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Abstract. We prove exponential concentration estimates and a strong law of large
numbers for a particle system that is the simplest representative of a general class of
models for 2D grain boundary coarsening introduced by the first author (2014). The
system consists of n particles in (0,∞) that move at unit speed to the left. Each time
a particle hits the boundary point 0, it is removed from the system along with a second
particle chosen uniformly from the particles in (0,∞). Under the assumption that the
initial empirical measure of the particle system converges weakly to a measure with
density f0(x) ∈ L1

+(0,∞), the empirical measure of the particle system at time t is
shown to converge to the measure with density f(x, t), where f is the unique solution to
the kinetic equation with nonlinear boundary coupling

∂tf(x, t) − ∂xf(x, t) = − f(0, t)∫∞
0 f(y, t) dy

f(x, t), 0 < x < ∞,

and initial condition f(x, 0) = f0(x).
The proof relies on a concentration inequality for an urn model studied by Pittel, and

Maurey’s concentration inequality for Lipschitz functions on the permutation group.

1. Introduction.
1.1. The kinetic equation and particle system. An important theme in kinetic theory is

to rigorously derive kinetic equations as hydrodynamic limits of simpler particle models.
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678 JOE KLOBUSICKY AND GOVIND MENON

In this paper, we study the transport equation with nonlinear boundary coupling

∂tf(x, t) − ∂xf(x, t) = −f(0, t)

M(t)
f(x, t), 0 < x < ∞, (1.1)

M(t) =

∫ ∞

0
f(x, t) dx, (1.2)

for a positive density f(x, t) with initial condition f(x, 0) = f0(x). The associated particle
system consists of n particles in (0,∞) that move at unit speed to the left. Each time
a particle hits the boundary point 0, it is removed from the system along with a second
particle chosen uniformly from the particles in (0,∞).

It is not hard to show that the kinetic equation (1.1) is exactly solvable. However, it is
not entirely straightforward to show that the kinetic equation describes the law of large
numbers for the particle system. The difficulty is that the time between random jumps
(the ‘internal clock’ of the system) is a deterministic function of the state immediately
after each jump. The main purpose of this paper is to establish exponential concentration
estimates, especially for the internal clock, that allow us to rigorously establish (1.1)
starting from the particle system.

Our particle system also has interesting connections to two discrete sampling models.
The first model, studied in Section 2, is an example of a diminishing urn. In such a model,
balls are painted one of two colors (say white and red) and placed in an urn. Balls are
either removed from or added into the urn through some predetermined drawing rule.
Typically, draws are repeated until no red balls in the urn remain. The main quantity of
interest is the number of white balls left. Despite the simplicity of this model, closed-form
expressions for statistics of most diminishing urns are difficult to obtain, though several
limit distributions have been obtained by generating function methods [8, 13, 23].1 In
Section 2.1, we use a recurrence relation for moment generating functions to establish
asymptotic normality for the number of particles lost at time t in our particle system.
The proof technique follows Pittel [23].

The second model, described in Section 3, is an instance of two-phase sampling. Par-
ticles on the positive real line are sampled without replacement from a larger collection
of particles whose empirical distribution approximates some known population density.
If the particles were sampled with replacement, we are in the setting of the Glivenko-
Cantelli theorem, and the DKW inequality [6] may be used to show that the empirical
distributions converge exponentially fast to the limit distribution. While such theorems
also exist in the case without replacement (see [24], for instance), we provide a new
argument of exponential convergence using a modification of Maurey’s concentration in-
equality for Lipschitz functions on the symmetric group. The use of Maurey’s inequality
in this setting is one of the main technical novelties of our work. This proof could be of
independent interest to probabilists interested in sampling and queueing theory.

In Sections 4 and 5, we combine the above models to obtain exponential concentration
inequalities and a completely transparent proof of convergence of the empirical distri-
butions of the particle system to the hydrodynamic limit described by (1.1). The main

1One exception, the ‘pills problem’ posed by Knuth and McCarthy [12], [15] may be solved by a
clever elementary counting argument.
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CONCENTRATION INEQUALITIESFOR A REMOVAL-DRIVEN THINNING PROCESS 679

functional law of large numbers is closely related to the Glivenko-Cantelli theorem, and
by analogy suggests a uniform central limit theorem to describe fluctuations from the
hydrodynamic limit. We hope to address these issues in future work.

1.2. Kinetic equations for grain boundary evolution. The kinetic equation and limit
theorem in this work were motivated by domain coarsening in two-dimensional cellular
networks, in particular isotropic grain boundary networks and soap froth. A fundamental
aspect of the evolution of these cellular networks, discovered by Mullins and von Neu-
mann [22,25], is that the rate of change of area of an s-sided cell is a constant multiple of
s−6. Thus, the rate of change of area depends only on the topology of a cell (the number
of sides), and not its geometry. Further, each cell with fewer than six sides vanishes in
finite time. It follows that the kinetics of the cellular network is driven by a smooth
evolution, punctuated by singular ‘vanishing events’ when cells with positive area gain
or lose sides as a neighboring cell shrinks to zero area.

In the 1980s and 1990s, several physicists postulated mean-field kinetic equations to
describe this process in the limit when the number of cells is large [2, 9, 10, 17]. These
models have the common form

∂tfs + (s − 6)∂xfs =
5∑

l=2

(l − 6)fl(0, t)

(
M∑

m=2

Alm(t)fm(x, t)

)
, s = 2, . . . , M. (1.3)

Here the index s (for ‘species’) describes the number of sides of the cells (its topological
class), and ranges from 2 to a maximal number M > 6; fs(x, t) denotes the number
density of s-sides particles with area x at time t > 0. The common feature of these
equations is that the flux into and out of species s depend on the rate at which the
left-moving populations fl, l = 2, . . . , 5, hit the origin. The matrix Alm(t) describes
the rates at which cells switch topological class as they gain or lose edges as small cells
vanish. It is obtained by a different ad hoc assumption in each work, and while each
kinetic equation matches some of the experimental data, there appears to have been no
side-to-side comparison of the different models.

More recently, applied mathematicians have performed extensive computational ex-
periments on the evolution of such networks [1, 7, 11, 18]. Further, there has also been
some rigorous analysis of kinetic models of the type (1.3) and related stochastic mod-
els [3]. In recent work [14], one of the authors introduced a stochastic multi-species
particle system in order to obtain a rigorous foundation for (1.3). Amongst other goals,
this model was introduced to evaluate the often contradictory geometric assumptions
used by physicists to determine the differing right hand sides of (1.3), in light of current
computational knowledge of grain boundary evolution.

