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Abstract We study shock statistics in the scalar conservation law ∂tu + ∂xf (u) = 0, x ∈ R,
t > 0, with a convex flux f and spatially random initial data. We show that the Markov
property (in x) is preserved for a large class of random initial data (Markov processes with
downward jumps and derivatives of Lévy processes with downward jumps). The kinetics of
shock clustering is then described completely by an evolution equation for the generator of
the Markov process u(x, t), x ∈ R. We present four distinct derivations for this evolution
equation, and show that it takes the form of a Lax pair. The Lax equation admits a spectral
parameter as in Manakov (Funct. Anal. Appl. 10:328–329, 1976), and has remarkable exact
solutions for Burgers equation (f (u) = u2/2). This suggests the kinetic equations of shock
clustering are completely integrable.

Keywords Shock clustering · Stochastic coalescence · Kinetic theory · Integrable
systems · Burgers turbulence

1 Introduction

We consider the scalar conservation law

∂tu + ∂xf (u) = 0, x ∈ R, t > 0, u(x,0) = u0(x), (1)

with a strictly convex, C1 flux f and initial data u0 that is a stochastic process in x. The ba-
sic model of this type was introduced by Burgers in his study of turbulence. He considered
f (u) = u2/2 and white noise initial data [14, 44, 46]. While this model fails to describe tur-
bulence in incompressible fluids, it still serves as a widely useful benchmark for theoretical
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methods and computations in turbulence. It also has fascinating links with combinatorics,
mathematical physics and statistics, some of which we describe below.

Our main contribution in this article is to develop a consistent kinetic theory that de-
scribes completely the clustering of shocks and the statistics of the random process u(x, t)

for convex f , and initial data u0 that are Markov processes in x with only downward jumps.
Our approach includes exact solutions to Burgers turbulence as an important special case.
In addition to being comprehensive, our approach clarifies the essential features of the prob-
lem, and reveals the role of a Lax pair that describes the shock statistics. In order to describe
these results and place them in the context of past work, let us first describe the structure
of solutions to (1) for deterministic u0, and then some important exact solutions to Burgers
turbulence that motivated our work.

1.1 The Hopf-Lax Formula

Let us first recall the notion of the entropy solution to (1) [20, 33]. Characteristics for (1)
are lines in space-time along which u is constant. If a unique characteristic connects (a,0)

to (x, t) then u(x, t) = u0(a). However, there may be many characteristics that pass through
(x, t). Well-posedness is resolved by adding a small dissipative term εuxx to the right-hand
side of (1) and passing to the limit ε ↓ 0. This was first carried out by Hopf in his pioneering
work on Burgers equation [27], and later generalized to convex f by Lax [32]. Let f ∗(s) =
supu∈R

(us − f (u)) denote the Legendre transform of f and call U0(s) = ∫ s

0 u0(r)dr the
initial potential. We define the Hopf-Lax functional

I (s;x, t) = U0(s) + tf ∗
(

x − s

t

)

. (2)

The ‘correct’ characteristic through (x, t) is given by the variational principle

a(x, t) = sup
{
s ∈ R : I (s;x, t) = inf

r∈R

I (r;x, t)
}
. (3)

We will always assume that U0 has no upward jumps and I satisfies the growth condition

lim
|s|→∞

I (s;x, t) = ∞. (4)

This ensures the infimum of I is a minimum, and that a(x, t) is finite. We write

a(x, t) = arg+ min
s∈R

I (s;x, t). (5)

This is the Hopf-Lax formula for the inverse Lagrangian function a(x, t). The + in (5)
denotes that we choose a(x, t) to be the largest location if I is minimized at more than one
point. Of particular importance is Burgers equation with f (u) = u2/2. In this case, (5) is
called the Cole-Hopf formula, and takes the form

a(x, t) = arg+ min
s∈R

{

U0(s) + (x − s)2

2t

}

, u(x, t) = x − a(x, t)

t
. (6)

For fixed t , a defined by (5) is non-decreasing in x. If x is a point of continuity of a(·, t),
the velocity field is given implicitly by

f ′(u(x, t)) = x − a(x, t)

t
. (7)
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u(x, t) is well-defined because f ′ is continuous and strictly increasing. In particular, if
a(x, t) is constant for x in an interval, we obtain a rarefaction wave. a may also have up-
ward jumps. These arise if the minimum of I is attained at more than one point. Jumps in a

give rise to shocks in u. The left and right limits u± = u(x±, t) exist and the velocity of the
shock is given by the Rankine-Hugoniot condition

u(x, t) = f (u−) − f (u+)

u− − u+
=: [f ]u−,u+ . (8)

We stress that the entropy solution u(x, t) has only downward jumps in x. This will play a
key role in our analysis.

1.2 Exact Solutions for Burgers Turbulence

Let us now suppose u0 is a stochastic process in x. The solution develops shocks that are
separated by rarefaction waves (see for example, the computations in [40]). The shocks
move with speeds given by the Rankine-Hugoniot condition, and cluster when they meet.
The Lax equation we derive describes this process. In order to explain this, we first focus on
two exact solutions for Burgers turbulence.

1.2.1 Lévy Process Initial Data on a Half-Line

We assume f (u) = u2/2 and

u0(x) =
{

0, x ≤ 0,

Xx, x > 0,
(9)

where X is a Lévy processes with only downward jumps (a spectrally negative Lévy
process). A particularly interesting case is when X is a standard Brownian motion (that
is, a Brownian motion with E(X2

x) = x). This problem was solved formally by Carraro
and Duchon [15, 16] and rigorously by Bertoin [9]. The key to their solution is a closure
property of (6): if u0(x), x > 0 is a Lévy processes with only downward jumps, then so is
u(x, t)−u(0, t), x > 0. These processes are characterized by their Laplace exponent ψ(q, t)

defined by

E(eq(u(x,t)−u(0,t))) = exψ(q,t), x, q, t > 0. (10)

Thus, the problem is reduced to determining the evolution of ψ . Remarkably, ψ(q, t) satis-
fies Burgers equation in the new variables q, t !

∂tψ + ψ∂qψ = 0, ψ(q,0) = ψ0(q). (11)

If X is a Brownian motion, ψ0(q) = q2, and we obtain the self-similar solution

ψ(q, t) = 1

t2
ψ∗(qt), ψ∗(q) = q + 1

2
−

√

q + 1

4
. (12)

Various explicit formulas are summarized in [38].
The interpretation of (11) in terms of shock clustering is as follows. ψ satisfies the cele-

brated Lévy-Khintchine formula

ψ(q, t) =
∫ ∞

0
(e−qs − 1 + qs)�t(ds), q ≥ 0, t > 0, (13)
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where �t(ds) is the jump measure at time t . The evolution of ψ by (11) also induces evo-
lution of the jump measure �t . But the jumps in the process u(·, t) are the shocks, which
evolve in a simple manner: shocks move at speed given by the Rankine-Hugoniot condition
(8) and stick, conserving momentum, when they meet. Equation (11) captures this process.
It is equivalent to the fact that �t satisfies a kinetic equation, Smoluchowski’s coagula-
tion equation with additive kernel, which describes the evolution and coalescence of shocks.
A derivation of the kinetic equation from this perspective may be found in [38]. An excellent
survey of several links between stochastic coalescence and Burgers turbulence is [11].

1.2.2 White Noise Initial Data

Here we must characterize the law of u(x, t) when the initial velocity is white noise. Pre-
cisely, let us suppose that the initial potential U0(x) = σBx where B is a standard two-sided
Brownian motion pinned at the origin and σ a fixed scale parameter. This problem also
arises in statistics, and it was in this context that Groeneboom first characterized the law of
the process u(x, t), x ∈ R [26]. He showed that for every t > 0, u(x, t), x ∈ R is a Markov
process with only downward jumps (a spectrally negative Markov process) that is stationary
in x. He then computed the generator of this Markov process explicitly in terms of Airy
functions. Here is a brief summary of his solution.

