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Abstract. Smoluchowski’s coagulation equation is a fundamental mean-field model of clustering dy-
namics. We consider the approach to self-similarity (or dynamical scaling) of the cluster
size distribution for the “solvable” rate kernels K(x, y) = 2, x + y, and xy. In the case
of continuous cluster size distributions, we prove uniform convergence of densities to a
self-similar solution with exponential tail, under the regularity hypothesis that a suitable
moment have an integrable Fourier transform. For discrete size distributions, we prove
uniform convergence under optimal moment hypotheses. Our results are completely anal-
ogous to classical local convergence theorems for the normal law in probability theory. The
proofs rely on the Fourier inversion formula and the solution for the Laplace transform by
the method of characteristics in the complex plane.
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1. Introduction. Smoluchowski’s coagulation equation

∂tn(t, x) =
1
2

∫ x

0
K(x− y, y)n(t, x− y)n(t, y)dy −

∫ ∞

0
K(x, y)n(t, x)n(t, y)dy(1.1)

is a widely studied model for cluster growth [4, 11, 25]. We study the evolution
of n(t, x), the number of clusters of size or mass x per unit volume at time t.
Clusters of mass x and y coalesce by binary collisions with a rate proportional to
K(x, y)n(t, x)n(t, y), where K(x, y) is a symmetric rate kernel. Integrating over y
yields the loss term in (1.1), and coalescence of clusters of mass x − y and y produces
the gain term. All details of the mechanism of coalescence are subsumed into the form
of K(x, y), and we make the mean-field assumption that the sizes of coalescing pairs
are independent and occur with frequency proportional to the overall population of
clusters of the same size. As time proceeds, one expects the total number of clusters
to decrease and the typical cluster size to grow.
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Equation (1.1) has been used as a model of cluster growth in a surprisingly diverse
range of fields such as physical chemistry, astrophysics, and population dynamics. For
example, it has been used to model the coagulation of colloids [25], the formation of
clouds and smog [11], the clustering of planets, stars, and galaxies [24], the kinetics of
polymerization [27], and even the schooling of fishes [22] and the formation of “marine
snow” [14]. In addition, over the past few years a rich mathematical theory has been
developed for these equations. Aldous [1] provides an excellent introduction.

Many kernels in applications are homogeneous; that is, K(αx, αy) = αγK(x, y),
x, y, α > 0, for some exponent γ [4]. A mathematical problem of scientific interest is
to study self-similar or dynamical scaling behavior for homogeneous kernels. There
is an extensive scientific literature on the subject, especially formal asymptotics and
numerics [17, 18, 26]. It is known that the degree of homogeneity γ plays a crucial
role. On physical grounds, we expect solutions to (1.1) to conserve the total mass
∫ ∞
0 xn(t, x)dx. When K(x, y) ≤ 1 + x + y (corresponding to 0 ≤ γ ≤ 1), mass-

conserving solutions exist globally in time under suitable moment hypotheses on initial
data [5]. It is then typical in applications to assert that the solutions approach
“scaling form” [18, 26]. There is little mathematical justification for this in general.
The existence of self-similar profiles and their asymptotics for general kernels was
established only recently by Fournier and Laurençot [9] and Escobedo, Mischler, and
Rodriguez Ricard [7]. It is still not known if “typical” solutions approach these profiles
as t → ∞.

For a large class of kernels satisfying (xy)γ/2 ≤ K(x, y) with 1 < γ ≤ 2, it is
known that there is no solution that preserves mass for all time. This breakdown
phenomenon is known as gelation. It was first demonstrated by McLeod [19] with an
explicit solution for the kernel K = xy. The first result for a general class of kernels
was proved probabilistically by Jeon [12]. Simple analytical proofs have since been
found; see in particular [6]. It is natural to ask whether the blow-up is self-similar,
but there are no general results on this problem yet.

There are a number of results, however, for the “solvable” kernels K = 2, x + y,
and xy, for which γ = 0, 1, and 2, respectively. A remarkable feature of these kernels
is that the problem of dynamical scaling can be understood quite deeply by analogy
with classical limit theorems in probability theory. Some examples are as follows:

(a) Smoluchowski’s equation defines a continuous dynamical system on the space
of probability measures on (0,∞) with the weak-∗ topology. For any initial
number measure ν0 with finite γth moment, there is a unique solution in a
suitable weak sense, t &→ νt (corresponding to n(x, t) dx if νt has a density),
to which is associated a natural probability distribution function

Ft(x) =
∫

(0,x]
yγνt(dy)

/

∫ ∞

0
yγνt(dy),

and t &→ Ft(x) is continuous [20]. This optimal well-posedness theorem also
holds for a wide class of kernels [10]. It is akin to the simple and basic fact that
addition of independent, identically distributed random variables generates
discrete dynamics on the space of probability measures.

(b) There is a one-parameter family of self-similar solutions to (1.1). Of these,
only one has a finite (γ +1)st moment, and its profile decays exponentially as
x → ∞. All others have algebraic decay. This is analogous to the classification
of the Lévy stable laws in probability theory—the normal distribution is the
only stable law with finite variance; all the others have algebraic tails.
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(c) The domains of attraction of self-similar solutions are classified completely
in terms of the tails of the initial data: Each α ∈ (1, 2] corresponds to a
domain of attraction (or universality class) that consists of all ν0 with the
property that

∫ x
0 yγ+1ν0(dy) ∼ x2−αL(x) as x → ∞, where L is a slowly

varying function in the sense of Karamata. This is completely analogous to
the central limit theorem and the characterization of the domains of attraction
of the stable laws in probability theory. See [20] for a more precise and general
assertion.

(d) Bertoin showed that all eternal solutions for the kernel K = x + y can be
classified by a Lévy–Khintchine formula [2], just like the infinitely divisible
distributions in probability theory. For this kernel, solutions are eternal if
they are defined for all t ∈ (−∞,∞), meaning that they model coagulation
processes “infinitely divisible” under Smoluchowski dynamics. Such a Lévy–
Khintchine formula also holds for the other solvable kernels, and may be used
to characterize the attractor of this dynamical system modulo scaling [21].

The probabilistic analogy may also be used as a basis for refined convergence theo-
rems. A general theme in probabilistic limit theorems is the interplay between moment
and regularity hypotheses and the topology of convergence. In this article, we develop
one aspect of this idea. Under stronger regularity hypotheses, the weak convergence
results of [20] will be strengthened to obtain uniform convergence of densities using the
Fourier transform. This method is classical in probability theory and is used to prove
uniform convergence of densities in the central limit theorem [8, Theorem XV.5.2].
Feller’s argument in [8] is simple and robust, and our main contribution is to show
that it extends naturally to Smoluchowski’s equation. The key new idea is to use the
method of characteristics in the right half of the complex plane to obtain strong decay
estimates on the Laplace transform. A broader contribution of this work and [20] is to
show that the analytical methods used to prove classical limit theorems in probability
apply to a wider range of problems involving scaling phenomena for integral equations
of convolution type.

Let us briefly connect our results to earlier and later work. The only uniform
convergence theorems in the literature are those of Kreer and Penrose for the ker-
nel K = 2 [15] and closely related work of da Costa [3]. In this article, for K = 2
and x + y we present theorems on uniform convergence to the self-similar solutions
with exponential tails for the continuous and discrete Smoluchowski equations. For
K = xy, we prove uniform convergence of densities to self-similar form as t approaches
the gelation time Tgel. For K = 2, we strengthen the result of Kreer and Penrose and
simplify the proof. Their decay hypothesis on the initial data (n0(x) ≤ Ce−ax) is
weakened to an (almost) optimal moment hypothesis, and their regularity hypothesis
(n0 ∈ C2) is weakened to a little bit more than continuity. For K = x + y the con-
vergence theorem is new. Study of the kernel K = xy is reduced to K = x + y by a
well-known change of variables [4]. Uniform convergence to the self-similar solutions
with “fat” or “heavy” tails is a more delicate issue, which will not be considered. All
these results (including ours) rely on the solution via the Laplace transform. In a dif-
ferent approach, Laurençot and Mischler proved weak convergence to the self-similar
solution with exponential tails for K = 2 by constructing Lyapunov functions [16].

