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Abstract

We consider the approach to self-similarity (or dynamical scaling) in Smolu-

chowski’s equations of coagulation for the solvable kernels K (x, y) = 2, x + y,

and xy. In addition to the known self-similar solutions with exponential tails,

there are one-parameter families of solutions with algebraic decay whose form

is related to heavy-tailed distributions well-known in probability theory. For

K = 2 the size distribution is Mittag-Leffler, and for K = x + y and K = xy it

is a power-law rescaling of a maximally skewed α-stable Lévy distribution. We

characterize completely the domains of attraction of all self-similar solutions

under weak convergence of measures. Our results are analogous to the classi-

cal characterization of stable distributions in probability theory. The proofs are

simple, relying on the Laplace transform and a fundamental rigidity lemma for

scaling limits. c© 2004 Wiley Periodicals, Inc.

1 Introduction

Smoluchowski’s coagulation equations provide a mean field description of sev-

eral processes of mass aggregation in nature. We study the evolution of n(t, x), the

number of clusters of mass x per unit volume at time t . Clusters of mass x and

y coalesce by binary collisions at a rate governed by a symmetric kernel K (x, y),

whence

∂n

∂t
(t, x) = 1

2

∫ x

0

K (x − y, y)n(t, x − y)n(t, y)dy

−
∫ ∞

0

K (x, y)n(t, x)n(t, y)dy .

(1.1)

All microscopic interactions are subsumed into the agglomeration rate kernel K ,

and the process is assumed to be stationary in space. A broad survey of applica-

tions, especially in physical chemistry, may be found in the article by Drake [14].

Equation (1.1) has been used in an amazingly diverse range of applications, such as

the formation of clouds and smog [17], the clustering of planets, stars, and galax-

ies [32], the kinetics of polymerization [35], and even the schooling of fishes [29]
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and the formation of “marine snow” (see [21]). In the past few years, there has

been a resurgence of mathematical interest in the field, largely due to the work of

probabilists. An influential survey article by Aldous summarizes the recent state of

affairs [2].

An issue of importance for homogeneous kernels, which are kernels that satisfy

K (αx, αy) = αγ K (x, y), is the phenomenon of dynamical scaling for all initial

data in a universality class. Mathematically, this corresponds to the problem of

existence of scaling or self-similar solutions and characterization of their domains

of attraction. In the aerosols community, the relevant rubric is the theory of self-

preserving spectra, which is treated at length in Friedlander’s book [17] and the

extensive survey of Drake [14]. For a large class of kernels with γ ≤ 1, there

is numerical evidence that solutions evolve to a self-similar form [23]. There are

also physical self-consistency arguments that have been used to derive asymptotics

for scaling solutions [34]. In the case γ > 1, for a general class of kernels it is

known that solutions must lose mass (presumably to infinite-mass clusters) after

some finite time Tgel [15, 19], but there is no general rigorous result on the precise

nature of this blowup in mass transport. In several instances the known solutions

have unphysical divergences such as infinite mass. Thus, a general existence theory

for finite-mass self-similar solutions, for example, would be of some value.

The kernels K (x, y) = 2, x + y, and xy play a special role, as (1.1) can

then be solved by the Laplace transform. It is widely known that each of these

kernels admits a self-similar solution with exponential decay (see table 2 in [2]).

These kernels are also special since certain solutions to (1.1) can be viewed as

ergodic averages in beautiful probabilistic constructions, involving thinning of re-

newal processes (K = 2) and tree-valued Markov processes and their self-similar

limits (K = x + y, xy) [3]. The additive kernel also figures in interesting recent

applications given by Bertoin. It provides a natural probabilistic interpretation of

a sticky particle model related to Zeldovich’s model of gravitational clustering [8].

Also, the known self-similar solution appears in a simple model of turbulence, the

inviscid Burgers equation with Brownian motion initial data, as the characteristic

measure for a Poisson point process that describes the shock strengths [6].

In short, aside from heuristics and numerics, there are no rigorous mathemati-

cal proofs of the existence of self-similar solutions and the approach to self-similar

form for general kernels (see [2, sec. 2]). And there are only a few partial results

for the solvable kernels: For K = 2, Kreer and Penrose [22] proved local uniform

convergence to the scaling solution under some technical hypotheses on initial data.

(Also see [11] regarding the discrete case.) A simple weak convergence theorem

in this case follows from a classical result on the thinning of renewal processes [2].

In a recent article, Deaconu and Tanré proved a weak convergence result for all

three kernels but under restrictive hypotheses on initial data [12]. Aldous and Pit-

man have studied the “eternal additive coalescent,” and Bertoin has characterized

“eternal solutions” to the Smoluchowski equation with additive kernel, solutions
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defined globally for −∞ < t < ∞ [4, 7]. Bertoin showed these solutions cor-

respond to the Lévy measure of a first-passage process related to Lévy processes

with no positive jumps, and as a particular consequence he derived a new family of

self-similar solutions related to the Lévy stable laws of probability.

In this article we find new families of self-similar solutions for the constant

kernel, rederive the self-similar solutions for the additive and multiplicative kernels

by analytical means, and characterize all possible domains of attraction under weak

convergence for all the solvable kernels. We show the following:

(1) For each of the solvable kernels, Smoluchowski’s equation admits a one-

parameter family of scaling solutions parametrized by a number ρ ∈ (0, 1] that

characterizes the rate of divergence of the (γ +1)th moment of the number density.

For ρ = 1 these solutions reduce to the known solutions with exponential tails,

while for 0 < ρ < 1 the number density has algebraic decay (“fat tails”). For

K = 2 (γ = 0) the normalized size distribution is a Mittag-Leffler distribution as

studied by Pillai [31]. For K = x + y (γ = 1) and xy (γ = 2), the γ th moment

distributions are transformed by power-law rescaling to the Lévy stable laws of

probability theory (see (6.5) and [7]).

(2) The domains of attraction (under weak convergence of measures) for any

scaling solution is determined by a condition on the tails of the initial data—the

algebraic rate of divergence of the (γ + 1)th moment. A precise characterization is

given via Karamata’s notion of regular variation. All solutions with finite (γ + 1)th

moment are attracted to self-similar solutions with exponential tail. However, with

suitably diverging (γ + 1)th moment, there are initial data for which there is no

convergence to any self-similar solution.

The self-similar solutions can all be captured by expressing their γ th moment dis-

tribution in the general form

(1.2) xγ n(t, x) = mγ (t)λγ (t)−1 fρ,γ

(
xλγ (t)−1

)
,

where explicitly, with β = ρ/(1 + ρ),

m0(t) = t−1 , m1(t) = 1 , m2(t) = (1 − t)−1 ,(1.3)

λ0(t) = t
1
ρ , λ1(t) = e

t
β , λ2(t) = (1 − t)

− 1
β ,(1.4)

and the fρ,γ are probability densities given by

fρ,0(x) =
∞∑

k=1

(−1)k−1xρk−1

�(ρk)
,(1.5)

fρ,1(x) = fρ,2(x) = 1

π

∞∑
k=1

(−1)k−1xkβ−1

k! �(1 + k − kβ) sin kπβ .(1.6)

We work with measure-valued solutions to (1.1) denoted νt , where νt((a, b])
denotes the number of clusters with size x ∈ (a, b]: νt((a, b]) = ∫ b

a
n(t, x) dx if

νt has integrable density n(t, x). For each of the solvable kernels, there is a unique



1200 G. MENON AND R. L. PEGO

solution for any initial data ν0 with finite γ th moment, and we associate a natural

probability distribution function F(t, x) to the solution

(1.7) F(t, x) =

∫ x

0

yγ νt(dy)

∫ ∞

0

yγ νt(dy)

.

This is the size-biased distribution for K = 2, the mass distribution for K =
x + y, and the second moment distribution for K = xy. We are interested in

necessary and sufficient conditions for the convergence of a rescaling F(t, λ(t)x)

to a nontrivial limit F∗(x). Our results may be summarized in the following.

METATHEOREM For the kernels K (x, y) = 2, x + y, and xy with degree of ho-

mogeneity γ = 0, 1, 2, respectively, let Tγ = ∞ for γ = 0, 1 and Tγ = Tgel for

γ = 2. Then for any solution of Smoluchowski’s coagulation equation, there is a

rescaling λ(t) and a nontrivial probability distribution function F∗ such that

lim
t→Tγ

F(t, λ(t)x) = F∗(x) at all points of continuity of F∗

if and only if ∫ x

0

yγ+1ν0(dy) ∼ x1−ρ L(x) as x → ∞ ,

where ρ ∈ (0, 1] and L(x) is a function slowly varying at infinity. In the converse

implication, F∗ must be a rescaling of Fρ,γ (x) = ∫ x

0
fρ,γ (y) dy.

Precise statements are deferred to Theorem 5.1, Theorem 7.1, and Theorem 8.1.

We write the results in this form to stress the analogy with the classical character-

ization of the Lévy stable distributions in probability theory [16]. For the additive

and multiplicative kernels, the analogy is an intimate relation with distributions

for asymmetric Lévy flights: the self-similar solutions can be transformed by a

power-law rescaling into maximally skewed α-stable Lévy distributions. A deeper

understanding of our results is obtained from Bertoin’s study of eternal solutions

for the additive kernel [7]. The eternal solutions are analogous to infinitely divisi-

ble distributions of probability theory. Let νt be the value of an eternal solution at

time t . Then, loosely speaking, for any s < t the measure νs decomposes νt such

that νt is reconstituted from νs under coagulation. This heuristic statement is made

precise by Bertoin’s characterization of Lévy pairs (σ 2,�) for the eternal solu-

tions. This is the analogue of the classical Lévy-Khintchine characterization of the

infinitely divisible distributions [16]. Among the infinitely divisible distributions,

the stable distributions are of special interest, and their Lévy canonical measures

are pure power laws. And indeed, the self-similar solutions to Smoluchowski’s

equation (1.1) have Lévy pairs corresponding to pure power laws: σ 2 = 0 and

�(dx) = cx−α−1 dx for 1 < α < 2, and σ 2 = 1 and � = 0 for α = 2, exactly

as in the classical characterization. When viewed in this context, our theorems are

entirely natural.
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For K = 2 the main theorem may be interpreted probabilistically as a stabil-

ity result for renewal processes on the line under uniform thinning (see [24]). For

K = x + y, the results are related to Burgers turbulence for solutions of the invis-

cid Burgers equation when the initial velocity is given by a Lévy process with no

positive jumps [6].