By (6) and the scaling invariance of Brownian motion, we see that

aσ (x, t)
L= (σ t)

2
3 a1(x(σ t)− 2

3 ,1), uσ (x, t)
L= σ

2
3 t−

1
3 u1(x(σ t)− 2

3 ,1), (14)

where
L= denotes equality in law and the subscript σ refers to the variance of U0. It is

simplest to state the formulas under the assumption that σ 2 = 1/2. Let ux denote the process
u2−1/2(x,1). The generator of ux is an operator defined by its action on a test function ϕ in
its domain as follows:

Aϕ(y) = lim
x↓0

Ey(ϕ(ux)) − ϕ(y)

x
, (15)

where Ey denotes the law of the process with u0 = y. Groeneboom showed that A is an
integro-differential operator of the form

Aϕ(y) = ϕ′(y) +
∫ y

−∞
(ϕ(z) − ϕ(y))n∗(y, z) dz. (16)

The jump density n∗ of the integral operator is given explicitly as follows.

n∗(y, z) = J (z)

J (y)
K(y − z), y > z, (17)

where J and K are positive functions defined on the line and positive half-line respectively,
whose Laplace transforms

j (q) =
∫ ∞

−∞
e−qyJ (y) dy, k(q) =

∫ ∞

0
e−qyK(y)dy, (18)

are meromorphic functions on C given by

j (q) = 1

Ai(q)
, k(q) = −2

d2

dq2
log Ai(q). (19)
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Ai denotes the first Airy function as defined in [2, 10.4]. Our normalization of J and K

differs from [26] in two aspects. First, the above definition of K is suggestive of Dyson’s
formula in the theory of inverse scattering [34, p. 273]. Second, the choice σ 2 = 1/2 helps
avoid several factors of 21/3 while stating the main formulas.

We shall return to this solution at several points in this article. The one-point and two-
point distribution functions can be computed once the generator is known. For example,
p(y)dy = P (ux ∈ (y, y + dy)) = J (y)J (−y)dy. The distribution of the shock sizes and
the two-point distribution is given in [23]. Tauberian arguments yield precise asymptotics of
these distributions.

1.3 Lax Equations

Despite the elegance of the solution procedure for Lévy process data, it does not apply to
Burgers equation with broader classes of random initial data (e.g. white noise), or to the
general scalar conservation law (1). Our goal in this article is to develop a kinetic theory
that describes shock clustering for (1). Our work builds on the links between stochastic
coalescence and Burgers turbulence [11, 38], exact solutions to Burgers equations with white
noise initial data [23, 26], and recent work on kinetic equations for Burgers turbulence [17].
We amplify these remarks briefly.

Groeneboom used the variational principle (6) at t = 1/2 to compute the generator as
in (16)–(18). Girsanov’s theorem is crucial in the analysis. Most past work in the turbulence
community is also based on a similar point of view. This begins with Burgers’ analysis which
was eventually completed by Frachebourg and Martin [8, 14, 23, 30]. However, the focus on
white noise initial data and the use of Girsanov’s theorem obscures an understanding of the
dynamic process of shock clustering for general initial data (see for example, the concluding
remarks in [10]).

The idea of seeking kinetic equations for shock evolution can be found in pioneering
early work of Burgers [12, 13], but this approach remained undeveloped for several decades.
More recently, E and Vanden-Eijnden introduced a hierarchy of master equations for the
statistics of velocities and velocity gradients in Burgers turbulence [22]. However, these
equations are not closed, and a sophisticated dimension reduction is needed to extract scaling
exponents from these equations. Frachebourg et al showed that the hierarchy of n-point
functions for ballistic aggregation can be closed at the level of the 2-point function [24].
Most recently, Chabanol and Duchon showed formally that if a statistical solution to Burgers
equation preserves the Markov property, then one can derive evolution equations for the
generator of the Markov process [17]. Moreover, they showed that Groeneboom’s solution
yields a self-similar solution to this evolution equation.

This is the starting point for our work. Our viewpoint is as follows: rather than seek a
specific exact solution to Burgers equation with specific initial data, we look for a class of
natural stochastic processes whose structure in x is preserved by the entropy solution to
the general scalar conservation law (1). Here it is the class of spectrally negative Markov
processes (in x). This reduces the study of shock statistics to an evolution equation for the
generator of the Markov process. Our main results are:

• A closure theorem: Suppose f is strictly convex and C1. If u0 is a spectrally negative
Markov process in x, so is the entropy solution to (1) (see Theorems 2 and 3). This
provides some rigorous justification for our approach.

• New kinetic equations: We derive kinetic equations that describe the evolution of the gen-
erator of the Markov process for arbitrary convex f . The kinetic equations are equivalent
to a Lax pair. Moreover, the Lax equations admit a spectral parameter as in Manakov’s
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integration of the Euler equations for a spinning top in R
n [35]. This provides strong

evidence that the kinetic equations are completely integrable.
• Consistent derivations: We derive the Lax equation from four different perspectives.

Aside from being a stringent test on the consistency of the kinetic equations, this also
provides a unified treatment of disparate methods in the literature on statistical hydrody-
namics.

In order to explain the Lax equation, let us assume that u(x, t) is a stationary, spectrally
negative Feller process in x whose sample paths have bounded variation. As in the Lévy-
Khintchine formula, such a process is characterized by its generator A(t), which acts on test
functions ϕ ∈ C1

c (R) via

Aϕ(y) = b(y, t)ϕ′(y) +
∫ y

−∞
(ϕ(z) − ϕ(y))n(y, dz, t). (20)

For fixed t > 0, b(·, t) ∈ C(R) and n(y, ·, t) is a measure on (−∞, y) that satisfies
∫
(1 ∧

|y − z|2)n(y, dz, t) < ∞ for each y ∈ R. These terms correspond to the drift and jumps
of the process respectively. There is no diffusion term because sample paths are solutions
to a conservation law and necessarily have bounded variation [20]. This expression for A
is a special case of the general form of the generator of a Markov process, as given in
Theorem 3.5.3 in [7] (see also [41], (2.1.13)).

We now introduce an operator B associated to A and the flux function f . This operator
is defined by its action on test functions as follows:

Bϕ(y) = −f ′(y)b(y, t)ϕ′(y) −
∫ y

−∞

f (y) − f (z)

y − z
(ϕ(z) − ϕ(y))n(y, dz, t). (21)

One of our main results is that the evolution of A is given by the Lax equation

∂t A = [A, B] = AB − B A. (22)

An evolution equation for the generator was first derived in [17] for the flux f (u) = u2/2.
However, the equations in [17] were not written in the simple form above, and it was not
clear if such equations could even be derived for arbitrary fluxes f . We show that while
f (u) = u2/2 is certainly special, much of the structure of the problem relies only on the
convexity of f .

We present four different derivations of (22): (1) as a compatibility condition for martin-
gales in x and t ; (2) from kinetic theory as in [38]; (3) using BV calculus as in [22]; (4) using
Hopf’s functional calculus as in [17]. The shortest (and most heuristic) of these is the first,
and goes as follows.

The main observation is that we have a two-parameter random process, and formally
B may be viewed as the ‘generator’ in t . To see this, fix x ∈ R and consider the random
process u(x, t), t > 0. Then the multipliers −f ′(y) and −[f ]y,z in (21) simply correspond
to the evolution (in t ) of the drift and jumps. Indeed, if the path u(x, t) is differentiable
at x with u(x, t) = y, ∂xu = b, then ∂tu = −f ′(y)b by (1). Similarly, if we have a shock
connecting left and right states y and z, then the shock speed is given by (8).

This may be understood more precisely using Itô’s formula for jump processes [7]. For
fixed t , the random process u(x, t) satisfies the stochastic differential equation

du(x, t) = b(u(x−))dx +
∫

R

(z − u(x−))N(u(x−), dz, dx), (23)
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where the Poisson random measure N(y,dz, dx) has intensity n(y, dz) dx. We write the
conservation law as du(x, t)dx + df (u(x, t))dt = 0, and apply Itô’s formula to obtain

du(x, t) = −f ′(u(x−))b(u(x−))dt −
∫

R

[f ]u(x−),z(z − u(x−))N(u(x−), dz, dt).

This shows immediately that B should have drift −f ′(y)b(y) and jump measure
−[f ]y,zn(y, dz). This holds rigorously when f is decreasing. In this case, all shocks move
to the left, u(x−, t) = u(x, t−), and u is also Markov in t , with generator B given by (21).

If A and B are generators, then the one-point distributions satisfy Kolmogorov’s forward
equations

∂xp = A†p, and ∂tp = B†p. (24)

We now seek martingales in x and t . To this end, fix (x0, t0), and consider the processes
ϕ(u(x0 + s, t0)) and ϕ(u(x0, t0 + s)) with s > 0. These processes are formally martingales
if ϕ solves Kolmogorov’s backward equations

∂xϕ + Aϕ = 0, ∂tϕ + Bϕ = 0, (25)

in the domain (x, t) ∈ [x0,∞) × [t0,∞), and y, z ∈ R. If the compatibility condition ϕxt =
ϕtx holds for a sufficiently rich class of functions ϕ, we obtain the general Lax equation

∂t A − ∂x B = [A, B]. (26)

If the process is stationary in x, ∂x B vanishes and we obtain (22). In the form (26), the Lax
equation is akin to zero curvature conditions in integrable systems.