Our uniform convergence theorems may be stated in a unified manner as follows
for the continuous Smoluchowski equations with kernels K(x, y) = 2, x + y, and xy,
corresponding to γ = 0, 1, 2, respectively. Presuming that the γth and (γ + 1)st
moments are finite, we may scale x and n so both moments are initially 1. For the
multiplicative kernel this ensures that the gelation time Tgel = 1. Let Tγ = ∞ for
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γ = 0, 1 and Tγ = Tgel = 1 for γ = 2. The self-similar solutions with exponential tails
have the explicit form [1, 20]

(1.2) n(t, x) =
mγ(t)

λγ(t)γ+1 n̂∗,γ

(

x

λγ(t)

)

,

where the self-similar profiles n̂∗,γ are given by

(1.3) n̂∗,0(x̂) = e−x̂, x̂n̂∗,1(x̂) = x̂2n̂∗,2(x̂) =
1√
2π

x̂−1/2e−x̂/2

for x̂ ≥ 0, and the moments mγ and scaling factors λγ are given by

m0(t) = t−1, m1(t) = 1, m2(t) = (1 − t)−1,(1.4)
λ0(t) = t, λ1(t) = e2t, λ2(t) = (1 − t)−2.(1.5)

Our sufficient conditions for uniform convergence to these self-similar solutions for
the continuous Smoluchowski equations are summarized by the following result.

Theorem 1.1. Let n0 ≥ 0,
∫ ∞
0 xγn0(x)dx =

∫ ∞
0 x1+γn0(x)dx = 1. Assume

that the Fourier transform of x1+γn0 is integrable, and let n(t, x) be the solution to
Smoluchowski’s equation with initial data n0(x) and K = 2, x+ y, or xy for γ = 0, 1,
or 2. Then the rescaled solution

n̂(t, x̂) =
λγ(t)1+γ

mγ(t)
n(t, x̂λγ(t))

satisfies

lim
t→Tγ

sup
x̂>0

x̂1+γ |n̂(t, x̂) − n̂∗,γ(x̂)| = 0.

It has been traditional to treat the discrete Smoluchowski equations separately
from the continuous equations. Yet, within the framework of measure valued solu-
tions [20, 23], the discrete Smoluchowski equations simply correspond to the special
case of a lattice distribution, a measure-valued solution supported on the lattice hN

and taking the form

νt =
∞
∑

l=1

nl(t)δhl(x),

where δhl(x) is a Dirac delta at hl. If h is maximal we call νt a lattice measure with
span h. The coefficients nl satisfy the discrete Smoluchowski equations

(1.6) ∂tnl(t) =
1
2

l−1
∑

j=1

κl−j,jnl−j(t)nj(t) −
∞
∑

j=1

κl,jnl(t)nj(t),

where κl,j = K(lh, jh). Physically, this case is of importance since some mass
aggregation processes (e.g., polymerization) have a fundamental unit of mass (e.g.,
a monomer). The uniform convergence theorems for the continuous Smoluchowski
equations have a natural extension to this case.

Theorem 1.2. Let ν0 ≥ 0 be a lattice measure with span h such that
∫ ∞
0 xγν0(dx)

=
∫ ∞
0 x1+γν0(dx) = 1. Then with

l̂ =
lh

λγ(t)
, n̂l(t) =

1
h

λγ(t)1+γ

mγ(t)
nl(t),
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we have

lim
t→Tγ

sup
l∈N

l̂1+γ
∣

∣

∣
n̂l(t) − n̂∗,γ(l̂)

∣

∣

∣
= 0.

Let us comment on the hypotheses and rescaling in Theorems 1.1 and 1.2. The
moment hypotheses in both theorems are essentially the same.

∫ ∞
0 xγν0(dx) = 1

is the natural hypothesis for existence and uniqueness of solutions [20]. The other
moment condition

∫ ∞
0 x1+γν0(dx) = 1 is of a different character. It implies that n0

or ν0 is in the weak domain of attraction of the self-similar solution with exponential
tail under a rescaling n(t, x) −→ n̂(t̂, x̂) that fixes both moments:

∫ ∞

0
x̂γ n̂(t̂, x̂)dx̂ =

∫ ∞

0
x̂γ+1n̂(t̂, x̂)dx̂ = 1 for all 0 ≤ t̂ < Tγ .(1.7)

The hypothesis that the (γ + 1)st moment is finite is almost optimal. The weak
domain of attraction under a broader class of rescalings is a bit bigger, as it allows
for a weak divergence

∫ y
0 x1+γν0(dx) ∼ L(y) as y → ∞ for a slowly varying function

L(y) [20]. Thus, Theorem 1.2 shows that within the class of lattice measures, the
weak convergence of measures almost implies uniform convergence of the coefficients.

The rescaling (1.7) demands more explanation in the case of the kernel K = xy,
for which our results establish a self-similar approach to gelation. In this case, the
normalization

∫ ∞
0 x2n0(dx) = 1 ensures the time of gelation Tgel = 1. The rescaling

(1.7) corresponds to the similarity variables

(1.8) x̂ = (1 − t)2x, n̂(t, x̂) =
n(t, x̂(1 − t)−2)

(1 − t)5
=

n(t, x)
(1 − t)5

,

and the self-similar profile is

(1.9) n̂∗,2(x̂) =
1√

2πx̂5
e−x̂/2.

This rescaling does not preserve mass. Even if
∫ ∞
0 xn0(dx) < ∞ we have

∫ ∞

0
x̂n̂(t, x̂)dx̂ =

1
1 − t

∫ ∞

0
xn(t, x) dx =

1
1 − t

∫ ∞

0
xn0(dx) → ∞.

Instead, the rescaling preserves the second moment:
∫ ∞

0
x̂2n̂(t, x̂)dx̂ = (1 − t)

∫ ∞

0
x2n(t, x) dx = 1, t ∈ [0, 1).

The explanation is that the scaling in (1.8) is designed to capture the behavior of the
distribution of large clusters as t approaches Tgel—the average cluster size is (1−t)−1.
Correspondingly, the mass of the self-similar solution itself is infinite.

Theorem 1.1 requires an additional hypothesis on the integrability of a suitable
Fourier transform. This is a regularity hypothesis that is the analogue of the hypothe-
sis for uniform convergence to the normal law used by Feller [8]. One may heuristically
understand the role of regularity as follows. Equation (1.1) is hyperbolic and disconti-
nuities in the initial data persist for all finite times. On the other hand, the self-similar
solutions in (1.3) are analytic. Thus, one expects that some regularity of the initial
data is necessary to obtain uniform convergence to a self-similar solution. Loosely
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speaking, regularity of the initial data n0(x) translates into a decay hypothesis on its
Fourier transform. We need only the weak decay implied by integrability.

We do not know if this assumption is optimal, or if it may be weakened further.
We briefly comment on this issue here; it will not be considered in the rest of the
paper. The space of functions with integrable Fourier transforms is of great interest
in harmonic analysis. Precisely, for f ∈ L1(R), let F be its Fourier transform. Then
the space

A(R) = {f ∈ L1(R)|F ∈ L1(R)}

is a closed subalgebra of L1(R) known as the Wiener algebra [13]. Integrability of F
implies that f is continuous. But it also implies more. It is known that functions in
A(R) possess some delicate regularity properties. For example, a function in A(R)
has a logarithmic modulus of continuity in a neighborhood where it is monotonic. It
is definitely not obvious whether this regularity is truly necessary to obtain uniform
convergence. If v0(ik) =

∫ ∞
0 e−ikxx1+γn0(x)dx is integrable, it also follows that

v0 ∈ H1(R)∩A(R), since v0 is the boundary limit of an analytic function (the Laplace
transform of x1+γn0). Here H1 denotes the classical Hardy space. This in turn means
that v0 has some hidden regularity and integrability properties. It is worth remarking
that the precise characterization of A(R) remains an outstanding open problem in
harmonic analysis (though several sufficient conditions are known; see [13]).

2. Uniform Convergence of Densities for the Constant Kernel K= 2.

2.1. Evolution of the Laplace Transform. Let C+ = {z ∈ C | Re z > 0} and
C̄+ = {z ∈ C | Re z ≥ 0}. We let

N(t, z) =
∫ ∞

0
e−zxn(t, x) dx, z ∈ C̄+,

denote the Laplace transform of the number density n. We take the Laplace transform
of (1.1) with K = 2, and take its limit as z → 0, to see that N(t, z) solves

(2.1) ∂tN = N2 − 2N(t, 0)N, ∂tN(t, 0) = −N(t, 0)2.

Without loss of generality, we may suppose that the initial time t = 1. We will always
assume that the initial data is normalized such that

(2.2)
∫ ∞

0
n(1, x) dx =

∫ ∞

0
xn(1, x) dx = 1.

If the initial number of clusters,
∫ ∞
0 n(1, x)dx, and the mass,

∫ ∞
0 xn(1, x)dx, are finite,

we may always assume that (2.2) holds after rescaling x and n. We solve the second
equation in (2.1) to see that the total number of clusters decreases according to

(2.3)
∫ ∞

0
n(t, x) dx = N(t, 0) = t−1, t ≥ 1.

