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DYNAMICS AND SELF-SIMILARITY

IN MIN-DRIVEN CLUSTERING

GOVIND MENON, BARBARA NIETHAMMER, AND ROBERT L. PEGO

Abstract. We study a mean-field model for a clustering process that may
be described informally as follows. At each step a random integer k is chosen
with probability pk, and the smallest cluster merges with k randomly chosen
clusters. We prove that the model determines a continuous dynamical system
on the space of probability measures supported in (0,∞), and we establish nec-
essary and sufficient conditions for the approach to self-similar form. We also
characterize eternal solutions for this model via a Lévy-Khintchine formula.
The analysis is based on an explicit solution formula discovered by Gallay and
Mielke, extended using a careful choice of time scale.

1. Introduction

1.1. A mean-field model for clustering. The clustering processes we consider
are motivated by a simplified model for domain wall motion in the one-dimensional
Allen-Cahn equation ∂tu = ∂xxu + u − u3. The domain walls become points on
the line, and the domains are the intervals separated by these points. The pattern
coarsens by a simple rule: At each step, the smallest domain combines with its two
neighbors to form a single domain, and this is repeated indefinitely. Computational
simulations of this ‘min-driven’ domain coarsening process indicate that for a con-
siderable variety of initial distributions, the domain size distribution approaches a
self-similar form [4, 12].

A mean-field model of this process was derived by Nagai and Kawasaki [12],
and it turns out to be amenable to a rigorous analysis aimed at explaining this
behavior [4, 8]. We consider an infinite number of domains on the line and study
the statistics of domain sizes using a number density function f(t, x). We assume
that in any interval I of unit length, the expected number of domains with lengths
in the range (x, x + dx) is given by f(t, x) dx. The expected value of the total
number of domains in I is denoted by N(t) =

∫∞
0 f(t, x) dx. We assume that N(t)

is finite and denote the associated probability density by

(1.1) ρt(x) =
f(t, x)

N(t)
.
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We let l(t) denote the size of the smallest domain at time t, so f(t, x) = 0 for
x < l(t). The expected number of coalescence events per unit time is then

(1.2) f(t, l)l̇.

The coalescence events affecting domains of size x in the time interval (t, t+dt) are
(a) loss: consecutive domains of size x, l, y (or y, l, x) combine to form a domain of
size x+ l+ y; (b) gain: domains of size y, l, x− y − l combine to form a domain of
size x. Under the mean-field assumption that coalescing domains have sizes chosen
randomly and independently from the current overall size distribution, these events
have respective relative probability densities

ρt(x)ρt(y), ρt(y)ρt(x), ρt(y)ρt(x− y − l).

The rate equation for the evolution of f is obtained by summing over all loss and
gain terms:
(1.3)

∂tf(t, x) = f(t, l)l̇

(∫ x−l

l
ρt(y)ρt(x− y − l) dy − 2ρt(x)

∫ ∞

l
ρt(y) dy

)
, x > l.

Clustering phenomena are seen in fields as varied as population genetics and
physical chemistry. Thus, while the coarsening of intervals provides concrete mo-
tivation, the notion of a ‘cluster’ can have widely different interpretations in ap-
plications. The model (1.3) above is one of a family of what we call min-driven
clustering models that can be analyzed together in one setting as in [8]. At each
step a random integer k ≥ 1 is chosen with probability pk, and the smallest cluster
merges with k randomly chosen clusters. The mean-field assumption is that all
these random variables are independent. The only assumptions we impose on the
probabilities are that

(1.4) pk ≥ 0,
∞∑

k=1

pk = 1,
∞∑

k=1

kpk < ∞.

The evolution of the number density under this process is described by the following
rate equation for cluster size density:

(1.5) ∂tf(t, x) = f(t, l)l̇
∞∑

k=1

pk
(
ρ!kt (x− l)− kρt(x)

)
, x > l(t).

Here the notation ρ!kt denotes k-fold self-convolution. Equation (1.5) is obtained
by summing over all loss and gain events as in (1.3): the k-th term in the sum
is the probability of the growth and loss of a cluster of size x in a merger of the
smallest cluster with k independently chosen clusters. The sum over k with weight
pk corresponds to the probability of choosing the independent random integer k.
One obtains (1.3) if p2 = 1. The case p1 = 1 corresponds to a “paste-all” model
discussed by Derrida et al. [6]. Also see [9] for a model of social conflict with rather
similar solution formulas.

An important feature of the model (1.5) is its invariance under reparametrization
in time. If we change variables via t = T (t̃), f̃(x, t̃) = f(x, t), l̃(t̃) = l(t), then
equation (1.5) retains its form since

∂t̃f̃(x, t̃) = Ṫ∂tf, ∂t̃ l̃ = Ṫ∂tl.
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A careful choice of the time scale is key to the analysis. In the first mathematical
study of (1.3) [4], the authors imposed the relation f(t, l)l̇ = 1, meaning the number
of coalescence events per unit time is constant [4]. In a more recent paper, Gallay
and Mielke parametrized time by the minimum size, that is, l(t) = t [8]. This
leads to an elegant solution procedure that was used to prove some basic results on
well-posedness and the approach to self-similarity. Gallay and Mielke showed that
(1.5) defines a strongly continuous flow in L1, that (1.5) admits a one-parameter
family of self-similar solutions and that suitable initial densities yield convergence
to self-similar form. Precise comparisons between these results and ours are made
later in this paper.

In this article, we introduce yet another time scale. We parametrize time in-
versely to the total number of domains, so that

(1.6) t = N(t)−1.

We shall argue that this is a natural choice for a number of reasons. It retains
the simplicity of the choice l(t) = t and allows us to obtain: (a) existence and
uniqueness for measure-valued solutions; (b) necessary and sufficient conditions for
convergence to a self-similar form; (c) a characterization of eternal solutions for the
dynamical system defined by (1.3). We comment on these in greater depth below.

Let us first explain one simple motivation for (1.6). We show below that for
(1.3), f(t, l)l̇ = −Ṅ/2. Thus, f(t, l)l̇ = N2/2 when (1.6) holds, and (1.3) now takes
the form

(1.7) ∂tf(t, x) =
1

2

∫ x−l

l
f(t, y)f(t, x− y − l) dy − f(t, x)

∫ ∞

l
f(t, y) dy, x > l.

If we take l(t) ≡ 0 (as a model when the smallest domains have negligible size,
for example), this reduces to a basic solvable model of clustering: Smoluchowski’s
coagulation equation with constant kernel. In recent work, we provided a compre-
hensive analysis of dynamic scaling in this equation by exploiting an analogy with
the classical limit theorems of probability theory [10, 11]. We use these insights to
guide our study of (1.5).

1.2. Measure-valued solutions. Mean-field models of domain coarsening, such
as the LSW model, Smoluchowski’s coagulation equation, and (1.5), correspond
to physical processes where mass is transported from small to large scales. For
several reasons, it is natural to consider measure-valued solutions, for which the size
distribution need not have a continuous or integrable density. Such solutions are
physically meaningful, as many clustering processes (e.g., polymerization) involve
a discrete set of sizes based on an elementary unit. A formulation via measures
is also mathematically elegant, as it allows us to unify the treatment of discrete
and continuous coagulation models, exploit simple criteria for compactness and
continuity, and prove basic uniform estimates.

To any solution of (1.5) we associate a probability measure Ft with distribution
function written as

(1.8) Ft(x) =
1

N(t)

∫ x

0
f(t, y) dy =

∫ x

0
ρt(y) dy.

Here we adopt the convention (common in probability theory) of often using the
same letter to denote a measure and its distribution function. For any probability
distribution F on [0,∞), we call l = inf{x|F (x) > 0} the min of F . (This is
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short for “minimum size,” regarding F as a probability distribution for size.) We
will prove that the initial-value problem for an appropriate weak form of (1.5) is
well-posed for initial probability measures Ft0 with positive min. That is, (1.5)
with (1.6) determines a continuous dynamical system on the space of probability
measures with positive min, equipped with the weak topology. See Theorem 4.4
below. By comparison, Gallay and Mielke established that the initial-value for
(1.5) defines a continuous dynamical system on the space of probability densities
in L1(1,∞) equipped with the strong topology [8, theorem. 3.3]. The solutions we
construct arise by a natural completion of these L1 dynamics.

1.3. Dynamic scaling. A common theme in recent studies of dynamic scaling in
mean-field models of coarsening is that the approach to self-similarity is both de-
generate and delicate. The problem is degenerate because there is a one-parameter
family of self-similar solutions. For the model studied here with pk = 0 for all k
large enough, Gallay and Mielke found a family of self-similar solutions that may
be rewritten in the time scale (1.6) in the form

(1.9) Ft(x) = F (θ)

(
x

l(θ)(t)

)
, l(θ)(t) = t1/θ, θ ∈ (0, 1], t > 0.

Here F (θ) is a probability distribution with density ρ(θ) supported on [1,∞). The
density ρ(θ) is known explicitly only through its Laplace transform. Only ρ(1) has
finite mass (first moment); ρ(1)(x) decays exponentially as x → ∞. The distribu-
tions F (θ) for 0 < θ < 1 have heavy tails, with ρ(θ)(x) ∼ cθx−(1+θ) as x → ∞ (see
Theorem 5.1).

The problem is delicate because the domains of attraction of the self-similar
solutions are determined by the tails of the initial size distribution, in the precise
manner explained below. (See [10, 13] for analogous results on the LSW model of
Ostwald ripening and Smoluchowski’s coagulation equations with solvable kernels.)
Gallay and Mielke showed that all densities with finite mass are attracted to the
self-similar solution with θ = 1. Moreover, for 0 < θ ≤ 1, they showed that if
the initial data ρt0 is sufficiently close to ρ(θ) in a suitable weighted norm, then
the rescaled probability density tρt(tx) approaches ρ(θ) with a rate of convergence
determined by the weighted norm (see [8, theorems 5.5, 5.7]). These results provide
sufficient conditions for the approach to self-similarity.

