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Abstract: We establish necessary and sufficient conditions for the shock statistics to
approach self-similar form in Burgers turbulence with Lévy process initial data. The
proof relies upon an elegant closure theorem of Bertoin and Carraro and Duchon that
reduces the study of shock statistics to Smoluchowski’s coagulation equation with addi-
tive kernel, and upon our previous characterization of the domains of attraction of self-
similar solutions for this equation.

1. Introduction

The construction of stochastic processes that are also weak solutions to the equations of
fluid mechanics is one approach to rigorous mathematical theories of turbulence. This
is poorly understood at present, and we must settle for insights from vastly simplified
model problems. We consider the invisicid Burgers equation

∂t u + ∂x

(
u2

2

)
= 0, t > 0, x ∈ R, u(x, 0) = u0(x), (1)

with random initial data u0. The problem is to determine the statistical properties of
the Cole-Hopf (entropy) solution u(x, t) to (1), given the statistical properties of u0.
There is a large literature on the subject; we refer to Burgers’ book [10] and the more
recent survey articles [17, 25, 36]. The problem was proposed by Burgers as a model for
turbulence in incompressible fluids, but it has several well-known flaws in this regard.

Explicit solutions play a special role in the theory. Burgers studied the case when
u0 is white noise in his monograph [10]. His work remains the foundation for several
rigorous results, which culminate with the complete solution by Frachebourg and Martin
for the velocity and shock statistics (see [19] and references therein). The case when
u0 is a Brownian motion has attracted much attention since the work of She, Aurell
and Frisch [34] and Sinai [35]. An elegant solution to this problem was obtained by
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Bertoin [5] and Carraro and Duchon [12]. More generally, these authors considered ini-
tial data that comprise a Lévy process with only downward jumps (i.e., shocks). A Lévy
process Xx (x ≥ 0) is a continuous-time random walk with stationary and indepen-
dent increments. It is determined completely by its characteristic exponent ", satisfying
E(eik Xx ) = e−x"(k), via the celebrated Lévy-Khintchine formula

"(k) = ibk +
σ 2k2

2
+

∫

R

(
1 − eiks + iks1|s|<1

)
$(ds), k ∈ R. (2)

The process X is the superposition of three independent processes related to this formula:
a Brownian motion with variance σ 2 and drift −b ∈ R, a compound Poisson process with
jump measure $1|s|≥1, and a pure jump martingale with jump measure $1|s|<1 (see [4,
Ch.1]). The measure $ is arbitrary, subject to the condition

∫
R(1 ∧ s2)$(ds) < ∞,

where a ∧ b means min(a, b).
We say X is spectrally negative if $ is concentrated on the half-line s < 0. In all that

follows we assume

u0(x) =
{

0, x < 0,
a spectrally negative Lévy process, x ≥ 0.

(3)

As we show below, we can always reduce to the case where u0(x) has zero mean E(u0(x))

for all x , and
∫ 0

−∞(|s| ∧ s2)$(ds) < ∞. It is then more convenient to use the Laplace
exponent

ψ(q) = −"(−iq) = σ 2q2

2
+

∫ ∞

0

(
e−qs − 1 + qs

)
&(ds), q > 0, (4)

where &((s, ∞)) = $((−∞, −s)) for every s > 0, so that E(eq Xx ) = exψ(q) and
E(Xx ) = xψ ′(0) = 0.

For this class of initial data, Bertoin proved a remarkable closure property for the
entropy solution of (1), namely: x '→ u(x, t) − u(0, t) remains a spectrally negative
Lévy process for all t > 0. This closure property was first noted by Carraro and Duchon
in connection with their notion of statistical solutions to Burgers equation [11]. That
these statistical solutions agree with the Cole-Hopf solution for spectrally negative data
was shown by Bertoin [5, Thm. 2]. The closure property fails if u0 has positive jumps—
these positive jumps open into rarefaction waves for t > 0, and this is incompatible with
the rigidity of sample paths of Lévy processes. An interesting formal analysis of closure
properties of Burgers equation is presented in [13].

Henceforth, we write v(x, t) = u(x, t) − u(0, t) for brevity. The Lévy-Khintchine
representation now implies that the law of the Lévy process x '→ v(x, t) is completely
described by a corresponding “Lévy triplet” (bt , σ

2
t ,&t ). The mean drift bt = E(v(1, t))

satisfies bt = b0 = 0 for every t ≥ 0. Moreover, for every t > 0, v(·, t) is of bounded
variation, thus the variance σt = 0. Consequently, the law of v(·, t) is completely deter-
mined by only the jump measure &t which contains the shock statistics.

It is a striking fact, implicit in [5], that the evolution of &t is described by
Smoluchowski’s coagulation equation with additive kernel, an equation that arises in
entirely different areas such as the analysis of algorithms [14], the kinetics of polymer-
ization [37], and cloud formation from droplets [23] (see [2] for a review). What this
means is that mean-field theory is exact for Burgers equation with initial data of the
form (3), i.e., random one-sided data with stationary and independent increments. We
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give a precise statement to this effect below in Theorem 2. Several connections between
stochastic models of coalescence and Burgers turbulence are reviewed in [8].

Here, we use the closure property as a basis for a rigorous study of universality
classes for dynamic scaling in Burgers turbulence. Our motivation is the following.
A central theme in studies of homogeneous isotropic turbulence in incompressible flu-
ids is the universality of the Kolmogorov spectrum [30]. A possible rigorous formulation
of such universality involves (a) the construction of stochastic processes that mimic a
‘typical turbulent flow’, and (b) a characterization of the domains of attraction of these
processes. For Burgers turbulence, step (a) consists of constructing exact solutions for
special initial data, say white noise or Brownian motion. In this article, we carry out step
(b) for initial data that satisfy (3).

Domains of attraction are studied in the classical limit theorems in probability (e.g.,
the central limit theorem), and their process versions (e.g., Donsker’s invariance princi-
ple). For Smoluchowski’s coagulation equation with additive kernel, we characterized
all possible domains of attraction in [32], a result akin to the classical limit theorems. In
this article we deal with a process version. In all that follows, we consider the processes
x '→ v(x, t) as elements of the space D of right continuous paths R+ → R with left
limits (càdlàg paths) equipped with the Skorokhod topology [28, Ch. VI]. The shock
statistics determine completely the law of this process (a probability measure on D).
Approach to limiting forms will be phrased in terms of weak convergence of probability
measures on D.

Among the initial data we consider, the stable processes are of particular impor-
tance because of their self-similarity. Let Xα,α ∈ (1, 2] denote the stable process with
Laplace exponent qα (α = 2 corresponds to Brownian motion). The corresponding
jump measure &(ds) = s−1−α ds/((−α) for α < 2. There is a one-to-one corre-
spondence between (a) these stable processes, (b) statistically self-similar solutions in
Burgers turbulence, and (c) self-similar solutions to Smoluchowski’s coagulation equa-
tion. Precisely, this works as follows. Let α ∈ (1, 2], and let T α denote the first-passage
process for x '→ Xα

x + x , i.e.,

T α
x = inf{y

∣∣∣Xα
y + y > x }. (5)

The velocity field is obtained from T α
x by considering the associated spectrally negative

process
V α

x = x − T α
x , x ≥ 0. (6)

Then for the solution to (1) with u0(x) = Xα
x for x ≥ 0, v(x, t) is statistically self-sim-

ilar, with

v(x, t) L= t1/β−1V α
xt−1/β , β = α − 1

α
, t, x > 0. (7)

Here L= means both processes define the same measure on D. The process T α is a pure
jump Lévy process with Lévy measure fα(s) ds, where fα is the number density profile
of a self-similar solution to Smoluchowski’s coagulation equation [32, Sect. 6]:

fα(s) = 1
π

∞∑

k=1

(−1)k−1skβ−2

k! ((1 + k − kβ) sin πkβ, α ∈ (1, 2]. (8)

These solutions are related to classical distributions in probability theory by rescaling. If
p(s;α, 2 − α) denotes the density of a maximally-skewed Lévy stable law [18, XVII.7]
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we have [7, 32]
fα(s) = sβ−2 p(sβ;α, 2 − α). (9)

By the Lévy-Itô decomposition [4, Thm 1.1] and (7) we may conclude that the magni-
tudes of shocks in u(·, t) form a Poisson point process valued in (0, ∞) whose charac-
teristic measure is

&α
t (ds) = t1−2/β fα

(
st1−1/β

)
ds. (10)

For 1 < α < 2 the self-similar solutions have algebraic tails, with fα(s) ∼ s−1−α/
((−α) as s → ∞. The case α = 2 is particularly important since it corresponds to
Brownian initial data. Here we obtain a solution found by Golovin in a model for cloud
formation from droplets [23],

f2(s) = (4π)−1/2s−3/2e−s/4. (11)

For the corresponding solution to (1), the law of v(x, t) can be recovered from the law of
T 2

x , the first-passage time for Brownian motion with unit drift, which is explicitly given
as follows (see Sect. 2.6):

P(T 2
x ∈ (y, y + dy)) = x1y>0

2
√

πy3
exp

(
− (x − y)2

4y

)
dy. (12)

Considering now arbitrary solutions to (1) with initial data (3), we classify solutions
that approach self-similar form as t → ∞ as follows. A rescaled solution au(λx, τ t) is
again a solution of Burgers equation if and only if a = τ/λ. If we set t = 1, regard λ
as a function of τ , and relabel τ as t , we see it is natural to study the large-t behavior of
the processes

x '→ V (t)
x := t

λ(t)
v(λ(t)x, t). (13)

We shall establish necessary and sufficient conditions for convergence of the laws of
these rescaled processes in the sense of weak convergence of measures on D. (Since
the shocks coalesce, a rescaling λ(t) → ∞ is needed to obtain a non-trivial limit.)

