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1 Introduction

In recent years, particularly under the influence of the physicist and number
theorist F.J. Dyson, probabilistic ideas have penetrated the field of number
theory, particularly the study of the Riemann zeta function. Without at-
tempting to provide a comprehensive overview of the relationship between
probability and number theory, I will try to explain two examples of how
these seemingly distant areas are closely related.

The first example we consider is the theory of random matrices and its
applications to the study of zeros of the Riemann zeta function. The origin
of number theorists’ interest in random matrix theory can be traced to
the work of H.L. Montgomery on the distribution of the spacings between
zeros of the zeta function. Let ρ = 1/2 + iγ denote the nontrivial zeros
of the zeta function (we ignore the trivial zeros −2, −4,. . .). We assume
the Riemann hypothesis is true: i.e, γ are real. The zeros are distributed
symmetrically with respect to 1/2 (this follows from the functional equation
for ζ) and the number of zeros whose imaginary part is in the interval [0,
T] is asymptotic to T

2π log T as T → ∞. Therefore, the average density of
zeros in the interval [0, T ] is 1

2π log T , and the average spacing between two
consecutive zeros is 2

log T . Montgomery was interested in the asymptotic
distribution of the difference γ − γ′ where (γ, γ′) denotes the set of pairs of
zeros in the interval [0, T ]. These differences are rescaled by log T to make
the average spacing 1, and we focus on Na,b(T ), the number of pairs (γ, γ′)
such that γ − γ′ ∈ [ 2πa

log T , 2πb
log T ]. Based on calculations that will be discussed
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in Section 2.1, Montgomery conjectured the following asymptotic behavior

Na,b(T ) ∼ T

2π
log T

(∫ b

a
1−

(
sinu

πu

)2

du + o(1)

)
, 0 < a < b, (1)

as T →∞
Montgomery was at Princeton at the same time as Dyson when he made

this conjecture. In a conversation with Dyson, he was astonished to learn
that the above asymptotic behavior is the same as that of the differences be-
tween the eigenvalues of a Gaussian Hermitian matrix, a result well-known
to theoretical physicists. Their motivation for this problem and some subtle
calculations will be explained in Section 2.2. The coincidence between Mont-
gomery’s conjecture and the physicists results on random matrices cast new
on Polya and Hilbert’s suggestion that the numbers γ should be the eigen-
values of a self-adjoint operator on a Hilbert space. The existence of such
an operator, which would imply in particular the validity of the Riemann
hypothesis, is still speculative. Nevertheless, this possibility motivated A.
Odlyzko to experimentally test Montgomery’s conjecture. In numerical cal-
culations to be discussed in Section 2.3, he verified that the zeros of the zeta
functions conform to the predictions of the random matrix model with high
precision. We will also see how the heuristic of random matrix theory led J.
Keating and N. Snaith to offer a remarkable conjecture for the asymptotic
behavior of the moments of the zeta function on the critical line, a problem
which dates back to the work of Hardy and Littlewood.

Despite the convincing experimental confirmation, the relationship be-
tween probability and zeta function mentioned above remain largely conjec-
tural. This is why I have also chosen to discuss other connections. These
are probably more anecdotal in terms of the Riemann zeta function, but
they involve Brownian motion, probably the most important object, and
certainly the most studied, in modern probability theory. We will see that
the Riemann ξ function, which expresses the functional equation of the zeta
function in a symmetric manner, is the Mellin transform of a probability
measure that appears in the study of Brownian motion, or more specifically
in the theory of Brownian excursions. This discussion gives us the opportu-
nity to present the basics of excursion theory. We also give a probabilistic
interpretation of the functional equation and explain how probabilistic rea-
soning leads to a natural renormalization of the series

∑∞
n=1(−1)nn−s, which

converges in the whole complex plane.
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2 Correlations in the zeros of the Riemann zeta
function and random matrices

2.1 Montgomery’s conjecture on the pair correlation

The starting point of Montgomery’s work [9] is the study of the asymp-
totic behavior of the Fourier transform of the distribution of the differences
between the γ. Montogomery considers the quantity

F (α) =
(

T

2π
log T

)−1 ∑
0≤γ,γ′≤T

T−iα(γ−γ′) 4
4 + (γ − γ′)2

. (2)

The factor 4/(4 + (γ − γ′)2), which is used to mitigate the contribution of
large deviations, is the Fourier transform of the distribution of the numbers
(γ−γ′) log T/2π. If we assume the Riemann hypothesis, F takes real values
and is an even function of α. Always assuming that the Riemann hypothesis
is true, Montgomery showed that for every α[0, 1) we have

F (α) = (1 + o(1))T−2α log T + α + o(1); T →∞, (3)

the error term being uniform for α ∈ [0, 1− ε), for any ε > 0. The proof of
this result, is too technical to be presented in detail here. It is based on an
“explicit formula” that links the zeros of the zeta function and the prime
numbers under the assumption that the Riemann hypothesis is true. For
t ∈ R and x ≥ 1, we have

2
∑

0≤γ≤T

xiγ

1 + (t− γ)2
= (4)

= −x1/2

∑
n≤x

Λ(n)
(x

n

)−1/2+it
+
∑
n>x

Λ(n)
(x

n

)3/2+it


+x−1+it (log (|t|+ 2) + O(1)) + O

(
x1/2

|t|+ 2

)
(5)

where Λ(n) is the arithmetic function that takes the value log p if n is divis-
ible by the prime p, and 0 if not. Let G(t, x) denote the left side of equation
(4). It is easily verfied that∫ T

0
|G(t, Tα)|2 dt = F (α)T log T + O(log3 T ),
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and (3) then becomes a delicate estimate of
∫ T
0 |D(t, Tα)|2 dt where D(t, x)

denotes the right hand side of (4). This estimate is only possible if α ∈ [0, 1),
but heuristic arguments of Montgomery (still under the Riemann hypoth-
esis) suggest that F (α) = 1 + o(1) for α ≥ 1 uniformly on any compact
set. This determines the asymptotic behavior of F on all of R. The Fourier
inversion formula and (2.1) imply∑

γ,γ′

r

((
γ − γ′

) log T

2π

)
4

4 + (γ − γ′)2
=

T

2π
log T

∫ ∞

−∞
F (α)r̂(α) dα, (6)

where r̂ denotes the Fourier transform of r

r̂(α) =
∫ ∞

−∞
e−2πiαxr(x) dx.

If we apply (6) to the function r defined by

r(u) =
1, u ∈ [a, b],
0, otherwise,

,

for fixed 0 < a < b, we obtain∫ ∞

−∞
r̂(α)T−2|α| log T dα =

∫ ∞

−∞
r̂

(
α

log T

)
e−2|α| dα

= r̂(0) + o(1) = b− a + o(1),∫ ∞

−∞
r̂(α) dα = r(0) = 0.

An application of Plancherel’s formula then yields,∫ ∞

−∞
r̂(α) min(1− |α|, 0) dα =

∫ ∞

−∞
r(x)

(
sinπx

πx

)2

dx =
∫ b

a

(
sinπx

πx

)2

dx.

We combine these calculations to obtain the estimate

F (α) = 1 + o(1)T−2|α| log T + 1−min(1− |α|, 0) + o(1).

We thus find equation (1).

2.2 GUE

Quantum theory implies that the energy levels of an atomic system are the
eigenvalues of a Hermitian operator in Hilbert space, known as the Hamil-
tonian of the system. When the atomic system contains many elementary
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particles, there is a profusion of energy levels and the Hamiltonian is too
complex to be diagonalized numerically. In this context, the physicist E.
Wigner suggested that the energy levels of such a Hamiltonian can be mod-
eled by the eigenvalues of a random Hermitian matrix. Wigner’s hope was
the statistical properties of energy levels, such as the distribution of their
spacings, coincide with those of random matrices. Wigner’s intuition proved
well-founded and there is a good match between experiment and the pre-
dictions of the random matrix model in many quantum systems. See, for
example, the introduction to the book of Mehta [7].