Our aim is to establish conditions that are both necessary and sufficient to answer
a more general question about arbitrary scaling limits. We characterize the set of
all nondegenerate limits under a general rescaling of the form Ft(λ(t)x), where
λ(t) is a measurable, positive function such that limt→∞ λ(t) = ∞. A limit is
non-degenerate if it is suitable data for the initial-value problem. That is, non-
degenerate limits are probability distributions with a positive min.

Theorem 1.1. Let t0 > 0, let Ft0 be an arbitrary probability measure on (0,∞)
with positive min, and let Ft (t ≥ t0) be the associated measure-valued solution of
(1.5) (see Theorem 4.4).

(i) Suppose there is a measurable, positive function λ(t) → ∞ as t → ∞ and
a probability measure F∗ with positive min, such that

(1.10) lim
t→∞

Ft(λ(t)x) = F∗(x)
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at all points of continuity of F∗. Then there exists θ ∈ (0, 1] and a function
L slowly varying at infinity such that the initial data Ft0 satisfies

(1.11)

∫ x

0
yFt0(dy) ∼ x1−θL(x), as x → ∞.

Moreover, the min l(t) of Ft and the rescaling λ(t) satisfy

(1.12) λ(t)l∗ ∼ l(t) ∼ t1/θL̃(t), as t → ∞,

where l∗ > 0 is the min of F∗ and L̃ is slowly varying at infinity, related to
L by (6.9).

(ii) Conversely, assume that there exists θ ∈ (0, 1] and a function L slowly
varying at infinity such that the initial data satisfies (1.11). Then l(t)
satisfies (1.12), and

(1.13) lim
t→∞

Ft(l(t)x) = F (θ)(x), x ∈ (0,∞).

A positive function L is slowly varying at infinity if it is asymptotically flat under
rescaling in the sense that limx→∞ L(xy)/L(x) = 1 for every y > 0. For example,
all powers and iterates of the logarithm are slowly varying at infinity. These are
the class of admissible corrections to the power law x1−θ.

Part (i) of the theorem is an assertion of rigidity of scaling limits. We assume
only that λ(t) is measurable, positive and limt→∞ λ(t) = ∞. It then follows that the
limits must define self-similar solutions, and λ(t) must be the time scale associated
to the self-similar solution, up to a slowly-varying correction. Part (ii) of the
theorem and the sufficient conditions of Gallay and Mielke show that the domains
of attraction are determined by the tails of the initial data. As a consequence of
part (i) of the theorem, the condition (1.11) is optimal.

Gallay and Mielke [8] used a rather delicate Fourier analysis to establish the
existence for self-similar solutions by studying their densities. We will use the
proof of part (ii) of the theorem above to simplify much of this analysis and extend
it to the case when pk )= 0 for infinitely many k. In this we are motivated by
a certain resemblance of the min-driven model to hydrodynamic limits of what
are called Λ-coalescents in probability theory [2], which are clustering processes
involving arbitrarily many multiple collisions. We find a curious fact; namely, when∑

pkk log k = ∞ there is no self-similar solution with finite mass (first moment).
Still, the theorem above correctly describes the domains of attraction. Solutions
with finite mass approach the self-similar solution with θ = 1, but this self-similar
solution has infinite mass.

1.4. Eternal solutions. Theorem 1.1 is a particular example of the principle that
the asymptotic behavior under rescaling is determined by the tail of the initial
distribution. The dynamics exhibit sensitive dependence on initial conditions, as
arbitrarily small changes in the tail of the initial data can lead to widely divergent
asymptotic behavior. This indicates a kind of chaos, and it is of interest to find a
precise formulation. A comprehensive analysis of such phenomena for the solvable
cases of Smoluchowski’s coagulation equation appears in [11]. This analysis is
guided by an analogy with the probabilistic notion of infinite divisibility . Let us
first describe these results informally.

Clustering is an irreversible process, and in general we do not expect to be able
to solve (1.3) backwards in time (for t < t0). However, the self-similar solutions
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have the remarkable feature that they are defined for all t > 0. That is, they are
divisible under the coalescence process. We call a solution eternal if it is defined
on the maximal interval (0,∞) consistent with (1.6). In probability theory, the
infinitely divisible distributions are characterized by the celebrated Lévy-Khintchine
formula. In [11] we extended a result of Bertoin [1] showing that the class of eternal
solutions to Smoluchowski’s coagulation equations is also characterized by a Lévy-
Khintchine formula. Heuristically, this formula describes the emergence of eternal
solutions from infinitesimally small clusters at t = 0. We also showed that the set
of all subsequential limits—the scaling attractor—is in a one-to-one correspondence
with the eternal solutions. A rigorous description of chaos is based on the fact that
nonlinear dynamics on the scaling attractor is reduced to linear scaling dynamics
using the Lévy-Khintchine formula.

In this article, we take the first step towards establishing a similar picture for
min-driven clustering. Namely, we prove a Lévy-Khintchine formula characterizing
all eternal solutions for min-driven clustering (Theorem 7.4). The choice of time
scale (1.6) is very convenient for this analysis.

1.5. Outline. The rest of the article is organized as follows. We describe the
solution procedure of Gallay and Mielke in the next section and discuss how the
number-driven time scale is motivated by the important example of initial data
that are monodisperse (a Dirac delta). The treatment here is formal. We establish
some analytic prerequisites in Section 3. This is followed by rigorous results: the
proof of well-posedness for measure-valued solutions (see Theorem 4.4) in Section 4,
the study of self-similar profiles in Section 5, the characterization of domains of
attraction in Section 6, and the characterization of eternal solutions in Section 7.

2. The solution formula for min-driven clustering

2.1. The generating function and moment identities. As in the theory of
branching processes, it is convenient to keep track of the clustering process with a
generating function

(2.1) Q(z) =
∞∑

k=1

pkz
k.

For example, binary clustering as in the Allen-Cahn model corresponds to Q(z) =
z2. The generating function Q is analytic in the unit disk {|z| < 1}, and absolutely
monotone (that is, Q and all its derivatives are positive on [0, 1)). We assume that
the expected number of clusters in the mergers, denoted Q1, is finite. That is,

(2.2) Q1 = Q′(1) =
∞∑

k=1

kpk < ∞.

We now consider the evolution equation (1.5) with an arbitrary time scale. We
define a convolution operator Q(ρ) =

∑∞
k=1 pkρ

!k
t associated to Q, and rewrite (1.5)

in the form

(2.3) ∂tf(t, x) = f(t, l)l̇ (Q(ρt)(x− l)−Q1ρt(x)) , x > l(t).

We extend the evolution equation (2.3) from densities to measures as follows.
We consider a number measure νt and a probability measure Ft that are related to
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the densities (when they exist) by

(2.4) νt(dx) = f(t, x) dx, Ft(dx) =
νt(dx)

N(t)
= ρt(x) dx.

Let R+ denote the interval [0,∞). If a : R+ → C is continuous with compact
support, then formally

d

dt

∫

R+

a(x)f(t, x) dx =

∫ ∞

l
a(x)∂tf(t, x)dx− a(l)f(t, l)l̇.

We substitute for ∂tf(t, x) using (2.3), (2.4) to obtain the moment identity

d

dt

∫

R+

a(x)νt(dx)(2.5)

= f(t, l)l̇
∑

k≥1

pk

∫

Rk
+

[
a

(
l +

k∑

i=1

yi

)
− a(l)−

k∑

i=1

a(yi)

]
k∏

i=1

Ft(dyi) .

Some basic properties of the model are obtained by choosing suitable test functions
a in (2.5). We set a(x) = x to see that mass is conserved:

(2.6)
d

dt

∫ ∞

0
x νt(dx) = 0.

When a = 1, we obtain the rate of change of the total number of clusters,

(2.7) Ṅ = −Q1f(t, l)l̇ = −NQ1ρt(l)l̇.

We substitute (2.7) in (2.3) to see that ρt satisfies

(2.8) ∂tρt = ρt(l)l̇Q(ρt)(x− l), x > l.

Similarly, we use (2.2), (2.5) and (2.7) to obtain the moment identity

(2.9)
d

dt

∫

R+

a(x)Ft(dx) = ρt(l)l̇
∞∑

k=1

pk

∫

Rk
+

[
a

(
l +

k∑

i=1

yi

)
− a(l)

]
k∏

i=1

Ft(dyi) .

The time scale so far has been arbitrary. Later, we use the above identity and a
suitable choice of time scale to develop a weak form of (1.5).

2.2. Gallay and Mielke’s solution formula. A remarkable feature of these min-
driven clustering models is that the evolution equation admits an elegant solution
via the Fourier (or Laplace) transform. Our analysis relies heavily on this solution
procedure, due to Gallay and Mielke [8]. The main difference with [8] is that we
prefer to use the Laplace transform, denoted by

(2.10) ρ̄t(q) =

∫

R+

e−qxρt(x) dx, q > 0.

We set a(x) = e−qx in (2.9) to obtain the ordinary differential equation

(2.11) ∂tρ̄t(q) = −(ρt(l)l̇) e
−ql (1−Q(ρ̄t(q))) .

In order to integrate this equation, we define an analytic function ϕ via

(2.12) ϕ′(z) =
Q1

1−Q(z)
, ϕ(0) = 0.
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(This definition of ϕ differs by the factor Q1 from that used in [8].) ϕ is strictly
increasing on [0, 1). In the case of binary clustering, Q(z) = z2, and the functions
ϕ and ϕ−1 are

(2.13) ϕ(z) = log

(
1 + z

1− z

)
, ϕ−1(w) = tanh

w

2
.