We hold z fixed and integrate (2.1) in t to obtain the solution

(2.4) N(t, z) =
1
t

N(1, z)
t(1 − N(1, z)) + N(1, z)

.

The evolution preserves mass. Indeed, if we differentiate (2.4) with respect to z, we
find

(2.5)
∫ ∞

0
xn(t, x) dx = −∂zN(t, 0) = −∂zN(1, 0) =

∫ ∞

0
xn(1, x) dx = 1.
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2.2. Approach to Self-Similarity. A special case of the weak convergence result
of [20], also given by Leyvraz [18], is obtained as follows: Observe that for each fixed
s ∈ C̄+, equations (2.3), (2.4), and (2.5) imply

(2.6) tN(t, st−1) =
N(1, st−1)

t(1 − N(1, st−1)) + N(1, st−1)
−→
t→∞

1
1 + s

.

It is classical that the pointwise convergence of Laplace transforms is equivalent
to weak convergence of measures [8, Theorem XIII.1.2a]. Thus, (2.6) implies that
rescaled solutions to Smoluchowski’s equations converge weakly. Let us be more pre-
cise about the rescaling. We define the similarity variables

(2.7) τ = log t, x̂ =
x

t
= e−τx, s = tz = eτz

and the rescaled number distribution

(2.8) n̂(τ, x̂) = e2τn(eτ , eτ x̂) = t2n(t, x).

Observe that this rescaling preserves both total number and mass, that is,

(2.9)
∫ ∞

0
n̂(τ, x̂)dx̂ =

∫ ∞

0
x̂n̂(τ, x̂)dx̂ = 1, τ ≥ 0.

We denote the Laplace transform of n̂(τ, x̂) by

(2.10) u(τ, s) =
∫ ∞

0
e−sx̂n̂(τ, x̂) dx̂ = eτN(eτ , se−τ ) = tN(t, z).

In these variables, the pointwise convergence of (2.6) takes the simple form

(2.11) lim
τ→∞

u(τ, s) =
1

1 + s
=: u∗,0(s), s ∈ C̄+,

where u∗,0(s) denotes the Laplace transform of

(2.12) n̂∗,0(x̂) = e−x̂, x̂ ≥ 0,

the profile for the self-similar solution in (1.2). Now, (2.11) is equivalent to

n̂(τ, x̂) dx̂ → n̂∗,0(x̂) dx̂

as τ → ∞, in the sense of weak convergence of measures.
Our goal is to strengthen this to uniform convergence in both continuous and dis-

crete cases, under appropriate hypotheses on initial data. For the continuous Smolu-
chowski equation (1.1) we prove the following theorem.

Theorem 2.1. Let n(1, x) ≥ 0,
∫ ∞
0 n(1, x) dx =

∫ ∞
0 xn(1, x) dx = 1. Assume

that the Fourier transform of xn(1, x) is integrable. Then in terms of the rescaling in
(2.7)–(2.8) we have

(2.13) lim
τ→∞

sup
x̂>0

x̂|n̂(τ, x̂) − n̂∗,0(x̂)| = 0,

where n̂∗,0(x̂) = e−x̂ is the similarity profile in (2.12).
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The proof of this theorem extends to the treatment of uniform convergence of
coefficients for solutions of the discrete equations (1.6) under only the hypothesis that
the zeroth and first moments are finite; see Theorem 2.2 below.

Observe that we prove uniform convergence of the weighted densities x̂n̂(τ, x̂).
The reason can be ascribed to use of the Fourier–Laplace inversion formula. We cannot
apply the inversion formula directly to u∗,0 as it is not integrable on the imaginary
axis (|u∗,0(ik)| ∼ |k|−1 as |k| → ∞). The slow decay of the Fourier transform is
caused by the jump discontinuity at x = 0, since n̂∗,0(x) = 0 for x < 0. In order
to gain a uniform convergence result, we smooth this discontinuity and consider the
mass density x̂n̂. Its Laplace transform we denote by

(2.14) v(τ, s) = −∂su(τ, s) =
∫ ∞

0
e−sx̂x̂n̂(τ, x̂) dx̂.

Differentiating (2.11), we obtain a corresponding self-similar profile, with

(2.15) v∗,0(s) :=
1

(1 + s)2
, |v∗,0(ik)| =

1
1 + k2 , k ∈ R.

2.3. Evolution on Characteristics. The explicit solution for u(τ, s) and v(τ, s)
can be obtained directly by substituting (2.10) into (2.4). But we rederive the solution
to make explicit the geometric idea underlying the proof of Theorem 2.1. The same
ideas underlie the proof of Theorem 3.1 for the additive kernel and are more easily
understood here. We use the change of variables (2.7) and (2.10) in (2.1), and the
conservation of moments in (2.9), to obtain the equation of evolution for u:

(2.16) ∂τu + s∂su = −u(1 − u).

The solution of (2.16) may be described by the method of characteristics. A charac-
teristic curve s(τ ; τ0, s0) is the solution to

(2.17)
ds

dτ
= s, s(τ ; τ0, s0) = s0 ∈ C̄+.

Explicitly,

(2.18) s(τ ; τ0, s0) = eτ−τ0s0.

Equation (2.17) is an autonomous differential equation in C̄+ and may be thought of
geometrically. For fixed s0 ∈ C̄+ the trajectory of the characteristic curve s(τ ; τ0, s0),
τ ∈ R, is a ray in C̄+ emanating from the origin. In particular, the imaginary axis
is invariant under the flow of (2.17). Equation (2.18) shows that the characteristics
expand outward uniformly at the rate eτ . Among characteristics we have

(2.19)
du

dτ
= −u(1 − u),

which may be integrated to obtain the solution

(2.20) u(τ, s) =
u(τ0, s0)e−(τ−τ0)

1 − u(τ0, s0)(1 − e−(τ−τ0))
.

We need to estimate the decay of the derivative v = −∂su. Differentiating (2.16), we
see that on characteristics the derivative solves

(2.21)
dv

dτ
= −2(1 − u)v.



DYNAMICAL SCALING IN SMOLUCHOWSKI’S COAGULATION EQUATIONS 753

We integrate (2.21) using (2.20) to find

(2.22) v(τ, s) =
v(τ0, s0)e−2(τ−τ0)

(

1 − u(τ0, s0)(1 − e−(τ−τ0))
)2 .

For τ ≥ τ0 we may take absolute values in (2.20) and (2.22) to obtain the decay
estimates

(2.23) |u(τ, s)| ≤ |u(τ0, s0)|e−(τ−τ0)

1 − |u(τ0, s0)|(1 − e−(τ−τ0))

and

(2.24) |v(τ, s)| ≤ |v(τ0, s0)|e−2(τ−τ0)

(

1 − |u(τ0, s0)|(1 − e−(τ−τ0))
)2 ≤ |v(τ0, s0)|e−2(τ−τ0)

(1 − |u(τ0, s0)|)2
.

2.4. Proof of Theorem 2.1. 1. We use the Fourier–Laplace inversion formula

(2.25) x̂(n̂(τ, x̂) − n̂∗,0(x̂)) =
1
2π

∫

R

eikx̂ (v(τ, ik) − v∗,0(ik)) dk.

Thus, in order to prove (2.13) it suffices to show

(2.26) lim
τ→∞

∫

R

|v(τ, ik) − v∗,0(ik)| dk = 0.

2. Let ε ∈ (0, 1
2 ) and put R = ε−1. We will prove (2.26) by estimating the integral

separately in three regions: |k| ≤ R, R ≤ |k| ≤ Reτ−T , and Reτ−T ≤ |k| for τ ≥ T ,
where T > 0 will be chosen sufficiently large, depending on ε and the initial data v0.
This is essentially the same decomposition used in the proof of uniform convergence
in the central limit theorem by Feller [8, Theorem XV.5.2]. The main new idea here is
the use of the decay estimates (2.24) and the method of characteristics in the regions
where R ≤ |k|.

3. |k| ≤ R: Recall that the pointwise convergence of Laplace transforms (2.11) is
equivalent to n̂(τ, x̂) dx̂ → n̂∗,0(x̂) dx̂ in the sense of weak convergence of measures.
Combined with (2.9) this also implies that the mass measures x̂n̂(τ, x̂) dx̂ converge
weakly to x̂n̂∗,0(x̂) dx̂ as τ → ∞. But this implies v(τ, ik) converges to v∗,0(ik)
uniformly for |k| ≤ R [8, Theorem XV.3.2]. Therefore,

(2.27) lim
τ→∞

∫ R

−R
|v(τ, ik) − v∗,0(ik)| dk = 0.