I will now explain how to describe the statistical structure of eigenvalues
of a large random matrix. The term GUE - an acronym for Gaussian Unitary
Ensemble - designates the space of N×N Hermitian matrices, HN , equipped
with the standard Gaussian measure with density (2)−N2/2 exp(−tr(M2)/2)
with respect to the Lebesgue measure onHN . We now describe the law of the
eigenvalues of a random matrix sampled from GUE. Any Hermitian matrix
M0 can be written in the form U0X0U

∗
0 where U0 is a unitary matrix and

X0 is a diagonal matrix of eigenvalues of M0. Consider the map (X, S) 7→
U0e

iSXe−iSU0 where X ranges over real diagonal matrices and S ranges over
the Hermitian matrices. The differential at (X0, S0) of this map is (X, S) 7→
X + U0[X0, S]U∗

0 where [X, Y ] = XY −Y X denotes the commutator of two
matrices. If M0 is generic (all its eigenvalues are distinct), the kernel of the
differential is the subspace of pairs (0, S) where S is diagonal. It follows from
the implicit function theorem that (X, S) 7→ U0e

iSXe−iSU∗
0 , restricted to

the subspace of S whose diagonal coefficients are zero, is a diffeomorphism
between a neighborhood of (x0, 0) and a neighborhood of M0. By identifying
a pair (X, S) with the matrix X +S, we can calculate the eigenvalues of this
change of variables, and find that the Jacobian at (X0, 0) is

∏
i<j(xi− xj)2,

where xi are the eigenvalues of X0 (and M0). Let x1(M), . . . , xN (M) denote
the eigenvalues associated with a matrix M . For any symmetric function of
N variables f(x1, ..., XN ) we use the change of variables of the formula, to
find∫

HN

f (x1(M), . . . , xN (M))
e−tr(M2)/2

(2π)N2/2
dM

=
1

ZN

∫
RN

f(x1, . . . , xN )
∏

1≤i<j≤N

(xi − xj)2e−
PN

n=1 x2
n dx1 . . . dxN ,

where ZN is a normalization constant that we calculate below. The density
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of the law of the eigenvalues of M is

P (N)(x1, . . . , xN ) =
1

ZN

∏
1≤i<j≤N

(xi − xj)2e−
PN

n=1 x2
n . (7)

Knowledge of this density allows us to calculate the expectation of random
variables of the type

Nf =
∑

(i1,...,in)∈[1,N ]n, ijdistinct

f(xi1 , . . . , xin)

for each bounded Borel function f . We have

E(Nf ) =
∫

Rn

f(x1, . . . , xn) R(N)
n (x1, . . . , xn) dx1 . . . dxn, (8)

where

R(N)
n (x1, . . . , xn)

=
N !

(N − n)!

∫
RN−n

P (N)(x1, . . . , xn, xn+1, . . . , xN ) dxn+1 . . . dxN .

In order to calculate R
(N)
n we rewrite P (N) using the Vandermonde deter-

minant ∏
i>j

(xi − xj) = det
[
xi−1

j

]
1≤i,j≤N

.

We take linear combinations of the columns of the matrix
[
xi−1

j

]
to find∏

i>j

(xi − xj) = det [Pi−1(xj)]1≤i,j≤N

for all monic polynomials Pi of degree i. We apply this identity to the
Hermite polynomials defined by the recurrence relation

Pn+1 = xPn + Pn−1.

These polynomials satisfy the orthogonality relation [4]∫
R

Pm(x)Pn(x)
e−x2/2

√
2π

dx = δnmn!
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The normalized Hermite wave-functions defined below form an orthogonal
basis for L2(R):

ϕn(x) =
1√
n!

Pn(x)
e−x2/4

(2π)1/4
.

The density P (N) is proportional to
(
det [ϕi−1(xj)]1≤i,j≤N

)2
. To determine

the constant of proportionality we evaluate the integral∫
RN

(
det [ϕi−1(xj)]1≤i,j≤N

)2
dx1 . . . dxN

=
∫

RN

∑
σ,τ∈Σn

ε(σ)ε(τ)
N∏

i=1

N∏
j=1

ϕi−1(xσi)ϕj−1(xτj ) dx1 . . . dxN .

Since the functions ϕi are orthogonal, the only terms of the sum that give
a non-zero contribution are those for which σ = τ . Each such term gives a
unti contribution. Thus, the above integral is N ! and

P (N)(x1, . . . , xN ) =
1

N !

(
det [ϕi−1(xj)]1≤i,j≤N

)2

=
1

N !
det
[
K(N)(xi, xj)

]
1≤i,j≤N

where

K(N)(x, y) =
N∑

k=1

ϕk−1(xi)ϕk−1(xj).

In light of the orthogonality of the ϕk we have∫
R

K(N)(x, x) = N ;
∫

R
K(N)(x, z)K(N)(z, y) dz = K(N)(x, y). (9)

We also deduce that

R(N)(x1, . . . , xN ) = det
[
K(N)(xi, xj)

]
1≤i,j≤N

. (10)

In fact, we will reason by induction that R
(N)
n may be expressed as such a

determinant for all n. Assuming this holds for n + 1 we have

R(N)
n (x1, . . . , xn) =

1
N − n

∫
R

R
(N)
n+1(x1, . . . , xn, xn+1) dxn+1

=
1

N − n

∫
R

det
[
K(N)(xi, xj)

]
1≤i,j≤n+1

dxn+1

=
1

N − n

∑
σ∈Σn+1

ε(σ)
∫

R
K(N)(x1, xσ1) . . .K(N)(xn+1, xσn+1) dxn+1.
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If σn+1 = n + 1 in this sum, then the first equality in (9) implies∫
R

K(N)(x1, xσ1) · · ·K(N)(xn+1, xσn+1) dxn+1 (11)

= NK(N)(x1, xσ1) · · ·K(N)(xn, xσn).

If not, there exists j ≤ n and k ≤ n such that σj = n + 1 and σn+1 = k. We
then use the second equality in (9) to find∫

R
K(N)(x1, xσ1) · · ·K(N)(xn+1, xσn+1) dxn+1 (12)

= K(N)(x1, xσ′1
) · · ·K(N)(xn, xσ′n).

where σ′ is a permutation of {1, . . . , n} such that σ′j = k and σ′i = σi if
i 6= j. Each permutation σ′ ∈ Σn may come from n permutations σ ∈ Σn+1.
Thus, using equations (11) and (12) we have∫

R
det
[
K(N)(xi, xj)

]
1≤i,j≤n+1

dxn+1 = (N − n) det
[
K(N)(xi, xj)

]
1≤i,j≤n

.

This explicit formula allows us to determine the asymptotic behavior of
many statistics of the eigenvalues of GUE matrices. We will illustrate this
by calculating the pair correlation. For this, we will need the asymptotic
behavior of the kernel K(N). These asymptotics are calculated using the
Christoffel-Darboux formula, which is easy to establish by induction from
the recurrence relation for Pn.

N∑
k=1

ϕk−1(x)ϕk−1(y) =
√

N
ϕN (x)ϕN−1(y)− ϕN (y)ϕN−1(x)

x− y
.

The Plancherel-Rotach formula for the asymptotics of Hermite functions
(see [13]) implies that

lim
N→∞

1
N

R
(N)
1 (x

√
N) =

1
2π

√
4− x2 if x ∈ [−2, 2],

and for all continuous functions f with compact support

E

[
1
N

N∑
k=1

f

(
xk√
N

)]

=
1
N

∫
R

f

(
x√
N

)
R

(N)
1 (x) dx

N→∞−→ 1
2π

∫ 2

−2
f(x)

√
4− x2 dx.
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The limiting distribution of the eigenvalues is called the Wigner semicircle
law. If we choose a small interval (−εN , εN ) around 0 such that εN → 0 but
εN

√
N →∞ the average number of eigenvalues in this interval will be of the

order of 2εN

√
N/π and the average spacing between two of these eigenvalues

will be π/
√

N . Again using the asymptotics of Hermite polynomials we
arrive at the formula

K(N)
(
πξ/

√
N, πη/

√
N
)

N→∞−→ sinπ(ξ − η)
π(ξ − η)

.

