be uniformly distributed
on Sn−1 and is independent of Λ. This gives the term

∏n
k=1 uj duj in equa-

tion (3.5.2). As Dumitriu and Edelman remark, this is a ‘true random matrix
theory’ calculation. Another approach to (3.5.2) uses symplectic geometry.

Lemma 12 (Vandermonde determinant in (a, b) coordinates).

4(Λ) =
∏
j<k

(λj − λk) =

∏n−1
k=1 b

n−k
k∏n

j=1 uj
. (3.5.3)

Proof. 1. Recall that Λ(l) denotes the diagonal matrix of eigenvalues of Tl and

that dl(x) =
∏l
j=1(x− λ(l)

j ). Therefore, we have the identity

l∏
j=1

l−1∏
k=1

∣∣∣λ(l)
j − λ

(l−1)
k

∣∣∣ =

∣∣∣∣∣∣
l∏

j=1

dl−1

(
λ

(l)
j

)∣∣∣∣∣∣ =

∣∣∣∣∣
l−1∏
k=1

dl

(
λ

(l−1)
k

)∣∣∣∣∣ . (3.5.4)

Since dl−1 and dl are related through the three-term recurrence

dl(x) = (x− al)dl−1(x)− b2n−l+1dl−2(x),

we have∣∣∣∣∣
l−1∏
k=1

dl(λ
(l−1)
k )

∣∣∣∣∣ = b
2(l−1)
n−l+1

∣∣∣∣∣
l−1∏
k=1

dl−2(λ
(l−1)
k )

∣∣∣∣∣ = b
2(l−1)
n−l+1

∣∣∣∣∣∣
l−2∏
j=1

dl−1(λ
(l−2)
j )

∣∣∣∣∣∣ .
We apply this identity repeatedly, starting with l = n to obtain∣∣∣∣∣

n−1∏
k=1

dn(λ
(n−1)
k )

∣∣∣∣∣ = b
2(n−1)
1

∣∣∣∣∣∣
n−2∏
j=1

dn−1(λ
(n−2)
j )

∣∣∣∣∣∣
= b

2(n−1)
1 b

2(n−2)
2

∣∣∣∣∣
n−3∏
k=1

dn−2(λ
(n−3)
k )

∣∣∣∣∣ = · · · =
n−1∏
k=1

b
2(n−k)
k .

2. The coefficients u2
j are the residue of τn(z) at the poles λj , i.e.

u2
k =

∣∣∣∣dn−1(λk)

d′n(λk)

∣∣∣∣ , 1 ≤ k ≤ n. (3.5.5)

Observe also that

d′n(λk) =
∏
j 6=k

(λj − λk), and

n∏
k=1

d′n(λk) = 4(Λ)2. (3.5.6)

Therefore,
n∏
j=1

u2
j =

1

4(λ)2

n∏
k=1

|dn−1(λk)| =
∏n−1
k=1 b

2(n−k)
k

4(λ)2
. (3.5.7)
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GOE Symm(n)

Hermite-1 Jac(n)

(Λ, QT e1)

Householder

Spectral variables In
v
.

sp
ec

tr
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m
a
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Figure 3.5.1: We have already computed the push-forward of GOE under
Householder reflections (3.2.13) and the push-forward of GOE onto spectral
variables via Weyl’s formula (2.2.13). The composition of the map to spectral
variables and the inverse spectral map must give us the reduction to tridiagonal
form via Householder reflections. This allows the computation of the Jacobian
of the inverse spectral map.

Proof of Theorem 33. 1. Our goal is to compute the Jacobian of the spectral
mapping S,

DT =
∂(T (a, b))

∂(Λ, u)
DΛDu, (3.5.8)

where Du is uniform measure on {u ∈ Rn | |u| = 1, uj > 0 for all j}. Rather
than compute the change of variables directly, we will compute the push-forward
of GOE onto Jac(n) andWn×Sn−1

+ separately, and obtain the Jacobian above,
see Figure 3.5.1.

2. Consider the push-forward of GOE under the map M 7→ (Λ, u), where
M = QΛQT is the diagonalization of M , with the normalization that the first
non-zero entry in each column is positive. Since Λ and the matrix of eigenvalues
Q are independent, Λ and u = QT e1 are independent. Since Q is distributed
according to Haar measure on O(n), the vector u is uniformly distributed on
Sn−1

+ and the push-forward of GOE is the measure

p(Λ, u)DΛDu = cne−
1
4 Tr(Λ)24(Λ)DΛDu. (3.5.9)

3. Next consider the push-forward of GOE under the map M 7→ T , where
M = QTQT denotes the tridiagonalization of M . As we have seen in the proof
of Theorem 20, T and U are independent, and the marginal distribution of T is
given by

p̃(T ) DT = Cne−
1
4 Tr(T 2)

n∏
j=1

daj

n−1∏
k=1

bn−k−1
k dbk. (3.5.10)

4. Since T ∈ Jac(n) and (Λ, u) ∈ Wn × Sn−1
+ are in bijection, we have

p(Λ, u) = p̃(T (Λ, u))
∂(T (a, b))

∂(Λ, u)
. (3.5.11)
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We compare the expressions in (3.5.9) and (3.5.10) and use Lemma 12 to obtain

∂(T (a, b))

∂(Λ, u)
=
Cn
cn

∏n−1
k=1 bk∏n
j=1 uj

. (3.5.12)

The constants are computed in [8].

Proof of Theorem 32. The law of We change variables using the spectral map-
ping and Theorem 33 to obtain the following identity for the law of the Hermite−
β ensembles

Cn,βe−
β
4 Tr(T 2)

n−1∏
k=1

b
(β−1)(n−k)
k DT (3.5.13)

= Cn,β

(
e−

β
4 Tr(Λ2)4(Λ)β DΛ

) n∏
j=1

uβ−1
j

Du. (3.5.14)

Since the distribution factors, Λ and u are independent with the laws stated in
Theorem 32.

Exercises

3.1. Let w ∈ Rn have iid N (0, 1) components. Show that |w| and w/|w| are
independent.

3.2. Let U ∈ O(n) be a random orthogonal matrix. For example U could
be a Householder reflection associated to a random vector w. Then assume
A ∼ GOE. Show that B := UAUT ∼ GOE and B is independent of U .

3.3. Write a numerical code to sample matrices from both GOE and the Hermite−
1 ensemble. Verify numerically that a suitably normalized density of eigenval-
ues for the GOE matrix approaches the semicircle law as n increases (n = 100
should be ample). Is the same true for the Hermite− 1 ensemble? Why or why
not?

3.4. Consider the tridiagonal matrix T ∈ Jac(n) that has entries aj = 0, 1 ≤
j ≤ n, bk = 1, 1 ≤ k ≤ n− 1.

(a) Compute explicitly the spectral measure using Chebyshev polynomials
(compare T with the recurrence relations for the Chebyshev polynomials).

(b) Plot histograms of two distributions related to T for n = 100: (i) the em-
pirical distribution of eigenvalues ( 1

n

∑n
k=1 δλk ); (ii) the spectral density∑n

k=1 u
2
kδλk . Can you identify the limit in (i)?

(This exercise will be relevant for an enumeration problem relating Brownian
excursion to the Riemann-ζ function).
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3.5. Establish uniqueness and smoothness in the proof of Theorem 28.

3.6. Use equation (3.4.12) to recursively expand τn as a continued fraction.
Combine this with the uniqueness step in Q.2 to deduce an alternative approach
to Theorem 28 that avoids the theory of orthogonal polynomials.

3.7. The following property of the function −z−1 is relevant in the contin-
ued fraction scheme. Symmetric matrices have a partial order: Given A, B ∈
Symm(n) we say that A ≥ B if uTAu ≥ uTBu for every u ∈ Rn. Suppose
A ≥ B ≥ 0. Show that −A−1 ≥ −B−1.

3.8. This problem is a follow-up to exercise 5 in HW 1. Given a map f as in
that exercise, compute an (explicit) expression for its derivative Df .

3.9. Compute the following normalization constants:

(a) The normalization constants Zn,β in the standard definitions of GOE,

GUE and GSE with exponential weight e−
β
4 Tr(M2).

(b) The constant Cn,β in (3.5.13).

(c) The constant Cn in the Jacobian for ensembles (3.2.3) (compare with your
calculation of the volume of the unit sphere in HW1).

3.10. The proofs of Dumitriu and Edelman finesse the following issue: given
T ∈ Jac(n) it requires some care to find a decomposition for the tangent space
TT Jac(n), especially the isospectral manifold,MT , that is analogous to Lemma
2. As in that lemma, we may split TT Jac(n) into orthogonal subspaces that
correspond to diagonal matrices Λ̇ and QT Q̇ ∈ o(n). However, while each
QT Q̇ ∈ o(n) generates a curve in TTSymm(n) , not all QT Q̇ give rise to curves
in TT Jac(n). Verify this. Explore this issue further by trying to find a basis for
the isospectral manifold MT (see equation (3.4.3)).

3.6 Notes

To include in improved version.

1. Tridiagonal matrices as weights in enumerations problems.

2. Example: Chebyshev polynomials, Brownian excursion as a scaling limit
of Dyck paths and relation with ζ-function.



Chapter 4

Determinantal formulas:
From Vandermonde to
Fredholm

Our purpose in this section is to present the elegant determinantal formulas of
Dyson, Gaudin and Mehta for invariant matrix ensembles on Her(n). These
formulas combine three distinct elements: (i) the Weyl formula on Her(n); (ii)
the theory of orthogonal polynomials; (iii) Fredholm determinants. We first
introduce these formulas for GUE. We then use the asymptotic properties of
Hermite polynomials to establish their scaling limits (Theorem 2, Theorem 6
and Theorem 9). While the eigenvalues of GOE and GSE do not have a deter-
minantal structure, they have a related Pfaffian structure, which is described in
a later chapter.

4.1 Probabilities as determinants

In what follows we will adopt the following notation. In order to avoid confusion,
we let x = (x1, . . . , xn) ∈ Rn denote the unordered eigenvalues of M , and
λ = (λ1, . . . , λn) ∈ Wn denote the ordered eigenvalues of M . The probability
density of x, denoted P (n)(x1, . . . , xn), is obtained from the Weyl’s formula

P (n)(x1, . . . , xn) =
1

Zn
4(x)2e−

1
2
∑n
k=1 x

2
k . (4.1.1)

Observe that P (n) is invariant under permutations (x1, . . . , xn) 7→ (xσ1
, . . . , xσn),

σ ∈ S(n). In practice, our interest lies not in the joint density of all n eigen-
values, but statistics such as the law of the largest eigenvalue. Thus, what is
required is an analytical technique to extract such information from (4.1.1) by
integrating out degrees of freedom to obtain information on the joint distribu-
tion of m-eigenvalues, 1 ≤ m ≤ n. More precisely, given m and a Borel function

53
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f : Rm → R we consider random variables of the type

Nf =
∑

(j1,...,jm)∈J1,nKm, jkdistinct

f(xj1 , . . . , xjm). (4.1.2)

Expectations of random variables of the form (4.1.2) are given by

E(Nf ) =

∫
Rm

f(x1, . . . , xm)R(n)
m (x1, . . . , xm) dx1 . . . dxm, (4.1.3)

where Rm is the m-point correlation function

R(n)
m (x1, . . . , xm) (4.1.4)

=
n!

(n−m)!

∫
Rn−m

P (n)(x1, . . . , xm, xm+1, . . . , xn) dxm+1 . . . dxn.

The combinatorial factor in (4.1.2) arises as follows. There are
(
n
m

)
ways of

picking subsets of m distinct indices from J1, nK. On the other hand,

R(n)
m (x1, . . . , xm) = R(n)

m (xσ1
, xσ2

, . . . , xσm), σ ∈ S(m). (4.1.5)

and the integral on the right hand side of (4.1.5) appears m! times when in-
tegrating over the complementary n − m variables for each choice of indices
{j1, . . . , jm} ∈ J1, nKm. We state the following theorem which is proved in the
following sections.

Theorem 35. The joint density and m-point functions for GUE(n) are

P (n)(x1, . . . , xn) =
1

n!
det (Kn(xj , xk)1≤j,k≤n) , (4.1.6)

R(n)
m (x1, . . . , xm) = det (Kn(xj , xk)1≤j,k≤m) , (4.1.7)

where the integral kernel Kn is defined by the Hermite wave functions

Kn(x, y) =

n−1∑
k=0

ψk(x)ψk(y). (4.1.8)

Remark 36. The kernel Kn may be simplified using identities for the Hermite
polynomials. The Christoffel-Darboux formula (B.2.6) allows us to write

Kn(x, y) =
√
n
ψn(x)ψn−1(y)− ψn(y)ψn−1(x)

x− y
. (4.1.9)

Further, eliminating ψn−1 with the identity (B.2.4) yields

Kn(x, y) =
ψn(x)ψ′n(y)− ψn(x)ψn′(y)

x− y
− 1

2
ψn(x)ψn(y). (4.1.10)
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A particular consequence of Theorem 35 is the following fundamental for-
mula. Assume S is a bounded Borel set, let 1S denote its indicator function, and
let Am(S) denote the probability that the set S contains precisely m eigenvalues
for M ∈ GUE(n).

Theorem 37. The generating function of {Am(S)}∞m=0 is given by the formula

det (I − zKn1S) =

∞∑
m=0

Am(S)(1− z)m, z ∈ C, (4.1.11)

where det (I − zKn1S) denotes the Fredholm determinant of the kernel

Kn1S(x, y) =

n−1∑
k=0

1S(x)ψk(x)ψk(y)1S(y). (4.1.12)

Theorem 35 and Theorem 37 illustrate the general spirit of determinantal
formulas in random matrix theory. The density of a joint distribution is ex-
pressed as a determinant of an integral operator with finite rank. One may then
use the theory of orthogonal polynomials, in particular, results on the asymp-
totics of orthogonal polynomials, to establish the basic limit theorems outlined
in Chapter 1 (see Theorems 38 and Theorem 39 below).

Appendices B and C provide brief introductions to Hermite polynomials and
Fredholm determinants respectively.

4.2 The m-point correlation function

Proof of Theorem 35. We form linear combinations of the rows of the Vander-
monde matrix to obtain

4(x) = det


h0(x1) h0(x2) . . . h0(xn)
h1(x1) h1(x2) . . . h1(xn)

...
...

...
hn−1(x1) hn−1(x2) . . . hn−1(xn)

 . (4.2.1)

The calculations above would apply to any set of monic polynomials of degree
0, 1, 2, . . . , n − 1. The Hermite polynomials and wave functions are relevant
because they satisfy the orthogonality relations∫

R
hj(x)hk(x)

e−x
2/2

√
2π

dx = δjkk!, (4.2.2)

and allow the inclusion of an exponential weight. Precisely, the Hermite wave-
functions

ψk(x) =
1√
k!
hk(x)

e−x
2/4

(2π)1/4
, (4.2.3)
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satisfy the orthogonality relation∫
R
ψj(x)ψk(x) dx = δjk, (4.2.4)

and form a basis for L2(R). Let H denote the matrix with entries Hjk =
ψj−1(xk). It follows from (4.2.1) and (4.2.3) that

e−
x2

2 4(x)2 ∝ detH2 = detHTH = det [Kn(xj , xk)]1≤j,k≤n , (4.2.5)

using the identity

(
HTH

)
jk

=

n∑
l=1

HljHlk =

n−1∑
l=0

ψl(xj)ψl(xk) = Kn(xj , xk). (4.2.6)

Therefore, the joint density P (n)(x) is proportional to detKn. To determine
the constant of proportionality we recall that the determinant of a matrix A =
[ajk]1≤j,k≤n satisfies

detA =
∑

σ∈S(n)

sgn(σ)

n∏
j=1

aσjj (4.2.7)

where sgn(σ) denotes the sign of the permutation σ. We then evaluate the
integral∫

Rn
det(H)2dx1 . . . dxn =

∫
Rn

(
det [ψj−1(xk)]1≤j,k≤n

)2

dx1 . . . dxn

=
∑

σ,τ∈S(n)

sgn(σ)sgn(τ)

∫
Rn

n∏
j=1

ψσj−1(xj)ψτj−1(xj) dx1 . . . dxn

(4.2.8)

=
∑

σ,τ∈S(n)

sgn(σ)sgn(τ)

n∏
j=1

δσj ,τj =
∑

σ,τ∈S(n)

1{σ=τ} = n! .

We combine (4.2.8) and (4.2.6) to obtain the first assertion in Theorem 35:

P (n)(x1, . . . , xn) =
1

n!
det [Kn(xj , xk)]1≤j,k≤n .

The formulas for the correlation functions may be obtained by induction,
beginning with

R(n)(x1, . . . , xn) = det [Kn(xj , xk)]1≤j,k≤n . (4.2.9)

First, the orthonormality relations (4.2.4) imply∫
R
Kn(x, x)dx = n,

∫
R
Kn(x, z)Kn(z, y) dz = Kn(x, y). (4.2.10)
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Assume (4.1.7) holds for an index m+ 1 ≤ n. We then have

R(n)
m (x1, . . . , xm) =

1

n−m

∫
R
R

(n)
m+1(x1, . . . , xm, xm+1) dxm+1

=
1

n−m

∫
R

det [Kn(xj , xk)]1≤j,k≤m+1 dxm+1

=
1

n−m
∑

σ∈S(m+1)

sgn(σ)

∫
R
Kn(x1, xσ1

) . . .Kn(xm+1, xσm+1
) dxm+1.

(4.2.11)

If σm+1 = m+ 1 in this sum, then the first equality in (4.2.10) implies∫
R
Kn(x1, xσ1) · · ·Kn(xm+1, xσm+1) dxm+1 (4.2.12)

= nKn(x1, xσ1) · · ·Kn(xm, xσm).

If σm+1 6= m + 1, there exists j ≤ m and k ≤ m such that σj = m + 1 and
σm+1 = k. We then use the second equality in (4.2.10) to find∫

R
Kn(x1, xσ1

) · · ·Kn(xm+1, xσm+1
) dxm+1 (4.2.13)

=

∫
R
Kn(x1, xσ1) · · ·Kn(xj , xm+1) · · ·Kn(xm+1, xk) dxm+1

= Kn(x1, xσ′1) · · ·Kn(xm, xσ′m).

where σ′ is a permutation of {1, . . . ,m} such that σ′j = k and σ′l = σl if l 6= j.
Each permutation σ′ ∈ Sm may come from m permutations σ ∈ Sm+1. Further,
sgn(σ′) = −sgn(σ) since these permutations differ by a single swap. Therefore,
using equations (4.2.12) and (4.2.13) we have∫

R
det [Kn(xj , xk)]1≤j,k≤m+1 dxm+1 = (n−m) det [Kn(xj , xk)]1≤j,k≤m .