4. It remains to consider |k| ≥ R. It is sufficient to consider only k ≥ R, since
|v(τ, ik)| = |v(τ, −ik)|. We will control v(τ, ik) and v∗,0 separately:

∫ ∞

R
|v(τ, ik) − v∗,0(ik)| dk ≤

∫ ∞

R
|v(τ, ik)| dk +

∫ ∞

R
|v∗,0(ik)| dk.

But |v∗,0(ik)| = (1 + |k|2)−1 by (2.15), so that
∫ ∞

R
|v∗,0(ik)| dk ≤ R−1 = ε.

In the rest of the proof we estimate
∫ ∞

R |v(τ, ik)|dk.
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5. Since u(τ, ik) → u∗,0(ik) and v(τ, ik) → v∗,0 as τ → ∞ for each real k, using
(2.11) and (2.15) we may choose T > 0 such that

(2.28) sup
τ≥T

|u(τ, iR)| ≤ R−1 = ε, sup
τ≥T

|v(τ, iR)| ≤ R−2.

6. R ≤ k ≤ Reτ−T : The control obtained from (2.28) propagates outward along
characteristics as τ increases. Precisely, whenever τ ≥ T , for any k such that R ≤
k ≤ Reτ−T we have ik = eτ−τ0iR, where τ0 ≥ T . By (2.18) this means that ik =
s(τ ; τ0, s0), with s0 = iR. Then the decay estimate (2.24) and the boundary control
(2.28) imply

(2.29) |v(τ, ik)| ≤ |v(τ0, iR)|e−2(τ−τ0)

(1 − |u(τ0, iR)|)2
≤ 1

(1 − ε)2
R−2

(

R

k

)2

≤ 4k−2.

Integrating this estimate we obtain

∫ Reτ−T

R
|v(τ, ik)| dk ≤

∫ ∞

R
4k−2 dk = 4R−1 = 4ε.

7. Reτ−T ≤ k: For brevity, let R̃ = Re−T . With u0(s) := u(0, s), v0(s) := v(0, s),
we use (2.24) and (2.18) with τ0 = 0 to obtain

∫ ∞

R̃eτ

|v(τ, ik)| dk ≤ e−2τ

∫ ∞

R̃eτ

|v0(ike−τ )|
(1 − |u0(ike−τ )|)2

dk

= e−τ

∫ ∞

R̃

|v0(ik′)|
(1 − |u0(ik′)|)2

dk′ ≤
(

sup
|k′|≥R̃

1
(1 − |u0(ik′)|)2

)

e−τ‖v0‖L1 ,

where k′ = ke−τ . Since |u0(ik′)| < 1 for k′ -= 0 and u0(ik′) → 0 as k → ∞ by the
Riemann–Lebesgue lemma, we have sup|k′|≥R̃(1 − |u0(ik′)|)−2 < ∞.

8. Putting together the estimates we have obtained, it follows that for τ suffi-
ciently large, the integral in (2.26) is less than 12ε. This completes the proof.

2.5. The Discrete Smoluchowski Equations. We consider measure solutions of
the form νt =

∑∞
l=1 nl(t)δhl(x), where δhl(x) denotes a Dirac mass at hl. To avoid

redundancy, we always assume that h is the span of the lattice, that is, the maximal
h > 0 so that all initial clusters, and thus clusters at any time t > 0, are concentrated
on hN. We will call νt a lattice measure with span h. Notice that if the initial
number of clusters and the mass are finite, by rescaling nl and h we may assume that
∫ ∞
0 ν1(dx) =

∫ ∞
0 xν1(dx) = 1. Under these conditions, the weak convergence theorem

of [20] asserts that limt→∞ tN(t, s/t) = u∗,0(s). We show that this theorem may be
strengthened by use of Fourier series. The Fourier transform of νt is the Fourier series

N(t, ik) =
∑

l∈N

nl(t)e−ilhk, k ∈ R,

which has minimal period 2π/h. Thus nl(t) = (h/2π)
∫ π/h

−π/h eilhkN(t, ik) dk, or

(2.30) t2nl(t) =
h

2π

∫ πeτ /h

−πeτ /h
exp(ilhke−τ )u(τ, ik) dk



DYNAMICAL SCALING IN SMOLUCHOWSKI’S COAGULATION EQUATIONS 755

in similarity variables from (2.10). We integrate by parts and let

(2.31) l̂ = lhe−τ = lht−1, n̂l(t) = h−1t2nl(t)

to obtain

(2.32) l̂n̂l(t) = tlnl(t) =
1
2π

∫ πeτ /h

−πeτ /h
eil̂kv(τ, ik) dk.

As in Theorem 2.1, we expect the right-hand side to converge to l̂n̂∗,0(l̂) as τ → ∞,
indeed uniformly for l̂ ∈ ht−1N.

Theorem 2.2. Let ν1 ≥ 0 be a lattice measure with span h such that
∫ ∞
0 ν1(dx) =

∫ ∞
0 xν1(dx) = 1. Then with the scaling (2.31) we have

(2.33) lim
t→∞

sup
l∈N

l̂
∣

∣

∣
n̂l(t) − n̂∗,0(l̂)

∣

∣

∣
= 0.

Proof. By (2.32) and the continuous Fourier inversion formulas, it suffices to show
that

lim
τ→∞

sup
l̂≥0

∣

∣

∣

∣

∣

∫ πeτ /h

−πeτ /h
eil̂kv(τ, ik) dk −

∫

R

eil̂kv∗,0(ik) dk

∣

∣

∣

∣

∣

= 0.

As earlier, it suffices to consider k > 0. The integrals
∫ R

−R
|v(τ, ik) − v∗,0(ik)| dk,

∫ R̃eτ

R
|v(τ, ik)| dk,

∫ ∞

R
|v∗,0(ik)| dk,

with R̃ = Re−T , are controlled exactly as in the proof of Theorem 2.1. It remains
only to estimate the integral of |v(τ, ik)| over the region R̃eτ < k < πeτ/h. We
assume that π/h > R̃, for otherwise there is nothing to prove. But then by (2.18),
the uniform decay estimate (2.24), and the change of variables k′ = ke−τ , we have

∫ πeτ /h

R̃eτ

|v(τ, ik)| dk ≤ e−τ

∫ π/h

R̃

|v0(ik′)|
|1 − u0(ik′)(1 − e−τ )|2

dk′.

Since the domain of integration is finite, it suffices to show that the integrand is
uniformly bounded in time. Since |v0(ik)| ≤ 1, it is necessary only to control the
denominator. But u0(ik) =

∑

l∈N
nl(0)e−ilkh with nl(0) ≥ 0. Therefore, |u0(ik)| ≤ 1,

and [8, Lemma XV.1.4] yields that

u0(ik) = 1 if and only if k =
2πm

h
, m ∈ Z.

In particular, we have the strict inequality

min
k∈[R̃, π

h ]
|1 − u0(ik)| ≥ δ > 0.

Therefore,
∣

∣1 − u0(ik)(1 − e−τ )
∣

∣ ≥ |1 − u0(ik)| − |u0(ik)|e−τ ≥ δ − e−τ ≥ δ

2
for sufficiently large τ . Thus,

∫ πeτ /h

R̃eτ

|v(τ, ik)| dk ≤ 2π

δh
e−τ .
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3. Uniform Convergence of Densities for the Additive Kernel.

3.1. Rescaling and Approach to Self-Similarity. In this section we prove the
analogues of Theorems 2.1 and 2.2 for the additive kernel. The essential geometric
ideas of the proof are similar to the previous section. However, the trajectories of
the characteristic curves s(t; t0, s0) in the complex plane are no longer rays, and the
proofs require more careful analysis. As before, we will work with the explicit solution
formula for an appropriate Laplace transform. For z ∈ C̄+ we define

(3.1) Φ(t, z) =
∫ ∞

0

(

1 − e−zx
)

n(t, x)dx.

We observe that 1−e−zx = zx+O(z2x2) as x → 0. We use Φ instead of the standard
Laplace transform of n because the latter may not be well defined: for example, the
similarity profile n̂∗,1 in (1.3) satisfies n̂∗,1(x) ∼ Cx−3/2 as x → 0. More generally, one
needs the initial data to have only a finite first moment for existence and uniqueness
of a solution to (1.1) in the case of the additive kernel [20]. A deeper reason for
this choice of variables (and notation) is probabilistic: (3.1) is the Lévy–Khintchine
formula for the Laplace exponent of a subordinator with no drift [2]. We will always
assume that the initial data n0 satisfies the moment conditions

(3.2)
∫ ∞

0
xn0(x)dx = 1,

∫ ∞

0
x2n0(x)dx = 1.