One of the rigorous results in [14] is a hydrodynamic limit theorem for equation (1.3).
The associated particle system consists of n particles, partitioned into ns particles of each
species s, with areas 0 < xs,1 < xs,2 < . . . < xs,ns . The dynamics of the system consists
of pure drift –particles of species s move with constant velocity s − 6 – combined with
stochastic mutations when a particle vanishes, meaning xs,1 = 0 for one of the species.
As in the one-species particle model for the kinetic equation (1.1), the removal times in
the multi-species models are random, but depend deterministically on the state of the
system immediately after a mutation. This nontrivial coupling between mutation and
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680 JOE KLOBUSICKY AND GOVIND MENON

removal is the main obstruction to proofs of hydrodynamic limit theorems. To further
complicate matters, species grow at different rates, so that in a generic realization some
particles will grow during some intervals, and shrink in others. The model (1.1) and
convergence theorems presented in this paper arose from a desire to isolate the role of
particle removal in (1.3). While equation (1.3) is not exactly solvable, we hope that the
use of multi-species urn models and thinning estimates as in this work provide analogous
contraction estimates for (1.3).

1.3. Statement of results.
1.3.1. Wellposedness of the kinetic equation. Despite the nonlinear term on the right

hand side, the kinetic equation (1.1) is exactly solvable. Let L1
+ denote the cone of

nonnegative functions in L1(0,∞) equipped with the norm topology. We first obtain a
formula for classical solutions to (1.1). We then use this formula to define solutions in
L1

+.

Theorem 1. (a) Assume f0 ∈ L1
+ ∩ C1. There exists a unique solution to (1.1) with

f(x, 0) = f0(x). The solution is given by the formula

f(x, t) = ρ(t)f0(x + t), ρ(t) =

∫∞
t f0(y) dy
∫∞
0 f0(s) ds

. (1.4)

(b) The formula (1.4) defines a continuous dynamical system in L1
+. That is the map

(t, f0) %→ f(·, t) is in C([0,∞) × L1
+, L1

+).

Proof. (a) Observe that the kinetic equation (1.1) scales like a linear equation. There-
fore, without loss of generality we may assume that

M(0) =

∫ ∞

0
f0(s) ds = 1, ρ(t) =

∫ ∞

t
f0(s) ds. (1.5)

We first check the solution formula under the assumption that f0 is a smooth strictly
positive probability density and f(x, t) is given by (1.4). Then the total number of
particles is

M(t) =

∫ ∞

0
f(x, t) dt = ρ(t)

∫ ∞

0
f0(x + t) dx = ρ(t)2. (1.6)

We differentiate the expression for f(x, t) in equation (1.4) to find

∂tf − ∂xf = −f0(t)f0(x + t)
(1.4)
= −f(0, t)f(x, t)

ρ(t)2
= −f(0, t)

M(t)
f(x, t). (1.7)

When f0 has compact support, the solution formula (1.4) continues to hold for all t, and
f(x, t) ≡ 0 when t ≥ t∗, where t∗ = inf{x

∣∣∫∞
x f0(r) dr = 0}.

(b) The main subtlety in defining solutions to (1.1) directly with arbitrary L1
+ initial

data is that the pointwise boundary value f(0, t) is not defined in general, even if we know
that f(·, t) ∈ L1

+(0,∞). However, the solution formula (1.4) clearly defines a function
in L1

+. Further, since the shift is continuous in L1 with the norm topology, and ρ(t)
is continuous, the solution map is continuous in L1

+ with the norm topology. It is the
unique extension to L1

+ of the densely-defined solution map of (a). !
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In all that follows we will assume that the normalization (1.5) holds. We will use the
following notation for distribution functions

F (x, t) =

∫ x

0
f(y, t) dy, F0(x) =

∫ x

0
f0(y) dy. (1.8)

To fix ideas, it is useful to note the following solution. When f0(x) = 10<x≤1 we find
that

M(t) = (1 − t)2, f(x, t) = (1 − t)10<x<1−t, 0 ≤ t ≤ 1. (1.9)

Finally, let us note that the solution formula (1.4) has a formal extension to measure-
valued solutions. The distribution function for an L1

+ solution satisfies

F (x, t) = ρ(t) (F0(x + t) − F0(t)) . (1.10)

This formula is meaningful when F0 is an increasing càdlàg function that is not necessarily
continuous. However, since t %→ ρ(t) is now discontinuous in general, the map t %→ F (·, t)
does not define a continuous dynamical system. This issue is closely tied to the main well-
posedness theorem of [20]. Our main goal in this paper is to establish a hydrodynamic
limit theorem via concentration estimates and the continuity of F0 plays a role in the
proof. For this reason, we do not consider measure-valued solutions in this paper, though
formula (1.10) will be useful.

1.3.2. The queueing model. The particle system is a queueing model defined as follows.
Let Rm

< denote the set of vectors x ∈ Rm
+ with m strictly ordered coordinates 0 < x1 <

x2 < . . . < xm. Each state of the particle system is a vector x ∈ Rm
< for an even, positive

integer m, and the state space is the disjoint product E =
∐

m∈2N Rm
< . The evolution

of the system from an arbitrary point x ∈ Rm
+ is as follows. For 0 ≤ t < τ := x1, each

particle drifts to the left at unit speed,

xi(t) = xi − t, 1 ≤ i ≤ m, (1.11)

until the left-most particle x1 hits the origin at time τ . At the hitting time, τ , the particle
at the origin is removed from the system, along with another particle chosen uniformly.
Precisely, an index j ∈ {2, . . . , m} is chosen uniformly, and the particle xj(τ ) = xj − τ
is removed. The vector of size m − 2 that remains is the new state of the system. If
m ≥ 4, this process of deterministic drift followed by removal of a random particle is
repeated. If not, the process terminates. It is intuitively clear that the particle system is
well-defined, and it is easy to check that it satisfies the rigorous definition of a piecewise
deterministic Markov process proposed by Davis [4].

We will fix a convenient initial condition for the particle system in order to state the
concentration estimates for the empirical measure. The conclusions hold in somewhat
greater generality, but this family of initial conditions is natural, and allows us to convey
the main ideas in a simple fashion.

Assume given an initial probability density f0 ∈ L1
+, and an even positive integer n,

and recall that F0(x) =
∫ x
0 f0(r) dr denotes the cumulative distribution function of f0.