4.3 Determinants as generating functions

Proof of Theorem 37. The Fredholm determinant det (I − zKn1S) is an entire
function of z. Thus, equation (4.1.11) is equivalent to the statement

Am(S) =
1

m!

(
− d

dz

)m
det (I − zKn1S)|z=1 . (4.3.1)

We first prove formula (4.3.1) in the case m = 0. The probability that all
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eigenvalues lie outside S is given by∫
Rn

 n∏
j=1

(1− 1S(xj))

P (n)(x1, . . . , xn) dx1 . . . dxn (4.3.2)

=

n∑
j=0

(−1)j
∫
Rn
ρnj (1S(x1), . . . ,1S(xn))P (n)(x1, . . . , xn) dx1 . . . dxn,

where ρnj (x1, . . . , xn) is the j-th symmetric function in n variables. For example,

ρn0 (x) = 1, ρn1 (x) =

n∑
j=1

xj , ρn2 (x) =

n∑
j<k

xjxk, ρnn(x) =

n∏
j=1

xj .

Then, we can express

ρnj (x) =
1

j!

∑
(j1,...,jm)∈J1,nKj , jkdistinct

∏
k

xjk .

Using them-point correlation function, we obtain using (4.1.3) with f(x1, . . . , xm) =∏m
j=1 1S(xj),

E (Nf ) =

∫
Rn
ρnj (1S(x1), . . . ,1S(xn))P (n)(x1, . . . , xn) dx1 . . . dxn (4.3.3)

=
1

j!

∫
Rj

det [Kn1S(xk, xl)]1≤k,l≤j dx1 . . . dxj .

In the last equality, we have used (4.1.7) and multiplied the kernel on the left
and right by the diagonal matrix dS = diag(1S(x1), . . . ,1S(xj)), so that

1S(x1) . . .1S(xj)R
(n)
j (x1, . . . , xj) = 12

S(x1) . . .12
S(xj)R

(n)
j (x1, . . . , xj)

= det
(
dS [Kn(xk, xl)]1≤k,l≤j dS

)
= det [Kn1S(xk, xl)]1≤k,l≤j ,

where K(n)1S is defined in (4.1.12). We now combine (4.3.2) and (4.3.3) to
obtain

n∑
j=0

(−1)j
∫
Rn
ρj(1S(x1), . . . ,1S(xn))P (n)(x1, . . . , xn) dx1 . . . dxn

= det(I −Kn1S), (4.3.4)

using the infinite series (C.1.8) for the Fredholm determinant (only n terms are
non-zero, since K(n) has rank n, see Exercise 4.2).

We now turn to the case m ≥ 1. Equation (4.3.2) must now be modified to
allow exactly m eigenvalues within S and n−m eigenvalues outside S. Define

f(x1, . . . , xn) =

m∏
j=1

1S(xj)

n∏
j=m+1

(1− 1S(xj)).
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Then from (4.1.3), when we take into account the m! permutations of the first
m elements, and the (n−m)! permutations of the last n−m elements

Am(S) =
1

m!(n−m)!
E (Nf )

=
1

m!(n−m)!

∫
Rn
f(x1, . . . , xn)R(n)

n (x1, . . . , xn)dx1 · · · dxn.

We then write

f(x1, . . . , xn) =

m∏
j=1

1S(xj)

m−n∑
k=0

(−1)kρn−mk (1S(xm+1), . . . ,1S(xm+k))

We use the fact that ρn−mk (1S(xm+1), . . . ,1S(xn)) is given by a sum of
(
n−m
k

)
terms, each of which is product of k terms, and all terms integrate to the same
value. So,∫
Rn

m∏
j=1

1S(xj)ρ
n−m
k (1S(xm+1), . . . ,1S(xm+k))R(n)

n (x1, . . . , xn)dx1 · · · dxn

=

(
n−m
k

)∫
Rm+k

m+k∏
j=1

1S(xj)

(∫
Rn−m−k

R(n)
n (x1, . . . , xm+k)dxm+k+1 · · · dxn

)
× dx1 · · · dxm+k

=
(n−m)!

k!

∫
Rm+k

m+k∏
j=1

1S(xj)R
(k)
m+k(x1, . . . , xm+k)dx1 · · · dxm+k

=
(n−m)!

k!

∫
Rm+k

det (Kn1S(xj , xl)1≤j,l≤m+k) dx1 · · · dxm+k.

Then, it follows that

Am(S) =
1

m!

n−m∑
k=0

(−1)k

k!

∫
Rm+k

det (Kn1S(xj , xl)1≤j,l≤m+k) dx1 · · · dxm+k

=
1

m!

(
− d

dz

)m
det(I − zKn1S)|z=1 .

4.4 Scaling limits of independent points

Recall the semicircle density psc from (1.2.1). We show in the next section that
the global eigenvalue density, or density of states, for GUE(n) is given by psc as
n → ∞. Before we describe this more precisely, we consider a situation of iid
points to contrast with the distributions that arise in GUE(n).
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Consider an iid vector Λ =
√
n(λ1, λ2, . . . , λn)T ∈ Rn where P(λj ∈ S) =∫

S
psc(x′)dx′. We form the empirical measure

Ln (dx) =
1

n

n∑
k=1

δΛk(dx), (4.4.1)

and consider the deterministic measure ELn defined by∫
f(x)ELn(dx) := E〈Ln, f〉 = E

1

n

n∑
k=1

f(λk), f ∈ C0(R). (4.4.2)

But, it is clear, and effectively by definition, that ELn(dx′) = p(x′)dx′ =
1√
n
psc

(
x′√
n

)
dx′ and hence

√
np(
√
nx′)dx′ = psc(x′)dx′.

Next, we consider a gap probability in the “bulk”. Let s ∈ (−2, 2), I ⊂ R
be an interval and consider the rescaled interval In =

√
n
(
s+ I

npsc(s)

)
. Then

by independence

P ( no λj ∈ In ) =

(
1− 1√

n

∫
In

psc

(
x′√
n

)
dx′
)n

. (4.4.3)

We directly find that

1√
n

∫
In

psc

(
x′√
n

)
dx′ =

|I|
n

(1 + o(1)) as n→∞. (4.4.4)

From this it follows that

lim
n→∞

P ( no λj ∈ In ) = exp

(
−
∫
I

dx′
)
. (4.4.5)

This is, of course, the gap probability for a Poisson process.
We now consider the distribution of the maximum, i.e. at the “edge”. Let

λ̂ = maxj Λj . Then, by independence,

P(n1/6(2
√
n− λ̂) > t) =

(
1−

∫ 2

2−n−2/3t

psc (x′) dx′
)n

.

By direct calculation, replacing t with π2/3t2/3(3/2)2/3 we find, for t ≥ 0,

lim
n→∞

P(n1/6(2
√
n− λ̂) > t) = e−

2
3π t

3/2

. (4.4.6)

From this we see a (trivial) scaling limit of the density of states after rescaling
by 1/

√
n, gaps on the order of 1/n after this rescaling and a largest “eigenvalue”

that satisfies λ̂ ∼ 2
√
n+ξn1/6 for an appropriate random variable ξ. All of these

statements carry over to the random matrix setting, but the actual limits are
very different for local statistics.
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4.5 Scaling limits I: the semicircle law

The empirical measure of the eigenvalues of GUE(n) is

Ln (dx) =
1

n

n∑
k=1

δλk(dx) (4.5.1)

has the expected density

ELn (dx) =
1

n
Kn(x, x) dx. (4.5.2)

This density is also referred to as the global eigenvalue density or the density of
states. The above expression is somewhat more transparent in its weak form,
using unordered x1, . . . , xn. For every f ∈ C0(R), we have

E〈Ln, f〉 =
1

n

∫
R
f(x)R

(n)
1 (x) dx =

1

n

∫
R
f(x)Kn(x, x) dx, (4.5.3)

by Theorem 35 and equation (4.1.3). The value of the kernel Kn on the diag-
onal is determined by the Christoffel-Darboux relation (4.1.9) and L’Hospital’s
lemma:

Kn(x, x) =
√
n
(
ψ′n(x)ψn−1(x)− ψn(x)ψ′n−1(x)

)
. (4.5.4)

The scaling limit of ELn is the semicircle law defined in (1.2.1).

Lemma 13.

lim
n→∞

1√
n
Kn

(
x
√
n, x
√
n
)

= psc(x), x ∈ R. (4.5.5)

Further, for any ε > 0, the convergence is uniform on the set {x ||x− 2| ≥ ε}.

Proof. The lemma follows from the Plancherel-Rotach asymptotics for the Her-
mite wave functions (see Cases 1 and 2 and equations (B.5.1)–(B.5.4)) in Ap-
pendix B). Define the rescaled wave functions

Ψn+p(x) = n
1
4ψn+p(x

√
n), p = −2,−1, 0. (4.5.6)

We use the identity (B.2.4) to eliminate ψ′n and ψ′n−1 from (4.5.4) and find after
a few computations that

1√
n
Kn

(
x
√
n, x
√
n
)

= Ψ2
n−1(x)−

√
n− 1

n
Ψn−2(x)Ψn(x). (4.5.7)

We now use the asymptotic relations (B.5.2) and (B.5.4) depending on whether
|x| < 2 or |x| > 2. Since the region |x| > 2 corresponds to exponential decay
with a rate proportional to n, we focus on the region |x| < 2. In order to simplify
notation, let

θ = n

(
ϕ− 1

2
sin 2ϕ

)
− 1

2
ϕ− π

4
. (4.5.8)
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(This is the argument of the cosine in (B.5.17) when p = −1.) Then (4.5.7) and
(B.5.2) yield

1√
n
Kn

(
x
√
n, x
√
n
)

∼ 1

π sinϕ

(
cos2 θ − cos(θ + ϕ) cos(θ − ϕ)

)
=

1

2π

√
4− x2,

using x = 2 cosϕ and the trigonometric formulae cos 2α = 2 cos2 α − 1 and
2 cos(θ+ϕ) cos(θ−ϕ) = cos 2ϕ+cos 2θ. A similar calculation with (B.5.4) shows
that the limit vanishes outside the set |x| > 2. The assertion of uniformity in the
convergence follows from the assertion of uniform convergence in the Plancherel-
Rotach asymptotics.

Using Exercise 4.9, Lemma 13 implies that ELn(dx), after rescaling, con-
verges weakly

1

n

n∑
k=1

δxk/
√
n(dx)→ psc(x)dx, weakly. (4.5.9)

It is also worth noting that if f(x) = 1S then

E ( fraction of eigenvalues that lie in S) =

∫
f(x)ELn(dx) =

1

n

∫
S

Kn(x, x)dx.

4.6 Scaling limits II: the sine kernel

Recall from Definition 5 that Ksine is the integral kernel on R× R given by

Ksine(x, y) =
sinπ(x− y)

π(x− y)
, x 6= y, (4.6.1)

and Ksine(x, x, ) = 1. It defines an integral operator on L2(S) for every bounded,
measurable set S. We can now prove a stronger version of Theorem 6.

Theorem 38. For each integer m = 0, 1, 2, . . . and bounded, Borel set S and
r ∈ (−2, 2)

lim
n→∞

P
(
M ∈ GUE(n) has m eigenvalues in

√
n

(
r +

S

npsc(r)

))
=

1

m!

(
− d

dz

)m
det (I − zKsine1S)|z=1 . (4.6.2)

The proof of Theorem 38 is a consequence of the following

Lemma 14. Let S be a bounded measurable set. Then for r ∈ (−2, 2)

lim
n→∞

sup
x,y∈S

∣∣∣∣ 1

psc(r)
√
n
Kn

(√
nr +

x

psc(r)
√
n
,
√
nr +

y

psc(r)
√
n

)
−Ksine(x, y)

∣∣∣∣ = 0.

(4.6.3)
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Proof. For r ∈ (−2, 2) define ϕ(s) by x = r + πs
n sinϕ(0) = 2 cosϕ(s). We then

note that sinϕ(0)/π = psc(r). We expand, for sufficiently large n,

ϕ(s)− 1

2
sin 2ϕ(s) = ϕ(0)− 1

2
sin 2ϕ(0)− πs

n
+O(n−2). (4.6.4)

Define the new functions

Ψn,p(s) = n
1
4ψn+p

(
x
√
n
)
, (4.6.5)

From (B.5.2)

Ψn,p(s) ∼
1√

π sinϕ(0)
cos

[
n

(
ϕ(0)− 1

2
sin 2ϕ(0)

)
− πs+

(
p+

1

2

)
ϕ(0)− π

4

]
(4.6.6)

For fixed r, this is uniform for s in a compact set. We then use (4.1.9) and
y = r − πt

n sinϕ(0) to find, for s 6= t,

π

sinϕ(0)
√
n
Kn(x

√
n, y
√
n) (4.6.7)

=
π

sinϕ(0)
√
n

ψn(x
√
n)ψn−1(y

√
n)− ψn(y

√
n)ψn−1(x

√
n)

x− y

=
Ψn,0(s)Ψn,−1(t)−Ψn,0(t)Ψn,−1(s)

s− t

∼ 1

π sinϕ(0)

cos(θn + s) cos(θn + t− ϕ(0))− cos(θn + t) cos(θn + s− ϕ(0))

t− s

=
sinπ(s− t)
π(s− t)

. (4.6.8)

Here we set θn = n
(
ϕ(0)− 1

2 sin 2ϕ(0)
)

+ 1
2ϕ(0)− π

4 and used the identity

cosα cos(β + γ)− cos(α+ γ) cosβ = sin γ sin(α− β). (4.6.9)

This is uniform for |t− s| ≥ δ. For |t− s| < δ, it is convenient to write

ψn(x)ψn−1(y)− ψn(y)ψn−1(x)

x− y
=
(
ψn(x) ψn−1(x)

) ∫ 1

0

(
−ψ′n(`x+ (1− `)y)
ψ′n−1(`x+ (1− `)y)

)
d`,

and establish uniform convergence of this, after rescaling as above, to

sinπ(s− t)
π(s− t)

=
(
sinπs cosπs

) ∫ 1

0

(
sin(π`s+ π(1− `)t)
cos(π`s+ π(1− `)t)

)
d`. (4.6.10)

Proof of Theorem 38. Let K̃n(x, y) denote the rescaled kernel 1
psc(r)

√
n
Kn(x

√
n, y
√
n),

x = r− s
npsc(r) , y = r− t

npsc(r) . It follows from Lemma 14, using Sections C.2.1

and C.2 that

lim
n→∞

det
(
I − zK̃n1S

)
= det (I − zKsine1S) , z ∈ C, (4.6.11)
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and that the convergence is uniform in z for z in a bounded set. In particular,
the derivatives at z = 1 converge for all m, that is

lim
n→∞

(
− d

dz

)m
det
(
I − zK̃n1S

)∣∣∣
z=1

=

(
− d

dz

)m
det (I − zKsine1S)|z=1 .

(4.6.12)
By Theorem 37, this is equivalent to (4.6.2).

4.7 Scaling limits III: the Airy kernel

Recall from Definition 8 that KAiry is the continuous integral kernel on R × R
given by

KAiry(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
, x 6= y. (4.7.1)

The fluctuations at the edge of the spectrum are described as follows. Let
(x1, . . . , xn) denote the unordered eigenvalues of a matrix M ∈ GUE(n) and let
us consider the shifted and rescaled points

sk = n
1
6

(
x− 2

√
n
)
, k = 1, . . . , n. (4.7.2)

For each nonnegative integer m and bounded, measurable set S, let B
(n)
m (S)

denote the probability that exactly m of the points s1, . . . , sn lie in S when
M ∈ GUE(n). The following theorem is a consequence of Lemma 15 and the
discussion in Section C.2.

Theorem 39.

lim
n→∞

B(n)
m (S) =

1

m!

(
− d

dz

)m
det (I − zKAiry1S)|z=1 . (4.7.3)

Remark 40. The assumption that S is bounded is necessary for Ksine. The
sine-kernel has a (weak) rate of decay |x|−1 as |x| → ∞ and the Fredholm
determinant det(I − zKsine1S) is not finite unless S is bounded. However, the
Airy function, and the thus the Airy kernel, has strong decay as x and y →∞.
The Fredholm determinant det(I − zKAiry1S) is well-defined in L2(S) for sets
S that are bounded below, but not above, such as S = (a,∞) for any a ∈ R.
Such sets will be considered when we compute the Tracy-Widom distribution.
See Exercise 5.

The proof of Theorem 39 follows from the Plancherel-Rotach asymptotics for
the Hermite polynomials, in particular the Airy asymptotics in the transition
zone (see Case 3 and (B.5.5)–(B.5.6) in Appendix B). The following lemma plays
a role analogous to that of Lemma 14 in the proof of Theorem 38.

Lemma 15. For x 6= y

lim
n→∞

∣∣∣∣ 1

n
1
6

Kn

(
2
√
n+

x

n
1
6

, 2
√
n+

y

n
1
6

)
−KAiry(x, y)

∣∣∣∣ = 0 (4.7.4)
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and there exists a function G(x, y) ∈ L2([C,∞)2) for all C ∈ R such that∣∣∣∣ 1

n
1
6

Kn

(
2
√
n+

x

n
1
6

, 2
√
n+

y

n
1
6

)∣∣∣∣ ≤ G(x, y). (4.7.5)

Proof. Convergence follows from (B.5.6). The function G(x, y) can be con-
structed using (B.5.45) and (B.5.46), see Exercise 4.3.

4.8 The eigenvalues and condition number of
GUE

Let M ∼ GUE(n). Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of M . A
consequence of Theorem 39 is the following, for all t ∈ R

lim
n→∞

P
(
n2/3

(
λn√
n
− 2

)
< t

)
= det(1−KAiry1(t,∞)) =: F2(t),

lim
n→∞

P
(
−n2/3

(
2 +

λ1√
n

)
< t

)
= F2(t).

Then, Theorem 38 gives for t ≥ 0,

lim
n→∞

P
(√

n|λj |
π

> t for all j

)
= det(1−Ksine1(−t,t)) := S(t). (4.8.1)

The singular values σ1 ≤ σ2 ≤ . . . ≤ σn of a matrix M are the square roots
of the non-zero eigenvalues of M∗M . One can rewrite (4.8.1) as

lim
n→∞

P
(√

nσ1

π
> t

)
= S(t). (4.8.2)

The condition number is defined as κ(M) := σn/σ1.