We exploit the analogy with the classical limit theorems of probability to obtain

simple proofs of optimal theorems. The proofs involve little more than the solution

for the Laplace transform and a fundamental rigidity lemma that characterizes scal-

ing limits via functions of regular variation [16, VIII.8.3]. And the analogy extends

much further. The central limit theorem is perhaps the most intensively studied re-

sult in probability theory. Thus, we can demand stronger forms of convergence as

in expansions related to the central limit theorem. In companion articles we plan

to study

(a) uniform convergence of densities to the self-similar solutions with expo-

nential tails (in analogy with the uniform convergence of densities in the

central limit theorem) [27],

(b) metric estimates (in analogy with the Berry-Esseen theorem), and

(c) large deviation estimates.

We have found proofs for (a) and partial results for (b) and (c) that follow easily

from a combination of the solution formula and the classical method of character-

istic functions outlined in Feller [16].

It is worth remarking that the folklore in the applied literature is that the scaling

solutions are unique (e.g., see [17, 34]). This is false in general (though the solu-

tions with exponential tails are indeed special—they attract all solutions with finite

(γ + 1)th moment). With hindsight, this nonuniqueness is not surprising. The exis-

tence of a one-parameter family of scaling solutions is well-known in physically re-

lated mean field models that show coarsening, such as the Lifshits-Slyozov-Wagner

model [28], one-dimensional models for the coalescence of droplets [13], and cut-

and-paste models of coarsening [18]. From the mathematical point of view the

fundamental role of regular variation in branching processes is well established [9],

and it is only natural that it should reappear in the “dual process” of coalescence.

We conjecture that analogous results hold for general homogeneous kernels, but

these lie beyond our techniques based on the Laplace transform.

2 Well-Posedness for Measure-Valued Solutions

2.1 Desingularized Laplace Transforms

Smoluchowski’s equations determine a process of mass transport, and measure-

valued solutions are an appropriate mathematical abstraction that contains solu-

tions to the discrete and continuous coagulation equations within a unified frame-

work. Norris recently proved several strong results for well-posedness of measure-

valued solutions, but these do not apply with quite the generality we prefer for
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K = x + y and K = xy [30]. We work with a somewhat different notion of

solution motivated by the explicit solution obtained with the Laplace transform.

The use of the Laplace transform for these kernels is classical [14], and aside from

trivial changes of notation, many of the equations below may be found in Bertoin’s

article [7]. While our primary aim in writing this article is not to tackle the question

of well-posedness, we show below that the divergence of the self-similar solutions

necessitates some care in the definition of solutions. The impatient reader may

skim through this section making a note of the main theorems and the explicit so-

lution formulas. Our primary source for background on the Laplace transform is

Feller [16].

Let E denote the open interval (0,∞), and let M+ denote the space of positive

Radon measures on (0,∞). We interpret the number of clusters of size x ∈ (a, b]
per unit volume as ν((a, b]) for ν ∈ M+. We use the same letter to denote the

distribution function of the measure, writing ν(x) = ν((0, x]) if this quantity is

finite. We let mp = ∫
E

x pν(dx) denote the pth moment of the measure, so m0 is

the total number of clusters and m1 is the total mass.

We let η(s) be the Laplace transform of ν(x) defined by

η(s) =
∫
E

e−sxν(dx) =
∫
E

e−sx n(x)dx .

The last equation holds when ν has a density n. In what follows we need to work

with time-dependent measures νt for which the total number of clusters and/or

total mass may be infinite. Consequently, it is more convenient to work with the

variables (the “desingularized Laplace transform”) given by

(2.1) ϕ(t, s) =
∫
E

(1 − e−sx)νt(dx) , ψ(t, s) =
∫
E

(1 − e−sx)xνt(dx) .

The variable u = ∂sϕ has the important physical interpretation that it is the Laplace

transform of the mass measure. Probabilists will recognize the obvious similarity

to the Lévy-Khintchine representation. The equations of evolution in terms of these

variables are extremely simple:

∂tϕ = −ϕ2 for K = 2,(2.2)

∂tϕ − ϕ∂sϕ = −ϕ for K = x + y,(2.3)

∂tψ − ψ∂sψ = 0 for K = xy.(2.4)

We will construct measures using these equations and establish that they are solu-

tions of Smoluchowski’s equation in an appropriate weak sense.

The function 1 − e−sx does not have compact support in E but has finite limits

at 0 and ∞. A simple way to treat these limits is to consider Ē = [0,∞] and

consider continuous functions on Ē , where f (∞) always means limx→∞ f (x).
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DEFINITION 2.1

• C(Ē) is the space of continuous maps f : Ē → R equipped with the norm

‖ f ‖C(Ē) = supx | f (x)|.
• Ck(Ē) consists of k times continuously differentiable functions on E such

that f, . . . , f (k) ∈ C(Ē). It is equipped with the norm ‖ f ‖Ck (Ē) = ‖ f ‖C(Ē)

+ · · · + ‖ f (k)‖C(Ē).

• Ck
c (E) is the subspace of Ck(E) with compact support in E .

• Ek denotes the subspace of Ck(Ē) of functions whose derivatives up to

order k decay exponentially, that is,

k∑
j=1

| f ( j)(x)| ≤ Cf e−αx for some α > 0,

and whose derivatives up to order k − 1 vanish at 0, that is, f ( j)(0) = 0 for

j < k.

The following classical approximation lemma shows that the functions 1−e−sx

span a dense set in C(Ē).

LEMMA 2.2

(i) Let f ∈ C(Ē). Then for every s > 0 there is a sequence Pn(x; s) =∑n
k=1 an,k(s)(1 − e−sx)k such that

lim
n→∞

‖Pn(x; s) − f (x)‖C(Ē) = 0 .

(ii) If f ∈ Ek , then we also have limn→∞ ‖Pn(x; s) − f (x)‖Ck (Ē) = 0 for

sufficiently small s.

PROOF: The problem may be reduced to polynomial approximation on the

unit interval by the transformation y = 1 − e−sx and g(y) = f (x). Then g ∈
C([0, 1]) for f ∈ C(Ē). Assertion (i) now follows from Weierstrass’s approxima-

tion theorem. A particularly useful choice are the Bernstein polynomials Bn,g(y)

of g and Pn(x; s) = Bn,g(y). Suppose g ∈ Ck[0, 1]. It is then classical that

limn→∞ ‖g(y) − Bn,g(y)‖Ck [0,1] = 0 [25, p. 25]. Thus, in order to obtain (b) it

suffices to show that g ∈ Ck[0, 1]. A decay assumption on f is warranted, because

by the chain rule

g′(y) = f ′(x)
esx

s
, g′′(y) = e2sx

s2
( f ′′(x) + s f ′(x)) , etc.

But f ∈ Ek , so that
∑k

j=1 | f ( j)(x)| ≤ Cf e−αx . Hence, for s < α/k we have

limy→1 g′(y) = · · · = limy→1 g(k)(y) = 0 and g ∈ Ck[0, 1]. Thus, given any

ε > 0, there is an n(ε) such that |g′(y) − B ′
n,g(y)| < ε. The change of variables

now works to our advantage, for we have | f ′(x) − P ′
n(x)| < εse−sx . A similar

calculation holds for all k derivatives proving (ii). �
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2.2 A Weak Formulation for Measure-Valued Solutions

Following Norris, we will generalize Smoluchowski’s equation as follows. To

every finite, positive measure ν we associate the measure L(ν) defined by duality

with continuous functions with compact support.

(2.5) 〈 f, L(ν)〉 = 1

2

∫
E

∫
E

[ f (x + y) − f (x) − f (y)]K (x, y)ν(dx)ν(dy) .

It is then natural to consider the weak formulation

(2.6) 〈 f, νt〉 = 〈 f, ν0〉 +
∫ t

0

〈 f, L(ντ )〉dτ for every f ∈ Cc(E) .

This suffices for the case K = 2, but it is insufficient for K = x + y and K = xy.

The self-similar solutions for these kernels are not finite measures, and conse-

quently they are not solutions in the sense of Norris, since they fail condition (3) in

his definition [30, p. 80].

The basic obstruction is that L(νt) is not a measure in general, since 〈 f, L(νt)〉
may not be finite for all continuous functions. The reason is that even though f

may have compact support in E , the function T f (x, y) := f (x + y)− f (x)− f (y)

does not have compact support in E × E and may not be integrable with respect to

the product measure ν ⊗ ν.

Here is a counterexample for K = x + y. Let χ(x) be the indicator function for

the interval (0, 1), and let ν(dx) = x−3/2χ(x)dx +δ(x −2). Let f be a continuous

function with support in [a, b] = [2, 5]. Then the values of T f are as shown in

Figure 2.1. Notice that ν((x,∞)) diverges like O(x−1/2) as x → 0, but ν has

finite mass. Thus, in order for the integrals in the definition of L to converge, it is

necessary that there be suitably rapid cancellations as we approach the boundaries.

One may show that the integral is finite on all regions except near the axes in the

shaded regions. However, we explicitly compute that for any small δ > 0,

(2.7)

∫ δ

0

∫ ∞

0

[ f (x + y) − f (x) − f (y)](x + y)ν(dx)ν(dy) =
∫ δ

0

f (2 + y)(2 + y)y− 3
2 dy .

This is evidently infinite if f (x) rises sufficiently steeply for x > 2. Therefore

L(ν) is not a measure.

This means that the space of continuous functions is not appropriate as a space

of test functions in (2.6). The smaller spaces Eγ serve as a suitable substitute.

DEFINITION 2.3 For each kernel K (x, y) = 2, x + y, and xy with degree of

homogeneity γ = 0, 1, 2, respectively, let Tγ = ∞ for γ = 0, 1 and Tγ = Tgel for

γ = 2. We say that a map t 
→ νt : [0, Tγ ) 
→ M+ is a solution to Smoluchowski’s

coagulation equation if

(i) mγ (0) = ∫
E

xγ ν0(dx) < ∞,
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a

0

f (x+y) −f(x)

f(x+y)−f(x)

f(x+y)−f(y)

−f(y)

−f(x)−f(y)

f(x+y)
−f(x)−f(y)

y

b

xb

FIGURE 2.1. Cancellations in T f (x, y). Integrals over the shaded re-

gions diverge absolutely unless f has a suitable modulus of continuity.

(ii) for all compact sets B ⊂ E , the map t 
→ νt(B) is measurable,

(iii)
∫ t

0
mγ (τ )2 dτ < ∞ for all t ∈ (0, Tγ ), and

(iv) for all f ∈ Eγ and t ∈ [0, Tγ ), we have

(2.8) 〈 f, νt〉 = 〈 f, ν0〉 +
∫ t

0

〈 f, L(ντ )〉dτ .