Let

ak = F−1
0

(
2k − 1

2n

)
, 1 ≤ k ≤ n. (1.12)
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682 JOE KLOBUSICKY AND GOVIND MENON

We assume that the n-particle system starts at the state x(0) = (a1, a2, . . . , an). The
state of the system becomes random after time τ1 = x1(0), when the left-most particle
hits the origin. The hitting times are denoted τ1 < τ2 < . . . < τn/2. The state of the
system is a càdlàg path x(t) in E which jumps at the times τk, 1 ≤ k ≤ n/2. We let Pn

denote the law of the process x(t). When n is fixed, we simply write P.
1.3.3. Concentration estimates. We keep track of the loss of particles at the origin

through the distribution function

Ln(t) =
1

n

n/2∑

i=1

1t≥τi . (1.13)

Loosely speaking, Ln(t) is the ‘internal clock’ of the system. The main subtlety in
the problem is that the number of jumps before a tagged particle is removed from the
system – either because it hits the origin, or because it is randomly chosen for deletion
– is random. However, we expect that in the n → ∞ limit, the rate of loss will be
determined by the boundary value f(0, t). In order to express a law of large numbers
for Ln, we define the limiting loss distribution function L(t) for equation (1.1) by the
conservation law

2L(t) + M(t) = M(0) = 1, or L(t) =
1

2

(
1 − ρ(t)2

)
. (1.14)

The factor of 2 reflects the fact that two particles are lost each time a particle hits the
origin. Observe that L(t) is continuous in time, because of our assumption that f0 ∈ L1

+.
Continuity is used in the proof of the following uniform concentration estimate for Ln.

Theorem 2. For every ε > 0 there exists an nε such that for n ≥ nε

Pn

(
sup

t∈[0,∞)
|Ln(t) − L(t)| >

ε

2

)
≤ 2

ε
e−8nε2 . (1.15)

The parameter nε is given implicitly by nεε = 4C log nε where C is a universal constant.

1.3.4. Concentration of the empirical measure. The cone of positive measures on R+

is denoted by M. The duality pairing between µ ∈ M and a continuous function
ϕ ∈ C(R+) is expressed as

⟨µ,ϕ⟩ =

∫ ∞

0
ϕ(x)dµ(x). (1.16)

The space M equipped with the weak-* topology may be metrized using the space of
bounded Lipschitz functions [5],

BL(R+) = {ϕ ∈ C(R+) : ∥ϕ∥BL < ∞}, (1.17)

∥ϕ∥BL = sup
x

|ϕ(x)| + sup
x,y

|ϕ(x) − ϕ(y)|
|x − y| . (1.18)

The distance between two measures µ, ν ∈ M in the BL-metric is

d(µ, ν) = sup
∥ϕ∥BL≤1

⟨µ − ν,ϕ⟩. (1.19)
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The empirical measure defined by each state x(t) ∈ Rm
+ , and the empirical measure

defined by x(0) = (a1, a2, . . . , an) are denoted

Fn(t) =
1

n

m∑

i=1

δxi(t), Fn
0 =

1

n

n∑

i=1

δai . (1.20)

Finally, the following notation is convenient. For each h > 0, we define the shift operator
Sh acting on bounded, measurable functions, and its dual operator S∗

h acting on measures,
as follows:

(Shϕ) (x) = ϕ(x − h)1x≥h, (S∗
h)µ(x) = µ(x + h) − µ(h), x ∈ (0,∞). (1.21)

(Here and in what follows, we use the same notation for a measure and its càdlàg distri-
bution function, µ(x) = µ([0, x)) when there is no possibility of confusion.) The solution
formula (1.10) may be expressed in terms of the shift map as F (·, t) = ρ(t)S∗

t F0(·).

Theorem 3. There exist universal constants K,κ > 0, such that for every ε > 0 and
T > 0 there exists nε, Mε, Nε such that

Pn

(
sup

t∈[0,T ]
d (Fn(t), ρ(t)S∗

t F0) > ε

)
≤ K

(
MεNε +

1

ε

)
e−κnε2 . (1.22)

Let Q denote the product measure
∏∞

n=2 Pn. By the Borel-Cantelli lemma, we obtain
a strong law of large numbers.

Corollary 1. For every T > 0,

lim
n→∞

sup
t∈[0,T ]

d (Fn(t), ρ(t)S∗
t F0) = 0, Q a.s. (1.23)

The ε dependence on the parameters in the theorem is as follows. First, nε must be
chosen so that the condition of Theorem 2 holds, and so that the distance d(F0, Fn

0 )
between the initial empirical measure, Fn

0 , and the data, F0, is O(ε) for n ≥ nε. The
parameter Mε depends on the tail of the initial data F0, but not on T . Given ε > 0,
let x∗ be chosen so that 1 − F0(x) < ε for x > x∗. The space of bounded Lipschitz
functions on [0, x∗] is totally bounded, and Mε is the smallest number of ε-balls required
to cover the space BL([0, x∗]). This number may be estimated using the Kolmogorov-
Tikhomirov estimate [16]. The parameter Nε is related to the modulus of continuity of
F0 and depends on T . Given ε > 0, let h be chosen so that supx F0(x + h) − F0(x) < ε.
Then Nε = T/h.

1.3.5. Outline of the paper. We establish Theorem 2 by first studying the combina-
torics of a ‘diminishing urn’ model in Section 2. Once Theorem 2 has been established,
we introduce a second simplified model – uniform thinning of a finite point process –
and establish a concentration inequality for this process using Maurey’s concentration
inequality for the permutation group. We then combine these estimates with some simple
regularity estimates for the empirical measure, Fn(t), to establish Theorem 3.

2. The concentration estimate for Ln(t). Recall that the initial data for the
particle system is the state x = (a1, . . . , aN ) defined in equation (1.12). Given t > 0,
suppose w is the largest integer such that aw ≤ t. Since all particles move to the left
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684 JOE KLOBUSICKY AND GOVIND MENON

at unit velocity, the particles a1, . . . , aw are all removed from the system by time t.
However, these particles could be removed either because they hit the origin, or because
they were randomly selected. The loss measure nLn(t) counts only the particles that hit
the origin. Thus, in order to estimate it, we must distinguish between the two possibilities
for removing particles. The combinatorics of this process does not depend on the spatial
arrangement of the points. In fact, a closely related process appeared as a model of
canibbalistic behavior in a population, and was analyzed by Pittel [23]. We follow his
work in the next subsection.