We substitute (2.12) in (2.11) to obtain

(2.14) ∂tϕ(ρ̄t(q)) = −(Q1ρt(l)l̇) e
−ql, q > 0.

The choice of time scale has played no role in the analysis thus far. Gallay and
Mielke parametrize time by the minimum cluster size, setting l̇ = 1. For clarity of
notation, we denote this choice of time scale by τ , reverting to the letter t when we
introduce the number-driven time scale in (1.6).

With l(τ ) = τ , the value of ρτ on the free boundary x = τ plays an important
role in the solution. We use this density to define a measure on (0,∞) that we call
the trace measure A, with distribution function written as

(2.15) A(τ ) =

{
α0 +

∫ τ
τ0
Q1ρs(s) ds, τ ≥ τ0,

α0, τ < τ0.

Here τ0 denotes the initial time, and α0 is any convenient constant. Equation (2.14)
may now be rewritten as

(2.16) ∂τϕ(ρ̄τ (q)) = −e−qτ dA

dτ
.

Fix τ1 > τ0. We integrate (2.16) from τ0 to τ1 to obtain

(2.17) ϕ(ρ̄τ1(q))− ϕ(ρ̄τ0(q)) = −
∫ τ1

τ0

e−qsA(ds).

Since ρτ is supported in [τ,∞), we have the estimate

ρ̄τ (q) ≤ e−qτ

∫ ∞

τ
ρτ (x) dx = e−qτ .

We now let τ1 → ∞ in (2.17) to find the Laplace transform of A given by

(2.18) Ā(q) =

∫

R+

e−qsA(ds) = ϕ(ρ̄τ0(q)).

Thus, the trace measure A is the inverse Laplace transform of ϕ(ρ̄τ0) and is deter-
mined completely by the initial data.

We may now repeat this argument to determine the solution at any time τ > τ0.
We replace τ0 by τ in (2.17), let τ1 → ∞, and obtain

(2.19) ρ̄τ (q) = ϕ−1
(
Āτ (q)

)
,

where

(2.20) Āτ (q) =

∫ ∞

τ
e−qsA(ds).

We note that Āτ is the Laplace transform of the truncated trace measure Aτ sat-
isfying

(2.21) Aτ (ds) = H(s− τ )A(ds),
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where H is the Heaviside function. With the notation a ∨ b = max(a, b), formally
we may write

(2.22) Aτ (s) = A(s) ∨A(τ )

for the distribution function, making it constant for s < τ . Therefore, the nonlinear
evolution of ρτ is determined by the linear evolution of Aτ . This global linearization
underlies the analysis in [8].

2.3. The number-driven time scale and an extended solution formula. It
is natural to try to use the formula (2.19) as a basis for finding measure-valued
solutions when the initial data ρτ0 is replaced by an arbitrary probability distribu-
tion. However, we face two difficulties. The first is that it is not clear that (2.19)
necessarily defines a measure ρτ . That is, it is not clear that the right-hand side
of (2.19) is necessarily the Laplace transform of a measure. The second difficulty is
that whenever the trace measure A has atoms, any solution defined through (2.19)
is discontinuous in time, as is clear from (2.20). We overcome the first difficulty by
an approximation argument. This relies on the simple and fundamental fact that a
limit of completely monotone functions is completely monotone. We overcome the
second difficulty by switching to the number-driven time scale (1.6).

Henceforth, the letter t always denotes the number-driven time scale. The
measure-valued solution is denoted by Ft, its Laplace transform by

F̄t(q) =

∫ ∞

0
e−qr Ft(dr),

and the minimum cluster size by l(t). We use (1.6) and (2.7) to obtain

(2.23) ρt(l)l̇ =
1

Q1t
.

The length, number measure and its Laplace transform in the time scale t are
related to solutions in the time scale τ by

(2.24) l(t) = τ, Ft(dx) = ρτ (x) dx, F̄t(q) = ρ̄τ (q).

We now rewrite the solution formula (2.19) in terms of measures. The relation
l(t) = τ , equation (2.7) and the definition of A in (2.15) imply

(2.25)
dt

t
= Q1ρτ (τ )dτ = A(dτ ).

The differential equation (2.11) now takes the form

(2.26) ∂tF̄t(q) = −e−ql(t)

Q1t
(1−Q(F̄t(q)).

If t0 denotes the initial time, we may integrate equation (2.25) to obtain

(2.27) log

(
t

t0

)
= A(l(t))− α0.

The change of variables (2.24) and (2.25) affects the Laplace transform of Aτ as
follows:

(2.28)

∫ ∞

τ
e−qrA(dr) =

∫ ∞

t
e−ql(s) ds

s
.
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These calculations yield the following revised solution procedure: Given an ar-
bitrary initial probability measure Ft0 , the trace measure A is found as in (2.18)
by inverting its Laplace transform, given by

(2.29) Ā(q) = ϕ(F̄t0(q)).

Next, we determine l(t) through inverting (2.27). Once l(t) is known, the solution
Ft is determined by inverting the Laplace transform given as in (2.19) and (2.20)
by

(2.30) F̄t(q) = ϕ−1

(∫ ∞

t
e−ql(s) ds

s

)
, t ≥ t0.

The main observation is that working with l(t) instead of Aτ yields an evolution
continuous in time. Since l(t) is an increasing function, it has at worst jump
discontinuities. But (2.30) shows that discontinuities in l do not affect the continuity
in t of F̄t(q), and thus the continuity of Ft in the weak topology.

2.4. An example: monodisperse initial data. Let us illustrate the meaning of
the extended solution formula in the new time scale with an important example.
Set t0 = τ0 = 1, Q(z) = z2 and F1(x) = 1x≥1. That is, initially all clusters have
size 1. Then F̄1(q) = e−q, and

Ā(q) = ϕ(F̄1(q)) = log(1 + e−q)− log(1− e−q).

We differentiate with respect to q and simplify to obtain

−∂qĀ(q) =
2e−q

1− e−2q
= 2

(
e−q + e−3q + e−5q + · · ·

)
.

Since e−kq is the Laplace transform of δk(dx), the trace is

(2.31) A(x) =
∑

k≤x, k odd

2

k
.

A has jump discontinuities at the odd integers. We shall work with the right
continuous inverse, so that the minimum cluster size is

(2.32) l(t) = k, t ∈ [tk−2, tk), tk = e2(1+
1
3+... 1k ), k odd,

with t−1 = t0 = 1. The solution formula (2.30) now yields

ϕ(F̄t(q)) =

(
log

tk
t

)
e−kq

2
+

e−q(k+2)

k + 2
+

e−q(k+4)

k + 4
+ · · · , t ∈ [tk−2, tk).

The solution has the following interpretation. For t ∈ [tk−2, tk), Ft is supported
on the odd integers greater than or equal to k. The fraction of clusters of size k
decays continuously to zero over the time interval [tk−2, tk). Thus, the number-
driven time scale regularizes jumps in the trace measure by providing a finite time
for these jumps to vanish. A moment’s reflection suggests that this is what we
should expect if we approximate the monodisperse data by a smooth density.

3. Analytic preliminaries

This section is a summary of the main analytic methods we use. We present some
facts about distribution functions, Laplace transforms and Tauberian theorems in
a form suitable for use in later sections.
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3.1. Distribution functions. We will consider measures on an interval J ⊂ R.
We study a measure through its distribution function, often using the same nota-
tion for both. It is therefore convenient to introduce the following conventions for
brevity. A distribution function f : J → R is a right-continuous, increasing func-
tion. (“Increasing” means that x1 ≤ x2 implies f(x1) ≤ f(x2).) A distribution
function f is identified with a measure via

(3.1) f ((x1, x2]) = f(x2)− f(x1).

We do not assume that the function f is positive, since the trace measure for
self-similar solutions is of the form A(τ ) = θ log τ , τ > 0. Following probabilistic
convention, we say a sequence fn of measures on J converges weakly to f (written
fn → f) if and only if fn([a, b]) → f([a, b]) as n → ∞ whenever a, b ∈ J are not
atoms of f , meaning f({a}) = f({b}) = 0. We have fn → f if and only if at every
point of continuity of f(x),

fn(x) + cn → f(x) as n → ∞,

for some constants cn independent of x.
Given a distribution function f : J → R, its epigraph is the set

Γ(f) = {(x, y) ∈ R2 | f(x−) ≤ y ≤ f(x), x ∈ J}.

There is a unique distribution function f†, with epigraph obtained by reflection
through x = y: Γ(f†) = {(x, y) | (y, x) ∈ Γ(f)}. We call f† the inverse of f . We
can write

(3.2) f†(τ ) = inf {t ∈ J |f(t) > τ } , τ < sup{f(t) | t ∈ J}.

The following convergence result is not difficult to prove.

Lemma 3.1. Suppose fn : J → R is a sequence of distribution functions that con-
verges to f at all points of continuity. Then for every point of continuity x of f†,
f†
n(x) is defined for sufficiently large n, and limn→∞ f†

n(x) = f†(x).

Lemma 3.2. Suppose f : J → R is a distribution function. There exist mono-
tonically increasing and monotonically decreasing sequences of piecewise constant
distribution functions that converge to f at all points of continuity.

Proof. We assume that J = [0,∞) for clarity, and we only construct an increasing
sequence of approximations. The argument is easily generalized. We construct a
sequence of increasing functions defined via the values of f on a dyadic decomposi-
tion of J . Precisely, for every positive integer n, let kn(x) denote the integer such
that kn ≤ x2n < kn + 1, and set gn(x) = f(kn2−n). The value of gn(x) is defined
by the left-endpoint of the dyadic endpoint of length 2−n that contains x. Since f
is increasing, we have

g1(x) ≤ g2(x) ≤ . . . ≤ gn(x) ≤ f(x).