1.4 Kinetic Theory

When we expand the commutator in (22), and separate the evolution of the drift b and
the jump measure n we obtain a kinetic equation that describes shock clustering. The drift
satisfies the differential equation

∂tb(y, t) = −f ′′(y)b2(y, t). (27)

Note that the drift does not depend on the jump measure. The jump density n(y, z, t) dz =
n(y, dz, t) satisfies the kinetic equation

∂tn(y, z, t) + ∂y(nVy(y, z, t)) + ∂z(nVz(y, z, t))

= Q(n,n) + n(([f ]y,z − f ′(y))∂yb − bf ′′(y)). (28)

Here the velocities Vy and Vz in (28) are given by

Vy(y, z, t) = ([f ]y,z − f ′(y))b(y, t), Vz(y, z, t) = ([f ]y,z − f ′(z))b(z, t), (29)

and the collision kernel Q is

Q(n,n)(y, z, t) =
∫ y

z

([f ]y,w − [f ]w,z)n(y,w, t)n(w, z, t) dw

−
∫ z

−∞
([f ]y,z − [f ]z,w)n(y, z, t)n(z,w, t) dw

−
∫ y

−∞
([f ]y,w − [f ]y,z)n(y, z, t)n(y,w, t) dw. (30)
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We have assumed for convenience that the jump measure has a density, but the above equa-
tions extend naturally to general jump measures.

In the next section we derive these equations from the perspective of kinetic theory. We
consider single shocks and rarefaction waves as building blocks, and use this to derive a
natural Boltzmann-like equation. This will yield the equations above. We then show that
these kinetic equations are equivalent to the Lax equation (22). That calculation reflects the
fact that operators of the form (20) formally constitute a Lie algebra.

1.5 The Broader Context of Our Work

We conclude this introduction by connecting our work with some other problems in math-
ematical physics and statistics. We pay particular attention to connections with integrable
systems.

1.5.1 The Spectral Curve and Complete Integrability

We first point out the role of a spectral parameter in analogy with Manakov’s treatment of
the Euler equations for geodesic flow on so(n) with a left-invariant metric [35]. Let M and
N denote multiplication operators acting on the domain of A, defined by

Mϕ(y) = yϕ(y), N ϕ(y) = f (y)ϕ(y). (31)

It is clear that M and N are diagonal operators. We now use the definitions (20), (21) and
(31) to find

[A, N ] − [M, B] = 0. (32)

This observation allows us to introduce a spectral parameter μ ∈ C in the Lax equation. We
use (22) and (32) to obtain

∂t (A − μM) = [A − μM, B + μN ], μ ∈ C. (33)

If A, B were n × n matrices, it would follow that the spectral curve (Riemann surface)

� = {(λ,μ) ∈ C
2|det(A − λId − μM) = 0}, (34)

is fixed by the evolution. In Manakov’s work, this is the crucial observation that yields the
existence of additional integrals for Euler’s equations in so(n), n ≥ 4. These integrals are
simply the coefficients of the characteristic polynomial above.

More broadly, the observation that (22) admits a spectral parameter reveals a close re-
lation with a large class of completely integrable systems (including KdV, the Toda lattice,
geodesic flows on so(n) and ellipsoids, and the integrable PDEs of random matrix theory).
The complete integrability of all these flows may be obtained in a unified way via a general
splitting theorem for Lie algebras [3]. This connection also sets the stage for the application
of powerful methods from algebraic geometry to integrate (26) explicitly for every convex
f [4]. We will address this in later work.
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1.5.2 Burgers Turbulence and Random Matrices

The solution to Burgers turbulence with spectrally negative Lévy process data (see
Sect. 1.2.1) is obtained from (22) as follows. Suppose u(x, t) − u(0, t), x > 0 is a spec-
trally negative Lévy process with bounded variation and mean zero. If we denote the jump
measure �t , then b(t) = ∫ ∞

0 s�t(ds), and the generators A and B take the form

A(t)ϕ(y) =
∫ ∞

0
(ϕ(y − s) − ϕ(y) + sϕ′(y))�t(ds),

(35)
B(t)ϕ(y) = −yA(t)ϕ(y) + 1

2

∫ ∞

0
(ϕ(y − s) − ϕ(y))s�t(ds).

In particular, when ϕ(y) = eqy , Re(q) > 0, we have

A(t)eqy = ψ(q, t)eqy, B(t)eqy = −
(

yψ(q, t) + 1

2
∂qψ

)

eqy. (36)

We substitute (36) in (22) to obtain (11).
We next note that the solution (12) can be mapped to Wigner’s semicircle law in the

theory of random matrices. Dyson observed that the eigenvalues of a standard matrix valued
Brownian motion Mt in the group of n × n symmetric, hermitian or symplectic matrices
satisfy the stochastic differential equation [21]

dλk =
∑

j �=k

dt

λk − λj

+
√

2

β
dBk, 1 ≤ k ≤ n, (37)

where Bk , 1 ≤ k ≤ n are independent Brownian motions, and β = 1, 2 or 4 for the ensembles
above. That is, the eigenvalues behave like repulsive unit charges on the line perturbed by
independent white noise. The law of large numbers for this ensemble is as follows. As
n → ∞ the spectral measure of n−1/2Mt converges to Wigner’s semicircle law:

μt(dx) = 1

2πt

√
4t − x2 dx, |x| < 2

√
t . (38)

Moreover, the Cauchy transform of μt ,

g(z, t) =
∫

1

z − x
μt(dx), z ∈ C\[−2

√
t,2

√
t], (39)

solves Burgers equation with a simple pole as initial data [5, §4.3.2]. That is,

∂tg + g∂zg = 0, g(z,0) = 1

z
. (40)

More precisely, g solves (40) in the slit plane C\[−2
√

t,2
√

t], and has the form

g(z, t) = 1√
t
g∗

(
z√
t

)

, g∗(z) = 1

2

(
z −

√
z2 − 4

)
, |z| ≥ 2. (41)

It now transpires that the self-similar solution (12) can be transformed to (41) by a simple
change of variables.

ψ∗(q)

q
= g∗(z), z = 2 + 1

q
, or

g(t
1
2 z, t)

t
1
2

= ψ(t−1q, t)

t−1q
. (42)
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In his beautiful thesis [29], Kerov found a deeper interpretation of (40) based on the rep-
resentation theory of the symmetric group. He introduced a Markov process for the growth
of Young diagrams (Plancherel growth), and derived (40) in a mean-field limit. More gen-
eral initial conditions may also be included in (40) and he showed that the evolution of g

by Burgers equation is equivalent to a kinetic equation for μt [29, Chap. 4.5]. Thus, the
transformation (42) links μt to �t , and Plancherel growth with Smoluchowski’s coagula-
tion equation (see (13)). We do not have a deeper (i.e. stochastic process) explanation of this
relation yet.

Airy functions and the Painlevé transcendents arise in the scaling limit of fluctuations
from Wigner’s law at the edge of the spectrum. The fluctuations are given by the celebrated
Tracy-Widom distributions involving a solution to Painlevé-II [42]. We now point out that
the function l = j ′/j (j as in (18)) solves the Riccati equation dl/dq = −q + l2 and is there-
fore an Airy solution to Painlevé-II [1, Chap. 7]. This is used to verify that Groeneboom’s
solution satisfies the kinetic equation (22) in Sect. 6.

1.5.3 Shell Models of Turbulence and Their Continuum Limits

It is also of interest to consider (1) on the half-line x > 0 with random forcing at x = 0. This
problem arises as a continuum limit of shell models of turbulence [36, 37]. Shell models are
lattice equations of the form ċk = Jk−1 − Jk , k = 1,2, . . . . Here ck ≥ 0 models the energy in
the k-th Fourier mode (shell), and Jk the flux from shell k to k + 1. Jk is expressed in terms
of ck and its nearest neighbors by a suitable constitutive relation. The main question is to
understand how randomness spreads through the system under the assumption that J0 is a
prescribed random forcing (a stationary Feller process, for example). In particular, it is of
interest to understand whether the system has a unique invariant measure. In the continuum
limit, these questions may be treated by our approach. We note that the derivation of (26)
does not depend on assumptions of stationarity and is independent of boundary conditions.
Therefore, (26) holds in the domain x, t > 0 and must be augmented with a boundary con-
dition on the line x = 0. In particular, as t → ∞, invariant measures are solutions to

−∂x B = [A, B], (43)

with a boundary condition at x = 0 matching B and the generator of the forcing.
In contrast to a time-correlated boundary forcing, it is also possible to consider a white-

in-time forcing in the bulk (a Feller process in x and δ-correlated in t ) which is independent
of the initial data. For Burgers’ equation, this is a particular case of forced Burgers tur-
bulence. The generator F of the forcing simply appears as an additional term in the Lax
equation

∂t A − ∂x B = [A, B] + F . (44)

An interesting exact solution to (44) for Burgers equation forced with a two-sided Brownian
motion in space has recently been obtained in [18].