2.1. The diminishing urn. Let r ≤ n be positive integers. Consider an urn with w
white balls and r = n−w red balls. Balls are removed randomly, with a draw occurring
in the following way. First, a white ball is removed from the urn. Next, another ball is
chosen randomly from the remaining balls. This process ends when all the white balls
have been removed.2 Our interest lies in the quantity dn,r, the total number of draws,
and Xn,r, the terminal number of red balls. We will prove results about Xn,r. These are
equivalent to results about dn,r. Indeed, given Xn,r, the total number of balls removed
from the urn is n−Xn,r, and since two balls are removed at each draw, the total number
of draws is

dn,r =
n − Xn,r

2
. (2.1)

In order to state the limiting law for Xn,r we define the functions

φ(x) = x2, and ψ(x) = 2x2(1 − x)2, x ∈ [0, 1]. (2.2)

Theorem 4. (a) Assume limn→∞ r/n = ρ ∈ (0, 1). Then the random variables

Xn,r − nφ(ρ)

(nψ(ρ))
1
2

and
2dn,r − n(1 − φ(ρ))

(nψ(ρ))
1
2

(2.3)

converge in distribution to the standard normal law.
(b) For every ε > 0 there exists nε > 0 such that for all positive integers n and r with

r/n = ρ ∈ (0, 1) and n ≥ nε

P
(∣∣∣∣

Xn,r

n
− φ(ρ)

∣∣∣∣ > ε

)
≤ 2 exp

(
− nε2

4ψ(ρ)

)
, (2.4)

P
(∣∣∣∣

dn,r

n
− 1

2
(1 − φ(ρ))

∣∣∣∣ > ε

)
≤ 2 exp

(
− nε2

ψ(ρ)

)
. (2.5)

The parameter nε is given implicitly by nεε2 = 4Cε log nε where C > 0 is a universal
constant.

The theorem is proved by computing the asymptotics of the Laplace transform of the
law of Xn,r, given by

fn,r(z) = E [exp(zXn,r)] , −∞ < z < ∞. (2.6)

2In Pittel’s model either one white ball is removed, or two white balls are removed and one red ball
is added.
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If the number of white ball is zero or one, we find

fn,n(z) = enz, n ≥ 1, (2.7)

fn,n−1(z) = e(n−1)z, n ≥ 2. (2.8)

In the general case, we use the Markov property of Xn,r to obtain the recurrence relation

fn,r(z) =

{
(1 − r

n−1 )fn−2,r + r
n−1fn−2,r−1, 0 ≤ r ≤ n − 2,

fn−1,r−1, r = n − 1.
(2.9)

This relation can be expressed compactly in terms of a linear operator

fn,r(z) = Tnr [fn−2,·(z)] , 0 ≤ r ≤ n − 1, n ≥ 2. (2.10)

We will show below that the leading order asymptotics of fn,r(z) as n → ∞ is given by
the Laplace transform of a normal random variable

gn,r(z) = exp

(
znφ(ρ) +

z2

2
nψ(ρ)

)
, ρ =

r

n
. (2.11)

We assume for now that φ and ψ are unknown – equation (2.2) follows from substituting
the ansatz (2.11) in (2.9) and evaluating the leading order terms. To this end, observe
that

gn−2,r(z) = exp

(
z(n − 2)φ

(
r

n − 2

)
+

z2

2
(n − 2)ψ

(
r

n − 2

))
. (2.12)

Therefore, by elementary algebra

L1 := log

(
gn−2,r(z)

gn,r(z)

)
= zn

[
φ

(
r

n − 2

)
− φ

( r

n

)]
− 2zφ

(
r

n − 2

)
(2.13)

+
z2

2
n

[
ψ

(
r

n − 2

)
− ψ

( r

n

)]
− z2

2
· 2ψ

(
r

n − 2

)
. (2.14)

Similarly,

L2 := log

(
gn−2,r−1(z)

gn,r(z)

)
= zn

[
n − 2

n
φ

(
r − 1

n − 2

)
− φ

( r

n

)]
(2.15)

+
z2

2
n

[
n − 2

n
ψ

(
r − 1

n − 2

)
− ψ

( r

n

)]
. (2.16)

The first-order asymptotics of the ratios in the arguments of φ and ψ are clearly

r

n − 2
= ρ

(
1 +

2

n

)
+ O

(
1

n2

)
,

r − 1

n − 2
= ρ +

2ρ− 1

n
+ O

(
1

n2

)
. (2.17)

We use the above expressions, the arguments of φ, and Taylor’s theorem to obtain

φ

(
r

n − 2

)
= φ(ρ) +

2

n
ρφ′(ρ) + O

(
1

n2

)
, (2.18)

φ

(
r − 1

n − 2

)
= φ(ρ) +

2ρ− 1

n
φ′(ρ) + O

(
1

n2

)
. (2.19)

More precisely, the error terms above satisfy
∣∣∣∣O

(
1

n2

)∣∣∣∣ ≤
C

n2
max

ρ∈(0,1)
|φ′′(ρ)|. (2.20)
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Similar expansions for ψ(x) may be applied to (2.13) and (2.15), with the error terms
again dominated by maxρ∈(0,1) |ψ′′(ρ)|. We substitute the expansion for φ and ψ into
equations (2.13) to obtain

L1 = z(2ρφ′(ρ) − 2ρ) +
z2

2
(2ρψ′(ρ) + 2ρ) + O

(
|z|
n

)
= Az + C

z2

2
+ O

(
|z|
n

)
.

Similarly,

L2 = z[(2ρ− 1)(φ′(ρ) − 2φ(ρ))] +
z2

2
[(2ρ− 1)(ψ′(ρ) − 2ψ(ρ))] + O

(
|z|
n

)

:= Bz + D
z2

2
+ O

(
|z|
n

)
.

We use the above expressions and equations (2.13) and (2.15) to find

gn−2,r(z)

gn,r(z)
= 1 + Az + (A2 + C)

z2

2
+ O

(
|z|
n

+ |z|3
)

, (2.21)

gn−2,r−1(z)

gn,r(z)
= 1 + Bz + (B2 + D)

z2

2
+ O

(
|z|
n

+ |z|3
)

. (2.22)

We now use the recurrence relation (2.9) to obtain

Tn,r[gm−2,·](z)

gm,r(z)
= 1 + z [ρB + (1 − ρ)A]

+
z2

2
[ρ(B2 + D) + (1 − ρ)(A2 + C)] + O

(
|z|
n

+ |z|3
)

.