Lemma 16. If M ∼ GUE(n), then for all t > 0

lim
n→∞

P
( π

2n
κ(M) < t

)
= S(t−1). (4.8.3)

Proof. We first show that λn/
√
n→ 2, λ1/

√
n→ −2 in probability. Fix ε > 0,

and let L > 0. Then

1 ≤ P
(∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ ε) = P
(
n2/3

∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ n2/3ε

)
≥ P

(
n2/3

∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ L) ,
provided n2/3ε ≥ L. So we, find

1 ≤ lim inf
n→∞

P
(∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ ε) ≥ F2(L)− F2(−L).
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Letting L→∞ gives convergence in probability for λn/
√
n. Similar arguments

follow for λ1/
√
n. Next, define

Eε,n =

{∣∣∣∣ λn√n − 2

∣∣∣∣ ≤ ε, ∣∣∣∣ λ1√
n

+ 2

∣∣∣∣ ≤ ε} .
We know that P(Eε,n)→ 1 as n→∞. Then

P
( π

2n
κ(M) < t

)
= P

( π
2n
κ(M) < t,Eε,n

)
+ P

( π
2n
κ(M) < t,Ecε,n

)
.

Because the second term must vanish as n→∞, we focus on the first term. On
Eε,n it follows that (2− ε)

√
n ≤ σn ≤ (2 + ε)

√
n and

P
(
π(2 + ε)

2nσ1
< t,Eε,n

)
≤ P

( π
2n
κ(M) < t,Eε,n

)
≤ P

(
π(2− ε)

2nσ1
< t,Eε,n

)
.

We find that for ε > 0

lim sup
n→∞

P
( π

2n
κ(M) < t

)
= lim sup

n→∞
P
( π

2n
κ(M) < t,Eε,n

)
≤ S

(
2− ε

2
t−1

)
,

lim inf
n→∞

P
( π

2n
κ(M) < t

)
= lim sup

n→∞
P
( π

2n
κ(M) < t,Eε,n

)
≥ S

(
2 + ε

2
t−1

)
.

If S is continuous at t, send ε ↓ 0 to obtain convergence in distribution. Since
S(t) is continuous, the result follows.

4.9 Notes on universality and generalizations

4.9.1 Limit theorems for β = 1, 4

4.9.2 Universality theorems

Exercises

4.1. Prove the Christoffel-Darboux identity (B.1.7) for Hermite polynomials.
(This is a standard relation and it is easy to find a proof in many texts, but try
to do it on your own.)

4.2. Show that ∫
Rk

det[K(xp, xq)]1≤p,q≤k dx1 · · · dxk = 0, (4.9.1)

for k > n, if K is of the form

K(x, y) =

n−1∑
j=0

gj(y)fj(x), fj , gj ∈ L2(R), j = 0, 2, . . . , n− 1. (4.9.2)
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4.3. Finish the proof of Lemma 15 by constructing a function G(x, y).

4.4. Establish (4.8.1).

4.5. Use the method of steepest descent to establish the asymptotic formula
(A.3.1) for the Airy function. This is an easy application of the method of
steepest descent.

4.6. In order to appreciate the power of the Plancherel-Rotach asymptotics,
some numerical calculations will help.

(a) Develop a numerical scheme to compute all the roots of the n-th Hermite
polynomial hn. Plot the empirical distribution of roots for n = 100. Can
you determine the limiting density of suitably rescaled roots?

(b) Numerically compute the Hermite wave functions for large n, say n =
100, and compare the rescaled wave function with the Plancherel-Rotach
asymptotic formulas in all three regions (oscillatory, decaying and transi-
tion).

4.7. Use the method of steepest descent to establish the Plancherel-Rotach
asymptotics in the region of exponential decay (equation (B.5.4)). This requires
more care than Q.2.

4.8. Establish the following a priori bound on the Airy kernel. For any a ∈ R,

sup
x,y

ex+y|KAiry(x, y)| <∞. (4.9.3)

Let S be the semi-infinite interval (a,∞). Use the above estimate to establish
that the Fredholm determinant det(I − zKAiry1S) is an entire function.

4.9. Let ρn(x), n = 1, 2, . . . be probability densities on R that converge al-
most uniformly to ρ(x) with respect to Lebesgue measure on R. Assume ρ has
compact support. Show that

lim
n→∞

∫
R
f(x)ρn(x)dx =

∫
R
f(x)ρ(x)dx

for every continuous function f with compact support.

4.10 Notes

To include in improved version.

1. Moment estimates to strengthen convergence to semicircle law.

2. Definition of determinantal processes.

3. Pair correlation function for the sine kernel.
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Chapter 5

The equilibrium measure

In this section we establish properties of the equilibrium measure for general
invariant ensembles. We also relate the equilibrium measure to the classical
theory of orthogonal polynomials and Fekete points.

5.1 The log-gas

Let V : R → R denote a potential such that V (x) → ∞ sufficiently rapidly as
|x| → ∞. The log-gas with size n and potential nV is a system of n identi-
cal charged particles constrained to the line interacting via pairwise Coulomb
repulsion and the potential nV (we have scaled the potential V by n in order
to ensure a scaling limit). The total energy of the system in any configuration
x ∈ Rn is given by

E(x) = n

n∑
j=1

V (xj) +
1

2

∑
j 6=k

log
1

|xj − xk|
. (5.1.1)

A fundamental postulate of equilibrium statistical mechanics is that the
probability density of finding the system in a state x at inverse temperature
β > 0 is

1

Zn,V (β)
e−βE(x), (5.1.2)

where Zn,V is the partition function

Zn,V (β) =

∫
Rn
e−βE(x)Dx. (5.1.3)

The log-gas provides us with a physical caricature of eigenvalue repulsion. On
one hand, we see that the energy E(x) has two complementary terms: the
logarithmic potential drives charges apart, but the potential V confines them
in space. On the other hand, let V define an invariant probability measure of
the form (1.1.3) on Symm(n), Her(n) or Quart(n). As a consequence of Weyl’s

69
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formula (Theorem 15), the equilibrium density (5.1.2) is precisely the joint law
of the eigenvalues for these ensembles at β = 1, 2 and 4 respectively. It is in
this sense that the ‘eigenvalues repel’.

We have scaled the energy V with n in (5.1.1) in order to obtain a simple
description of the scaling limit when n → ∞. In order to study this limit, we
view the energy function as a functional of the empirical measure, Ln, rather
than a configuration x ∈ Rn. For (r, s) ∈ R2 let

e(r, s) =
1

2
V (r) +

1

2
V (s) + log

1

|r − s|
, (5.1.4)

and given a probability measure µ on the line, define the functional

I[µ] =

∫
R

∫
R
e(r, s)µ(dr)µ(ds). (5.1.5)

Observe that if Ln is the empirical measure associated to x ∈ Rn, then

E(x) = n2

 1

n

n∑
j=1

V (xj) +
1

n2

∑
j 6=k

log
1

|xj − xk|

 = n2Ĩ[Ln], (5.1.6)

and we may rewrite the partition function in the form

Zn,V (β) =

∫
Rn
e−n

2βĨ[Ln]Dx. (5.1.7)

Here Ĩ[Ln] denotes the renormalized functional

Ĩ[µ] =

∫
R

∫
R

1r 6=se(r, s)µ(dr)µ(ds), (5.1.8)

that takes into account all interaction terms in I[µ], except the singular self-
interaction term from I[µ]. The logarithmic singularity in e(r, s) is integrable if
µ(ds) has an absolutely continuous density. Thus, if the particles in the log-gas
spread out sufficiently as n→∞, we expect that µ has a smooth density, and

lim
n→∞

1

n2
logZn,V (β) = min

µ
I[µ]. (5.1.9)

In order to establish this relation, it is first necessary to obtain a precise ana-
lytical understanding of this minimization problem. We first prove such results
under the formal assumption that there exists an R > 0 such that V (x) = +∞
for |x| > R. This simply means that we first restrict attention to measures with
support within the interval [−R,R]. Once the ideas are clear in this setting, we
turn to measures with support on the line.
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5.2 Energy minimization for the log-gas

5.2.1 Case 1: bounded support

Let PR denote the set of probability measures on the interval [−R,R]. Recall
that the natural topology on PR is the weak topology (we adopt the probabilists
convention for what is conventionally termed the weak-∗ topology). A sequence
of measures {µk}∞k=1 ∈ PR converges weakly to µ ∈ PR if

lim
n→∞

〈µn, f〉 = 〈µ, f〉, (5.2.1)

for every function f ∈ C(R). This topology is natural, because it yields com-
pactness by Helly’s theorem: Each sequence {µk}∞k=1 ∈ PR has a subsequence
that converges weakly to a measure in PR.

Theorem 41. Assume V is a continuous function on [−R,R]. There exists a
unique probability measure µ∗ ∈ PR such that

I[µ∗] = min
µ∈PR

I[µ]. (5.2.2)

The proof of Theorem 41 is a demonstration of the classical method of the
calculus of variations. There are two distinct ideas at work: existence follows
from the fact that the functional I[µ] is weakly lower semicontinuous; uniqueness
follows from the fact that I[µ] is a strictly convex function on PR.

Lemma 17. Suppose the sequence {µn}∞n=1 ∈ PR converges weakly to µ ∈ PR.
Then

I[µ] ≤ lim inf
n→∞

I[µn]. (5.2.3)

Lemma 18. Let µ0 6= µ1 be two measures in PR and let µθ = (1− θ)µ0 + θµ1

denote their convex combination for each θ ∈ (0, 1). Then

I[µθ] < (1− θ)I[µ0] + θI[µ1]. (5.2.4)

Proof of Theorem 41. Existence. Since V is bounded, the function e(x, y) is
bounded below on [−R,R]. Therefore, infµ∈PR I[µ] > −∞. Further, since the
logarithmic singularity is integrable, I[µ] <∞ for any measure that is absolutely
continuous. Thus, we may assume that there is a sequence of measures {µk}∞k=1

such that
lim
k→∞

I[µk] = inf
µ∈PR

I[µ] < infty. (5.2.5)

Since PR is compact in the weak topology, we may extract a convergent
subsequence, also labeled {µk}∞k=1 for simplicity. Let µ∗ denote the weak limit
of this subsequence. We then use Lemma 17 to obtain the chain of inequalities

inf
µ∈PR

I[µ] ≤ I[µ∗] ≤ lim inf
k→∞

I[µk] = inf
µ∈PR

I[µ]. (5.2.6)

Thus, µ∗ is a minimizer.
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Uniqueness. Assume µ∗ and ν∗ are two distinct minimizers. We apply
Lemma 18 to their convex combination with θ = 1/2 to obtain the contradiction

inf
µ∈PR

I[µ] ≤ I[
1

2
µ∗ +

1

2
ν∗] <

1

2
(I[µ∗] + I[ν∗]) = inf

µ∈PR
I[µ]. (5.2.7)

5.2.2 Weak lower semicontinuity

We now turn to the proof of Lemma 17. We first observe that for each monomial
rjsk in the variables r and s, the quadratic functional

µ 7→
∫ R

−R

∫ R

−R
rjsk µ(dr)µ(ds) =

(∫ R

−R
rjµ(dr)

)(∫ R

−R
skµ(ds)

)

is weakly continuous since it is the product of two bounded linear functionals
on PR. Since each polynomial p(r, s) in the variables (r, s) is a finite sum of
monomials, the functional

µ 7→
∫ R

−R

∫ R

−R
p(r, s)µ(dr)µ(ds)

is also weakly continuous. Finally, since each continuous function f ∈ C([−R,R]2)
may be uniformly approximated by polynomials, the quadratic functional

µ 7→
∫ R

−R

∫ R

−R
f(r, s)µ(dr)µ(ds)

is weakly continuous.
The function e(s, t) defined in (5.1.4) is not continuous on [−R,R]2 since the

logarithmic term is unbounded on the diagonal s = t. However, for any M > 0,
the truncated function eM (r, s) = min(e(r, s),M) is continuous. Thus, given a
weakly convergent sequence of measures {µk}∞k=1 with limit µ ∈ PR we find∫ R

−R

∫ R

−R
eM (r, s)µ(dr)µ(ds) = lim

k→∞

∫ R

−R

∫ R

−R
eM (r, s)µk(dr)µk(ds)

≤ lim inf
k→∞

∫ R

−R

∫ R

−R
e(r, s)µk(ds)µk(ds) = lim inf

k→∞
I[µk].

We let M →∞ on the left hand side and use the monotone convergence theorem
to obtain (5.2.3).

5.2.3 Strict convexity

Lemma 18 is a particular consequence of a general fact in potential theory. The
essential idea is to recognize that the function z 7→ − log |z| is the fundamental



5.2. ENERGY MINIMIZATION FOR THE LOG-GAS 73

solution to Laplace’s equation in C ∼= R2. More precisely, given a signed measure
µ with a smooth density ρ(z), supported in the ball BR ⊂ C the unique solution
to Poisson’s equation with Dirichlet boundary condition

−4ψ = µ, z ∈ C\Ω, ψ(z) = 0, |z| = R, (5.2.8)

is given by the integral formula

ψ(z) =

∫
BR

G(z, w)ρ(w)Dw, z ∈ BR, (5.2.9)

where Dw denotes the two-dimensional area element in C and G(z, w) is the
Green’s function for Poisson’s equation in the ball BR with Dirichlet boundary
conditions,

G(z, w) =
1

2π
log

(
|w|
R

|z − wR|
|z − w|

)
, wR =

R2w

|w|2
, z, w ∈ BR. (5.2.10)

The function G(z, w) is obtained by the method of images: the image point wR

is the reflection of the point w ∈ BR in the circle ∂BR [20, §4.1]. What matters
here is that the dominant term in the Green’s function is the logarithmic term
− log |z − w|, just as in equation (5.1.5), and the positivity of∫
BR

∫
BR

G(z, w)µ(dz)µ(dw) = −
∫
BR

ψ(w)4ψ(w) ds =

∫
BR

|∇ψ(w)|2Dw > 0.

(5.2.11)
However, in contrast with (5.1.5) here we have assumed that µ(dw) has a smooth
density ρ(w), whereas the measures of interest in (5.1.5) are concentrated on an
interval, and may have no regularity. Thus, some care is needed in formulating
and proving a theorem on positivity analogous to (5.2.11).

Recall that a signed Borel measure µ on the line may be uniquely decomposed
into two positive measures µ± respectively such that µ = µ+−µ−. The Fourier
transform of a measure is defined by

µ̂(u) =

∫
R
e−ius µ(ds), u ∈ R. (5.2.12)

The Fourier transform is a well-defined distribution. If µ± are finite measures
on [−R,R], the Fourier transform is a continuous function of u that decays to
zero as |u| → ∞ by the Riemann-Lebesgue lemma.

Lemma 19. Assume µ = µ+ − µ− is a signed measure on [−R,R] such that∫ R

−R
µ+(dr) =

∫ R

−R
µ−(dr) <∞. (5.2.13)

Then we have the identity∫ R

−R

∫ R

−R
log

1

|r − s|
(µ+(dr)µ+(ds) + µ−(dr)µ−(ds)) (5.2.14)

=

∫ R

−R

∫ R

−R
log

1

|r − s|
(µ+(dr)µ−(ds) + µ−(dr)µ+(ds)) +

∫ ∞
0

|µ̂(u)|2

u
du.
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In particular, I[µ] > 0 if µ is non-zero and satisfies (5.2.13).

Remark 42. Equation (5.2.14) simply says that∫ R

−R

∫ R

−R
log

1

|r − s|
µ(dr)µ(ds) =

∫ ∞
0

|µ̂(u)|2

u
du. (5.2.15)

for a signed measure µ with
∫ R
−R µ(ds) = 0. This identity has been written in

the form (5.2.14) in order to ensure that there are no ill-defined terms of the
form ∞ −∞. It is now clear from (5.1.4) and (5.1.5) that I[µ] > 0 for such
measures.

Proof. This proof is from [7, p.142]. We first regularize the logarithm at 0 and
use the following integral representation. For any real s and ε > 0

log(s2 + ε2) = log ε2 + 2 Im

∫ ∞
0

e−εu
eisu − 1

iu
du. (5.2.16)

We apply this integral representation to the following regularization of I[µ], and

use the fact that
∫ R
−R µ(dr) = 0, to obtain∫ R

−R

∫ R

−R
log
(
(r − s)2 + ε2

)
µ(dr)µ(ds)

= 2 Im

∫ ∞
0

e−εu
∫ R

−R

∫ R

−R

ei(r−s)u − 1

iu
µ(dr)µ(ds) du

= 2 Im

∫ ∞
0

e−εu
|µ̂(u)|2

iu
du = −2

∫ ∞
0

e−εu
|µ̂(u)|2

u
du.

We may rewrite this identity in terms of µ± as follows:∫ R

−R

∫ R

−R
log

1√
(r − s)2 + ε2

(µ+(dr)µ+(ds) + µ−(dr)µ−(ds)) (5.2.17)

=

∫ R

−R

∫ R

−R
log

1√
(r − s)2 + ε2

(µ+(dr)µ−(ds) + µ−(dr)µ+(ds)) +

∫ ∞
0

e−εu
|µ̂(u)|2

u
du.

We now let ε ↓ 0 and use the monotone convergence theorem to obtain (5.2.14)

Finally, let us prove Lemma 18. Suppose µ0 and µ1 be two measures in PR
as in (5.2.4). The difference

(1−θ)I[µ0]+θI[µ1]−I[µθ] = θ(1−θ)
∫ ∫

log
1

|r − s|
(µ0 − µ1) (dx) (µ0 − µ1) (dx)

in the sense of signed measures. Thus, it is strictly positive when µ0 6= µ1 by
Lemma 19.
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5.2.4 Case 2: Measures on the line

Having explained the main ideas behind Theorem 41 for finite measures, let us
turn to the measures on the line. The proof of uniqueness requires no change,
since it is easily verified that Lemma 19 holds for measures in PR. However,
it is necessary to modify the proof of existence to account for a possible loss
of compactness: a sequence of measures in PR may drift off to infinity (e.g.
µk = δk, k ∈ Z). The appropriate condition required for compactness here is
the following.

Definition 43. A sequence of measures {µk}∞k=1 ∈ PR is tight if for every ε > 0
there exists Mε > 0 such that

sup
k≥1

µk (R\[−Mε,Mε]) < ε. (5.2.18)

Compactness of measures in PR is provided by the Prokhorov-Varadarajan
criterion: the sequence {µk}∞k=1 ∈ PR has a subsequence that converges to a
measure µ ∈ PR if and only if the sequence {µk}∞k=1 is tight [33]. In practice,
application of this criterion requires a uniform estimate on the tails of the mea-
sures {µk}∞k=1. Such a bound is possible only if the growth of the confining
potential V (x) as |x| → ∞ is faster than the divergence of log |x| as |x| → ∞.
We formalize this requirement as follows. For any ε > 0, observe that

|r − s| = |r − 1− (s− 1)| ≤
√
r2 + 1

√
s2 + 1. (5.2.19)

Therefore, we have the lower bound

log
1

r − s
≥ 1

2

(
log

1

r2 + 1
+ log

1

s2 + 1

)
. (5.2.20)

Let us define the function

l(s) =
1

2
log

1

s2 + 1
+

1

2
V (s). (5.2.21)

If l(s) is bounded below, then by adding a constant to V if necessary, we can
ensure that l(s) ≥ 0 for all s. Clearly, this does not change the nature of the
minimization problem.