2.3 Existence and Uniqueness for the Constant Kernel

We will set K = 2 instead of the usual convention of setting K = 1, since it

simplifies several calculations (we actually revert to an older convention; see, for

example, equation (459) in [10]).

THEOREM 2.4 Let ν0 ∈ M+ be a finite measure. Then Smoluchowski’s coagula-

tion equation with kernel K = 2 has a unique solution with initial data ν0, and this

solution is determined by the solution of (2.2).

Theorem 2.4 is a consequence of [30, theorem 2.1]. We will prove it anew

with the Laplace transform, as the explicit solution formula is needed later. Let νt

denote the number distribution at time t , and ϕ(t, · ) be determined from ν = νt by

(2.1) for each t . Then formally ϕ should solve the simple equation (2.2). For fixed

s > 0, (2.2) is an ordinary differential equation with the solution

(2.9) ϕ(t, s) = ϕ0(s)

1 + ϕ0(s)t
.

LEMMA 2.5 Assume ν0 ∈ M+ is finite. Formula (2.9) determines a weakly con-

tinuous map [0,∞) � t 
→ νt ∈ M+ with decreasing total number m0(t) =
m0(0)/(1 + m0(0)t).
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PROOF: The solution ϕ(t, s) has the important property that its derivative is

completely monotone for t ≥ 0. This is because it may be written as a composition

of positive functions with completely monotone derivative

ϕ(t, s) = p

1 + tp
◦ (ϕ0(s)) .

Recall that the derivative of ϕ(t, s) is u(t, s), the Laplace transform of the mass

measure, say µt(dx). Because u(t, s) is completely monotone, it follows that

µt(dx) ∈ M+. Since u(t, s) is analytic in t , we see that the measures µt are

weakly continuous by the classical duality between pointwise convergence of the

Laplace transform and weak convergence of measures. That is, for any continuous

function f with compact support in E , we have 〈 f, µτ 〉 → 〈 f, µt〉 as τ → t . It

follows that 〈 f, ντ 〉 → 〈 f, νt〉 as τ → t where νt(dx) = x−1µt(dx) is the number

measure. The statement regarding m0(t) follows by taking s → ∞ in (2.9). �

Remark 2.6. It is strange at first to consider the desingularized Laplace transform

when the initial data is finite, and indeed the usual Laplace transform suffices. But

(2.9) shows us that the solution is instantly regularizing in the following sense: If

ν0(∞) = ϕ0(∞) = ∞, the solution satisfies

lim
s→∞

ϕ(t, s) = lim
s→∞

ϕ0(s)

1 + tϕ0(s)
= 1

t
.

Thus, the number of clusters is finite for t > 0. Thus, ϕ(t, s) defines a natural

solution even for an initially infinite measure. However, it is hard to verify (2.8)

in this case (even for f ∈ C1
c (E)), and we restrict ourselves to finite measures in

what follows.

PROOF OF THEOREM 2.4: Let us first show that the measures νt determined

by the lemma form a solution to Smoluchowski’s equation in the sense of Defini-

tion 2.3. Condition (i) has been assumed. It is easy to check condition (ii). The

measures νt are weakly continuous. Thus for a fixed compact set B ⊂ E , the

function t 
→ νt(B) is semicontinuous. Condition (iii) follows from Lemma 2.5.

It is not a priori obvious that 〈1 − e−sx , L(νt)〉 is indeed −ϕ(t, s)2. But the

measures are finite since νt(E) ≤ ν0(E) < ∞, and thus we may set f = 1 − e−sx

in the definition of 〈 f, L(νt)〉 to recover −ϕ(t, s)2. In particular, this shows that

(2.8) holds for f = 1−e−sx . This equation also holds if f is a monomial (1−e−sx)k

because

(1 − e−sx)k =
k∑

j=0

(
k

j

)
(−1) j e− jsx = −

k∑
j=0

(
k

j

)
(−1) j (1 − e− jsx) .
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Given f ∈ C(Ē) and ε > 0, Lemma 2.2 guarantees an approximation Pn with

‖ f − Pn‖C(Ē) < ε. Then, |〈 f − Pn, L(νt)〉| ≤ 3ε(νt(E))2 ≤ 3ε(ν0(E))2. Thus,

∣∣∣〈 f, νt〉 − 〈 f, ν0〉 −
∫ t

0

〈 f, L(ντ )〉dτ

∣∣∣
≤ 〈| f − Pn|, νt〉 + 〈| f − Pn|, ν0〉 +

∫ t

0

∣∣〈| f − Pn|, L(ντ )〉
∣∣dτ

≤ ε
(
ν0(E) + ν0(E) + 3t (ν0(E))2

)
.

This shows that the measures νt define a solution.

Suppose νt and ν̃t are two solutions with the same initial data. Since f =
1 − e−sx ∈ E0 = C(Ē) and ϕ(t, s) = 〈 f, νt〉 ≤ m0(t) for a.e. t , we can use (2.8)

and condition (iii) of Definition 2.3 to obtain (2.3) in time-integrated form for each

solution. It follows easily that for fixed s > 0, each ϕ(t, s) is C1 in t and satisfies

(2.3). But this equation has a unique solution ϕ(t, s) as in (2.9). As we have noted

in Lemma 2.5, ϕ(t, s) determines the measure νt . Thus νt = ν̃t . �

2.4 Existence and Uniqueness for the Additive Kernel

We always work with solutions of finite mass, but we do not assume that the

number of clusters is finite. Therefore, L(ν) will not be a measure. Nevertheless, it

does define a bounded linear functional on the space of Lipschitz functions on E .

LEMMA 2.7 Let ν ∈ M+ with m1 := ∫
E

xν(dx) < ∞, and let L(ν) be defined by

(2.5) with K = x + y. Suppose f is Lipschitz and f (0) = 0. Then

(2.10) |〈 f, L(ν)〉| ≤ 2m2
1 Lip( f ) .

PROOF: By the symmetry of the integral in (2.5), we see that

∣∣〈 f, L(ν)〉
∣∣ ≤

∫
E

∫
E

| f (x + y) − f (x) − f (y)|yν(dy)ν(dx) .

The integrand is controlled by

| f (x + y) − f (x) − f (y)| ≤ | f (x + y) − f (y)| + | f (x)| ≤ 2 Lip( f )x .

Thus we obtain

∣∣〈 f, L(ν)〉
∣∣ ≤ 2 Lip( f )

∫
E

∫
E

xyν(dy)ν(dx) = 2m2
1 Lip( f ) .

�

THEOREM 2.8 Let ν0 ∈ M+ satisfy
∫

E
xν0(dx) = m1 < ∞. Then Smoluchowski’s

coagulation equation with kernel K = x + y has a unique solution with initial data

ν0 such that
∫

E
xνt(dx) = m1 for all t ∈ [0,∞).



1208 G. MENON AND R. L. PEGO

We will construct a solution using the desingularized Laplace transform and

then prove its uniqueness. The evolution equation for ϕ is

∂tϕ − ϕ∂sϕ = −m1ϕ .

We may always normalize initial data such that m1 = 1, and we assume this in all

that follows. Thus, we have

(2.11) ∂tϕ − ϕ∂sϕ = −ϕ .

It is striking that (2.11) is simply the inviscid Burgers equation with linear damping.

However, there is no shock formation, since the initial data are analytic with a

completely monotone derivative satisfying ∂sϕ0(s) ≤ 1. This can be seen in the

explicit solution below, which is valid for all time. Since u = ∂sϕ, differentiating

(2.11) we have

(2.12) ∂t u − ϕ∂su = −u(1 − u) .

We solve (2.11) and (2.12) globally by the method of characteristics. Let s(t, σ )

denote the characteristic that originates at σ at t = 0. Then we have

(2.13)
ds

dt
= −ϕ ,

dϕ

dt
= −ϕ ,

du

dt
= −u(1 − u) ,

on a characteristic. We integrate (2.13) along the characteristics to obtain

ϕ(t, s) = e−tϕ0(σ ) ,(2.14)

s(t, σ ) − ϕ(t, s) = σ − ϕ0(σ ) ,(2.15)

u(t, s) = e−t u0(σ )

1 − (1 − e−t)u0(σ )
.(2.16)

LEMMA 2.9 Suppose ν0(x) ∈ M+ with
∫

E
x ν0(dx) = 1. Then equation (2.11)

determines a map [0,∞) � t 
→ νt ∈ M+ such that

(i)
∫

E
xνt(dx) = 1 for all t and

(ii) µt = xνt is weakly continuous.

PROOF: Observe that

σ − ϕ0(σ ) =
∫
E

(e−sx − 1 + sx)ν0(dx) > 0 , σ > 0 .

Thus, by (2.14) and (2.15)

(2.17) s(t, σ ) = σ − ϕ0(σ )(1 − e−t) > 0 , σ > 0 .

The right-hand side is a strictly increasing function of σ for all t ≥ 0; thus, the

inverse map σ(t, s) is well-defined. Differentiating (2.17) with respect to s, we

find that

(2.18)
dσ

ds
= 1

1 − (1 − e−t)u0(σ (s))
whence u(t, s) = e−t u0(σ )

dσ

ds
.
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Since u0 is the Laplace transform of a positive measure, it is a completely mono-

tone function of σ .

In order to show that u(t, s) is completely monotone in s, it suffices to show

that dσ/ds is completely monotone in s (see criteria 1 and 2 in [16, XIII.4]). We

prove this as follows: Let us consider the sequence of iterates

σ0(s) = s and σn+1(s) = s + (1 − e−t)ϕ0(σn(s)) , n ≥ 0 .

Clearly, |σn+2(s) − σn+1(s)| < |σn+1(s) − σn(s)| so that σn(s) → σ(s), the unique

solution to (2.17). Moreover, we have

dσn+1(s)

ds
= 1 + (1 − e−t)u0(σn(s))

dσn(s)

ds
.

Thus if dσn/ds is completely monotone, then so is dσn+1/ds. But dσ0/ds = 1 is

completely monotone. By induction, dσn/ds is completely monotone for n ≥ 1

and so is the limit dσ/ds.