Convergence to a process V ∗ is written V (t) L→ V ∗ as in [28]. We say that the process
V ∗ is non-zero if V ∗

x is not identically zero with probability one. Recall that a positive
function L is said to be slowly varying at ∞ if limt→∞ L(t x)/L(t) = 1 for all x > 0.

Theorem 1. Let u0 be a spectrally negative Lévy process with zero mean E(u0(x)),
variance σ 2

0 ≥ 0, and downward jump measure satisfying
∫ ∞

0 (s ∧ s2)&0(ds) < ∞.

1. Suppose there is a rescaling λ(t) → ∞ as t → ∞ and a non-zero Lévy process V ∗

with zero mean E(V ∗
1 ) such that the random variables V (t)

1 converge to V ∗
1 in law.

Then there exists α ∈ (1, 2] and a function L slowly varying at infinity such that

σ 2
0 +

∫ s

0
r2&0(dr) ∼ s2−α L(s) as s → ∞. (14)

2. Conversely, assume that there exists α ∈ (1, 2] and a function L slowly varying at
infinity such that (14) holds. Then there is a strictly increasing rescaling λ(t) → ∞
such that V (t) L→ V α . Moreover, there is a function L̃, slowly varying at infinity
such that, with β = (α − 1)/α,

λ(t) ∼ t1/β L̃(t) as t → ∞. (15)
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Remark 1. Since V (t) and V ∗ are Lévy processes, we have V (t) L→ V ∗ if and only if we
have convergence in law of the random variables V (t)

x0 for some fixed x0 ∈ (0, ∞) (see
(62)-(63) in Sect. 3 below). We take x0 = 1 without loss of generality. Part 2 implies in
particular that the only possible limits are statistically self-similar.

Remark 2. We say a solution has finite energy if for any finite interval I ⊂ R+ we have
E

(∫
I |v(x, t)|2 dx

)
< ∞. The jump measure &t for the solution is related to the energy

by (see Sect. 4)

E
(∫

I
v(x, t)2 dx

)
=

(∫ ∞

0
r2&t (dr)

)∫

I
x dx .

The integral in (14) is thus a measure of the energy in an interval. If it is initially finite,
it is conserved for t > 0, and it remains infinite if it is initially infinite. The only self-
similar solution with finite energy corresponds to α = 2, and Theorem 1 implies it
attracts all solutions with initially finite energy. In this sense, one may say that the finite
energy solution is universal. However, Theorem 1 also indicates the delicate dependence
of the domains of attraction on the tail behavior of &0. Heavy-tailed solutions seem to
us no less interesting than those with finite energy. Finer results on asymptotics, and a
compactness theorem for subsequential limits that builds on Bertoin’s Lévy-Khintchine
classification for eternal solutions to Smoluchowski’s equation [7], will be developed
elsewhere.

Remark 3. The case of zero mean, b0 = 0, is the most interesting. If b0 > 0 or b0 < 0
we can reduce to this case by a change of variables (see Sect. 2.2). If b0 < 0, the solu-
tion is defined only for 0 ≤ t < −b−1

0 . Theorem 1 then characterizes the approach to
self-similarity at the blow-up time. If b0 > 0 then the behavior of the solution as t → ∞
is determined by the zero-mean solution with the same σ 2

0 and &0 at the finite time b−1
0 .

Remark 4. The Cole-Hopf solution is geometric and Theorem 1 may be a viewed as a
limit theorem for statistics of minima. The utility of regular variation in such problems
is widely known [33]. If the initial data is white noise, the Cole-Hopf solution is a study
of the parabolic hull of Brownian motion. Groeneboom’s work on this problem [24] is
the basis for several results on Burgers turbulence (in particular [3, 19, 22]). We have
been unable to find a similar reference to the problem we consider in the probability
literature ([9] seems the closest).

Remark 5. There is a growing literature on intermittence, and the asymptotic self-similar-
ity of Burgers turbulence, see for example [21, 26]. Numerical simulations and heuristic
arguments suggest that this is a subtle problem with several distinct regimes. It is hard
to obtain rigorous results for general initial data. Theorem 1 tells us that the approach to
self-similarity is at least as complex as in the classical limit theorems of probability.

The rest of this article is organized as follows. We explain the mapping from Burgers
equation to Smoluchowski’s coagulation equation in Sect. 2. This is followed by the
proof of Theorem 1 in Sect. 3. Finally, in Sect. 4 we compute a number of statistics of
physical interest: energy and dissipation in solutions, the Fourier-Laplace spectrum, and
the multifractal spectrum.
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2. Mean Field Theory for Burgers Equation

In this section we explain the connection between Burgers equation with spectrally neg-
ative Lévy process data and Smoluchowski’s coagulation equation. The main results are
due to Bertoin [5] and Carraro and Duchon [12]. We follow Bertoin’s approach, and
explain results implicit in [5] and [7]. We think it worthwhile to make this connection
widely known in full generality, since the results are of interest to many non-probabilists.
Exact solutions of this simplicity are also useful as benchmark problems for numerical
calculations.

2.1. Shock coalescence and Smoluchowski’s coagulation equation. Smoluchowski’s
coagulation equation is a widely used mean-field model of cluster growth (see [2, 16]
for introductions). We begin with a heuristic derivation of the coagulation equation as
a mean-field model of shock coalescence. First consider the evolution of a single shock
of size s > 0. Let u0(x) = −s1x≥0. Then the solution is

u(x, t) = −s1x≥x1(t), x1(t) = − s
2

t. (16)

Shock coalescence is nicely seen as follows. Let u0(x) = − ∑N
k=1 sk(0)1x≥xk (0), where

sk(0) > 0 for k = 1, . . . , N and x1(0) < . . . xN (0). The solution may be constructed
using the method of characteristics and the standard jump condition

ẋ = 1
2
(u− + u+) (17)

across a shock at x = x(t), where u− and u+ denote respectively the left and right
limits of u(·, t) at x . At any time t > 0, there are N (t) ≤ N (0) shocks at locations
x1(t) < xk(t) < xN (t)(t) and

u(x, t) = −
N∑

k=1

sk(t)1x≥xk (t), ẋk(t+) = −
k−1∑

j=1

s j (t+) − sk(t+)

2
. (18)

The shock sizes sk(t) are constant between collisions, and add upon collision—when
shocks k and k + 1 collide, we set sk(t+) = sk(t−) + sk+1(t−) and relabel. This yields an
appealing sticky particle or ballistic aggregation scenario. We say a system of particles
with position, mass and velocity (xk(t), mk(t), vk(t)) undergoes ballistic aggregation if
(a) the particles move with constant mass and velocity between collisions, and (b) at
collisions, the colliding particles stick to form a single particle, conserving mass and
momentum in the process. We map this shock coalescence problem to a sticky particle
system by setting mk = sk and vk = ẋk . Suppose particles k and k + 1 meet at time
t . Then, with unprimed variables denoting values before collision and primed variables
denoting values after, since vk+1 = vk − (mk + mk+1)/2 we use (18) to obtain

mkvk + mk+1vk+1 = (mk + mk+1)
(
vk − mk+1

2

)
= m′

kv
′
k .

Thus, the jump condition (17) reflects conservation of momentum.
The calculations so far involve no randomness. Suppose now that the shock sizes s j

are independent and let f (s, t) ds denote the expected number of shocks per unit length
with size in [s, s + ds]. We derive a mean-field rate equation for f as follows. Let I be
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an interval of unit length. The number density changes because of the flux of shocks
entering and leaving I and because of shock collisions within I . On average, the velocity
difference across I is

M1(t) =
∫ ∞

0
s f (s, t)ds,

therefore the average influx is M1(t) f (s, t) ds. Next consider the formation of a shock
of size s1 + s2 by a collision of shocks of size s1 and s2 as shown in Fig. 1. The rela-
tive velocity between these shocks is (s1 + s2)/2 (see Fig. 1). The expected number of
neighboring pairs with sizes in [s1, s1 + ds1], [s2, s2 + ds2] respectively is

f (s1, t) f (s2, t) ds1 ds2.

The probability that these neighboring shocks are near enough to collide in time dt is
1
2 (s1 + s2) dt , thus the number of these shocks that collide in time dt is

f (s1, t) f (s2, t)
s1 + s2

2
ds1 ds2 dt. (19)

Summing over all collisions that create shocks of size s = s1 + s2, and accounting for
the loss of shocks of size s (= s1 or s2) in collisions with other shocks, we obtain the
rate equation

∂t f (s, t) = M1(t) f + Q( f, f ),

where Q( f, f ) denotes the collision operator given by

Q( f, f )(s, t) = 1
2

∫ s

0
s f (s1, t) f (s − s1, t) ds1 −

∫ ∞

0
(s + s1) f (s, t) f (s1, t) ds1.