Let us establish convergence of gn. Clearly, limn→∞ kn2−n = x. If x is a point
of continuity of f , then gn(x) = f(kn2−n), and gn(x) → f(x). !
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3.2. Min history and trace. Our analysis will focus on two related distribution
functions: the minimum cluster-size history l and the trace A.

Fix t0 > 0. A min history is a positive distribution function l on [t0,∞). In this
article we also require a min history to be unbounded: l(t) → ∞ as t → ∞. Given
any min history l, we associate a trace A on (0,∞) via

(3.3) A(τ ) = log l†(τ ), τ > 0.

Note A(τ ) = log t0 for 0 < τ < l(t0) due to (3.2).
Conversely, we say A is a trace if it is a distribution function on (0,∞) such that

(i) A(τ ) = log t0 on some nonempty, maximal interval (0, τ0), and (ii) A(τ ) → ∞
as τ → ∞. Given any trace A, we can associate a min history l by

(3.4) l(t) = expA†(t), t ≥ t0.

Proposition 3.3 (Change of variables). (a) Assume l is a min history and there
exists c ≥ 0 such that

(3.5)

∫ ∞

t0

e−ql(t) dt

t
< ∞, q ∈ (c,∞).

Then the trace A given by (3.3) satisfies

(3.6) Ā(q) =

∫ ∞

0
e−qτA(dτ ) =

∫ ∞

t0

e−ql(t) dt

t
, q ∈ (c,∞).

(b) Assume A is a trace such that Ā(q) < ∞ for q ∈ (c,∞), and let l(t) be defined
by (3.4). Then (3.6) holds.

Proof. 1. We first verify the equality for piecewise constant functions. Suppose
0 < t0 < t1 < t2 < . . . and 0 < l0 < l1 < . . . are strictly increasing sequences.
Consider the piecewise constant, increasing function

(3.7) l(t) =
∞∑

k=0

lk1[tk,tk+1)(t), t ≥ t0.

An associated trace is given by

(3.8) A(τ ) =
∞∑

k=−1

log tk+11[lk,lk+1)(τ ), τ ≥ 0.

Here l−1 = 0. Conversely, if A is defined by (3.8), then l is given by (3.7). We fix
q ∈ (c,∞), assume (3.5), and use (3.7) and (3.8) to compute the integrals in (3.6).
Both equal

e−ql0 log

(
t1
t0

)
+ e−ql1 log

(
t2
t1

)
+ e−ql2 log

(
t3
t2

)
+ · · · .

2. Suppose l is given, and (3.5) holds. Fix q > 0. We approximate l by a
decreasing sequence of piecewise constant functions ln ↓ l. Then e−qln ↑ e−ql since
q > c ≥ 0, and moreover we have An ↑ A by Lemma 3.1. By the monotone
convergence theorem,

∫ ∞

t0

e−ql(t) dt

t
= lim

n→∞

∫ ∞

t0

e−qln(t) dt

t

= lim
n→∞

∫ ∞

0
e−qτAn(dτ ) =

∫ ∞

0
e−qτA(dτ ).
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3. To prove (b), assume A is such that Ā(q) < ∞ for q ∈ (c,∞). Consider a
sequence of piecewise constant increasing functions An ↑ A. Then ln ↓ l and we
may apply the monotone convergence theorem again. !

Proposition 3.3 and Lemma 3.1 allow us to reformulate the classical equiva-
lence between weak convergence of measures and pointwise convergence of Laplace
transforms. The following theorem is a slight modification of [7, XIII.1.2a].

Theorem 3.4. Suppose ln is a sequence of min histories on [t0,∞) with associated
traces An that satisfy

(3.9) sup
n

Ān(q) < ∞, q ∈ (c,∞),

for some c ≥ 0. Then there is a min history l such that ln(t) → l(t) as n → ∞
at all points of continuity if and only if there is a trace A associated to l such that
Ān(q) → Ā(q) as n → ∞, for all q ∈ (c,∞).

Proof. Suppose ln → l. Lemma 3.1 and definition (3.3) then imply the distribution
functions An → A. By the classical criterion for weak convergence of measures [7,
XIII.1.2a], under the hypothesis (3.9) it follows Ān(q) → Ā(q) for all q > c.

Conversely, suppose Ān(q) → Ā(q) for all q > c, where A is a trace (in particular
A(τ ) → ∞ as τ → ∞). By the classical criterion, the distribution functions An →
A, and Lemma 3.1 yields ln → l, where l is given by (3.4). !

3.3. Regular variation. A measurable function L : (0,∞) → (0,∞) is slowly
varying at infinity if

(3.10) lim
λ→∞

L(λx)

L(λ)
= 1, for every x > 0.

A measurable function R : (0,∞) → (0,∞) is regularly varying at infinity with
index θ ∈ R (written R ∈ RVθ) if

(3.11) lim
λ→∞

R(λx)

R(λ)
= xθ, for every x > 0.

In this case, R(x) = xθL(x), where L is slowly varying at infinity.
The class of regularly-varying functions is remarkably rigid. For example, there is

no need to assume that the limit in (3.11) exists for every x > 0 or that it is a power-
law. IfR is a positive, measurable function on the half-line and limλ→∞ R(λx)/R(λ)
exists, is positive and finite for x in a set of positive measure, then f is regularly
varying at infinity with some index θ ∈ R and the convergence is locally uniform
in x. This fundamental rigidity lemma (see [7, VIII.8.1] and [3, 1.4.1]) plays a key
role in our analysis.

The class RVθ is of fundamental utility in Tauberian arguments linking a measure
ν on [0,∞) and its Laplace transform ν̄(q) =

∫∞
0 e−qxν(dx); see [7, XIII.5.2]:

Theorem 3.5. If L is slowly varying at infinity and 0 ≤ θ < ∞, then the following
are equivalent:

(3.12) ν(x) ∼ xθL(x), x → ∞,

and

(3.13) ν̄(q) ∼ q−θL(1/q)Γ(1 + θ), q → 0.
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Moreover, this equivalence remains true when we interchange the roles of the origin
and infinity, namely when x → 0 and q → ∞.

A refinement of this result will prove useful for us: de Haan’s exponential Taube-
rian theorem [3, theorem 3.9.3]; see [5].

Theorem 3.6. exp ν(x) is regularly varying at infinity with index θ if and only if
exp ν̄(q) is regularly varying at zero with index θ. If either holds, then

ν(1/q)− ν̄(q) → γθ, q → 0,

where γ = 0.577215665 . . . is the Euler-Mascheroni constant.

3.4. Rate of divergence in the solution formula. For several reasons, we need
to study carefully the asymptotic behavior of ϕ(z) as z → 1. For this, it is conve-
nient to define κ(q), q ∈ (0, 1), via

(3.14) − log κ(q) = ϕ(1− q) + log q =

∫ 1−q

0

(
Q1

1−Q(z)
− 1

1− z

)
dz

(note − log κ(q) ≥ 0 because Q is convex) and set

(3.15) κ0 := lim
q→0

κ(q) ∈ [0, 1] .

The limit exists because κ is decreasing. With this notation κ0 corresponds to the
number κ introduced in [8]. For Q(z) = z2 we have κ0 = 1

2 .
We will show that κ0 > 0 if and only if

∑∞
k=1(k log k)pk < ∞. Since in [8] the

function Q is a polynomial this finiteness condition is always satisfied. However, we
can characterize self-similar solutions and their domains of attraction also in the
case κ0 = 0.

Lemma 3.7. The function κ(q) as defined in (3.14) satisfies κ(q) → 0 as q → 0 if
and only if

∑∞
k=1 pkk log k = ∞.

Proof. We compute

(3.16) R(z) := Q1 −
1−Q(z)

1− z
=

∞∑

k=1

pk

(
k − 1− zk

1− z

)
=

∞∑

k=1

pk

k−1∑

j=1

(1− zj).

Note R(1) = 0 and the integrand in (3.14) is

(3.17)
R(z)

1−Q(z)
=

R(z)

1− z
· 1

Q1 −R(z)
=

R(z)

1− z
· 1

Q1 + o(1)

as z → 1−. Thus it suffices to show
∫ 1
0 R(z) dz/(1 − z) < ∞ if and only if∑

pkk log k < ∞. We observe

(3.18)

∫ 1

0

k−1∑

j=1

1− zj

1− z
dz =

k−1∑

j=1

j∑

l=1

1

l
=

k−1∑

l=1

k−1∑

j=l

1

l
=

k−1∑

l=1

k − l

l
∼ k log k

as k → ∞, whence the desired result follows from (3.16). !

Lemma 3.8. The function κ(q) is slowly varying as q → 0.
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Proof. We need to show that − log(κ(λq)/κ(q)) → 0 as q → 0 for any λ > 0.
From (3.16) and (3.17) above, we see that if we replace the integrand in (3.14) by
R(z)/(1−z), then in integrating from 1−λq to 1−q the error is only o(1) as q → 0.
Hence by (3.16),

− log
κ(λq)

κ(q)
=

∞∑

k=1

pkk
k−1∑

l=1

( (1− λq)l

l
− (1− q)l

l

)
+ o(1)

as q → 0. We consider without loss of generality that λ > 1 and estimate

k−1∑

l=1

(1− λq)l

l
− (1− q)l

l
=

∫ 1−q

1−λq

k−1∑

l=1

xl dx =

∫ 1−q

1−λq

1− xk−1

1− x
dx ≤ log λ .