We may now conclude that the solution ϕ(t, s) to (2.11) defined by (2.14) exists

for all t ≥ 0, is unique, and has a completely monotone derivative u(t, s). Thus

u(t, s) defines a unique mass measure, say µt(dx). We see from the solution (2.16)

that u(t, 0) = u0(0) = 1. Thus, the total mass
∫

E
µt(dx) = u(t, 0) = 1 for all

t ≥ 0. The measures µt are weakly continuous since u(t, s) is analytic in time. �

PROOF OF THEOREM 2.8: Let us first check that the measures νt determined

by (2.11) solve Smoluchowski’s equation in the sense of Definition 2.3. Condi-

tions (i) and (ii) in Definition 2.3 are verified as in the proof of Theorem 2.4. Since

νt has constant mass, it follows from Lemma 2.7 that the functionals L(νt) are

uniformly bounded on E1. In particular,

(2.19) 〈1 − e−sx , L(νt)〉 = −ϕ + ϕ∂sϕ ,

as desired. This shows that (2.8) holds for f = 1 − e−sx and thus for monomials

(1 − e−sx)k . Given any f ∈ E1 and ε > 0, we choose an approximation Pn(x; s)

as in Lemma 2.2(ii) so that ‖ f − Pn‖C1(Ē) < ε. Then by Lemma 2.7∣∣〈 f − Pn, L(νt)〉
∣∣ ≤ 2 Lip( f − Pn) < 2ε .

Similarly,

|〈 f − Pn, νt〉| ≤
∫
E

| f (x) − Pn(x; s)|νt(dx) ≤ Lip( f − Pn)

∫
E

xνt(dx) < ε .

This shows that νt is a solution in the sense of Definition 2.3.

Now suppose only that νt is a solution in the sense of Definition 2.3. The

function f = 1 − e−sx ∈ E1 and f ≤ sx . For a.e. t > 0 we have m1(t) < ∞,

and from ϕ = 〈 f, ντ 〉 ≤ s−1m1(t) it follows that ϕ(t, s) is analytic in s with

|∂k
s ϕ| ≤ s1−km1(t) for k = 1, 2, . . . . Condition (iii) of Definition 2.3 ensures that
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for fixed s > 0, m1(t) is locally square-integrable on [0,∞), and (2.8) gives (2.11)

in time-integrated form, since (2.19) holds for a.e. t and

|〈 f, L(νt)〉| = |ϕ∂sϕ − ϕ| ≤ sm1(t)(m1(t) + 1) .

It follows that ϕ is continuous in t , uniformly for s in compact sets in E . Moreover,

one can justify differentiating (2.8) in s and infer that ∂sϕ is continuous. Then ϕ is

a C1 solution of (2.11), whence ϕ(t, s) is uniquely determined by initial data. But

as we have noted in Lemma 2.9, ϕ(t, s) uniquely determines the measure νt . Thus

the solution is unique. �

2.5 Existence and Uniqueness for the Multiplicative Kernel

The multiplicative kernel differs from the constant and additive kernels, since

it is not well-posed for all time. But, the analysis can be formally reduced to the

additive case by a change of variables. This is well-known [14], but we include it

for completeness.

The divergence of the classical self-similar solution is O(x−5/2) as x → 0. The

total number and mass are infinite, but the second moment is finite. Therefore, we

consider the following desingularized Laplace transform:

(2.20) φ(t, s) =
∫
E

(e−sx − 1 + sx)νt(dx) .

We substitute f = e−sx − 1 + sx in the equation of evolution (2.5) to find

(2.21) ∂tφ = 〈 f, L(νt)〉 = 1

2
(∂sφ)2 .

Equation (2.21) is the Hamilton-Jacobi equation associated to the inviscid Burgers

equation. Thus, we let

(2.22) ψ(t, s) = ∂sφ =
∫
E

(1 − e−sx)xνt(dx) .

Then from (2.21) we have

(2.23) ∂tψ − ψ∂sψ = 0 .

The exact solution to (2.23) with initial data ψ0(s) may be found by the method of

characteristics. The characteristic originating at s0 is denoted

s(t, s0) = s0 − ψ0(s0)t .

Let t (s0, s1) denote the time for two characteristics originating at s0 < s1 to inter-

sect. Then, if this is the first intersection

1

t
= ψ0(s1) − ψ0(s0)

s1 − s0

whence
1

∂sψ0(s)
< t (s0, s1) <

1

∂sψ0(s1)
,
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where the inequalities follows from the mean value theorem and the complete

monotonicity of ∂sψ0. Thus, letting s0 = 0 and s1 → 0, we see that the least

time taken for characteristics to intersect is given by

T −1
gel = ∂sψ0(0) =

∫
E

x2ν0(dx) = m2(0) .

Without loss of generality, we may assume that the initial data is normalized

so that m2(0) = 1 = Tgel and thus 0 ≤ t < 1. This normalization assumption

is analogous to the assumption that m1 = 1 for the additive kernel. Equation

(2.23) should be compared with equation (2.3). In fact, given initial data ψ0(s), by

changing the time scale in (2.3) it is easy to check that ψ(t, s) is the solution to

(2.23) if and only if

(2.24) ψ(t, s) = 1

1 − t
ϕ(− log(1 − t), s) ,

where ϕ(t, s) is the unique solution to (2.3) with initial data ψ0. The next lemma

follows immediately from Lemma 2.9.

LEMMA 2.10 Suppose ν0(x) ∈ M+ with
∫

E
x2ν0(dx) = 1. Then equation (2.23)

determines a map [0, 1) � t 
→ νt ∈ M+ such that

(i) m2(t) = ∫
E

x2νt(dx) = (1 − t)−1 and

(ii) x2νt is weakly continuous on [0, 1).

It is natural to term the measure νt the solution to Smoluchowski’s coagulation

equation with kernel K = xy. However, it is harder to formulate a completely

natural well-posedness theory in this case, and we will settle for a reasonable com-

promise.

DEFINITION 2.11 Define the norm

(2.25) sup
x,y>0

| f (x + y) − f (x) − f (y)|
xy

:= ‖ f ‖V

and the associated Banach space V = { f ∈ C0(E) : ‖ f ‖V < ∞}.
It is clear that V is a Banach space. The norm ‖ · ‖V is natural in the following

sense.

LEMMA 2.12 Let ν ∈ M+ such that m2 < ∞, and let L(ν) be defined by (2.5) with

K = xy. Then L(ν) defines a bounded linear functional on V with norm ≤ m2
2/2.

PROOF: Since | f (x + y) − f (x) − f (y)| ≤ xy‖ f ‖V , we have

|〈 f, L(ν)〉| ≤ 1

2

∫
E

∫
E

‖ f ‖V x2 y2ν(dx)ν(dy) = m2
2

2
‖ f ‖V .

�
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It is easy to check that finite sums f (x) = ∑n
k=1 ak(1 − e−sk x) are in V . We

would like to believe that these functions are dense in V , but this seems hard to

prove, since the norm above is unwieldy. Instead we will work with C2 functions

and use the following, whose easy proof we omit.

LEMMA 2.13 Let f be a C1 function such that f (0) = 0 and f ′ is Lipschitz. Then

‖ f ‖V ≤ 2 Lip( f ′).

THEOREM 2.14 Let ν0 ∈ M+ satisfy m2(0) < ∞. Then Smoluchowski’s coagula-

tion equation with kernel K = xy has a unique solution with initial data ν0 on the

time interval [0, m2(0)−1).

PROOF: Without loss of generality we may suppose that m2(0) = 1. The mea-

sures νt of Lemma 2.10 are a candidate solution, and it is easy to check that con-

ditions (i) and (ii) of Definition 2.3 are satisfied. Since m2(t) = (1 − t)−1 by

Lemma 2.12, one sees that L(νt) is a bounded linear operator on V ; in particular,

〈1 − sx − e−sx , L(νt)〉 = −1

2
(φs)

2.

Thus, φ(t, s) solves (2.21). Yet, some care is needed in checking that (2.8) holds in

full generality. Let f ∈ E2. We apply Lemma 2.2 to f ′ (notice, not f ) to obtain an

approximation Pn(x; s) with supx |Pn − f ′| < ε and supx |P ′
n − f ′′| < ε. Observe

that we may rewrite

Pn(x; s) =
n∑

k=1

an,k(1 − e−sx)k =
n∑

k=1

bn,k(1 − e−skx)

by expanding (1 − e−sx)k with the binomial formula and defining bn,k as the corre-

sponding linear combinations of an,k . We integrate Pn to obtain the approximation

Qn(x; s) =
n∑

k=1

bn,k

sk
(e−skx − 1 + skx) .

Notice that Pn(0; s) = 0. Therefore, by the fundamental theorem of calculus, we

also have

|Pn(x; s) − f ′(x)| ≤
∫ x

0

∣∣P ′
n(z; s) − f ′′(z)

∣∣dz < εx ,

and upon integration again,

| f (x) − Qn(x; s)| <
εx2

2
.

But we then have

|〈 f − Qn, ντ 〉| ≤ ε

2

∫
E

x2ντ (dx) = ε

2
m2(τ ) , τ ∈ [0, 1) .
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Since supx | f ′′ − Q′′
n| < ε, we apply Lemma 2.12 and Lemma 2.13 to obtain

|〈 f − Qn, L(ντ )〉| < εm2
2(τ ) , τ ∈ [0, 1) .

This proves that νt is a solution.

It is slightly harder to prove uniqueness in this case. As in Theorem 2.4 and

Theorem 2.8, it suffices to deduce uniqueness of the measure-valued solution via

uniqueness of solutions to (2.21). The obstruction is that it is not clear from the

definition of the weak solution that (2.21) holds, since the test functions 1 − sx −
e−sx do not lie in E2. This can be overcome with an approximation argument that

we only sketch. We consider fn(x) = (1 − sx − e−sx)χn(x) where χn is a C∞

cutoff function such that χn = 1, x ≤ n, χn = 0, and x ≥ n + 1. By the monotone

convergence theorem, limn→∞〈 fn, νt〉 = 〈1 − sx − e−sx , νt〉. By Lemma 2.12 and

Lemma 2.13, 〈 fn, L(νt)〉 is well-defined and uniformly bounded by Csm2(t)
2. We

may then use the dominated convergence theorem to deduce that (2.21) holds in

the limit n → ∞. Uniqueness of νt follows. �

3 Regular Variation

Several formal calculations by physicists working on Smoluchowski’s equa-

tions take the following form: (1) assume that the number density n(x) ∼ xα for

some scaling exponent α, and (2) conclude based on physical arguments that α

takes a particular value. The theory of regular variation helps us makes these for-

mal calculations precise and lays bare the mechanism controlling the approach to

scaling form. Our primary source is Feller’s book, and we restate below useful

results from [16, VIII.8]. The theory of regular variation has many applications in

analysis and probability, and an authoritative text, rich in examples, is [9].

3.1 Rigidity of Scaling Limits

Loosely speaking, a function is slowly varying if it is asymptotically flat under

changes of scale. Precisely, we say that a positive function L(x) is slowly varying

at infinity if

(3.1) lim
x→∞

L(t x)

L(x)
= 1 for all t > 0 .