We integrate in s to find Ṁ1 = M2
1 , therefore the normalized density f/M1 satisfies the

equation

1
M1

∂t

(
f

M1

)
= Q

(
f

M1
,

f
M1

)
. (20)

Up to a change of time scale, this is a fundamental mean-field model of coalescence:
Smoluchowski’s coagulation equation with additive kernel. We treat this equation in
greater depth below.

More precisely, it turns out that the random solution u(x, t) has the structure described
in (18) when the initial data u0 consists of a compound Poisson process with only down-
ward jumps. The mean drift rate at time t is then −M1(t), and this example shows that
the solution blows up at the time M1(0)−1. We show below (see (26)) that one may
remove the mean drift by a change of scale and slope, yielding ‘sawtooth’ data with a
deterministic upward drift that compensates the random downward jumps. For such data
we obtain a global solution. Thus, there is no essential distinction between sawtooth data
and the decreasing initial data considered above.
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s1  

I

s2

Fig. 1. Binary clustering of shocks

2.2. The Cole-Hopf formula. The modern notion of an entropy solution stems from the
penetrating analysis by Hopf of the vanishing viscosity limit to (1). His work was based
on a change of variables (re)discovered independently by Cole and Hopf [15, 27]. This
solution is obtained via minimization of the Cole-Hopf function

H(y, t; x) = (x − y)2

2t
+

∫ y

−∞
u0(y′)dy′. (21)

The minimum in y is well-defined for all t > 0 provided U (y) =
∫ y

0 u0(y′)dy′ is lower
semicontinuous and limx→±∞ y−2U (y) = 0. This is a mild assumption and holds for
the random data we consider provided that the mean drift is zero. We denote the extreme
points where H is minimized by

a−(x, t) = inf{z|H(z, t; x) = min
y

H}, a+(x, t) = sup{z|H(z, t; x) = min
y

H}.
(22)

Notice that any z ∈ R such that x = tu0(z) + z is a critical point of H , and represents a
Lagrangian point that arrives at x at time t . Of these z, the ‘correct’ Lagrangian points
are the minimizers of H . If a−(x, t) = a+(x, t), this point is unique, and we have

u(x, t) = x − a±(x, t)
t

, x ∈ R, t > 0. (23)

There is a shock at (x, t) when a−(x, t) -= a+(x, t). In this case, the Lagrangian interval
[a−(x, t), a+(x, t)] is absorbed into the shock and the velocity of the shock is given by
the Rankine-Hugoniot condition (conservation of momentum)

u(x, t) = u(x+, t) + u(x−, t)
2

= 1
a+(x, t) − a−(x, t)

∫ a+(x,t)

a−(x,t)
u0(y) dy. (24)

It will be convenient for us to assume that u is right-continuous in x and we call a(x, t) =
a+(x, t) the inverse Lagrangian function. Of course, the speed of shocks are still deter-
mined by the right-hand side of (24).

In order to deal with non-zero mean drift in initial data, we will use the following
interesting invariance of Burgers equation. Assume that u0(x) = o(|x |) as |x | → ∞,
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and let u(x, t) be the Cole-Hopf solution with u(x, 0) = u0(x), defined for all t ≥ 0.
Let c ∈ R and define

u(c)
0 (x) = u0(x) + cx, Tc =

{
−c−1, c < 0,

+∞, c ≥ 0.
(25)

Then the Cole-Hopf solution with initial data u(c)
0 is given by

u(c)(x, t) = 1
1 + ct

u
(

x
1 + ct

,
t

1 + ct

)
+

cx
1 + ct

, t ∈ [0, Tc). (26)

This is seen as follows. An elementary calculation shows that the Cole-Hopf functionals
for the different data are related by

H (c)(y, t; x) = H
(

y,
t

1 + ct
; x

1 + ct

)
+

cx2

2(1 + ct)
,

which implies the inverse Lagrangian functions are related by

a(c)(x, t) = a
(

x
1 + ct

,
t

1 + ct

)
. (27)

We now substitute in (23) to obtain (26).

2.3. Solutions with Lévy process initial data. Here we describe how the solution of (1),
with initial data of the form (3), is determined in terms of Laplace exponents, essentially
following Bertoin’s treatment in [5].

Suppose x '→ u0(x) is an arbitrary spectrally negative Lévy process for x ≥ 0,
with Laplace exponent ψ0 having downward jump measure &0. We first show that
we may assume without loss of generality that

∫ ∞
0 (s ∧ s2)&0(ds) < ∞. Indeed, if∫ ∞

1 s&0(ds) = ∞, then u0(x)/x → −∞ almost surely as x → ∞. (This follows from
the fact that for the compound Poisson process Xx with jump measure &0(ds)1|s|≥1,
one has Xx/x → ∞ as x → ∞ by the law of large numbers.) In this case the Cole-Hopf
function H(y, t; x) has no minimum for any t > 0, and Eq. (1) has no finite entropy
solution for any positive time. Hence, we may suppose that

∫ ∞
1 s&0(ds) < ∞.

Next, we show that one may assume the mean drift b0 = E(u0(1)) is zero. If b0 is non-
zero, we have limx→∞ u0(x)/x = b0 a.s. by the strong law of large numbers. If b0 < 0,
then by comparison to compression-wave solutions with initial data A +b max(x, 0), we
find using the maximum principle that a.s. the solution blows up exactly at time −b−1

0 .
If b0 > 0 there is a global solution. In either case, we may use the transformation (26)
with c = b0 to reduce to the case b0 = 0, replacing u0(x) by u0(x) − b0x1x>0. More
precisely, we apply (26) for x ≥ 0 noting that a(0, t) ≥ 0, thus a(x, t) ≥ a(0, t) ≥ 0
for x ≥ 0, so that (27) holds for x ≥ 0. We have:

Lemma 1. If u(c)
0 is a spectrally negative Lévy process with Lévy triplet (c, σ 2

0 ,&0), the
Cole-Hopf solution u(c)(x, t) is determined via (26) for x ≥ 0 and t ∈ [0, Tc), in terms
of a solution u(x, t) having zero mean drift and defined for all t ≥ 0.
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With these reductions, we may restrict ourselves to Laplace exponents ψ0 of the form

ψ0(q) = σ 2
0 q2

2
+

∫ ∞

0

(
e−qs − 1 + qs

)
&0(ds), q ≥ 0. (28)

We will always assume that a and u are right continuous in x (i.e., a(x, t) = a(x+, t),
compare with (24)). This ensures a is an element of the Skorokhod space D, so that we
may use the standard Skorokhod topology to study limiting behavior. For brevity, we
write

v(x, t) = u(x, t) − u(0, t), l(x, t) = a(x, t) − a(0, t),

and rewrite (23) as

v(x, t) = x − l(x, t)
t

, x ≥ 0, t > 0. (29)

Bertoin has shown that for all t > 0, x '→ l(x, t) is an increasing Lévy process (a
subordinator) with the same law as the first passage process for tu0(x) + x . We denote
the Laplace exponents of l and v by Φ and ψ respectively:

E
(

e−ql(x,t)
)

= e−xΦ(q,t), E
(

eqv(x,t)
)

= exψ(q,t), x, q, t ≥ 0. (30)

We combine (29) and (30) to obtain

ψ(q, t) = q
t

− Φ
(q

t
, t

)
. (31)

Since l is a subordinator, it has the simpler Lévy-Khintchine representation

Φ(q, t) = dt q +
∫ ∞

0
(1 − e−qs)µt (ds), q > 0, (32)

where dt ≥ 0 supplies the deterministic part of the drift, and µt is the Lévy measure
of l(·, t), which now must satisfy

∫ ∞
0 (1 ∧ s)µt (ds) < ∞ [4]. We see from (29) that

v(·, t) is a Lévy process with no Gaussian component, and thus has a Lévy-Khintchine
representation

ψ(q, t) = bt q +
∫ ∞

0

(
e−qs − 1 + qs

)
&t (ds), q ≥ 0, t > 0, (33)

related to (32) by

&t (ds) = µt (t ds), bt +
∫ ∞

0
s&t (ds) = 1 − dt

t
. (34)

Due to the result that t and the first passage process of tu0(x) + x have the same law,
a simple functional relation holds between ψ0 and Φ(q, t) [5, Thm. 2]:

ψ0(tΦ(q, t)) + Φ(q, t) = q, q ≥ 0, t > 0. (35)

The evolution takes a remarkably simple form when we combine Eqs. (31) and (35) to
obtain

ψ(q, t) = ψ0(q − tψ(q, t)), q ≥ 0, t > 0. (36)
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But then ψ(q, t) solves the inviscid Burgers equation (in q and t!)

∂tψ + ψ∂qψ = 0, ψ(0, q) = ψ0(q). (37)

The solution to (37) may be constructed by the method of characteristics and takes the
form (36). The remarkable fact that the Laplace exponent is also a solution to Burgers
equation was first observed by Carraro and Duchon [12, Thm. 2].