We substitute (3.1) in (1.1) and use (3.2) to see that Φ(t, z) solves the equation

(3.3) ∂tΦ − Φ∂zΦ = −Φ, Φ(0, z) =
∫ ∞

0
(1 − e−zx)n0(x)dx.

As shown in [20] by the method of characteristics, (3.3) has a unique solution
for z > 0, t > 0 which is analytic with derivative ∂zΦ completely monotone in z
and satisfying ∂zΦ(t, 0) = 1 for all t. For each t > 0, then, ∂zΦ(t, ·) is the Laplace
transform of a probability measure, so its domain contains C̄+ and (3.3) holds by
analytic continuation for z ∈ C+, t > 0.

In contrast with (2.4), it is not obvious that a suitable rescaling will lead to
convergence to self-similar form. This point is discussed in [20, section 7], and we
refer the reader to that article for motivation for the following change of variables.
We define the similarity variables

(3.4) x̂ = xe−2t, s = ze2t

and the rescaled number density

(3.5) n̂(t, x̂) = e4tn(t, x̂e2t) = e4tn(t, x).

We also define the rescaled Laplace transforms

(3.6) ϕ(t, s) = e2tΦ(t, e−2ts) =
∫ ∞

0
(1 − e−sx̂)n̂(t, x̂)dx̂.

Part of the motivation for the rescaling (3.4) and (3.5) is that this choice preserves
both moment conditions in (3.2). That is, we have

(3.7)
∫ ∞

0
x̂n̂(t, x̂)dx̂ =

∫ ∞

0
x̂2n̂(t, x̂)dx̂ = 1, t ≥ 0.
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This should be compared with (2.9) for the constant kernel. The mass measure plays
the same role here as the number measure did for K = 2. Thus, we denote its Laplace
transform by the same letter, and let

(3.8) u(t, s) = ∂sϕ(t, s) =
∫ ∞

0
e−sx̂x̂n̂(t, x̂)dx̂.

By Theorem 7.1 in [20] (see also [18, Appendix G]), the assumptions in (3.2) imply
that the rescaled mass measures converge to the similarity profile, with

(3.9) x̂n̂(t, x̂)dx̂ → x̂n̂∗,1(x̂)dx̂ =
1√
2π

x̂−1/2e−x̂/2dx̂, t → ∞,

in the sense of weak convergence of measures. It then follows from [8, Theorem
XIII.1.2] that (3.9) is equivalent to

(3.10) lim
t→∞

u(t, s) =
1√

1 + 2s
=: u∗,1(s), s ∈ C̄+.

Our goal is to strengthen (3.9) to uniform convergence of densities for (1.1) and
uniform convergence of coefficients for (1.6). For the continuous Smoluchowski equa-
tions we prove the following theorem.

Theorem 3.1. Suppose n0(x) ≥ 0,
∫ ∞
0 xn0(x)dx =

∫ ∞
0 x2n0(x)dx = 1. Suppose

also that the Fourier transform of x2n0 is integrable. Then in terms of the rescaling
(3.4)–(3.5) we have

(3.11) lim
t→∞

sup
x̂>0

x̂2|n̂(t, x̂) − n̂∗,1(x̂)| = 0,

where n̂∗,1(x̂) is the similarity profile defined in (1.3).
Once Theorem 3.1 is established, it is relatively straightforward to obtain the

analogous result for the discrete Smoluchowski equations; see Theorem 3.6 below.
Thus, most of our effort is devoted to Theorem 3.1.

Observe that we prove uniform convergence of the weighted density x̂2n̂(t, x̂).
As in the previous section, this is because Theorem 3.1 is proved using the Fourier–
Laplace inversion formula. Since |u∗,1(ik)| ∼ |k|−1/2 as |k| → ∞, u∗,1 is not integrable
on the imaginary axis. This divergence is due to the fact that n̂∗,1(x̂) = 0 for x̂ < 0
and x̂n̂∗,1(x̂) ∼ Cx̂−1/2 as x̂ → 0+. As before, we resolve the situation by considering
the transform of the next moment. Let

(3.12) v(t, s) = −∂su(t, s) =
∫ ∞

0
e−sx̂x̂2n̂(t, x̂)dx̂, s ∈ C̄+.

We integrate and differentiate (3.10) to obtain

(3.13) ϕ∗,1(s) =
√

1 + 2s − 1, v∗,1(s) = (1 + 2s)−3/2, s ∈ C̄+.

3.2. Characteristics and Estimates. The equations of evolution for ϕ and u are

∂tϕ + (2s − ϕ)∂sϕ = ϕ,(3.14)
∂tu + (2s − ϕ)∂su = −u(1 − u).(3.15)

In what follows, we first derive solution formulas to (3.14) by the method of
characteristics. We then show that the solution map for the characteristic equation
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is never degenerate and that characteristics flow out of the right half into the left half
of the complex plane as t increases. For most parts of our analysis, it will suffice to
study characteristics in the right half plane only. But for one part, we need to study
characteristics that start in the right half plane but move into the left half plane.

We use the notation s(t; t0, s0) to denote the solution to

(3.16)
ds

dt
= 2s − ϕ, s(t0; t0, s0) = s0.

Along the characteristic curve s(t; t0, s0), we have

(3.17)
dϕ

dt
= ϕ and

du

dt
= −u(1 − u).

We integrate (3.17) to obtain

(3.18) ϕ(t, s) = et−t0ϕ(t0, s0), u(t, s) =
u(t0, s0)e−(t−t0)

1 − u(t0, s0)(1 − e−(t−t0))
.

We now substitute for ϕ(t, s) from (3.18) in (3.16) and integrate to obtain the explicit
solution

(3.19) e−2(t−t0)s(t; t0, s0) = s0 − ϕ(t0, s0)(1 − e−(t−t0)).

This equation can also be rewritten in two other useful forms, namely,

(3.20) e−2(t−t0) (s − ϕ(t, s)) = (s0 − ϕ(t0, s0))

and

(3.21)
ϕ(t, s)

s
=

(ϕ(t0, s0)/s0)e−(t−t0)

1 − (ϕ(t0, s0)/s0)(1 − e−(t−t0))
.

The method of characteristics also yields an explicit solution for v(t, s). We differen-
tiate (3.15) to obtain

(3.22)
dv

dt
= −3(1 − u)v.

We substitute for u from (3.18) and integrate (3.22) to obtain

(3.23) v(t, s) =
v(t0, s0)e−3(t−t0)

(

1 − u(t0, s0)(1 − e−(t−t0))
)3 .

Let ϕ0(s) := ϕ(0, s), and similarly u0(s) := u(0, s), v0(s) := v(0, s). Since u = ∂sϕ

and ϕ(t, 0) = 0, the moment conditions (3.2) and the identity ϕ0(s)/s =
∫ 1
0 u0(τs) dτ

imply

(3.24) |u0(s)| ≤ 1, |v0(s)| ≤ 1, |ϕ0(s)| ≤ |s|, s ∈ C̄+.

These inequalities are strict for s -= 0 because xn0(x) dx is not a lattice measure [8,
Lemma XV.1.4]. Taking t0 = 0 at first, for t ≥ t0 we take absolute values in (3.18)
and (3.23) to see that |u| and |v| decay along characteristics according to

(3.25) |u(t, s)| ≤ |u(t0, s0)|e−(t−t0)

1 − |u(t0, s0)|(1 − e−(t−t0))
,
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(3.26) |v(t, s)| ≤ |v(t0, s0)|e−3(t−t0)

(1 − |u(t0, s0)|)3
.

From (3.25) and the fact that |u0(s0)| < 1 for s0 -= 0, and a similar estimate using
(3.21) and |ϕ0(s0)/s0| < 1, it follows that

(3.27) |u(t, s)| < 1, |ϕ(t, s)/s| < 1, t ≥ 0, s -= 0.

Then (3.25) and (3.26) hold also for any t0 ≥ 0 if t ≥ t0.
Let us also note the uniform outward growth of characteristics implied by (3.27).

Using (3.27) together with (3.16) we obtain

(3.28) |s| ≤ d|s|
dt

≤ 3|s|.

Thus, |s0|e(t−t0) ≤ |s| ≤ e3(t−t0)|s0|. We will refine this crude estimate in the proof of
Theorem 3.1, but we note here that |s(t; t0, s0)| is a strictly increasing function of t.

In addition to the decay along characteristics, we will need the following uniform
Riemann–Lebesgue lemma. Let CR = {s ∈ C̄+ | |s| = R} denote the semicircle of
radius R in the right half plane.

Lemma 3.2. Let g(x) ∈ L1(0,∞) and G(s) =
∫ ∞
0 e−sxg(x)dx. Then

(3.29) lim
R→∞

sup
s∈CR

|G(s)| = 0.