On the other hand,
k−1∑

l=1

(1− λq)l

l
− (1− q)l

l
→ 0

as q → 0 for any k, and thus the claim follows from the dominated convergence
theorem. !

4. Well-posedness for measures

In this section, we first work with the min-driven time scale l(τ ) = τ used by
Gallay and Mielke. We prove that an initial continuous probability density ρ̂ with
min τ0 > 0 defines a solution to (2.8). This is a weaker form of the well-posedness
theorem of [8]. It is included for its simplicity, and because it is the basis for
weak solutions. We then switch to the number-driven time scale (1.6) and use the
moment identity (2.9) to show that (2.8) defines a continuous dynamical system on
the space of probability measures P(R+).

4.1. Classical solutions. The solution formulas of section 2.2, while explicit, are
not immediately suited for the construction of solutions. The main difficulty is to
show that positive initial data yields a positive solution. We construct solutions by
rewriting (2.8) in integral form with initial data ρ̂ for τ = τ0 as

ρτ (x) = ρ̂(x) +

∫ τ

τ0

ρs(s)Q(ρs)(x− s) ds, x > τ,(4.1)

ρτ (x) = 0, x < τ.

We then have

Theorem 4.1. Suppose ρ̂ is a continuous probability density with positive min τ0.
There exists a unique solution to (4.1) on [τ0,∞) such that ρτ0 = ρ̂ and the solution
has the following properties.

(a) For every τ ≥ τ0, ρτ is a continuous probability density with min τ .
(b) The solution formula (2.19) holds for every q ≥ 0, τ ≥ τ0.

Proof. We sketch a proof of existence similar to the direct approach in [4] for
Q(z) = z2 using a different time scale. We fix τ0 > 0 and let ρ̂ be given. Note that
since the solution is to satisfy ρτ (x) = 0 for x < τ , the convolution term on the right-
hand side of (4.1) will depend only upon values of ρτ (y) for τ0 < y < x−τ ≤ x−τ0.
In particular, this convolution term vanishes for x < 2τ0.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6606 GOVIND MENON, BARBARA NIETHAMMER, AND ROBERT L. PEGO

This means we can construct the solution for τ0 < τ < 2τ0 by an inductive
procedure as follows: For τ0 < τ ≤ x < 2τ0 we have ρτ (x) = ρ̂(x) and in particular
ρτ (τ ) = ρ̂(τ ). For τ0 < τ ≤ 2τ0, successively on strips x ∈ [kτ0, (k + 2)τ0), for
k = 2, 4, . . ., by simple integration in time we can now compute ρτ (x) from (4.1),
where the right-hand side is always known from a previous step. This determines
ρτ (x) for τ0 ≤ τ ≤ 2τ0 and all x.

To determine the solution globally for all τ > τ0, the idea is to replace 2τ0
by τ0 and repeat. But in order to justify this we need to verify that ρτ remains
integrable and conserves total probability. In particular we need to justify (2.11).
Let us introduce the distribution function

(4.2) Rτ (x) =

∫ x

0
ρτ (y) dy =

∫ x

τ
ρτ (y) dy.

This is the probability that a domain has size ≤ x at time t. Note that for any two
distribution functions R(x), R̂(x) on [0,∞) we have

R , R̂(x) =

∫ x

0
R(x− y)R̂(dy) ≤

∫ x

0
R(x)R̂(dy) = R(x)R̂(x).

Integrating the convolution term in the integrand of (4.1), we find

∫ x

0
Q(ρτ )(y − τ ) dy =

∞∑

k=1

pkR
!k
τ (x− τ ) ≤

∞∑

k=1

pkRτ (x)
k = Q(Rτ (x)).

Then it follows ∂τRτ (x) ≤ ρτ (τ )(Q(Rτ (x))−1), and since ρτ (τ ) ≥ 0 and Rτ (x) ≤ 1
initially, Rτ (x) is decreasing in τ for fixed x. It follows Rτ (∞) ≤ 1, and so the
Laplace transform

R̄τ (q) =

∫ ∞

0
e−qxRτ ( dx) =

∫ ∞

τ
e−qxρτ (x) dx

is well defined and ≤ e−qτ . Since ∂τRτ (x) is continuous in τ for all x, R̄τ (q) is C1

in τ for all q > 0. This justifies (2.11) and the computations leading up to (2.18)
and the solution formula (2.19). From (2.18) we deduce that since R̄τ0(0) = 1,
Ā(0+) = ∞ = Āτ (0+) and then (2.19) yields R̄τ (0+) = 1 = Rτ (∞), proving that
ρτ is a probability density for all τ . !

The next lemma provides a uniform estimate for smooth approximations.

Lemma 4.2. Suppose ρ̂ is a continuous probability density with positive min τ0
and ρτ is the solution to (4.1) with initial data ρ̂. Then (with α0 = 0 in (2.15)),

(4.3) A(τ ) ≤ Q1

log 2
log

(
2τ

τ0

)
.

Consequently,

(4.4)
l(t)

l(t0)
≥ 1

2

(
t

t0

)(log 2)/Q1

, t ≥ t0.

Proof. If m is an integer such that τ ∈ [2m−1τ0, 2mτ0), we divide the domain of
integration [τ0, τ ) into m pieces and use the fact that ρs(s) = ρr(s) for τ0 ∨ 1

2s ≤
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r ≤ s to obtain

Q−1
1 A(τ ) =

∫ 2τ0

τ0

ρτ0(s)ds+

∫ 22τ0

2τ0

ρ2τ0(s) ds+ · · ·+
∫ τ

2m−1τ0

ρ2m−1τ0(s) ds

≤ m ≤ log(τ/τ0)

log 2
+ 1. !

4.2. Weak solutions. We now switch to the number-driven time scale N(t) = 1/t.
In order to define weak solutions, we fix a test function a, substitute (2.23) in the
moment identity (2.9) and integrate in time between t0 and t to obtain

∫

R+

a(x)Ft(dx)−
∫

R+

a(x)Ft0(dx)(4.5)

=

∫ t

t0

∞∑

k=1

pk

∫

Rk
+

[
a

(
l(s) +

k∑

i=1

yi

)
− a(l(s))

]
k∏

i=1

Fs(dyi)
ds

Q1s
.

We will consider continuous test functions with limx→∞ a(x) = 0. Let C0(R+)
denote the space of such functions with the topology of uniform convergence. Let
P(R+) denote the space of probability measures on R+ equipped with the weak
topology. Assume t0 > 0 is fixed.

Definition 4.3. Let J ⊂ (0,∞) be an interval. We say that a map F : J → P(R+)
is a weak solution for min-driven clustering on J if

(1) The map t .→
∫
R+

a(x)Ft(dx) is measurable for every a ∈ C0(R+).

(2) The min of Ft, denoted l(t), is positive and increasing.
(3) The moment identity (4.5) holds for each a ∈ C0(R+) and t, t0 ∈ J .

Theorem 4.4. (a) Suppose F̂ ∈ P(R+) has positive min, and t0 > 0. Then
there is a weak solution F for min-driven clustering on [t0,∞) with Ft0 = F̂ .
Moreover, the min l(t) of Ft satisfies (4.4).

(b) The solution in (a) is unique on [t0, t1] for any t1 > t0.
(c) Let F̂ (n) be a sequence in P(R+) with positive min and F (n) the weak so-

lutions with F (n)
t0 = F̂ (n). Assume limn→∞ F̂ (n) = F̂ and the limit has

positive min. Then F (n)
t → Ft for every t > t0.

Proof. 1. It follows from Weierstrass’ approximation theorem that finite linear
combinations

∑N
k=1 cke

−kx are dense in C0(R+). Therefore, in order to verify the
moment identity, it is sufficient to consider the test functions e−qx, q > 0. Thus,
to prove existence of a weak solution on [t0,∞), it suffices to construct F weakly
continuous such that the Laplace transform satisfies the solution formula (2.30).

2. Let τ0 denote the min of F̂ . We approximate F̂ by a sequence of continuous

probability densities ρ̂(n) with min τ (n)0 with limn→∞ τ (n)0 = τ0. We further assume

that ρ̂(n) is strictly positive on [τ (n)0 ,∞). It is immediate from (4.1) that the

solutions ρ(n)τ are strictly positive on [τ,∞). The trace for these solutions, A(n) is

obtained from (2.15) with τ0 replaced by τ (n)0 , ρ by ρ(n) and the choice α0 = log t0.
A(n) is continuous and strictly increasing, thus so are the min histories l(n). We
change variables from the solution formula (2.19) to (2.30) to obtain

(4.6) ρ̄(n)τ (q) = F̄ (n)
t (q) = ϕ−1

(∫ ∞

t
e−ql(n)(s) ds

s

)
, t ≥ t0.
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3. As n → ∞, we have ¯̂ρ(n)(q) → ¯̂F (q) for every q > 0 and 0 < ¯̂F (q) < 1 for q >

0. The measures A(n) are supported on [τ (n)0 ,∞) and satisfy Ā(n)(q) = ϕ(F̄ (n)
t0 (q)).

Therefore,

lim
n→∞

Ā(n)(q) = ϕ( ¯̂F (q)), q > 0.

It follows that the traces A(n) converge weakly to a trace A supported on [τ0,∞)

that satisfies Ā(q) = ϕ( ¯̂F (q)). Therefore, by Theorem 3.4, the min histories l(n)

converge to l, the min history associated to A. Since l(n) satisfy the uniform
estimate (4.4), we may use the dominated convergence theorem to assert

lim
n→∞

F̄ (n)
t (q) = ϕ−1

(∫ ∞

t
e−ql(s) ds

s

)
, t ≥ t0.