The coefficient of z vanishes if the following differential equation holds:

0 = ρB + (1 − ρ)A = ρφ′(ρ) − 2φ(ρ), φ(1) = 1. (2.23)

(The initial condition is determined by the extreme case when r = n.) We thus find
φ(ρ) = ρ2 as in (2.2). Similarly, the coefficient of z2 vanishes if the following differential
equation is satisfied:

0 = ρ(B2 + D) + (1 − ρ)(A2 + C) = ρψ′(ρ) − 2ψ(ρ) + 4ρ3(1 − ρ). (2.24)

Again the condition ψ(1) = 0 follows from the extreme case when r = n. By direct
solution, or inspection, we see that this equation also has the polynomial solution ψ(ρ) =
2ρ2(1 − ρ)2. This establishes (2.2).

Since maxρ∈[0,1] |φ′′(ρ)| and maxρ∈[0,1] |ψ′′(ρ)| are bounded by universal constants, the
error terms are uniformly controlled if the domain of z is suitably restricted. We state
these results as in [23, Lemma 1].

Lemma 1. Fix u > 0 and consider z such that |z|
√

n ≤ u. Then uniformly over 0 ≤ 2 ≤
m ≤ n and 0 ≤ r ≤ m,

Tm,r[gm−2,·(z)] = gm,r(z) exp(O(|z|m−1)). (2.25)

We apply this lemma and sum over the errors incurred as m increases from 2 to n, to
obtain the following estimate.
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Lemma 2. Under the assumptions of Lemma 1, the following estimates hold uniformly
over 2 ≤ m ≤ n and 0 ≤ r ≤ m,

fm,r(z) = gm,r(z) exp [O(|z| log(m))] . (2.26)

The proof of both the lemmas and the first assertion in Theorem 4 is identical to that
in [23]. The only substantial difference here is the computation of the functions φ(ρ) and
ψ(ρ). For these reasons we refer the reader to [23] for these proofs.

The concentration inequality (2.4) follows easily from Lemma 2. To see this, rewrite
Lemma 2 as

fm,r(
u√
n

) = E
[
exp

(
u√
n

Xn,r

)]
≤ gn,r

(
u√
n

)
exp

(
C|u| log(n)√

n

)
(2.27)

where u ∈ R and C > 0 is a sufficiently large constant. This immediately implies

E
[
exp

(
u√
n

(Xn,r − nφ(ρ))

)]
≤ exp

(
u2

2
ψ(ρ)

)
exp

(
C|u|√

n
log n

)
. (2.28)

The concentration inequality (2.4) is now obtained as follows. For brevity, let

Y =
Xn,r − nφ(ρ)√

n
, and fix a > 0. (2.29)

Then for any u > 0, by Chebyshev’s inequality

P(Y > a) ≤ E
[
eu(Y −a)1Y >a

]
≤ e−au exp

(
u2

2
ψ(ρ)

)
exp

(
C|u|√

n
log n

)
. (2.30)

We choose u to minimize the product of the first two terms of this expression (the last
term is asymptotically negligible). This yields u = a/ψ(ρ) and

P(Y > a) ≤ exp

(
− a2

2ψ(ρ)

)
exp

(
Ca

ψ(ρ)
√

n
log n

)
. (2.31)

A similar estimate for P(Y < −a) is obtained by essentially the same calculation. Finally,
writing a = ε

√
n, we obtain

P
(∣∣∣∣

Xn,r

n
− φ(ρ)

∣∣∣∣ > ε

)
≤ 2 exp

(
− 1

2ψ(ρ)

(
nε2 − 2Cε log n

))
. (2.32)

Let nε be defined as in the statement of Theorem 4. Then for n ≥ nε,

nε2 − 2Cε log n ≥ 1

2
nε2, (2.33)

and (2.4) follows. The assertions about dn,r in Theorem 4 follow from (2.1) and (2.4).
This completes the proof of Theorem 4.

2.2. From dn,r to Ln(t). We now return to the queueing model. Fix t > 0, let w be
the largest integer such that aw ≤ t, and r = n − w. Color the particles a1 . . . aw white,
and the particles aw+1, . . . , an red. Since aw ≤ t < aw+1 and all particles move to the
left at unit speed, by time t all the white particles have been removed. Further, any
red particles lost have only been removed by random selection, not by hitting the origin.
Thus, the random variable nLn(t) which counts the number of particles removed at the
origin in the queueing model, is exactly the same as the number of draws dn,r in the urn

Licensed to Brown Univ. Prepared on Tue Nov 21 13:12:44 EST 2017 for download from IP 128.148.231.34.
License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf



688 JOE KLOBUSICKY AND GOVIND MENON

model. Thus, nLn(t) has the same distribution as dn,r. As we let n → ∞ with t > 0
fixed,

ρ = ρ(t) = lim
n→∞

r

n
= 1 − F0(t) =

∫ ∞

t
f0(r) dr. (2.34)

Therefore, using the identities (1.14) and (2.2), the expected value of Ln(t) as n → ∞ is

1

2
(1 − φ(t)) =

1

2

(
1 − (1 − F0(t))

2
)

= L(t). (2.35)

Since dn,r has the same law as nLn(t), we see that (2.5) is equivalent to the following
concentration estimate:

P (|Ln(t) − L(t)| > ε) ≤ 2 exp

(
− nε2

ψ(ρ)

)
≤ 2e−8nε2 , n ≥ nε, (2.36)

since maxρ∈[0,1] ψ(ρ) = 1/8.
2.3. Proof of Theorem 2. We now use the pointwise estimate (2.36) to obtain a uniform

estimate over the interval t ∈ [0,∞).
We define a partition 0 = t0 < t1 < · · · < tn−1 < tP of the interval [0,∞) as follows.

We set t0 = 0 and

ti+1 = inf
s>ti

{s : L(s) − L(ti) ≥ ε/2}. (2.37)

These points are well-defined and strictly increasing because as equation (1.14) shows,
L is a positive, continuous, increasing function with limit L(∞) = 1/2. Since L is
increasing, it is immediate that

0 ≤ L(t) − L(ti) ≤
ε

2
, t ∈ [ti, ti+1), i = 0, . . . , P − 1, (2.38)

and P ≤ ε−1 since L(∞) = 1/2.
The difference Ln(t) − L(t) at an arbitrary point t ∈ [0,∞) can be controlled using

estimate (2.36) at the endpoints {ti}P
i=0. Each point t ∈ [0,∞) lies in a unique interval

[tj , tj+1) for some j ∈ {0, . . . , P}, where we denote tP+1 = ∞. Since both Ln and L are
increasing, càdlàg functions

Ln(t) − L(t) ≤ Ln(tj+1) − L(tj) = (Ln(tj+1) − L(tj+1)) + (L(tj+1) − L(tj))

≤ max
1≤i≤P

|Ln(ti) − L(ti)| +
ε

2
. (2.39)