For example, all powers and iterates of log x are slowly varying at infinity. If we

consider the limit x → 0 instead, we obtain functions that are slowly varying at 0.

A function N (x) is regularly varying at infinity with index ρ ∈ R if there is a

slowly varying function L(x) such that

(3.2) N (x) ∼ xρ L(x) as x → ∞ .

The notation ∼ means limx→∞(N (x)/xρ)L(x) = 1.

The notion of regular variation is intimately related to necessary and sufficient

conditions for the existence of scaling limits. This is reflected in the following
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classical “rigidity” lemma [16, lemma VIII.8.3], which will be one of our principal

tools.

LEMMA 3.1 Suppose that an+1/an → 1 and λn → ∞ as n → ∞. If ϕ is a

positive, monotone function such that

lim
n→∞

anϕ

(
s

λn

)
= g(s) ≤ ∞

exists for s in a dense subset of (0,∞), and g is finite and positive on some interval,

then ϕ varies regularly at 0 and g(s) = csρ for −∞ < ρ < ∞ and some c > 0.

3.2 Tauberian Theorems

We will rigorously deduce the asymptotics of ν by the beautiful Hardy-Little-

wood-Karamata Tauberian theorem [16, XIII.5].

THEOREM 3.2 If L is slowly varying at infinity and 0 ≤ α < ∞, then the following

are equivalent:

ν(x) ∼ xα L(x) as x → ∞ and η(s) ∼ s−α L

(
1

s

)
�(1 + α) as s → 0 .

Moreover, this equivalence remains true when we interchange the roles of the ori-

gin and infinity, namely, when s → ∞ and x → 0.

We will use the following lemma to show that there is no loss of generality in

working with ϕ instead of η.

LEMMA 3.3 Suppose ∂sψ is the Laplace transform of a positive measure. Let

α < 1 and L be a function slowly varying at 0. The following are equivalent:

(i) ψ(s) − ψ(0) ∼ s1−α L(s) as s → 0 and

(ii) ∂sψ(s) ∼ (1 − α)s−α L(s) as s → 0.

PROOF: Suppose (i). Since ψ(s) − ψ(0) = sα L(s)h(s) with lims→0 h(s) = 1,

without loss of generality we may write ψ(s) − ψ(0) = sα L(s). Fix a > 1. Then

by the mean value theorem and the complete monotonicity of ∂sψ we have

s(a − 1)∂sψ(s) ≥ ψ(as) − ψ(s) = s1−α L(s)

(
a1−α L(as)

L(s)
− 1

)
.

Thus, letting s → 0 and using (3.1) we have

lim inf
s→0

sα∂sψ(s)

L(s)
≥ a1−α − 1

a − 1
.

Since a > 1 is arbitrary, we may maximize the right-hand side to obtain

lim inf
s→0

sα∂sψ(s)

L(s)
≥ 1 − α .
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Choosing a < 1 and using a similar argument yields

lim sup
s→0

sα∂sψ(s)

L(s)
≤ 1 − α .

Thus, ∂sψ(s) ∼ (1 − α)s−α L(s).

Conversely, assume (ii). Then we have

ψ(s) − ψ(0) = (1 − α)

∫ s

0

t−α L(t)dt = (1 − α)s1−α L(s)

∫ 1

0

t−α L(st)

L(s)
dt .

Since L is slowly varying at 0, then for any constants A > 1 and δ > 0 there exists

s0 such that for 0 < s ≤ s0 and 0 < t ≤ 1, we have L(st)/L(s) ≤ At−δ (this

is not hard to show, but see theorem 1.5.6 in [9]). Then (i) follows by dominated

convergence. �

4 Scaling Solutions for the Constant Kernel

4.1 Mittag-Leffler Distributions

The scaling solution

(4.1) n(t, x) = t−2 exp

(−x

t

)
, t > 0 ,

is the continuous limit of a special solution found by Smoluchowski [2]. Kreer and

Penrose proved that the rescaled number density t2n(t, xt) converges uniformly to

e−αx on compact sets, under the assumption that the initial number density n0(x)

be C2 and have exponential decay in x [22]. The constant α is determined by the

initial mass.

In this section we show that the solution (4.1) is just one of a one-parameter

family of scaling solutions given by

(4.2) n(t, x) = t
−1− 1

ρ nρ

(
xt

− 1
ρ
)
, t > 0, ρ ∈ (0, 1] ,

where nρ(x) = F ′
ρ(x) is the density, and Fρ the distribution function for the Mittag-

Leffler distribution

(4.3) Fρ(x) =
∞∑

k=1

(−1)k+1xρk

�(1 + ρk)
, ρ ∈ (0, 1] .

Of these solutions, only the solution (4.1) for ρ = 1 has finite mass, and the oth-

ers have fat tails. The Mittag-Leffler distribution was studied by Pillai [31], who

showed that these distributions are infinitely divisible and geometrically infinitely

divisible for ρ ∈ (0, 1].
For our purposes, it is especially relevant that the Mittag-Leffler distribution

has Laplace transform

(4.4)

∫ ∞

0

e−sx nρ(x)dx =
∫ ∞

0

e−sx Fρ(dx) = 1

1 + sρ
.
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In terms of the Mittag-Leffler function

Eρ(x) =
∞∑

k=0

xk

�(1 + ρk)
,

one has Fρ(x) = 1 − Eρ(−xρ). It is interesting and useful to note the following

recent calculation of Tsoukatos [33].

LEMMA 4.1 For 0 < ρ < 1 we have

(4.5) Eρ(−xρ) = 1

π

∫ ∞

0

e−r x rρ−1 sin πρ

(rρ + cos πρ)2 + (sin πρ)2
dr .

Hence Eρ(−xρ) and nρ(x) = −∂x Eρ(−xρ) are completely monotone.

PROOF: We sketch the argument of Tsoukatos [33]. Since (4.4) implies

(4.6)

∫ ∞

0

e−sx Eρ(−xρ)dx = 1

s

(
1 − 1

1 + sρ

)
,

one can invoke the Laplace inversion formula and evaluate it by deforming the

contour to fold along the negative real axis to obtain, for any σ > 0,

Eρ(−xρ) = 1

2π i

∫ σ+i∞

σ−i∞
esx sρ

1 + sρ

ds

s
= 1

π
Im

∫ ∞

0

e−r x rρeiπρ

1 + rρeiπρ

dr

r
,

and the result follows. �

Note that the complete monotonicity of Eρ(−x) (conjectured by Feller and

proven by Pollard in 1948) also implies the complete monotonicity above, since

xρ is positive with completely monotone derivative. A point of confusion in the

literature is that the term “Mittag-Leffler law” is used by some for the distribution

whose Laplace transform is Eρ(−s) [9].

4.2 Scaling Solutions

Let us now check that nρ(t, x) defined by (4.2) is indeed a solution to (1.1)

when K = 2. We take the Laplace transform of (1.1) and its limit at s = 0 to

obtain

(4.7)
∂η

∂t
= η2 − 2η(t, 0)η ,

∂η(t, 0)

∂t
= −η(t, 0)2 .

In analogy with (4.1) we make the ansatz η(t, s) = t−1ηρ(sλ(t)), ηρ(0) = 1, in

equation (4.7). Letting ξ = sλ, we have

(4.8)

(
t
λ̇

λ

)
ξη′

ρ = −ηρ(1 − ηρ) .

Equation (4.8) may be simplified by separating variables. We let ρ denote the

separation constant to obtain

(4.9) ξη′
ρ = −ρηρ(1 − ηρ) ,

λ̇

λ
= 1

ρt
.
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The general solution to (4.9) is

(4.10) ηρ(ξ) = 1

1 + c1ξρ
, λ(t) = (c2t)

1
ρ ,

where c1, c2 > 0 are arbitrary constants. We combine the two solutions to find for

each ρ a family of solutions related by scaling in s and t ,

(4.11) η(t, s) = t−1 1

1 + c1c2sρ t
, t > 0 .

η(t, s) is completely monotone if and only if ρ ∈ (0, 1] [31]; thus it is only for

ρ ∈ (0, 1] that we obtain positive solutions to equation (1.1). By a trivial scaling

we may achieve c1 = c2 = 1, and then n(t, x) is given by (4.2). The scaling

solutions have finite mass only when ρ = 1, and in this case the mass is conserved.

4.3 Asymptotics of Scaling Solutions

We may use equation (4.3) to obtain the convergent expansion

(4.12) nρ(x) =
∞∑

k=1

(−1)k+1xρk−1

�(ρk)
, x > 0 ,

which implies the divergence nρ(x) ∼ xρ−1/�(ρ) as x → 0+ for ρ ∈ (0, 1).

Since nρ(x) is completely monotone for ρ ∈ (0, 1), its asymptotic properties as

x → ∞ may be obtained rigorously by differentiating the formula in Lemma 4.1

and using the Tauberian theorem. We obtain

(4.13) nρ(x) ∼ x−ρ−1�(2 + ρ)
sin πρ

π(1 + ρ)
= x−ρ−1

−�(−ρ)
as x → ∞ ,

using y = 1 + ρ in the identity

(4.14) �(1 + y)�(1 − y)
sin πy

πy
= 1 .

From (4.13), or because −η′
ρ(s) ∼ ρsρ−1 as s → 0, we find

(4.15)

∫ x

0

ynρ(y)dy ∼ ρx1−ρ

�(2 − ρ)
as x → ∞.

The case ρ = 1
2

curiously admits the exact solution (see [1, chap. 29])

nρ(x) = 1√
πx

− ex erfc
√

x .
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5 Weak Convergence for the Constant Kernel

Let νt be the measure-valued solution of Smoluchowski’s equation with kernel

K = 2 obtained in Section 2.2, given initial size distribution ν0 that is a finite mea-

sure. We normalize to define a probability distribution function (the size-biased

distribution)

(5.1) F(t, x) = νt((0, x])
νt((0,∞))

, t > 0 .

We then have the following characterization of permissible limits under rescaling

and their domains of attraction. Below, we call a probability distribution function

F∗(x) nontrivial if F∗(x) < 1 for some x > 0, meaning the distribution is proper

(limx→∞ F(x) = 1) and not concentrated at 0.

THEOREM 5.1

(i) Suppose there is a rescaling function λ(t) → ∞ and a nontrivial probability

distribution function F∗(x) such that

(5.2) lim
t→∞

F(t, λ(t)x) = F∗(x)

at all points of continuity of F∗. Then there exists ρ ∈ (0, 1] and a function L

slowly varying at infinity such that

(5.3)

∫ x

0

yν0(dy) ∼ x1−ρ L(x) as x → ∞ .