This shows that for every t ≥ t0 the measures F (n)
t converge weakly to a measure Ft

that satisfies (2.30). Then Ft is a probability measure since F̄t(0+) = ϕ−1(∞) = 1.
It similarly follows from (2.30) that Ft → Ft1 as t → t1 for every t1 ∈ [t0,∞). This
completes the proof of part (a), except that it remains to show that l(t) is in fact
the min of Ft.

4. For (b) it suffices to prove uniqueness on [t0, t1] for some t1 > t0. The key is
to prove uniqueness of the min l(t) on such a time interval, since then uniqueness
of Ft is easy to establish via the Laplace transform. Note that any weak solution is
weakly continuous in time, since the right-hand side of (4.5) is Lipschitz continuous
for any test function a ∈ C0(R+). Then since Ft0(x) > 0 for all x > τ0, the min
l(t) is right continuous at t0, so there exists t1 > t0 with τ0 ≤ τ1 = l(t1) < 2τ0.
Now the idea is that for clusters of size less than 2τ0, there is no gain, only loss.
We claim that

(4.7) Ft(x) =

(
Ft0(x)−

1

Q1
log

(
t

t0

))

+

, t ∈ [t0, t1], x ∈ [τ0, 2τ0).

This follows by first considering points x of continuity of both Ft and Ft0 such that
l(t) < x < 2τ0, so Ft(x) > 0; approximate 1[0,x) by continuous test functions a
supported in [0, 2τ0). By right continuity and the definition of min, (4.7) follows
for all x ∈ [l(t), 2τ0), and Ft(x) = 0 for x < l(t). Now by weak continuity in time,
we infer that with

t̂(x) = t0 exp(Q1F̂ (x)),

for each point of continuity of F̂ in (τ0, τ1] we have l(t) < x for t < t̂(x), and x < l(t)
for t̂(x) < t. Now clearly l(t) is uniquely determined by F̂ , since it is locally the
inverse of t̂. It follows from taking the Laplace transform that the min history l(t)
constructed in (a), that satisfies (2.30), agrees with the min of Ft.

5. Part (c) is proven by an argument very similar to Step 2 above. !

Scaling. We note for use below the following scaling property that follows easily
from the moment identity (4.5). Let a, b > 0. If F is a weak solution for min-driven
clustering on an interval J , then F̂ is a weak solution on J/a, where

(4.8) F̂t(x) = Fat(bx), t ∈ J/a, x ≥ 0.
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5. Self-similar solutions

Let us recall that Gallay and Mielke have classified the self-similar solutions as
in (1.9) in the case when pk = 0 for all large k. Here we will recover and extend
the basic existence results and classify all domains of attraction by simple means
based on the Laplace transform and Tauberian arguments.

Existence. In terms of the distribution function Ft, self-similar solutions are of
the form Ft(x) = F∗(x/l(t)) for some distribution function F∗ with positive min
(= 1) and some min history l(t). Without loss of generality we can assume t0 = 1
and l(t0) = 1. From (2.30) we obtain for the Laplace transform of F∗ that

(5.1) F̄∗(q) = F̄t

(
q

l(t)

)
= ϕ−1

(∫ ∞

t
e−q l(s)

l(t)
ds

s

)
= ϕ−1

(∫ ∞

1
e−q l(ts)

l(t)
ds

s

)
.

Hence we conclude that the min history of self-similar solutions must satisfy
l(ts)/l(t) = g(s) for some function g(s). Since l is also positive, increasing and
nonconstant, we conclude (see [7, VIII.8.1], or subsection 6.1 below) that neces-
sarily, for some θ > 0, l(s) = s1/θ and that F∗ must be a distribution F (θ) that
satisfies

(5.2) F̄ (θ)(q) = ϕ−1 (θEi(q)) ,

where Ei(q) =
∫∞
q e−sds/s denotes the exponential integral. Provided such a distri-

bution F (θ) does exist, then F̄t(q) = F̄ (θ)(t1/θq) satisfies (2.30) and is continuous in
time, hence determines a self-similar solution by step 1 of the proof of Theorem 4.4.
The corresponding trace measures are given by

(5.3) A(θ)(τ ) = θ log τ, τ ∈ (0,∞).

As a by-product of the characterization of scaling limits in section 6, we will prove
the existence of distributions F (θ) that satisfy (5.2) for 0 < θ ≤ 1, and that θ ≤ 1
is necessary.

Densities. Next we show that for the self-similar solutions F (θ)(x/t1/θ) (0 <
θ ≤ 1), the probability distributions F (θ) have piecewise smooth densities ρ(θ) that
satisfy an integrodifferential equation,

(5.4) −∂y
(
yρ(θ)(y)

)
=

θ

Q1
Q(ρ(θ))(y − 1) , y > 1, ρ(θ)(1) =

θ

Q1
,

and we study the decay of ρ(θ)(y) as y → ∞. When pk = 0 for all large k (so Q(z)
is a polynomial) this has been done by Gallay and Mielke [8]. We will recover most
of their results by simpler means (the exponential rate of decay for θ = 1 is an
exception) and extend them to the case when pk is nonzero for infinitely many k.
It turns out, however, that when

∑
pkk log k = ∞, none of the profiles have finite

first moment, including the case θ = 1.
Let θ ∈ (0, 1]. We claim that the probability distribution F = F (θ) satisfies the

following weak-form profile equation:

(5.5)

∫

R+

xa′(x)F (dx) =
θ

Q1

∞∑

k=1

pk

∫

Rk
+



a



1 +
k∑

j=1

yj



− a(1)




k∏

j=1

F (dyj)

for all C1 functions a ∈ C0(R+). This follows from the fact that we know F (x/t1/θ)
is a weak solution for the min-driven clustering equation (4.5) with l(t) = t1/θ.
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Changing variables in (4.5) via x = l(t)x̂ and similarly for yj , we differentiate at
t = 1 to obtain (5.5).

Now, the min of F is 1 (this will be shown in section 6.2), so F has density
ρ(x) = 0 on (0, 1). Taking a to be supported in (1, 2) we find that the right-
hand side of (5.5) vanishes. Hence restricted to (1, 2), the measure xF (dx) = β dx
for some constant β, so F has density ρ(x) = β/x on (1, 2). Taking a(x) = 0

for x ≤ 1, a(x) = 1 for x ≥ 2 (approximated by limits; note
∫ n+1
n xF (dx) → 0

along a subsequence), we find β = θ/Q1. Taking a supported in (0, 2), we find the
right-hand side is −βa(1) and we can conclude that 1 is not an atom of F .

In this way, proceeding inductively on intervals (0, n) we deduce that F has
density ρ(x) satisfying (5.4). When a has support in (1, n+ 1) the right-hand side
depends on the restriction of F to (0, n) where it has density ρ(x), and thus xF (dx)
has density xρ(x) determined by (5.4) on (1, n+ 1).

Decay. Next we wish to characterize the decay behavior of the densities ρ(θ).
For this we use the properties of the function κ(q) which was introduced in (3.14).
We denote by κ# the de Bruijn conjugate of κ. See [3, Sec. 1.5.7]. This is a slowly
varying function satisfying

(5.6) κ(q)κ#(qκ(q)) ∼ 1 as q → 0.

If κ0 > 0, then κ#(0+) = κ−1
0 , and if κ0 = 0, then κ#(0+) = ∞.

Theorem 5.1. For every θ ∈ (0, 1], the density ρ(θ)(x) of the self-similar profile
F (θ) has the following properties:

(i) If θ ∈ (0, 1), then as x → ∞,

(5.7) ρ(θ)(x) ∼ x−(1+θ)eθγκ#(x−θ)
θ(1− θ)

Γ(2− θ)
.

Here γ is the Euler-Mascheroni constant and Γ is the Γ-function.
(ii) If θ = 1, then as x → ∞,

(5.8)

∫ x

0
yρ(1)(y) dy ∼ eγκ#(x−1).

Remarks. The asymptotics (5.8) imply the result of [8] for total mass in the case that
κ0 > 0. We will not pursue here the delicate question of the precise (exponential)
decay rate of the density ρ(1) in this case, which was studied in [4] for Q(z) = z2

and in the polynomial case in [8]. If κ0 = 0, however, we see that F (1) has infinite
mass.

Proof. We rewrite equation (5.2) for F̄ (θ) using (3.14) and standard asymptotics
for the exponential integral [14], as follows. With w = 1− F̄ (θ)(q),

−ϕ(F̄ (θ)(q)) = log(wκ(w)) = −θEi(q) = θ(log q + γ + o(1)), q → 0.

Then wκ(w) ∼ qθeθγ , whence asymptotic inversion [3, Sec. 1.5.7] yields

(5.9) w = 1− F̄ (θ)(q) ∼ qθeθγκ#(qθ).

Now differentiating (i.e., using Lemma 3.3 of [10]) we find
∫ ∞

0
e−qxxF (θ)(dx) = −∂qF̄

(θ)(q) ∼ θqθ−1eθγκ#(qθ), q → 0.
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Now the Tauberian Theorem 3.5 implies

(5.10)

∫ x

0
yF (θ)(dy) ∼ θ

Γ(2− θ)
x1−θeθγκ#(x−θ) , x → ∞,

which is just (5.8) in the case θ = 1.
We can now also derive the decay behavior of ρ(θ) in the case θ < 1. In fact,

it follows from (5.4) that yρ(θ)(y) is decreasing. Hence by a lemma in [7, XIII.5],
(5.10) implies (5.7). !