Proof. Let ε > 0. We choose a step function gε =
∑K

k=1 ck1[ak,bk] so that
‖g − gε‖L1 < ε. But then ‖e−sx(g − gε)‖L1 < ε. Therefore, for s ∈ C̄+,

|G(s)| ≤ ε +
∣

∣

∣

∣

∫ ∞

0
e−sxgε(x)dx

∣

∣

∣

∣

= ε +

∣

∣

∣

∣

∣

K
∑

k=1

ck

∫ bk

ak

e−sxdx

∣

∣

∣

∣

∣

≤ ε +
Cε

|s| .

We apply this lemma and (3.7) to g(x̂) = x̂j n̂(t, x̂) for j = 1, 2 to infer that for
every t ≥ 0, as |s| → ∞ with Re s ≥ 0, we have

(3.30) |u(t, s)| → 0, |v(t, s)| → 0,

∣

∣

∣

∣

ϕ(t, s)
s

∣

∣

∣

∣

→ 0.

3.3. Geometry of the Characteristic Map in the Complex Plane. In this sub-
section, we study the solution formula (3.19). Our goal is to delineate some key
properties of the map s0 &→ s(t; t0, s0) for t, t0 ≥ 0.

Let C+ denote the open right half plane. We let Ωt denote the image of C+ under
the map s0 &→ s(t; 0, s0), and let Γt denote the image of the imaginary axis under the
same map. We aim to prove the following lemma.

Lemma 3.3.
(i) For any t > 0, Γt is a C2 curve that passes through the origin but otherwise

lies in the open left half plane. On Γt, Re s is a C2 function of Im s.
(ii) Ωt is the component of the complex plane to the right of Γt. Consequently

Γt = ∂Ωt and Ωt ⊃ C̄+ \ {0}.
(iii) Whenever t1 ≥ t0 ≥ 0, the map s0 &→ s1 = s(t1; t0, s0) is one to one from Ω̄t0

onto Ω̄t1 . It is C2 on Ω̄t0 and analytic in Ωt0 . The inverse map is given by
s1 &→ s0 = s(t0; t1, s1) and is C2 on Ω̄t1 and analytic in Ωt1 .
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(iv) Whenever t1 ≥ 0 and s1 ∈ C̄+, the backward characteristic curve s(t0; t1, s1),
t0 ∈ [0, t1], lies in C̄+.

Proof. We first establish part (iii), taking t0 = 0 at first. Since x2n0 is integrable,
v0(s) is continuous in C̄+ and analytic for Re s > 0. It follows by a standard dominated
convergence argument that u0 is C1 and ϕ0 is C2 in C̄+, and these functions are
analytic in C+. From (3.19) we see that the map s0 &→ s(t; 0, s0) is analytic in C+
and C2 on C̄+ (meaning derivatives up to second order extend continuously to C̄+).

We next claim that this map is one to one. The proof relies on the fact that ϕ0
is contractive, with

(3.31) |ϕ0(s̃0) − ϕ0(s0)| ≤ |s̃0 − s0|, s̃0, s0,∈ C̄+.

This holds because |∂sϕ0(s)| ≤ 1 for s ∈ C̄+ as an immediate consequence of (3.7) and
(3.8). Now suppose s(t; 0, s̃0) = s(t; 0, s0), where s̃0, s0 ∈ C̄+. Then (3.19) implies

s̃0 − s0 =
(

1 − e−t
)

(ϕ0(s̃0) − ϕ0(s0)) .

From this and (3.31) we infer |s̃0 − s0| ≤ (1 − e−t)|s̃0 − s0|, whence s̃0 = s0. So
s0 &→ s(t; 0, s0) is one to one.

We observe that the derivative of this map is uniformly bounded away from zero.
Indeed, (3.19) and (3.24) yield

∣

∣

∣

∣

ds

ds0

∣

∣

∣

∣

≥ e2t
(

1 − |u0(s0)|(1 − e−t)
)

≥ et.

It follows by the inverse function theorem that Ωt is an open set, and by continuity
the image of C̄+ is Ω̄t. The inverse map from Ω̄t to C̄+ is analytic in Ωt, and C2 on
Ω̄t.

For t1 > 0, the inverse of the map s0 &→ s1 = s(t1; 0, s0) may be obtained by
solving the characteristic equation in (3.16) backward from time t1 to t0 = 0, so
that we have s0 = s(0; t1, s1). Now whenever t1 ≥ t0 ≥ 0 in general, we may follow
any characteristic curve back from a point in Ω̄t1 at time t1 to a point in C̄+ at
time 0 and then forward to a point in Ω̄t0 at time t0. This means that s(t1; t0, s0) =
s(t1; 0, s(0; t0, s0)). Part (iii) of the lemma now follows from the properties established
in the case t0 = 0.

Next we prove part (i). For t > 0, Γt is the image of the map k &→ s(t; 0, ik) =
e2t(ik −ϕ0(ik)(1−e−t)), k ∈ R, and this is a C2 function of k. We have s(t; 0, 0) = 0,
but Re s < 0 for k -= 0. This is so because Re s and Reϕ0(ik) have opposite signs,
and

Re ϕ0(ik) =
∫ ∞

0
(1 − cos kx)n0(x)dx > 0, k -= 0,

since n0 is continuous. Finally, we find that

Im
d

dk
s(t; 0, ik) ≥ e2t(1 − |u0(ik)|(1 − e−t)) > 0

using (3.24). Hence Re s is a function of Im s on Γt.
Now we establish part (ii). By (3.30) we have that as |s0| → ∞ with s0 ∈ C̄+,

|ϕ0(s0)/s0| → 0, so s = s0e2t(1 + o(1)) by (3.19). Let s1 ∈ C lie to the right of
Γt, and put f(s0) = s(t; 0, s0) − s1. It follows by applying the argument principle to
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large semicircles that the analytic function f has a single zero at some point s0 ∈ C+.
Indeed, arg f(reiθ) → θ as r → ∞ for −π

2 ≤ θ ≤ π
2 , and as k goes from ∞ to −∞,

f(ik) does not cross the positive real axis so arg f(ik) changes from π
2 to 3π

2 . Thus,
f maps a large semicircle to a curve that winds exactly once about 0. Hence s1 ∈ Ωt.

Finally, part (iv) follows by a change of variables, replacing t − t0 by t, and
applying parts (i)–(iii).

3.4. Proof of Theorem 3.1. 1. By the Fourier–Laplace inversion formula, it suf-
fices to prove

(3.32) lim
t→∞

sup
x>0

∣

∣

∣

∣

∫

R

eikx [v(t, ik) − v∗,1(ik)] dk

∣

∣

∣

∣

= 0.

2. Let ε ∈ (0, 1
8 ), and put R = 1

2ε−2. We will prove (3.32) by estimating
the integral for t ≥ T separately in three regions: |k| ≤ R, R ≤ |k| ≤ R̃e2t, and
R̃e2t ≤ |k|, where R̃ = Re−2T and T depends only on ε and the initial data v0. This
is the same decomposition used in the proof of Theorem 2.1, and convergence in the
region |k| ≤ R will follow as before. However, estimates for |k| ≥ R are more subtle
and use the analyticity and geometry of the characteristic map.

3. |k| ≤ R: Theorem 7.1 in [20] implies that x̂n̂(τ, x̂) dx̂ → x̂n̂∗,0(x̂) dx̂ in the
sense of weak convergence of measures. Combined with (3.7) this also implies that
the measures x̂2n̂(τ, x̂) dx̂ converge weakly to x̂2n̂∗,1(x̂) dx̂ as t → ∞. But this implies
v(t, ik) converges to v∗,1(ik) uniformly on compact subsets of C̄+, and in particular
on compact subsets of the imaginary axis [8, Theorem XV.3.2]. Thus,

(3.33) lim
t→∞

∫ R

−R
|v(t, ik) − v∗,1(ik)| dk = 0.

4. |k| ≥ R: It is sufficient to consider only k ≥ R, since |v(t, ik)| = |v(t, −ik)|.
We will control v(t, ik) and v∗,1 separately:

∫ ∞

R
|v(t, ik) − v∗,1(ik)| dk ≤

∫ ∞

R
|v(t, ik)| dk +

∫ ∞

R
|v∗,1(ik)| dk.

But |v∗,1(ik)| ≤ (2k)−3/2 by (3.13). Thus,
∫ ∞

R
|v∗,1(ik)| dk ≤

∫ ∞

R
(2k)−3/2 dk = (2R)−1/2 = ε.

5. In the rest of the proof we estimate
∫ ∞

R |v(t, ik)|dk. In order to aid the reader,
we state the main estimates as two distinct lemmas.