(ii) Conversely, suppose there exists ρ ∈ (0, 1] and a function L slowly varying

at infinity such that (5.3) holds. Then it follows that there is a strictly increasing

rescaling λ(t) → ∞ such that

lim
t→∞

F(t, λ(t)x) = Fρ(x) , x ∈ (0,∞) ,

where Fρ is the Mittag-Leffler distribution function defined in (4.3).

PROOF: Our proof is based on the Laplace transform. We first reformulate

(5.2) and (5.3) in terms of ϕ0(s). First, by the well-known characterization of weak

convergence by the Laplace transform [16], (5.2) is equivalent to the assertion that

the Laplace transforms converge pointwise, i.e., that

(5.4) lim
t→∞

η(t, sλ−1)

η(t, 0)
→ η∗(s) :=

∫ ∞

0

e−sx F∗(dx) , s ∈ [0,∞) .

The assumption F∗(x) < 1 for some x > 0 ensures that 0 < η∗(s) < 1 for all

s > 0. Since η(t, s) = ϕ(t,∞) − ϕ(t, s) and ϕ(t,∞) = η(t, 0), by the solution

formula (2.9) we have

(5.5)
η(t, sλ−1)

η(t, 0)
= 1 + ϕ0(sλ

−1)ϕ0(∞)−1

1 + tϕ0(sλ−1)
.
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Because ϕ0(0) = 0, existence of the limit in (5.4) with 0 < η∗(s) < 1 is equivalent

to the existence of

(5.6) g(s) := lim
t→∞

tϕ0(sλ(t)−1)

with 0 < g(s) < ∞ for all s > 0.

The behavior in (5.3) may also be reformulated in terms of the Laplace trans-

form. Applying Theorem 3.2 and Lemma 3.3 to the mass distribution function

appearing on the left-hand side, we find (5.3) equivalent to

(5.7) ϕ0(s) ∼ �(2 − ρ)

ρ
sρ L

(
1

s

)
as s → 0.

Now to prove the first part of the theorem, we take t = 1, 2, . . . , in (5.6) and

apply Lemma 3.1 to conclude that ϕ0(s) is regularly varying at 0 and g(s) = csρ

for some c > 0 and ρ ≥ 0. In fact, ρ > 0 since η∗(s) = (1 + csρ)−1 must

satisfy η∗(0) = 1. Hence (5.7) holds, and it remains to show that ρ ∈ (0, 1]. This

will follow from complete monotonicity of the limit. Since η(t, s) is completely

monotone, it follows that η∗(s) is completely monotone since it is the limit of a

sequence of completely monotone functions. This is possible only if ρ ∈ (0, 1],
since the second derivative of (1 + csρ)−1 is not ultimately positive if ρ > 1 [31].

Conversely, we prove the second part by showing that (5.7) implies (5.4) with

F∗ = Fρ . We define λ(t) for sufficiently large t by

(5.8) tϕ0(λ(t)−1) = 1 .

λ(t) is strictly increasing because ϕ0(s) is strictly increasing. Moreover, we have

limt→∞ λ(t) = ∞ since ϕ(0) = 0. Since ϕ0 is regularly varying with index ρ, we

have

lim
t→∞

tϕ0(sλ
−1) = lim

t→∞
ϕ0(sλ

−1)

ϕ0(λ−1)
= sρ .

But then (5.5) yields (5.4) with η∗(s) = (1 + sρ)−1. �

Remark 5.2. Let ϕ0(s) = sρ L(1/s). Then equation (5.8) shows that

λ(t)L(λ(t))
1
ρ = t

1
ρ .

Comparison with the time scaling λ(t) = t1/ρ for the self-similar solution (4.10)

shows that λ(t) chosen in the proof is essentially the time scaling of the self-similar

solution, possibly modified by a slowly varying correction.

Remark 5.3. When ρ = 1, the condition for being attracted to the exponential

distribution is
∫ x

0
yν0(dy) ∼ L(x) as x → ∞. Thus, all solutions with initially

finite mass are attracted to the finite-mass exponential distribution, but it is not

necessary for this that the initial mass be finite. It suffices that the mass distribution

function diverge sufficiently weakly.
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Remark 5.4. A remaining nontrivial possibility to discuss is that a nonzero limit in

(5.2) may exist where the function F∗ is a defective probability distribution satis-

fying F∗(∞) < 1. If this is the case, then since η∗(0+) = F∗(∞) < 1, it follows

g(s) = csρ with ρ = 0 and that ϕ0(s) ∼ L(1/s) is slowly varying at 0. We cannot

ensure (5.3) in this case. Instead we note that ϕ0(s)/s = ∫ ∞
0

e−sx
∫ ∞

x
ν0(dy) dx ,

and it follows from the Tauberian theorem and the fact that x 
→ ∫ ∞
x

ν0(dy) is

monotone [16, XIII.5.4] that the tail distribution function is slowly varying at ∞
with

(5.9) ν0((x,∞)) =
∫ ∞

x

ν0(dx) ∼ L(x) .

Conversely, if (5.9) holds, then ϕ0(s) is a function slowly varying at 0 that

strictly increases. For any c ∈ (0,∞), we can choose λ(t) strictly increasing such

that tϕ(λ(t)−1) = c. Then it follows that (5.4) holds with η∗(s) = (1 + c)−1

for s > 0, so (5.2) holds with the defective distribution function F∗(x) = (1 +
c)−1. This means that under such scalings, an arbitrary fraction of the particle sizes

concentrate at 0 and the rest escapes to infinity.

6 Scaling Solutions for the Additive Kernel

6.1 A One-Parameter Family of Solutions

Golovin found an exact solution to Smoluchowski’s equations with monodis-

perse initial condition for K = x + y. One may take limits in his solution to obtain

the scaling solution [2]

(6.1) n(t, x) = 1√
2π

x− 3
2 e−t exp

(
−e−2t x

2

)
.

This solution has sometimes been criticized as unphysical, since the number of

clusters is infinite. However, recently Deaconu and Tanré [12] proved a result

equivalent to weak convergence to this solution under restrictive assumptions on

the initial data (the existence of all moments and their domination by the moments

of a Gaussian random variable).

We will consider only solutions of finite mass, normalized to 1. The solution

(6.1) is but one of a one-parameter family of solutions (independent of the trivial

scaling c2n(t, cx)). For each ρ ∈ (0, 1], in this section we derive finite-mass

scaling solutions in the following form with β = ρ/(1 + ρ):

(6.2) n(t, x) = e
− 2t

β nρ

(
e

− t
β x

)
where

(6.3) nρ(x) = 1

π

∞∑
k=1

(−1)k−1xkβ−2

k! �(1 + k − kβ) sin πkβ .
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The associated mass distribution function is given by

(6.4) Mρ(x) =
∫ x

0

ynρ(y)dy =
∞∑

k=1

(−1)k−1xkβ

k! �(1 + k − kβ)
sin πkβ

πkβ
.

Remark 6.1. It is an interesting fact that these scaling solutions are related by a

nonlinear scaling to the Lévy stable laws in probability theory. Feller [16, XVII.7]

gives the formula

(6.5) p(x; α, γ ) = 1

πx

∞∑
k=1

(−x)k

k! �

(
1 + k

α

)
sin

kπ

2α
(γ − α)

for a family of stable densities, 1 < α < 2, |γ | ≤ 2 − α. Taking α = (1 − β)−1,

γ = 2 − α, we find that the mass density from (6.3) satisfies

(6.6) xnρ(x) = xβ−1 p(xβ; 1 + ρ, 1 − ρ) .

These remarkable self-similar solutions were first discovered by Bertoin [7] (then

independently by us). Bertoin’s derivation explains the nonlinear rescaling formula

in terms of a scaling property of Lévy stable processes, and he writes the self-

similar solution in the form

(6.7) n(t, x) = e−t xβ−2 p(e−t xβ; 1 + ρ, 1 − ρ) .

It is quite remarkable that there are two scaling limits associated to this solu-

tion. One of them is more transparent in (6.7): we find that et n(t, x)dx converges

vaguely towards the measure xβ−2 dx . This is the scaling limit alluded to in corol-

lary 1 of Bertoin’s article [7], and it suffices to uniquely identify the self-similar

solution in the class of eternal solutions. On the other hand, (6.2) reflects more

clearly the self-similar nature of the solution relative to the mean cluster size et/β .

Note that the stable densities are defined on the whole line (−∞,∞). We

obtain total mass 1 on (0,∞) through the nonlinear rescaling. Also, if F(x; α, γ )

denotes the distribution function for the stable law with density p(x; α, γ ), then

the tail of the mass distribution corresponds to this through

(6.8) 1 − Mρ(x) = β−1(1 − F(xβ; 1 + ρ, 1 − ρ)) .

The total number of clusters diverges for all the solutions in (6.2). This is caused

by the predominance of small clusters, and it may be desingularized by working

with the variable ϕ introduced in Section 2.1. The scaling solutions above are given

implicitly in terms of ϕρ = ϕρ(s) satisfying

(6.9) s = ϕρ + ϕ1+ρ
ρ .

Since uρ(s) = ∂sϕρ is the Laplace transform of the mass distribution, differentiat-

ing (6.9) we have

(6.10) uρ = 1

1 + (1 + ρ)ϕ
ρ
ρ

,
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which exhibits a connection to the Mittag-Leffler distribution (see (4.4)). We use

this to show below that the mass distribution is infinitely divisible. When ρ = 1,

equation (6.9) is a quadratic equation with two solutions, one of which is ϕ(s) =√
1 + 4s − 1, which corresponds to (6.1). For ρ ∈ (0, 1) we will solve (6.9) by

Lagrange’s inversion formula as an infinite series to obtain (6.3).

6.2 Scaling Solutions

We may derive mass-preserving scaling solutions to (2.3) as follows: Let λ(t)

be a rescaling to be determined, and let ξ = sλ. We substitute the ansatz ϕ(t, s) =
λ−1ϕρ(sλ) = λ−1ϕρ(ξ) in (2.3) to obtain

(6.11) − λ̇

λ
(ϕρ − ξ∂ξϕρ) − ϕρ∂ξϕρ = −ϕρ .

We separate variables by letting λ̇/λ = a or λ = c1eat . Then by (6.11) we have

(6.12) (aξ − ϕρ)∂ξϕρ + (1 − a)ϕρ = 0 .

Equation (6.12) is not separable, but it may be solved implicitly by rewriting it as

the linear equation

(6.13)
dξ

dϕρ

− a

a − 1

ξ

ϕρ

= 1

1 − a
.