1.5.4 Applications to Statistics

In statistics, (6) with U0 a two-sided Brownian motion first arose in the following estimation
problem [19]. Suppose X1, . . . ,Xn are independent, identically distributed (iid) samples
from a distribution with a smooth unimodal density ρ with mode m and finite variance.
Let us consider a naive ‘binning’ strategy to estimate the mode m. We fix a bin width w
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and count the number of samples Nn(s) = #{Xk ∈ (s − w, s + w)} in the bin centered at
s. We estimate the mode by mn = arg+maxsNn(s). Chernoff observed that the fluctuations
mn − m are O(n−1/3). Precisely, for suitable c(ρ,w) > 0, the rescaled random variables
cn1/3(mn − m) converge in law to Chernoff’s distribution

Z = arg+ max
s

{U0(s) − s2}. (45)

The quadratic term −s2 arises from the Taylor expansion of ρ around m – the first order
term vanishes since m is the maximum of ρ. By the symmetry of Brownian motion, it is
clear that Z has the same law as a(0,1/2).

This is not an isolated result: ‘cube-root’ fluctuations appear naturally in a wide class of
estimation problems [6]. Kim and Pollard proved functional limit theorems for several such
estimators, with the law of the limit characterized by arg+maxs∈Rd {U0(s) − |s|2} where
U0(s) is a continuous Gaussian process in R

d pinned at the origin [31]. These correspond to
solutions to Burgers equation in R

d with random initial data U0, but this connection has not
been explored in the literature.

1.6 Outlook

Let us conclude by pointing out some significant shortcomings in our work. Much of this
article relies on formal calculations. But these calculations are often interesting, and it seems
more fruitful to present them in a transparent and suggestive manner, rather than as rigorous
statements burdened by technicalities. The most significant gap is that we do not prove
(22). This is because our closure theorem is not strong enough. We only establish that the
entropy condition preserves the Markov property. In order to rigorously establish (22) it is
necessary to prove that the entropy condition preserves Feller processes. This is an assertion
of regularity, whereas we only establish measurability. This is closely tied to establishing
a satisfactory well-posedness theory for (22), and will be addressed in forthcoming work.
A suitable well-posedness theorem would also yield a probabilistic proof of the existence
of a two-parameter family of self-similar solutions to (22). These solutions are generated
by considering the flux functions f (u) = |u|p/p, 1 < p < ∞ and an initial potential that is
an α-stable spectrally negative Lévy process. It seems challenging to prove this analytically
starting with (22).

Also, while our work yields a deeper understanding of Groeneboom’s solution, it does
not, as yet, constitute an independent proof of his results. We have only been able to verify
that his solution satisfies (22). We have been unable to derive it using (22) alone. We hope
to address this in future work using techniques from integrable systems.

The rest of this article is organized as follows. We first derive (27) and (28) from the
standpoint of kinetic theory in the next section. This is followed by the rigorous closure
theorems. We then derive the Lax equations by BV calculus and by Hopf’s method. Finally,
we consider Groeneboom’s self-similar solution for Burgers equation in Sect. 6.

2 Kinetic Equations

2.1 Introduction

In this section, we assume the velocity u is a stationary Feller process in x, and derive the
kinetic equations of Sect. 1.4. We use the evolution of a single shock and rarefaction wave
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to derive a Boltzmann-like equation for the evolution of the density of shocks. We conclude
this section by showing that the Lax equation (22) is equivalent to the kinetic equations
(28)–(30). The main observation is that the space of operators of the form (20) is formally a
Lie algebra.

2.2 Conservation of Total Number Density

Let p(y, t) denote the stationary 1-point density, i.e. p(y, t)dy = P (u(x, t) ∈ (y, y + dy)),
and F(y, z, t) denote the total number density, i.e. the expected number of jumps per unit
length from states y to z. Then

F(y, z, t) = p(y, t)n(y, z, t). (46)

The total number density changes because of a flux of shocks and shock collisions, and we
have the general conservation law of Boltzmann-type

∂tF + ∂y(FVy) + ∂z(FVz) = C(F,F ). (47)

Here Vy and Vz denote ‘velocities’ in the (y, z) ‘phase space’, and C is a binary collision
kernel. This is the general structure of the equation. We now derive the evolution equation
for b, the velocities Vy , Vz, and the collision kernel C, based on elementary solutions to the
scalar conservation law (1).

2.3 Decay of the Drift

First consider how affine data evolves under (1). Let u(x, t) solve (1) with u0(x) = α0 +β0x.
For x, t ≈ 0, we have to leading order u(x, t) ≈ α(t) + β(t)x, so that

∂tu ≈ α̇ + β̇x, ∂xf (u) ≈ f ′(α)β + f ′′(α)β2x. (48)

We now balance terms in (1) to obtain

α̇ = −f ′(α)β, β̇ = −f ′′(α)β2. (49)

The second equation expresses the decay of rarefaction waves when β0 > 0. The connection
between this elementary solution and the generator of the process is the following. The drift
coefficient b(y, t) corresponds locally to an affine profile as above with α = y and β = b.
Thus, the second equation above is simply (27).

2.4 Decay of Shocks and Vy , Vz

The ‘velocities’ Vy and Vz in (y, z) space arise because of the decay of shocks. In order to
derive these velocities, we fix u− > u+ and consider piecewise affine initial data

u0(x) =
{

u− + b−x, x < 0,

u+ + b+x, x > 0.
(50)

Let s(t) denote the path of the shock. Then by (8), for small t

s(t) = [f ]u−,u+(t + o(t)). (51)
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s is also given by the kinematic condition

s(t) = a±(t) + f ′(u±)t + o(t), (52)

where a± denotes the left and right inverse Lagrangian points at time t . Thus,

a±(t) = ([f ]u−,u+ − f ′(u±))t + o(t). (53)

Since u− > u+ and f is convex, we see that [f ]u−,u+ − f ′(u−) < 0. Similarly, [f ]u−,u+ −
f ′(u+) > 0. As a consequence, a shock initially connecting states u± decays to a shock
connecting states

u± + ([f ]u−,u+ − f ′(u±))b±t + o(t). (54)

This decay gives rise to a flux of F . To first approximation, the flux is linear in F , and of
the form (47) with the drift velocities given by (29).

2.5 The Collision Kernel C(F,F )

Binary collisions of shocks occur at a rate determined by the Markov property (in x) and
the relative velocity of shocks given by (8). In order to simplify notation, we suppress the
t -dependence for the process u and write ux for u(x, t). We also denote a shock connecting
states u− and u+ by {u−, u+}. Shock clustering involves the following events:

growth: {y,w} + {w,z} = {y, z}, z < w < y, (55)

decay: {y, z} + {z,w} = {y,w}, −∞ < w < z, (56)

decay: {w,y} + {y, z} = {w,z}, y < w < ∞. (57)

The computation of rates for these events is similar. To be concrete, let us first consider (55).
Fix z < w < y and consider small �x1 > 0, �x2 > 0. Then formally, by the Markov prop-
erty

dP (u0 = y,u�x1 = z) ≈ p(y)n(y, z) dy dz�x1, (58)

and similarly,

dP (u0 = y,u�x1 = w,u�x1+�x2 = z)

≈ p(y)n(y,w)n(w, z) dy dz dw �x1 �x2. (59)

The relative velocity of these shocks is [f ]y,w − [f ]w,z to leading order. We thus set �x2 =
([f ]y,w − [f ]w,z)�t to compute the number of collisions in time �t . We now sum over w

in the range z < w < y to obtain the growth term in C(F,F ):

C1 :=
∫ y

z

p(y)n(y,w)n(w, z)([f ]y,w − [f ]w,z) dw. (60)

The computation for the events (56) is similar. We now find the decay terms

C2 := −
∫ z

−∞
p(y)n(y, z)n(z,w)([f ]y,z − [f ]z,w) dw, (61)
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and

C3 := −
∫ ∞

y

p(w)n(w,y)n(y, z)([f ]w,y − [f ]y,z) dw. (62)

2.6 Kinetic Equations for n

We have now defined all the terms in (47). In order to obtain an equation in terms of n

alone we use Kolmogorov’s forward equations to eliminate the 1-point distribution p(y, t).
The first equation in (24) is now 0 = A†p since the process is stationary in x. The second
equation in (24) implies

p(y)∂tn(y, z) = ∂tF (y, z) − n(y, z)B†p(y), (63)

where

B†p(y) = ∂y(f
′(y)b(y)p(y)) −

∫

R

(p(w)n(w,y) − p(y)n(y,w))[f ]y,w dw. (64)

(It is convenient to denote the domain of integration by R, noting that it is actually a half-line
because n(y, z) = 0 for y < z.)