Theorem 44. Assume V (s) is a continuous function such that l(s) is bounded
below and l(s)→∞ as |s| → ∞.

(a) There exists a unique probability measure µ∗ ∈ PR such that

I[µ∗] ≤ min
µ∈PR

I[µ]. (5.2.22)

(b) The support of the measure µ∗ is contained within a finite interval.
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Proof. (a) Since V is bounded below and the addition of a constant to V does
not change the minimization problem, we may assume that l(s) ≥ 0. Then

e(r, s) = log
1

|r − s|
+

1

2
V (r) +

1

2
V (s) ≥ l(r) + l(s) ≥ 0, (5.2.23)

and c := infµ∈PR I[µ] ≥ 0. Suppose µk
∞
k=1 is an infimizing sequence: i.e.

limk→∞ I[µk] = c. Without loss of generality, we may assume that I[µk] ≤ c+1
for all k. Tightness of the sequence {µk}∞k=1 follows from the following (Cheby-
shev) inequality. For any M > 0,

c+ 1 ≥ I[µk] =

∫
R

∫
R
e(r, s)µk(dr)µk(ds) (5.2.24)

≥ 2

∫
R
l(s)µk(ds) ≥ 2lM

∫
|s|>M

µk(ds) = 2lMµk(R\[−M,M ]),

where lM = inf |s|≥M l(s). Since lim|s|→∞ l(s) =∞, lM →∞ as M →∞. Thus,
for any ε > 0, we may choose M = Mε large enough so that (5.2.18) holds. The
rest of the proof of part (a) follows that of Theorem 41.

(b) For any M > 0, let SM denote the set (−∞,M)∪ (M,∞). We will show
that µ∗(SM ) = 0 if M is large enough. The proof relies on varying the measure
µ∗ by adding more mass proportional to µ∗ in the set SM . More precisely, let
ν denote the restriction of µ∗ to the set SM , and for any t ∈ (−1, 1), define the
measures

µt =
µ∗ + tν

1 + tν(SM )
. (5.2.25)

We then find that I[µt] is a differentiable function of t, with

0 =
dI[µt]

dt

∣∣∣∣
t=0

= 2

∫
SM

ν(ds)

∫
R
µ∗(dr)e(r, s)− 2ν(SM )I[µ∗]. (5.2.26)

The estimate (5.2.23) and positivity of l yields the lower bound

2

∫
SM

ν(ds)

∫
R
µ∗(dr)e(r, s) (5.2.27)

≥
∫
SM

l(s)ν(ds) +

∫
R
l(r)µ∗(dr) ≥

∫
SM

l(s)ν(ds) ≥ lMν(SM ).

As in part (a), lM → ∞ as M → ∞. Thus, for M sufficiently large, we have
lM − I[µ∗]) > 0 and since ν is a positive measure, we have the (trivial) estimate

2(lM − I[µ∗])ν(SM ) ≥ 0. (5.2.28)

On the other hand, the inequalities (5.2.26) and (5.2.27) yield the opposite
inequality

2(lM − I[µ∗])ν(SM ) ≤ 0. (5.2.29)

Thus, ν(SM ) = 0 for all M such that lM > I[µ∗].



5.3. FEKETE POINTS 77

5.3 Fekete points

A second approach to the energy minimization problem relies on a study of the
minimizers of the function E(x) defined in (5.1.1) for x ∈ Rn, and a potential
V that satisfies the assumptions of Theorem 44. For any such potential, 0 ≤
E(x) < ∞ for any x ∈ Rn such that xj 6= xk, j 6= k. Thus, for each n, there
exists a set of points Fn ⊂ Rn, such that

E(x∗) = min
x∈Rn

E(x), x∗ ∈ Fn. (5.3.1)

The set Fn is called the set of n-Fekete points. The Fekete points are natu-
rally connected to the minimization problem for the functional I[µ] through the
modified functional H[Ln], where Ln(x) is the empirical measure associated to
a point x ∈ Rn. Let δn denote the rescaled energy of Fekete points

δn =
1

n(n− 1)
E(x(n)). (5.3.2)

The main result is then the following

Theorem 45. Assume V satisfies the assumptions of Theorem 44. Let {x(n)}∞n=1

be a sequence of points x(n) ∈ Fn and Then

(a) The rescaled energy of Fekete points increases monotonically to I[µ∗].

0 ≤ δn ≤ δn+1 ≤ I[µ∗]. (5.3.3)

(b) The empirical measures L(x(n)) converge weakly to µ∗.

Proof of (a). We first prove the estimates (5.3.3). The uniform upper bound on
E(x(n)) is obtained as follows. Fix a positive integer n and a point x(n) ∈ Fn.
By definition, for any s = (s1, . . . , sn) ∈ Rn,

E(x(n)) ≤ E(s) =
1

2

n∑
j,k=1

(V (sj) + V (sk)) +

n∑
j 6=k=1

log
1

|sj − sk|
. (5.3.4)

Let µ(ds) be any probability measure on the line. We integrate (5.3.4) with
respect to the n-fold tensorized probability measure µ ⊗ µ · · · ⊗ µ on Rn to
obtain

E(x(n)) (5.3.5)

≤
∫
Rn

1

2

n∑
j,k=1

(V (sj) + V (sk)) +

n∑
j 6=k=1

log
1

|sj − sk|

µ(ds1)µ(ds2) · · ·µ(dsn)

= n(n− 1)

∫
R

∫
R

e(r, s)µ(ds)µ(dr) = I[µ],

since for each value of the indices j and k only the integrals over µ(dsj) and
µ(dsk) give contributions that are not unity and there are n(n − 1) possible
unordered pairings of j and k. In particular, E(x(n)) ≤ n(n− 1)I[µ∗].
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The monotonicity of δn follows from the following argument. Suppose x(n+1) =
(x1, . . . , xn+1) is point in the Fekete set Fn+1. We fix an index m, 1 ≤ m ≤ n+1
and use the definition of E in (5.1.1) to obtain

e
− 1
n(n+1)E(x(n+1))

=

 ∏
1≤j 6=k≤n+1

|xj − xk| e−
V (xj)

2 e−
V (xk)

2


1

n(n+1)

(5.3.6)

=

∏
j 6=m

|xj − xm| e−
V (xj)

2 −
V (xm)

2


2

n(n+1)
 ∏
j,k 6=m

|xj − xk| e−
V (xj)

2 e−
V (xk)

2


1

n(n+1)

≤

∏
j 6=m

|xj − xm| e−
V (xj)

2 e−
V (xm)

2


2

n(n+1)

e
−δn

n−1
n+1

since the second term is the energy E(x̂) of the point x̂ ∈ Rn obtained from
x(n) by projecting out the coordinate xm.

Since m is arbitrary, we take the product over 1 ≤ m ≤ n+ 1 to obtain

e−
1
nE(x(n+1)) ≤ e−(n−1)δn

 ∏
1≤m≤n+1

∏
1≤j≤n+1,j 6=m

|xj − xm| e−
V (xj)

2 −
V (xm)

2


2

n(n+1)

= e−(n−1)δne
− 2
n(n+1)E(x(n+1))

. (5.3.7)

This inequality simplifies to δn ≤ δn+1.

Proof of (b). While the self-energy of all the Fekete points is infinite, inequality
(5.3.3) shows that a suitably renormalized energy is finite, and bounded above
by I[µ∗]. This inequality, in combination with an easy modification of the
Chebyshev inequality (5.2.24) also shows that the empirical measures L(x(n))
are tight. Thus, there exists a convergent subsequence and a limiting probability
measure ν ∈ PR such that the empirical measures L(n) defined by the Fekete
points x(n) converge weakly to ν as n→∞.

For any M > 0, we introduce the cut-off energy eM (r, s) = min(M, e(r, s))
and observe that

δn =
1

n(n− 1)
E(x(n)) =

n2

n(n− 1)

∫
R

∫
R

1r 6=se(r, s)L
(n)(dr)L(n)(ds)

≥ n2

n(n− 1)

∫
R

∫
R
eM (r, s)L(n)(dr)L(n)(ds)− M

n− 1
.

Since the function eM (r, s) is continuous and 0 ≤ eM (r, s) ≤ M , we may inter-
change limits as n→∞, and use Theorem 45(a) to obtain

I[µ∗] ≥ lim inf
n→∞

δn ≥
∫
R

∫
R
eM (r, s)ν(dr)ν(ds). (5.3.8)
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We now let M → ∞ and use the monotone convergence theorem and the fact
that µ∗ is a minimizer to obtain

I[µ∗] ≥ I[µ] ≥ I[µ∗]. (5.3.9)

Since µ∗ is unique, it follows that µ∗ = ν.
This argument proves that every subsequential limit of L(n) is µ∗. Thus, the

entire sequence converges to µ∗.

5.4 Exercises

The first three questions are related. The goal is to formulate and analyze the
equation for the equilibrium measure µ∗ associated to the potential V (x). In
order to simplify your calculations, assume that µ∗ has a continuous density ψ,
in all the problems below. The last two questions discuss enumeration problems
related to the Catalan numbers.

1. Basics of the Hilbert transform. Let G(z) denote the Stieltjes transform

G(z) =

∫ ∞
−∞

1

s− z
µ∗(ds) =

∫ ∞
−∞

1

s− z
ψ(s)(ds), z ∈ C\supp(µ∗). (5.4.1)

The Hilbert transform of ψ is the limit of the Stieltjes transform as z → x ∈ R.
The Hilbert transform also differs from the Stieltjes transform by the inclusion
of a factor of π (since this makes the Fourier transform of the operator H
particularly simple). That is, given µ∗ as above, we set

Hψ(x) =
1

π
p.v.

∫ ∞
−∞

ψ(s)

x− s
ds := lim

ε→0

∫ ∞
−∞

x− s
(x− s)2 + ε2

ψ(s) ds. (5.4.2)

(a) Show that Hψ is a bounded function when ψ(x) is continuous.

(b) Show that µ∗ may be recovered from G by evaluating the jump in the
imaginary part of G across the support of µ∗:

lim
ε→0

1

2πi
(G(x+ iε)−G(x− iε)) = ψ(x). (5.4.3)

(c) Compute the Hilbert transform of the following functions to obtain a feel
for it (answers are on wikipedia):

eix, δ0(x), 1[a,b](x).

2. Integral equation for ψ. Assume V is differentiable and satisfies the assump-
tions of Theorem 44 so that µ∗ has compact support. Show that if µ∗ has a
density ψ as above, then it satisfies the integral equation

Hψ(x) =
1

2π
V ′(x) on supp(µ∗). (5.4.4)

3. Fixed point equation for the resolvent. One solution to (5.4.4) uses the
Stieltjes transform G(z). Assume that V (x) is a polynomial of degree d ≥ 2.
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(a) Show that G satisfies the quadratic equation

G2(z) + V ′(z)G(z) + P (z) = 0, (5.4.5)

where P (z) is a polynomial of degree d − 2 whose coefficients are deter-
mined by the moments of µ∗ of degree lower than d. The solution branch
is determined by the requirement that G(z) ∼ −1/z as z → ∞ which is
immediate from (5.4.1).

(b) Equation (5.4.5) may be solved by making further assumptions on the
form of µ∗. In particular, assume that V (z) is even, that the support of
µ∗ is a single interval [−2a, 2a], and show that (5.4.5) simplifies to

G(z) = Q(z)
√
z2 − 4a2 − 1

2
V ′(z) (5.4.6)

where Q(z) is a polynomial of degree d − 2 whose coefficients are deter-
mined by the condition that G(z) ∼ −1/z as z →∞.

(c) Apply these ideas to compute the equilibrium measure for the quartic
potential

V (x) =
1

2
x2 +

g

4
x4. (5.4.7)

Show that

G(z) =

(
1

2
+
g

2
x2 + ga2

)√
x2 − 4a2 − 1

2

(
x+ gx3

)
, (5.4.8)

where a2 solves the quadratic equation

3ga4 + a2 − 1 = 0. (5.4.9)

(d) Compute the associated density ψ(x) and plot it as g varies.

4. Establish the identity (1.3.11).

5. Show that the Catalan numbers enumerate the number of Dyck paths as
discussed below equation (1.3.12).

5.5 Notes

To include in improved version.

1. Fixed point equation for equilibrium measure.

2. Properties of Hilbert transform.

3. Convergence of k-point distribution to tensor product of equilibrium mea-
sure.



Chapter 6

Other random matrix
ensembles

In this chapter we discuss other random matrix ensembles that differ funda-
mentally from GUE, GOE and GSE. For this discussion we concentrate on real
and complex matrices. The first ensembles we consider are the real and com-
plex Ginibre ensembles1, GinR(m,n) on Rm×n and GinC(m,n) on Cm×n. These
are ensembles of real and complex matrices of size m × n. without symmetry
conditions. Their densities are given by

pGin,R(Y )DY =
1

ZR,m,n
e−

1
4 TrY TY DY, pGin,C(X)DX =

1

ZC,m,n
e−

1
2 TrX∗XDX.

Thus, the entries are distributed as independent (real or complex) normal ran-
dom variables. The definition DY and DX in each case follows directly from the
volume forms associated to the length elements Tr(dY TdY ) and Tr(dX∗dX).
When m = n we use the notation GinC(n) and GinR(n) and ZR,n and ZC,m.

The Ginibre ensembles allow us to define the Laguerre ensembles as transfor-
mations of GinC(m,n) and GinR(m,n). These are ensembles of positive (semi-)
definite matrices defined by X∗X where X ∼ GinC(m,n),GinR(m,n). The La-
guerre ensembles are often referred to as Wishart matrices and they get their
name from the close connection to Laguerre polynomials.

We end this chapter with a discussion of the so-called Jacobi ensembles. It
is important to note that these ensembles are not ensembles of Jacobi matrices,
rather, they get their name from their close connection to Jacobi polynomials.
Jacobi polynomials are polynomials orthogonal on the interval [−1, 1], and so
Jacobi matrices have eigenvalues that all lie in the same interval [−1, 1].

1Often, the term Ginibre ensemble is reserved for square matrices, but we find it convenient
to keep it for all rectangular matrices.

81
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6.1 The Ginibre ensembles

Our first task is to generalize Weyl’s formula to the Ginibre ensembles GinR(n)
and GinC(n). To compute this, we use the Schur decomposition. The Schur
decomposition is often seen as a numerical tool to perform a spectral decom-
position of non-normal matrices. The eigenvalue decomposition is unstable to
compute: matrices with distinct eigenvalues are dense and so, computing a Jor-
dan block of a non-normal matrix is a precarious task when round-off errors are
present. An arbitrarily small perturbation will lead to an O(1) change in the
eigenvalue matrix.

Theorem 46. All matrices Y ∈ Rn×n and X ∈ Cn×n have decompositions

Y = OSOT , X = UTU∗,

where O ∈ O(n), U ∈ U(n). Here T ∈ Cn×n is upper-triangular and S ∈ Rn×n
is block-upper triangular with blocks of size 1 or 2. These 2× 2 blocks have the
form (

α −γ
δ α

)
, α ∈ R, δ, γ > 0. (6.1.1)

Furthermore, if the eigenvalues are distinct with a given ordering, and the eigen-
vectors are normalized (say, first non-zero component is positive), the decompo-
sition is unique.

This can be proved by first performing an eigenvalue decomposition and
second, performing a QR factorization of the eigenvector matrix. We now de-
scribe the QR decomposition algorithm, using Householder reflections, for real
matrices. Another numerically viable algorithm is the modified Gram–Schmidt
procedure. Both algorithms extend to complex matrices in a straightforward
way. Given a matrix Y ∈ Rm×n, Y =

(
y1 y2 · · · yn

)
, define a transforma-

tion Y 7→ P (Y )Y by

P (Y )Y =
(
|y1| Pvy2 · · · Pvyn

)
, Pv = I − 2vvT , (6.1.2)

v = ṽ/|ṽ|, ṽ = |y1|e1 − y1.

If y1 = 0, we use P = I. Let Ij be the j × j identity matrix, and let [Y ]j,k be
the lower-right j × k sub-block of Y . The QR factorization of a matrix Y is
then given via

Y0 = Y,

Y1 = Q1Y0 := P (Y0)Y0,

Y2 = Q2Y2 :=

(
I1 0
0 P ([Y1]m−1,n−1)

)
Y1,

...

Yj = QjYj−1 :=

(
Ij−1 0

0 P ([Yj−1]m−j+1,n−j+1)

)
Yj−1.

(6.1.3)
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Y Q R

Figure 6.1.1: The full QR decomposition in the case m > n. The shaded area
columns and rows are removed to create the reduced QR decomposition.

It follows that R = Ymin{m,n} is upper-triangular and Y = QR where Q =
(Qmin{m,n} · · ·Q2Q1)T . We arrive at the following.

Theorem 47. Every matrix Y ∈ Rm×n, X ∈ Cm×n has a factorization Y =
QR, X = UT such that Q ∈ O(m), U ∈ U(m) where R, T are upper-triangular
with non-negative diagonal entries. The factorization is unique if X (resp. Y ) is
invertible. This is called the QR factorization, or decomposition, of the matrix.

This theorem gives the full QR decomposition. If m > n, then a m −
n columns of Q,U are redundant, and m − n rows of R, T are as well, see
Figure 6.1.1. After dropping these columns and rows, one obtains the reduced
QR decomposition.

If m > n, one can count the number of degrees of freedom to see that neither
Q nor U could ever be distributed according to Haar measure on U(m) or O(n)
for X ∼ GinC(m,n) or Y ∼ GinR(m,n), respectively. So, we instead consider
the QR factorization of the augmented matrices(

X X ′
)

and
(
Y Y ′

)
, X ′ ∼ GinC(m,m− n), Y ′ ∼ GinR(m,m− n),

(6.1.4)

for X ′ and Y ′ independent of X and Y , respectively. This can be performed
even if X and Y are deterministic matrices. So, in the real case, and similarly
in the complex case,

Y 7→
(
Y Y ′

)
= QR′ 7→ QR := QR′

(
In
0

)
= Y.

Since it is a non-classical theorem for the Schur decomposition, we state the
following.

Theorem 48. Let X(t), X : (−a, a) → Fn×n, a > 0, be a Ck matrix func-
tion. Assume X(0) has distinct eigenvalues. Then the induced factors X(t) 7→
(T (t), U(t)) or X(t) 7→ (S(t), O(t)) obtained by the Schur decomposition for
F = C or R are also Ck in a neighborhood of t = 0.
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Finally, before we proceed to pushing forward measure via these decom-
positions, we prove an elementary result for Ginibre ensembles using the QR
factorization.

Theorem 49. If X ∼ GinC(m,n), Y ∼ GinR(m,n), m ≥ n then

P (rankX < n) = 0 and P (rankY < n) = 0.