Put ρ = (a − 1)−1 so a = (1 + ρ)/ρ = 1/β. Integrating, we find a family of

nontrivial solutions determined by

(6.14) ξ = ϕρ + c2ϕ
1+ρ
ρ , c2 > 0 .

The range of admissible ρ is narrowed by requiring that limξ→0 ϕρ/ξ = 1 (finite

mass), which implies ρ > 0. Without loss of generality we may take c2 = 1, since

we can recover all other solutions by a trivial scaling.

We now show that ρ > 1 is inadmissible. Let U (ξ) = ϕ(ξ)/ξ . Integrating (2.1)

by parts, we see that U (ξ) = ∫ ∞
0

e−ξ x N (x)dx where N (x) = ν((x,∞)) is the tail

distribution. In particular, U (0) = 1 and U is completely monotone. Dividing

(6.14) by ξ and differentiating, we see that

U ′(ξ) = −cξρ−1U 1+ρ

1 + c(ρ + 1)ξρU ρ
→ 0 as ξ → 0 ,

which is impossible if U is completely monotone. Thus, the admissible range of

nontrivial solutions is restricted to ρ ∈ (0, 1].
6.3 Series Expansion and Asymptotics of Scaling Solutions

The asymptotic properties of the scaling solutions for ρ ∈ (0, 1) may be rigor-

ously obtained from Theorem 3.2. By (6.9), ϕ′′
ρ ∼ ρ(ρ + 1)sρ−1 as s → 0. But

ϕ′′
ρ = ∫ ∞

0
e−sx x2nρ(x)dx , and Theorem 3.2 implies that

(6.15)

∫ x

0

y2nρ(y)dy ∼ ρ(ρ + 1)

�(2 − ρ)
x1−ρ as x → ∞.
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Thus the second moment is finite only for ρ = 1. For 0 < ρ < 1 the mass distri-

bution has fat tails. Equation (6.15) is a weak version of the pointwise behavior

(6.16) nρ(x) ∼ ρ + 1

|�(−ρ)| x−(2+ρ) as x → ∞, ρ ∈ (0, 1),

which follows from (6.6) due to the known power law asymptotics of the stable

densities [5].

The behavior as x → 0 is described completely by the series (6.3), derived as

follows. We rewrite (6.9) in terms of U = ϕρ/s and β = ρ/(1 + ρ) as

U (s) = s−β(1 − U )1−β .

We solve for U using Lagrange’s inversion formula (see, e.g., [20, sec. 6.3] for a

similar calculation), obtaining

U (s) =
∞∑

k=1

s−kβ

k!
dk−1

dxk−1
(F(x))k

∣∣∣∣
x=0

with F(x) = (1 − x)1−β.

We evaluate the derivatives and find that

(6.17) ∂sϕρ(s) = ∂s(sU ) =
∞∑

k=1

s−kβ

k! (−1)k−1

k∏
j=1

( j − kβ) .

This is the Laplace transform of the mass distribution function given through term-

by-term Laplace inversion as

(6.18) Mρ(x) =
∞∑

k=1

(−1)k−1

k!
xkβ

�(1 + kβ)

k∏
j=1

( j − kβ) .

We then deduce (6.4) using y = kβ in the gamma function identity (4.14). By

differentiating (6.4) we obtain the number density in (6.3).

It is straightforward to check that when ρ = 1, the even terms vanish and (6.3)

reduces to the function (4π)−1/2x−3/2e−x/4, which is a scaled version of (6.1).

Correspondingly, M1(x) = erf( 1
2

√
x). One may also check that the series solution

above is absolutely convergent for x ∈ (0,∞). Thus, nρ is analytic.

7 Weak Convergence for the Additive Kernel

We let νt be a solution of Smoluchowski’s equation with kernel K = x + y

given initial data ν0 with finite mass normalized to
∫ ∞

0
xν0(dx) = 1. Then at

all times the mass distribution is a probability distribution, with the distribution

function denoted as

M(t, x) =
∫ x

0

yνt(dy) .

It follows from the explicit solution (2.16) that the Laplace transform of the mass

distribution satisfies u(t, 0) = 1 for all t ≥ 0 and limt→∞ u(t, s) = 0 for s > 0.

This phenomenon of concentration is equivalent to the assertion that asymptotically
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all the mass escapes to infinity. As earlier, we may hope that suitable rescaling in

s will give convergence to a nontrivial limit. Precisely, we have the following

characterization.

THEOREM 7.1

(i) Suppose there is a rescaling function λ(t) → ∞ as t → ∞ and a nontrivial

probability distribution function M∗(x) such that

(7.1) lim
t→∞

M(t, λ(t)x) = M∗(x)

at all points of continuity of M∗. Then there exists ρ ∈ (0, 1] and a function L

slowly varying at infinity such that

(7.2)

∫ x

0

y2ν0(dy) ∼ x1−ρ L(x) as x → ∞.

(ii) Conversely, assume that there exists ρ ∈ (0, 1] and a function L slowly

varying at infinity such that (7.2) holds. Then there is a strictly increasing rescaling

λ(t) → ∞ such that

lim
t→∞

M(t, λ(t)x) = Mρ(x) , 0 ≤ x < ∞ ,

where Mρ from (6.4) is the mass distribution function for a scaling solution.

PROOF: We will prove the theorem after reformulating (i) and (ii) as equivalent

assertions using the Laplace transform. First, the weak convergence of the mass

distribution M(t, λx) is equivalent to the pointwise convergence of its Laplace

transform

(7.3) lim
t→∞

u(t, sλ−1) = u∗(s) :=
∫ ∞

0

e−sx M∗(dx) , 0 ≤ s < ∞ .

The assumption M∗(x) < 1 for some x > 0 ensures that 0 < u∗(s) < 1 for

s > 0. Second, (7.2) is equivalent to −∂su ∼ sρ−1L(1/s)�(2 − ρ) as s → 0 by

Theorem 3.2. Since ρ ∈ (0, 1], by Lemma 3.3 this is equivalent to

(7.4) 1 − u0(s) ∼ sρ L

(
1

s

)
�(2 − ρ)

ρ
as s → 0.

We prove the first part of the theorem by showing that (7.3) implies (7.4). Since

u∗(s) is a limit of completely monotone functions, it is itself completely monotone.

Moreover, since u(t, s) = ∂sϕ, we also have the convergence

(7.5) lim
t→∞

λϕ(t, sλ−1) = ϕ∗(s) =
∫ s

0

u∗(s ′)ds ′ .

Clearly, ϕ∗ is strictly increasing.

In what follows, we consider σ(t, s) defined by replacing s with s/λ(t) in

(2.15), i.e., by

(7.6) σ − ϕ0(σ ) = sλ−1 − ϕ(t, sλ−1) .
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It then follows from (7.6) that as t → ∞ with s fixed, we have σ → 0 and

(7.7) lim
t→∞

λ(σ − ϕ0(σ )) = s − ϕ∗(s) .

From (2.14) and (7.5) we then have

(7.8) lim
t→∞

λe−tϕ0(σ ) = lim
t→∞

λϕ(t, sλ−1) = ϕ∗(s) .

Replacing s by sλ−1 in the exact solution (2.16), we also have

lim
t→∞

u0(σ )

et(1 − u0(σ )) + u0(σ )
= u∗(s) .

Since σ → 0 and u0(0) = 1, we deduce that

(7.9) lim
t→∞

et(1 − u0(σ )) = 1 − u∗(s)
u∗(s)

.

We now show that σ → 0 at the rate a(t) := etλ(t)−1 (limt→∞ a(t) = 0 by (7.8)).

We may rewrite (7.6) as

σ = a(t)[ϕ∗(s) + se−t + λe−tϕ0(σ )(1 − e−t) − ϕ∗(s)]
= a(t)[ϕ∗(s) + r(t, s)] ,

where the error term r(t, s) → 0 by (7.8). Therefore, σ is asymptotically a scaling

of ϕ∗(s). We now claim that for all s > 0,

(7.10) lim
t→∞

et
(
1 − u0(a(t)ϕ∗(s))

) = 1 − u∗(s)
u∗(s)

.

Fix s > 0 and let δ > 0 be sufficiently small. Since ϕ∗ is strictly increasing, for

sufficiently large t (depending on s and δ), we have

ϕ∗(s − δ) + r(t, s − δ) < ϕ∗(s) < ϕ∗(s + δ) + r(t, s + δ) ,

whence

1 − u0(σ (t, s − δ)) < 1 − u0(a(t)ϕ∗) < 1 − u0(σ (t, s + δ)) .

Multiply by et and take t → ∞; then δ → 0. The claim (7.10) then follows from

equation (7.9).

It follows directly from (7.10) and Lemma 3.1 that 1 − u0 is regularly varying

at 0 with some exponent ρ ∈ R, and the limit in (7.10) has the form cϕ
ρ
∗ for

some positive constant c. Clearly 0 < ρ ≤ 1 since u0 is bounded and completely

monotone and u∗(0) = 1 by the hypothesis that M∗ is a probability distribution.

This finishes the proof of the first part. Note furthermore that (6.10) holds after

scaling s.

We prove the converse statement by showing that (7.4) implies (7.3) with u∗ =
uρ . By the explicit solution formula (2.16), it suffices to show that as t → ∞, we

have

(7.11) et
(
1 − u0(σ (t, sλ−1))

) = u(t, sλ−1)−1 − 1 → (1 + ρ)ϕρ(s)
ρ
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for all s > 0. We write a(t) = etλ(t)−1 as earlier. We choose λ(t) to satisfy

λ(0) = 0 and

(7.12) et
(
1 − u0(a(t))

) = 1 + ρ , t > 0 .

Then a(t) → 0, λ(t) is strictly increasing, and λ(t) → ∞. It follows from (7.4)

that for fixed ϕ∗ > 0, as t → ∞ we have

(7.13) et
(
1 − u0(a(t)ϕ∗)

) = (1 + ρ)
1 − u0(a(t)ϕ∗)
1 − u0(a(t))

→ (1 + ρ)ϕρ
∗ .

For fixed ϕ∗ > 0 we define s(t, ϕ∗) as the value of s determined from (7.6) using

σ = a(t)ϕ∗. Then it follows that, for all ϕ∗ > 0,

(7.14) lim
t→∞

u(t, s(t, ϕ∗)λ−1)−1 − 1 = (1 + ρ)ϕρ
∗ .

Using (2.14) with (7.6), we have

s(t, ϕ∗) = λ(aϕ∗ − ϕ0(aϕ∗)) + λe−tϕ0(aϕ∗)

= (1 + ρ)
aϕ∗ − ϕ0(aϕ∗)
a(1 − u0(a))

+ 1

a
ϕ0(aϕ∗) .