(We have shifted the index on the second term, and used the fact that Ln(∞) = L(∞) =
1/2.) Similarly, it follows that for each t ∈ [0,∞)

L(t) − Ln(t) ≤ L(tj+1) − Ln(tj) = (L(tj+1) − L(tj)) + (L(tj) − Ln(tj))

≤ ε

2
+ max

1≤i≤P
|Ln(ti) − L(ti)| . (2.40)

(The lower index is 1 because Ln(t0) = L(t0) = 0.) Since the above estimate is uniform
in t,

sup
t∈[0,∞)

|Ln(t) − L(t)| ≤ ε

2
+ max

1≤i≤P
|Ln(ti) − L(ti)| . (2.41)
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We then use our pointwise concentration estimate (2.36) to obtain

P
(

sup
t∈[0,∞)

|Ln(t) − L(t)| ≥ ε

)
≤ P

(
max

1≤i≤P
|Ln(ti) − L(ti)| ≥

ε

2

)

≤
P∑

i=1

P
(
|Ln(ti) − L(ti)| ≥

ε

2

) (2.36)
≤ 2

ε
max

1≤i≤P
exp

(
− nε2

ψ(ρ(ti)

)
≤ 2

ε
e−8nε2 .

In the last step, we have used the fact that P ≤ ε−1; chosen nε so that C log nε/nε = ε
and assumed n ≥ nε; and replaced ψ(ρ(ti)) by the uniform upper bound maxρ∈[0,1] ψ(ρ) =
maxρ∈[0,1] 2ρ

2(1 − ρ)2 = 1/8. This completes the proof of Theorem 2.

3. A concentration inequality for uniform thinning. The dynamics of the
queueing model consists of translation and thinning. In this section we prove a con-
centration inequality for the thinning of a point-set. As in Section 2 the result is stated
in a manner that is independent of the queueing model.

Assume given a set of r points b1 < b2 < . . . < br on R+. We thin this set by choosing
a subset bj1 , bj2 , . . . , bjs of size s ≤ r from this set of particles uniformly. We denote the
empirical measure of the full and thinned subsets by

ν =
1

r

r∑

i=1

δbj , µ =
1

r

s∑

i=1

δbji
. (3.1)

Let E denote the set of empirical measures µ obtained by thinning as above. There are(r
s

)
distinct thinned subsets; thus |E| =

(r
s

)
. Let Pr,s denote the uniform probability

measure on E .

Theorem 5. Assume ϕ : R+ → R is a bounded measurable function. For every ε > 0

Pr,s

(
µ :

∣∣∣⟨µ,ϕ⟩ − s

r
⟨ν,ϕ⟩

∣∣∣ > ε
)
≤ 2 exp

(
− rε2

64∥ϕ∥2
∞

)
. (3.2)

Corollary 2. For every ε > 0, there exists a positive integer M(ε, ν) > 0 such that

Pr,s

(
µ : d

(
µ,

s

r
ν
)

> 2ε
)
≤ 2M exp

(
−rε2

64

)
. (3.3)

Proof of Theorem 5. 1. This theorem is a direct consequence of Maurey’s concentra-
tion inequality on the permutation group, once it has been suitably reformulated. To
this end, let Sm denote the permutation group acting on m elements. We first show
that E is in bijection with the quotient space Cr,s = Sr/(Ss × Sr−s). To construct this
bjiection, we associate to each π ∈ Sr the empirical measure

µ(π) =
1

r

s∑

i=1

δbπi
. (3.4)

Since µ(π) depends only on the first s elements of π, the map π %→ µ(π) is invariant
under the action of Sr−s on the last r − s elements of π. It is also clear from equation
(3.4) that π %→ µ(π) is invariant under the action of Ss on the first s elements of π.
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2. We equip Sr with the normalized Hamming distance

dH(π, τ ) =
1

r

r∑

i=1

1{πi ̸=τi}, π, τ ∈ Sr. (3.5)

Each bounded Lipschitz function ϕ : R+ → R may be lifted into a Lipschitz map fϕ :
Sr → R by setting

fϕ(π) = ⟨µ(π),ϕ⟩ =
1

r

s∑

i=1

ϕ(bπi). (3.6)

Suppose two permutations π, τ ∈ Sr differ at p indices (i1, . . . , ip). Then dH(π, τ ) = p/r,
and we find

|fϕ(π) − fϕ(τ )| ≤ 1

r

p∑

k=1

|ϕ(xπik
) − ϕ(xτik

)| ≤ 2∥ϕ∥∞dH(π, τ ). (3.7)

Thus, the Lipschitz constant of fϕ is not larger than 2∥ϕ∥∞. (Observe that we did
not need to assume that ϕ is bounded and Lipschitz; fϕ defines a Lipschitz function on
(Sr, dH) provided ϕ is bounded and measurable.)

3. The following concentration inequality holds on (Sr, dH) (see the discussion on Lévy
families in §6.5 and §7.6 in [21]; the result first appears in [19]).

Theorem 6. Maurey’s inequality. Let f be an M -Lipschitz function on (Sr, dH), and
Qr be the uniform measure on Sr. Then for any ε ≥ 0

Qr(π : |f(π) − EQr (f) | > ε) ≤ 2 exp

(
−rε2

16M2

)
. (3.8)

4. We apply Maurey’s inequality to (E , Pr,s) as follows. Given µ ∈ E and ϕ, by the
construction above ⟨µ,ϕ⟩ = fϕ(π) for each π ∈ Sr such that µ(π) = π. Thus, lifting
expectations over Pr,s into expectations over Qr,s by summing over all π in the equivalence
class of µ, we find that

EQr,sfϕ(π) = EPr,s⟨µ,ϕ⟩ =
s

r
⟨ν,ϕ⟩. (3.9)

Similarly, the measure of the set on which deviations are larger than ε is identical. That
is,

Pr,s

(
µ :

∣∣∣⟨µ,ϕ⟩ − s

r
⟨ν,ϕ⟩

∣∣∣ > ε
)

= Qr(π : |fϕ(π) − EQr (fϕ) | > ε). (3.10)

Theorem 5 now follows from Maurey’s inequality and the fact that fϕ is 2∥ϕ∥∞-Lipschitz.
!

Proof of Corollary 2. Assume that x∗ > 0 is chosen so ν([x∗,∞)) < ε/2. Since µ is
obtained by thinning ν, this estimate also holds for µ.