Lemma 3.4. Let ε ∈ (0, 1
8 ). There exist T > 0, depending on ε and the initial

data, and a universal constant C such that if t ≥ T , then

(3.34)
∫ Re2(t−T )

R
|v(t, ik)| dk ≤ Cε.

Lemma 3.5. Let R̃ > 0. There exists C̃ depending on R̃ and the initial data such
that for all t ≥ 0 we have

(3.35)
∫ ∞

R̃e2t

|v(t, ik)| dk ≤ C̃e−t.
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6. We now prove (3.32). We choose T as in Lemma 3.4, and then R̃ = Re−2T in
Lemma 3.5. Choose T∗ ≥ T such that for t ≥ T∗,

∫ R

−R
|v(t, ik) − v∗,1(ik)| dk < ε, C̃e−t ≤ C̃e−T∗ < ε.

Thus, for t ≥ T∗ we have
∫

R

|v(t, ik) − v∗,1(ik)| dk ≤
∫ R

−R
|v(t, ik) − v∗,1(ik)| dk

+2

(

∫ ∞

R
|v∗,1(ik)| dk +

∫ R̃e2t

R
|v(t, ik)| dk +

∫ ∞

R̃e2t

|v(t, ik)| dk

)

≤ ε + 2 (ε + Cε + ε) .

Since ε ∈ (0, 1
8 ) may be chosen arbitrarily small, this completes the proof.

3.5. Proof of Lemma 3.4. In this subsection we will always suppose s ∈ C̄+. In
a manner similar to step 6 of the proof of Theorem 2.1, the idea is to get estimates
on the semicircle CR := {s ∈ C̄+ | |s| = R} valid for large time and propagate these
estimates outward along characteristics. We first use (3.10) and (3.13) to obtain the
following estimates for s ∈ C̄+:

(3.36) |ϕ∗,1(s)| < |2s|1/2, |u∗,1(s)| < |2s|−1/2, |v∗,1(s)| < |2s|−3/2.

Next, we use the uniform convergence on compact sets and (3.36) to see that there
exists T0 (depending on ε and the initial data) such that for all s0 ∈ CR and t0 ≥ T0
we have

|ϕ(t0, s0)/s0| ≤ 2(2R)−1/2 = 2ε ≤ 1/4,(3.37)
|u(t0, s0)| ≤ (2R)−1/2 = ε,(3.38)
|v(t0, s0)| ≤ (2R)−3/2 = ε3.(3.39)

We first extend (3.37) to a larger domain in s.
Claim 1. There exists T1 ≥ T0 such that

(3.40)
∣

∣

∣

∣

ϕ(t, s)
s

∣

∣

∣

∣

≤ 1/3, t ≥ T1, s ∈ C̄+, |s| ≥ R.

Proof of Claim 1. Observe that by using (3.27) and (3.30) in (3.21), we have

a := sup{|ϕ(T0, s)/s| | s ∈ C̄+, |s| ≥ R} < 1.

Fix t1 ≥ T0, s1 ∈ C̄+ with |s1| ≥ R. Either the characteristic curve s(t; t1, s1) that
passes through s1 at time t1 intersects CR at some time t0 ∈ [T0, t1] or it does not. If
so, then s1 = s(t1; t0, s0) for some s0 ∈ CR, and (3.21) and (3.37) directly yield

∣

∣

∣

∣

ϕ(t1, s1)
s1

∣

∣

∣

∣

≤ 1/4
1 − 1/4

=
1
3
.

If not, then |s(t; t1, s1)| > R for all t ∈ [T0, t1], by continuity and the fact that
s(t; t1, s1) ∈ C̄+ for all t ∈ [0, t1] by part (iv) of Lemma 3.3. Then taking t0 = T0,
s0 = s(T0; t1, s1) in (3.21) yields

∣

∣

∣

∣

ϕ(t1, s1)
s1

∣

∣

∣

∣

≤ ae−(t1−T0)

1 − a
≤ 1

3
,

provided t1 ≥ T1 with T1 sufficiently large. This proves the claim.
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Claim 2. Let T = T1 + 1
2 ln 2. Suppose t1 ≥ T and R ≤ |s1| ≤ Re2(t1−T ). Then

the characteristic curve s(t; t1, s1) that passes through s1 at time t1 intersects CR at
some time t0 ∈ [T1, t1].

Proof of Claim 2. Suppose the claim were false. Then the continuity of |s(t; t1, s1)|
and part (iv) of Lemma 3.3 imply R < |s(t0; t1, s1)| for all t0 ∈ [T1, t1]. But now, by
(3.20) with s0 = s(t0; t1, s1) we have

(3.41) s0

(

1 − ϕ(t0, s0)
s0

)

= e−2(t1−t0)s1

(

1 − ϕ(t1, s1)
s1

)

.

We take t0 = T1 and apply (3.40) and the hypothesis |s1| ≤ Re2(t1−T ) = 1
2Re2(t1−T1)

to deduce

R < |s0| ≤ |s1|e−2(t1−T1) 1 + 1/3
1 − 1/3

≤ R,

a contradiction. This proves the claim.
We now apply these claims to propagate the decay estimate (3.39). From Claim

2, for any t = t1 ≥ T , R ≤ k ≤ Re2(t−T ), with s1 = ik, we obtain t0 ∈ [T1, t] and
s0 ∈ CR and substitute (3.20), (3.39), and (3.40) into the decay estimate (3.26) to
obtain

|v(t, ik)| ≤ |v(t0, s0)|
(1 − |u(t0, s0)|)3

∣

∣

∣

∣

s0 − ϕ(t0, s0)
ik − ϕ(t, ik)

∣

∣

∣

∣

3/2

≤ (1 − ε)−3 |v(t0, s0)|
∣

∣

∣

∣

2s0

k

∣

∣

∣

∣

3/2

≤ (1 − ε)−3(2R)−3/2
(

2R

k

)3/2

= (1 − ε)−3k−3/2.

Therefore,

(3.42)
∫ Re2(t−T )

R
|v(t, ik)| dk ≤ (1 − ε)−3

∫ ∞

R
k−3/2 dk =

2R−1/2

(1 − ε)3
≤ Cε,

with C = 2(8/7)321/2. This completes the proof of Lemma 3.4.

3.6. Proof of Lemma 3.5. We consider the initial time t0 = 0 and the following
special case of (3.19):

(3.43) s = s(t; 0, s0) = e2t
[

s0 − ϕ0(s0)(1 − e−t)
]

.

For any t ≥ 0, the map s0 &→ s(t; 0, s0) is analytic for Re(s0) > 0, and

(3.44)
ds

ds0
= e2t

(

1 − u0(s0)(1 − e−t)
)

, u0(s0) = u(0, s0).

Recall that Ωt denotes the image of C+ under s0 &→ s(t; 0, s0), and Γt denotes the
image of the imaginary axis; we let Γ−t denote its preimage. As was observed in
Lemma 3.3, Γt is a graph over the imaginary axis, contained in the left half plane.

We will use the analyticity of v(t, s) in Ωt and contour deformation. For large
finite R2 < ∞, consider the domain ABCD shown in Figure 3.1. The path AB is
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Γ

A B

D C

t

s s

ss o

o

Γ−t

’A B’

Fig. 3.1 The s-plane is on the left, the s0-plane on the right. Ωt is the region to the right of Γt.
A = s(t; 0, iR̃), B = iR̃e2t, C = iR2, Im(D) = R2, A′ = iR̃, B′ = s(0; t, iR̃e2t).

chosen so that A′B′ is a straight line. CD is parallel to the real axis and lies in Ωt

since Γt is a graph over the imaginary axis. Then by Cauchy’s theorem,
∫ R2

R̃e2t

eikxv(t, ik) dk =
∫

BC
eikxv(t, ik) dk

=
∫

DA
esxv(t, s) ds +

∫

AB
esxv(t, s) ds +

∫

CD
esxv(t, s) ds.

Let σ denote Re s. Since σ < 0 in Ωt for s ∈ CD we see that the last integral is
estimated by

∣

∣

∣

∣

∫

CD
esxv(t, s) ds

∣

∣

∣

∣

≤ sup
s∈CD

|v(t, s)|
∫ 0

−∞
eσxdσ =

sups∈CD |v(t, s)|
x

.

By the decay estimate (3.26) we have

sup
s∈CD

|v(t, s)| ≤ sup
s1∈CD

|v0(s0)|e−3t

(1 − |u0(s0)|)3
, s0 = s(0; t, s1).