Proof. We use induction on n for the real case. The complex case is similar. If
n = 1, then a Gaussian vector in Rn is non-zero with probability one. If n > 1,
n ≤ m− 1, assume

P (rankY < n) = 0, Y ∼ GinR(m,n).

Let b ∈ Rm be an independent Gaussian vector (b ∼ GinR(m, 1)). Then

P
(
rank

(
Y b

)
< n+ 1

)
= E

[
P
(
rank

(
Y b

)
< n+ 1 |Y

)]
.

On a set of full probability rankY = n. For such a matrix consider

P
(
rank

(
Y b

)
< n+ 1 |Y

)
.

Solve

Y x = b = QRx = b, Rx = QT b =: b̃,

and therefore b̃ ∼ GinR(m, 1). For this equation to have a solution x, Rx = b̃,
since R ∈ Rm×n, triangular, and n < m, the last entry of b̃ must vanish. Thus

P
(
rank

(
Y b

)
< m+ 1 |Y

)
= 0

almost surely. This proves the claim.

Finally, we want to know that the probability of finding a Ginibre matrix
with an eigenvector that has a zero first component is zero.

Theorem 50. Assume X ∼ GinC(n), Y ∼ GinR(n). Then

P (∃λ ∈ C, v ∈ Cn, Xv = λv and v1 = 0) = 0,

P (∃λ ∈ C, v ∈ Rn, Y v = λv and v1 = 0) = 0.

Proof. We prove this for Y . The proof for X is similar. First, we write

Y =

(
y0 yT1
y2 Y ′

)
,

y0 ∼ GinR(1), y1, y2 ∼ GinR(n− 1, 1), Y ′ ∼ GinR(n− 1, n− 1),

all independent. Let

E =

{
∃λ ∈ C, v ∈ Rn−1, Y ′v = λv and Y

(
0
v

)
= λ

(
0
v

)}
.
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It then follows that

P (∃λ ∈ C, v ∈ Rn, Y v = λv and v1 = 0) = P(E) = E [P(E|Y ′)] .

Then

P(E|Y ′) = P
(
∃v ∈ Rn, yT1 v = 0, v is an eigenvector of Y ′|Y ′

)
.

For the eigenvalue λj of Y ′, let Vj =
(
v(1), . . . , v(`)

)
, ` ≤ n − 1 be a basis of

eigenvectors for this eigenvalue. Then

P

∃{cj} so that yT1

∑̀
j=1

cjv
(j)

 = 0

∣∣∣∣∣∣X ′
 = 0, a.s.

Because, given X ′, perform a QR factorization of Vj = QR, and consider
yT1 QRc = 0, c = (c1, . . . , cj)

T . But as R has rank `, this amounts to the con-
dition that (at least) one component of the Gaussian vector xT = yT1 Q has to
vanish, a probability zero event. A union bound over all the distinct eigenvalues
proves the result.

This theorem has an interesting implication. If a matrix Y has a repeated
eigenvalue and two linearly independent eigenvectors, then an eigenvector can
be constructed that has a zero first component. By the theorem, this event
occurs with probability zero for GinR(n), GinC(n). And so, if one shows that
Y is diagonalizable with probability one, then Y has distinct eigenvalues with
probability one. Nevertheless, it is actually easier to directly show this.

Theorem 51. Assume X ∼ GinC(n), Y ∼ GinR(n). Then

P (X has distinct eigenvalues ) = 1,

P (Y has distinct eigenvalues ) = 1.

Proof. We show that the Vandermonde squared 4(Λ)2 is a polynomial in the
entries of the matrix. Let λ1, . . . , λn be the eigenvalues of Y and consider

V = (Vij), Vjk = λk−1
j .

Then

4(Λ)2 = det(V )2 = det(V TV ), (V TV )jk =

n∑
`=1

λj+k−2
` = TrY j+k−2.

Now consider a rectangle R = [a, b]n
2 ⊂ Rn2

, and assume that∫
R

1{Y ∈Rn×n | |4(Λ)|=0}DY > 0.

Since the set of matrices with distinct eigenvalues is dense,4(Λ) 6= 0 for some Y .
But the only way for the zero locus of a polynomial in n variables to have positive
n-dimensional Lebesgue measure is for the polynomial to vanish identically. The
theorem follows.
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6.1.1 Schur decomposition of GinC(n)

Theorems 46 and 48 allow us to compute the distribution induced on U and T
in the Schur decomposition. We first identify the tangent space.

Theorem 52. Assume X ∈ Cn×n has distinct eigenvalues. Then

TXCn×n ∼= Rn(n−1) ⊕ PTIU(n).

Proof. A straightforward computation, using the differentiability of the Schur
decomposition gives

Ẋ = U(Ṫ + [U∗U̇ , T ])U∗, (6.1.5)

after using X(t), t ∈ (−a, a), a > 0, differentiating and evaluating at t = 0. It
follows that S := U∗U̇ is skew-symmetric. We then decompose T = Λ +T+ and
S = S0+S−+S+, where the ± refers to strict upper- and lower- triangular parts.
We can first solve for S− of S in the following way. Define S− 7→ ζ ∈ Cn(n−1)/2

by ordering the entries of using the following relations:

(i, j) < (i′, j′) if i− j < i′ − j′,
(i, j) < (i′, j′) if i− j = i′ − j′ and i < i′.

(6.1.6)

The first inequality orders entries by which diagonal they lie on. The second
orders within the diagonal. Then

Ẋ− = [S−,Λ] + [S−, T+].

With the chosen ordering

ζ 7→ [S−, T+] =: M−ζ (6.1.7)

is strictly lower triangular. Thus provided λi 6= λj for i 6= j, we can solve this

for S−. If we then make the choice that S0 = 0, we can clearly solve for Ṫ once
S is known. Finally, by adjusting Ṫ accordingly, it is clear that any Ẋ can be
achieved with S0 = 0.

Now, we give the analogue of Weyl’s formula for Cn×n.

Theorem 53. For X ∈ Cn×n,

DX = |4(Λ)|2 DT DU, (6.1.8)

where DT =
∏n
j=1 dReλjdImλj

∏
j<k dReTjkdImTjk and DU refers to the same

distribution as that of the eigenvectors of GUE(n).

Proof. We first map X to Cn2

in a consistent way. We order X− using (6.2.2)
giving ζX− . We then order diagonal(X) in the usual way. Then, finally we order
X+ using

(i, j) ≺ (i′, j′) if and only if (j, i) < (j′, i′),
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giving ζX+ , and X 7→ [ζX− , η, ζX+ ]T . We use ζS− and ζT+ in same way for S−
and T+, respectively. It then follows that, after ordering U∗dXU ,

U∗dXU =

Λ̃ +M− 0 0
D I 0
M+ 0 I

dζS−

dΛ
dζT+

 .

where Λ̃ζS− is defined through ζS− 7→ [S−,Λ], which is diagonal, Sjk 7→ (λk −
λj)Sjk. M− and D are matrices whose exact form is irrelevant. Decomposing
all differentials into real and imaginary parts and computing the metric tensor

Tr dX∗dX,

we find (6.1.8) by using det(Λ̃ + M−) =
∏
j<k(λk − λj) and computing the

associate volume form. Here one has to use that if A : Cn → Cn induces B :
R2n → R2n (by separating real and imaginary parts), then detB = |detA|2.

Theorem 54. The Schur decomposition of GinC(n) is given by

pGin,C(X)DX =
1

ZC,n
e−

1
2 TrT∗T |4(Λ)|2 DT DU. (6.1.9)

Note that this implies that the strict upper-triangular entries of T are all iid
complex normal random variables.

6.1.2 QR decomposition of GinC(m,n)

We now consider the distribution induced on U and T by GinC(m,n). Following
the discussion in (6.1.4), we assume n ≥ m. We follow the push forward of the
distributions under the algorithm in (6.1.3). If X ∼ GinC(m,n) then it follows
that if we replace Qj with Uj and Yj with Xj in (6.1.4) then Xj and Uj are
independent for every j using the fact that the length of a Gaussian vector is
independent of its angle and UX is independent of U ∈ U(m) if U is independent
of X. And therefore, for X = UT , U is independent of T .

From the discussion in Section 3.2 it follows that the induced volume form
on T is

∝ e−
β
4 TrT∗T

m∏
j=1

T 2m−2j+1
jj DT, β = 2,

where DT refers to standard Lebesgue measure on Rm+ × Cm(m−1)/2+m(m−n).
Note that all the strictly upper-triangular entries are standard complex normal
random variables and the entries on the diagonal are all chi-distributed. To
understand the distribution on U all we need to do use to use that for O ∈ U(m),
OX ∼ GinC(m,n) if X ∼ GinC(m,n). Then factorize

X = UT OX = U ′T ′.
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From the uniqueness of the QR factorization (on set of full probability where X
is invertible), T = T ′ and U = OTU ′. But U and U ′ have the same distribution
and this distribution must therefore be invariant under left multiplication by
any element of U(m). We conclude U is distributed according to Haar measure
on U(m) [27] and to proportionality constants:

e−
β
4 TrX∗XDX

QR−→ e−
β
4 TrT∗T

ñ∏
j=1

T 2m−2j+1
jj DTD Ũ , ñ = min{m,n},

where DŨ is defined in (2.5.8). The normalization constant is easily computed
in terms of Γ-functions. This can be seen as an equality when m ≤ n. For
m ≥ n, we add additional degrees of freedom to find DŨ , and so this is the
push-forward under a random transformation.

6.1.3 Eigenvalues and eigenvectors of GinR(n)

Computing the analogue of Weyl’s formula for GinR(n) is much more compli-
cated. This comes from the fact that complex eigenvalues must arise as complex
conjugate pairs. Furthermore, for finite n there is a non-zero probability that
the matrix with have k real eigenvalues. Thus the distribution on the eigenval-
ues is not absolutely continuous with respect to Lebesgue measure on C. We
first compute the tangent space, under the assumption of k real eigenvalues.

Theorem 55. Assume that Y has exactly k real eigenvalues. Assume further
that the real part of all the eigenvalues of Y (0) = Y in the closed upper-half plane
are distinct. Finally, assume that each 2×2 block in the real Schur factorization
has γ 6= δ in (6.1.1). Then

TY Rn×n ∼= Rn(n−1)/2 ⊕ o(n).

Proof. Assume Y (t) is a smooth curve in Rn×n such that Y (t) has k real eigen-
values for all t. As before, we have the relation

Ẏ = O(Ṡ + [OT Ȯ, S])OT .

We need to show that the entries of Ṡ and Ȯ are uniquely determined by this
relation. We assume

S =



R1 × · · · · · · ×
0 R2 × · · · · · · ×
...

. . .
. . .

...
0 · · · 0 R` × · · · ×
0 · · · · · · 0 λ1 · · · ×
...

. . .
. . .

0 · · · · · · 0 λk


, Rj =

(
αj −γj
δj αj

)
,
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where ` = (n− k)/2 and n− k is assumed to be even. The ordering is fixed by
αj < αj+1 and λj < λj+1. We also refer to the location of all the imposed zeros
in S as the generalized lower-triangular part of S, denoted LG(S). Similarly,
UG(S) = (LG(ST ))T and DG(S) = S − UG(S)− LG(S). So, we have

LG(OT Ẏ O) = LG ([A,S]) , AT = −A.

After careful consideration, we find

LG ([A,S]) = LG ([LG(A), UG(S)] + [LG(A), DG(S)])

by noting that

[A,S] = [LG(A), LG(S)] + [DG(A), LG(S)] + [UG(A), LG(S)]

+ [LG(A), DG(S)] + [DG(A), DG(S)] + [UG(A), DG(S)]

+ [LG(A), UG(S)] + [DG(A), UG(S)] + [UG(A), UG(S)],

LG(S) = 0, and any term involving only DG and UG or only UG does not con-
tribute to LG([A,S]). Then, it is a non-trivial but straightforward calculation
to find that LG([DG(A), DG(S)]) = 0. This gives a linear system of equations
for LG(A). Since it will be of use in computing the metric tensor below, we
compute the determinant of this matrix in the following lemma.

Lemma 20. There exists a trivial mapping LG(A) → ξ ∈ Rn(n−1)/2−` defined
by ordering the elements of LG(A) so that when M is the matrix representation
for ξ 7→ LG ([A,S]) we have

detM = 4k(Λ) :=

 ∏
1≤i<j≤k

(λj − λi)

 ∏
1≤j<k≤`

4(1)
ij

 ∏
1≤i≤k,1≤j≤`

4(2)
ij


where λ1, . . . , λk are the real eigenvalues, µj = αj + iβj, βj > 0 are the complex
eigenvalues (in the upper half plane) and

4(1)
ij = |µj − µi|2|µj − µ̄i|2 = |µj − µi|2|µ̄j − µi|2,

4(2)
ij = |µj − λi|2.

Proof of Lemma 20. The important aspect of this is to choose the ordering.
First split

LG(A) =

(
A(1,1) 0
A(2,1) A(2,2)

)
.

We order the 2× 2 blocks of A(1,1) according to (6.2.2). Within each block we
use this same ordering. We then order the entries of A(2,2) according to (6.2.2).
Finally, we order the 1 × 2 blocks of A(2,1) according to (6.2.2) and within
each block we use this same ordering. This defines LG(A) 7→ ξ ∈ Rn(n−1)/2−`.
Define L = LG(LG(A), UG(S)) and decompose L into L(i,j), i = 1, 2, j = 1, 2
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in the same was as for LG(A). From the reasoning2 that went into (6.1.7), we
have that the (i, j) block of L(1,1) depends only on blocks (i′, j′) of A(1,1) for
(i′, j′) > (i, j) and entries in A(2,1). Similarly, the (i, j) entry of L(2,2) depends
only on entries (i′, j′) of A(2,2) for (i′, j′) > (i, j) and entries in A(2,1). Lastly,
one checks that block (i, j) of L(2,1) depends only on blocks (i′, j′) of A(2,1) for
(i′, j′) > (i, j). This gives a strong form of strict lower-triangularity for ξ 7→ L.

We now show that ξ 7→ K := LG(LG(A), DG(S)) is block-diagonal in a way
that does not overlap with this strict lower-triangularity. First, decompose K
into K(i,j), i = 1, 2, j = 1, 2 in the same was as for LG(A) and L. We obtain
the following relations for blocks of size 2× 2, 1× 1 and 1× 2, respectively:

K
(1,1)
ij = A

(1,1)
ij Rj −RiA(1,1)

ij ,

K
(2,2)
ij = A

(2,2)
ij (λj − λi),

K
(2,1)
ij = A

(2,1)
ij Rj − λiA(2,1)

ij .

The determinants of each of these linear transformations are

(αj − αi)4 + (δjγj − δiγi)2 + 2(αj − αi)2(δjγj + δiγi),

(λj − λi),
(αj − λi)2 + δjγj ,

respectively. For the non-real eigenvalues in the upper-half plane, we have
µj = αj + i

√
γjδj . This proves the lemma.

From this lemma, with our assumptions, we can uniquely find LG(A). But
as A is skew-symmetric, we have ` entries left undetermined. So, we consider

(OT Ẏ )2j,2j = (Ṡ + [A,S])2j,2j = (α̇j + (γj − δj)ṡ2j+1,2j) + f2j(LG(A)),

(OT Ẏ )2j+1,2j+1 = (Ṡ + [A,S])2j+1,2j+1 = (α̇j + (δj − γj)ṡ2j+1,2j) + f2j(LG(A)).

(6.1.10)

for some functions fj . As LG(A) is known, this gives a solvable system for α̇j
and s2j+1,2j , with determinant 2`

∏`
j=1(γj−δj). The remaining entries of Ṡ are

given through the relation

Ṡ = OT Ẏ O − [A,S].

We now can compute the volume form.

2The commutator of lower-triangular and upper triangular matrices at entry (i, j) only
depends on entries (i′, j′) of the lower-triangular matrix for j′ ≤ j with i = i′ and i′ ≥ i with
j = j′. With strict triangularity, fewer dependencies occur.
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Theorem 56. For Y ∈ Rn×n with k real eigenvalues,

DY = 2`|4k(Λ)|

∏̀
j=1

|γj − δj |

 DSDO, (6.1.11)

where

DS =
∏̀
j=1

dαjdγjdδj

k∏
j=1

dλj
∏

s∈UG(S)

ds, (6.1.12)

and DO refers to the same distribution as that of the eigenvectors of GOE(n),
i.e., Haar measure on O(n).

When we restrict to k real eigenvalues we use the notation

pGin,R,k(Y )DY =
1

Z
(k)
R,n

e−
1
4Y

TY 1{Y has k real eigenvalues}DY. (6.1.13)

Theorem 57. The real Schur decomposition of GinR(n) given k real eigenvalues
is

pGin,R,k(Y )DY =
2`

Z
(k)
R,n

e−
1
4 TrSTS |4k(Λ)|

∏̀
j=1

|γj − δj |

 DSDO. (6.1.14)

Note that this implies that the generalized upper-triangular entries of S are
all iid normal random variables.

6.1.4 QR decomposition of GinR(m,n)

It follows from the discussion in Section 6.1.2 that up to proportionality con-
stants

e−
β
4 TrY TY DY

QR−→ e−
β
4 TrRTR

ñ∏
j=1

Rm−j+1
jj DRDQ, β = 1, ñ = min{m,n},

where DR refers to standard Lebesgue measure on Rm+ × Rm(m−1)/2+m(m−n),
and DQ is Haar measure on O(n).

6.2 Singular value decomposition and the La-
guerre (Wishart) ensembles

Next, we turn to understanding the singular value decomposition of GinC(m,n)
and GinR(m,n). This is done by means of describing the eigenvalue and eigen-
vector distributions of the so-called Laguerre ensembles. The following gives the
singular value decomposition.
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Theorem 58. Every matrix Y ∈ Rm×n and X ∈ Cm×n has a decomposition

Y = QΣOT , X = UΣV ∗,

where Q ∈ O(m), O ∈ O(n), U ∈ U(m), V ∈ U(m) and Σ ∈ Rm×n is a diagonal
matrix with non-negative diagonal entries.

The entries in Σj of Σ are called the singular values of the matrix in question.

6.2.1 The Cholesky decomposition

To compute the singular value decomposition of GinR(m,n) and GinC(m,n) we
follow the approach of Edelman [10] and first compute the Cholesky decompo-
sition.

Theorem 59. Every strictly positive definite matrix A ∈ Rn×n (or Cn×n) has
a unique decomposition

A = LLT

where L ∈ Rn×n (or Cn×n) is a lower-triangular matrix with positive diagonal
entries.

Proof. We concentrate on the real case and we first show uniqueness. Assume
A = LLT = L1L

T
1 for two different factorizations. Then

L−1
1 L = LT1 L

−T , where L−T = (L−1)T .