To isolate the main cancellations on the right hand side of (63), we note that the integral
term in C3 − n(y, z)B†p(y) is

n(y, z)

(

[f ]y,z

∫

R

p(w)n(w,y)dw − p(y)

∫

R

n(y,w)[f ]y,w dw

)

. (65)

The first integral above can be simplified further. Since A†p = 0, we also have
∫

R

p(w)n(w,y)dw = p(y)

∫

R

n(y,w)dw + ∂y(b(y)p(y)). (66)

Therefore, we may rewrite the expression in (65) as

p(y)n(y, z)

∫ y

−∞
([f ]y,z − [f ]y,w)n(y,w)dw + n(y, z)[f ]y,z∂y(b(y)p(y)). (67)

We now collect all terms on the right hand side of (63) using (47), (29), (60), (61), and (67).
We then have

p(y)∂tn(y, z) = p(y)Q(n,n)(y, z) (68)

+ n(y, z)([f ]y,z∂y(b(y)p(y)) − ∂y(f
′(y)b(y)p(y))) (69)

− ∂y(F (y, z)Vy(y, z)) − ∂z(F (y, z)Vz(y, z)), (70)

where Q(n,n) denotes the collision kernel in (30). Finally, we use (46) and (29) to obtain
the sum of (69) and (70):

= p(y)(n([f ]y,z − f ′(y))∂yb − bf ′′(y)) − ∂y(nVy(y, z)) − ∂z(nVz(y, z)). (71)

Under the assumption that the Markov process u has a strictly positive stationary density,
we may cancel p(y) on both sides of (67). We then have the kinetic equations (28).
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2.7 Equivalence of the Lax Equations and Kinetic Equations

The equivalence of the Lax equations (22) and the kinetic equations (28)–(30) follows from
the algebraic structure of operators of the form (20) and (21). The space of operators of the
form

Aϕ(y) = b(y)ϕ′(y) +
∫

R

n(y, z)(ϕ(z) − ϕ(y)) dz, (72)

with b, n smooth, n satisfying appropriate integrability conditions, and the bracket [·, ·] is
formally a Lie algebra. That is, if Ai , i = 1,2,3 are operators as above, then [A1, A2] is an
operator of the same form, and the following Jacobi identity holds:

[[A1, A2], A3] + [[A2, A3], A1] + [[A3, A1], A2] = 0. (73)

We do not assume that b and n are positive or that their support is a half-line. Both assertions
rely on tedious, but direct calculations. We will omit the proof of (73), and simply summarize
the calculation for [A1, A2]. We have

[A1, A2]ϕ(y) = (b1b
′
2 − b′

1b2)ϕ
′(y) +

∫

R

(ν + σ)(ϕ(z) − ϕ(y)) dz, (74)

with

ν(y, z) = b1(y)∂yn2 − b2(y)∂yn1 + ∂z(b1(z)n2 − b2(z)n1), (75)

and

σ(y, z) =
∫

R

(n1(y,w)n2(w, z) − n2(y,w)n1(w, z)) dw

+
∫

R

n2(y, z)n1(z,w) − n1(y, z)n2(z,w)dw

+
∫

R

n1(y, z)n2(y,w) − n2(y, z)n1(y,w)dw. (76)

We apply (74) to (22) as follows. Let A1 = A and A2 = B, with A and B as in (20) and (21).
We then find immediately from (75) that the drift coefficient of [A, B] is

−b(y)(f ′(y)b(y))′ + f ′(y)b(y)b′(y) = −f ′′(y)b2(y) (77)

as in (27). Similarly, we use (75) to obtain the second, third and last term in (28). Finally,
we substitute the jump measures in (76) to obtain the collision kernel Q(n,n).

3 Closure Theorems

3.1 Introduction

In this section we show that the entropy solution to (1) preserves the class of spectrally
negative Markov processes. The Markov property of u was implicitly used by Burgers, and
made explicit in [8]. Our work is based on previous results by Bertoin [9] and Winkel [45].
We extend these results to general convex fluxes f and a large class of noise initial data.
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3.2 Splitting Times

The main technical tool we need is the decomposition of Markov processes at random times
so that the past and future are conditionally independent. This certainly holds at a stopping
time. However, it also holds for a broader class of splitting times. We use the following
theorem on the preservation of the Markov property at a last-passage time.

Theorem 1 (Getoor [25]) Consider a càdlàg strong Markov process Xs . Let M ⊂ R be a
fixed set and let L = sup{s ∈ R : Xs ∈ M} be the end of M . Then the post-L process {Xs}s≥L

is independent of {Xs}s<L given XL.

Furthermore, the transition semigroups of the pre- and post-L processes can be explicitly
determined from that of X. It is an important and subtle fact that these transition semigroups
are different from that of the original process. In particular, the semigroup of the post-L
process is the same as that of X conditioned to never hit M again.

3.3 Closure for Spectrally Negative Initial Velocity

We work within the canonical framework. Let u0 = (�, F , Fs , u0(s),μ0) be a spectrally
negative Markov process on the space � of càdlàg paths on (−∞,∞) endowed with the
Skorohod topology. Here, μ0 is the law of the coordinate process u0(ω; s) = ω(s) on �

and Fs = σ(u0(r), r ≤ s) is the natural filtration of u0 extended to be right-continuous and
complete. Note that in our work x plays the role of “time” as traditionally used in the theory
of stochastic processes. t acts as a parameter in the following discussion, and will be dropped
from the notation when convenient.

We rewrite the Hopf-Lax functional and inverse Lagrangian function as

I (s;x, t) =
∫ s

0

(

u0(r) − (f ′)−1

(
x − r

t

))

dr, (78)

a(x, t) = arg+ min
s∈R

I (s;x, t). (79)

To ensure that (79) is well-defined and finite, we assume (4) holds a.s. This is certainly
true if u0 is a stationary random process and f ∗ grows fast enough at infinity. In what follows
we also make use of the fact that for fixed t , a(x, t) is an increasing function in x. Since
u(x, t) and a(x, t) are related by (7), in order to obtain the closure property we only need to
show that a(x, t) is a Markov process. We prove the following:

Theorem 2 Let u0 be a spectrally negative strong Markov process such that (4) holds a.s.
Under the law μ0 and for any fixed t > 0, the inverse Lagrangian process a(x, t) is a Markov
process. Thus, u(x, t) is a spectrally negative Markov process.

Proof Fix x ∈ R. Without loss of generality it suffices to take t = 1. We also suppress the
dependence on t in the notation for clarity. The proof consists of three steps, the first two of
which are entirely deterministic.

1. Dependence structure of (a(x))x∈R: Since a(x) is increasing, for h > 0

a(x + h) = arg+ min
s∈R

I (s;x + h)

= arg+ min
s≥a(x)

{I (a(x);x + h) + (I (s;x + h) − I (a(x);x + h))}
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= a(x) + arg+ min
s≥0

{∫ a(x)+s

a(x)

(u0(r) − (f ′)−1(x − r))dr

}

. (80)

(a(x + h) − a(x))h>0 therefore depends on u0 only through (u0(s))s>a(x). The same argu-
ment shows that (a(x − h) − a(x))h>0 depends only on (u0(s))s<a(x).

2. Downward jumps determine u0(a(x)): If u0 has only downward jumps then
∂sI (a(x);x) = 0. That is,

u0(a) = (f ′)−1(x − a(x)). (81)

This may be seen easily by sketching a picture. Upward jumps in u0 give rise to a potential
with a corner that is convex, and downward jumps give a potential with a corner that is
concave. In the second case, the minimum of I can never be achieved at the corner. Thus, it
is always obtained at a point of continuity, implying (81).

3. a(x) is a splitting time for u0: It is not obvious that a(x) is a Markov time for u0. It is
not a stopping time since the event {a(x) ≤ s} is not Fs -measurable. Indeed, a(x) is the last
time (78) is minimized and depends on (u0(r))r>s as well. a(x) is, however, a splitting time
for a certain functional of u0. To see this, first define

m(s;x) = min
r≤s

I (r;x), D(s;x) = (I − m)(s;x).

For simplicity, denote d(s;x) = (f ′)−1(x − s). Dropping the explicit dependence on x from
the notation, consider the process (u0, d,D). Since D(s) is entirely dependent on (u0(r))r≤s ,
(u0, d,D)(s) is Fs -measurable. For any F -stopping time ξ

m(ξ + s) = m(ξ) ∧
(

min
ξ<r≤ξ+s

I (r)
)

= I (ξ) +
{
−D(ξ) ∧ min

0<r≤s
(I (ξ + r) − I (ξ))

}

and

D(ξ + s) = (I (ξ + s) − I (ξ)) −
{
−D(ξ) ∧ min

0<r≤s
(I (ξ + r) − I (ξ))

}
.