Since ψ0 is analytic and strictly convex, the solution (36) is analytic for all time and
unique, and the condition ∂qψ(0, t) = 0 is preserved for all t > 0. By (31)–(34), we
have

bt = 0, dt = 1 − t
∫ ∞

0
s&t (ds), t > 0. (38)

Let
M0 = lim

q→∞ ψ ′
0(q). (39)

We find Φ(q, t) → ∞ as q → ∞ from (35), and differentiate to obtain

dt = lim
q→∞ ∂qΦ(q, t) = lim

q→∞
1

1 + tψ ′
0 (tΦ(q, t))

= 1
1 + t M0

, t > 0, (40)

with the understanding that dt = 0 if M0 = +∞. Then

M(t) := lim
q→∞ ∂qψ(q, t) =

∫ ∞

0
s&t (ds) = M0

1 + t M0
, t > 0, (41)

with the understanding that M(t) = t−1 when M0 = ∞. Note M ′ = −M2. Below we
will characterize the evolution of &t differently.

2.4. BV regularity. It is clear from the Cole-Hopf formula that u is locally of bounded
variation for every t > 0. We derive a decay estimate that quantifies this. The sample
paths of u0 have unbounded variation if and only if [4, p.15]

σ 2
0 > 0 or

∫ ∞

0
s&0(ds) = ∞. (42)

Heuristically, this corresponds to the presence of many small jumps (‘dust’). This is
reflected in the Laplace exponent as M0 = limq→∞ ψ ′

0(q) = +∞ in this case. On
the other hand, M0 is finite if and only if u0 is BV, in which case σ0 = 0 and M0 =∫ ∞

0 s&0(ds) < ∞.
The analytic formula (32) has the following probabilistic meaning. If we take a Pois-

son point process x '→ mt
x (masses of clusters) with jump measure µt we have the

representation [4, p.16]
l(x, t) = dt x +

∑

0≤y≤x

mt
y . (43)

The velocity field, and a point process of shock strengths st
y = t−1mt

y are determined
from (23), (40) and (43) by

v(x, t) = M(t)x − 1
t

∑

0≤y≤x

mt
y = M(t)x −

∑

0≤y

st
y . (44)
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For every t > 0, v(x, t) is the difference of two increasing functions: a linear drift
and a pure jump process. Thus, it is of bounded variation, and by (38) and (43) we have

E
(∫ x

0
|∂yv(y, t)|dy

)
= 2M(t)x, x, t > 0, (45)

because E
(∑

0≤y≤x mt
y

)
= x M(t) = x(1 − dt ).

2.5. Relation to Smoluchowski’s coagulation equation. We consider a positive measure
ντ (ds) interpreted as the number of clusters of mass or size s per unit volume at time τ .
Clusters of mass r and s coalesce by binary collisions at a rate governed by a symmetric
kernel K (r, s). A weak formulation of Smoluchowski’s coagulation equation can be
based on a general moment identity for suitable test functions ζ (see [32]):

∂τ

∫ ∞

0
ζ(s) ντ (ds) =

1
2

∫ ∞

0

∫ ∞

0
(ζ(r + s) − ζ(r) − ζ(s)) K (r, s) ντ (dr) ντ (ds). (46)

We consider only the additive kernel K (r, s) = r + s. It is classical that (46) can then
be solved by the Laplace transform [16]. We denote the initial time by τ0 (to be cho-
sen below). The minimal (and natural) hypothesis on initial data ντ0 is that the mass∫ ∞

0 sντ0(ds) is finite. We scale the initial data such that
∫ ∞

0 sντ0 = 1. The Laplace
exponent

ϕ(q, τ ) =
∫ ∞

0
(1 − e−qs)ντ (ds) (47)

then satisfies
∂τϕ − ϕ∂qϕ = −ϕ, τ > τ0. (48)

We showed in [32] that (48) may be used to define unique, global, mass-preserving
solutions to (46). In particular, a map τ '→ ντ from [τ0, ∞) to the space of positive
Radon measures on (0, ∞), such that

∫ ∞
0 sντ (ds) = 1 for all τ ≥ τ0, is a solution of

Smoluchowski’s equation with K (r, s) = r + s (in an appropriate weak sense detailed
in [32]) if and only if ϕ satisfies (48).

We now connect solutions of the inviscid Burgers equation (1) with Lévy process
initial data to solutions of Smoluchowski’s equation through a change of scale. Let u0
satisfy (3) and assume as in Subsect. 2.3 that the corresponding downward jump mea-
sure &0 satisfies

∫ ∞
0 (s ∧ s2)&0(ds) < ∞ and the mean drift is zero. Let &t be the

jump measure of the Cole-Hopf solution. With M0 and M(t) as in (39) and (41), let
τ0 = − log M0 if u0 is of bounded variation, and τ0 = −∞ otherwise, and set

τ = − log M(t), ντ (ds) = &t (M(t)ds). (49)

From (41) it follows
∫ ∞

0 sντ (ds) = 1, and by (47) and (33) we find

ϕ(q, τ ) = q − ψ(qeτ , t). (50)

We see that ψ solves (37) if and only if ϕ solves (48). Therefore, the rescaled Lévy mea-
sure of v(·, t) evolves according to Smoluchowski’s equation. Conversely, given any
solution of Smoluchowski’s equation with initial data ν0 at a finite τ0, we can construct
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a corresponding solution of (1) by choosing u0 to be a spectrally negative Lévy process
with jump measure &t0 via (49).

Initial data u0 with unbounded variation are of particular interest. Here we have
eternal solutions ντ to (46) defined for all τ ∈ R. We see that eternal solutions are in
one-to-one correspondence with initial data u0 of unbounded variation via (50). A finer
correspondence mapping the clustering of shocks to the additive coalescent is found
in [6].

To summarize, we have the following correspondence.

Theorem 2. Assume u0 is a spectrally negative Lévy process with Lévy triplet (0, σ 2
0 ,&0),

with the same assumptions as in Theorem 1. Then for all t > 0, v(·, t) is a Lévy pro-
cess with triplet (0, 0,&t ), whose jump measure &t determines a solution ντ (ds) to
Smoluchowski’s coagulation equation with rate kernel K (r, s) = r + s as described in
(49).

2.6. Self-similar solutions. Bertoin’s characterization of eternal solutions is the ana-
logue of the Lévy-Khintchine characterization of infinitely divisible distributions [4,
18]. Among the latter, the stable distributions are of particular interest, and their ana-
logues for Smoluchowski’s equations are obtained by choosing the Laplace exponent
ψ0(q) = qα , α ∈ (1, 2]. For α ∈ (1, 2) the corresponding Lévy measures are

&(ds) = s−(1+α)

((−α)
ds.

The Laplace exponent q2 corresponds to an atom at the origin. We thereby obtain for
α ∈ (1, 2] a family of self-similar solutions to Smoluchowski’s equation with Laplace
exponent of the form ϕ(τ, q) = e−βτ ϕα(qeβτ ), where ϕα solves

ϕα(q)α + ϕα(q) = q, q > 0. (51)

The self-similar solutions to Smoluchowski’s coagulation equation are

ντ (ds) = e−2τ/β fα(e−τ/βs) ds, β = α − 1
α

, α ∈ (1, 2], (52)

where fα has been defined in (8). An analytic proof that these are the only self-similar
solutions to Smoluchowski’s equation may be found in [32]. Each of these solutions
corresponds to a self-similar process. Precisely, let Xα denote the stable process with
Laplace exponent qα , and T α and V α denote the processes

T α
x = inf{y ≥ 0 : Xα

y + y > x}, V α
x = x − T α

x . (53)

We have M0 = +∞ and M(t) = t−1 = e−τ in this case, and the Laplace exponent of
the process l(·, t) is of the self-similar form

Φ(q, t) = ϕ(q, τ ) = t−1/βϕα

(
qt1/β

)
, t > 0. (54)

The solution processes have the scaling property

l(x, t) L= t1/βT α
xt−1/β , v(x, t) L= t1/β−1V α

xt−1/β . (55)
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The corresponding Lévy measures are obtained from (34), (49) and (52):

µα
t (ds) = t−2/β fα(t−1/βs) ds, &α

t (ds) = t1−2/β fα
(

t1−1/βs
)

ds. (56)

In the important case α = 2, we have 1/β = 2 and ϕ2(q) = − 1
2 +

√
1
4 + q , and by Laplace

inversion [1, Ch.29] we obtain the explicit expression in (12) for the distribution of T 2
x .

3. The Convergence Theorem

In [32] we proved the following theorem characterizing solutions that approach the self-
similar form in Smoluchowski’s coagulation equation with additive kernel. To every
solution ντ of (46) with

∫ ∞
0 sντ (ds) = 1 we associate the probability distribution func-

tion

F(s, τ ) =
∫

(0,s]
rντ (dr). (57)

To a self-similar solution fα , α ∈ (1, 2] with β = (α − 1)/α we associate

Fα(s) =
∫ s

0
r fα(r) dr =

∞∑

k=1

(−1)k−1skβ

k! ((1 + k − kβ)
sin πkβ

πkβ
. (58)

A probability distribution function F∗ is called nontrivial if F∗(s) < 1 for some s > 0;
this means the distribution is proper (lims→∞ F∗(s) = 1) and not concentrated at 0
(F(s) -≡ 1).