Since the non-singular upper- and lower-triangular matrices for groups, the left-
hand (right-hand) side is lower-triangular (upper-triangular). Therefore L−1

1 L
is a diagonal matrix that is equal to its own transpose-inverse: ejL

−1
1 Lej = ±1.

Positivity of the diagonal entries gives L1 = L. Now, by Gaussian elimina-
tion, without pivoting3 A = L̃U where L̃ is lower-triangular and U is upper-
triangular. Here L̃ has ones on the diagonal. We know that eTj Aej > 0

and therefore eTj L̃Uej = Ujj > 0. Then Let Ud = diagonal(U)1/2 and A =

L̃UdU
−1
d U . It follows from the symmetry of A that L = L̃Ud gives the Cholesky

factorization. Similar considerations follow for A ∈ Cm×n.

Change of variables for GinC(m,n)

We now consider the change of variables that closely resembles the singular
value decomposition, but differs in a fundamental way. For X ∈ Cm×n, full
rank, define

X = UT
QR7→ (U, T )

Inv. Cholesky7→ (U,A = T ∗T ) = (U, V ΛV ∗)
Spectral map7→ (U,Λ, V ).

(6.2.1)

3Pivoting is not required for strictly positive definite matrices because the upper left `× `
blocks are non-singular for every `.
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This is a well-defined, invertible mapping, provided that the first row of V con-
tains non-vanishing entries. It will follow from Section 6.2.2 that the probability
of this is one. But we emphasize that for this decomposition X 6= UΛV ∗, gen-
erally. We now show that if X ∼ GinC(m,n) then U,Λ, V are independent and
we then characterize the distribution of Λ and V .

Lemma 21 (Spectral variables for Her+(n)). If A ∈ Her+(n) is non-singular
with distinct eigenvalues then

TAHer+(n) ∼= Rn ⊕ PTIU(n).

Proof. The proof is essentially the same as Lemma 6, just using that the set of
strictly positive definite matrices is open.

We define DA in the natural way as the volume form induced by the metric
tensor Tr dA2. We then have the analogous formula to Theorem 15:

DA = |4(Λ)|2 DΛ DU.

Next, we compute the volume form associated with the change Cholesky change
of variables.

Lemma 22. Let A = LL∗ be the Cholesky decomposition for a non-singular
A ∈ Her+(n). Let DL be the natural volume form induced by Tr(dL∗dL). Then

DA = 2n
n∏
j=1

L
2(n−j)+1
jj DL.

Proof. We prove this by identifying that the Jacobian of the transformation is
triangular, and computing the diagonal entries. We first compute for j ≥ k

∂A

∂ReLjk
= eje

T
k L
∗ + Leke

T
j ,

∂A

∂ImLjk
= eje

T
k L
∗ − LekeTj .

Examine the structure of these matrices. Since eje
T
k L
∗ is the matrix that con-

tains the kth row of L∗ in its jth row, with all other row being zero we find the
following picture

∂A

∂ReLjk
=



0
...
0
Lkk
Lk+1,k

...
Lj−1,k

0 · · · 0 Lkk Lk+1,k · · · Lj−1,k 2ReLjk · · ·
...



.
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Here only the jth row and jth column have non-zero entries. Here 2ReLjk is
in the (j, j) entry. A similar picture holds for ∂A

∂ImLjk
, with 2ImLjk in the (j, j)

entry. We define a mapping ReL 7→ ξ ∈ Rn(n−1)/2 and ImL 7→ η ∈ Rn(n−3)/2 by
the ordering of the non-zero elements of L:

(j, k) < (j′, k′) if j < j′,

(j, k) < (j , k′) if k < k′.
(6.2.2)

This orders first by row, and then by columns within each row. Assume (i, `) <
(j, k), j ≥ k, i ≥ `. Then

∂Ai`
∂ReLjk

= 0,
∂Ai`
∂ImLjk

= 0.

because either i < j or ` < k′ if i = j. And, it is clear that

∂Ajk
∂ReLjk

= Lkk, j > k,
∂Ajk
∂ReLjk

= 2Lkk, j = k,

∂Ajk
∂ImLjk

= Lkk, j > k.

Then, if we define L 7→ ζ where ζ = (ξ1, η1, ξ2, η2, . . .)
T we find that the Jacobian

is triangular and

∂A

∂L
= 2n

n∏
j=1

L
2(n−j)+1
jj .

This theorem allows one to understand transformations of GinC(m,n). Fol-
lowing the transformation (6.2.1), with X ∈ Cm×n with m ≥ n using T = L∗

noting that

T =

(
T̃
0

)
.

where T̃ is a upper-triangular matrix with positive diagonal entries. Then

DX
QR−→

n∏
j=1

T
2(m−j)+1
jj DT DŨ = 2−n

n∏
j=1

T
2(m−n)
jj DADŨ (6.2.3)

= 2−n
n∏
j=1

σ
2(m−n)
j |4(Σ2)|2DΣ DŨ DV. (6.2.4)

Here DŨ is Haar measure on U(n) and DV represents the same distribution as
the eigenvectors of GUE(n). Also, DΣ is Lebesgue measure on Rn+. As noted
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below (6.2.1), this is not the singular value decomposition for X, but we claim,
it is in a distributional sense. For X ∼ GinC(m,n), m ≥ n and consider

X = U1ΣV, X̃ := UΣV

where (U, V,Σ) are independent with joint distribution (6.2.4), U1 is the matrix
of left singular vectors for X, and U is independent of U1. Then X̃ = UU∗1X,
but then by the invariance of U , for measureable sets S1 ⊂ U(m), S2 ⊂ Cm×m,

P(UU∗1 ∈ S1) = P(U ∈ S1U1) = P(U ∈ S1),

P(UU∗1 ∈ S1,X ∈ S2) = P(U ∈ S1U1, X ∈ S2)

=

∫
S2

(∫
S1U1

DU

)
pGin,C(X)DX = P(U ∈ S1)P(X ∈ S2).

So, UU∗1 is independent of X and therefore X̃ must have the same distribution
as X. This implies the singular value decomposition of GinC(m,n) is given by
(6.2.4).

Remark 60. If one wants to match of dimensions, then DU should be replaced
by the push-forward of uniform measure on Sm−1

C ×Sm−2
C × · · · ×Sm−n−1

C onto
U(m) via Householder reflections.

Change of variables for GinR(m,n)

Similar considerations show for Y = QΣOT ∼ GinR(m,n) the singular value
distributions are given by

DY
QR−→ 2−n

n∏
j=1

Σm−nj |4(Σ2)|DΣ DQDO

where DO is Haar measure on U(n), DQ is Haar measure on O(m) and DΣ is
as before.

In both cases, GinR(m,n) or GinC(m,n), if m < n, then same distribu-
tional description holds with the addition of n − m point masses at zero for
Σ1, . . . ,Σn−m (depending one’s ordering convention) to indicate the deficiency
of the matrix.

6.2.2 Bidiagonalization of Ginibre

Consider X ∼ GinC(m,n) or Y ∼ GinR(m,n), m ≥ n, and consider the sample
covariance matrices X∗X/m and Y TY/m.

Theorem 61. Let x1, . . . , xn be the unordered eigenvalues of X∗X/m (β = 2)
or Y TY/m (β = 1). The following gives their joint marginal distribution

1

Zn(β)

n∏
j=1

x
β
2 (m−n)− 1

2
j

∏
j<k

|xj − xk|βe−
βm
4

∑n
j=1 xj1{xj≥0, for all j}dx1 · · · dxn.

(6.2.5)
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We now consider the reduction of GinC(m,n) and GinR(m,n) to bidiagonal
matrices and, in the process, find a generalization of (6.2.5) to general β. This
is sometimes called Golub–Kahan bidiagonalization. The aim here is not to
preserve eigenvalues, but to preserve singular values as transformations are per-
formed. So, we can perform independent Householder reflections from the left
and the right. Recall the definition of P (Y ) from (6.1.2). Let Y ∼ GinR(m,n)
for m ≥ n. Consider the iterative method

Y0 = Y,

Ỹ1 = Q1Y0 := P (Y0)Y0,

Y T1 = Q̃1Ỹ
T
1 :=

(
1 0

0 P
(

[Ỹ T1 ]n−1,m−1

))
Ỹ T1 ,

Ỹ2 = Q2Y1 :=

(
1 0
0 P ([Y1]m−1,n−1)

)
Y1,

...

Ỹj = QjYj−1

(
Ij−1 0

0 P ([Yj−1]m−j+1,n−j+1)

)
Yj−1,

Y Tj = Q̃j Ỹ
T
j−1 :=

(
Ij 0

0 P
(

[Ỹ Tj ]n−j,m−j

))
Ỹ Tj−1.

(6.2.6)

The algorithm terminates when j = n− 1, returning Yn−1 which is a bidiagonal
matrix. Let (Yn)jj = cj and (Yn)j,j+1 = dj for j = 1, 2, . . .. We find that

(Qj , Q̃j , cj , dj)j≥1 is an independent set of random variables, with Qj being

defined by vj ∈ Sn−jR and Q̃j being defined by ṽj ∈ Sn−j−1
R (Qn−1 gives a sign

flip of one entry). Under this change of variables, following the arguments for
(3.3.3), we have

DY ∝
n∏
j=1

cm−jj dcj

n−1∏
k=1

dn−k−1
k ddk

n−2∏
l=1

Dω̃k

n−1∏
p=1

Dωp,

where Dω̃l and Dωp denote uniform measure on SlR and SpR, respectively. Simi-
larly, by applying this algorithm to X ∼ GinC(m,n) we find

DX ∝
n∏
j=1

c
2(m−j)+1
j dcj

n−1∏
k=1

d
2(n−k)−1
k ddk

n−2∏
l=1

Dω̃k

n−1∏
p=1

Dωp,

where Dω̃l and Dωp denote uniform measure on SlC and SpC, respectively.

6.2.3 Limit theorems

Circular law

We now describe the global eigenvalue distribution for GinC(n) as n→∞. We
have the following distribution on the (unordered) eigenvalues Z = (z1, z2, . . . , zn)
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from (6.1.8)

P̂ (n)(z1, . . . , zn)Dz =
1

Zn
|4(Z)|2e−

1
2

∑n
j=1 |zj |

2
n∏
j=1

dRe zjdIm zj .

Owing to the calculations that result in Theorem 35 we have

P̂ (n)(z1, . . . , zn) =
1

n!
det(K̂n(zj , zk)1≤j,k≤n),

R̂(n)
m (z1, . . . , zm) = det(K̂n(zj , zk)1≤j,k≤m), 1 ≤ m ≤ n,

K̂n(z, w) =

n−1∑
j=0

cjΦj(z)Φj(w), Φj(z) = cjz
je−

1
4 |z|

2

.

where R̂
(n)
m is the m-point correlation function defined by (4.1.4) with P̂ (n)

instead of P (n) and dRe zjdIm zj instead of dxj . To show that this is the correct

choice for K̂n and to determine cj we need to show that {Φj}n−1
j=0 are orthogonal

and choose cj > 0 to normalize the functions. Consider for j < k∫
C

Φj(z)Φk(z) dRez dImz = cj c̄k

∫
C
z̄k−j |z|2je− 1

2 |z|
2

dRez dImz

= cj c̄k

∫ ∞
0

(∫ 2π

0

(cos θ + i sin θ)k−jdθ

)
rk+j+1e−

1
2 |r|

2

dRez dImz = 0.

If j = k we find∫
C
|Φj(z)|2 dRez dImz = |cj |2

∫
C
|z|2je− 1

2 |z|
2

dRez dImz,

and using r =
√

2s∫
C
|z|2je− 1

2 |z|
2

dRez dImz = 2π

∫ ∞
0

r2j+1e−
1
2 r

2

dr = 2j+1π

∫ ∞
0

sje−sds

= 2j+1πΓ(j + 1) = 2j+1j!π

so

cj =
1

2j/2+1/2
√
πj!

, cj
1√

2
√
j + 1

= cj+1.

So, we find a simple two-term recurrence formula

Φj+1(z) =
z√

2
√
j + 1

Φj(z), Φ0(z) =
1√
2π
.

The corresponding Christoffel-Darboux-type formula is

K̂n(z, w) =
ezw̄/2

2π

Γ(n, zw̄/2)

(n− 1)!
e−

1
4 (|z|2+|w|2).
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where Γ(n, z) =
∫∞
z
tn−1e−tdt is the incomplete Gamma function. To see this

let fn(z) = ezΓ(n, z), and we find

f (j)
n (0) = (n− 1)!, j = 0, 1, 2, . . . , n− 1,

f (j)
n (0) = 0, j ≥ n,

so that

fn(z) =

n−1∑
j=0

(n− 1)!

j!
zj .

Define the rescaled empirical spectral measure

L̂n(Dz) =
1

n

n∑
k=1

δλk/
√

2n(Dz), Dz = dRez dImz.

It then follows that for f ∈ C0(C) by (4.1.3)

E
(∫

f(z)L̂n(Dz)

)
=:

∫
f(z)ELn(Dz) = 2

∫
f(z)K̂n(z

√
2n, z

√
2n)Dz.

We then perform the asymptotic analysis of this density. Consider

Γ(n, zz̄/4)
z 7→z

√
2n−→
∫ ∞
n|z|2

tn−1e−tdt.

Then ∫ ∞
n|z|2

tn−1e−tdt = nn
∫ ∞
|z|2

tn−1e−ntdt = nn
∫ ∞
|z|2

t−1e−ng(t)dt,

where g(t) = t − log t. The stationary phase point here is t = 1, g′(1) = 0 and
g′′(1) = 1. So, if |z| ≤ 1 − ε, the stationary phase point is in the interval of
integration and

nn
∫ ∞
|z|2

t−1e−ng(t)dt = e−nnn−1/2
√

2π(1 +O(n−1)) = e−nnn−1
√

2πn(1 +O(n−1))

= (n− 1)!(1 +O(n−1))

uniformly as n → ∞ by Stirling’s approximation. Then for |z| ≥ 1 + ε, by
integrating by parts

In(z) :=

∫ ∞
|z|2

tn−1e−ntdt =
1

n
|z|2n−2e−n|z|

2

+
n− 1

n

∫ ∞
|z|2

tn−2e−ntdt

≤ 1

n
|z|2n−2e−n|z|

2

+
n− 1

n
In(z).

Therefore

In(z) ≤ |z|2n−2e−n|z|
2

.

From these estimates, the following lemma follows.
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Lemma 23. Fix 0 < ε < 1. As n→∞, for |z| ≤ 1− ε

2K̂n(z
√

2n, z
√

2n) =
1

π
+O(n−1),

uniformly. As n→∞, for |z| ≥ 1 + ε

2K̂n(z
√

2n, z
√

2n) = O(n−1),

uniformly.

This shows that (see Exercise 4.9)

ELn(Dz)→ 1

π
1{|z|≤1}Dz

weakly. This is the averaged circular law.

Marchenko–Pastur law

Again, consider X ∼ GinC(m,n) or Y ∼ GinR(m,n), m ≥ n, and consider the
sample covariance matrices X∗X/m and Y TY/m, and let x1, . . . , xn be their
unordered eigenvalues. Define the empirical spectral measure

Ln(dx) =
1

n

n∑
j=1

δxj (dx).

Assume further that n/m→ d ∈ (0, 1]. The Marchenko–Pastur law states that

ELn(dx)→ pMP(x; d)dx :=
1

2πd

√
|(λ+ − x)(x− λ−)|1[λ−,λ+]

x2
dx, λ± = (1±

√
d)2,

weakly as n→∞. If d = 0, then the limiting law is δ0(dx), by the Law of Large
Numbers.



100 CHAPTER 6. OTHER RANDOM MATRIX ENSEMBLES



Chapter 7

Sampling random matrices

7.1 Sampling determinantal point processes

7.2 Sampling unitary and orthogonal ensembles

7.3 Brownian bridges and non-intersecting Brow-
nian paths
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Appendix A

The Airy function

A.1 Integral representation

There are several different conventions for the definition of the Airy function.
The standardization adopted here follows [1]. The Airy function, Ai(x) is defined
as the oscillatory integral

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt =

1

π
lim
b→∞

∫ b

0

cos

(
t3

3
+ xt

)
dt. (A.1.1)

This is an improper integral, that is, the integral converges conditionally, not
absolutely. In order to obtain an absolutely convergent integral, it is necessary
to work in the complex plane. Let C denote a contour in the complex plane
that starts and ends at the point at infinity, and is asymptotically tangent to
the rays e−iπ/3 and e+iπ/3 respectively. Then first setting t = −iz and then
deforming the contour, we have

Ai(x) =
1

2πi

∫ ∞
−∞

e
i
(
z3

3 −xz
)

dz =
1

2πi

∫
C

e
i
(
z3

3 −xz
)

dz. (A.1.2)

The integral is absolutely convergent for every x ∈ C on the contour C. Indeed,
with z = reiθ,

∣∣∣∣ei
(
z3

3 −xz
)∣∣∣∣ ≤ e|x|re−r

3 cos(3θ)/3 ∼ e−r
3/3er|x| (A.1.3)

as z →∞ along the rays θ = ±π/3. Thus, Ai(x) is an entire function.
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A.2 Differential equation

We differentiate under the integral sign (justified by (A.1.3)) and integrate by
parts to obtain

Ai′′(x) =
1

2πi

∫
C

z2e

(
z3

3 −xz
)
dz (A.2.1)

=
1

2πi

∫
C

d

dz
e
z3

3 e−xz dz = − 1

2πi

∫
C

e
z3

3
d

dz
e−xz dz = xAi(x).

Thus, Ai(x) satisfies the Airy differential equation

y′′ = xy, x ∈ C. (A.2.2)

This differential equation has a scaling invariance: if y(x) is a solution, so are
y(ωx) and y(ω2x) where ω = e2πi/3 is a cube root of unity. Thus, both Ai(ωx)
and Ai(ω2x) solve (A.2.2). Each of these solutions is linearly independent of
Ai(x). A solution to (A.2.2) that is real when x is real, and is linearly indepen-
dent from Ai(x), is obtained from the linear combination

Bi(x) = eπi/6Ai(ωx) + eπ−i/6Ai(ω2x). (A.2.3)

A.3 Asymptotics

The functions Ai(x) and Bi(x) have the following asymptotic properties.

Asymptotics as x→∞.

ζ =
2

3
x

3
2 , Ai(x) ∼ e−ζ

2x
1
4
√
π
, Bi(x) ∼ x

1
4
√
π
eζ . (A.3.1)

Asymptotics as x→ −∞.

ζ =
2

3
(−x)

3
2 , Ai(x) ∼ 1

x
1
4
√
π

sin
(
ζ +

π

4

)
, Bi(x) ∼ 1

x
1
4
√
π

cos
(
ζ +

π

4

)
.