For s > 0 the increment I (ξ + s) − I (ξ) depends on Fξ only through u0(ξ) by the strong
Markov property of u0. Therefore, (u0, d,D) is also a càdlàg, strong Markov process.

We now show that a(x) is a splitting time for (u0, d,D). By definition (79) and step 2,
a(x) is the last time s that (u0, d,D)(s) hits the fixed set {(y, y,0) : y ∈ R}. Thus, we can
use Theorem 1 to split u0 at a(x) into

(u0, d,D)s<a(x) and (u0, d,D)s>a(x).

As a consequence,

(u0(s))s<a(x) and (u0(s))s>a(x)

are conditionally independent given d(a(x))—that is, since d is invertible, given a(x).
This shows that a is a Markov process (note that the law of the increments of the process

may vary with x). Therefore, u(x) = (f ′)−1(x − a(x)) is a spectrally negative Markov
process. �
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Remark 1 Theorem 2 reduces to Bertoin’s closure theorem [9, Theorem 2] if f (u) = u2/2
(Burgers flux) and u0 is a spectrally negative Lévy process. To see this, use (81) in (80):

a(x + h) − a(x) = arg+ min
s≥0

{∫ a(x)+s

a(x)

(u0(r) − u0(a(x)) + r − a(x))dr

}

= arg+ min
s≥0

{∫ s

0
(u0(a(x) + r) − u0(a(x)) + r)dr

}

.

Since u0 has independent increments, the integrand above is independent of (u0(s))s<a(x)

and has the same law as u0(r)−u0(0)+ r . So, the law of a(x +h)− a(x) is independent of
a(x − h) − a(x))h≥0 and does not vary with x. Note that it is necessary to use f (u) = u2/2
to obtain this result, and to show that the increments of a(x) are identical in law to those of
the first hitting process T (x) = inf{s ≥ 0 : u0(s) + s ≥ x}.

3.4 Closure for Noise Initial Data

We now prove the analogue of Theorem 2 for noise initial data. Recall that the Hopf-Lax
functional and inverse Lagrangian function satisfy

I (s;x, t) = U0(s) + f ∗
(

x − s

t

)

, (82)

a(x, t) = arg+ min
s∈R

I (s;x, t). (83)

We prescribe the law of the potential as follows. Let

U0(x) =
{

−Ỹ−x− , x ≤ 0,

Yx, x > 0,
(84)

where Y, Ỹ are independent copies of a spectrally negative additive process starting at 0 and
x− denotes the limit from the left. We denote by M0 the law of U0 on the space of càdlàg
paths. If X has stationary increments it is a Lévy process, but it is not necessary to assume
this. In addition, assume the growth condition (4) holds almost surely.

Theorem 3 Suppose U0 = (�, G, Gs ,U0(s),M0) is a two-sided spectrally negative process
with independent increments and satisfies (4) a.s. Then under M0 and for all t > 0, u(x, t)

is a spectrally negative Markov process.

Proof Again, we fix x ∈ R, take t = 1, and drop the t -dependence in our notation.
1. Dependence structure of (a(x))x∈R: As before, for h > 0

a(x + h) = arg+ min
s∈R

I (s;x + h)

= a(x) + arg+ min
s≥0

{I (a(x) + s;x + h) − I (a(x);x + h)}

Let Xs denote the strong Markov process I (s;x + h) and let a = a(x). The increment
a(x + h) − a(x) therefore depends on U0 only through the increment Xa+s − Xa .
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2. Spectral negativity of X: Since U0 is spectrally negative, so is the process Xs . Explic-
itly,

Xs− ∧ Xs = Xs.

3. Markov property of X at a: The inverse Lagrangian a is the last time Xs− ∧ Xs hits
its ultimate minimum m = Xa . Using spectral negativity, we need only consider Xs . Let
Ms = minr≤s Xr . Then a(x) is the last time s that (Xs,Ms) hits the fixed set {(y, y) : y ∈ R}.
Theorem 1 then implies (Xs)s≥a is independent of (Xs)s<a given m.

We now make use of the particular form of the semigroup of the post-a process, for
which we refer to [25, Theorem 2.12] (see also Theorem 5.1 in [39] and the subsequent
remark). Precisely, given a and m, the law of (Xs)s≥a is identical to that of an independent
copy of Xs started at a with Xa = m and conditioned to live above m. By the invariance
of U0 under translations in state space (due to the property of independent increments) this
implies that (Xs)s≥a is identical in law to a copy of Xs started at a with value Xa = 0
and conditioned to live above 0. To summarize, although the post-a process no longer has
independent increments, the increment Xa+s − Xa is still independent of m given a.

By steps 1 and 3, the increment a(x + h) − a(x) is independent of (a(x − h) − a(x))h≥0

given a and m. Since a(x +h)−a(x) only depends on X through the increment Xa+s −Xa ,
given a it is independent of m as well. Therefore, a(x) is a Markov process and u(x) is a
spectrally negative Markov process. Notice that if U0 is not spectrally negative or does not
have independent increments, then a(x +h)−a(x) depends on U0(a−) or U0(a) in addition
to a, destroying the Markov property. �

4 BV Calculus and the Lax Equations

In this section, we derive the Lax equation (22) using the conservation law (1) and the
Vol’pert chain rule for BV functions. This calculation is similar in spirit to [22]. We assume
that for every t > 0, u(x, t) is a spectrally negative, stationary Feller process. The generator
of u is given by (20) and the operator B is defined by (21). In addition, we define one and
two-point operators as follows. We associate a linear functional P to the stationary one-point
distribution p(y, t) via

P(ϕ) = E (ϕ(u(x, t))) =
∫

R

ϕ(y)p(y) dy. (85)

(Here and in what follows, it is convenient to suppress t in the notation.) Similarly, given
h > 0 we denote the transition kernel for the process u by qh and define the associated
transition operator

(Qhϕ)(y) =
∫

R

qh(y, z)ϕ(z) dz. (86)

4.1 The 1-point Function

We recall that the entropy solutions to (1) are in BVloc(R+ × R). Vol’pert showed that one
may extend the chain rule to such functions in a natural manner. Let u± = u(x±, t) denote
the right and left limits of u(x, t) and for any test function ϕ, consider the composition
ϕ(u(x, t)) and set

[ϕ] =
∫ 1

0
ϕ(u− + β(u+ − u−))dβ. (87)
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Then for every smooth test function with compact support, the entropy solution to (1) satis-
fies [43, p. 248]

∂tϕ(u(x, t)) = −[ϕ][f ]∂xu(x, t), x ∈ R, t > 0. (88)

The law of the 1-point function is determined by E(ϕ(u(x, t))) for arbitrary ϕ. We use (88)
to obtain

∂tE(ϕ(u(x, t))) = −E([ϕ][f ]∂xu(x, t)). (89)

The left hand side of (97) is (∂tP )ϕ. We must determine the right hand side. To this end, fix
x ∈ R and for h > 0 let us denote u−h = u(x − h, t). Our calculation relies on the following
unjustified interchange of limits:

E([ϕ][f ]∂xu(x, t)) = lim
h↓0

E

(
1

h
(ϕ(u+) − ϕ(u−h))

(f (u+) − f (u−h))

u+ − u−h

)

. (90)

We assume (90), and show that

lim
h→0

E

(
1

h
(ϕ(u+) − ϕ(u−h))

(f (u+) − f (u−h))

u+ − u−h

)

= −P(Bϕ). (91)

As a consequence,

(∂t P)ϕ = P Bϕ, (92)

which is the formal forward equation (24).
We now establish (91) for a monomial f (u) = um. Since B depends linearly on f , (91)

then also holds for polynomials and by approximation for C1 fluxes with polynomial growth.
For f (u) = um we expand the jump term

f (u+) − f (u−h)

u+ − u−h

=
m−1∑

j=0

u
m−1−j

−h u
j
+. (93)

Therefore, the limit in (91) is a sum of terms of the form

(ϕ(u+) − ϕ(u−h))u
m−1−j

−h u
j
+

= u
m−1−j

−h (ϕ(u+)u
j
+ − ϕ(u−h)u

j

−h − ϕ(u−h)(u
j
+ − u

j

−h)).