This allows us to deduce that

π

2εN

√
N

E
[
card

{
(i, j)

∣∣∣∣|xi|, |xj | < εN , i 6= j,
aπ√
N
≤ xi − xj ≤

bπ√
N

}]
N→∞−→

∫ b

a

(
1−

(
sinπx

πx

)2
)

dx. (13)

This formula is very different from that obtained by choosing N points X1,
. . . , XN randomly uniformly on [0, 1], wit average spacing ∼ 1/N . For such
a choice, we see that

1
N

E
[
card

{
(i, j)

∣∣∣∣ a

N
≤ xi − xj ≤

b

N

}]
N→∞−→ b− a. (14)

The fact that the function 1−
(

sin πx
πx

)2 vanishes at 0 reflects the fact that the
eigenvalues of a random matrix (or the zeros of the zeta function) tend to
repel. In the case of random matrices we can understand this phenomenon
qualitatively. For a generic matrix, all the eigenvalues are distinct, and the
size of its orbit, i.e., matrices of the form UMU∗, is equal to N2 − N . By
contrast, if two eigenvalues are equal then the dimension is only N2−N−2.
It is this leap in two dimensions which explains the fact that the “correlation
function” vanishes at zero.

2.3 Experimental verifications and new conjectures

Montgomery’s conjecture motivated A. Odlyzko [10] to numerically compute
many zeros of the zeta function with positive imaginary part on the critical
line. In 1987, he obtained the 105 zeros between the 1012+1-st and 1012+105-
th where the zeros are ordered according to their (positive) imaginary part.
He found good agrement between numerical data and conjecture. Since
1987 computational power has greatly increased, and the most recent data

9



concerns a million zeros around 1022-th zero. For example, the 1022 + 1-st
zero is

1/2 + i1370919909931995308226.68016095 . . .

and the lowest significant digits of the following three zeros are

8226.77659152
8226.94593324
8227.16707942.

Thus, Montgomery’s guess and Odlyzko’s numerical verification add weight
to Hilbert and Polya’s conjecture that the γ are the eigenvalues of a Her-
mitian operator. While not providing a clear notion of the origin of this
operator, they do help to identify its form a little better. In fact we can
consider Gaussian random matrices presenting the different symmetries of
Hermitian matrices, such as real symmetric matrices (GOE for Gaussian Or-
thogonal Ensemble), or symplectic matrices (GSE = Gaussian Symplectic
Ensemble). Calculations similar to those of the preceding paragraph allow
us to determine the pair correlation function (the function 1−

(
sin πx

πx

)2 for
GUE), and other eigenvalue statistics. These statistics differ from that of
GUE. Thus, the numerics with GUE suggest that the operator of Polya and
Hilbert, if it exists, should be hermitian, not orthogonal or symplectic.

Montgomery’s results have been extended to other L-functions and re-
search in this area is currently very active. However, time and skill do not
allow me address this subject, for which I refer to a recent Bourbaki seminar
by P. Michel [8].

To conclude this first part we’ll look at another problem concerning the
zeta function, that of the asymptotic behavior of its moments on the critical
line. The problem is to estimate∫ T

0

∣∣∣∣ζ(
1
2

+ it

∣∣∣∣2k

dt,

as T → ∞. This question is motivated by applications to number theory,
in particular to the distribution of primes. The first results in this direction
date back to Hardy and Littlewood. They showed that∫ T

0

∣∣∣∣ζ(
1
2

+ it

∣∣∣∣2 dt ∼ T log T, T →∞,

and Ingham showed that∫ T

0

∣∣∣∣ζ(
1
2

+ it

∣∣∣∣4 dt ∼ 1
2π2

T (log T )4 , T →∞.
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Nothing else has been shown for higher moments. There are conjectures
for the asymptotics of the moments

∫ T
0

∣∣ζ(1
2 + it

∣∣6 dt (due to Conrey and
Ghosh) and for

∫ T
0

∣∣ζ(1
2 + it

∣∣6 dt (by Conrey and Gonek) of the form∫ T

0

∣∣∣∣ζ(
1
2

+ it

∣∣∣∣2k

dt,∼ akbkT (log T )k2

, (15)

with

ak =
∏
p∈P

(
1− 1

p

)k2
( ∞∑

m=0

(
Γ(m + k)
m! Γ(k)

)2

p−m

)
.

The product is taken over the set of prime numbers P. Also,

b3 =
42
9!

, b4 =
24024
16!

.

The hardest part in the statement of the conjecture is to obtain the co-
efficients b3 and b4 through lengthy calculations. Using the GUE model,
Keating and Snaith[6] have formulated a conjecture valid for all k, including
the nature of the terms ak and bk. Their idea is that in the product akbk

the first term, ak is a specific contribution to the zeta function that involves
the primes explicitly. But the second, bk, is a universal term determined by
the fluctuations of the zeta zeros, and it should be the same for any function
whose zeros have the same fluctuations. In order to calculate this term, they
replace ζ(s) by the characteristic polynomial of a random GUE matrix, and
calculate an appropriate function.

I will not dwell on the origin of the idea of universality, which comes
from the study of critical phenomena in statistical mechanics, since this
far exceeds the scope of this presentation. But it is remarkable that this
idea leads quickly to the same factors as those calculated by the methods
of number theory. In the calculation of Keating and Snaith, we consider a
random unitary matrix, chosen with the Haar measure on the group U(N).
(This model is called CUE (circular unitary ensemble), and it is very similar
to GUE. Results similar to Keating and Snaith were also provided a little
later by Brezin and Hikami [2]). We then calculate the average E|det(1 −
eiθU)|2k where U is a CUE matrix and eiθ a complex number of modulus 1.
In fact we see immediately that this quantity does not depend on eiθ, and
an explicit calculation gives

E
∣∣∣det(1− eiθU)

∣∣∣2k N→∞−→ Nk2
k−1∏
j=0

j!
(j + k)!

,
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which allows us to conjecture that

bk =
k−1∏
j=0

j!
(j + k)!

.

It is easy to check that these values agree with those above for b3 and b4.
Keating and Snaith conjecture that these are the general forms for all k.

3 The Riemann zeta function and Brownian mo-
tion

3.1 Some formulas from analysis

Recall that the Riemann zeta function is defined by the formula

ζ(s) =
∞∑

n=1

1
ns

, <s > 1.

It admits a meromorphic extenstion to the complex plane with a simple
pole at zero. The functional equation for the ζ function can be written in a
symmetric form by introducing the entire function

ξ(s) =
1
2
s(s− 1)π−s/2Γ(

s

2
)ζ(s), <s > 1,

which satisfies the functional equation

ξ(s) = ξ(1− s), s ∈ C. (16)

One way to establish this result is to note that

ξ(s) =
1
2

∫ ∞

0
tsΨ(t) dt, s ∈ C, (17)

where

Ψ(y) = 4y

∞∑
n=1

(
2π2n4y2 − 3πn2

)
e−πn2y2

. (18)

The function Ψ may be expressed with the help of Jacobi’s θ function

θ(t) =
∞∑

n=−∞
e−πn2t,
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using the formula
Ψ(y) = 6yθ′(y2) + 4y3θ′′(y2).

The functional equation for the Jacobi theta function

θ(t) =
1√
t
θ(

1
t
), t > 0

implies that Ψ satisfies

Ψ(y) =
1
y3

Ψ(
1
y
), y > 0. (19)

This allows us to analytically continue the zeta function and deduce equation
(16).