(A.3.2)



Appendix B

Hermite polynomials

In this chapter, µ denotes the weight function

µ(dx) =
1√
2π

e−
x2

2 dx. (B.0.1)

The (probablilists’) Hermite polynomials {hk}∞k=0 are the monic family of poly-
nomials of degree k orthogonal with respect to the weight µ.

B.1 Basic formulas

hk(x) = e
x2

2

(
− d

dx

)k
e
−x2
2 . (B.1.1)

hk(x) =
1√
2π

∫
R

(−iξ)ke−
1
2 (ξ−ix)2 dξ. (B.1.2)

1√
2π

∫
R
hk(x)hl(x)e−

x2

2 dx =
√

2πk!δkl. (B.1.3)

xhk(x) = hk+1(x) + khk−1(x), k ≥ 1. (B.1.4)

h′k(x) = khk−1(x). (B.1.5)

h′′k(x)− xh′k(x) + khk(x) = 0. (B.1.6)

k−1∑
j=0

1

j!
hj(x)hj(y) =

(hk(x)hk−1(y)− hk−1(x)hk(y))

(k − 1)!(x− y)
, x 6= y. (B.1.7)
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Relation (B.1.1) may be treated as an alternate definition of the Hermite poly-
nomials. On the other hand, since we have defined the Hermite polynomials
as the monic orthogonal polynomials obtained by applying the Gram-Schmidt
procedure to the set {1, x, x2, . . .} in L2(R, µ), equation (B.1.1) may be verified
as follows. First, it is clear from (B.1.1) that hk(x) is a monic polynomial of
degree k and that h0(x) = 1, h1(x) = x. By induction, if it has been established
that property (B.1.1) defines the Hermite polynomials for j ≤ k − 1, then it is
only necessary to show that the monic polynomial

Pk(x) = e
x2

2

(
− d

dx

)k
e−

x2

2 ,

is the same as hk. The polynomial Pk is orthogonal to hj , 0 ≤ j ≤ k−1 because,
using integration by parts,∫

R
Pk(x)hj(x)µ(dx) =

∫
R

(
d

dx

)k
hj(x)µ(dx) = 0,

since Hj has degree less than k. Since Pk is monic, it must be hk. The same
calculation serves to establish (B.1.3).

The integral representation (B.1.2) follows from the formula for the Fourier
transform of a Gaussian

e−
x2

2 =
1√
2π

∫
R

eiξxe−
ξ2

2 dξ, (B.1.8)

and the identity (B.1.1).
The two-term recurrence relation follows from (3.4.18) and (B.1.3) (see also

Remark 29). The coefficient ak vanishes because equation (B.1.1) shows that
h2
k is an even polynomial for all k. The coefficient b2k may be rewritten

b2k =

∫
xhk−1(x)hk(x)µ(dx)∫

h2
k−1µ(dx)

=

∫
xhk−1(x)hk(x)µ(dx)∫

h2
kµ(dx)

∫
h2
k(x)µ(dx)∫
h2
k−1µ(dx)

= 1 · k2,

(B.1.9)
by (B.1.3).

The differential equation (B.1.5) is obtained by rewriting (B.1.1) in the form

e−
x2

2 hk(x) = (−1)k
(

d

dx

)k
e−

x2

2 ,

differentiating both sides, and then multiplying by e
x2

2 . Equation (B.1.6) is ob-
tained by differentiating (B.1.5) and using (B.1.4). The proof of the Christoffel-
Darboux identity is left as an exercise to the reader.

B.2 Hermite wave functions

The Hermite wave functions {ψ}∞k=0 are defined by

ψk(x) =
1√
k!

e−x
2/4

(2π)1/4
hk(x), k = 0, 1, 2, . . . (B.2.1)
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The following properties of the Hermite wave-functions follow immediately from
the corresponding properties of the Hermite polynomials.

∫
R
ψk(x)ψl(x) dx = δkl. (B.2.2)

xψk(x) =
√
k + 1ψk+1(x) +

√
kψk−1(x). (B.2.3)

ψ′k(x) = −x
2
ψk(x) +

√
kψk−1(x). (B.2.4)

ψ′′k (x) +

(
k +

1

2
− x2

4

)
ψk(x) = 0. (B.2.5)

n−1∑
k=0

ψk(x)ψk(y) =
√
n

(ψn(x)ψn−1(y)− ψn−1(x)ψn(x))

x− y
. (B.2.6)

B.3 Small x asymptotics

The following classical formulas capture the asymptotics of the Hermite poly-
nomials near the origin [1, §22.15].

lim
n→∞

(−1)n

2n

√
n

n!
h2n

(
x√
2n

)
=

1√
π

cosx. (B.3.1)

lim
n→∞

(−1)n

2n n!
h2n+1

(
x√
2n

)
=

√
2

π
sinx. (B.3.2)

Further, the convergence to the limit is uniform over x in a bounded interval.
In comparing equations (B.3.1) and (B.3.2) with a standard reference such

as [1], the reader should note that there are two conventions in the definition
of Hermite polynomials. The exponential weight in earlier sources was chosen
to be e−x

2

, which differs from our choice (B.0.1). The relation between the
Hermite polynomials, {Hn(x)} in [1], and those used here are:

Hn(x) = 2
n
2 hn(x

√
2), hn(x) = 2−

n
2 Hn

(
x√
2

)
. (B.3.3)

These formulas may be immediately translated into asymptotic formulas for
the Hermite wave functions, using Stirling’s approximation for the factorial:

n! =
√

2πn
(n

e

)n
(1 +O(n−1)) as n→∞. (B.3.4)
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lim
n→∞

(2n)1/4(−1)n ψ2n

(
x√
2n

)
=

1√
π

cosx. (B.3.5)

lim
n→∞

(2n)1/4(−1)nψ2n+1

(
x√
2n

)
=

1√
π

sinx. (B.3.6)

The asymptotic formulas (B.3.1) and (B.3.2) are proved by applying Laplace’s
method to the integral formula (B.1.2). We only explain how to prove (B.3.1)
since equation (B.3.2) is similar. Since (i)2n = (−1)n, we take the real part
of (B.1.2) to find

(−1)2nh2n

(
x√
2n

)
=

√
2

π
e
x2

4n

∫ ∞
0

ξ2ne−
ξ2

2 cos

(
xξ√
2n

)
dξ

=
2n+1nn+ 1

2

√
π

∫ ∞
0

e−n(t2−2 log t) cosxt dt, (B.3.7)

by rescaling ξ =
√
n t. We now apply Laplace’s method to the integral above.

The function g(t) = t2 − 2 log t has a single minimum on the interval (0,∞) at
t = 1. At this point

g(1) = 1, g′(1) = 0, g′′(1) = 4. (B.3.8)

Laplace’s approximation now yields∫ ∞
0

e−ng(t) cosxt dx ∼ e−n
√

π

2n
cosx, (B.3.9)

which when combined with (B.3.7) implies

(−1)2nh2n

(
x√
2n

)
∼ 2n+ 1

2nne−n cosx. (B.3.10)

Equation (B.3.10) is equivalent to (B.3.1) by Stirling’s approximation (B.3.4).
Further, it is easy to check that the error is uniformly small for x in a bounded
set.

B.4 Steepest descent for integrals

Consider the integral ∫
Γ

f(t)e−nΦ(t)dt (B.4.1)

where f and Φ are entire functions. Assume Φ(t∗) = 0, Φ′(t∗) = 0, Φ′′(t∗) 6= 0,
ImΦ(t) = 0 for t ∈ Γ. Further assume Γ is the path of steepest ascent for Φ,
i.e. the path of steepest descent for −Φ(t). Having ImΦ(t) = 0 is enough to
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ensure that Γ is either the path of steepest ascent (locally) or steepest descent:
Let t = x(s) + iy(s) be a smooth local parameterization of Γ, then by the
Cauchy–Riemann equations

0 =
d

ds
ImΦ(t) = ImΦx(t)

dx

ds
+ ImΦy(t)

dy

ds
= −ReΦx(t)

dx

ds
+ ReΦx(t)

dy

ds
.

This shows that ∇ReΦ is orthogonal to the tangent vector (−y′(s), x′(s)), im-
plying that Γ is in the direction of greatest increase/decrease for ReΦ.

Performing a Taylor expansion, we have

Φ(t) =
Φ′′(t∗)

2
(t− t∗)2(1 +O(|t− t∗|). (B.4.2)

The point is that Φ is locally quadratic at t∗ and we use this to inform the
change of variables. But if we näıvely looked to solve

Φ(t∗ + v) = s2,

for v as a function of s, v(0) = 0, we would fail. The implicit function theorem
fails because we have two solution branches! Instead we consider

Φ(t∗ + sv)

s2
− 1 = 0 =

Φ′′(t∗)

2
v2 − 1 +O(|sv3|). (B.4.3)

We can choose v = ±R−1/2e−iφ/2 where Φ′′(t∗)
2 = Reiφ. For either choice, we can

apply the implicit function theorem (the derivative with respect to v, evaluated
at (s, v) = (0,±R−1/2e−iφ/2) does not vanish). We use v = ±R−1/2e−iφ/2 to
obtain v(s), and our local parameterization of Γ: t(s) = t∗ + sv(s). We use
this a change of variables, within a neighborhood B(t∗, ε) on which the implicit
function theorem applies (here we assume the orientation of Γ is the same as
the induced orientation on t((−δ1, δ2)))∫

Γ\B(t∗,ε)

f(t)e−nΦ(t)dt =

∫ δ2

−δ1
f(t∗ + sv(s))e−ns

2 ds

v(s) + sv′(s)
, δ1, δ2 > 0.

(B.4.4)

Now let δ = min{δ1, δ2}. It follows that on Γδ = Γ \ t(−δ, δ), Φ(t) ≥ δ2. Then∣∣∣∣∫
Γδ

f(t)e−nΦ(t)dt

∣∣∣∣ ≤ e−nδ
2

∫
Γδ

|f(t)|e−n(Φ(t)−δ2)dt. (B.4.5)

For n ≥ 1, we have∫
Γδ

|f(t)|e−n(Φ(t)−δ2)dt ≤
∫

Γδ

|f(t)|e−(Φ(t)−δ2)dt := M. (B.4.6)

And therefore (B.4.5) is exponentially small in n, less than Me−nδ
2

. Now,
consider ∫ δ

−δ
f(t∗ + sv(s))e−ns

2

(v(s) + sv′(s)) ds (B.4.7)
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and we can directly apply Laplace’s method. Taylor expand the function

f(t∗ + sv(s))(v(s) + sv′(s))

at s = 0, and term by term integration gives an expansion in powers of n−1/2

with the leading order term being∫
Γ

f(t)e−nΦ(t)dt

=

∫ δ

−δ
f(t∗ + sv(s))e−ns

2

(v(s) + sv′(s))ds+O(n−α)

=

∫ δ

−δ
f(t∗)v(0)(1 +O(s))e−ns

2

ds+O(n−α), for all α > 0. (B.4.8)

Performing a change of variables s = y/
√

2n we have∫ δ

−δ
e−ns

2

ds =

∫ √2nδ

−
√

2nδ

e−y
2/2dy =

√
π

n
+O(n−α), for all α > 0,∫ δ

−δ
|s|e−ns

2

ds =
1√
2n

∫ √2nδ

−
√

2nδ

|y|e−y
2/2dy =

C

n
+O(n−α), for all α > 0.

So, we have∫
Γ

f(t)e−nΦ(t)dt =

√
2π

n
f(t∗)|Φ′′(t∗)|−1/2e−iφ/2 +O(n−1) as n→∞. (B.4.9)

B.5 Plancherel–Rotach asymptotics

Another asymptotic regime is obtained when we consider x = O(
√
n) and let

n→∞. Plancharel–Rotach asymptotics refer to the asymptotics of polynomials
scaled by their largest zero. The limit is oscillatory or exponential depending
on the range of x. This is to be expected: for each n, the polynomial hn(x),
and thus the wave function ψn(x), has n zeros. The largest and smallest of the
zeros are approximately ±

√
(n+ 1/2). The oscillatory regime is obtained when

x(n + 1/2)−1/2 lies well within the interval (−1, 1). Outside this interval, the
Hermite wave function decays exponentially fast. A more delicate calculation,
using the Airy function, is required to understand the transition from oscillatory
to exponential behavior.

We will prove a weaker version of the Plancherel-Rotach formulas, that suf-
fices for our needs. These formula are as follows.

Case 1. Oscillatory behavior.

x = 2 cosϕ, 0 < ϕ < π. (B.5.1)

n
1
4ψn+p

(
x
√
n
)
∼ 1√

π sinϕ
cos

[
n

(
ϕ− 1

2
sin 2ϕ

)
+

(
p+

1

2

)
ϕ− π

4

]
.

(B.5.2)
The convergence is uniform for ϕ in a closed subset of (0, π).
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Case 2. Exponential decay.

|x| = 2 coshϕ, 0 < ϕ. (B.5.3)

n
1
4ψn+p

(
x
√
n
)
∼ e(p+ 1

2 )ϕ

√
2π sinhϕ

e−
n
2 (e2ϕ+1−2ϕ). (B.5.4)

The convergence is uniform for ϕ in a compact subset of (0,∞). Observe
that e2ϕ − 2ϕ− 1 > 0 when ϕ > 0, ensuring exponential decay.

Case 3. The transition region.

x = 2
√
n+

s

n
1
6

s ∈ C, (B.5.5)

n1/12−p/2ψn(x
√
n) (B.5.6)

=

√
n!

(n+ p)!

(
Ai(s) + n−1/3

(
1

2
− p
)

Ai′(s) +O(n−2/3)

)
.

(B.5.7)

The convergence is uniform for s in a compact subset of C.

All three asymptotic relations are obtained by the method of steepest descent
for integrals. Assume x ∈ R. We fix an integer p, use the integral identity
(B.1.2) with k = n+ p, and rescale ξ = nt to obtain

hn+p

(
x
√
n
)

=
(
−i
√
n
)n+p

√
n

2π

∫ ∞
−∞

tn+pe−
n
2 (t−ix)2 dt (B.5.8)

=
(
−i
√
n
)n+p

√
n

2π

(∫ ∞
0

tn+pe−
n
2 (t−ix)2 dt+ (−1)n+p

∫ ∞
0

tn+pe−
n
2 (t+ix)2 dt

)
:=
(
−i
√
n
)n+p

√
n

2π

(
In,p(x) + (−1)n+pIn,p(−x)

)
. (B.5.9)

The integral In,p(x) may be rewritten in the form

In,p(x) =

∫ ∞
0

tpe−ng(t) dt, g(t) =
1

2
(t− ix)2 − log t. (B.5.10)

As is usual, the first step is to determine the critical points where g′(t) = 0.
This reduces to the quadratic equation t2 − ixt − 1 = 0. The three distinct
asymptotic limits arise from the three distinct possibilities for the roots.

(a) |x| < 2. The function g has two critical points on the unit circle, given by

t± =
ix±

√
4− x2

2
= ie∓iϕ, (B.5.11)

where x and ϕ are related through (B.5.1).
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t+t−

0

π
4 −

ϕ
2

(0,∞)

Γ

Figure B.5.1:

(b) |x| > 2. The two critical points lie on the imaginary axis, and may be
written in the form

t± = i

(
x±
√
x2 − 4

2

)
= i sgn(x)e±ϕ, (B.5.12)

where each branch of ϕ is defined through the relation (B.5.3).

(c) |x| = 2. The two critical points coalesce into a single value t = i. A further
blow-up is necessary to obtain the Airy asymptotics (B.5.6).

Let us first consider the integral In,p(x) in case (a), and assume that x > 0
to be concrete. We deform the integral over (0,∞) a contour Γ which is the
path of steepest descent that passes through the critical point t+ as shown in
Figure B.5.1. The existence of such a contour may be deduced by continuity,
beginning with the observation that when x = 0, Γ is simply the segment (0,∞)
along the real line. While in general, Γ is given by the equation Im(g(t)) =
Im(g(t+)). It is not important for us to solve for the contour explicitly: all
that is required is to understand the phase of g′′(t+), check that 0 ∈ Γ and the
integral over (0,∞) can be deformed to an integral over Γ.

It is easy to check that when |x| < 2

g′′(t+) = 1 +
1

t2+
= 1− e2iϕ =

(
−ieiϕ

)
(2 sinϕ) . (B.5.13)

Thus, we have

In,p(x) =

∫ ∞
0

tpe−ng(t) dt = e−ng(t+)

∫
Γ

tpe−n(g(t)−g(t+)) dt

= e−ng(t+)tp+
dt

ds

∣∣∣∣
t+

∫ ∞
−∞

e−
n
2 |g
′′(t+)|s2 ds+O(n−1). (B.5.14)
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t+

t−

0 (0,∞)

Figure B.5.2:

In the second line, we have used the fact that Im(g(t)−g(t+)) = 0 on Γ, and we
have further approximated the integral over Γ by an integral over the tangent
to Γ at t+. More precisely, the approximation here is

g′′(t+)(t− t+)2 = |g′′(t+)|s2,

which implies
dt

ds

∣∣∣∣
t+

= ei(π4−
ϕ
2 ). (B.5.15)

We now combine the values

t+ = ie−iϕ, g(t+) = −e2iϕ

2
+ i
(
ϕ− π

2

)
,

with (B.5.14) and (B.5.15) to obtain

In,p(x) ∼ e
n
2 cos 2ϕ

√
π

n sinϕ
ei(n2 sin 2ϕ+(n+p+ 1

2 )(π2−ϕ)). (B.5.16)

Finally, since x is real, we have In,p(x) = In,p(−x). We combine (B.5.9) with
(B.5.16) to obtain

hn+p(x
√
n) ∼ n

n+p
2

√
2

sinϕ
e
n
2 cos 2ϕ cos

[
n

(
ϕ− 1

2
sin 2ϕ

)
+

(
p+

1

2

)
ϕ− π

4

]
,

(B.5.17)
where x and ϕ are related via (B.5.1). We now use (B.2.1) and Stirling’s ap-
proximation (B.3.4) to obtain (B.5.2).

The asymptotics in case (b) are obtained as follows. We make the change of
variables (B.5.3), and deform the domain of integration for In,p to the contour
consisting of two straight lines shown in Figure B.5.2. So see that this is enough,
we have that g′′(t+) > 0 while g′′(t−) < 0. So the path of steepest ascent
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(descent for −g) through t− is the imaginary axis. Then, the steepest ascent
path through t+ makes a right angle with the imaginary axis. And one can check
that the real part of g(t) is strictly increasing along the contour t+ + i[0,∞).
The dominant contribution comes from t−. The remaining calculations are left
to the reader. The final asymptotic relation is

hn+p(x
√
n) = n

n+p
2

e−
n
2

√
sinhϕ

e(p+ 1
2 )ϕ−n2 (sinh(2ϕ)−2ϕ)(1 + o(1)), (B.5.18)

which combines with (B.2.1) and Stirling’s approximation (B.3.4) to yield (B.5.4).