Theorem 3. Suppose τ1 ∈ R and ντ , τ ∈ [τ1, ∞), is a solution to Smoluchowski’s
coagulation equation with additive kernel such that

∫ ∞
0 sντ1(ds) = 1.

1. Suppose there is a rescaling function λ̃(τ ) → ∞ as τ → ∞ and a nontrivial
probability distribution function F∗ such that

lim
τ→∞ F(λ̃(τ )s, τ ) = F∗(s) (59)

at all points of continuity of F∗. Then there exists α ∈ (1, 2] and a function L slowly
varying at infinity such that

∫ s

0
r2ντ1(dr) ∼ s2−α L(s) as s → ∞. (60)

2. Conversely, assume that there exists α ∈ (1, 2] and a function L slowly varying at
infinity such that (60) holds. Then there is a strictly increasing rescaling λ̃(τ ) → ∞
such that

lim
τ→∞ F(λ̃(τ )s, τ ) = Fα(s), 0 ≤ s < ∞,

where Fα is a distribution function for a self similar solution as in (58).
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The choice of λ̃ = λ̃(τ ) in part 2 from [32, (7.12)] corresponds to finding q = eτ /λ̃
to solve 1 − ∂qϕ(q, τ1) = αe−τ . By the Tauberian Lemma 3.3 of [32], (60) implies

αe−τ = 1 − ∂qϕ(q, τ1) ∼ qα−1L
(

1
q

)
((3 − α)

α − 1
as q → 0.

It follows q L(1/q)1/(α−1) ∼ cαe−τ/(α−1), which implies q ∼ e−τ/(α−1) L̂(eτ ) for some
function L̂ slowly varying at ∞. Hence

λ̃(τ ) ∼ eτ/β/L̂(eτ ). (61)

If L is constant in (60), then λ̃ is asymptotically proportional to eτ/β .
We now prove Theorem 1. Let u0 be a spectrally negative Lévy process with zero mean

drift and
∫ ∞

0 (s ∧ s2)&0(ds) < ∞. To the solution increment v(x, t) = u(x, t)− u(0, t)
with downward jump measure &t , associate a solution ντ of Smoluchowski’s coagula-
tion equation (46) as in Theorem 2 with Laplace exponent ϕ(q, τ ) given by (50). Let
τ1 = τ0 = − log M0 if M0 < ∞, and let τ1 = 0 if M0 = +∞ and τ0 = −∞.

We deduce Theorem 1 from Theorem 3 by establishing two equivalences:

(a) There is a rescaling λ(t) → ∞ as t → ∞ and a non-zero Lévy process V ∗ with

zero mean drift E(V ∗) such that V (t) L→ V ∗ if and only if there is a rescaling
λ̃(τ ) → ∞ as τ → ∞ and a nontrivial probability distribution function F∗ such
that (59) holds.

(b)
∫ ∞

0 s2ντ1(ds) < ∞ if and only if
∫ ∞

0 s2&0(ds) < ∞. Moreover,
∫ s

0 r2ντ1(dr) ∼
s2−α L(s) as s → ∞ if and only if

∫ s
0 r2&0(dr) ∼ s2−α L(s) as s → ∞.

Proof of (a). We prove claim (a) by showing each part equivalent to a corresponding
convergence statement for rescaled Laplace exponents. First, convergence in law in D
for processes with independent increments can be reduced to the convergence of char-
acteristic exponents [28, Cor. VII.4.43, p.440]. In particular, suppose λ(t) → ∞ as
t → ∞. Then we have

V (t) L→ V ∗, with E(V ∗
1 ) = 0, (62)

if and only if E(eikV (t)
x ) → E(eikV ∗

x ) for all k ∈ R, uniformly for x in compact sets,
and E(V ∗

1 ) = 0. But since we are working with Lévy processes, the Lévy-Khintchine
formula shows the dependence on x is trivial, and thus (62) is equivalent to

E(eikV (t)
1 ) → E(eikV ∗

1 ) for all k ∈ R, and E(V ∗
1 ) = 0. (63)

But pointwise convergence of characteristic functions is equivalent to convergence in
distribution of the random variables V (t)

1 [18, XV.3.2], and since V (t)
1 = 1 − T (t)

1 ≤ 1,
(63) is equivalent to convergence of the Laplace transforms [18, XIII.1.2]:

E(eqV (t)
1 ) → E(eqV ∗

1 ) for all q > 0, and E(V ∗
1 ) = 0. (64)

Taking logarithms and using (13) and (30), (64) is equivalent to

λψ (qt/λ, t) → ψ∗(q) for all q > 0, and ∂qψ∗(0) = 0, (65)

where E(eqV ∗
x ) = exψ∗(q). This expresses the convergence of V (t) in terms of conver-

gence of rescaled Laplace exponents. Note that ψ∗(q) ≡ 0 if and only if V ∗
x = 0 for all

x ≥ 0 with probability 1.
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Now suppose λ̃(τ ) → ∞ as τ → ∞. Using [18, XIII.1.2] again, the (proper) con-
vergence in (59) is equivalent to pointwise convergence of Laplace transforms:

η(q, τ ) → η∗(q) for all q > 0, with η∗(0) = 1, (66)

where η(q, τ ) :=
∫ ∞

0 e−qs F(λ̃(τ ) ds, τ ), η∗(q) :=
∫ ∞

0 e−qs F∗(ds). By (57) and (47),
we have

η(q, τ ) = (∂qϕ)(q/λ̃, τ ),

∫ q

0
η(r, τ ) dr = λ̃ϕ(q/λ̃, τ ). (67)

We claim that (66) is equivalent to the statement that (with ϕ∗(q) =
∫ q

0 η∗(r) dr )

λ̃ϕ(q/λ̃, τ ) → ϕ∗(q) for all q > 0, and ∂qϕ∗(0) = 1. (68)

Clearly, since η(·, τ ) is completely monotone and bounded, (66) implies (68). In the
other direction, assume (68). For any sequence τ j → ∞ there is a subsequence along
which η(q, τ j ) converges for all (rational, hence real) q > 0, to some limit whose
integral must be ϕ∗. Thus (66) follows.

We now finish the proof of claim (a) by observing that due to (50), we have

λ̃ϕ(q/λ̃, τ ) = q − λ̃ψ(qeτ /λ̃, t). (69)

Hence the convergence in (65) is equivalent to that in (68) provided we have

λ(t)/t = λ̃(τ )/eτ , (70)

or λ(t) = t M(t)λ̃(τ ), since t M(t) → 1 as t → ∞. (Note t M(t) = 1 if M0 = ∞.)
Moreover, F∗ is a non-trivial probability measure if and only if ψ∗(q) > 0 for q > 0
and ∂qψ∗(0) = 0.

Proof of (b). It is only the case M0 = ∞ that requires some work. Indeed, if M0 < ∞ we
see from (49) that ντ1(ds) = &0(M0 ds). In what follows, we suppose that M0 = ∞.
We then have an eternal solution to Smoluchowski’s equation, and t = eτ . We shall
compare the tails of ν0 (τ = 0) with that of &0 (t = 0).

Claim (b) is a purely analytic fact that follows from Karamata’s Tauberian theo-
rem [18]. We first reformulate it as a statement about Laplace transforms. Let ϕ0(q) =
ϕ(q, 0), ψ0(q) = ψ(q, 0). For every α ∈ (1, 2] we have

∫ s

0
r2ν0(dr) ∼ s2−α L(s) ⇐⇒ 1 − ϕ′

0(q) ∼ qα−1L
(

1
q

)
((3 − α)

α − 1
(71)

as s → ∞ and q → 0 respectively (see [32, Eq. 7.4]). By the same argument,
∫ s

0
r2&0(dr) ∼ s2−α L(s) ⇐⇒ ψ ′

0(q) ∼ qα−1L
(

1
q

)
((3 − α)

α − 1
, (72)

with the following caveat when α = 2. If
∫ ∞

0 r2&(dr) = ∞ then (72) holds. On the
other hand, if

∫ ∞
0 r2&0(dr) < ∞ then we must modify the second condition in (72) to

ψ ′
0(q) ∼

(
σ 2 +

∫ ∞

0
r2&(dr)

)
q, q → 0.
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We set t = 1 in (50) and differentiate (36) with respect to q to obtain

ψ ′
0(ϕ0(q)) = 1 − ϕ′

0(q)

ϕ′
0(q)

= 1
ϕ′

0(q)
− 1. (73)

The functions ψ ′
0, ϕ0, and 1/ϕ′ are strictly increasing. Since ϕ′

0(0) = 1 we also have
ϕ0(q) = q(1 + o(1)) as q → 0. A sandwich argument as in [18] may now be used to
deduce claim (b). First suppose that (71) holds. Fix b, ε > 0. Then for q sufficiently
small we use monotonicity and (73) to obtain

1 − ϕ′
0(bq(1 − ε))

1 − ϕ′
0(q(1 + ε))

ϕ′
0(q(1 + ε))

ϕ′
0(bq(1 − ε))

<
ψ ′

0(bq)

ψ ′
0(q)

<
1 − ϕ′

0(bq(1 + ε))

1 − ϕ′
0(q(1 − ε))

ϕ′
0(q(1 − ε))

ϕ′
0(bq(1 + ε))

.