The starting point of the developments that follow is that Ψ is positive
on the half-line R+ and has integral 1, thus it is the density of a probability
measure on the half-line. Indeed, the formula (18) shows that Ψ(y) > 0 for
y > 1, because it is a sum of positive terms, and the functional equation
(19) implies positivity for y < 1. The graph of this density is indicated in
Figure 1, and the distribution function

FΨ(y) =
∫ x

0
Ψ(y) dy = 1 + 2

∞∑
n=1

(
1− 2πn2y2

)
e−πn2y2

(20)

=
4π

y3

∞∑
n=1

n2e−πn2/y2
. (21)

is obtained by integrating equation (18) or (19) term-by-term.
It is a remarkable fact that in spite of the complex appearance of formula

(18), this probability density arises in a natural way from the theory of
random walks and Brownian motion. A complete review of the probabilistic
interpretations of (18) in terms of Brownian motion may be found in [1,
14]. It is not possible in the context of this presentation to discuss all
these results, but I will mention the interpretation which I think is the
most accessible. This involves the excursions of Brownian motion away
from zero. We give an elementary presentation of these ideas using the
coin toss in Section 3.2. In Section 3.4 this will allow us to show that the
functional equation for the zeta function is equivalent to the equality in
law of two random variables defined using Brownian motion and related
processes. Finally in Section 3.5 we will see that the random variable whose
law has density Ψ admits a decomposition that can renormalize the sum∑

n n−s.
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fonctionnelle (3.4) on conclut pour y < 1. Le graphe de cette densité est
indiqué sur la figure 1, et la fonction de répartition
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FΨ(y) =

∫ y

0
Ψ(x)dx = 1 + 2

∞∑

n=1

(1− 2πn2y2)e−πn2y2
(3.5)

=
4π

y3

∞∑

n=1

n2e−πn2/y2
(3.6)

s’obtient en intégrant terme à terme la formule (3.3), ou bien celle donnée par
(3.4).

C’est un fait remarquable que, en dépit de l’apparence complexe de la for-
mule (3.3), cette mesure de probabilités intervient de façon naturelle dans un
grand nombre de questions provenant de la théorie des marches aléatoires et
du mouvement brownien. Une revue assez complète des interprétations pro-
babilistes de la formule (3.3) en termes du mouvement brownien figure dans
[1] et [14]. Il ne sera pas possible, dans le cadre de cet exposé de discuter
de tous ces résultats, mais j’évoquerai l’interprétation qui me semble la plus
accessible. Celle-ci fait intervenir les excursions du mouvement brownien hors
de zéro, et on en donnera une approche élémentaire au moyen du jeu de pile ou
face dans le paragraphe 3.2. Cela nous permettra au paragraphe 3.4 de mon-
trer que l’équation fonctionnelle de la fonction zêta est équivalente à l’égalité
en loi de deux variables aléatoires définies à partir du mouvement brownien ou

Figure 1: The distribution function of equation (20)

The origin of the relationship between zeta function and Brownian mo-
tion may be found in the fact that the theta functions of Jacobi, which are
closely related to the Riemann zeta function, arise in the solutions of the
heat equation. On the other hand, we know that heat flow and Brownian
motion are two physical phenomena whose underlying mathematical struc-
ture is the same. Thus, we can imagine in this way that the Riemann zeta
function must appear in the theory of Brownian motion. These general con-
siderations, however, tell us nothing precise about the exact nature of these
relationships. In particular the fact that the zeta function (or more accu-
rately the probability density Ψ) appear in natural problems is remarkable.

3.2 The game of heads and tails

Two players compete in a game of heads and tails. It is assumed that
the payoff for each win is a unit, and we are interested in the winnings
of one of the players. We can represent this gain after n steps by a sum
Sn = X1 + . . . + Xn, where Xi represents the result of the ith game. The
Xi are independent random variables that satisfy P (Xi = ±1) = 1/2. We
assume that the fortunes of the two players are endless, and that the game
never stops. A classical theorem of Polya asserts that with probability 1,
the gain of the players will be 0 for infinitely many values of n, i.e. both
players will return to their initial (equal) fortunes infinitely often. We will
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establish this result below by elementary considerations.
Let T1, T2, . . . Tn, denote the times of successive returns to zero, i.e.,

T0 = 0 and Tj = inf{n > Tj−1, Sn = 0} for j > 0. After each return to
zero, the gain behaves like a simple random walk, that is to say the family of
random variables (STj+n, n ≥ 0) has the same law as the family (Sn, n ≥ 0).
Moreover it is independent of the random variables (Sn1n≤Tj , n ≥ 0). This
is a consequence of the strong Markov property of the random walk, which
can be verified by conditioning with respect to the value of Tj . The times
T0, T1, T2, . . . , Tn, therefore form an increasing sequence, whose increments
(Ti − Ti−1; i ≥ 1) are independent and have the same law as T1. We can
calculate the probability that the first return to 0 occurs at time 2n (it is
clear that the return time cannot be an odd number). As we shall see below,

P (T1 = 2n) =
(2n− 2)!

22n−1n!(n− 1)!
. (22)

Similarly, the maximum difference in fortunes has a simple law. If we put
Mj = max{|Sn|, Tj−1 ≤ n ≤ Tj} then Mj are iid random variables with the
law

P (Mj = r) =
1
r
− 1

r + 1
, r = 1, 2, . . .

The length of most of the time intervals between any two successive returns
to 0 is small. Thus the maximum difference in gain between the two players
is also small. Nevertheless, sometimes this interval is very long, and the
maximum difference in gain is important. To quantify this, we will calcu-
late the probability that the return time is equal to 2n and the maximum
difference in earnings is equal to m for given n and m (see Diaconis and
Smith [12], and also [3, 11] for similar calculations). It is convenient to
represent the sequence (Sk, k ≥ 0) by the graph obtained by linearly inter-
polating between integer times as shown in Figure 2. We consider such a
graph restricted to the time interval k ∈ [0, n]. Each graph corresponds to
the realization of a unique sequence (X1, . . . , Xn) ∈ {+1,−1}n, therefore
the probability of the event it represents is 2−n.

Consider now the event that the first return time equals 2n, denoted
{T1 = 2n}. A sequence (X1, . . . , X2n) realizes this event if and only if the
sequence of partial sums (Sk; 1 ≤ k ≤ 2n) satisfies S2n = 0 and Sk 6= 0 for
1 ≤ k ≤ 2n− 1. The calculation of the number of such sequences is a classic
exercise in the use of the reflection principle of Désiré André. It suffices to
count the number of sequences that are strictly positive for k ∈ [1, 2n − 1]
and to multiply this number by 2. Each such positive sequence has S1 = 1
and S2n−1 = 1. We first count the sequences with S0 = S2n = 0 and
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ci-dessous, on a

(3.7) P (T1 = 2n) =
(2n − 2)!

22n−1n!(n− 1)!

De même, la différence de fortunes maximale entre deux instants succes-
sifs d’égalité obéit à une loi de probabilités simple. Si on pose Mj =
max{|Sn|;Tj−1 ! n ! Tj} alors les Mj sont indépendants et de même loi, et
on a

P (Mj = r) =
1

r
−

1

r + 1
pour r = 1, 2, . . . . La plupart du temps l’intervalle entre deux temps de
retour successifs en 0 prend une petite valeur, et alors la différence maximale
de gain entre les deux joueurs est également petite. Néanmoins, il arrive
parfois que cet intervalle soit très long, et que la différence maximale de gain
soit également importante. Pour quantifier cela nous allons calculer, suivant
Diaconis et Smith [11] (voir aussi [3], [12] pour des calculs semblables), pour n
et m donnés, la probabilité pour que le temps de retour soit égal à 2n et que la
différence maximale de gains soit égale à m. Il est commode de représenter la
suite (Sk; k " 0) par son graphe, en interpolant linéairement entre les instants
entiers, comme sur la figure 2. Considérons un tel graphe où l’on se restreint

n

Figure 2

à l’intervalle de temps k ∈ [0, n]. Chaque graphe correspond à la réalisation
d’une unique suite (X1, . . . ,Xn) ∈ {+1,−1}n, par conséquent la probabilité
que l’événement qu’il représente soit réalisé est égale à 2−n. Considérons
maintenant l’événement correspondant au premier temps de retour égal à 2n,
noté {T1 = 2n}. Une suite (X1, . . . ,X2n) réalise cet événement si et seulement
si la suite des sommes partielles (Sk; 1 ! k ! 2n), satisfait S2n = 0 et Sk ̸= 0
pour 1 ! k ! 2n − 1. Le calcul du nombre de ces suites est un exercice
classique dont on rappelle la solution, qui utilise le principe de réflexion dû à
Désiré André. Quitte à multiplier leur nombre par 2, il suffit de compter celles
qui restent strictement positives pour k ∈ [1, 2n − 1] ; en particulier pour une

Figure 2: The random walk

S1 = S2n−1 = 1. These sequences correspond to variables X1, . . . , X2n with
X1 = 1 and X2n = −1 such that there are an equal number of +1’s and
−1’s amongst the X2, . . . , X2n−1. The number of such sequences is given by
the binomial coefficient(

2n− 2
n− 1

)
=

(2n− 2)!
(n− 1)!(n− 1)!