Since the space of bounded Lipshitz functions on any finite interval is totally bounded,
there exists an integer M(ε) and a set of functions ϕi ∈ BL(R+), i = 1, . . . , M(ε) with
∥ϕ∥BL ≤ 1, such that

d(µ,
s

r
ν) ≤ max

i∈1,...,M
⟨µ − s

r
ν,ϕi⟩ + ε. (3.11)
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Therefore,

Pr,s

(
µ : d(µ,

s

r
ν) ≥ 2ε

)
≤ Pr,s

(
max

1≤i≤M(ε,ν)

∣∣∣⟨µ − s

r
ν,ϕi⟩

∣∣∣ ≥ ε

)

≤
M(ε)∑

i=1

Pr,s

(∣∣∣⟨µ − s

r
ν,ϕi⟩

∣∣∣ ≥ ε
)

,

and (3.3) follows by an application of Theorem 5. !
Remark 7. Observe that the constant M(ε, ν) depends only the tails of ν. We will

apply Corollary 2 to the approximations Fn
0 of F0. For these approximations, we may

choose x∗ such that

sup
n≥1

Fn
0 ([x∗,∞)) < ε, (3.12)

so that M is independent of n. In fact, it may be estimated by the Kolmogorov-
Tikhomirov calculation of metric entropy [16].

4. Concentration of the empirical measure at one point. The main observa-
tion that underlies this section is as follows. Fix t > 0 and let ρ(t) =

∫∞
t f0(r) dr. For

each even positive integer n, set r = ⌊ρ(t)n⌋ and assume the empirical measure Fn
0 is

chosen as in (1.12). As in Section 2.2, we color the particles a1 . . . aw white, w = n − r,
and the particles aw+1, . . . , an red. By time t all the white particles have been removed
and only a subset of size Xn,r of the red particles remain. In the urn model we ignored
the positions of these particles, and focused only on the number of particles removed.
Now we examine their positions more carefully. Since at each step, particles are removed
uniformly, and the particles move at unit speed to the left, at time t, Fn(t) is given by
an Xn,r(t) thinning of the shifted empirical measure with atoms at aw+1, . . . , an.

We will apply Theorem 2 and Theorem 5 to obtain the following concentration estimate
for the deviation from the solution for finite n. Recall that the shift operator was defined
in (1.21).

Theorem 8. There exists a constant M(ε, F0) such that for every t > 0 and every ε > 0

P (d (Fn(t), ρ(t)S∗
t Fn

0 ) > ε) ≤ 2(M + 1) exp

(
−nε2

256

)
, n ≥ nε. (4.1)

The parameter nε is defined as in Theorem 4.

Proof. 1. In order to simplify the main calculation we will assume that t is chosen so
that r = ρ(t)n denote the number of particles in the shifted measure S∗

t Fn
0 . In general,

r = ⌊ρ(t)n⌋, so that ρ− 1/n ≤ r/n ≤ ρ + 1/n, and the calculations may be modified to
include an asymptotically negligible contribution.

2. We define Xn,r as in Section 2. Let A denote the event {d (Fn(t), ρ(t)S∗
t Fn

0 ) > ε}
and B denote the event {|Xn,r/r − ρ| ≤ ε/2}. Then clearly

P(A) = P(A |B )P(B) + P(A |Bc )P(Bc) ≤ P(A |B ) + P(Bc). (4.2)
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3. The second term in (4.2) is controlled by Theorem 4. Since r/n = ρ and by
equation (2.2), φ(ρ) = ρ2 and ψ(ρ) = 2ρ2(1 − ρ)2, we obtain

P(Bc) = P
(∣∣∣∣

Xn,r

r
− ρ

∣∣∣∣ >
ε

2

)
≤ 2 exp

(
− nε2

16(1 − ρ)2

)
. (4.3)

4. We control the first term on the right hand side of (4.2) as follows. For each
realization in B, we have

d (Fn(t), ρ(t)S∗
t Fn

0 ) ≤ d

(
Fn(t),

Xn,r

r
S∗

t Fn
0

)
+ d

(
Xn,r

r
S∗

t Fn
0 , ρ(t)S∗

t Fn
0

)

≤ d

(
Fn(t),

Xn,r

r
S∗

t Fn
0

)
+

ε

2
.

The last inequality above holds because of the uniform estimate
∣∣∣∣

〈
Xn,r

r
S∗

t Fn
0 − ρ(t)S∗

t Fn
0 ,ϕ

〉∣∣∣∣ =

∣∣∣∣
Xn,r

r
− ρ(t)

∣∣∣∣ |⟨S
∗
t Fn

0 ,ϕ⟩| ≤ ε

2
, (4.4)

for all realizations in B and ∥ϕ∥BL ≤ 1.

5. Given Xn,r the law of Fn(t) is obtained by a uniform thinning of S∗
t Fn

0 from r to
Xn,r particles. Therefore, we may apply Corollary 2 with

ν =
n

r
S∗

t Fn
0 , µ =

n

r
Fn(t), s = Xn,r,

to obtain the uniform estimate

P(A |B ) ≤ Pr,s

(
d(µ,

s

r
ν) >

ρε

2

)
≤ 2M exp

(
− nε2

256ρ

)
. (4.5)

Using Remark 7, we note that the constant M is independent of n and depends only on
the tails of F0.

6. The rate constants (1−ρ)−2 and ρ−1 in estimates (4.3) and (4.5) are bounded below
by 1. Thus, the rate constant 1/256 is a uniform lower bound for the rate constant. !

5. Uniform concentration of the empirical measure. We prove Theorem 3 in
this section. The proof relies on the one-point concentration estimate from the previous
section, and some regularity estimates for the empirical measure.

5.1. Regularity estimates for the empirical measure. Recall the shift operator Sh de-
fined in (1.21). Note that even if ϕ ∈ BL, in general Shϕ has a jump at x = h. Given a
measure µ ∈ M let µ(x) = µ((0, x)) denote its distribution function. In order to define
a modulus of continuity for S∗

h, we introduce

ω(h; µ) = sup
x≥0

(µ(x + h) − µ(x)) . (5.1)

Lemma 3. Assume µ ∈ M and h > 0. Then

d (µ, S∗
hµ) ≤ ω(h; µ) + µ(∞)h. (5.2)
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Proof. Choose a bounded Lipschitz test function ϕ with ∥ϕ∥BL ≤ 1. We use the
definition (1.21) to obtain

⟨µ − S∗
hµ,ϕ⟩ = ⟨µ,ϕ− Shϕ⟩ =

∫ h

0
ϕ(x)µ(dx) +

∫ ∞

h
(ϕ(x) − ϕ(x − h))µ(dx)

≤ ∥ϕ∥∞µ(h) + (Lip(ϕ))h (µ(∞) − µ(h)) ≤ ω(h; µ) + µ(∞)h.