Letting first q and then ε → 0, we obtain

lim
q→0

ψ ′
0(bq)

ψ ′
0(q)

= bα−1.

Thus, ψ ′
0 is regularly varying with exponent α − 1. Similarly, if we assume that (72)

holds, we sandwich

ψ ′
0(b(1 − ε)q)

ψ ′
0((1 + ε)q)

<
1 − ϕ′

0(bq)

1 − ϕ′
0(q)

ϕ′
0(q)

ϕ′
0(bq)

. <
ψ ′

0(b(1 + ε)q)

ψ ′
0((1 − ε)q)

,

to deduce that 1 − ϕ′
0 is regularly varying with exponent α − 1. Finally, since ϕ′

0(0) = 1
it follows from (73) that limq→0 ψ ′

0(q)/(1 − ϕ′
0(q)) = 1. This finishes the proof of

Theorem 1.

4. Energy, Dissipation and Spectra

In this section, we compute several statistics of physical interest for the solution incre-
ments: mean energy and dissipation, the law of the Fourier-Laplace transform, and the
multifractal spectrum. While the computations are routine, some interesting features
emerge, namely (i) conservation of energy despite dissipation at shocks, (ii) a simple
evolution rule for the Fourier-Laplace spectrum, and (iii) a multifractal spectrum in
sharp variance with that of fully developed turbulence. Simple proofs of fine regularity
properties (e.g., Hausdorff dimension of the set of Lagrangian regular points) may be
found in [5].

4.1. Energy and dissipation. The energy in any finite interval I ⊂ R+is computed using
the Lévy-Khintchine formula (33) and Fubini’s theorem as follows:

E
(∫

I
v(x, t)2 dx

)
=

∫

I
E

(
v(x, t)2

)
dx =

∫

I

(
∂2

q E
(

eqv(x,t)
)∣∣∣

q=0

)
dx

=
∫

I
∂2

q exψ(q,t)
∣∣∣
q=0

dx =
∫

I

(
x2∂qψ(0, t)2 + x∂2

q ψ(0, t)
)

dx

= b2
t

∫

I
x2 dx +

(∫ ∞

0
y2&t (dy)

) ∫

I
x dx . (74)
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Let us restrict attention to solutions of mean zero, that is bt = 0. Then we have conser-
vation of energy in the sense that

E
(∫

I
v(x, t)2 dx

)
= E

(∫

I
v(x, 0)2 dx

)
, t ≥ 0. (75)

Indeed, by (74), we see that (75) is equivalent to

∂2
q ψ(0, t) = ∂2

q ψ0 = σ 2
0 +

∫ ∞

0
s2&0(ds) =: M2, (76)

with the understanding that ∂2
q ψ(0, t) = ∞ if

∫ ∞
0 s2&0(ds) is divergent. It is only

necessary to differentiate (36) to obtain

∂qψ(q, t) = ψ ′
0(q − tψ)

1 + tψ ′
0(q − tψ)

, ∂2
q ψ(q, t) = 1

(
1 + tψ ′

0(q − tψ)
)3 ψ ′′

0 (q − tψ),

and then take the limit q → 0 to obtain (75).
The dissipation at a shock with left and right limits u± is obtained as follows. The

decay of the L2 norm for solutions to Burgers equations with viscosity ε, ut +uux = εuxx ,
is given by

d
dt

∫

R
u2 dx = 2ε

∫

R
u2

x dx .

The right-hand side may be evaluated exactly for traveling waves (viscous shocks) of the
form u(x, t) = uε(x − ct). It is easily seen that for any ε > 0 a traveling wave profile
connecting the states u− > u+ at ∓∞ is of the form uε(x − ct) = w((x − ct)/ε), where
w satisfies the ordinary differential equation

−c (w − u−) +
1
2

(
w2 − u2

−
)

= dw

dξ
, c = u− + u+

2
.

We therefore have

2ε

∫

R
u2

x dx = 2
∫

R
(w′)2 dξ = 2

∫ u+

u−

[
−c(w − u−) +

1
2

(
w2 − u2

−
) ]

dw

= 2(u− − u+)3
∫ 1

0
w(1 − w) dw = (u− − u+)3

3
.

The right-hand side is independent of ε and captures the dissipation of the entropy solu-
tion in the limit ε → 0. The dissipation at shocks in any finite interval I ⊂ R+ may now
be computed by summing over all shocks in I using (43) and (44):

1
3

E




∑

y∈I

(v(y−, t) − v(y+, t))3



 = 1
3

E




∑

y∈I

(st
y)

3



 = |I |
3

∫ ∞

0
s3&t (ds), (77)

where |I | is the length of I .
Conservation of energy in the sense described in (75) is rather surprising in view of the

dissipation at shocks. In particular, there are solutions with finite energy (
∫ ∞

0 s2&t (ds) <

∞), but infinite dissipation (
∫ ∞

0 s3&t (ds) = ∞). However, there is no contradiction,
since (75) refers to the expected value of the energy in any finite interval I , and the
energy dissipated in shocks is compensated by energy input from the endpoints of I .
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4.2. The Fourier-Laplace spectrum. We show that the law of the Fourier transform
v̂(k, t) of paths x '→ v(x, t), is determined by a Lévy process with jump measure
s−1&̄t (s) ds, where &̄t (s) =

∫ ∞
s &t (ds). Here &t (ds) denotes the jump measure of

v(x, t) (see Theorem 4 below). The assertion v̂ ∼ k−1 as k → ∞ for white noise initial
data is common in the Burgers turbulence literature (e.g., see [20, 36]). For the present
case of Lévy process initial data, we show that v̂(k, t) ∼ −i M(t)k−2 as k → ∞. In
addition, we find precise corrections under additional assumptions on &t (for example,
for self-similar solutions).

These computations with the laws of the Fourier-Laplace transform should be con-
trasted with the conventional notion of the power spectrum. Despite its widespread use
for wide-sense stationary processes, the power spectrum is of limited utility for the pres-
ent problem involving stationary increments, as we now show. Fix L > 0 and consider
the interval [0, L]. Almost every sample path v(x, t) is bounded on [0, L] and we may
define the truncated Fourier transform

v̂L(k, t) =
∫ L

0
e−ikxv(x, t) dx . (78)

If the energy is finite (M2 < ∞ in (76)), we may compute a truncated power spectral
density SL(k) as follows. We have

1
L

|v̂L(k, t)|2 = 1
L

∫ L

0

∫ L

0
e−ik(x−y)v(x, t)v(y, t) dx dy. (79)

Since v(x, t) is a Lévy process with mean zero, the autocorrelation is

E(v(x, t)v(y, t)) = (x ∧ y)M2. (80)

We take expectations in (79) to find

SL(k) := 1
L

E
(
|v̂L(k, t)|2

)
= 2M2

k2

(
1 − sin kL

kL

)
, k -= 0. (81)

The power spectrum S(k) = limL→∞ SL(k) = 2M2/k2 is now seen to be well-defined,
but is unsuitable for distinguishing solutions because all solutions with the same energy
(possibly infinite) have identical power spectrum.

A well-defined spectrum that distinguishes solutions may be obtained by taking the
Fourier-Laplace transform of process paths. For fixed p > 0 we define the random
variable

Lv(p, t) =
∫ ∞

0
e−pxv(x, t) dx = 1

p

∫ ∞

0
e−pxv(dx, t). (82)

The integrals are well-defined because limx→∞ v(x, t)/x = 0 a.s. by the strong law of
large numbers, and v(x, t) is of bounded variation. If st denotes a point process of shock
strengths as in (44) we have

p Lv(p, t) = M(t)
p

−
∑

0≤x

e−px st
x . (83)
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We determine the law of p Lv(p, t) by computing its Laplace transform via the ‘infin-
itesimal’ Laplace exponent formula E

(
eqv(dx,t)) = eψ(q,t) dx . Due to independence of

the increments v(dx, t), we find by a standard discretization argument that

E
(

eqp Lv(p,t)
)

= exp
(∫ ∞

0
ψ(qe−px , t) dx

)

= exp
(

1
p

∫ q

0

ψ(q ′, t)
q ′ dq ′

)
=: exp

(
1
p
ψ#(q, t)

)
, p, q > 0, (84)

after the change of variables q ′ = qe−px . We now observe that ψ# determines a Laplace
exponent as follows. Let &̄t (s) =

∫ ∞
s &t (ds) denote the tail of the Lévy measure &t .

Since
∫ ∞

0 (s ∧ s2)&t (ds) < ∞ we have the bounds

s&̄t (s) ≤
∫ ∞

s
r&t (dr), s2&̄t (s) ≤

∫ ε

0
r2&t (dr) + s2&̄t (ε), s ∈ (0, ε).