.

From this set, we must remove the sequences that vanish for at least one
k ∈ [2, 2n − 2]. Let (S1, . . . , S2n) be such a sequence. Then there exists a
smallest integer k0 ∈ [2, 2n−1] such that Sk0 = 0. We define a new sequence
S′k with S′k = Sk for k ≤ k0, and Sk = −Sk for k0 < k ≤ 2n. The graph
of the sequence S′ is obtained by reflecting the graph of the sequence S in
the axis y = 0, after the first passage time at 0, see Figure 3. Conversely if
a sequence S′ satifies S′1 = 1, S′2n−1 = −1 and S′2n = 0, then it necessarily
vanishes for some k ∈ [2, 2n− 2], and it can be reflected in the first moment
after it enters zero to obtain a sequence S such that S2n−1 = 1, S2n = 0 and
Sk vanishes at some k between 2 and 2n− 2. The sequence S′ corresponds
to a sequence (X ′

i; 2 ≤ i ≤ 2n − 1) for which the number of +1’s is n − 2
and the number of −1’s is n. Thus, the total number of such sequences is(
2n−2

n

)
. As a consequence, the number of sequences S that do not vanish at

any point between 1 and 2n− 1 is

2×
(

(2n− 2)!
(n− 1)!(n− 1)!

− (2n− 2)!
n!(n− 2)!

)
= 2

(2n− 2)!
n!(n− 1)!

and we recover formula (22) upto the probability of each path. In particular,
we see that

∑∞
n=1 P (T1 = 2n) = 1, thus T1 < ∞ almost surely. Applying

the Markov property, we see that for all j we have Tj < ∞ almost surely,
and therefore Sn returns to zero infinitely often with probability 1.

16



180 PH. BIANE

telle suite on a S1 = S2n−1 = 1. Comptons tout d’abord les suites qui vérifient
S0 = S2n = 0 et S1 = S2n−1 = 1. Elles correspondent aux suites X1, . . . ,X2n

telles que X1 = 1,X2n = −1, et parmi X2, . . . ,X2n−1 il y a autant de 1 que
de −1, leur nombre est donc égal au coefficient du binôme

(
2n− 2
n− 1

)
=

(2n − 2)!

(n − 1)!(n − 1)!
.

Il faut retirer de ce nombre celui des suites qui s’annulent pour au moins un
k ∈ [2, 2n − 2]. Soit maintenant (S1, . . . , S2n) une telle suite, alors il existe
un plus petit entier k0 ∈ [2, 2n − 1] tel que Sk0 = 0. Considérons la suite
S′k telle que S′k = Sk pour k ! k0, S′k = −Sk pour k0 ! k ! 2n. On a
donc S′2n−1 = −1. Le graphe associé à cette suite est obtenu en réfléchissant
le graphe de la suite S autour de l’axe y = 0, après le premier temps de
passage en 0, voir la figure 3. Réciproquement si une suite S′1, . . . , S

′
2n vérifie

Figure 3

S′1 = 1, S′2n−1 = −1 et S′2n = 0, alors nécessairement elle s’annule pour un
k ∈ [2, 2n − 2], et on peut, en la réfléchissant après le premier instant où
elle passe en zéro, retrouver une suite Sk qui satisfait S2n−1 = 1, S2n = 0
et Sk s’annule entre k = 2 et 2n − 2. La suite S′k correspond à une suite
X ′

i; 2 ! i ! 2n − 1 dans laquelle le nombre de +1 est n − 2 et le nombre de

−1 est n, donc le nombre total de telles suites est (2n−2)!
n!(n−2)! , par conséquent le

nombre de suites Sk qui ne s’annulent pas entre 1 et 2n − 1 est

2×
(

(2n− 2)!

(n− 1)!(n − 1)!
−

(2n − 2)!

n!(n− 2)!

)
= 2

(2n− 2)!

n!(n− 1)!

et on retrouve la formule (3.7) en multipliant par la probabilité de chaque suite
d’apparâıtre. En particulier, on a

∑∞
n=1 P (T1 = 2n) = 1 donc T1 <∞ presque

sûrement. En appliquant la propriété de Markov, on voit que pour tout j on
a Tj < ∞ presque sûrement et donc que la probabilité que Sn revienne une
infinité de fois en 0 est égale à 1.

Nous allons maintenant calculer la probabilité pour que le temps de retour
soit égal à 2n et que la valeur maximale de |Sk| sur l’intervalle [0, 2n] soit

Figure 3: The random walk reflected at its first passage to zero

We now calculate the probability P (T1 = 2n;M1 ≤ m) that the return
time is equal to 2n and that the maximum value M1 = max1≤k≤2n |Sk| ≤ m.
Upto a factor of 2, this reduces to a calculation of the number of sequences
(Sk; 0 ≤ k ≤ 2n) such that

S0 = 0, S2n = 0, and 0 < Sk ≤ m, for 1 ≤ k ≤ 2n− 1. (23)

We will perform this calculation by two different methods. The first is
a generalization of the preceding calculation. Let s2n(k) denote the number
of sequences Sk such that S1 = 1 and S2n−1 = k. We have

s2n(k) =
(

2n− 2
n− l

)
, if k = 2l − 1 ∈ [−2n + 3, 2n− 1],

and s2n(k) = 0 otherwise. We start by counting the sequences that return to
1 at time 2n−11 without other conditions. We then subtract the number of
those that pass through 0, and those that pass through m + 1. To calculate
the number of the latter, we perform a reflection about the line y = m + 1,
and we find with reasoning as above, that we obtain all sequences satisfying
S2n−1 = 2m + 1, the number of which is s2n(2m + 1). In doing so, we
double counted sequences whose minimum is ≤ 0 and whose maximum is
≥ m + 1. It is therefore necessary to add these sequences. We count them
by subjecting the path to two reflections at the times when it reaches 0
and m + 1 respectively. We obtain a sequence such that S2n−1 = 2m + 3 or
S2n−1 = −2, depending on whether 0 or m+1 is reached first. Their number
is s2n(2m + 3) + s2m(−2m− 1). We see that this time we have removed too
many sequences and we must correct this calculation again. Finally, by an

1check math and translation here
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application of the inclusion-exclusion principle, we see that the number of
sequences we seek is given by∑

g∈G

det(g)s2n(g(1)),

where G is the group of isometries of R spanned by the reflections x 7→ −x
and x 7→ 2m + 2− x, that is∑

k∈Z

s2n (1 + (2m + 2)k)− s2n (−1 + (2m + 2)k) .

Thus the desired probability is

P (T1 = 2n;M1 ≤ m) (24)

= 2−(2n−1)
∑
k∈Z

(
2n− 2

n− 1− k(m + 1)

)
−
(

2n− 2
n− 2− (k + 1)(m + 1)

)
with the convention

(
a
b

)
= 0 if b < 0 or if a < b. In particular, this sum

contains only a finite number of non-zero terms.
We now indicate another method to calculate the same number. Con-

sider the m×m matrix

Γ =



0 1 0 0 . . . 0 0
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . 1 0


.