We now take the supremum over all ϕ with ∥ϕ∥BL ≤ 1 to obtain (5.2). !

Lemma 4. Assume f0 ∈ L1
+ and the empirical measures Fn

0 is chosen as in (1.12). Then

ω(h; Fn
0 ) ≤ ω(h; F0) +

1

n
. (5.3)

Proof. The choice of empirical measures in (1.12) ensures the lower and upper bounds

Fn
0 (x) − 1

2n
≤ F0(x) ≤ Fn

0 (x) +
1

2n
, x ∈ (0,∞). (5.4)

Therefore,

Fn
0 (x + h) − Fn

0 (x) ≤ F0(x + h) − F0(x) +
1

n
≤ ω(h; F0) +

1

n
. (5.5)

!

Lemma 5. For each t > t0 ≥ 0, the empirical measure for the particle system satisfies
the continuity estimate

d
(
Fn(t), S∗

t−t0F
n(t0)

)
≤ 2 (Ln(t) − Ln(t0)) . (5.6)

Proof. Let r and s denote the number of particles in Fn(t0) and Fn(t), so that the
difference r − s = 2n(Ln(t) − Ln(t0)). For convenience, let yi, i = 1, . . . , s and zj ,
j = 1, . . . , r− s denote the particles of x(t0) that are not removed, and removed by time
t, respectively. Then

Fn(t0) =
1

n

s∑

i=1

δyi +
1

n

r−s∑

j=1

δzj , Fn(t) =
1

n

s∑

i=1

δyi−(t−t0). (5.7)

Therefore, for each ϕ ∈ BL with ∥ϕ∥BL ≤ 1,

∣∣⟨Fn(t) − S∗
t−t0F

n(t0),ϕ⟩
∣∣ ≤ 1

n

r−s∑

i=1

∥ϕ∥∞ ≤ 2 (Ln(t) − Ln(t0)) . (5.8)

!

Lemma 6. For each t > t0 ≥ 0,

|ρ(t) − ρ(t0)| ≤ ω(t − t0; F0). (5.9)

Proof. This follows immediately from equations (1.8) and (5.1)

|ρ(t) − ρ(t0)| ≤
∫ t

t0

f0(x) dx ≤ ω(t − t0; F0). (5.10)

!
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We will combine these estimates to control d(Fn(t), ρ(t)S∗
t Fn

0 ) on a finite interval
[0, T ]. To this end, consider T > 0, a positive integer N (fixed; to be chosen later), and
the uniformly spaced grid

0 = t0 < t1 < . . . < tN = T, ti+1 − ti =
T

N
:= hN , i = 0, . . . , N − 1. (5.11)

Lemma 7.

sup
t∈[0,T ]

d (Fn(t), ρ(t)S∗
t Fn

0 ) (5.12)

≤ max
0≤i≤N

d
(
Fn(ti), ρ(ti)S

∗
ti

Fn
0

)
+ 4

(
∥Ln − L∥L∞ + ω(hN ; F0) + hN +

1

n

)
.

Proof. For t ∈ [ti, ti+1) we have

d (Fn(t), Fn(ti)) ≤ d
(
Fn(t), S∗

t−ti
Fn(ti)

)
+ d

(
S∗

t−ti
Fn(ti), F

n(ti)
)

≤ 2 (Ln(t) − Ln(ti)) + ω(hN ; Fn
0 ) + hN

≤ 2 (Ln(ti+1) − Ln(ti)) + ω(hN ; F0) + hN +
1

n
. (5.13)

We have used Lemma 3 and Lemma 5 in the first inequality, and Lemma 4 in the second.
We will control the jumps in the empirical loss as follows:

Ln(ti+1) − Ln(ti) ≤ 2∥Ln − L∥L∞ + L(ti+1) − L(ti)

(1.14)
= 2∥Ln − L∥L∞ +

1

2

(
ρ2(ti+1) − ρ2(ti)

)

≤ 2∥Ln − L∥L∞ + ω(hN ; F0), (5.14)

using Lemma 6 in the last step. Finally, we write

d (Fn(t), ρ(t)S∗
t Fn

0 )

≤ d (Fn(t), Fn(ti)) + d
(
Fn(ti), ρ(ti)S

∗
ti
Fn

0

)
+ d

(
ρ(ti)S

∗
ti
Fn

0 , ρ(t)S∗
t Fn

0

)
,

and apply the inequalities above. The first term is controlled by (5.13) and (5.14). The
second term is controlled by taking the maximum over the finite set 0 ≤ i ≤ N . The last
term is controlled by Lemma 6. !

Proof of Theorem 3. 1. Let us first separate the effect of difference in initial condi-
tions. Clearly,

d (Fn(t), ρ(t)S∗
t F0) ≤ d (Fn(t), ρ(t)S∗

t Fn
0 ) + d (ρ(t)S∗

t Fn
0 , ρ(t)S∗

t F0)

≤ d (Fn(t), ρ(t)S∗
t Fn

0 ) + d (Fn
0 , F0) .

We increase nε if necessary, so that d (Fn
0 , F0) < ε for n ≥ nε.

2. Given ε > 0 we may choose N sufficiently large that ω(hn; F0) + hN < ε/2. We
may further increase nε if necessary so that n−1

ε < ε/2. Lemma 7 then implies that

sup
t∈[0,T ]

d (Fn(t), ρ(t)S∗
t Fn

0 ) ≤ max
0≤i≤N

d
(
Fn(ti), ρ(ti)S

∗
ti
Fn

0

)
+ 4∥Ln − L∥L∞ + ε. (5.15)
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3. We combine steps 1 and 2 to obtain

P
(

sup
t∈[0,T ]

d (Fn(t), ρ(t)S∗
t F0) > 3ε

)
≤ P

(
sup

t∈[0,T ]
d (Fn(t), ρ(t)S∗

t Fn
0 ) > 2ε

)

≤ P
(

max
0≤i≤N

d
(
Fn(ti), ρ(ti)S

∗
ti

Fn
0

)
>

ε

2

)
+ P

(
4∥Ln − L∥L∞ >

ε

2

)

≤
N∑

i=1

P
(
d
(
Fn(ti), ρ(ti)S

∗
ti
Fn

0

)
>

ε

2

)
+ P

(
∥Ln − L∥L∞ >

ε

8

)
.

The probability that ∥Ln −L∥L∞ > ε/8 is controlled by Theorem 2, and the probability
that d

(
Fn(ti), ρ(ti)S∗

ti
Fn

0

)
> ε/2 at each ti is controlled by Theorem 8. !
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