We now turn to case (c). We begin with the integral representation(B.5.8)
and substitute

t = i +
r

n
1
3

, x = 2
√
n+

s

n
1
6

, (B.5.19)

moving the integral over R to an integral over the line i + R, to obtain

hn(x
√
n) = (−i

√
n)n

n
1
6

√
2π

∫ ∞
−∞

enh(r) dr, (B.5.20)

where

h(r) = log

(
i +

r

n
1
3

)
− 1

2

((
i +

r

n
1
3

)
− i

(
2 +

s

n
2
3

))2

=
1

2
+ log i +

s

n
2
3

+
1

n

(
isr +

i

3
r3

)
+

s2

2n
4
3

+O(n−
4
3 r4), (B.5.21)

using the Taylor expansion of the logarithm. The terms that depend on s may
be pulled out of the integral and we are left with

hn(x
√
n) ≈ n

n
2 + 1

6

√
2π

e
n
2 esn

1
3

∫ ∞
−∞

eisr+ i
3 r

3

dr (B.5.22)

hn(x) =
√

2πn
n
2 + 1

6 e
n
2 esn

1
3 (Ai(s) +O(n−1/3))

To make this rigorous, and to obtain the next term in the expansion, We take
the integral

hn+p(x) =

√
n

2π
(−i
√
n)n+p

∫
R
tpe−n( 1

2 (t−ix)2−log t)dt (B.5.23)

and deform to i + R. Then, let t = i + r and we arrive at

hn(x) =

√
n

2π
(−i
√
n)n+p

∫
R

(i + r)pe−n( 1
2 (r+i(1−x))2−log(i+r))dr. (B.5.24)

Then this can be deformed to a contour Γ = e−iπ/6(−∞, 0] ∪ eiπ/6[0,∞).
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Then, we perform a Taylor expansion of the logarithm to find, for H(r) =
1
2 (r + i(1− x))2 − log(i + r) and x > 1,

e−
n
2 (1−x)2

∫
Γ

(i + r)pe−nH(r)dr (B.5.25)

+O(e−n(x−1)δ) (B.5.26)

= einπ2

∫
Γ∩B(0,δ)

ein(x−2)r+in r
3

3

(
ip + rpip−1 +O(r2)− nip

r4

4
+ nO(r5)

)
dr

(B.5.27)

We compute ∫ δ

0

e−n
y3

3 yαdy = O(n−(α+1)/3),

so that

e−
n
2 (1−x)2

∫
Γ

(i + r)pe−nH(r)dr = einπ2

∫
Γ∩B(0,δ)

(
ip + pip−1r − nip

r4

4

)
ein(x−2)r+in r

3

3 dr

+O(n−1).

Finally, it follows that if x = 2 + sn−2/3 and setting r = k/n−1/3∫
Γ∩B(0,δ)

ein(x−2)r+in r
3

3 rγdr = 2πn−(γ+1)/3(−i)γAi(γ)(s) +O(n−α) for all α > 0.

(B.5.28)

This gives

ψn+p(x
√
n) = (2π)1/4

√
n

e−n
x2

4 e
n
2 (1−x)2√

(n+ p)!
n
n
2 + p

2 n−1/3 (B.5.29)

×
(

Ai(s) + n−1/3

(
−pAi′(s)− 1

4
Ai(4)(s)

)
+O(n−2/3)

)
.

(B.5.30)

We compute

e−n
x2

4 e
n
2 (1−x)2 = e

−n4 (4+4 s

n2/3
+ s2

n4/3
)
e
n
2 (1+2 s

n2/3
+ s2

n4/3
)

= e−
n
2 e

s2n−1/3

4 ,
(B.5.31)

and use Stirling’s approximation to write

(2π)1/4√
(n+ p)!

e−
n
2 n

n
2 =

√
n!

(n+ p)!

(2πn)1/4

√
n!

e−
n
2 n

n
2 n−1/4 (B.5.32)

= n−1/4

√
n!

(n+ p)!
(1 +O(n−1)). (B.5.33)
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Continuing, we obtain

ψn+p(x
√
n) = n−1/12+p/2

√
n!

(n+ p)!
e
s2n1/3

4 (B.5.34)

×
(

Ai(s) + n−1/3

(
−pAi′(s)− 1

4
Ai(4)(s)

)
+O(n−2/3)

)
(B.5.35)

= n−1/12+p/2

√
n!

(n+ p)!
(B.5.36)

×
(

Ai(s) + n−1/3

(
−pAi′(s) +

1

4
(s2Ai(s)−Ai(4)(s))

)
+O(n−2/3)

)
(B.5.37)

= n−1/12+p/2

√
n!

(n+ p)!
(B.5.38)

×
(

Ai(s) + n−1/3

(
1

2
− p
)

Ai′(s) +O(n−2/3)

)
, (B.5.39)

where we used Ai(4)(s) = s2Ai(s) + 2Ai′(s) in the last line.

B.5.1 Uniform bounds

We need uniform estimates when x = 2 + sn−2/3 and 0 ≤ s ≤ n2/3 to allow us
to transition into case (b), (B.5.12). We use Γ = e−iπ/6(−∞, 0] ∪ eiπ/6[0,∞).

e−
n
2 (1−x)2

∫
Γ

e−nH(r)dr = einπ2

∫
Γ∩B(0,δ)

e−nH(r)dr +O(e−n(x−1)δ).

Then, we deform

e−
n
2 (1−x)2

∫
Γ∩B(0,δ)

e−nH(r)dr = e−
n
2 (1−x)2

∫
C

e−nH(r)dr (B.5.40)

to a horizontal contour connecting its endpoints. Then on this contour,

e−
n
2 (1−x)2

∫
C

(e−nH(r) − e
n
2 (1−x)2)dr (B.5.41)

=

∫
C

einr(x−2)
[
e−n

r2

2 +inr+n log(i+r) − ein r
3

3

]
dr. (B.5.42)

For r ∈ C, |einr(x−2)| ≤ enδ/
√

2(x−2), and we find∣∣∣∣e−n2 (1−x)2
∫
C

(e−nH(r) − e
n
2 (1−x)2)dr

∣∣∣∣ ≤Mn−2/3enδ/
√

2(x−2). (B.5.43)
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Then, define fn(s) = n1/3

2π

∫
C

ein(x−2)r+in r
3

3 dr and we have∣∣∣∣∣n1/12−p/2ψn+p(x
√
n)−

√
n!

(n+ p)!
e
s2n−1/3

4 fn(s)

∣∣∣∣∣ ≤Mn−2/3e
s2n1/3

4 −nδ/
√

2(x−2).

(B.5.44)

Choosing δ =
√

2, we find e
s2n1/3

4 −nδ/
√

2(x−2) ≤ e−s
3
4n

1/3

. A similar estimate
follows for ψn+p and we obtain that there exist a constant M > 0 such that for
0 ≤ s ≤ n2/3∣∣∣∣n1/12ψn(x

√
n)− e

s2n−1/3

4 fn(s)

∣∣∣∣ ≤Mn−2/3e−s
3
4n

1/3

,∣∣∣∣n1/12ψn−1(x
√
n)− e

s2n−1/3

4 fn(s)

∣∣∣∣ ≤Mn−2/3e−s
3
4n

1/3

.

(B.5.45)

For s ≥ n2/3, we can use (B.5.4) to find

n1/4(|ψn(x
√
n)|+ |ψn−1(x

√
n)|) ≤Me−

3
4n

1/3

. (B.5.46)
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Appendix C

Fredholm determinants

C.1 Definitions

Our purpose in this section is to explain the notion of a Fredholm determi-
nant and resolvent in a simple and concrete setting. The ideas presented here
originated in Fredholm’s attempt to find a solution formula akin to Cramer’s
rule for linear integral equations. The notion of a determinant for an infinite-
dimensional linear operator is, of course, of independent interest and has at-
tracted the interest of many mathematicians. Simon’s book provides an excel-
lent overview of current knowledge [31].

Assume a given continuous kernel K : [0, 1] × [0, 1] → R and a continuous
function h : [0, 1]→ R. Fix a spectral parameter z ∈ C and consider the linear
integral equation

ϕ(x)− z
∫ 1

0

K(x, y)ϕ(y) dy = h(x), x ∈ [0, 1]. (C.1.1)

The integral equation (C.1.1) may be written in the more compact form

(I − zK)ϕ = h, (C.1.2)

where I − zK denotes the bounded linear operator on L2([a, b]) defined by

ϕ 7→ (I − zK)ϕ, (I − zK)ϕ(x) = ϕ(x)− z
∫ b

a

K(x, y)ϕ(y) dy x ∈ [a, b].

(C.1.3)
Integral equations such as (C.1.1) may naturally be viewed as continuum

limits of linear equations. More precisely, we fix a positive integer n, consider
a uniform grid xj = j/n, with uniform weights wj = 1/n, define the vector

h
(n)
j = h(xj), matrix K

(n)
j,k = wjK(xj , xk), 1 ≤ j, k ≤ n and discretize (C.1.1)

by the linear equation

ϕ
(n)
j − z

n∑
k=1

K
(n)
j,k ϕ

(n)
k = h

(n)
j , 1 ≤ j ≤ n. (C.1.4)
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Equation (C.1.4) has a unique solution if and only if det(In − zK(n)) 6= 0. By
linearity, the solution for arbitrary h(n) is determined by the resolvent R(n) =
(In − zK(n))−1, which is given by Cramer’s rule.

Remark 62. If one wants to compute a Fredholm determinant numerically
and K is a smooth function, quadrature rules (such as Gaussian quadrature
or Clenshaw–Curtis quadrature) can be used to choose xj and wj . See, for
example, [?].

R
(n)
j,k = (−1)j+k

det(Mjk)

det(In − zK(n))
, (C.1.5)

where Mjk denotes the matrix obtained from In − zK(n) by removing the j-
th row and k-th column. Further, if zj , j = 1, . . . n, denote the zeros of the
polynomial det(In − zK(n)), the eigenvalues of K(n) are given by 1/zj . Both
these notions may be extended to (C.1.1) via the Fredholm determinant. The
basic observation that allows passage to the limit is the identity

det(In − zK(n)) = (C.1.6)

1− z

n

n∑
j1=1

K(xj1 , xj1) +
z2

2!

1

n2

n∑
j1,j2=1

∣∣∣∣ K(xj1 , xj1) K(xj1 , xj2)
K(xj2 , xj1) K(xj2 , xj2)

∣∣∣∣+ . . .

The coefficient of zk in the expansion above may be computed by differentiating
the left hand side k times with respect to z, and setting z = 0. Since K is
continuous, as n→∞, the k-th term in the sum above converges to the integral

(−z)k

k!

∫
[0,1]k

det (K(xp, xq)1≤p,q≤k) dx1 . . . dxk. (C.1.7)

Definition-Theorem 63. The Fredholm determinant of the operator I − zK
is the entire function of z defined by the convergent series

D(z) := det (I − zK) = 1+

∞∑
k=1

(−z)k

k!

∫
[0,1]k

(det(K(xp, xq)1≤p,q≤k)) dx1 · · · dxk.

(C.1.8)

Proof. It is only necessary to show that the series(C.1.7) is convergent for all z ∈
C. The determinant of a k×k matrix A with columns a1, . . . , ak is the (signed)
volume of the parallelopiped spanned by the vectors a1, . . . , ak. Therefore,

|det(A)| ≤ |a1||a2| · · · |ak| ≤
(

max
1≤j≤k

|aj |
)k

. (C.1.9)

We have assumed that K is bounded on [0, 1] × [0, 1], say max |K| ≤ M < ∞.
By the inequality above,

|(det(K(xp, xq)1≤p,q≤k))| ≤ kk/2Mk. (C.1.10)
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Thus, the k-term in the series (C.1.8) is dominated by∣∣∣∣∣ (−z)kk!

∫
[0,1]k

det [K(xp, xq)]1≤p,q≤k dx1 · · · dxk

∣∣∣∣∣
≤ (|z|M)k

kk/2

k!
∼ 1√

2π
(|z|Me)k

1

k
k+1

2

,

where we have used Stirling’s approximation in the last step.

Remark 64. If [0, 1] is replaced by a general Borel set S, we assume

|K(x, y)| ≤M(x),

where M ∈ L1(S). The same statements about the determinant follow.

Since D(z) is entire, we may differentiate term-by-term to obtain(
− d

dz

)m
det(I − zK) (C.1.11)

=

∞∑
k=0

(−z)k

k!

∫
[0,1]m+k

det [K(xp, xq)]1≤p,q≤m+k dx1 · · · dxm+k

for m ≥ 1. Recall that the zeros of a non-zero entire function form a discrete,
countable set. The entire function det(I−λ−1K) is an infinite-dimensional gen-
eralization of the characteristic polynomial of the matrix K(n) in the following
sense:

Theorem 65 (Eigenvalues of K). Assume that K is a continuous kernel. The
complex number λ is an eigenvalue of K if and only if D(λ−1) = 0.

For more on Fredholm determinants, see [23, Ch.24].

C.2 Convergence

Suppose a kernel Kn(x, y) → K∞(x, y), (x, y) ∈ S2, pointwise. One needs the
additional convergence criteria to conclude

det(1−Kn)→ det(1−K∞). (C.2.1)

The following are from [31]. Let Kn and K∞ be the operators on L2(S) with
kernels Kn and K∞, respectively. Then the trace norm of an operator K is
given by

‖K‖Tr = Tr
√
K∗K, (C.2.2)

where K∗ is the adjoint of K. The general definition of
√
K∗K for general

operators is unimportant for us and an operator with finite trace norm is said
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to be trace class. But, for example, if K is a self-adjoint operator with continuous
kernel K then

‖K‖Tr =

∫
S

K(x, x)dx. (C.2.3)

Theorem 66. The map K 7→ det(I +K) is a continuous function on the space
of trace-class operators (i.e. operators with ‖K‖Tr <∞) and

|det(I +K)− det(I + L)| ≤ ‖K − L‖Tr exp(‖K‖Tr + ‖L‖Tr + 1). (C.2.4)

Theorem 67. Suppose Kn,K are trace class. If Kn → K, |Kn| → |K| and
|K∗n| → |K∗| all weakly, then ‖Kn −K‖Tr → 0.

In our cases, |Kn| = Kn = |K∗n|, so to show that det(I −Kn)→ det(I −K)
it suffices to show for each f, g ∈ L2(S) that∫

S

∫
S

Kn(x, y)f(x)g(y)dxdy →
∫
S

∫
S

K(x, y)f(x)g(y)dxdy. (C.2.5)

Two such conditions for this to occur are

1. If S is bounded then

sup
x,y∈S

|Kn(x, y)−K(x, y)| → 0. (C.2.6)

2. If S is unbounded then we require

Kn(x, y)→ K(x, y), (C.2.7)

for each x, y ∈ S and there exists G(x, y) ∈ L2(S2) such that |Kn(x, y)| ≤
G(x, y). This allows one to use the dominated convergence theorem.

C.2.1 Change of variables and kernel extension

Let K : S2 → R be a kernel. Let x = r(t) and y = r(s) for s, t ∈ T where r′

exists, is continuous and does not vanish. Define

K̂(s, t) =
1

r′(s)
K (r(s), r(t)) , s, t ∈ T 2. (C.2.8)

Then

det(I −K) = det(I − K̂). (C.2.9)

C.3 Computing Fredholm determinants

C.4 Separable kernels
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Notation

D.1 Indices

The integers m and n are reserved for the number of rows and columns of a
matrix. For square matrices, we use n. The letters j and k are used to denote
indices. The letter i is reserved for

√
−1.

D.2 Fields

R real numbers.

C complex numbers with imaginary unit i =
√
−1.

H quaternions with imaginary units e1, e2, e3.

F general notation for one of the above fields.

Tn the n-dimensional real torus.

Σn the n-dimensional simplex, x ∈ Rn,
∑n
k=1 xk = 1, xk ≥ 0, 1 ≤ k ≤ n.

For x ∈ C and x ∈ H we use x̄ to denote the complex and quaternion conjugate
respectively. The absolute value of a number x ∈ F is always denoted |x|.
The same notation is used for the Euclidean length of a vector in Fn, but the
distinction between the two uses of | · | will be clear from the context. For
example, for x ∈ Fn, x = (x1, . . . , xn), xj ∈ F, 1 ≤ j ≤ n, we write

|x|2 =

n∑
j=1

|xj |2. (D.2.1)

125



126 APPENDIX D. NOTATION

D.3 Matrices

The fundamental spaces of matrices are denoted as follows:

Fm×n m× n matrix with entries from a field F.

Fn×n n× n matrix with entries from a field F.

Symm(n) real, symmetric n× n matrices.

Her(n) complex, Hermitian n× n matrices.

Quart(n) real, self-dual quaternion n× n matrices.

Jac(n)

We write M† for the adjoint of a matrix M ∈ MF
m×n. Matrices in Symm(n),

Her(n) and Quart(n) are self-adjoint: M = M†, but the notion of duality is
distint in each setting, since the underlying field is different. For M ∈ Symm(n),
M† = MT ; if M ∈ Her(n), then M† = M̄T = M∗; and if M ∈ Quart(n), then
M† = M̄T . All these matrices have real eigenvalues, and the matrices are said to
be positive definite if all eigenvalues are strictly positive. We denote the subset
of positive definite matrices by Symm+(n), Her+(n) and Quart+(n) respectively.
The Hilbert-Schmidt norm of a matrix M ∈ Fn×m is denoted

‖M‖2 = Tr
(
M†M

)
=

n∑
j,k=1

|Mj,k|2. (D.3.1)

Br(M) denotes the ball of radius r centered at M in the norm ‖ · ‖.

D.4 Lie groups

The classical groups we consider are also Lie groups. For a Lie group, the as-
sociated Lie algebra is the tangent space at the identity. We use the following
notation for the classical (Lie) groups and their associated Lie algebras, respec-
tively.

O(n), o(n) the real, orthogonal group.

SO(n), so(n) the special orthogonal group.

U(n), u(n) the unitary group.

USp(n), usp(n) the group of unitary symplectic matrices, or the compact
symplectic group.
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D.5 Banach spaces

The following notation is used for standard Banach spaces.

C(J) The space of continuous functions on an interval J equipped with
the supremum norm.

PJ The space of probability measures on an interval J equipped with the
weak topology.

〈µ, f〉 The duality pairing between measures and continuous functions on
the interval J given by

〈µ, f〉 =

∫
J

f(x)µ(dx). (D.5.1)

C0(R) The space of continuous function on R that vanish at infinity,
equipped with the supremum norm.

Cb(R) The space of bounded continuous function on R that vanish at
infinity, equipped with the supremum norm.
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