We split Γ = Γ+ + Γ− where Γ+ is lower triangular and Γ− is upper trian-
gular. In the canonical basis of Rm we then find Γ+(ei) = ei+1 for i ≤ m−1
and Γ+(em) = 0. Similarly, Γ−(e1) = 0 and Γ−(ei) = ei−1 for 2 ≤ i ≤ m.
Consider the inner product 〈Γ2n−2(e1), e1〉. We develop the product to find

〈Γ2n−2(e1), e1〉 = 〈(Γ+ + Γ−)2n−2 (e1), e1〉

=

〈 ∑
(ε1,...,ε2n−2)∈{±}2n−2

Γε2n−2Γε2n−3 . . .Γε1(e1), e1

〉
,

where the sum runs over all 22n−2 possible combinations of the symbols.
Since the operators Γ± transform the elements of the canonical basis into
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other elements of this basis, in order that a term in the sum be nonzero, it is
necessary and sufficient that Γε2n−2Γε2n−3 . . .Γε1(e1) = e1. In this case, we
have Γεk

Γεk−1
. . .Γε1(e1) = eSk+1

where (Sk : 1 ≤ k ≤ 2n− 1) is a sequence
that satisfies the conditions (23). Thus, 〈Γ2n−2(e1), e1〉 is equal to the num-
ber of such sequences. This term may be calculated by diagonalizing the
matrix Γ. The characteristic polynomial may be computed by a recurrence
in m. We expand det(λIm−Γ) = Pm(λ) with respect to the last column, to
obtain the relation Pm(λ) = λPm−1(λ) + Pm−2(λ). This recurrence relation
with initial conditions P1(λ) = λ and P2(λ) = λ2 − 1 yields Pm in terms of
Chebyshev polynomials of the second kind, and we find

Pm (2 cos θ) =
sin ((m + 1)θ)

sin θ
, 0 < θ < π.

In particular, the roots of Pm are the numbers (2 cos
(

kπ
m+1

)
, 1 ≤ k ≤ m).

The eigenvectors are computed as follows. The eigenvector (x1, . . . , xm)
corresponding to the eigenvalue λ satisfies xl−1 + xl+1 = λxl. We set λ =
2 cos (kπ/(m + 1)) to find

xl = Pl−1(λ)x1 =
sin
(

klπ
m+1

)
sin
(

kπ
m+1

)x1.

Finally, we denote the orthonormal eigenvectors by (w1, . . . , wm), and we
have

wk =
2√
m

(
sin
(

kπ

m + 1

)
, sin

(
2kπ

m + 1

)
, . . . sin

(
mkπ

m + 1

))
.

We have thus found

〈Γ2n−2(e1), e1〉 = 〈Γ2n−2

(
m∑

k=1

〈e1, wk〉wk

)
,

m∑
l=1

〈e1, wl〉wl〉

=
m∑

k=1

〈e1, wk〉2λ2n−2
k

=
m∑

k=1

4
m

sin2

(
kπ

m + 1

)(
2 cos

kπ

m + 1

)2n−2

.

The computed probability is therefore

P (T1 = 2n;M1 ≤ m) =
2
m

m∑
k=1

sin2

(
kπ

m + 1

)(
cos

kπ

m + 1

)2n−2

. (25)
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The conditional distribution of the maximum deviation, knowing that the
return time is equal to 2n, is given by the distribution function

Fn(x) = P (M1 ≤ m |T1 = 2n) =
P (M1 ≤ m;T1 = 2n)

P (T1 = 2n)
.

The zeta function, or more precisely the density Ψ, appears when we take
the limit n →∞. Specifically, we will calculate the conditional distribution
of M1/

√
πn given that T1 = 2n. We use the first expression in (24) and

Stirling’s formula to obtain

lim
n→∞

P
(
M1 ≤ y

√
πn |T1 = 2n

)
= 1 + 2

∞∑
n=1

(
1− 2πn2y2

)
e−πn2y2

,

while the second expression in (25) yields

lim
n→∞

P
(
M1 ≤ y

√
πn |T1 = 2n

)
=

4π

y3

∞∑
n=1

n2e−πn2/y2
.

We have thus established by this elementary method, the equalities (20)
and (21). We will now interpret the passage to the limit with the help of
Brownian motion.

3.3 Brownian motion

We first recall a classical result of probability theory. The random variable
Sn has a binomial distribution, and the de Moivre-Laplace theorem asserts
that the law of the random amount variable Sn/

√
n converges to the cen-

tered normal distribution, with density of e−x2/2/
√

2π with respect to the
Lebesgue measure on R. The convergence is in the sense of weak convergence
of probability measures on R and for any interval [a, b] ⊂ R we have

lim
n→∞

P (Sn/
√

n ∈ [a, b]) =
1√
2π

∫ b

a
e−x2/2 dx.

Similarly it is easily seen that for any real number t > 0, the law of S[nt]/n,
where [·] denotes the integer part, converges to the normal distribution with
variance t, whose density is e−x2/2t/

√
2πt. Finally, thanks to independence

of increments (Sn;n ≥ 0) we see that for any sequence of times t1 < t2 <

. . . < tk, the family of random variables (
S[nt1]√

n
,

S[nt2]−S[nt1]√
n

, . . . ,
S[ntk]−S[ntk−1]√

n
)

converges in distribution to a family of independent normal variables with
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variances t1, t2 − t1, . . ., tk − tk−1. Brownian motion is a stochastic process
i.e. a family of random variables (Xt, t ∈ R+) indexed by time t such that
for all k and any k-tuple of times t1 < t2 < . . . < tk, the random variables
Xt1 −X0, Xt2 −Xt1 , . . . , Xtk −Xtk−1

are independent normal random vari-
ables with mean zero and variance t1, t2− t1, . . . , tk− tk−1. In other words,
the finite-dimensional marginal distributions of the family (Xt, t ∈ R+) are
determined by the formula

E (f(Xt1 , Xt2 , . . . , Xtk)) = (26)∫
Rn

f(x1, x2, . . . , xn)pt1(0, x1)pt2−t1(x1, x2) . . . ptn−tn−1(xn−1, xn) dx

for each t1 < t2 < . . . < tn and each Borel function f on Rn, where the
transition density pt is given by

pt(x, y) =
1√
2πt

e−(x−y)2/2t. (27)

A fundamental property of the Brownian motion, obtained by first Wiener,
is that its paths are almost surely continuous. If one considers the space of
continuous functions from [0,∞) to R with the topology of uniform conver-
gence and the associated Borel structure, then the Wiener measure on this
space is a probability measure such that under this measure, the coordinate
maps Xt : C([0,∞), R) → R, ω 7→ ω(t) satisfy the above conditions. It can
be shown that the continuous stochastic process S

(n)
t ; t ≥ 0) obtained by

linearly interpolating the graph of the random walk (Sn;n ≥ 0) and renor-
malizing S

(n)
t = S[nt]/

√
n converges in the space C([0,∞), R) to the Wiener

measure. This means that for any continuous function Φ on C([0,∞), R),
we have E

[
Φ
(
S(n)

)]
→ EW [Φ(ω)], where EW denotes expectation with

respect to Wiener measure. It is important to have this information to cal-
culate the laws of certain functionals of Brownian motion by means of the
approximation by random walks. Note that the fact that the variables Xi

are Bernoulli variables (ie, take only two values) is not of great importance,
the expected result of approximation is still true under the assumption that
X)i are identically distributed, have mean zero and variance equal to 1.
This result is known as Donsker’s invariance principle. A good introduction
to Brownian motion may be found in the book of Karatzas and Shreve [5].
One can visualize the continuity of the paths, and the approximation by the
random walks through a computer simulation. Here is a simple program in
Scilab which traces the trajectory of S(n) for t [0,1], which was used to plot
the graph in 4.
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xbasc();
plotframe([0 -2 1 2],[1,4,1,0]);
A=[0,1];B=[0,0]; plot2d(A,B,1,000); // Definition of the axes;
N=10000; // This is the number of steps.
rand(normal); X=0;Y=0;SX=0;SY=0;
for i=2 :N+1
U=X;X=X+1/N; V=Y;
if rand(1)>0 then Y=Y+1/(sqrt(N)) ;
else
Y=Y-1/(sqrt(N)) ;// Calculate increments.
end
SX=[U,X]; SY=[V,Y]; plot2d(SX,SY,1,000);
end
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Figure 4

où pt a été défini en (3.12). On peut montrer que, avec probabilité 1, on a
Rt −−−→

t→∞
+∞, et Rt > 0 pour tout t > 0. D’autre part à l’aide de la formule

de Feynman-Kac on peut trouver la loi du premier instant où Rt = x. Si on
pose Tx = inf{t | Rt ! x} alors on a