It follows from (3.30) and the fact that |s0| = |s1|e−2t(1 + o(1)) → ∞ as R2 → ∞
that sups1∈CD |v0(s0)| → 0. We thus let R2 → ∞ to conclude that

(3.45)
∫ ∞

R̃e2t

eikxv(t, ik) dk =
∫

Γt,A

esxv(t, s) ds +
∫

AB
esxv(t, s) ds,

where Γt,A denotes the path from ∞ to A on Γt. Notice that (3.45) holds independent
of x.

The virtue of deforming the contour is that the integrals may now be estimated
by changing variables from s to s0. We use the solution formula (3.23) together with
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the change of variables s = s(t; 0, ik) and (3.44) to obtain
∫

Γt,A

esxv(t, s) ds = ie−t

∫ ∞

R̃
es(t;0,ik)x v0(ik)

(1 − u0(ik)(1 − e−t))2
dk.

Since Re s(t; 0, ik) ≤ 0 and sup|k|≥R̃ |u0(ik)| < 1, this yields the estimate

(3.46)

∣

∣

∣

∣

∣

∫

Γt,A

esxv(t, s) ds

∣

∣

∣

∣

∣

≤ C1e
−t‖v0‖L1 .

Similarly, we have by (3.23) and (3.44)
∣

∣

∣

∣

∫

AB
esxv(t, s) ds

∣

∣

∣

∣

= e−t

∣

∣

∣

∣

∣

∫

A′B′
es(t;0,s0)x v0(s0)

(1 − u0(s0)(1 − e−t))2
ds0

∣

∣

∣

∣

∣

≤ e−t|A′B′| sup
s0∈A′B′

∣

∣1 − u0(s0)(1 − e−t)
∣

∣

−2
.

The point A′ = iR̃ is independent of t. It also follows from (3.43) that B′ =
s(0; t, iR̃e2t) converges to the point s0 ∈ C̄+ that solves iR̃ = s0 − ϕ0(s0). Thus,
we have the exponential decay estimate

(3.47)
∣

∣

∣

∣

∫

AB
esxv(t, s) ds

∣

∣

∣

∣

≤ C2e
−t.

The constants Ci in (3.46) and (3.47) depend only on R̃ and the initial data u0. To
be explicit, we set C̃ = C1‖v0‖L1 + C2. This completes the proof.

3.7. The Discrete Smoluchowski Equations. We now use the proof of The-
orem 3.1 to obtain a uniform convergence theorem for the discrete Smoluchowski
equations with additive kernel. The proof is simpler and we do not need the contour
deformation argument.

Let νt =
∑∞

l=1 nl(t)δhl(x) denote a measure-valued solution to (1.1). We first
adapt the rescaling (3.4) and (3.5) to similarity variables. Let

(3.48) l̂ = lhe−2t, n̂l(t) = h−1e4tnl(t).

Then the discrete Fourier inversion formula analogous to (2.32) is

(3.49) l̂2n̂l(t) =
1
2π

∫ πe2t/h

−πe2t/h
eil̂kv(t, ik) dk.

Theorem 3.6. Let ν0 ≥ 0 be a lattice measure with span h such that
∫ ∞
0 xν0(dx) =

∫ ∞
0 x2ν0(dx) = 1. Then with the scaling (3.48) we have

lim
t→∞

sup
l∈N

l̂2
∣

∣

∣
n̂l(t) − n̂∗,1(l̂)

∣

∣

∣
= 0.

Proof. By (3.49) and the continuous Fourier inversion formulas it suffices to show
that

(3.50) lim
t→∞

sup
l̂≥0

∣

∣

∣

∣

∣

∫ πe2t/h

−πe2t/h
eil̂hkv(t, ik) dk −

∫

R

eil̂hkv∗,1(ik) dk

∣

∣

∣

∣

∣

= 0.
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Let ε ∈ (0, 1
8 ) and choose R = 1

2ε−2. The integrals over [−R, R] and R < |k| < R̃e2t

with R̃ = e−2T are controlled as in the proof of Theorem 3.1, and it remains only to
control the integral of |v(t, ik)| over R̃e2t < k < πe2t/h. This is considerably simpler
than in the previous proof. We use the solution formula (3.23) and change variables
via ik = s(t; 0, s0), then use (3.44) to obtain

∫ πe2t/h

R̃e2t

eikxv(t, ik) dk = ie−t

∫

Γ−t(R̃,π/h)

exs(t;0,s0)v0(s0)
(1 − u0(s0)(1 − e−t))2

ds0.

Here Γ−t(R̃, π/h) denotes the segment along the curve Γ−t from s(0; t, iR̃e2t) to
s(0; t, iπe2t/h). The formula (3.19) shows that Γ−t(R̃, π/h) converges to a compact
C2 curve defined implicitly by ik = s0 − ϕ0(s0), R̃ ≤ k ≤ π/h. Thus, for t ≥ T we
have

e−t

∣

∣

∣

∣

∣

∫

Γ−t(R̃,π/h)

exs(t;0,s0)v0(s0)
(1 − u0(s0)(1 − e−t))2

ds0

∣

∣

∣

∣

∣

≤ C(T, R̃, u0, v0)e−t.

Thus, this term is less than ε for all t large enough.

4. Self-Similar Gelation for the Multiplicative Kernel. For K = xy, McLeod
solved the coagulation equation explicitly for monodisperse initial data and showed
that a mass-conserving solution fails to exist for t > 1 [19]. The second moment
satisfies m2(t) = (1 − t)−1. The divergence of the second moment indicates that
breakdown is associated with an explosive flux of mass toward large clusters. A
rescaled limit of McLeod’s solution is the following self-similar solution for K = xy [1]:

(4.1) n(t, x) =
1√
2π

x−5/2e−(1−t)2x/2, x > 0, t < 1.

Evidently this solution has infinite mass (first moment). This should not be thought
unnatural, however, since it was shown in [20] that (1.1) has a unique weak solution
for any initial distribution with finite second moment.

The problem of solving Smoluchowski’s equation with multiplicative kernel can
be reduced to that for the additive kernel by a change of variables [4]. Let us briefly
review this. In unscaled variables we define

(4.2) Ψ(t, z) =
∫ ∞

0
(1 − e−zx)xn(t, x) dx.

Then Ψ solves the inviscid Burgers equation

(4.3) ∂tΨ − Ψ∂zΨ = 0,

with initial data

(4.4) Ψ0(z) =
∫ ∞

0
(1 − e−zx)xn0(x) dx.

The gelation time for initial data with finite second moment is Tgel = (
∫ ∞
0 x2ν0(dx))−1,

and this is exactly the time for the first intersection of characteristics [20]. We presume
that the initial data is scaled to ensure

(4.5)
∫ ∞

0
x2n0(x) dx =

∫ ∞

0
x3n0(x) dx = 1.
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Then the gelation time is Tgel = 1. The connection between the additive and multi-
plicative kernels is that Ψ solves (4.3) with initial data Ψ0 if and only if Φ(τ, z) is a
solution to (3.3) with the same initial data, where

(4.6) Ψ(t, z) = eτΦ(τ, z), with τ = log(1 − t)−1.

For solutions nmul(t, x) and nadd(τ, x) to Smoluchowski’s equation with multiplicative
and additive kernels, respectively, this means that

(4.7) xnmul(t, x) = (1 − t)−1nadd(τ, x)

for all t ∈ (0, 1) if and only if the same holds at t = 0. We thus obtain a scaling limit
as t → Tgel directly from Theorem 3.1.

Theorem 4.1. Suppose n0(x) ≥ 0,
∫ ∞
0 x2n0(x) dx =

∫ ∞
0 x3n0(x) dx = 1. Sup-

pose also that the Fourier transform of x3n0 is integrable. Then, in terms of the
rescaling (1.8), we have

(4.8) lim
t→1

sup
x̂>0

x̂3|n̂(t, x̂) − n̂∗,2(x̂)| = 0,

where n̂∗,2(x̂) is the self-similar density in (1.9).
Theorem 3.6 may be similarly adapted to K = xy. In the discrete case, the cor-

respondence (4.7) between solutions of Smoluchowski’s equations with multiplicative
and additive kernels becomes

(4.9) hlnmul
l (t) = (1 − t)−1nadd

l (log(1 − t)−1).

We introduce similarity variables via

(4.10) l̂ = lh(1 − t)2, n̂l(t) = h−1(1 − t)−5nl(t).

Then directly from Theorem 3.6 we obtain the following theorem.
Theorem 4.2. Let ν0 ≥ 0 be a lattice measure with span h such that

∫ ∞
0 x2ν0(dx) =

∫ ∞
0 x3ν0(dx) = 1. Then with the rescaling (4.10) we have

(4.11) lim
t→1

sup
l∈N

l̂3
∣

∣

∣
n̂l(t) − n̂∗,2(l̂)

∣

∣

∣
= 0.
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