The limit of each of these terms is

lim
h→0

1

h
E((ϕ(u+) − ϕ(u−h))u

m−1−j

−h u
j
+)

= lim
h→0

1

h
P(ym−1−j (Qh(y

jϕ) − yjϕ − ϕ(Qh(y
j ) − yj )))

= P(ym−1−j (A(yjϕ) − ϕA(yj ))). (94)

The term A(yjϕ) − ϕA(yj ) may be computed using (20). First the drift term is

ym−1−j (b(yjϕ)′ − ϕb(yj )′) = bym−1ϕ′. (95)
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Similarly, the jump term simplifies to

ym−1−j

∫

R

n(y, z)zj (ϕ(z) − ϕ(y)) dz. (96)

We now sum over all terms in the expansion (93) to obtain

lim
h→0

E

(
1

h
(ϕ(u+) − ϕ(u−h))

(f (u+) − f (u−h))

u+ − u−h

)

=
m−1∑

j=0

P(ym−1−j (A(yjϕ) − ϕAyj ))

= P

(
m−1∑

j=0

bym−1ϕ′ +
∫

R

n(y, z)ym−1−j zj (ϕ(z) − ϕ(y)) dz

)

= P
(

bmym−1ϕ′ +
∫

R

n(y, z)
zm − ym

z − y
(ϕ(z) − ϕ(y)) dz

)

= −P Bϕ.

4.2 The 2-Point Function

Fix x ∈ R and α > 0. Let ϕ and ψ be two test functions. The law of the 2-point function is
described completely by

E(ϕ(u(x, t))ψ(u(x + α, t))) = P(ϕQαψ).

The BV chain rule extends to a product rule as follows

∂t (ϕQαψ) = Qαψ∂tϕ + ϕ∂t Qαψ,

where

ϕ(x, t) = 1

2
(ϕ(x, t−) + ϕ(x, t+)).

We combine the BV chain rule and the conservation law to obtain

∂tϕ(u(x, t)) = −[ϕ][f ]∂xu(x, t),

∂tψ(u(x + α, t)) = −[ψ][f ]∂xu(x + α, t).

Therefore,

∂t (ϕ(u(x, t)ψ(x + α, t)) = −ψ[ϕ′][f ′]∂xu(x, t) − ϕ[ψ ′][f ′]∂xu(x + α, t). (97)

We compute the expected value of each of these terms in turn. First, as earlier, the main
assumption is

E(ψ[ϕ′][f ′]∂xu(x, t))

= lim
h→0

1

h
E

(
f (u+) − f (u−h)

u+ − u−h

(ϕ(u+) − ϕ(u−h))

(
ψ+ + ψ−h

2

))

, (98)

where ψ+ = ψ(u(x + α, t)) and ψ−h = ψ(u(x + α − h, t)).
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We can do away with the mean value. To be explicit, we write the above expectation as
∫

R

∫

R

p(y)qh(y, z)

(
f (z) − f (y)

z − y
(ϕ(z) − ϕ(y))

)
(Qα+h + Qα)ψ(z)

2
dz dy. (99)

We see that the last term converges to Qαψ(y) as h → 0. Therefore,

E(ψ[ϕ′][f ′]∂xu(x, t))

= lim
h→0

1

h
E

(
f (u+) − f (u−h)

u+ − u−h

(ϕ(u+) − ϕ(u−h))Qαψ(u+)

)

(100)

= lim
h→0

1

h
E

(
f (u+) − f (u−h)

u+ − u−
(ϕQαψ(u+) − ϕQαψ(u−h))

− ϕ(u−h)
f (u+) − f (u−h)

u+ − u−h

(Qαψ(u+) − Qαψ(u−h))

)

(101)

= −P(B(ϕQαψ) − ϕB Qαψ), (102)

where we used (91) to compute the limits in (100) and (101).
We now compute the second term on the right hand side of (97). As in the calculation

above, we can do away with the mean value, and we have

E(ϕ[ψ ′][f ′]∂xu(x + α, t))

= lim
h→0

∫

R

∫

R

∫

R

p(y)ϕ(y)qα−h(y, z)
qh(z,w)

h

(
f (w) − f (z)

w − z
(ψ(w) − ψ(z))

)

dw dzdy.

As in the computation of (91) we find that the limit of the innermost integral is Bψ(z).
Therefore,

E(ϕ[ψ ′][f ′]∂xu(x + α, t)) = −P(ϕQα Bψ). (103)

We combine (97), (102) and (103) to find

∂t (P(ϕQαψ)) = P(B(ϕQαψ) − ϕB Qαψ + ϕQα Bψ). (104)

But the left hand side is simply

(∂t P)ϕQαψ + P(ϕ∂t Qαψ), (105)

and by (92)

(∂t P)ϕQαψ = P B(ϕQαψ). (106)

We now combine (104), (105) and (106) to obtain

P(ϕ∂t Qαψ) = P(ϕ(Qα B − B Qα)ψ). (107)

This equation holds for all ϕ and ψ in the domain of A. Thus, we may write

∂t Qα = (Qα B − B Qα) = [Qα, B], (108)

and in the limit α ↓ 0 we have

∂t A = [A, B]. (109)
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5 Hopf’s Method

In this section we derive the Lax equation (22) following Hopf’s method [28]. This method
was used by Chabanol and Duchon to derive their kinetic equations. We show that the cal-
culation works for any convex flux f .

Though our calculations are mainly formal, we begin with the canonical framework of
Sect. 3. Recall that the initial data u0 has law μ0 on �. Let u(t;u0) : [0,∞) → � be a
weak solution of (1) with initial data u0, which induces a sequence of probability measures
(μt )t>0 on �. To derive an equation for the flow of measures (μt )t>0, make the assumption
that u is differentiable in t so that the conservation law can be written for all ϕ ∈ C∞

c (R) as

∂t 〈u(t;u0), ϕ〉 − 〈f (u(t;u0)), ϕ
′〉 = 0. (110)

Here, ′ = ∂x and 〈·, ·〉 is the standard duality pairing. Define the Hopf characteristic func-
tional μ̂t of the law μt

μ̂t (ϕ) =
∫

�

ei〈u,ϕ〉μt(du) (111)

which evolves according to

∂t μ̂t (ϕ) = ∂t

∫

�

ei〈u,ϕ〉μt(du) = ∂t

∫

�

ei〈u(t;u0),ϕ〉μ0(du0)

=
∫

�

i〈f (u(t;u0), ϕ
′〉ei〈u(t;u0),ϕ〉μ0(du0)

=
∫

�

i〈f (u),ϕ′〉ei〈u,ϕ〉μt(du). (112)

Any set of probability measures (μt )t>0 on � that satisfies (112) for all ϕ ∈ C∞
c (R) is de-

fined to be a statistical solution of the scalar conservation law—in particular, the flow of
measures generated by the entropy solution is a statistical solution. Assuming that all mo-
ments of μt are finite, the exponential can be expanded in series (denoting dxn = �n

j=1dxj )
as

ei〈u,ϕ〉 =
∞∑

n=0

in

n!
∫

Rn

n∏

j=1

u(xj )ϕ(xj )dxn.

Let

Eμt

[
n∏

i=1

ϕi(u(xi))

]

=
∫

�

n∏

i=1

ϕi(u(xi))μt (du).

Substituting the expansion for the exponential into (112) yields the infinite hierarchy

∞∑

n=0

in

n!
∫

Rn

∂tEμt

[
n∏

j=1

u(xj )ϕ(xj )

]

dxn

=
∞∑

n=0

in+1

n!
∫

Rn+1
Eμt

[

f (u)ϕ′(x)

n∏

j=1

u(xj )ϕ(xj )

]

dxdxn. (113)
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We simplify this hierarchy as follows. If g : R
n → R satisfies g(x1, . . . , xn) = g(xσ(1),

. . . xσ(n)) for all permutations σ of {1, . . . , n}, then
∫

Rn

g(x1, . . . , xn)dxn = n!
∫

x1<x2<···<xn

g(x1, . . . , xn)dxn. (114)

We choose

g(x1, . . . , xn+1) = 1

n

n+1∑

k=1

Eμt

[

f (u(xk))ϕ
′(xk)

∏

j �=k

u(xj )ϕ(xj )

]

,

in (114) and substitute in (113) to obtain

∞∑

n=0

in

∫

x1<···<xn

∂tEμt

[
n∏

j=1

u(xj )ϕ(xj )

]

dxn

=
∞∑

n=0

in+1
∫

x1<···<xn+1

n+1∑

k=1

Eμt

[

f (u(xk))ϕ
′(xk)

∏

j �=k

u(xj )ϕ(xj )

]

dxn. (115)

Re-indexing the l.h.s. of (115) and subtracting the r.h.s. gives

∞∑

n=1

in

∫

x1<···<xn

{

∂tEμt

[
n∏

j=1

u(xj )

]
n∏

j=1

ϕ(xj )

−
n∑

k=1

Eμt

[

f (u(xk))
∏

j �=k

u(xj )

]

ϕ′(xk)
∏

j �=k

ϕ(xj )

}

dxn = 0. (116)

Finally, the statistical hierarchy (116) can be considerably simplified with the closure
assumption that (μt )t>0 is the law of a stationary Feller process with the one and two-point
operators P and (Qh)h>0 defined in (85) and (86). With hi = xi − xi−1 and Qi = Qhi

for
i = 2, . . . , n,

Eμt

[
n∏

i=1

ϕi(u(xi))

]

=
∫

R

p(du1, t)ϕ1(u1)

∫

R

qh2(u1, du2, t)ϕ2(u2) · · ·
∫

R

qhn(un−1, dun, t)ϕn(un)

= Pϕ1 Q2ϕ2 · · · Qnϕn.