(3.15) E[e−λTx ] =
x
√

λ

sinhx
√

λ

Cette formule jouera un rôle important dans la suite.
Nous aurons besoin également du pont de Bessel de dimension trois, encore

appelé excursion brownienne, qui s’obtient en conditionnant le processus de
Bessel à atteindre 0 au temps T . Comme le processus de Bessel de dimension 3
ne revient jamais en zéro, il faut définir ce conditionnement par un événement
de probabilité 0 avec soin, mais cela est possible et le pont de Bessel de di-
mension 3 est un processus stochastique (e(t); t ∈ [0, T ]) indexé par un temps
t ∈ [0, T ], dont la loi nT est telle que

(3.16) nT [f(e(t1), . . . , e(tn))] =

∫

Rn

f(x1, . . . , xn)qt1(0, x1)qt2−t1(x1, x2)

· · · qtn−tn−1(xn−1, xn)2(2πt3)1/2x−2
n qT−tn(0, xn)dx1 · · · dxn

pour 0 < t1 < · · · < tn < T . Ce processus peut s’obtenir comme limite de la
marche aléatoire (Sn;n ! 0), conditionnée à revenir en 0 au temps N . Plus

Figure 4: Numerical simulation of Brownian motion

In addition to Brownian motion there are several closely related stochas-
tic processes. First, the Bessel process of dimension 3, which is the Euclidean
norm of a three-dimensional Brownian motion, that is

Rt =
√

(B(1)
t )2 + (B(2)

t )2 + (B(3)
t )2
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where B(1), B(2), and B(3) are independent Brownian motions. The law of
its finite-dimensional marginals is given as in (26) by

E (f(Xt1 , Xt2 , . . . , Xtk)) = (28)∫
Rn

f(x1, x2, . . . , xn)qt1(0, x1)qt2−t1(x1, x2) . . . qtn−tn−1(xn−1, xn) dx

where the transition density qt is given by

qt(x, y) =
y

x
(pt(x, y)− pt(x,−y)) ≡ y

x
p0

t (x, y). (29)

where pt is defined in (27). We can show that with probability 1, Rt → ∞
as t → ∞ and Rt > 0 for all t > 0. Moreover, using the Feynman-Kac
formula we can find the law of the first instant where Rt = x. If we define
Tx = inf{t |Rt ≥ x} then we have

E
[
e−λTx

]
=

x
√

λ

sinhx
√

λ
. (30)

This formula will play an important role in the sequel.
We will also need the Bessel bridge of dimension three, also called Brow-

nian excursion, which is obtained by conditioning the Bessel process to reach
0 at time T . As Bessel process of dimension 3 never returns to 0, we must
define this conditional event of probability 0 carefully. But it is possible and
the Bessel bridge of dimension 3 is a stochastic process (e(t); t[0, T ]) indexed
by time t ∈ [0, T ], with law

nT [f(et1 , et2 , . . . , etn)] =
∫

Rn

f(x1, x2, . . . , xn)qt1(0, x1)qt2−t1(x1, x2)

. . . qtn−tn−1(xn−1, xn)2(2πt3)1/2x−2
n qT−tn(xn, 0) dx, (31)

for t1 < t2 < . . . < tn < T . This process can be obtained as the limit of
the random walk (S(n), n ≥ 0) conditioned to return to 0 at time N . More
precisely, we have convergence of finite-dimensional marginals

lim
n→∞

E
[
f

(
|Snt1 |√

n
, . . . ,

|Sntn |√
n

)
|T1 = [Tn]

]
= nT [f(et1 , et2 , . . . , etn)] . (32)

and we can demonstrate the convergence in distribution of the process ob-
tained by linear interpolation on the space of continuous functions. More-
over, with probability 1, we have e(0) = e(T ) = 0 and e(t) > 0 for 0 < t < T .
So we see that the law with probability density Ψ is the law of the maximum
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of the Bessel bridge in dimension three multiplied by
√

2/π. That is, we
have

n1

(√
2/π max

t∈[0,1]
e(t) ∈ dx

)
= Ψ(x) dx, x > 0. (33)

The Brownian motion, Bessel processes and bridge possess a critical property
of scale invariance. For λ > 0, the transformation ω 7→ ωλ where

ωλ(t) = λ−1/2ω(λt), (34)

leaves the laws of Brownian motion and the Bessel process invariant, and
transforms the law nT into the law nT/λ.

3.4 The functional equation for the zeta function and Ito’s
measure

In this section we interpret the functional equation of the Riemann zeta
function as the equality in distribution of two random variables. In order to
see this, we introduce the Ito measure of Brownian excursions. We consider
the space of continuous excursions ω : R → R+, such that ω(0) = 0, and
there exists T (ω) > 0 such that ω(t) > 0 for 0 < t < T (ω) and ω(t) =
0 for t ≥ T (ω). The law of the process obtained by linear interpolation
from |Sn|, 0 ≤ n ≤ T1 for time upto T1, and extended by zero after the
time T1, is a probability measure on this space. The Ito measure is the
scaling limit, as λ → ∞ of measures λP λ where P λ denotes the law of
rescaled processes λ−1/2|Sλt|1t≤T1/λ. This measure, denoted n+ has infinite
total mass. However, it can be expressed in terms of its finite-dimensional
marginals by

n+ [f(ωt1 , ωt2 , . . . , ωtn)] = (35)

=
∫

Rn
+

2x1
x1e

−x2
1/2t

√
2πt3

p0
t2−t1(x1, x2) . . . p0

tn−tn−1
(xn−1, xn) dx,

where p0
t is defined in (29). We can also describe this measure with the help

of laws nT defined in (31) by the formula

n+ =
∫ ∞

0
nT

2dT√
2πT 3

(36)

following the limit theorem (3.17) and (3.7), by applying the Stirling formula

P (T1 = 2n) =
(2n− 2)!

22n−1n!(n− 1)!
∼ 1

2
√

πn3
.
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Formula (36) means that the law of the time to return to 0 under n+ is
2dT/

√
2T 3, and conditionally on the return time, the excursion process is a

Bessel bridge of dimension 3.
The Ito measure is fundamental to an understanding of the behavior

of Brownian motion outside the times it vanishes. The set Zω = {t ∈
[0,∞) |ω(t) = 0} of zeros of Brownian motion is closed by the continuity of
trajectories. With probability one, it is a perfect set (with no isolated points)
of zero Lebesgue measure. In particular, it is uncountable, and we cannot
define an increasing sequence of times that denumerate the returns to zero,
unlike the discrete set T1, . . . , Tn, . . . for the random walk. Nevertheless,
since the complement of Zω is open, it has a countable infinity of connected
components, and excursions of Brownian motion are by definition the pieces
of the path corresponding to these connected components. Next, following
P. Lévy we can introduce the local time of the Brownian motion B by

Lt = lim
ε→0+

1
2ε

∫ t

0
1|Bs|≤ε ds,

and the inverse function Ts = inf{t|Lt ≥ s} is the continuous analogue of
the discrete sequence T1,T2, . . . for the random walk. For any time s we
have BTs = 0 almost surely, and the excursions of Brownian motion in the
interval [0, Ts] form a Poisson point process with intensity n+. This means
the following. For each family A1, . . ., Ak of disjoint Borel subsets of the
space of continuous functions, let N(Aj) denote the number of excursions
of Brownian motion in the interval [0, Ts] which lie in Aj . Then the N(Aj)
are independent, Poisson random variables with parameter n+(Aj).