6. Domains of attraction of self-similar solutions

We proceed to prove Theorem 1.1. The proof has two parts. The first is to show
that regular variation of l(t) as t → ∞ is necessary and sufficient for convergence
to a scaling limit. The second is the equivalence between regular variation of l(t) as
t → ∞ and regular variation of

∫ x
0 yFt0(dy) as x → ∞. The second part is based on

the Tauberian Theorems 3.5 and 3.6. The most subtle aspect (despite the simple
proof) is to deduce the regular variation of l from the existence of a scaling limit.
This is the assertion of rigidity, and we treat it first.

6.1. Regular variation of the min history is necessary. 1. Assume there
is a rescaling λ(t) → ∞ and a probability distribution function F∗ with positive
min (called τ∗) such that Ft(λ(t)·) → F∗. This is equivalent to convergence of the
Laplace transforms,

(6.1) lim
t→∞

F̄t

(
q

λ(t)

)
= F̄∗(q), q ≥ 0.

After a trivial scaling of time and cluster size, we may assume t0 = 1 and τ∗ = 1.
Since F∗ is a probability measure with positive min, there is a unique trace measure
A∗, with A∗(τ ) = 0 on (0, 1) and A∗(τ ) → ∞ as τ → ∞, and a min history l∗ on
[1,∞), with l∗(1) = 1, such that

(6.2) Ā∗(q) =

∫ ∞

1
e−ql∗(s) ds

s
= ϕ(F̄∗(q)).

Now, s .→ Fts(λ(t)x) is a rescaled solution, by (4.8). The rescaled min histories
given by l(t)(s) = l(ts)/λ(t), t, s ≥ 1 have associated trace measures A(t) satisfying
Ā(t)(q) → Ā∗(q) as t → ∞, for all q > 0. We use the solution formula (2.30), (6.1)
and (6.2) to obtain

(6.3) lim
t→∞

∫ ∞

1
e−ql(ts)/λ(t) ds

s
=

∫ ∞

1
e−ql∗(s) ds

s
, q > 0,

such that at every point of continuity of l∗,

(6.4) lim
t→∞

l(ts)/λ(t) = l∗(s).

2. Let s0 be a point of continuity of l∗, and let U(t) = l∗(ts0), t ≥ 1. Let B be
the set of x ≥ 1 such that

(6.5) ψ(x) = lim
t→∞

U(tx)

U(t)
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exists. We deduce ψ(x) is a power of x by following the simple argument in [7,
VIII.8.1]: By (6.4), we have x ∈ B if xs0 is a point of continuity of l∗. If x1,
x2 ∈ B, then x1x2 ∈ B and

(6.6) ψ(x1x2) = ψ(x1)ψ(x2).

Since U is increasing, so is ψ, and since B is dense in [1,∞) we can extend ψ by
right continuity so (6.6) holds for all x1, x2 ≥ 1. Then we can set ψ(x) = 1/ψ(1/x)
for x ∈ (0, 1) and have (6.6) for all x > 0. Since ψ(x) is positive, locally bounded
and not constant, it follows ψ is a pure power law, and we can write ψ(x) = x1/θ

for some θ > 0.
3. Since ψ is continuous and increasing, it is easy to see (6.5) holds for all

x ∈ [1,∞) = B. Then we infer L̃(t) = U(t)t−1/θ is slowly varying, and U , hence l, is
regularly varying at ∞ with index 1/θ. Further, since l∗(xs0)/l∗(s0) = ψ(x) = x1/θ

whenever xs0 is a point of continuity of l∗, and s0 is an arbitrary point of continuity,
it follows l∗(t) = t1/θ for all t ≥ 1.

6.2. Regular variation of the min history is sufficient. Let us assume that
the min history l is regularly varying, as in (1.12). Convergence to self-similar form
is then quick: Since

l(ts)

l(t)
= s1/θ

L̃(ts)

L̃(t)
,

we have l(ts)/l(t) → s1/θ as t → ∞, locally uniformly in s. With ε ∈ (0, 1/θ) fixed,
there exists tε such that whenever t > tε, L̃(tr)/L̃(t) ≥ 2−ε for all r ∈ [1, 2]. Then
for any s ≥ 1, s = 2nr with r ∈ [1, 2] and n an integer, and

L̃(ts)

L̃(t)
=

L̃(t2nr)

L̃(t2n)

n∏

k=1

L̃(t2k)

L̃(t2k−1)
≥ 2−(n+1)ε ≥ 1

2
s−ε.

Therefore, we may use the solution formula and the dominated convergence theorem
to see that as t → ∞,

(6.7) ϕ

(
F̄t

(
q

l(t)

))
=

∫ ∞

1
e−ql(ts)/l(t) ds

s
→

∫ ∞

1
e−qs1/θ ds

s
.

This implies limt→∞ Ft(l(t)x) = F (θ)(x) for every x > 0, where F (θ) is a probability
distribution with positive min (= 1) and Laplace transform given by (5.2).

6.3. Tauberian arguments. We now prove that if 0 < θ ≤ 1 and
∫ x
0 yFt0(dy) is

regularly varying with index 1 − θ as x → ∞, then l(t) is regularly varying with
index 1/θ as t → ∞, and conversely.

1. It is convenient first to assume (1.11) in the form
∫ x

0
yFt0(dy) ∼

θ

Γ(2− θ)
x1−θL1(x), x → ∞,

where L1 is slowly varying.
Then Theorem 3.5 implies

−∂qF̄t0(q) ∼ θqθ−1L1

(
q−1

)
, q → 0.

By integration (not difficult to justify as in Lemma 3.3 of [10]) we find

w := 1− F̄t0(q) ∼ qθL1

(
q−1

)
, q → 0.
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Using the solution formula (2.30) and (3.14), we write

log
(
wκ(w)

)
= −ϕ

(
F̄t0(q)

)
= −

∫ ∞

t
e−ql(s) ds

s
= −Ā(q) .

Hence, exp(−Ā(q)) is regularly varying with exponent θ, and Theorem 3.6 (de
Haan’s exponential Tauberian theorem) implies that

(6.8) eA(1/q)e−Ā(q) = l†(q−1)wκ(w) → eγθ, q → 0.

Thus, l†(τ ) ∼ eγθτ θL̂1(τ θ) as τ → ∞, with

L̂1(s) =
1

L1(s1/θ)κ(s−1L1(s1/θ))
.

It is easy to show L̂1 is slowly varying, using the uniform convergence theorem for
slowly varying functions [3, Theorem 1.2.1].

Asymptotically solving t = l†(τ ) by inverting s .→ sL̂1(s) using the de Bruijn
conjugate [3, Theorem 1.5.13] finally yields

(6.9) l(t) ∼ e−γt1/θL̂#
1 (t)

1/θ, t → ∞ ,

which gives (1.12). If κ0 := limq→0 κ(q) > 0, we also can write

(6.10) l(t) ∼ e−γ(κ0t)
1/θ(L−1/θ

1 )#(t), t → ∞.

2. We now prove the converse. Assuming that (1.12) holds, then

(6.11) l(t) ∼ e−γt1/θL2(t)
1/θ, t → ∞,

for some slowly varying function L2. Then, by inversion, l†(τ ) ∼ eγθτ θL#
2 (τ

θ) as
τ → ∞. Since l†(τ ) = expA(τ ) and Ā(q) = − log(wκ(w)) with w = 1− F̄t0(q), we
infer from Theorem 3.6 that (6.8) is true. This implies

wκ(w) ∼ qθL#
2 (q

−θ)−1, q → 0,

and asymptotic inversion yields w ∼ qθL̂2(q−1) as q → 0, with

L̂2(x) = L#
2 (x

θ)
−1

κ#
(
x−θL#

2 (x
θ)

−1
)
,

and L̂2 is slowly varying. Differentiating using Lemma 3.3 of [10], we find

∂qw = −∂qF̄t0(q) ∼ θqθ−1L̂2

(
q−1

)
, q → 0.

Since −∂qF̄t0(q) =
∫∞
0 e−qxxFt0(dx) the Tauberian Theorem 3.5 implies that

(6.12)

∫ x

0
yFt0(dy) ∼

θ

Γ(2− θ)
x1−θL̂2(x), x → ∞ ,

which is just (1.11). If κ0 := limq→0 κ(q) > 0, then

(6.13)

∫ x

0
yFt0(dy) ∼

θ

Γ(2− θ)

x1−θ

L#
2 (x

θ)κ0

, x → ∞ .

This completes the proof.
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7. Eternal solutions

Definition 7.1. A weak solution F for min-driven clustering is an eternal solution
if it is defined on the maximal interval of existence (0,∞).

Our understanding of eternal solutions is closely connected to the question of
how they emerge from clusters of infinitesimal size. From the solution formula
(2.30) we see that as t approaches zero,

ϕ(F̄t(q)) =

∫ ∞

t
e−ql(s) ds

s
→ ∞,

hence F̄t(q) → 1, and this means the relative size distribution Ft always converges
to a Dirac delta at zero size. A different scaling is needed to distinguish solutions
through limits as t ↓ 0.

7.1. The class of g-measures. What we will show is that the class of eternal
solutions is in one-to-one correspondence with a suitable space of measures that
can be loosely thought of as ‘rescaled initial data’ at t = 0. This correspondence
parallels the classical probabilistic characterization of infinitely divisible laws via
a Lévy-Khintchine formula. In probability theory, infinitely divisible distributions
are parametrized by the Lévy-Khintchine representation theorem, which expresses
the log of the characteristic function (Fourier transform) in terms of a measure that
satisfies certain finiteness conditions. In particular [7, XIII.7], a function ω(q) is the
Laplace transform

∫∞
0 e−qxF (dx) of an infinitely divisible probability measure F

supported on [0,∞) if and only if ω(q) = exp(−η(q)), where the Laplace exponent
η admits the representation

(7.1) η(q) =

∫

[0,∞)

1− e−qx

x
G(dx)

for some measure G on [0,∞) that satisfies

(7.2)

∫

[0,∞)
(1 ∧ y−1)G(dy) < ∞.