Therefore,

lim
s→∞ s&̄t (s) = 0, lim

s→0
s2&̄t (s) = 0,

and we may integrate by parts in (33) to obtain

ψ(q ′, t)
q ′ =

∫ ∞

0
(1 − e−q ′s)&̄t (s) ds. (85)

Integrating once more in q ′ we find

ψ#(q, t) =
∫ q

0

ψ(q ′, t)
q ′ dq ′ =

∫ ∞

0
(e−qs − 1 + qs)

&̄t (s)
s

ds. (86)

We integrate by parts in (41) to see that
∫ ∞

0
&̄t (s) ds =

∫ ∞

0
s&t (ds) = M(t) < ∞. (87)

This enables us to write

ψ#(q, t) = M(t)q − Φ#(q, t), Φ#(q, t) =
∫ ∞

0
(1 − e−qs)

&̄t (s)
s

ds. (88)

Since (87) ensures s−1&̄t (s) ds satisfies the finiteness conditions for a jump measure,
ψ# is a Laplace exponent for a Lévy process with zero mean drift that we denote by
Zt . Similarly, Φ# is the Laplace exponent for a subordinator that we denote Y t . We
summarize our calculations in the identities

Zt
r = M(t)r − Y t

r , E
(

eq Zt
r

)
= erψ#(q,t), E

(
e−qY t

r

)
= e−rΦ#(q,t), r, q, t > 0.

(89)
The result is that the Laplace spectrum of the solution increments is determined by

E
(

eqp Lv(p,t)
)

= E
(

eq Zt
1/p

)
, q > 0, p > 0, (90)
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which implies that Lv(p, t) has the same law as p−1 Zt
1/p for fixed p > 0. Note that

for fixed r , Zt
r has the same law as r−1 Lv(r−1, t), but the latter is not a Lévy process

in r . In fact, for a fixed realization, Lv(p, t) is analytic in p. Nevertheless, its law is
determined by the Lévy process Zt .

We extend this computation to the Fourier spectrum (p = ik) as follows. The calcu-
lations leading to (84) hold for complex q with Re(q) ≥ 0, and in particular for q = iξ ,
ξ ∈ R. Moreover, Lv(p, t) is a well-defined random variable for every p with Re(p) >

0. Thus, we may analytically continue the identity E(eqp Lv(p,t)) = exp(p−1ψ#(q, t))
to all p with Re(p) > 0, and q = iξ . As in (4), let "#(ξ, t) = −ψ#(iξ, t) define
the characteristic exponent corresponding to the Lévy process Zt . For ε, k > 0 we set
p = ε + ik, v̂(k − iε, t) = Lv(ε + ik, t) and pass to the limit ε → 0 on both sides of
(84) to obtain

lim
ε↓0

E
(

eiξ(ikv̂(k−iε,t))
)

= exp
(

1
ik

ψ#(iξ, t)
)

(91)

= exp
(

i
k
"#(ξ, t)

)
= E

(
eiξ Zt

1/k
)

, ξ ∈ R, k > 0. (92)

Thus, for fixed k > 0, as ε ↓ 0 the random variables ikv̂(k − iε, t) converge in law to
the (real) random variable Zt

1/k . We denote this limit by ikv̂(k, t). As before we do not
assert that the processes ikv̂(k − iε, t) converge in law to the process Zt

1/k , simply the
convergence of random variables for fixed k. We summarize our conclusions as follows.

Theorem 4. Let Y t be a subordinator with Laplace exponent Φ#(q, t) from (88), and let
Z t be the Lévy process defined by (89). Then for every fixed p > 0 and k > 0 the random
variables p Lv(p, t) and ikv̂(k, t) have the same law as Zt

1/p and Zt
1/k , respectively.

Due to this result and (89), we always have the upper bound ik2v̂(k, t) ≤ M(t) a.s.
This crude bound may be refined as k → ∞ using information related to the sample
path behavior of subordinators (see [4, Ch. III.4]).

Corollary 1. For every t > 0, limk→∞ ik2v̂(k, t) = M(t) in probability.

Proof. This follows from the fact that limr↓0 Y t
r /r = 0 in probability, proved as follows.

By (89) we have E(e−qY t
r /r ) = e−rΦ#(q/r,t), and since 1 − e−s ≤ 1 ∧ s, by (88) we have

that the Laplace exponent

rΦ#(q/r, t) = r
∫ ∞

0
(1 − e−qs/r )

&̄t (s)
s

ds ≤
∫ ∞

0
(r ∧ qs)

&̄t (s)
s

ds → 0

as r ↓ 0 for each q > 0. Hence Y t
r /r → 0 in law.

A similar conclusion holds for the Laplace spectrum as p → ∞. Actually, for the
subordinator Y t

r , the sample paths have the stronger property that limr↓0 Y t
r /r → 0

a.s. [4, III.4.8]. Under a mild assumption on the integrability of the small jumps, we
can strengthen convergence in probability to almost-sure convergence of the Laplace
spectrum.

Corollary 2. For every t > 0, lim p→∞ p2 Lv(p, t) = M(t) in probability. If we also
assume

∫ 1
0 | log s|&̄t (s) ds < ∞, then lim p→∞ p2 Lv(p, t) = M(t) a.s.
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Proof. For notational convenience, we suppress the dependence on t in the proof. Fix ε >
0, and let pm = 2m for positive integers m. We will show that limm→∞ p2

m Lv(pm) = M
a.s. That is, for every ε > 0, we claim

P
(∣∣∣p2

m Lv(pm) − M
∣∣∣ > ε infinitely often

)
= 0. (93)

This is sufficient to establish lim p→∞ p2 Lv(p) = M a.s. Indeed, since M/p− p Lv(p)
is completely monotone by (83), for p ∈ (pm, pm+1) we have the bounds

0 < M(t) − p2 Lv(p) <
p

pm

(
M(t) − p2

m Lv(pm)
)

< 2
(

M − p2
m Lv(pm)

)
,

and therefore
{M − p2 Lv(p) > 2ε} ⊂ {M − p2

m Lv(pm) > ε}. (94)
In order to prove (93) we use the elementary estimate

P
(∣∣∣p2

m Lv(p) − M
∣∣∣ > ε

)
= P

(
pmY1/pm > ε

)
≤ e

e − 1
E

(
1 − exp

(
− pm

ε
Y1/pm

))

= e
e − 1

(
1 − exp

(
− 1

pm
Φ#(

pm

ε
)

))
≤ e

e − 1
1

pm
Φ#(

pm

ε
).

We will show that
∑∞

m=1 p−1
m Φ#(pm/ε) < ∞. The first Borel-Cantelli lemma then

implies (93). For clarity, we suppose ε = 1. This causes no essential difference and
reveals the main computation.

Denote the integrated tail of the Lévy measure for Y t by

$t (s) =
∫ ∞

s

&̄t (s′)
s′ ds′. (95)

We integrate by parts and use Tonelli’s theorem to find
∞∑

m=1

p−1
m Φ#(pm) =

∫ ∞

0

∞∑

m=1

e−pm s$t (s) ds. (96)

It is only necessary to check that the integral over s ∈ (0, 1) is finite. Here we use the
elementary estimate

∞∑

m=1

e−2m s ≤
∫ ∞

0
exp(−ex log 2s) dx = 1

log 2

∫ ∞

s
e−y dy

y
≤ | log s| + 1

log 2
,

so that
∫ 1

0

∞∑

m=1

e−pm s$t (s) ds ≤ 1
log 2

∫ 1

0
(1 + | log s|)$t (s) ds.

By the definition of $t (s) in (95), the last integral is
∫ 1

0
| log s|

∫ ∞

s

&̄t (r)

r
dr ds =

∫ ∞

0

&̄t (r)

r
dr

∫ 1∧r

0
| log s| ds

≤
∫ 1

0
| log r |&̄t (r) dr +

∫ ∞

0
&̄t (r) dr,

which is finite by assumption.
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Corrections to the bound ik2v̂(k, t) ≤ M(t) involve the law of the iterated loga-
rithm [4, III.4]. The following corollary holds for initial data that is not BV (so M0 = +∞
and M(t) = 1/t) with suitably regular small jumps (‘dust’).

Corollary 3. Assume σ0 -= 0 and α = 2, or assume σ0 = 0 and &̄0(s) =
∫ ∞

s &(dr)
is regularly varying at zero with exponent −α, where α ∈ (1, 2). Then for every c > 0
and t > 0 we have

− log P
(

t−1 − ik2v̂(k, t)
h(k log log k)

≤ c
)

∼ log log k
γ cγ t1+2γ

, k → ∞, (97)

where γ = 1/(α − 1) and h(k) = k/ψ0(k).

This corollary is a consequence of [4, Lemma III.12] and is associated with the
following lemma of independent interest which shows that the evolution preserves the
regularity of the dust.

Lemma 2. (a) Assume that σ0 = 0 and &̄0(s) is regularly varying at zero with expo-
nent −α, α ∈ (1, 2). Then &̄t (s) is regularly varying at zero with exponent −1/α
for every t > 0.

(b) If σ0 -= 0, then &̄t (s) ∼ (σ0t)−1√
2/(πs) as s → 0, for every t > 0.