Assume the transition measures qh are differentiable in h. Transferring the derivative on the
test function ϕ′(xk) onto qhk

(uk−1, duk) in (115) and using integration by parts, the statistical
hierarchy is

∞∑

n=1

in

∫

x1<···<xn

{

∂tEμt

[
n∏

j=1

u(xj )

]

+
n∑

k=1

∂xk
Eμt

[

f (u(xk))
∏

j �=k

u(xj )

]}
n∏

j=1

ϕ(xj )dxn = 0.
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Note that the boundary terms in the previous equation vanish due to cancellation of terms
and the fact that ϕ ∈ C∞

c (R) has compact support. The density of tensor products of the
form φ(x1, . . . , xn) = ∏n

j=1 ϕ(xj ) in the space of test functions on {x = (x1, . . . , xn) ∈ R
n :

x1 < · · · < xn} implies that for n ∈ N and x1 < x2 < · · · < xn, the following infinite set of
equations hold:

∂tEμt

[
n∏

j=1

u(xj )

]

= −
n∑

k=1

∂xk
Eμt

[

f (u(xk))
∏

j �=k

u(xj )

]

. (117)

In terms of the operators Q′
i = ∂hi

Qi (denoting h1 = x1, Q1 = P , Qn+1 = I ) this is

∂tEμt

[
n∏

j=1

u(xj )

]

=
n∑

k=1

{PuQ2u · · · Qkf (u)Q′
k+1u · · · Qnu

− PuQ2u · · · Q′
kf (u)Qk+1u · · · Qnu},

or equivalently, in terms of the generator A (using Q′
i = AQi )

∂tEμt

[
n∏

j=1

u(xj )

]

=
n∑

k=1

PuQ2u · · · Qk[f (u), A]Qk+1u · · · Qnu.

One obtains the evolution equation for the 1-point function by taking hi → 0 for all i

(i.e., Qi = I for all i), or the equation for the 2-point function by taking hl+1 = α for
l ∈ {1, . . . , n− 1} and hi → 0 for all i �= l + 1 (i.e., Ql+1 = Qα and Qi = I for all i �= l + 1):

∂tEμt [(u(x1))
n] =

n∑

k=1

Puk−1[f (u), A]un−k, (118)

∂tEμt [(u(x1))
l(u(x1 + α))n−l]

=
l∑

k=1

Pyk−1[f (y), A]yl−k Qαy
n−l +

n∑

k=l+1

Pyl Qαy
k−(l+1)[f (y), A]yn−k. (119)

Using the expression (20) for the generator A, (118) and (119) simplify:

∂t Pyn = −
n∑

k=1

Pyk−1

{

b(y)f ′(y)yn−k +
∫

R

n(y, dz)(f (z) − f (y))zn−k

}

= −P
{

b(y)f ′(y)(yn)′ +
∫

R

n(y, dz)
f (z) − f (y)

z − y
(zn − yn)

}

,

∂t (Pyl Qyn−l )

= −
l∑

k=1

Pyk−1

{

b(y)f ′(y)yl−k Qαy
n−l +

∫

R

n(y, dz)(f (z) − f (y))zl−k Qαz
n−l

}

−
n∑

k=l+1

Pyl Qαy
k−(l+1)

{

b(y)f ′(y)yn−k +
∫

R

n(y, dz)(f (z) − f (y))zn−k

}
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= −P
{

b(y)f ′(y)(yl)′Qαy
n−l +

∫

R

n(y, dz)
f (z) − f (y)

z − y
(zl − yl)Qαz

n−l

}

− Pyl Qα

{

b(y)f ′(y)(yn−l)′ +
∫

R

n(y, dz)
f (z) − f (y)

z − y
(zn−l − yn−l ).

}

In terms of the operator B defined in (21) the above expressions read

∂t Pyn = P Byn,

∂t (Pyl Qαy
n−l ) = P(B(yl Qαy

n−l ) − yl B Qαy
n−l + yl Qα Byn−l).

Since B is a linear operator, we approximate ϕ,ψ ∈ C∞
c (R) by polynomials to obtain the

evolution equation for the 1- and 2-point operators:

∂t Pϕ = P Bϕ, ∂t (PϕQαψ) = P(B(ϕQαψ) − ϕB Qαψ + ϕQα Bψ).

Therefore we have the evolution ∂t A = [A, B] exactly as in Sect. 4.

6 Groeneboom’s Solution

In this section we verify that the generator

A(t)ϕ(y) = 1

t
ϕ′(y) +

∫ y

−∞

1

t1/3
n∗(yt1/3, zt1/3)(ϕ(z) − ϕ(y)) dz (120)

satisfies the Lax equation (22) when f (u) = u2/2 and n∗ is given by (17)–(19). In this case,
the evolution of the drift (27) is simply ḃ = −b2. It is clear that b(y, t) = t−1 is a solution.
The equation for the jump density now takes the form

∂tn(y, z, t) − 1

2t
(y − z)(∂yn − ∂zn) = Q(n,n) (121)

with the collision kernel

Q(n,n)(y, z, t) = y − z

2

∫ y

z

n(y,w, t)n(w, z, t) dw

− n(y, z, t)

∫ z

−∞

y − w

2
n(z,w, t) dw

− n(y, z, t)

∫ y

−∞

w − z

2
n(y,w, t)n(y,w, t) dw. (122)

We substitute the ansatz

u = yt1/3, v = zt1/3,
(123)

s = u − v, n(y, z, t) = t−1/3n∗(u, v),

in (121) and collect terms. We must then verify that
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−2

3
+

(

u − v

3

)
J ′(v)

J (v)
+

(
u

3
− v

)
J ′(u)

J (u)
− 4

3

sK ′(s)
K(s)

= s
K ∗ K

K
(s) −

(

s
K ∗ J

J
(v) + J ∗ (xK)

J
(v)

)

+
(

J ∗ (xK)

J
(u) − s

K ∗ J

J
(u)

)

. (124)

Here x plays the role of a dummy variable in the convolutions J ∗ (xK). Explicitly, J ∗
(xK)(u) = ∫

R
J (u − x)xK(x)dx. Note also that the terms in (124) are evaluated at the

arguments u, v or s = u−v respectively. The functions J and K are related by the following
identities:

x2J = K ∗ J + J ′, (125)

3

2
J ∗ (xK) = x(K ∗ J ) + J, (126)

x3K = 3x(K ∗ K) + 4xK ′ + 2K. (127)

(The argument of each function in these identities is x). We substitute these identities
in (124), and collect the three terms corresponding to the arguments u, v and s and find
that (remarkably!) each of them reduces to a polynomial, and the sum of these three poly-
nomials vanishes.

The identities (125)–(127) are proven using the Laplace transform, (18), and the defini-
tion Ai′′(q) = qAi(q). First, we observe that l = j ′/j = −Ai′/Ai solves the Riccati equation

l′ = −q + l2. (128)

As a consequence of the definition of k in (18) we have

l′ = k/2. (129)

Therefore, we also have

k′ = 2l′′ = −2 + 4ll′ = −2(1 − lk). (130)

Thus, l and k solve an autonomous system. Equation (128) may be rewritten in terms of j

and k as

j ′′ − (q + k)j = 0. (131)

This is equivalent to (125). Next, if we rewrite (130) in terms of j and k, we find immediately
that

3

2
jk′ = (jk)′ − j. (132)

This is equivalent to (126). Finally, we differentiate (130) twice and use (128) to eliminate l

to find

k′′ = k2 − 4l(1 − lk), (133)

k′′′ = 3(k2)′ + 4qk′ + 2k, (134)

which is equivalent to (127).
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Here is the Painlevé property: differentiate (128) to find l′′ = 2l3 − 2lq − 1. Now rescale
τ = −q21/3, w(τ) = 2−1/3l(q) to see that w solves the second Painlevé equation with para-
meter 1/2 [1].

d2w

dτ 2
= 2w3 + wτ + 1

2
. (135)
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