Since 1 − u0 ∼ sρ L(1/s), the proof of Lemma 3.3 shows that

s − ϕ0(s) ∼ (1 + ρ)−1sρ+1L

(
1

s

)
.

Therefore, as t → ∞, we have

(7.15) s(t, ϕ∗) ∼ (aϕ∗)1+ρ L(1/(aϕ∗))
a1+ρ L(1/a)

+ ϕ∗ → ϕ1+ρ
∗ + ϕ∗ .

Now to prove (7.11), fix s0 > 0. Then there is a unique ϕ∗ = ϕρ(s0) > 0 so that

s0 = ϕ∗(ϕ
ρ
∗ + 1). Since ϕ∗ 
→ s(t, ϕ∗) is strictly increasing in ϕ∗ for all t , by

substituting ϕ∗ ± δ for ϕ∗ in (7.14) we easily deduce (7.11). �

Remark 7.2. When 1 − u0 = sρ , the choice of time scaling λ(t) in (7.12) gives

λ(t) = e(1+1/ρ)t in accordance with (6.12). More generally, when 1 − u0 =
sρ L(1/s), the rescaling λ(t) is modified by a slowly varying correction. The choice

of time scale when ρ = 1 and the second moment is finite deserves special com-

ment. In this case we find λ(t) = e2t . In the applied literature it is common to

define mean cluster size as a ratio of moments. Let mk(t) = ∫ ∞
0

xkνt(dx). It is

clear that any ratio of the form mk+1(t)/mk(t) has the dimensions of length, and

two distinct but natural definitions of mean cluster size are (see [34])

c1(t) = m1(t)

m0(t)
and c2(t) = m2(t)

m1(t)
.

For Golovin’s solution the initial data are monodisperse, and m0(0) = m1(0) =
m2(0) = 1. It is easy to calculate explicitly that c1(t) = et , but c2(t) = e2t .

Thus the two notions of cluster size differ, and only e2t is the correct scaling for

convergence to self-similar form. More generally, e2t is the only choice of time

scaling that fixes both m1 and m2 as required for convergence to self-similar form.
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Remark 7.3. Theorem 7.1 with ρ = 1 shows that the mass distribution is attracted

to the classical self-similar solution for all initial data ν0 with finite first and second

moment. But for this behavior it is not necessary for the initial data to have finite

second moment. It suffices that it diverge sufficiently weakly, with
∫ x

0
y2ν0(dy) ∼

L(x) slowly varying at infinity.

Remark 7.4. A remaining nontrivial possibility is that a nonzero limit in (7.1) may

exist with M∗ defective, satisfying M∗(∞) < 1. If this is true, then most of the

proof of the first part of the theorem carries through. The limit in (7.10) must have

the form cϕ
ρ
∗ with c > 0, but we must have ρ = 0, since u∗(0) < 1. Moreover, it

follows that 1 − u0(s) ∼ L(1/s) is slowly varying. We do not obtain (7.2) in this

case. Instead, we note

(7.16)
1 − u0(s)

s
=

∫ ∞

0

e−sx

∫ ∞

x

yν0(dy)dx .

As for the constant kernel, it follows from the Tauberian theorem and monotonicity

that the tail of the mass distribution is slowly varying at infinity, with

(7.17)

∫ ∞

x

yν0(dy) ∼ L(x) .

In the converse direction, if (7.17) holds, then 1 − u0(s) is a strictly increasing

function that is slowly varying at 0. For any c ∈ (0,∞) we can choose λ(t) strictly

increasing so that et(1 − u0(a(t))) = c. Then it follows as in the proof of the

second part of the theorem that (7.3) holds with u∗(s) = (1 + c)−1 for s > 0, so

(7.1) holds with the defective distribution function M∗(x) = (1+c)−1. This means

that under such scalings, an arbitrary fraction of the mass concentrates at 0 and the

rest escapes to infinity.

We conclude this section with a useful observation about the self-similar solu-

tions.

THEOREM 7.5 For each ρ ∈ (0, 1], the probability distribution Mρ is infinitely

divisible.

PROOF: It suffices to show that the Laplace transform uρ = e−ψρ , where

ψρ(0) = 0 and ψρ has completely monotone derivative [16, XIII.7.1]. By (6.10),

ψρ = log(1 + (1 + ρ)ϕρ
ρ ). Clearly, ψρ(0) = 0. Moreover,

∂sψρ = (1 + ρ)ρϕρ−1
ρ uρ

1 + (1 + ρ)ϕ
ρ
ρ

.

By Theorem 7.1, uρ is completely monotone. The other factor can be written as a

composition with the Mittag-Leffler distribution

ϕρ−1
ρ

1 + ϕ
ρ
ρ

= sρ−1

1 + sρ
◦ ϕρ .
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The function sρ−1 is completely monotone, as is (1 + sρ)−1. Thus, their product is

completely monotone. Thus, the composed function above is completely monotone

since it is the composition of a completely monotone function with a function that

has a completely monotone derivative [16, XIII.4.2]. Finally, ∂sψρ is the product

of two completely monotone functions and is hence completely monotone. �

8 Approach to Self-Similar Gelation for the Multiplicative Kernel

8.1 McLeod’s Solution

McLeod found the following explicit solution to the discrete Smoluchowski

equation (1.1) for K = xy and monodisperse initial data ν0 = δ(x − 1) [2, 26]:

(8.1) νt =
∞∑

k=1

nk(t)δ(x − k) , nk(t) = t k−1kk−2

k!etk
.

A beautiful probabilistic interpretation of this solution in terms of a Poisson-Gal-

ton-Watson branching process may be found in [2]. The solution is valid only

for 0 ≤ t < 1. When t = 1, nk(t) has only algebraic decay, and the second

moment m2(t) = ∞. Moreover, mass can no longer be conserved for t > 1.

At a microscopic level, this is commonly ascribed to the formation of a cluster of

infinite mass (the gel).

The formal scaling limit of (8.1) is obtained by considering the large k limit as

t → 1. By Stirling’s approximation k! ∼
√

2πke−kkk , as t → 1 we find

nk(t) ∼ 1√
2π

k− 5
2 ek(1−t+log t)

∼ 1√
2π

k− 5
2 exp

(
−k

(
(1 − t)2

2
+ (1 − t)3

3
+ . . .

))
.

Let x = k(1 − t)2 and consider the limit k → ∞, t → 1, such that x is held fixed.

Thus, we find

lim
t→1

k→∞
(1 − t)−5nk(t) = 1√

2π
x− 5

2 e− x
2 .

This shows convergence of the discrete solution to the scaling solution [2]

(8.2) n(t, x) = 1√
2π

x− 5
2 e−(1−t)2 x

2 , x ∈ (0,∞), t ∈ (−∞, 1) .

We will see below that this scaling solution emerges coherently from the scaling

solutions to the additive kernel and is just one of a one-parameter family of scaling

solutions.
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8.2 Scaling Solutions and Weak Convergence

The scaling solutions for the multiplicative kernel can be obtained by our knowl-

edge of the scaling solutions to the additive kernel via a general relation between

solutions for the two kernels. Recall from Section 2.5 that the initial data are nor-

malized so the initial second moment m2(0) = 1. Then m2(t) = (1 − t)−1, and the

gelation time Tgel = 1. The second-moment probability distribution function

(8.3) V (t, x) =

∫ x

0

y2νt(dy)

∫ ∞

0

y2νt(dy)

is the analogue of M(t, x) for the additive kernel. From (2.22) we see that the

Laplace transform of V (t, x) is (1 − t)∂sψ(t, s). We differentiate equation (2.24)

with respect to s to obtain

(8.4) (1 − t)∂sψ(t, s) = ∂sϕ(− log(1 − t), s) = u(τ, s)

where τ(t) := log(1 − t)−1. As a consequence,

(8.5) V (t, x) = M̃(τ, x) ,

where M̃(τ, x) is the mass distribution function for the corresponding solution with

additive kernel. For solutions with densities n(t, x) and ñ(τ, x) for the multiplica-

tive and additive kernels, respectively, this means

(8.6) x2n(t, x) = (1 − t)−1xñ(τ, x) .

From this relation we obtain the scaling solutions for the multiplicative kernel

as described in the introduction. Explicitly

(8.7) n(t, x) = (1 − t)
−1+ 3

β nρ

(
x(1 − t)

1
β
)
,

where β = ρ/(1 + ρ) and

(8.8) nρ(x) = 1

π

∞∑
k=1

(−1)k−1xkβ−3

k! �(1 + k − kβ) sin πkβ .

Notice that these scaling solutions do not preserve mass—in fact, all of them have

infinite mass! Instead, they have a finite second moment for t < 1, which blows

up as t → 1. For 0 < ρ < 1 the third moment is infinite. When ρ = 1, the scaling

solution reduces to the exponentially decaying solution in (8.2) after a trivial scal-

ing. Finally, we note that though we have assumed t ∈ [0, 1), these solutions are

well-defined for t ∈ (−∞, 1).

Theorem 7.1 characterizes the convergence of M̃(τ, λx), and it is easy to adapt

to characterize convergence to self-similar form approaching the gelation time.
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THEOREM 8.1

(i) Suppose there is a rescaling function λ(t) → ∞ as t → 1 and a nontrivial

probability distribution function V∗(x) such that

(8.9) lim
t→1

V (t, λ(t)x) = V∗(x)

at all points of continuity of V∗. Then there exists ρ ∈ (0, 1] and a function L

slowly varying at infinity such that

(8.10)

∫ x

0

y3ν0(dy) ∼ x1−ρ L(x) as x → ∞.

(ii) Conversely, assume that there exists ρ ∈ (0, 1] and a function L slowly

varying at infinity such that (8.9) holds. Then there is a strictly increasing rescaling

λ(t) → ∞ such that

lim
t→1

V (t, λ(t)x) = Vρ(x) , 0 ≤ x < ∞ ,

where Vρ is the second moment distribution function for a scaling solution given

by Vρ = Mρ from (6.4).

It is worth pointing out explicitly that the domain of attraction of the scaling

solution in (8.2) includes all initial data with finite second and third moments, as

well as data whose third moment diverges sufficiently weakly (the case ρ = 1

above). Each of the infinite-mass self-similar solutions, however, attracts finite-

mass solutions whose third moment diverges at the appropriate rate detailed in the

theorem.

The behavior of the rescaling function λ(t) and the characterization of possi-

bly defective limits can be easily deduced from the corresponding results for the

additive case that appear in the remarks following Theorem 7.1.
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