Now let us return to our initial goal of a probabilistic explanation for
the functional equation for the zeta function. The following explanation of
the Ito measure is due to David Williams. We consider two independent
Bessel(3) processes (cf. (28)), (R1

t : t > 0) and (R2
t : t > 0). Given x > 0,

let T 1
x and T 2

x denote the first passage times of R1
t and R2

t respectively, and
consider the process defined by

e(t) =


R1

t , 0 ≤ t ≤ T 1
x ,

R2
T 1

x+T 2
x−t, T 1

x ≤ t ≤ T 1
x + T 2

x

0, t > T 1
x + T 2

x .

We denote by nx the law of this process, obtained by gluing together “back
to back” two copies of the Bessel process, stopped at its first passage time
at x. The Williams decomposition of Ito’s measure asserts that

n+ =
∫ ∞

0
nx 2 dx

x2
. (37)
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In other words, under the Ito measure, the law of the maximum of the
excusrion is 2dx/x2 and conditionally on the maximum M = x, the law
of the excursion e is nx. In particular, conditionally on the value of the
maximum, the law of the return time to 0 is that of the sum of two hitting
time of x by two independent Bessel(3) processes. Consider now the law of
the pair (M,V ) under the measure n+, where M is the maximum excursion
ω and V is the return time to 0, i.e. V = inf{t > 0|ω(t) = 0}. In accordance
with Ito’s description (36) and using the scale invariance (34), we can write

(M,V ) law= (
√

V m, V )

where m denotes the maximum of a Bessel bridge under the law n1, inde-
pendent of V . Similarly, Williams decomposition gives

(M,V ) law=
(
M,M2(T 1 + T 2)

)
where T 1 and T 2 are the hitting times at 1 by two Bessel(3) processes,
independent of one another and M . The relation

(
√

V m, V ) law=
(
M,M2(T 1 + T 2)

)
leads to a relationship between the laws of random variables m and T 1 +T 2.
But we must be careful, because the hasty conclusion that m has the same
law as (T1 + T2)−1/2 (obtained by considering the law of M/

√
V ) is false!

Indeed, the distribution of (M,V ) is a measure of infinite total mass and
its image under the map (M,V ) 7→ M/

√
V is a degenerate measure, that is

+∞ on any set of Lebesgue measure > 0. The true relationship between the
laws of m and T1+T2 is as follows: for any Borel function f : R+×R+ → R+

we have

n1

[
f(m2)

]
=
√

π

2
E
[√

T 1 + T 2f

(
1

T 1 + T 2

)]
. (38)

To verify the above equality, we write the following equalities for a posi-
tive function g, successively applying the identities (36) and (37), and the
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properties of the scale change (34).

n+

(
f(M2/V )g(V )

)
=
∫ ∞

0
nv

(
f(M2/v)g(v)

) 2 dv√
2πv3

= n1(f(m2))
∫ ∞

0
g(v)

2 dv√
2πv3

= nx
(
f(x2/(T 1

x + T 2
x )
)
g(T 1

x + T 2
x )

2dx

x2

= E
[
f

(
1

T 1 + T 2

)∫ ∞

0

(
g
(
x2(T 1 + T 2

)) 2dx

x2

]
(39)

= E
[√

T 1 + T 2f

(
1

T 1 + T 2

)]∫ ∞

0
g(v)

dv

v3/2
. (40)

The equality of lines 2 and 5 gives the result.
You can also write the relation (38) in terms of the densities of the laws

of m and
√

T 1 + T 2. If we call these densities Ψ1 and Ψ2 respectively, then
we have the relation

Ψ1(x) =
√

π

2
x−3Ψ2(x−1). (41)

In the above discussion we have not used an explicit knowledge of the laws
of m and T1 + T2. Thus. we can consider the relation (41) as a consequence
of the scaling invariance of Brownian motion and the Ito excursion measure.

If we now recall that the law of
√

π/2

m has been calculated previously in (33),
and its density is Ψ, which satisfies (19) we observe the curious identity

m2 law=
π

2
(
T 1 + T 2

)
. (42)

The two identities (41) and (42) are equivalent, in view of (33) to the func-
tional equation (19). Finally, since (41) is an immediate consequence of the
scale invariance of Brownian motion, we see that it is the identity (42) that
should be considered as the probabilistic basis for the functional equation of
the Riemann zeta function. I know of no direct demonstration of this iden-
tity, which does not involve an explicit calculation of the laws in question.
It would be very interesting to have a purely combinatorial demonstration
of this identity, through manipulation of the paths of Brownian motion.

3.5 An approximation of the zeta function

We conclude this little voyage to the land of probabilities by an unexpected
application of the ideas developed so far. We use simple probabilistic con-
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siderations to obtain a renormalization of the series
∑

n(−1)n/ns that con-
verges in the full complex plane to the entire function (21−s − 1)ζ(s). More
precisely, we will determine the coefficients (an,N ; 0 ≤ n ≤ N) such that for
every n we have limN→∞ an,N = (−1)n, and the partial sums

∑N
n=1 an,N/ns

converge uniformly for s in compact sets to the entire function (21−s−1)ζ(s).
Recall that this entire function is the sum of the series

∑∞
n=1(−1)n/ns, con-

vergent for <(s) > 1. We can choose the coefficients an,N in order to fix
the value of the sum

∑N
n=1 an,N/ns at N values of s. It is natural to choose

for these N values s = 0,−2,−4, . . . − 2(N − 1) where the zeta function
vanishes. It is not difficult to see that this implies

an,N = (−1)n (N !)2

(N − n)!(N + n)!
,

and we have as well
lim

N→∞
an,N = (−1)n.

We now relate this renormalization of the series
∑

n(−1)n/ns to the pre-
ceding considerations. First, the non-convergence of the series

∑∞
n=1 n−s

for <s < 1, based on the Ψ, relies on the fact that the series (18) does not
converge uniformly on R+. In fact it is easy to see that

min
y∈[0,ε]

4y

N∑
n=1

(
2π2n4y2 − 3πn2

)
e−πn2y2 N→∞−→ −∞,

for every ε > 0 (the convergence is also uniform). In particular, the partial
sum is not positive. We will therefore seek a probabilistic approximation by
simpler random variables of the function Ψ approaching a random variable
with density Ψ. For this recall the Laplace transform, which can deduced
from (30) and (42), or calculated directly by integrating (18) term by term∫ ∞

0
e−λy2

Ψ(y) dy =

( √
πλ

sinh
√

πλ

)2

.

Euler’s formula
πx

sinhπx
=

∞∏
n=1

(
1 +

x2

n2

)−1

,

and the elementary formula

E
[
e−κE

]
=
∫ ∞

0
e−te−κt dt = (1 + κ)−1,
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for the Laplace transform of a standard, exponential random variable with
law P (E > t) = e−t show that we have the equality in law

X2 = π

∞∑
n=1

En + E′
n

n2
.

Here X is a random variable with density Ψ and En and E′
n are indepen-

dent, standard exponential random variables. It is thus natural to try to
approximate the variable X2 by the partial sums of π

∑∞
n=1

En+E′
n

n2 . This
leads to an approximation of the function (1−s)ζ(s) convergent in the whole
complex plane. However, the calculations are more complicated than in the
simple case that we will consider, which is the random variable

Y =
∞∑

n=1

En

n2

which satisfies
E [Y s] = s(1− 21−s)Γ(s/2)ζ(s)

and which can be approximated by the partial sums
∑N

n=1 En/n2. By break-

ing the product
∏N

n=1

(
1 + x2

n2

)−1
into simple rational fractions we obtain

the formula

E

( N∑
n=1

En

n2

)s/2
 = −sΓ(s/2)

N∑
n=1

an,N

ns
.

It is then easy to deduce using Hölder’s inequality that

N∑
n=1

an,N

ns
→
(
21−s − 1

)
ζ(s),

unifomrly over compact subsets of C.
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[8] P. Michel, Répartition des zéros des fonctions-L et matrices
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