(Here a ∧ b = min(a, b).) As in [11] we call such measures g-measures (short for
“generating measures,” a term motivated by their connection with generators of
convolution semigroups in probability [7, XIII.9(a)]). Some basic analytic facts
about Laplace exponents and g-measures are collected in [11, Sec. 3].

Definition 7.2. A measure G on [0,∞) is a g-measure if (7.2) holds. In addition,
we say that a g-measure G is divergent if

(7.3) G(0) > 0 or

∫

[0,∞)
y−1G(dy) = ∞.

Here recall that we use the notationG(x) =
∫
[0,x] G(dy). The space of g-measures

has a natural weak topology which is fundamental in our study of scaling dynamics.

Definition 7.3. A sequence of g-measures G(n) converges to a g-measure G as
n → ∞ if at every point x ∈ (0,∞) of continuity of G we have

(7.4) G(n)(x) → G(x) and

∫

[x,∞)
y−1G(n)(dy) →

∫

[x,∞)
y−1G(dy).
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7.2. A Lévy-Khintchine formula. Our analysis of eternal solutions is motivated
by a classification theorem of Bertoin for Smoluchowski’s coagulation equation with
additive kernel [1]. Here eternal solutions were shown to be in correspondence with
divergent g-measures. This theorem was generalized to other solvable kernels in [11],
based on the observation that there is a natural Laplace exponent ηt associated to
every solution. For the model now under study, it is determined by the g-measure

(7.5) Gt(dx) =
xFt(dx)

tκ#(t)
,

and the associated Laplace exponent is

(7.6) ηt(q) =
1− F̄t(q)

tκ#(t)
=

∫ ∞

0

1− e−qx

x
Gt(dx).

(Recall that κ# from (5.6) is the de Bruijn conjugate of κ from (3.14), and that
κ#(0+) = ∞ if

∑
pkk log k = ∞, κ#(0+) < ∞ if

∑
pkk log k < ∞.)

Theorem 7.4. (a) Let F be an eternal solution of (4.5). Then there is a
divergent g-measure H such that Gt converges to H as t ↓ 0.

(b) Conversely, for every divergent g-measure H, there is a unique eternal so-
lution F of (4.5) such that Gt converges to H as t ↓ 0.

(c) The Laplace exponent of H is related to the min history l(t) of F by

(7.7) log η∗(q) =

∫ 1

0

(
1− e−ql(s)

) ds

s
−
∫ ∞

1
e−ql(s) ds

s
.

To fix ideas, it may help to note that it will follow from (7.7) that the self-
similar solutions Ft(x) = F (θ)(x/t1/θ) of section 5, normalized to have min history
l(t) = t1/θ, are generated by the power-law Laplace exponents

(7.8) η∗(q) = eθγqθ, θ ∈ (0, 1],

where γ is the Euler-Mascheroni constant, which satisfies [14]

(7.9) γ =

∫ 1

0

1− e−s

s
ds−

∫ ∞

1

e−s

s
ds.

The corresponding divergent g-measures are given by

(7.10) Hθ(x) =
θeθγ

Γ(2− θ)
x1−θ, θ ∈ (0, 1].

Proof of Theorem 7.4. In all that follows, q > 0 is fixed, and we use the equiv-
alence between convergence of g-measures and pointwise convergence of Laplace
exponents, as established in [11, Sec. 3], for example.

1. First, assume that F is an eternal solution. We claim that for all q > 0,
ηt(q) → η∗(q) as t ↓ 0, where η∗ is given by (7.7) and satisfies η∗(∞) = ∞. (This
claim is proven in Step 3.) By [11, Sec. 3] it follows that η∗ is the Laplace exponent
of a divergent g-measure H and Gt → H as t ↓ 0.

2. We first recall from Theorem 4.4 that the min history satisfies (4.4) whenever
0 < t0 < t. Regarding t as fixed and t0 variable, we conclude that

(7.11) 0 < l(s) < Cs(log 2)/Q1 , 0 < s < 1.

It follows from this, the estimate 1 − e−ql(s) ≤ ql(s), and (4.4) that the integrals
in (7.7) converge, so that η∗(q) is finite for 0 < q < ∞. Moreover, η∗(0) = 0 and

η∗(∞) =
∫ 1
0 ds/s = ∞.
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3. We let w = wt(q) = 1 − F̄t(q) = tκ#(t)ηt(q) and use the solution formula
(2.30) together with (3.14) to write

(7.12) log(wκ(w)) = −ϕ(F̄t(q)) = −
∫ ∞

t
e−ql(s) ds

s
.

Adding − log t =
∫ 1
t ds/s to both sides we find

(7.13) log(wκ(w)/t) =

∫ 1

t

(
1− e−ql(s)

) ds

s
−
∫ ∞

1
e−ql(s) ds

s
= log η∗(q) + o(1)

as t ↓ 0. Hence wκ(w) ∼ tη∗(q), and asymptotic inversion yields

(7.14) w ∼ tη∗(q)κ
#(tη∗(q)) ∼ tη∗(q)κ

#(t)

since κ# is slowly varying. But immediately this yields ηt(q) → η∗(q) as t ↓ 0, and
this finishes the proof of (a) and (c).

4. We now establish the converse. Let H be a divergent g-measure with Laplace
exponent η∗ (not known at first to satisfy (7.7)). We will first establish that the
Lévy-Khintchine formula (7.7) defines an appropriate min history l, then verify that
l defines an eternal solution.

First, we remark that the definition of the trace admits a natural modification
for eternal solutions. Given the min history of an eternal solution, we define the
trace through (3.3). Conversely, we say A is a maximal trace if A is a distribution
function on (0,∞) such that (i) limτ→0 A(τ ) = −∞, (ii) limτ→∞ A(τ ) = ∞, and
(iii)

∫ τ0
0 τA(dτ ) < ∞ for some τ0 > 0. In this case, the min history is given by (3.4)

with t0 = 0.
Since η∗ is the Laplace exponent of a g-measure, η′∗ and 1/η∗ are completely

monotone functions. Thus, there is a positive measure A such that

(7.15) (log η∗)
′ =

η′∗
η∗

=

∫ ∞

0
e−qτ τA(dτ ).

For every τ0 > 0, the measure A satisfies the finiteness conditions

(7.16) (log η∗)
′ ≥

{
e−qτ0

∫ τ0
0 τA(dτ ),

τ0
∫∞
τ0

e−qτA(dτ ).

Therefore, we may integrate (7.15) between q and q1 ∈ (0,∞) and rearrange terms
to obtain

log η∗(q)−
∫ τ0

0
(1− e−qτ )A(dτ ) +

∫ ∞

τ0

e−qτA(dτ )(7.17)

= log η∗(q1)−
∫ τ0

0
(1− e−q1τ )A(dτ ) +

∫ ∞

τ0

e−q1τA(dτ ) := C(q1, τ0).

The right-hand side is independent of q. We let q → ∞ on the left-hand side, and
use η(∞) = ∞ to see that

∫ τ0
0 A(dτ ) = ∞. Similarly, we let q → 0 and use η(0) = 0

to see that
∫∞
τ0

A(dτ ) = ∞. Thus, A defines a maximal trace. Let l denote the

associated min history given by l = exp(A†).
5. Since τ0 > 0 is arbitrary, we may suppose τ0 is in the range of l and l(t0) = τ0.

We change variables in (7.17) to obtain

(7.18) log η∗(q)−
∫ 1

0

(
1− e−ql(s)

) ds

s
+

∫ ∞

1
e−ql(s) ds

s
= C + log t0.
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In order to obtain the Lévy-Khintchine formula in the form (7.7), we just replace l
by the rescaling l̂(s) = l(as), where log a = C + log t0.

6. It remains to check that the solution formula (2.30) defines a solution for every
t > 0. This is proven by an approximation argument. We consider a sequence of
finite g-measures Gn that converge to the divergent g-measure H. We may suppose
that cn :=

∫∞
0 x−1Gn(dx) ≥ n. Let tn = 1/cn so that 0 < tn ≤ n−1. We will show

that the sequence of solutions F (n) defined for t ≥ tn, with initial data given by
the probability measures

Fn(dx) := tnκ
#(tn)x

−1Gn(dx),

converges to a solution F satisfying (2.30).
7. Let ηn be the Laplace exponent of Gn; then ηn(q) → η∗(q) for q > 0. Define

(7.19) wn(q) := 1− F̄n(q) = tnκ
#(tn)ηn(q).

This is related to the min history ln determined from Fn by the solution formula
as in (7.12), namely,

(7.20) log(wnκ(wn)/tn) =

∫ 1

tn

(
1− e−qln(s)

) ds

s
−
∫ ∞

1
e−qln(s) ds

s
.

Since wn(q) ∼ tnηn(q)κ#(tnηn(q)) as n → ∞, asymptotic inversion yields wnκ(wn)
∼ tnηn(q), and then (7.20) yields

(7.21) log η∗(q) = lim
n→∞

∫ 1

tn

(
1− e−ql(n)(s)

) ds

s
−
∫ ∞

1
e−ql(n)(s) ds

s
.

Convergence of completely monotone functions also implies convergence of all deriv-
atives. Thus,

η′∗
η∗

= lim
n→∞

∫ ∞

tn

e−ql(n)(s) l
(n)(s)

s
ds.

It follows that the inverse functions l(n) → l at all points of continuity. Therefore,
we may let n → ∞ in the solution formula

F̄ (n)
t (q) = ϕ−1

(∫ ∞

t
e−ql(n)(s) ds

s

)

to see that F defines an eternal solution. !
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