Proof. Recall that t−1 − ik2v̂(k, t) agrees in law with kY t
1/k . Combining (31) with (86)

we find that the Laplace exponent of the subordinator Y t satisfies

Φ#(q, t) =
∫ q

0
Φ

(
q ′

t
, t

)
dq ′

q ′ =
∫ q/t

0
Φ

(
q ′, t

) dq ′

q ′ . (98)

We claim that Φ(·, t), and hence Φ#(·, t), is regularly varying at ∞ with exponent
α̂ = 1/α ∈ [ 1

2 , 1).
To prove the claim, we integrate by parts in (28) to obtain

ψ0(q)

q2 = σ 2
0

2
+

∫ ∞

0
e−qs

(∫ ∞

s
&̄0(r) dr

)
ds.

First assume σ0 = 0 and &̄0 is regularly varying at zero with exponent −α. Then ψ0
is regularly varying at infinity with exponent α. This follows from [18, XIII.5.3], or
may be proved directly. If σ0 -= 0, we have limq→∞ ψ0(q)/q2 = σ 2

0 /2. The Laplace
exponent Φ(q, t) is determined via the functional relation (35). Since α > 1, the map
Φ '→ g0(Φ) := ψ0(tΦ)+Φ is regularly varying (in Φ) at ∞ with exponent α. Therefore,
the inverse function Φ(q, t) is regularly varying (in q) at ∞ with exponent 1/α.

Now let g#(·, t) be the inverse function to Φ#(·, t). Then by [4, Lemma III.4.12] we
infer that for every ĉ > 0,

− log P
(

kY t
1/k

h#(k log log k, t)
≤ ĉ

)

∼ (1 − α̂)(α̂/ĉ)α̂/(1−α̂) log log k, k → ∞, (99)

where

h#(k, t) = k
g#(k, t)

.
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By (98) and regular variation we have Φ#(q, t) ∼ Φ(q/t, t)/α̂ as q → ∞, and thus by
(35) we find that as q → ∞,

g#(q, t) ∼ tg0(α̂q) ∼ tψ0(α̂tq) ∼ t1+αα−αψ0(q).

Substituting ĉ = ct1+αα−α into (99) yields Corollary 3.
Karamata’s Tauberian theorem and the monotone density theorem now imply that

&̄t (s) is regularly varying at zero with exponent −1/α. If σ0 -= 0, we find Φ(q, t) ∼
(σ0t)−1√

2q as q → ∞. Assertion (b) of the lemma then follows from the Tauberian
theorem.

For the self-similar solutions, ψ0(q) = qα with α ∈ (1, 2], &̄0(s) = s−α/(α((−α))
for α ∈ (1, 2), and we have &̄t (s) ∼ t−1(ts)−1/α/((1 − 1/α) as s → 0.

4.3. The multifractal spectrum. The notion of a multifractal spectrum was introduced
by Frisch and Parisi to describe the intermittency of velocity fields in fully developed
turbulence [20]. The multifractal spectrum d(h) measures the dimension of the set Sh
where the velocity field has singularities of order h. There are different mathematical
formulations of multifractality, corresponding to different notions of what one means by
singularities of order h. Here we follow the treatment by Jaffard, which yields d(h) rather
easily [29] (the notation has been changed slightly for consistency with this article).

We say a function f : R+ → R, is Cr (x0) for a point x0 ∈ R+ if there is a polynomial
Px0 of degree at most [r ] such that

| f (x) − Px0(x)| ≤ C |x − x0|r ,

in a neighborhood of x0. The Hölder exponent of f at x0 is defined as

h f (x0) = sup{r
∣∣ f ∈ Cr (x0) }.

We define Sh to be the set of points where f is of Hölder exponent h. The multifrac-
tal spectrum d(h) is the Hausdorff dimension of Sh . If Sh is empty, the convention is
d(h) = −∞.

We now apply these definitions to v(x, t). As an example, let us compute the mul-
tifractal spectrum when the initial data is of bounded variation. Then M0 < ∞ in (44)
and there is a finite number of shocks st

y in a finite interval [0, x] with probability 1.
Suppose x0 is not a shock location for v(·, t). Then (44) shows v is analytic near x0
and hv(x0) = ∞. If x0 is a shock location, then v ∈ C−ε(x0) for every ε > 0, so that
hv(x0) = 0. Thus, we have simply d(0) = 0 and d(h) = −∞ for every h -= 0.

The multifractal spectrum is more interesting for initial data of unbounded variation,
that is, when (42) holds. In this case, the jumps in v are dense. Following Jaffard [29],
the multifractal spectrum is computed as follows. We define

C j (t) =
∫ 2− j

2− j−1
&t (ds), β̃t = max

(

0, lim sup
j→∞

log C j (t)
j log 2

)

. (100)

For any t > 0, v(·, t) has no Brownian component. It then follows from [29, Thm. 1]
that

dt (h) =
{

β̃t h, h ∈ [0, 1/β̃t ],
−∞, else.

(101)
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Experiments suggest that the multifractal spectrum for fully developed three-dimen-
sional turbulence is a concave curve [31, Fig. 2]. This is in clear contrast with (101).

For example, let us compute the multifractal spectrum for the self-similar process V α

of index α ∈ (1, 2]. Since &α
t (s) is a scaled copy of &α

1 (s), dt (h) is independent of t .
We use (8) to obtain the asymptotics as s → 0:

&α
1 (ds) = fα(s) ds ∼ sin πβ

π
sβ−2((2 − β) ds, β = α − 1

α
.

We then have β̃t = α−1, t > 0 and

d(h) =
{

h/α, h ∈ [0,α],
−∞, else. (102)

In particular, (102) implies that d(α) = 1, that is v(x, t) is Cα(x) for a.e x ∈ R+. For this
set a finer characterization of the local variation of v(·, t) may be obtained by using the
Fristedt-Pruitt law of the iterated logarithm (see [5, Cor. 1]). However, the multifractal
spectrum also describes sets Sh , 0 < h < α, that are not covered by the Fristedt-Pruitt
law.

Acknowledgement. This material is based upon work supported by the National Science Foundation under
grants DMS 03-05985, DMS 04-05343, DMS 06-05006 and DMS 06-04420. G.M. thanks the University of
Crete for hospitality during part of this work.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathe-
matical tables. Vol. 55 of National Bureau of Standards Applied Mathematics Series, Superintendent of
Documents, Washington, DC: U.S. Government Printing Office, 1964

2. Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation and coagulation): a review
of the mean-field theory for probabilists. Bernoulli 5, 3–48 (1999)

3. Avallaneda, M., E, W.: Statistical properties of shocks in Burgers turbulence. Commun. Math.
Phys. 172, 13–38 (1995)

4. Bertoin, J.: Lévy processes. Vol. 121 of Cambridge Tracts in Mathematics, Cambridge: Cambridge, Uni-
versity Press, 1996

5. Bertoin, J.: The inviscid Burgers equation with Brownian initial velocity. Commun. Math. Phys. 193, 397–
406 (1998)

6. Bertoin, J.: Clustering statistics for sticky particles with Brownian initial velocity. J. Math. Pures Appl.
(9) 79, 173–194 (2000)

7. Bertoin, J.: Eternal solutions to Smoluchowski’s coagulation equation with additive kernel and their
probabilistic interpretations. Ann. Appl. Probab. 12, 547–564 (2002)

8. Bertoin, J.: Some aspects of additive coalescents. In: Proceedings of the International Congress of Math-
ematicians, Beijing 2002, Vol. III, Beijing Higher Ed. Press, 2002, pp. 15–23

9. Bingham, N.H.: Maxima of sums of random variables and suprema of stable processes. Z. Wahr. Verw.
Geb. 26, 273–296 (1973)

10. Burgers J.M.: The nonlinear diffusion equation. Dordrecht: Reidel, 1974
11. Carraro, L., Duchon, J.: Solutions statistiques intrinsèques de l’équation de Burgers et processus de

Lévy. C. R. Acad. Sci. Paris Sér. I Math. 319, 855–858 (1994)
12. Carraro, L., Duchon, J.: Équation de Burgers avec conditions initiales à accroissements indépendants et

homogènes. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 431–458 (1998)
13. Chabanol, M.-L., Duchon, J.: Markovian solutions of inviscid Burgers equation. J. Statist. Phys. 114, 525–

534 (2004)
14. Chassaing, P., Louchard, G.: Phase transition for parking blocks, Brownian excursion and coales-

cence. Random Structures and Algorithms 21, 76–119 (2002)
15. Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9, 225–

236 (1951)



G. Menon, R. L. Pego

16. Drake, R.L.: A general mathematical survey of the coagulation equation. In: Topics in Current Aero-
sol Research, G. M. Hidy and J. R. Brock, eds., No. 2 in International reviews in Aerosol Physics and
Chemistry, London: Pergammon, 1972, pp. 201–376

17. E, W., Sinaı̆, Y.G.: New results in mathematical and statistical hydrodynamics. Usp. Mat. Nauk 55, 25–
58 (2000)

18. Feller, W.: An introduction to probability theory and its applications. Vol. II. Second edition, New York:
John Wiley & Sons Inc. 1971

19. Frachebourg, L., Martin, P.A.: Exact statistical properties of the Burgers equation. J. Fluid
Mech. 417, 323–349 (2000)

20. Frisch, U., Parisi, G.: On the singularity structure of fully developed turbulence. In: Turbulence and
predictability in geophysics, M. Ghil, R. Benzi, and R. Parisi, eds., Amsterdam: North-Holland, 1985,
pp. 84–87
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